XQUERY PLAYGROUND

Juan Zacarias @juanza_carias

Matthias Brantner
Cezar Andrei

A BRIEF INTRODUCTION

givento the flurry of activ
and processing.

The movement'smain goals:

» Being able to process flexible schema data (JSON or XML)

» Provide scalability for data processing

»Mongo DB
» Couchbase
» Oracle NoSQL DB

These data stores, allow the storage and access of binary data, or

JSONin particular.

query language

And when they do have query language, it is usually very limited in
functionality. Often just able to search by key and simple inserts and
replace updates.

The lack of a good query language is a major limitafion in processing
large amounts of JSON data productively and effectively.

\Y; QATARC
language.

>

Therefore, why not JSONiCI? (JSONig = XQuery + JSON)

This way we exploit decades of research, standardization, and
implementation work around processing flexible data.

note: Querying JSON data is also the primary focus for the W3C
Working group for the XQuery 3.1 extension.

This way bringing the NoSQL databases into an e
playground , namely Zorba.

Since JSONiqg is capable of querying both XML and JSON seamlessly,
this three APIs allow the user to mix and match data extracted from
NoSQL stores together with data stored in XML databases, effectively

oringing JSON query processing as par with XML.

JSONIQ

» The functional nature
language.

» The modules.
» The declarative data updates.
» Full text search.

» Type systems, using a complete
atomic type set.

(i.e. objects and ¢

» Support for JSON datatypes (null or boolea
equivalent XML Schema types.

» Navigation for JSON Objects and JSON Arrays.

» Constructors for JSON Objects and JSON Arrays using the same syntax
as JSON.

» Update primitives against JSON items as well as updating expressions
that produce them.

» New item types that extend sequence type matching.

For purpose ¢
JSONIiq language and the ,,

developed we willbe using a sample -
data set that contains information about ‘city”: "NEW YORK"
the Iocg’rion, pqpulo’rion., city and state for "oop" : 5547,

every zip code in the United States.

\.J \U

"loc": [-74.016323, 40.71
The datais given as a collection of 29469 oct RO
JSON objects. }

let $pop = sum($zip('por
where $pop > 10000000
order by $pop descending
return
{
"state" . $state,
"population”: sum ($pop)

}

MONGODB

besides JSSON primitive
supports some others, ex. byte, int,
double, binary, datetime or
timestamp

MongoDB's own query

language works by creating

"query documents” that indicate the
patterns of the keys and values that
are to be matched in the query.

mongo:collection-nc
mongo:find ($db as xs:anyURI, $coll as xs:string) as ok

mongo:find($db as xs:anyURI, $coll as xs:string, $query as
object(), $optionsas object(), $projection as object()) as
object()*

mongo:save($db as xs:anyURI, $coll as xs:string, $doc as
object()) as empty-sequence()

mongo:update($db as xs:anyURI, $coll as xs:string, $query as
object(), $update as object()) as empty-sequence()

mongo:remove($db as xs:anyURI, $coll as xs:string, remove as
object()) as empty-sequence()

A4

CconneE
object to the connection function.

The connection function willreturn an opaque identifier (as xs:anyLl
to the database. This identifier is used by all the other functions as their
first parameter.

let $db := m:connect ({" host" : "localhost’, "port" : 27017, "db" : "my-db"
)

return (: do something with the connection $db :)

for $zip in jn:parse-json(file:read-text("zips.json"))
retfurn m:save($db, "zips", $zip)

MongoDB uses BSON to store data. Since BSON extends the JSON data
model with some other primitive types, the module defines a mapping
from BSON types to types of the JSONig data model(JDM).

Such mapping allows for round-trip documents without losing the types
of the data.

» The two argumentversionrett

» Thefive argument version allows for filtering and proje
documents.

for $zip in m:find($db, "zips")
let $state = $zip('state")
return (: do something with the data :)

C++ 0dseq o

It uses MongoDB's C++ driverfor the
MongoDB.

The implementation of all the functionsis relatively straightforward
and has aprox 1300 lines of code.

However, this not include the mapping from JDM to BSON items
and vice-versa. The mapping it is relatively complex because there
IS NO obvious one-to-one mapping between those types. Designing
and implementing this part was the hardest part of the module and
It fook another 3100 lines of code.

COUCHBASE SERVER

Couchbase has its ow
query language cailled views.
» Extract particularfields and information.
» Produces an index of the information.

» Goes beyond basic key-valueretrieval
(iterating, selecting and querying).

