

XML Prague 2016

Conference Proceedings

February 11–13, 2016

ISBN 978-80-906259-0-7 (pdf)

ISBN 978-80-906259-1-4 (ePub)

Copyright © 2016 Jiří Kosek

General Information

	Date
	
February 11th, 12th and 13th, 2016

	Location
	
University of Economics, Prague (UEP)

nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

	Organizing Committee
	
Petr Cimprich, Xyleme

Vít Janota, Xyleme

Káťa Kabrhelová, University of Economics, Prague

Jirka Kosek, xmlguru.cz & University of Economics, Prague

Martin Svárovský, Xyleme

Mohamed Zergaoui, ShareXML.com & Innovimax

	Program Committee
	
Robin Berjon, science.ai

Petr Cimprich, Xyleme

Jim Fuller, MarkLogic

Michael Kay, Saxonica

Jirka Kosek (chair), University of Economics, Prague

Ari Nordström, SGMLGuru.org

Uche Ogbuji, Zepheira LLC

Adam Retter, Evolved Binary

Andrew Sales, Andrew Sales Digital Publishing

Felix Sasaki, DFKI / W3C Fellow

John Snelson, MarkLogic

Jeni Tennison, Open Data Institute

Eric van der Vlist, Dyomedea

Priscilla Walmsley, Datypic

Norman Walsh, MarkLogic

Mohamed Zergaoui, Innovimax

	Produced By
	
XMLPrague.cz (http://xmlprague.cz)

Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)

Ubiqway, s.r.o. (http://www.ubiqway.com)

Sponsors

oXygen (http://www.oxygenxml.com)

Antenna House (http://www.antennahouse.com/)

le-tex publishing services (http://www.le-tex.de/en/)

Mercator IT Solutions Ltd (http://www.mercatorit.com)

OverStory Consulting Ltd (http://www.overstory.co.uk/)

	 	
		

		

	 	
	 	
	

	 	
	 	
		

		

Preface

This publication contains papers presented during the XML Prague
2016 conference.

In its eleventh year, XML Prague is a conference on XML for
developers, markup geeks, information managers, and students. XML
Prague focuses on markup and semantic on the Web, publishing and
digital books, XML technologies for Big Data and recent advances in
XML technologies. The conference provides an overview of successful
technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 11–13 February 2016 at the
campus of University of Economics in Prague. XML Prague 2016 is
jointly organized by the XML Prague Organizing Committee and by the
Faculty of Informatics and Statistics, University of Economics in
Prague.

The full program of the conference is broadcasted over the
Internet (see http://xmlprague.cz)—allowing XML
fans, from around the world, to participate on-line.

The Thursday and Saturday morning runs in an unconference style which provides
space for various XML community meetings in parallel
tracks. Friday and Saturday afternoon are devoted to classical single-track format and
papers from it are published in the proceeedings. Additionally, we
coordinate, support and provide space for W3C XSLT and XProc working
group meetings collocated with XML Prague.

We hope that you enjoy XML Prague 2016.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui

XML Prague Organizing Committee

Born accessible EPUB

Let’s do it!

Romain Deltour

 DAISY Consortium

<rdeltour@gmail.com>

Abstract

 Access to information and knowledge should be universal. That should not be
 controversial, but even today –in 2016– too few digital publications are “born accessible”.
 How can we raise the bar for inclusive publishing? This article presents best practices and
 guidance on how to make accessible EPUB publications.

Keywords: XML, DocBook, authoring

 1. Introduction

 “Access to information and knowledge is the single most powerful tool available to
 promote world peace.” It is with these words that the International Digital
 Publishing Forum (IDPF) –the organization responsible for the development of the EPUB
 standard– reacted to the tragic terrorist attacks that hit Paris in November 2015. In fact,
 the ability to access information and knowledge, regardless of disabilities, is recognized as
 a human right by the United Nations Convention on the Rights of Persons with Disabilities
 [3]. However, it is a common estimate that less than 10% of the
 world’s published information is accessible to people with a print disability. How can we
 raise the bar?

 Fortunately, digital publishing is progressively bringing positive changes. The EPUB 3 set
 of specifications, developed by IDPF, have been designed with accessibility as a core
 principle. It is possible, today, to produce “born accessible” digital publications. This
 article presents, in a first section, an overview of the best practices for creating
 accessible EPUB 3 content. In a second section, we will make some suggestions on how to
 implement these best practices.

 2. Accessibility Best Practices

 An accessible publication is in essence a publication that can be usable by a wide variety
 of users, on a wide variety of reading devices. However, there is no single precise definition
 of an “accessible publication”; in fact there may be as many definitions as there are readers.
 It is therefore particularly interesting to avoid making too many assumptions on the target
 audience and reading environment, and instead rely on data quality and universal design
 solutions. That is not to say that publishers or book creators have to make grandiose plans to
 implement accessibility fundamentals; a little common sense usually goes a long way. This
 section presents the principles that form the cornerstones of all accessible
 publications.

 2.1. Structure means a lot

 It may sound trite to the well-versed markup specialist, but the most fundamental
 accessibility guideline is to represent data with proper structure and semantics. Not only
 will it open you the gates of data-purity nirvana, but –more importantly– it has a direct
 impact on how the content will be understandable and operable by print-disabled
 users.

