
    

A practical introduction 
 to EXSLT 2.0 

XML Prague, March 22nd, 2009

Florent Georges
fgeorges@fgeorges.org



    

XSLT 1.0

● Released as a W3C recommendation on 
November 11th, 1999

● Great tool to transform XML
● Hard to make complex transform because of 

Result Tree Fragments
● Missing features: regex, date and time 

manipulation, dynamic evaluation, user-written 
functions...



    

EXSLT 1.0

● Community project launched in the beginning 
of 2001

● Centralized repository of extensions to XSLT 
1.0 for various processors

● Modules: dates and times, dynamic, common, 
functions, math, random, regular expressions, 
sets, and strings

● The common module defines the famous 
exsl:node-set and exsl:document extensions



    

XSLT 2.0

● Released as a W3C recommendation on 
January 23rd, 2007

● Includes several features provided by      
EXSLT 1.0

● Has a much complete function library
● Introduces its own issues and limitations: no 

first-class functions, no dynamic evaluation, no 
parsing nor serializing facility, no nested 
sequences, no ZIP file handling for ODF...



    

EXSLT 2.0

● In the same spirit of EXSLT 1.0, tries to 
improve XSLT 2.0

● There is a demand for “standardized” 
extensions to enrich XSLT 2.0 features

● This is a great place to test changes to XSLT 
2.0 on a large scale before XSLT Next 
Generation



    

And XQuery?

● Most extensions are XPath functions
● XSLT 2.0 and XQuery both build on XPath 2.0
● XQuery processors have interesting extension 

function libraries, but each different
● EXSLT provides a unique function on all 

processors
● Ability to write more complex library modules 

in a processor-independent way



    

Challenges

● Multi-processor implementations
● Extensions must be defined to work in several, 

different environments
● How to deliver? 

• Vital point for a successful EXSLT 2.0 
• I hope XQuery implementers won't reproduce 

errors from the SQL world, and will understand 
interoperability benefits 



    

Delivery

● eXist
     import module namespace ns = "..."
        at "xmldb:exist:///db/.../module.xq";

● MarkLogic
     import module namespace ns = "..."
        at "/on/db/module.xq";

● Saxon
     declare namespace ns = "java:com.sample.JavaClass";



    

Stop theory!

...and show me some cool code



    

HTTP Client

● Send HTTP requests and provide responses
● Based on XProc step p:http-request
● Implementation for Saxon, partial 

implementations for eXist and MarkLogic
● Enable to query REST services, Google 

services, Web services, or simply to retrieve 
resources on the Web



    

http:send-request()

http:send-request($request as element(http:request)) as item()+

     <http:request href="http://www.example.com/..." method="post">
        <http:header name="X-Header" value="some value"/>
        <http:body content-type="application/xml">
           <hello>World!</hello>
        </http:body>
     </http:request>

     <http:response status="200" message="Ok">
        <http:header name="..." value="..."/>
        ...
        <http:body content-type="application/xml"/>
     </http:request>



    

http:send-request()

http:send-request(
   <http:request href="http://www.xmlprague.cz/" method="get"/>)

�

(
 <http:response status="200" message="OK">
    <http:header name="Server" value="Apache/1.3.37 (Unix)"/>
    ...
    <http:body content-type="text/html"/>
 </http:response>
,
 <html xmlns="http://www.w3.org/1999/xhtml">
    <head>
       <title>XML Prague 2009</title>
       ...
)



    

HTTP Client samples

● XQuery samples (Saxon, MarkLogic & eXist)
● GData samples
● WSDL Compiler



    

ZIP file handling

● Extract entries
● Update entries
● Create new ZIP files
● Well suited for OpenDocument (aka ODF, from 

OASIS) and Office Open XML (from Microsoft)



    

ZIP functions

● zip:xml-entry($href, $path) as document-node()

● zip:html-entry($href, $path) as document-node()

● zip:text-entry($href, $path) as xs:string

● zip:binary-entry($href, $path) as xs:base64Binary

● zip:entries($href) as element(zip:file)

● zip:zip-file($zip) as empty()

● zip:update-entries($zip, $output) as empty()



    

<zip:file>

<zip:file href="some.zip">
   <zip:entry name="file.xml" output="xml">
      <hello>World!</hello>
   </zip:entry>
   <zip:entry name="index.html" output="html" href="/some/file.html"/>
   <zip:entry name="dir">
      <zip:entry name="file.txt" output="text">
         Hello, world!
      </zip:entry>
   </zip:entry>
</zip:file>



    

OpenDocument Pattern



    

Putting it all together

● Google Contacts
– Retrieve contacts from Google Contacts

– Retrieve their pictures and maps

– Format them based on a pattern content.xml

– Create an ODT file based on a pattern



    

Google Contacts



    

That's all Folks!

● Plenty of other potential extensions
● More low-level, general purpose: nested 

sequences and first-class function objects



    

Join the community!

● http://www.exslt.org/list/ 

● http://community.zepheira.com/wiki/exslt/

● http://www.fgeorges.org/exslt2/ 

http://www.exslt.org/list/
http://community.zepheira.com/wiki/exslt/
http://www.fgeorges.org/exslt2/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

