XML is a multipurpose data format that is well-suited to the
representation of complex, hierarchically structured data. Its uses in
data exchange, storage and retrieval have reached much further than
its creators may have anticipated.

The Document Object Model (DOM) is a W3C specification for
processing XML documents. The DOM is a tree-based representation
of the XML document loaded in memory, and has a rich set of APIs to
navigate the tree document.

We address the shortcomings of existing DOM implementations, such
as excessive memory usage and the dynamic costs of node object
creation, whilst providing fast navigational and data access support.
Our focus is on a space-efficient tree-based representation of XML
documents using succinct data structures to efficiently support the
DOM read-only operations.

XML documents are often much larger than equivalent binary formats.
This ‘XML bloat’ becomes a problem when communicating XML data or
when using XML in mobile devices that have limited memory space.

DOM maintains the tree representation of the document in main
memory, as it is fast. However, existing implementations suffer from a
high memory usage: For example, the memory usage of the standard
Xerces-C implementation [5] is up to 10 times the size of the XML file.
Such a big increase is problematic when processing XML documents
using DOM, even on a desktop PC or server.

Our approach to representing XML documents with low memory
footprint relies upon succinct data structures, which use the
information-theoretically minimum number of bits to encode an object.
The structure of an XML tree can obviously be represented using 2 bits
per tree node [2] (See Figure 1). Current DOM implementations use a
pointer-based approach: each node has pointers to its parent, first-
child, next-sibling, previous-sibling etc. This uses memory (32 or 64 bits
per pointer) but is fast (navigation is just a pointer dereferencing).

Based on several years' research, we have implemented succinct trees
which use < 3 bits per node, but support navigation almost as fast as a
pointer dereferencing (however, updates are not yet supported).

Using succinct trees and other "succinct” building blocks we are able to
represent nodes in <14 bits per node, rather than 224.

s Xmiprague

<book catalogue="XML">
<author>OND & &entplc;</author>

<title>SDOM Design</title>

Succinct DOM 1.0 library

O’Neil Delpratt

(Joint work with Rajeev Raman, Naila Rahman)

Department of Computer Science, University of Leicester

2

13
<year>2007</year> [cr][sd “ [cr][sd

</book>

4 IOND & SDOM Design
°[GmbH
fi)y |1]|2|3|4|5]|6|7]|8]9]|10]11]|12]13]14]15|16|17]|18]|19]|20]|21]|22]23|24] 25|26
i prl2] (34 |sfe|l [| |7] [8]9] [10] J11]12f | [13] |
Parentheses (() (() C C))) C) C C)y)y)y)y)y))
BitString coot1to0010O01T1T1TO01T0O01T1TO0O1TO0OO0O1T1TO01 1

Figure 1. Sample XML document. DOM tree structure. Succinct tree representation and equivalent
bit-string. [cr].carriage return. [sp]: space character.

SDOM supports the read-only operations of an almost complete DOM
level 3; which maintains interfaces for both the Core and XML modules of

the DOM APIs. In addition, we support the TreeWalker APl of the
extended DOM Traversal module.

SDOM libraries are available for downloaded at the webpage:

https://lra.le.ac.uk/handle/2381/3363

The space-efficient succinct data structures written in C++ are highly
optimised. In summary, SDOM consists of a:

v Succinct tree (Stree) representation v* Textual data structures. Fast

access to individual text. Facility to

v Namecode data structure, adapted compress text in blocks using Bzip2;

from Saxon [4]

this we call SDOM-CT.

v’ Attribute to element node mapping
data structure

Within the DOM interface SDOM-(CT) has intermediate interfaces, which
call directly the succinct data structures. These interfaces are similar to
the Nodelnfo and Documentinfo interfaces used in Saxon to directly
access the TinyTree data structure.

We aim into a high-level application, such as a plug-in to Saxon.

v SDOM can be used as a standard-alone DOM.

However navigation between nodes requires the creation of node
objects, which must be maintained. To avoid this problem we
recommend the use of the TreeWalker class for navigation; this has
an iterator like behaviour, so node objects are not created by
navigation operations.

We show in the following code snippets two versions of the operation
getFirstChild() from the SDOM-Node and SDOM-TreeWalker classes.
We observe that SDOM-Node requires the creation of two objects
when returning an SDOM node object, whereas SDOM-TreeWalker
simply fetches the node number from the succinct tree (STree), then
assigns the current node to this value, if the node exists.

v The STree representation of SDOM efficiently supports the XPATH
axes (excluding namespace) — however interface development required.