 2.1.1. Structuring 101

 EPUB 3 Content Documents [8] are (X)HTML5 documents;
 in other words, the elements and attributes used to markup EPUB content are defined in the
 W3C HTML5 specification [12]. It is important to have a good
 understanding of the HTML elements because they convey meaning
 (semantics). This meaning can be used by Reading Systems (the
 applications used to render EPUBs, the equivalent of User Agents in
 HTML terminology) to provide adequate navigability or rendering features. For instance,
 when a heading in a document is properly represented with one of the h1 to
 h6 elements, a reading system can provide navigation keys to jump to the
 next/previous headings, and a screen reader can announce that the user is reading a
 heading. If on the contrary the heading was represented with semantically-neutral
 span or class elements, none of this would be possible.

 A particularly important reason why proper structure and semantics are significant is
 that they define the logical reading order of the content. Most
 publications have a primary narrative that a reader should be able to follow
 uninterruptedly. Of course, within this primary narrative, content should be marked up in
 the order in which it is expected to be read: for instance, a heading would typically
 appear as a first child of its containing section. What may be less commonly understood,
 however, is that ancillary content –e.g. sidebars, figures, footnotes, etc.– needs to be
 properly identified so that it will not interrupt the reading of the primary narrative.
 Such supplementary content can be marked up with aside or figure
 elements. With appropriate markup, a linear reading system like a text-to-speech-enabled
 reader will be able to render the primary narrative end-to-end while ignoring ancillary
 content; this feature is called skippability. An additional benefit
 is that, would a user decide to enable the reading of ancillary content, the reading
 system can offer an exit while in the midst of reading these –thereby continuing the
 reading right after said content–; this feature is called
 escapability.

 As we said earlier, most of these structuring and semantics considerations are often
 common sense, especially for whoever is accustomed to designing document-oriented data.
 Yet, even today, many EPUB publications are created with poor markup quality. This is
 espcially the case of documents exported from layout-focused tools, which far too often
 come out as a soup of semantically neutral div or p elements. Fixing
 a badly structure document –for instance with an XSLT transformation– is a difficult
 task, usually relying on ad-hoc heuristics that cannot easily be ported to the general
 case. It is therefore very important to have quality data as early as possible in the
 production workflow; it will make accessibility easier to implement.

 2.1.2. Extended semantics

 We’ve seen already that HTML5 elements convey meaning. However, there is only so much
 information you can express with the limited set of available elements. While using an
 aside element as a container to footnotes or sidebar content rightly
 contributes to identifying the logical reading order of the document, an accessible
 reading system would also need to distinguish a "sidebar" aside from a
 "footnotes" aside in order to accurately convey the information to the user.
 EPUB 3 allows to extend HTML’s built-in structural semantics by using an
 epub:type attribute on any element. This attribute can hold a space-separated
 list of values taken from well-defined vocabularies. IDPF maintains a default vocabulary,
 the EPUB 3 Structural Semantics Vocabulary [21]. While it is
 also possible to define custom vocabularies, the semantic inflections
 defined in epub:type attributes will only impact the accessibility on the
 reading systems who understand them.

 2.1.2.1. Example: footnotes

 One example usage of semantic inflections is to define footnotes. This can be done
 by setting the properties "noteref" and "footnote" on elements with the
 epub:type attribute as shown in Example 1)

 Example 1. An EPUB footnote

 <p>Attendees of XML Prague often take the opportunity
to discuss cool topics around frosty or hot beverages
1.</p>
 …​
<aside id="note-bev" epub:type="footnote">
 <p>I usually favor beer over coffee, but YMMV.</p>
</aside>

 In this example, the "noteref" semantic inflection identifies the link as a
 reference to a note (be it a footnote or a rearnote). The "footnote" semantic inflection
 identifies the footnote content. In addition to the use of the aside element,
 which on its own declares the footnote as being out of the primary reading flow, the
 semantic inflections enable an accessible reading system to announce the note reference
 to a print disabled user. The user can then decide to skip the note reference so that
 her reading is not interrupted.
 Not only does this rich semantic markup enable good
 accessibility features, but it can also be beneficial to sighted readers too. While
 proper styling can already be used to give visual hints about the footnote nature (for
 instance by using smaller font or rendering the content at the end of the page), the
 additional semantic information can be used to enable dedicated rendering techniques. In
 the case of footnotes, some reading system will effectively use that information to
 render the footnote in a pop-up box, which can be read and then dismissed without losing
 the current reading position.

 2.1.2.2. Page numbering

 Another typical use case for using semantic inflection is to identify –in the
 markup– the location of the page breaks as they occur in the print representation of a
 publication. Except for a minority of digital-only publications, most of the
 publications are available in both digital formats and print. We have a long history of
 using printed material, and we often use page number references when we want to locate
 content in a publication. Because print disabled users do not have access to print
 publications, it is very important that they can follow the same references when using
 a digital publication. This is often a critical need, notably in education:
 for instance when the math teacher asks the pupils to go read the theorem #3 on page
 #42, her blind student must be able to access that page as directly as a sighted user
 would do.

