
High Performance XML

Theory & Practice

XML Prague 2009

Alex Brown,

Director,

Griffin Brown Digital Publishing Ltd

Agenda

• Background

• XML and memory bloat: how bad is it?

• Underlying causes

• A proposed new model

• Implementation experiences

• Features of the model

• Taking it further?

Background

• Developing Java applications for

processing XML – Schematron-ish.

• Why Java? – well …

• Working with documents (publishing) with

models we didn‟t devise and don‟t like

• Read-only XML (so, not so hard)

Stating the problem

• Processing big XML documents is too

slow

• And/or takes too much memory

• … in circumstances where we have to

have an in-memory representation *

– Tree representations are a reality of XML

processing: expect their significance to grow

* probably ;-)

A test document

• What does “big” mean?

• Used to use one from a customer ...

• But now we have Ecma 376-1

– aka DIS 29500

• A good test document of the “fairly big”

class

• Approx 60 MB

Quantifying the problem

Benchmarks for operations on 60 MB XML document

Time taken Memory required

Build a DOM Document 14.1 s 231 MB

XSLT Identity

Transform
40.7 s 237 MB

Parse (SAX) 5.7 s < 2 MB

Challenges

• Can we improve on this?

• What is the root of the problem?

– Does it even have a single “root”?

• Is there a „classic‟ speed/memory trade-off

that will thwart us?

• Even if we solve the problem, can we still

use a familiar API?

Trade-offs?

“ It has been my experience […] that

reducing a program‟s space requirements

also reduces its run time ”

- Jon Bentley

Observations

Bloaty implementations?

The trouble with Java

class Objs

{

public static void main(String[] args)

{

// create one million small Strings

String[] objs = new String[1000000];

for(int i = 0; i < 1000000; i++)

{

objs[i] = ("" + i);

}

}

}

50 MB

The Object overhead?

• We can reckon every java.lang.String

costs at least 40 bytes

• And Objects have creation/destruction

overheads too

• So a naïve implementation of an XML

object model is going to be costly, right

away

• But, 1 million bytes costs … 1 million bytes



The trouble with DOM (etc.)

• DOM interfaces commit us to an Object-

heavy implementation

• org.w3c.dom.Node declares17 methods

that return an Object

• More generally, a tree-based

implementation commits us to an Object-

heavy experience if we use references to

refer to Objects (e.g. parents/children)

• Difficult to use “standard” APIs here

Premises

• Beware Object!

– byte[] is your friend

• Falling-back to a more primitive form of

Java programming, avoiding large number

of Objects

• Or - Java, but not as we (generally) know

it

So what might a more primitive

storage model for XML look like?

XML document as a stream

<root a='value'>

<e>foo</e>

<e>bar</e>

<e>zxc</e>

</root>

Start document

Start element root

Attribute a

value

Character data {whitespace}

Start element e

Character data foo

End element

Character data {whitespace}

End document

etc

Attribute Value

Stream features

• Not a SAX stream

• Persistent

• More finely-grained

• “Piano roll”

Start document

Start element root

Attribute a

value

Character data {whitespace}

Start element e

Character data foo

End element

Character data {whitespace}

End document

etc

Attribute Value

Two types of phenomenon

Start document

Start element root

Attribute a

value

Character data {whitespace}

Start element e

Character data foo

End element

Character data {whitespace}

End document

etc

“structural”

= limited

repertoire of

events

“content”

= arbitrary

strings

Attribute Value

Representing structural phenomena

with single bytes

Start document

Start element

Attribute

Character data

Start element

Character data

End element

Character data

End document

etc

0x80

0x81

0x82

0x83

0x81

0x83

0x84

0x83

0xFF

• Actual values are unimportant

• But notice the high bit is set for all

these values

• And that we‟ll have plenty of high-

bit values not taken by our usual

infoset repertoire

String storage (1)

root

a

value

{whitespace}

e

foo

{whitespace}

• Strings are after all, the most

important things in your

document!

• Use a dictionary

• Refer to strings by index

• XML documents always have at

least one duplicate string!

• Often, lots

• So, normalisation would seem

sensible

String Storage (2)

Start document

Start element

0x80

0x81

Attribute

Character data

Start element

Character data

End element

Character data

End document

etc

0x82

0x83

0x81

0x83

0x84

0x83

0xFF

Reference to

root

a

value

{whitespace}

e

foo

<root a='value'>

<e>foo</e>

<e>bar</e>

<e>zxc</e>

</root>

String Storage (3)

