

What's new in 3.0
(XSLT/XPath/XQuery)

(plus XML Schema 1.1)

Michael Kay
Saxonica

XSD 1.1
● Now a Proposed Recommendation
● Which means it's waiting for final approval

by the W3C Advisory Committee and the
Director

● Should be a clear run to the finish:
– test suite exists
– two implementations (Xerces, Saxon) pass

all the tests

What's in XSD 1.1?
● Assertions
● Conditional Type Assignment
● Elements in multiple substitution groups
● Open content models
● Generalization of xs:all
● xs:override
● Various restrictions removed

What's not in XSD 1.1
● PrecisionDecimal data type

– hotly fought issue
– W3C rule is that changes require

consensus, so if there is strong objection
then the status quo holds

Most significant feature?
● In my view, assertions:

– Change the game
– Shamelessly borrowed from Schematron
– Many constraints are better expressed

using predicates than using a grammar

Impact?
● Two existing implementations

– gives confidence
– but they don't cover the whole space

● Another suspected implementation in the
wings

● Take-up depends primarily on the verticals:
FpML, XBRL, GIS, etc etc.

– expect it to be slow

XPath 3.0
Functions and Operators

(For both XQuery 3.0 and XSLT 3.0)

Higher-order Functions

Functions are now first-class values
(a new kind of item)

Finally, XSLT and XQuery are fully functional
programming languages!

Inline functions
let $sq :=
 function($i as xs:integer) as xs:integer {
 $i * $i
 }

Inline functions are expressions and can
appear anywhere an expression is allowed.

Other expressions that return
function items

● Function literals:
– fn:abs#1, fn:max#2, my:func#3

● Partial application (currying):
– string-join(?, ', ')
– contains(?, ?, 'http://collation/case-blind')

● Run-time discovery:
– function-lookup($name, $arity)

Functions that take functions
as an argument

● fn:filter($function, $sequence)
● fn:map($function, $sequence)
● fn:map-pairs($function, $seq1, $seq2)
● fn:fold-left($function, $initial, $sequence)
● fn:fold-right($function, $initial, $sequence)

Properties of functions
● function-name($function)
● function-arity($function)

Use cases for higher-order
functions

● Dynamic despatch mechanism
– alternative to XSLT template rules
– substitute for polymorphism

● Overcome limitations of XDM type system
● Reusable algorithms such as detection of

cycles in a graph
● Reduce the need to write simple things

using recursion

Other new functions
● trig/math functions: sin(), cos(), sqrt() etc
● analyze-string()
● format-date(), format-number(), generate-

id(), unparsed-text() etc
– moved from XSLT to common library

● head(), tail(), path()
● environment-variable(), uri-collection()
● parse(), serialize()

XSLT 3.0
● Streaming
● Packaging
● Other goodies

XSLT 3.0 “Goodies”
● xsl:try/catch (dynamic errors)
● xsl:evaluate (XPath expressions)
● xsl:iterate (a fold that looks like a for-each)
● extended pattern syntax

– apply templates to atomic values
● xsl:merge (pre-sorted input files)
● declare type of initial context item

XSLT 3.0 Packaging
● Intended to allow separate compilation of

modules
● Gives software engineering benefits for

developing large stylesheets

Packages
● “Package” is a self-contained collection of

modules that must declare its
dependencies on other modules

● Controlled visibility of declarations
– public, private, abstract, final

● Controlled override rules:
– an overriding function or template

must have a matching signature

Streaming
● General approach:

– implementations always allowed to do
streaming

– define a subset of the language that is
guaranteed streamable (if the processor
supports this option)

– streamability is a property of a mode (set of
template rules); some documents may be
processed using a streaming mode,
others in a non-streaming mode

Current streamable subset
● Every template rule is allowed one

downward selection
● Path analysis (data flow analysis) ensures

that this takes into account variables and
function calls

● Processor is required to compute all
navigation paths in the streamed document
and test this against a set of rules

Re-examining Streaming
● Current rules suffer from too little

implementation experience or feedback
● Current rules assume too much about

implementation strategy
● Current rules make it hard for users to

understand why their code is (not)
streamable

● Rules are very detailed and hard to debug
● Reviewing the strategy this coming week

The XSLT Maps proposal
● Motivations:

– when streaming, you need more complex
data structures to remember what you've
seen in the document

– extensibility of functions such as parse()
and serialize()

– support for JSON

XSLT Maps proposal
● A map is a new type of item
● Maps are immutable and have no identity

– operations such as put() create a new map
● New syntax

– constructor: map { “a” := “b” }
– item type: map(keytype, valuetype)

● New functions:
– get(), put(), contains(), keys(), size()

A map is a function
● Why?

– allows $map(“key”) to get an entry
– allows maps to be used wherever functions

can be used, e.g. filter() and map()
functions

– economy of concepts

XSLT proposal for JSON
● Two new functions, parse-JSON() and

serialize-JSON()
● Convert JSON to maps, not to XML
● Recognize JSON only at the boundaries

(these two functions)
● Weak support for arrays (represented as

maps from integers to values)

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25