 In EPUB 3, the location of where the page breaks occur in the equivalent print
 material can be identified with elements having the semantic inflection "pagebreak". An
 empty span or div element is typically used to represent such page
 markers, as described in Example 2.

 Example 2. A page marker

 …
<p>last paragraph of page 41</p>
<div epub:type="pagebreak" id="42"/>
<p>first paragraph of page 42</p>
…

 We will see in Section 2.2 how these page markers are referenced
 in a page list for easier navigation.

 2.1.2.3. ARIA roles

 [25], the W3C specification for Accessible Rich Internet
 Applications –developped within the Web Accessibility Initiative–, defines a
 role attribute that can be used to extend the semantics of HTML elements,
 in a similar fashion as EPUB does with the epub:type attribute. The default
 list of roles defined in ARIA 1.0 was primarily designed to represent semantics of rich
 internet applications, and therefore many of its members are seldom used for digital
 publications.

 It shall be noted however that in the process of trying to align digital publishing
 with the Open Web Platform, the Digital Publishing Interest Group of W3C recently joined
 the ARIA Working Group to work on a Digital Publishing module for ARIA [4]. This module defines new ARIA roles specific to the needs of
 digital e-book publications. Armed with this new role ontology, the forthcoming
 EPUB 3.1 specification [7] (current an early editor’s draft) will
 likely define the ARIA role attribute as the recommended method for
 inflecting semantics on HTML content, thereby superseding the epub:type
 attribute.

 2.2. Navigability

 The ability to easily navigate within a publication is crucial to accessibility. We’ve
 seen in the previous sections that properly structured content enables essential
 navigability features like the ability to escape from a block of content or the ability to
 jump to the next or previous semantically significant content. In addition to this in-flow
 navigability, it is equally important to be able to have access at once to any significant
 part of the publication.

 In EPUB 3, direct navigation is made possible with the Navigation Document, which is a
 mandatory component of the publication. The Navigation Document is a specialized HTML
 document containing one or several nav elements that have a constrained content
 model. Each nav element is distinguished with a semantical inflection and
 represents a special navigation tree or list. An EPUB reading system will understand the
 navigation document and typically render it using a dedicated user interface (typically a
 navigation side bar or popup).

 The only mandated navigation component is the table of content, colloquially referred to
 as the toc nav. In accessible publications, the table of content contains
 exhaustive references to all the sections that are part of the primary reading flow,
 regardless of their depth in the publication outline. Publishers may also want to include
 the Navigation Document in the primary reading order, as any other HTML content document.
 When they do, they can hide branches of the navigation tree from the rendering by using the
 hidden attribute. In any case, it is heavily recommended to represent the full
 publication hierarchy in the toc nav element.

 Another very useful –albeit optional– component of the Navigation Document is the page
 list that we hinted at in Section 2.1.2.2. When the EPUB has an equivalent
 print publication, it should contain a page list in order to be considered accessible. The
 page list is a nav element identified with the "pagelist" semantic inflection and
 consisting of a flat list of the publication’s pages, in the reading order. Typically, if
 the publication content has been marked up as shown in Example 2, each
 link in the pagelist nav will point to a pagebreak page marker.

 Finally, the Navigation Document is not limited to including a table of content and a
 page list. Many other navigation trees or lists can be described, such as the navigation to
 the “landmarks” of the publication, a list of figures, a list of tables, etc. In general,
 the more navigation components are provided, the more effectively a print-disabled reader
 will be able to navigate in the publication.

 2.3. Adaptation

 Print-disabled users and sighted users alike use a vast variety of systems to read
 digital publications. Some users read EPUBs on smartphones, some with a magnifying tool, or
 rendered on a desktop display, etc. An accessible EPUB is an EPUB that can adapt to all
 these various reading environements.

 One aspect of EPUB that we haven’t mentioned before is that Content Documents can be
 declared as being “reflowable” or “fixed layout”. By default, unless expicitly declared
 otherwise, a content document is considered reflowable. It basically means that the
 rendering of the EPUB can adapt to the size of the reading viewport; reading systems often
 perform dynamic pagination, and the text reflows to adjust to the page dimensions. On the
 contrary, fixed-layout documents are intended to be rendered as a single page with a fixed
 size, regardless of the device’s screen.

 Fixed-layout EPUBs are sometimes created based on the false assumption that the digital
 publication should look exactly like its print equivalent. This creates obvious usability
 issues: because the content cannot adapt to the reading device, sighted users often have to
 madly scroll and zoom to visually navigate into a page. Worse, fixed-layout content is
 usually produced from layout-oriented visual designing authoring tools, and is often poorly
 semantically structured. Fixed-layout EPUBs often have rather bad accessibility
 properties.

 For the reasons above, it is largely recommended to produce reflowable EPUBs. Although
 Fixed-layout EPUB make sense in some very specialized cases (e.g. for heavily
 design-oriented magazines, or for some children books), they are seldom a necessity. Even
 then, fixed-layout content producers should still strive to use semantically rich structure,
 which will often pay off for accessibility.