» Storing and Querying JSON.

cb:get-binary($db as xs:a

cb:put-text($db as xs:anyURI, $key as xs:string*, $value
sequence()

cb:put-binary($db as xs:anyURI, $key as xs:string*, $value as xs:baseb4Binary*) as
empty-sequence()

cbrremove($db as xs:anyURI, $key as xs:string*) as empty-sequence()

cb:create-view($db as xs:anyURI, $doc-name as xs:string, $view-name as
xs:string*) as xs:string*

cb:create-view($db as xs:anyURI, $doc-name as xs:string, $view-name as
xs:string*, $options as object()*) as xs:string*

cb:view($db as xs:anyURI, $path as xs:string*) as object()*
cb:view($db as xs:anyURI, $path as xs:string*, $options as object()) as object()*

and bucket) as JSON obje

As in the MongoDB module it returns a unique identifier (a
which willbe used in all the functions.

@, w

let $db :=cb:connect({ "host" : "localhost", "username" : "scott",

password": "tiger’, " bucket" : "my-bucket" })

retfurn (: do something with the connection $db :)

The JSONig module A
binary data.

If we want to store JSSON data we have to serialize it first.

for $zip in jn:parse-json(file.get-text("zips.json"))
return cb:put-text($db, $zip("_id"), fn:serialize($zip))

Sie
xs:string and xs:baseé4B

let $data = cb:get-text($db, "id_number")
return (: do something with the data :)

Additional to the basic get functions this APl was designed to allow

creating and querying views. This is particularly important

for JSONiq, because Couchbase has no other way for listing all or @
subset of key-value pairs.

cb:view ($db, $
Resulting in a sequence of JSON objects ¢
{_id ="94303", key ="CA", value="24309" }

If multiple values were specified in the definition, the values would be
returned as an array.

let $view-name = cb:create-view (($db, "document-name”,
name", { "key" : "doc.state" , "values': "doc.pop" }))
for $zip in cb:view ($db, $view-name) (" rows"

let $state = $zip('state")

return (: do something with the data ;)

view-

MoaQau c, WO &
together with Couchbase serv .

The implementation of the module was a straighiforwarc
communication between zorba and Couchbase API's.

Howeversome changes were needed 1o make the views available
within JSONiqg. These changes were mainly for making modifiable
XQuery scripting to be translated info understandable javascript for
the Couchbase Server.

ORACLE NOSQL DATABASE

available data
configurable set of systems tha

function as storage nodes. ORACLE"
Oracle NoSQL doesn't " NOSQL

have a query DATABASE
|dngque, it uses a composite

key of multiple stringsin whichit can
specify only the prefix of a key or a
range of keys.

Giving more functionality fo the user
without the need of an actual query
language.

nosgl:put($db as xs:anyURI, $key ¢
nosql:delete($db as xs:anyURI, $key as xs:string) as xs:booleao

nosgl:multi-get-baseé4($db as xs:anyURI, $parentKey as object(),
$subRange as object(), depth as xs:string, $direction as xs:string) as
object()*

nosgl:multi-get-string ($db as xs:anyURI, $parentKey as object(),
$subRange as object(), $depth as xs:string, $direction as xs:string) as
object()*

nosgl:multi-get-json($db as xs:anyURI, $parentKey as object(), $subRange
as object(), $depth as xs:string, $direction as xs:string) as object()*

nosqgl:multi-delete-values($db as xs:anyURI, $parentKey as object(),
$subRange as object(), $depth as xs:string) as xs:int

Thiside SIS US
connections.

let $db := nosqgl:connect({

"store-name": "kvstore",
"helper-host-ports”: [localhost:5000'] }
)

return (: do something with the connection $db :)

the majorkey @

for $zip in jn:parse-json(file:read-text("zips.json"))
return
nosqgl:put-json($db,
{"major": ['zips"],
"minor”; [{$zip("_id")}] }.
$zip)

that allow to L

for $zip in nosgl:multi-get-json($db,
{"major": "zips"}, {"prefix":"},
$nosqgl:depth-PARENT_AND_DESCENDANTS,
$nosqgl.direction-FORWARD) (“value”)

let $state = $zip('state")

return (: do something with the data :)

clientlic
the NoSQL API, leaving ou
This makes the module simple to use while powerful w

access to more advanced compound keys and mulfi
get/delete functionalities

allowsinterfa

_/

The goal of these modules is to allow NoSQL de
power of JSONig with data in their favorite NoSQL database.

In the future we would like to define modules to the other NoSQL stores
(e.g. Amazon, DynamoDB).

We would also like to share our findings with the W3C working group in
order to officially integrate JSON data processing infto XQuery.

In the meantime we hope that the proposed connectors help NoSQL
database vendors to get a feeling of using a sophisticated data query
language..

| U L

a killercombination.

THANKS

vV v v VY

OU DU S
xquery.com/tmp/XMLPragu

Oracle NoSQL DB Module http://my.zorbao-
xquery.com/tmp/XMLPrague2013/nosgldb.xg

JSONig Language Specification http://www .jsonig.org/
MongoDB hitp://www.mongodb.org/
Couchbase Server hitp://www.couchbase.org/

Oracle NoSQL
DB http://www .oracle.com/technetw ork/products/nosgldio
/overview /index.html

Zorba http://www .zorba-xquery.org/