Start document

Start element

0x80

0x81

Attribute

Character data

Start element

Character data

End element

Character data

End document

etc

0x82

0x83

0x81

0x83

0x84

0x83

0xFF

Reference to

root

a

value

{whitespace}

e

foo

<root a='value'>

<e>foo</e>

<e>bar</e>

<e>zxc</e>

</root>

0x00

• String events are

always delimited by

structural events

• We never set the high

bit for string lookup

values

• And use as many 7-bit

numbers as we need to

encode the lookup value

Bitwise representation

0x80

0x81

0x00

0x82

0x01

0x83

0x02

0x84

0x03

10000000

10000001

00000000

10000010

00000001

10000011

00000010

10000100

00000011

START_DOCUMENT

START_ELEMENT

(ref to string)

ATTRIBUTE

(ref to string)

ATTRIBUTE_VALUE

(ref to string)

TEXT

(ref to string)

etc

High bit identifies

structural events

Encoding larger values

• Say we have a text node that references

string 20010

0x84

0x48

0x01

0x85

10000100

01001000

00000001

10000100

TEXT

(part of ref to string)

(part of ref to string)

END_ELEMENT

etc

Encoded as sequence of 7-bit

numbers

Alternative Serialisations ?

###########################

string table (0 indexed)

root

a

val

etc

###########################

STD # start document

STE 0 # start element named as for string 0

ATT 1,2 # attribute named as for string 1, value of string 2

TXT 3 # text event

STE 4 # etc

Implementation Experience

Early Implementation

• Used a SaxReader to create the stream

• Used a HashMap of Strings for the string

table (so, not optimal)

• Did not handle all of the infoset

• But, looked promising ….. so …. we went

ahead and implemented it

Issues

The demon of scanning

• The model as outlined so far is memory-

efficient, but very slow to query

• Poor „random access‟ performance to

parts of the XML document, as compared

with tree model

• Especially for operations like finding

following-sibling or parent nodes

• Introduce pseudo events into the byte

stream

• Informally stating e.g.: “following-sibling is

5,000 bytes this-a-way”

• Our reserved hi-bit values can be used

• This is a classic memory/speed tradeoff

• They can be placed arbitrarily

Stratagem #1: Pseudo-events

Signpost Events

• following sibling information

• preceding sibling information

• parent information

• … all specify new stream positions

(Other events)

• CDATA sections

• Line numbers

• Column numbers

• … customers value these pesky things

Stratagem #2: Better string

representation

• Used a plain HashMap in proof-of-concept

• Not optimal for reasons noted earlier in

this talk

• Instead better to use a sequence of chars

and index into that

• (N.B. biting the two-bytes-per-char bullet)

Dynamic container woes

• Most Java containers (and our custom

ones):

– Resize when they need to (d‟oh)

– Double their capacity at that moment

– Generally sane behaviour

– But can lead to memory waste

Stratagem #3:

Document Sniffing

• Parse the document once before building

the tree

• Collect stats

• Precisely allocate structures necessary to

hold that document‟s representation

• Remember - the importance of the

transient memory use figure

Benchmarks

Benchmarks for operations on 60MB document

Time taken Memory required

Build a DOM Document 14.1 s 231 MB

Make Frozen Stream 11 s 117 MB

With physical locators 14.5 s 217 MB

Making it Useful

Just a Thought - An API?

• Do we really want/need another XML API?

• Nature of the „frozen stream‟ suggests an

iterator-based (cursor-based) API.

Avoiding Objects.

• To correspond to something recognisable

from the XML world, why not use XPath

axes?

Making it XPath-queryable

• XPath is a sane way to interact with XML

in code

• And enables Schematron implementation

• (Which is what we are interested in)

• Jaxen: stable, high-performance,

conformant XPath library

http://jaxen.codehaus.org/

http://jaxen.codehaus.org/

Integration with other XML libraries

• Unfortunately, not if they expect a “tree of

Nodes” model and/or Objects

• However Jaxen works with “any” model

which can provide Axis iterators

• So theoretically we “just” need to provide

XPath axis iterators on top of our frozen

streams

Jaxen integration

• But:

– Jaxen too is predicated on the representation

of nodes as Objects

– So now we “just” need to re-write Jaxen

around arrays of ints (representing event

indexes into frozen stream)

– Some time later …

Preliminary Results

• Promising: 2x speed of Saxon/XSLT ISO

Schematron, but using +30% memory

• Tunable to be leaner/slower

• Code to be released under GPL licence

as “Probatron”.

Thinking Aloud

Other optimisations ?

• Use assembly language !

• Leverage parallel pipelines and multi-core

features of modern chips ?

• Note Intel work in this area

Using other storage

• Frozen streams are highly amenable to

being paged to disc

• Or split across machines

Extreme optimisations ?

• Similarities between our „frozen stream‟

and multimedia streams? Use multimedia

hardware? Blitting?

• Design custom hardware for stream

processing

Conclusions

• In memory XML trees are still expensive

– But real progress in past 36 months

• Saxon pretty much ticks all boxes; hard to

beat!

• 100% streaming remains the holy grail

• Users may value the ability to choose

good speed or memory-use performance

• Maybe scope for extreme optimisations

Thank you for listening