 Another way that users adapt content to their needs, and which has a direct impact on
 accesibility, is by changing default settings like font size or background and highlight
 colors. Many reading systems provide built-in mechanisms to customize font- or color-related
 settings. These are often used for personal preferences, and sometimes for accessibility
 purposes. For instance, a dyslexic user may want to force the use of a specialized font
 –like OpenDyslexic– that will make the text easier to read. It is therefore important to
 make sure that the EPUB’s design remains unobtrusive, does not rely too heavily on font or
 colors, and never as a mean of conveying significant information.

 2.4. Alternative Content

 While EPUB content is generally primarily textual, publications also often include
 non-text content like images and sometimes time-based content like video or audio.
 Accessible publications must ensure that this content –unless when used for pure decoration–
 is perceivable by the user. This is one of the top-level principle
 defined by the Web Content Accessiblity Guidelines [26].

 2.4.1. Images

 The goldern rule is that images that are significant to the understanding of the
 publications must have a text alternative set using the alt attribute of the
 img element. This text alternative will for instance be read to users who
 rely on text-to-speech rendering. The HTML specification contains useful
 guidelines on how to provide text alternatives.

 A perhaps lesser known rule is that even images used for decorative puropose –which
 are not semantically significant–, should have an alt attribute, but with an
 empty value. Doing so enables assistive devices to ignore them entirely, which makes the
 image unobtrusive to the reading experience.

 2.4.2. Beyond images

 It is important to keep in mind that using images should be restricted to the
 representation of content that cannot be otherwise represented by semantically richer
 structures.

 Tabular data, for instance, are always better marked-up with a table
 element than with an image. That will allow assistive devices to provide tabular
 navigation features, or to render the table content with text to speech.

 Likewise, some graphics or diagrams can be represented with Scalable Vector Graphics
 [22]. SVG has built-in accessibility features, like the ability to
 declare a title, a longer description, focus areas, etc. Using SVG also opens the gate to
 some interesting –albeit experimental– advanced features like for instance the ability to
 sonify a line graph to make it perceivable to visually impaired users, as shown in the
 interactive “Sonifier” demo by Doug Schepers [23].

 As for mathematical formulae, it is usually recommended to use MathML markup. Like
 other rich markup solutions, MathML has built-in elements and attributes to provide
 alternative text content; the alttext attribute can be used to provide simple
 description, and the annotation-xml element can be used when richer description
 is required. Note however that using MathML will not necessarily make a formula accessible
 per se. In his article “Is MathML Accessible?” [18], Peter Krautzberger from MathJax reminds that –appart from simply
 rendering the text alternatives– there is only so much an accessibilty tool can do to
 extract meaningful information from presentational MathML. Using MathML is certainly a
 step forward, but it still requires paying attention to markup quality and providing text
 alternatives.

 2.4.3. Long descriptions

 Sometimes, a simple textual description is not enough to accurately describe an image
 and convey its information to visually impaired users. If your picture is worth a thousand
 words, good luck fitting these in an alt attribute. In this case, there are
 several better ways to describe at length an image, chart, diagram, or table.

 In simplest cases, the textual content surrounding the image already conveys the
 information, as shown in Example 3. In this case, no further
 description is required.

 Example 3. Description in the context

 <p>The most common Czech beers are pale lagers of pilsner type
–like the one pictured below–, with characteristic transparent
golden colour, high foaminess and lighter flavour.</p>

 When the descriptive paragraph is not directly adjacent to the image, ARIA can be used
 to make the association explicit, with the aria-describedby attribute, as shown
 in Example 4.

 Example 4. Description associated with ARIA

 <p id="czech-beer">The most common Czech beers are pale lagers
of pilsner type with characteristic transparent golden colour,
high foaminess and lighter flavour.</p>
<p>.... more content ...</p>
<img src="czech-beer.jpg" alt="a pint of Czech pilsner"
 aria-describedby="czech-beer"/>

 Another useful pattern is to embed the image in the HTML figure element,
 and add the description to a caption element. As shown in Example 5.

 Example 5. Image and description in a figure

 <figure>

 <figcaption>The most common Czech beers are pale lagers of
 pilsner type with characteristic transparent golden colour,
 high foaminess and lighter flavour.
 </figcaption>
</figure>

 Finally, sometimes a long description is simply not available –or cannot be added– in
 the publication text. This case requires that the long description is placed in an
 external document. Unfortunately, at the time of writing there is no consensus on what is
 the best approach to provide external long descriptions. The longdesc
 attribute, for instance, which had been removed from HTML5 and has been recently
 reinstated as an HTML5 extension [13], suffers from being only
 usable for images (and not tables, for instance) and some browser vendors stated they will
 not implement it. Work is ongoing within W3C’s Digital Publishing Interest Group and ARIA
 Working Group to better define digital publishing’s requirements for extended description
 and provide an appropriate technical solution. In the meantime, the avid reader can follow
 the guidelines established by the DIAGRAM Center [6] or look at
 the analysis of alternative solutions as described by the Digital Publishing IG [5] (keeping in mind that this is a working document).

