
BRINGING NOSQL

DATASTORES INTO AN

XQUERY PLAYGROUND

Juan Zacarias

Matthias Brantner

Cezar Andrei

@juanza_carias

A BRIEF INTRODUCTION

IT ALL BEGAN WITH

THE NOSQL MOVEMENT

The name "NoSQL" movement (named after "Not Only SQL") was

given to the flurry of activities in the area of distributed data storage
and processing.

The movement's main goals:

 Being able to process flexible schema data (JSON or XML)

 Provide scalability for data processing

OUR FOCUS

In our paper and in this presentation we focus our attention on

three major key-value data stores:

Mongo DB

Couchbase

Oracle NoSQL DB

These data stores, allow the storage and access of binary data, or

JSON in particular.

THE PROBLEM

JSON data stores lack a structured query language or any

query language at all.

And when they do have query language, it is usually very limited in

functionality. Often just able to search by key and simple inserts and
replace updates.

The lack of a good query language is a major limitation in processing

large amounts of JSON data productively and effectively.

A SOLUTION

We remember that:

 XML databases have XQuery as a sophisticated processing

language.

Therefore, why not JSONiq? (JSONiq = XQuery + JSON)

This way we exploit decades of research, standardization, and
implementation work around processing flexible data.

note: Querying JSON data is also the primary focus for the W3C
Working group for the XQuery 3.1 extension.

To target this problem we proposed three JSONiq

modules to interact, extract, query and update JSON data on the

three NoSQL stores that were previously mentioned.

This way bringing the NoSQL databases into an existing XQuery

playground , namely Zorba.

Since JSONiq is capable of querying both XML and JSON seamlessly,

this three APIs allow the user to mix and match data extracted from
NoSQL stores together with data stored in XML databases, effectively

bringing JSON query processing as par with XML.

JSONIQ

Exploits the Fundamentals

of XQuery
 The powerful FLWOR construct.

 The functional nature of the
language.

 The modules.

 The declarative data updates.

 Full text search.

 Type systems, using a complete
atomic type set.

JSONiq is a small and simple set of
extensions to XQuery that add
support to JSON.

In order to be able to also query JSON data, JSONiq add the

following extensions to XQuery.

 Extensions to the XQuery Data Model (XDM) to support JSON

(i.e. objects and arrays).

 Support for JSON datatypes (null or boolean), with a mapping to
equivalent XML Schema types.

 Navigation for JSON Objects and JSON Arrays.

 Constructors for JSON Objects and JSON Arrays using the same syntax
as JSON.

 Update primitives against JSON items as well as updating expressions
that produce them.

 New item types that extend sequence type matching.

EXAMPLE DATASET & QUERIES

For purpose of demonstrating the
JSONiq language and the API's
developed we will be using a sample

data set that contains information about

the location, population, city and state for
every zip code in the United States.

The data is given as a collection of 29469

JSON objects.

{

"_id" : "10280",

"city" : "NEW YORK"

"pop" : 5547,

"loc": [-74.016323, 40.710537]

}

Querying Updating
for $zip in jn:parse-json(file:read-
text("zips.json"))

let $state := $zip("state ")

group by $state

let $pop := sum($zip("pop"))

where $pop > 10000000

order by $pop descending

return

{

"state" : $state,

"population" : sum($pop)

}

variable $object :=jn:parse-

json(file:read-text("zips.json"))[1];

rename json $object("_id") as
"zip_code";

delete json $object("loc");

$object

MONGODB

 A scalable, high-performace, open
source NoSQL database.

 Stores and Query collections of
JSON documents.

 Uses BSON (Binary JSON) which
besides JSON primitive types
supports some others, ex. byte, int,
double, binary, datetime or
timestamp

MongoDB's own query

language works by creating

"query documents" that indicate the

patterns of the keys and values that
are to be matched in the query.

JSONIQ API
The JSONiq module exposes the most common
MongoDB operations.

 mongo:connect($options as object()) as xs:anyURI

 mongo:collection-names($db as xs:anyURI) as xs:string*

 mongo:find($db as xs:anyURI, $coll as xs:string) as object()*

 mongo:find($db as xs:anyURI, $coll as xs:string, $query as
object(), $options as object(), $projection as object()) as
object()*

 mongo:save($db as xs:anyURI, $coll as xs:string, $doc as
object()) as empty-sequence()

 mongo:update($db as xs:anyURI, $coll as xs:string, $query as
object(), $update as object()) as empty-sequence()

 mongo:remove($db as xs:anyURI, $coll as xs:string, $remove as
object()) as empty-sequence()

CONNECTING

Connecting to the database is as simple as passing
connection information(eg. host and database) as a JSON
object to the connection function.

