
1 © Copyright 2012 EMC Corporation. All rights reserved.

XProc: Beyond
application/xml

Vojtěch Toman

EMC Corporation

vojtech.toman@emc.com

XML Prague 2012

mailto:vojtech.toman@emc.com

2 © Copyright 2012 EMC Corporation. All rights reserved.

Motivation

“[XProc is] a language for describing operations to be
performed on XML documents.”

“…what flows between steps through input ports and
output ports are exclusively XML documents or
sequences of XML documents.”

vs.

 Real-life pipelines often have to deal with non-XML
data

– Read from external sources
– Produced by the pipeline itself

3 © Copyright 2012 EMC Corporation. All rights reserved.

BaSE64enCoDINg==

<c:data content-type="application/octet-stream"

 encoding="base64">

 QUwsQWxhYmFtYQpBSyxBbGFza2EKQVosQXJpem9uYQo...

</c:data>

 Not much we can do with such content
– Sending it over HTTP using p:http-request

– Unescaping it with p:unescape-markup

 Cannot use p:store to store the raw octet stream

 Need for extensions

4 © Copyright 2012 EMC Corporation. All rights reserved.

Using an External Channel

 Steps use an external channel for non-XML data
– File system

 Steps pass URI references to the external data

p:xsl-formatter …

doc.pdf

<c:data>

file:doc.pdf

</c:data>

5 © Copyright 2012 EMC Corporation. All rights reserved.

Introducing Non-XML Media Types

 XProc is built from the ground up on XML Infoset
– Steps expect XML Infoset instances on the input ports and

produce XML Infoset instances on the output ports.

 Option 1
– XProc processor provides some kind of a (synthetic) XML

Infoset view

 Option 2
– The steps can operate on non-XML data as well

– p:identity, p:store, p:sink, ...

6 © Copyright 2012 EMC Corporation. All rights reserved.

Introducing Non-XML Media Types

 XProc uses XPath as the expression language

 What does querying over non-XML data actually
mean?

 Does it correspond to querying some kind of
metadata gleaned from the original data?

– Dimensions of an image

 Or is it the ability to inspect the raw octet stream?
– Querying text or semi-binary formats

7 © Copyright 2012 EMC Corporation. All rights reserved.

Proposed Extension at Glance

 Both XML and non-XML data can flow through the
pipeline

– XML data flows as XML Infoset instances

– Non-XML data flows as “raw” octet streams

 The data is annotated with media type information
– application/xml, image/png, ...

 Steps declare what media types they consume and
produce

– Specified on the p:input/p:output level

– Specific (application/xml) or wildcard (*)

– XProc processor converts between media types if necessary

 XPath data model extensions

8 © Copyright 2012 EMC Corporation. All rights reserved.

 Input port conversion

 Output port conversion

Input and Output Conversion

application/json application/xml

application/xml application/json

9 © Copyright 2012 EMC Corporation. All rights reserved.

Media Type Conversion Algorithm

 The data media type matches the port media type

 Otherwise, if the XProc processor knows how to map
from the data media type to the port media type

 Otherwise, fall-back

image/svg+xml image/svg+xml
 *

application/xml application/json

10 © Copyright 2012 EMC Corporation. All rights reserved.

Media Type Conversion Algorithm

 Both the data and the port media types XML media types

 The port media type is application/xml – apply p:data
binding with a c:data wrapper element

 Both the data and the port media types are text media types

 Any other combination of media types results in an error

image/svg+xml application/xml

image/png application/xml

<c:data content-type="image/png"

 encoding="base64">iVBORw0KG...

</c:data>

text/csv text/plain

11 © Copyright 2012 EMC Corporation. All rights reserved.

Supported Media Types Mappings

 …implementation-defined

 Undermines interoperability

 Difficult to agree on “one size fits all” mappings that
would satisfy all users or use cases

– XML/JSON

12 © Copyright 2012 EMC Corporation. All rights reserved.

XPath Extensions

 XPath 2.0 only

 A new property on the XDM Document Node
– content-type, possibly empty

 New node type: Binary Data Node
– base-uri, possibly empty

– content-type, possibly empty

 XPath extension function
– m:content-type() as xs:string?

– m:content-type($arg as node()?) as xs:string?

13 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Step Declaration

<p:declare-step>

 <p:input port="source"

 m:content-type="application/xml"/>

 <p:output port="result" m:content-type="*"/>

 ...

</p:declare-step>

 Parameter input ports always accept the media type
application/xml

14 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Bindings

 The p:data binding does not wrap/base64-

encode unless requested

 The m:as-content-type attribute

– All bindings

– No conversion

<p:xquery>

 <p:input port="query">

 <p:data href="searchquery.xq"

 m:as-content-type="application/xquery"/>

 </p:input>

</p:xquery>

15 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Built-in Steps

 p:pipeline is equivalent to:

<p:declare-step>

 <p:input port="source" primary="true"

 sequence="false" m:content-type="*"/>

 <p:input port="parameters" primary="true"

 kind="parameter"/>

 <p:output port="result" primary="true"

 sequence="false" m:content-type="*"/>

 ...

</p:declare-step>

 p:group, p:for-each, p:choose, p:try
– Can be used to process any media type

 p:viewport
– XML-specific

16 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Atomic Steps

 Standard XProc steps
– p:count, p:http-request, p:identity, p:sink, p:split-
sequence, p:store, p:exec, p:xquery

 m:as-content-type

– A dynamic version of the m:as-content-type attribute

<p:declare-step type="m:as-content-type">

 <p:input port="source" sequence="true"

 m:content-type="*"/>

 <p:output port="result" sequence="true"

 m:content-type="*"/>

 <p:option name="content-type" required="true"/>

</p:declare-step>

17 © Copyright 2012 EMC Corporation. All rights reserved.

Conclusion

 A pragmatic approach
– Extensions to the XProc processing model as well as to the

language

– Reliance on the capabilities of the XProc processor as to
what kinds of media type conversions it supports

 Too open/non-interoperable or providing just the
right level of flexibility?

– The most practical solution most likely lies somewhere in-
between

 Starting point for further discussions