 2.4.4. Timed media

 Another type of media that requires alternative textual description is timed
 media, like video or audio content. A video may contain visual information
 that cannot be perceived by a visually impaired user. An audio track cannot be perceived
 by people with hearing impairment. In both cases, HTML’s track element can be
 used to include external timed text tracks. A detailed transcript can also be provided,
 using the techniques described in the preceding section.

 2.5. Another way to read

 Many reading systems are able to render EPUB content as auditory information with
 text-to-speech technologies. In EPUB 3, it is also possible to provide a built-in audio
 representation, synchronized with the HTML content documents. The specification describing
 this mechanism is called EPUB Media Overlays [11]. It relies on
 the Synchronized Multimedia Integration Language [20] to describe the
 timing of a pre-recorded audio representation, linked with the related fragments of EPUB
 content documents. A simple Media Overlay document is shown in Example 6.

 Example 6. A simple Media Overlay document

 <smil xmlns="http://www.w3.org/ns/SMIL" version="3.0">
 <body>
 <par id="par1">
 <text src="chapter1.xhtml#sentence1"/>
 <audio src="chapter1_audio.mp3" clipBegin="0s" clipEnd="10s"/>
 </par>
 <par id="par2">
 <text src="chapter1.xhtml#sentence2"/>
 <audio src="chapter1_audio.mp3" clipBegin="10s" clipEnd="20s"/>
 </par>
 <par id="par3">
 <text src="chapter1.xhtml#sentence3"/>
 <audio src="chapter1_audio.mp3" clipBegin="20s" clipEnd="30s"/>
 </par>
 </body>
</smil>

 Publications with Media Overlays are particularly useful for people with print
 disability; they are also popular for educational content or children litterature. One of
 the benefit of providing pre-recorded audio is simply is that the publisher has a fine
 control over the quality of the audio. Whether it uses narration by professional voice
 actors, or text-to-speech output from heavily customized system, pre-recorded audio usually
 surpasses by far the quality of an on-the-fly text-to-speech rendering. Additionally, Media
 Overlays-aware reading systems can provide usability features like being able to navigate in
 the audio structure ("jump to the previous/next audio phrase"), or to synchronize the
 highlighting of text content, or define customized highlighting color.

 Beyond the traditional full-text, full-audio book, Media Overlays can also be used to
 implement other kind of publications, like audio-only EPUB books. The DAISY Consortium
 notably provides a set of guidelines to represent navigable audio-only EPUB 3 [2].

 2.6. Metadata

 Although until now we’ve primarily discussed the representationof
 accessible content, another crucial aspect of accessible publishing is to provide quality
 metadata about the publication. In particular, metadata can be used
 to describe the accessibility features of the publication. With accurate metadata, print
 disabled users will be able to know if their particular accessibility needs are covered;
 metadata can also be used by search engines to improve the discoverability of accessible
 material. Picture yourself going to a library, buying the latest novel of your favorite
 author, and –once back at home and sitting comforably in your cozy armchair– finding out
 that the novel is actually represented in morse code and absolutely unreadable to you. Well,
 this is the kind of problems that print disabled users have to face constantly, typically
 when using mainstream distribution channels.

 Two metadata vocabularies are especially relevant to describe the accessibility features
 of a publication. One is ONIX Code List 196 [17], part of the ONIX
 metadata standard developed by EDItEUR. Another is the properties defined by the
 Accessibility Metadata Project and contributed to the schema.org vocabulary [19].

 3. Getting it done

 The previous sections presented some best practices that should be followed to represent
 accessible digital publications with EPUB 3. This section intends to give some guidance and
 pointers on how to implement it effectively.

 3.1. Plan for it

 The most fundamental advice is maybe that implementing accessibility needs to be planned
 upfront. Adding accessibility features to an existing inaccessible EPUB can be very costly,
 and is never a sensible long term appraoch. In an ideal world, digital publications would be
 born accessible. Unfortunately, far too often, mainstream publications need to be heavily
 reworked –sometimes from scratch– by specialized organizations.

 Establishing a publication process with accessibility in mind is a first step.
 Accessibility needs to be taken into account in every step of the process. The tools used to
 create publications need to be accessible themselves, the in-house documentation system
 needs to be accessible, the retailing system needs to be accesible.

 The importance of taking accessibility into account in the early steps of the process is
 perhaps best exemplified by looking at structural and semantical quality, as described in
 Section 2.1. Consider on the one hand a publication workflow
 putting the initial focus on print layout, with a visual design tool exporting an EPUB with
 low markup quality. Enriching or fixing this markup will be very time consuming, resulting
 in half-baked accessibility. On the other hand, a publication workflow designed with
 accessibility in mind will often focus on data quality very early in the process, which will
 allow to more easily and effectively produce key EPUB components like table of content, page
 lists, package documents, etc. At the end of the day, the result will be more accessible,
 and the overall cost reduced.

 3.2. Follow the guide

 Accessibility is related to many transversal aspects of the Web and Digital Publishing;
 knowing all the pitfalls and techniques can be challenging. Fortunately, several guideline
 documents are available and can prove to be invaluable resources.

 The first set of guidelines are the Web Content Accessibility Guidelines [26], developed at W3C. Because EPUB 3 is laregely based on Web technologies,
 most of the WCAG recommendations apply. WCAG consist in a rather concise set of guidelines
 organized under 4 principles: perceivable,
 operable, understandable, and
 robust. In addition, it is complemented by more extensive supporting
 material which provides advanced guidance and specific details on how to develop accessible
 content.

