
Tracking Changes:

Technical and UX

Challenges

March 13nd 2010

laurens@xopus.com

Introduction

Laurens van den Oever

CEO, Xopus BV

The browser based XML editor ...

... for non-technical authors.

Introduction

Today:

The Challenges of Change Tracking

Technical

User Experience

Why Xopus has no full implementation (yet)

Why Would We Track Changes?

Collaboration

While authoring

Reviewing

After authoring

Auditing

Any time

Collaborating

Supports creative process

Large group of authors

Typically working consecutively

Maybe even realtime

Communication method

Accept/reject functionality not as important

No final responsibility

Authors can see tracked changes

Reviewing

To ensure quality

Author/editor roles

Accept/reject functionality the goal

Editor has final responsibility

Authors may not see tracked changes

Auditing

History of all changes

Including deleted content

Rejected inserts

Detail and reliability is vital

Accept/reject functionality irrelevant

Authors may not see tracked changes

Tracking vs Comparing

Comparing (diff)

Compares two documents

Works on existing content

Supports a version tree

Tracking

Supports multiple authors

Must be built into editing tool

Consecutive versioning

No canonical XML issues

Tracking vs Comparing

V1: “A sentences in need of desparate rephrasing”

“A sentences in need of despaerate need of rephrasing.”

“A sentences in desperate need of desparate rephrasing.”

V2: “A sentence in desperate need of rephrasing.”

Compare doesn‟t „understand‟ the change

Applying changes

Compare (typical)

3 way merge

Line based

Can convert to change tracking markup

Accept/reject in the UI

Integrated in familiar authoring interface

Adds author and date, maybe comment info

Tracking vs Validation

Store changes either in

Processing instructions or in

Elements

Attribute changes stored in attributes

Only complete changes

(there is no attr substructure to store more)

So prevent content in attributes

Processing Instructions

<p>A<?begin?> new<?end?> sentence</p>

No validation interference

Difficult to render using XSL

Hard to maintain integrity

Easy to „accept‟: remove all PIs

No standard to access substructure

(„attributes‟, „child nodes‟)

Elements

<p>A<ct:add> new</ct:add> sentence</p>

Interferes with validation

Easier to render using XSLT

Inheritant integrity

DOM access substructure

Elements

<meta>

<creationDate>...</creationDate>

<ct:add><description/></ct:add>

<keywords/>

</meta>

Hard to validate order

Filtering?

Not with realtime validation

Real vs Perceived Changes

Not all changes are atomic DOM actions.

Authors perceive one interaction as

one change.

Example:
<p>Sentence on no particular subject. |Followed by

another random sentence.</p>

<p>Sentence on no particular subject.<split1/></p>

<p><split2/>|Followed by another random sentence.</p>

Real vs Perceived Changes

Event based DOM API makes it harder

Contract numbering example:

<list>

<item><nr>1.</nr><p>An item</p></item>

<item><nr>2.</nr><p>Another item|</p></item>

<item><nr>3.</nr><p>Last item</p></item>

</list>

Real vs Perceived Changes

<list>

<item><nr>1.</nr>

<p>An item</p></item>

<item><nr>2.</nr>

<p>Another item<split1 id=“a”/></p>

<split1 id=“b”/></item>

<item>

<split2 id=“b”/>

<add><nr>3.</nr></add>

<p><split2 id=“a”/>|</p></item>

<item>

<nr>3.<add>4.</add></nr>

<p>Last item</p></item>

</list>

Real vs Perceived Changes

Possible to handle changes individually

But that is not logical to author

Why reject only change 3. -> 4.?

Also consider adding a table column

Followed by adding a new row

Reject one cell?

Row insertion before the column?

Changes vs WYSIWYG

Challenges rendering changes WYSIWYG

WYSIWYG is result of transformation

Changes live in source XML

Author lives in transformed output

Approaches to get changes in the output

Compare output

Adapt transformation

Magic

Changes vs WYSIWYG

Compare output

Hidden changes are lost (metadata)

Stylesheet output is treated as content

(auto numbers, generated text)

Sorting and multiple occurences interfere

Output far more complex than input

Changes vs WYSIWYG

Adapt transformation

Requires rich transformation language

CSS may not suffice

Makes (XSL) transformation more complex

How do we maintain it?

When do we have full coverage?

Changes vs WYSIWYG

Magic

Black box feature of the authoring tool

Xopus keeps change info separately

No validation interference

No transformation interference

Changes are rendered over WYSIWYG output

Can‟t render deleted content (strike through)

Exotic Requirements

Small changes may be very important:

Added whitespace

Added punctuation

Split

Merge

Exotic Requirements

Auditing has interesting requirements

Keep information about

Rejected inserted content

By whom, when and why

Accepted deleted content

Again: by whom, when and why

In general in must answer why

Content is published

Content is not published

Concluding

Tracking changes very complex

No one size fits all solution

We continue our research

Welcome your feedback

Questions?

March 13nd 2010

laurens@xopus.com