The connection function will return an opaque identifier (as xs:anyURI)
to the database. This identifier is used by all the other functions as their
first parameter.

let $db := m:connect ({ " host" : "localhost", "port" : 27017, "db" : "my-db"
})

return (: do something with the connection $db :)

STORING DATA

The save function could be used to load data from a text file into
MongoDB.

for $zip in jn:parse-json(file:read-text("zips.json"))

return m:save($db, "zips", $zip)

MongoDB uses BSON to store data. Since BSON extends the JSON data
model with some other primitive types, the module defines a mapping
from BSON types to types of the JSONiq data model(JDM).

Such mapping allows for round-trip documents without losing the types
of the data.

ACCESSING DATA

In order to read data from a collection the module's find function can be
used.

 The two argument version returns all the objects of the given collection.

 The five argument version allows for filtering and projecting the resulting
documents.

for $zip in m:find($db, "zips")

let $state := $zip("state")

return (: do something with the data :)

IMPLEMENTATION NOTES

The implementation of the MongoDB module API has been done in
C++ based on Zorba's API for building external modules.

It uses MongoDB's C++ driver for the communication with
MongoDB.

The implementation of all the functions is relatively straightforward
and has aprox 1300 lines of code.

However, this not include the mapping from JDM to BSON items
and vice-versa. The mapping it is relatively complex because there
is no obvious one-to-one mapping between those types. Designing
and implementing this part was the hardest part of the module and
it took another 3100 lines of code.

COUCHBASE SERVER

 Distributed key-value database.

 Efficient storing and retrieving arbitrary
key-value pairs.

Couchbase has its own
query language called views.

 Extract particular fields and information.

 Produces an index of the information.

 Goes beyond basic key-value retrieval

(iterating, selecting and querying).

 Storing and Querying JSON.

JSONIQ API
The JSONiq module provides a way to interact with Couchbase
Server.

 cb:connect($options as object()) as xs:anyURI

 cb:get-text($db as xs:anyURI, $key as xs:string*) as xs:string*

 cb:get-binary($db as xs:anyURI, $key as xs:string*) as xs:base64Binary*

 cb:put-text($db as xs:anyURI, $key as xs:string*, $value as xs:string*) as empty-
sequence()

 cb:put-binary($db as xs:anyURI, $key as xs:string*, $value as xs:base64Binary*) as
empty-sequence()

 cb:remove($db as xs:anyURI, $key as xs:string*) as empty-sequence()

 cb:create-view($db as xs:anyURI, $doc-name as xs:string, $view-name as
xs:string*) as xs:string*

 cb:create-view($db as xs:anyURI, $doc-name as xs:string, $view-name as
xs:string*, $options as object()*) as xs:string*

 cb:view($db as xs:anyURI, $path as xs:string*) as object()*

 cb:view($db as xs:anyURI, $path as xs:string*, $options as object()) as object()*

CONNECTING

The connect functions can be used to connect to the database, as

simple as passing connection information (eg. host

and bucket) as JSON object to the function.

As in the MongoDB module it returns a unique identifier (as xs:anyURI)

which will be used in all the functions.

let $db :=cb:connect({ "host" : "localhost", "username" : "scott", "
password" : "tiger", " bucket" : "my-bucket" })

return (: do something with the connection $db :)

STORING DATA

The put functions can be used for getting data into
Couchbase.

The JSONiq module API stores the data in two ways: as text or as
binary data.

If we want to store JSON data we have to serialize it first.

for $zip in jn:parse-json(file:get-text("zips.json"))

return cb:put-text($db, $zip("_id"), fn:serialize($zip))

ACCESSING DATA

The simplest way to access data is by using the get functions, ie.

get-text and get-binary, they return the value for a given key as

xs:string and xs:base64Binary respectively for each function.

let $data := cb:get-text($db, "id_number")

return (: do something with the data :)

Additional to the basic get functions this API was designed to allow

creating and querying views. This is particularly important

for JSONiq, because Couchbase has no other way for listing all or a
subset of key-value pairs.

A view can be created using the create-view function. Essentially it
allows the user to create a map using simple options.

cb:create-view ($db, "document-name", "view-name", { "key" :
"doc.state" , "values" : "doc.pop" })

The view function can be used to return the content of the view given
the name returned by create-view.

cb:view($db, $view-name)(" rows")

Resulting in a sequence of JSON objects as follow:

{ _id = "94303", key = "CA", value="24309" }

If multiple values were specified in the definition, the values would be
returned as an array.

let $view-name := cb:create-view(($db, "document-name", "view-
name", { "key" : "doc.state" , "values" : "doc.pop" }))

for $zip in cb:view($db, $view-name)(" rows")

let $state := $zip("state")

return (: do something with the data :)

IMPLEMENTATION NOTES

The implementation of this JSONiq module, just like MongoDB

module, was done using the Zorba's API for external modules
together with Couchbase server's C++ API.