 The second set of guidelines are the EPUB 3 Accessibility Guidelines [10], and have been developed by Matt Garrish at IDPF. Rather than a
 normative document, it describes various concrete techniques that will help in the creation
 of accessible EPUB 3 content. It is a good companion to the “Accessible EPUB 3” book [9] by the same author.

 3.3. Use the right tools

 Tooling can play a significant role in getting accessibility right –or wrong, for that
 matter, as we’ve seen in earlier sections.

 While giving a complete list of tools would be out of the scope of this article, the
 following list is an example of a few approaches or solutions that can be used as part of an
 EPUB production system:

 	
 XML processing languages (e.g. XSLT and XProc):
 automated processing of XML or HTML –as done for instance by le-tex transpect or DAISY
 Pipeline– is an effective approach to EPUB production. The processing steps can
 gradually work to enrich markup, extract semantically significant data and automatically
 generate key EPUB components like the table of content, the page list, the package
 document, etc.

	
 DAISY Tobi
 [24] and Obi
 [16] are authoring tools for DAISY talking books and accessible
 EPUB 3 with Media Overlays. Tobi is designed to ease the process of synchronizing a text
 document with human narration. Obi is designed to produce audio-only books. Both support
 live recording or importing pre-recorded audio files.

	
 MathML cloud
 [15] is a tool to convert math expressions written in a variety
 of formats (LaTeX, asciimath, MathML) into text descriptions, PNG images, SVGs, MathML.
 Math Cloud adopts a SaaS model intended to be integrated in production workflows.

	
 aeneas
 [1] is a library and set of tools to automagically synchronize
 audio and text. With a little further processing, the synchronization map produced by
 aeneas can easily be used to produce EPUB Media Overlays. Aeneas is also deployed as a
 web application that can be used in a SaaS approach.

 All the tools described above are open source.

 3.4. Test it!

 The final advice is to test the publications in various environments, with various
 reading systems, and with various assistive devices. There is only so much an automated tool
 –like EpubCheck or specialized accessibility checkers– can report. At the end of the day,
 regardless of how diligent you were in following the guidelines, evaluating accessibility
 will require the intervention of human judgement.

 4. Conclusion

 Providing equal access to knowledge and information, regardless of print disabilities, is
 a fundamental human right. By making accessibility one of its core design principle, the EPUB
 3 set of specifications is bringing positive change to inclusive publishing, which keeps
 improving with the successive standard revisions. The best practices described in this article
 provide an overview of the techniques and approaches to designing accessible EPUB 3
 publications. The set of tips provided in the last section hint that producing accessible EPUB
 3 is far from being an insurmountable endeavor. In fact, various tools and guidelines exist,
 and comitting to accessibility will result in generally higher quality EPUB 3 content, with
 improved usability for all.

 In the coming months, the DAISY Consortium, together with its members, supporters, and
 partners, will work on establishing a “Baseline for Born Accessible EPUB”. This project will
 provide minimum requirements, clear guidance for publishers, and assurance to consumers on the
 minimum accessibility they can expect. By collaborating and pooling resources, we can change
 the world!

Bibliography

 [1]

 Alberto Pettarin.
 Aeneas, a library to automagically synchronize audio and text.

 ReadBeyond.

 2015.

 https://github.com/readbeyond/aeneas
 .

 [2]

 Avneesh Singh.
 Navigable audio-only EPUB3 Guidelines.

 DAISY Consortium.

 2015.

 http://www.daisy.org/ties/navigable-audio-only-epub3-guidelines
 .

 [3]

 Committee on the Rights of Persons with Disabilities.
 Convention on the Rights of Persons with Disabilities.

 United Nations Office for the High Commissioner for Human
 Rights.

 30 March 2007.

 http://www2.ohchr.org/english/law/disabilities-convention.htm#21
 .

 [4]

 Matt Garrish, Tzviya Siegman, Markus Gylling, and Shane McCarron.
 Digital Publishing WAI-ARIA Module 1.0.
 W3C Working Draft.

 W3C.

 https://www.w3.org/TR/dpub-aria-1.0/
 .

 [5]

 Digital Publishing Interest Group.
 Extended Description Analysis.
 Working Document.

 W3C.

 2015.

 https://w3c.github.io/dpub-accessibility/extended-description-analysis.html
 .

 [6]

 DIAGRAM Center.
 Image Guidelines for EPUB 3.

 DIAGRAM Center.

 http://diagramcenter.org/59-image-guidelines-for-epub-3.html
 .

 [7]

 Markus Gylling, Tzviya Siegman, and Matt Garrish.
 EPUB 3.1.
 Editor's Draft.

 IDPF.

 30 January 2016.

 http://www.idpf.org/epub/31/spec/epub-spec-20160130.html
 .

 [8]

 Markus Gylling, William McCoy, Elika J. Etemad, and Matt Garrish.
 EPUB Content Documents 3.0.1.
 Recommended Specification.

 IDPF.

