
CLIENT-SIDE XML SCHEMA VALIDATION

Factonomy Ltd
The University of Edinburgh

Aleksejs Goremikins

Henry S. Thompson

Edinburgh 2011



Motivation

• Key gap in the integration of XML into the global Web 
infrastructure is validation.

• Support for validation of more recent schema 
languages is virtually non-existent

• The growth of interest in rich client-based 
applications with its emphasis on XML

• There are no free/open-source solutions
• Promotion of the principle of ”software-as-a-service”

2



Aim of the Work

The aim of the work is to present a prototype
JavaScript-based client-side W3C XML Schema
validator, together with an API supporting online
interrogation of validated documents.
Enabling an important improvement in XML-based
client-side applications, extending as it does the
existing data type-only validation provided by XForms
to structure validation and supporting the development
of generic schema-constrained client-side editors.

3



Schema Validation Algorithm

A technique to convert W3C XML Schema content
models to Finite State Automata (FSA) with ranges,
including handling of numeric exponents and wildcards
(H. S. Thompson and R. Tobin).

• Conversion to FSA – converts regular expressions to 
FSAs

• Unique Particle Attribution constraint checking
• Subsumption – checks two FSAs to confirm that one 

accepts only a subset of what the other accepts

4



JavaScript Restrictions

A client-side language that was initially designed to
provide dynamic websites.

• Platform Limitations – JavaScript does not support 
direct access for manipulation of the user system 
files (except for cookie files).

• Functional Limitations - JavaScript provides only 
basic functionality.

• Interoperability and User Control - DOM realization 
in browsers differs

5



Architecture

The validator operates on an XML DOM instance in the WEB
browser. The component model reconstructed from an XML
serialization of an object model.

• Schema compilation is more complex than validation
itself. Handling this server-side allows to re-use the
compilation phase of XSV, an existing W3C XML Schema
processor.

• Our focus is on supporting client-side instance authoring
environments, where schema change is infrequent.

6



Architecture

7

Figure 1. System Architecture



Editing Functionality

Restriction validation, meaning that the user could
perform only allowed actions and the document is
always valid. Before editing the document, the user is
offered a selection of possible validity-preserving
actions over the selected component.

8



Update Operations

• Insert After – insert a node immediately after the
selected node. Not actual for the root node.

• Insert Before – insert a node immediately before the
selected node. Not actual for the root node.

• Insert Into – [1] insert a node into the complex
element. [2] Insert an attribute into the selected
element.

• Delete – delete a selected node or attribute.
• Edit – edit a text node or attribute value.

9



Algorithms
Element insertions require a valid XML document. Insert After and
Insert Before operation are similar and works with FSM. The Insert
After algorithm:

• find the parent (P) of the selected element (SE). If P is of mixed
type, we can always insert text

• find the selected element (SE) and element after (EA) in the FSM;
• compare maxOccurs field of SE and of all SE edges in FSM with real

occurrences (RO). If RO < maxOccurs, then the SE or edge is a
candidate. If the edge is the wild-edge, then the candidate is any
defined element . If the edge is exit-edge, then continue;

• if a candidate is equivalent to SE or EA, we can always insert it after.
Otherwise, we check candidate edges (CE). If CE has EA, then the
candidate is valid for insertion.

10



Algorithms

Insert Before algorithm has the same actions, but over
the element before the selected.

If the selected element is first, we can add any element
that comes before the selected element in the FSM;
text if the parent is of mixed type; or element itself if its
occurrence is less then maxOccurs.

11



Algorithms
Insert Into [1] (for complex elements). Compare maxOccurs
of possible children with real occurrences (RO). If RO <
maxOccurs a child is a candidate. If selected element is
empty, we can insert all candidate.
Otherwise for each child element we apply Insert After
algorithm (Insert Before for first child); if Insert After allows
candidate, we can insert it after the child (or before). If
there are many insertion positions, take the first one.

Insert Into [2] (attributes) we can insert any attribute (from
XML Schema) that is not present in the selected element.

12



Algorithms

The Delete action compares real (NoO) and supposed
number of occurrences (minOccurs). If the NoO >
minOccurs we can delete the element.
For attributes we check, whether it use is optional –
can delete; required – cannot delete.

The Edit action is trivial: we need to get the text type
from the schema and check it during the editing (e.g.
using Ext JS framework).

13



Limitations
Not possible to edit several elements or attributes at once;
rename elements or attributes; or to specify a sequence of
actions. Not possible to "pass through" an invalid state.

Depends on the stability of the FSM on which the API is
based. In our case this is not an issue, because we assume
the FSM will not change during an editing session.

Insertion of an element with required content demands the
construction of a valid skeleton sub-tree to preserve overall
validity.

14



Example
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="address">

<xs:complexType>
<xs:sequence>

<xs:element name="town" type="xs:string" />
<xs:element name="street" type="xs:string" maxOccurs="4" />
<xs:element name="flat" type="xs:decimal" minOccurs="0" />
<xs:element name="room" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

15



Example

16

Figure 2. FSM of address element
<?xml version="1.0"?>
<address>
<town>Edinburgh</town>
<street>Parkside Terrace</street>
<room>1</room>

</address>

minOccurs



Implementation

17

Figure 3. Implementation Example

Figure 3. Implementation Example



Analysis
We ran two sets of experiments: in the first we evaluated
the validation process; for the second set, we used
documents that cover W3C XML Schema constructions to
evaluate the editing process.

• For testing the validation process we used a set of 65
tests

• Editing functionality was tested using user-driven
methodology

• Both the validation and editing tasks were performed
successfully without noticeable delays.

18



Discussion
The provision of client-side schema validation functionality opens up a
range of improved user-friendly XML-based applications.
• Our work enables open-source fully general development in

schema-constrained editing tools
• The application provides an opportunity to detect the possible

elements/attributes to insert or delete, as well as physically add or
delete items from an XML DOM tree and edit text

• We resolved the problem of detection of selected elements within
FSM, which implies linking XML DOM, XML Schema, FSM and
graphical tree representation.

In future work, we plan to supplement the validation engine to
support all W3C XML Schema constructions, explore the valid sub tree
insertion problem and add support of a wide range XSL and/ or CSS
transformations.

19



Thanks for your attention!

20


	CLIENT-SIDE XML SCHEMA VALIDATION
	Motivation
	Aim of the Work
	Schema Validation Algorithm
	JavaScript Restrictions
	Architecture
	Architecture
	Editing Functionality
	Update Operations
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Limitations
	Example
	Example
	Implementation
	Analysis
	Discussion
	Slide Number 20