First-Child operation in SDOM-Node class:

SDOM Node * SDOM Node::getFirstChild/()
{
nodej] = STree.firstChild (nodeil);
1f (nodej.node n == 0)
return NULL;
SNodeImpl * node = new SNodeImpl (STree,node]) ;
return (new SDOM Node (node)) ;

J

oONOULT AN WNR

FirstChild operation in SDOM-TreeWalker class:

SSDOM Node * TreeWalker::getFirstChild ()

{
nodei = STree->firstChild(currentNode);
1f (nodei.node n == 0)

return NULL;

currentNode = nodeil;
currentNodeImpl->setNodeNr (currentNode) ;
return currentNodeImpl;

O OONOU PR, WDN R

A full scale experimental evaluation of SDOM-(CT) has been
provided in [1].

In Table 1, we show the space usage of SDOM-(CT) compared to
Xerces-C, Saxon’s TinyTree and a reputable XML compressor, called
XMILL [3]. We show space usage for a document-centric file
(Orders.xml) and a data-centric file (Treebank _e.xml).

Table 1. Space usage of XML representations. % of memory usage w.r.t to file size.

Orders.xml 5MB 37% 451% 157% 17% 12%
Treebank _e.xml 82MB 84% 866% 260% 54% 30%
Observations:

» Xerces-C is much larger than the XML file. Saxon is
considerably better than Xerces-C.

» Memory usage of SDOM is considerably less than the file size.
SDOM-CT provides further gains.

» SDOM-CT is query-friendly (i.e. supports queries without
requiring decompression) and is comparable to XMILL, which is
not query-friendly.

In Figure 2, we shows the results of a document-order traversal
of the XML documents, which includes a simple substring test.
Results are for the NextNode operation of SDOM-TreeWalker
and the navigation operations of SDOM-Node.

Observations:
» SDOM is always within a factor of 2 of Xerces-C.

» Using the NextNode operation of SDOM-TreeWalker, we are
closer to Xerces-C. [1] shows SDOM is better for larger files.

Figure 2. Running times
for DOM full test, which 80 -
includes search for a
uncommon substring in
all text nodes.

=y}
=

M Xerces-TreeMav

=

M Xerces-MNextMode

Traversals were run 50
times for Orders and 10
times for Treebank e

H|SDOM-TreeMav

=

Time [Secs])
= n

HSDOM-NextNode

(W]
=

W SDOM-CT-TreeN av

Pt
—

| EEL—‘.EEJ

Orders Treebank_e

(Y
=

=

SDOM is a fast in-memory representation of XML documents
with small memory footprint. The current implementation is
close to being a plug-in replacement for a standard DOM
Implementation, in applications that requires read-only
operations , with very little penalty in terms of CPU usage.

SDOM provides flexibility in XML processing by having tuning
parameters in the SDOM components. This greatly reduces
space usage where memory is limited or increases space usage
where performance is critical.

Current development is to optimise the speed and memory
usage of the pre-processing of SDOM. Finally, in addition to the
tests, we are working towards a plug-in to an XSLT processor,
such as Saxon.

[1] Delpratt, O., Raman, R., and Rahman, N. 2008. Engineering succinct DOM. In
Proc. of the 11th International Conference on Extending Database Technology:
Advances in Database Technology. EDBT 2008. ACM Press.

[2] Geary, R. F., Rahman, N., Raman, R., and Raman, V. A simple optimal representation for
balanced parentheses. In Proc. 15th CPM, LNCS 3109, pp. 159-172.

[3] Liefke, H. and Suciu, D. 2000. XMill: an efficient compressor for XML data. 2000.
In Proc. of the ACM SIGMOQOD international Conference on Management of Data
SIGMOD 2000. ACM Press.

[4] Saxon. http://saxon.source.forge.net/

[5] Xerces C++ Parser. http://xerces.apache.org/xerces-c/

Please contact ondI(@mecs.le.ac.uk.

Poster version in PDF-version
www.cs.le.ac.uk/people/ond1/XMLcomp/XMLPrague09 SDOMPoster.pdf

%] University of
Leicester

http://saxon.source.forge.net/