 26 June 2014.

 http://www.idpf.org/epub/301/spec/epub-contentdocs-20140626.html
 .

 [9]

 Matt Garrish.
 Accessible EPUB 3.

 O'Reilly.

 2012.

 http://shop.oreilly.com/product/0636920025283.do
 .

 [10]

 Matt Garrish.
 EPUB 3 Accessibility Guidelines.

 IDPF.

 http://www.idpf.org/accessibility/guidelines/
 .

 [11]

 Marisa DeMeglio and Daniel Weck.
 EPUB Media Overlays 3.0.1.
 Recommended Specification.

 IDPF.

 26 June 2014.

 http://www.idpf.org/epub/301/spec/epub-mediaoverlays-20140626.html
 .

 [12]

 Ian Hickson et al..
 HTML5.
 W3C Recommendation.

 W3C.

 28 October 2014.

 http://www.w3.org/TR/html5/
 .

 [13]

 Charles McCathieNevile and Mark Sadecki.
 HTML5 Image Description Extension (longdesc),.
 W3C Recommendation.

 W3C.

 26 February 2015.

 https://www.w3.org/TR/html-longdesc/
 .

 [14]

 MathJax.
 MathJax Semantic Enrichment project.

 MathJax.

 https://github.com/mathjax/MathJax/wiki/Semantic-Enrichment-project
 .

 [15]

 Benetech.
 MathML Cloud.

 Benetech.

 https://www.mathmlcloud.org/
 .

 [16]

 DAISY Consortium.
 Obi.

 DAISY Consortium.

 http://www.daisy.org/project/obi
 .

 [17]

 EDItEUR.
 ONIX for Books.

 EDItEUR.

 24 January 2016.

 http://doi.org/10.4400/akjh
 .

 [18]

 Peter Krautzberger.
 Is MathML Accessible?.
 15 Nov 2015.

 http://www.idpf.org/accessibility/guidelines/content/about.php
 .

 [19]

 Accessibility Metadata Project.
 Schema.org properties, Accessiility Metadata Project,.

 Accessibility Metadata Project.

 2013.

 http://www.a11ymetadata.org/the-specification/
 .

 [20]

 Dick Bulterman.
 Synchronized Multimedia Integration Language (SMIL 3.0).
 W3C Recommendation.

 W3C.

 http://www.w3.org/TR/SMIL3/
 .

 [21]

 EPUB Structural Semantics Vocabulary.

 IDPF.

 http://www.idpf.org/epub/vocab/structure/#
 .

 [22]

 Erik Dahlström et al..
 Scalable Vector Graphics (SVG) 1.1 (Second Edition).
 W3C Recommendation.

 W3C.

 http://www.w3.org/TR/SVG11/
 .

 [23]

 Doug Schepers.
 Invisible Visualization.
 22 april 2014.

 http://schepers.cc/invisible-visualization
 .

 [24]

 Tobi, DAISY Consortium,.

 http://www.daisy.org/project/tobi
 .

 [25]

 James Craig et al..
 Accessible Rich Internet Applications (WAI-ARIA) 1.0.
 W3C Recommendation.

 W3C.

 http://www.w3.org/TR/wai-aria/
 .

 [26]

 Ben Caldwell et al..
 Web Content Accessibility Guidelines (WCAG) 2.0.
 W3C Recommendation.

 W3C.

 11 December 2008. W3C.

 https://www.w3.org/TR/WCAG20/
 .

Extending CSS with XSL-FO,
 XSL-FO with CSS

Tony Graham
Antenna House, Inc.

<tony@antennahouse.com><tgraham@antenna.co.jp>

Abstract

Discusses the Antenna House approach to merging the features of XSL-FO and CSS in
AH Formatter. This showcases some of the features of one stylesheet language that
have crossed between the two flavours of AH Formatter to become an extension in the other;
for example, CSS numbering styles in XSL-FO and XSL-FO table header and footer control in CSS.
AH Formatter uses a common layout engine when formatting either XSL-FO or CSS, plus there
are a lot of common properties in XSL 1.1 and CSS 2.0. Allowing properties to
cross over to the other stylesheet language can be as simple as adding a prefixed property in
CSS or adding a namespaced property in XSL-FO. In some cases, however, only part of the implementation in one language can or should be reimplemented for the other, and there are some parts for which it is not practical to reimplement for the other stylesheet language.

1. Introduction

AH Formatter [1] from Antenna House [2] is unique in offering formatting of XML and HTML using either XSL-FO or CSS to produce PDF, PostScript, SVG, and a range of other output formats.

There are many similarities between the properties supported by XSL-FO and those of CSS. It was something of a shotgun wedding, and it was followed by an acrimonious separation, but there was a time during the development of XSL 1.0 and CSS 2 where the emphasis was on aligning XSL-FO and CSS. Their processing models and syntaxes are very different, but at the time of XSL 1.0 and CSS 2, they shared the same models for borders, margins, padding, font properties, and many other aspects of styling markup. And, thanks to backwards compatibility, that’s still largely true.