The implementation of the module was a straightforward
communication between zorba and Couchbase API's.

However some changes were needed to make the views available
within JSONiq. These changes were mainly for making modifiable
XQuery scripting to be translated into understandable javascript for

the Couchbase Server.

ORACLE NOSQL DATABASE

 Distributed key-value database

 Built upon the Oracle Berkeley DB
Java Edition high-availability storage
engine.

 Provides highly reliable, scalable, and
available data storage across a
configurable set of systems that
function as storage nodes.

Oracle NoSQL doesn't
have a query
language, it uses a composite

key of multiple strings in which it can
specify only the prefix of a key or a
range of keys.

Giving more functionality to the user
without the need of an actual query
language.

JSONIQ API
The JSONiq modules defines the most common key

value store functions:

 nosql:connect($options as object()) as xs:anyURI

 nosql:get($db as xs:anyURI, $key as xs:string) as xs:string

 nosql:put($db as xs:anyURI, $key as xs:string, $value as xs:string) as xs:long

 nosql:delete($db as xs:anyURI, $key as xs:string) as xs:boolean

 nosql:multi-get-base64($db as xs:anyURI, $parentKey as object(),
$subRange as object(), depth as xs:string, $direction as xs:string) as
object()*

 nosql:multi-get-string($db as xs:anyURI, $parentKey as object(),
$subRange as object(), $depth as xs:string, $direction as xs:string) as
object()*

 nosql:multi-get-json($db as xs:anyURI, $parentKey as object(), $subRange
as object(), $depth as xs:string, $direction as xs:string) as object()*

 nosql:multi-delete-values($db as xs:anyURI, $parentKey as object(),
$subRange as object(), $depth as xs:string) as xs:int

CONNECTING

As the previous modules, the connect function takes the address and
name of the database as argument and returns a connection identifier.

This identifier is used by all the functions to discriminate between multiple
connections.

let $db := nosql:connect({

"store-name" : "kvstore",

"helper-host-ports" : ["localhost:5000"] }

)

return (: do something with the connection $db :)

STORING DATA

Since Oracle NoSQL DB is a composed key-value store, we use the put
functions to store data. In the example we chose to load the data having
the major key as 'zips' and under minor key as the zip-code '_id'.

for $zip in jn:parse-json(file:read-text("zips.json"))

return

nosql:put-json($db,

{ "major" : ["zips"],

"minor": [{$zip("_id")}] },

$zip)

ACCESSING DATA

As for any key-value store, the simplest way to access data is using the get
function. In Oracle NoSQL database there are more advanced functions
that allow to return multiple objects at once.

for $zip in nosql:multi-get-json($db,

{ "major" : "zips" }, {"prefix": ""},

$nosql:depth-PARENT_AND_DESCENDANTS,

$nosql:direction-FORWARD)(“value”)

let $state := $zip("state")

return (: do something with the data :)

IMPLEMENTATION NOTES

Oracle NoSQL module is implemented using NoSQL's Java

client library. The module covers the most important aspects of
the NoSQL API, leaving out many details for corner cases.

This makes the module simple to use while powerful with

access to more advanced compound keys and multi
get/delete functionalities

CONCLUSIONS & OUTLOOK

This presentation showed us three JSONiq modules each which
allows interfacing with a NoSQL database.

The goal of these modules is to allow NoSQL developers to use the full
power of JSONiq with data in their favorite NoSQL database.

In the future we would like to define modules to the other NoSQL stores
(e.g. Amazon, DynamoDB).

We would also like to share our findings with the W3C working group in
order to officially integrate JSON data processing into XQuery.

In the meantime we hope that the proposed connectors help NoSQL
database vendors to get a feeling of using a sophisticated data query
language..

THANKS

The expressive power of
JSONiq/XQuery together with the
scalability of NoSQL datastores make
a killer combination.

REFERENCES
 MongoDB Module http://my.zorba-

xquery.com/tmp/XMLPrague2013/mongodb.xq and
http://my.zorba-
xquery.com/tmp/XMLPrague2013/mongodb.xsd.xml

 Couchbase Server Module http://my.zorba-
xquery.com/tmp/XMLPrague2013/couchbase.xq

 Oracle NoSQL DB Module http://my.zorba-
xquery.com/tmp/XMLPrague2013/nosqldb.xq

 JSONiq Language Specification http://www.jsonig.org/

 MongoDB http://www.mongodb.org/

 Couchbase Server http://www.couchbase.org/

 Oracle NoSQL
DB http://www.oracle.com/technetwork/products/nosqldb
/overview/index.html

 Zorba http://www.zorba-xquery.org/