AH Formatter was originally developed as an XSL-FO-only formatter. CSS support was added by using the CSS to drive the underlying layout engine, rather than somehow translating the CSS into XSL-FO and formatting that XSL-FO. A side-effect, if you like, of implementing CSS features in a layout engine that already implements XSL-FO is that features of CSS that fit the syntax and processing model of XSL-FO can be made available to XSL-FO, and, obviously, features of XSL-FO that can fit the syntax and processing model of CSS can also be made available to CSS stylesheets.

2. Reimplementation strategies

There are several ways to approach reimplementing a CSS feature in XSL-FO or an XSL-FO feature in CSS. These include:

	Full implementation – There is a direct correspondence between every aspect of the standard feature of one stylesheet language and its reimplementation as an extension to the other stylesheet language. For example, the CSS @counter-style ‘at-rule’ and associated properties reimplemented as an axf:counter-style extension element and associated properties.

	Partial implementation – Some parts of a feature of one stylesheet language either doesn’t map well to the other or overlaps with a standard feature of the other, so only part of the feature can usefully be reimplemented as an extension to the other stylesheet language. For example, many but not all of the features of the support for XSL-FO footnotes could be reused when implementing support for CSS footnotes, plus some of the extra features required for CSS footnotes were reimplemented for XSL-FO as extension properties and extension elements.

	Different surface syntax – Sometimes the same or quite similar constructs have quite different expressions in CSS and XSL-FO but boil down to the same sorts of areas on the formatted page. For example, both the CSS 3 named strings and running elements constructs can be and were implemented using the machinery underlining the implementation of XSL-FO fo:marker and fo:retrieve-marker formatting objects.

	Don't implement – Either the second stylesheet language already has an equivalent feature or the different approaches of the two languages make it impractical to reimplement a feature in the other language. For example, the CSS list-style, list-style-image, and list-style-position properties are not going to be reimplemented for XSL-FO because XSL-FO already allows more control over the layout and content of list item labels than CSS does, and the XSL-FO fo:page-sequence-master [3] is not reimplemented for CSS because CSS has its own page selection mechanism.

2.1. Identifying reimplemented features

Some CSS or XSL-FO features of AH Formatter are easy to identify as reimplementations of features of the other stylesheet language, but others aren’t. Identifying reimplemented properties is mostly easy, since the AH Formatter Online Manual [4] includes a chapter [5] listing all of the XSL-FO and CSS properties that AH Formatter implements (see Figure 1).

Figure 1. AH Formatter XSL/CSS Properties List (detail)
[image: AH Formatter XSL/CSS Properties List (detail)]

In general:

	XSL-FO properties with an axf: prefix are Antenna House extensions to XSL-FO.

	CSS properties with an -ah- prefix may be Antenna House extensions or may be still under development by the W3C CSS Working Group.

	CSS properties with an (-ah-) prefix can be used with or without an -ah- prefix: they can be used unprefixed because they have been standardised by the CSS WG, but the prefixed form is still supported for backwards compatibility with earlier AH Formatter versions.

	Unprefixed CSS properties are implemented by AH Formatter without previously being implemented in a prefixed form.

	Numbers before an XSL-FO property name indicate the section of the XSL 1.1 Recommendation in which the property is defined.

	An abbreviation in square brackets before a CSS property name indicates the CSS module defining the property.

so:

	A CSS property without a CSS module abbreviation that corresponds to an XSL-FO property with an XSL 1.1 section reference is likely to be an XSL-FO property reimplemented for CSS.

	An XSL-FO property with an axf: prefix that corresponds to a CSS property with a CSS module abbreviation is likely to be a CSS property reimplemented for XSL-FO.

Some of the CSS “at-rule” [6] supported by AH Formatter have been reimplemented for XSL-FO as extension elements. The “Extended Elements” [7] section of the Online Manual shows both the XSL-FO and CSS forms for these.

There are currently no XSL-FO formatting objects that are reimplemented for CSS as custom values of the CSS display property, but the areas generated by some formatting objects can, obviously, also be generated by some CSS features.

2.2. Full implementation

2.2.1. CSS to XSL-FO: Counter styles

A “counter style” is the definition and/or implementation of the sequence of numbers, letters, and/or symbols to use to represent a numbering sequence. CSS 1 defined a handful of counter styles [8] based on what HTML traditionally allowed on lists. CSS Counter Styles Level 3 [9] defines the ‘@counter-style’ rule, which provides a mechanism for defining custom counter styles, plus it defines a number of counter styles that should all (eventually) be expected to be built into browsers.

The core of a CSS 3 counter style is that it attaches a name to an algorithm for generating string representations of integer counter values. A counter style may also include properties indicating a prefix and/or suffix to add to the generated values, additional strings to indicate negative numbers, etc. The counter style can be used in the ‘list-style-type’ and in the CSS ‘counter()’ and ‘counters()’ functions. Example 1 shows a ‘my-cjk-decimal’ counter style that is a copy of the ‘cjk-decimal’ counter style from CSS Counter Styles Level 3. As the name suggests, the counter style uses the ideographs for zero to nine to represent decimal numbers, and the numbers are followed by an ideographic comma suffix. The counter style is used when numbering the items in an ol.

Example 1. CSS3 @counter-style

<style type='text/css'>
@counter-style my-cjk-decimal {
system: numeric;
range: 0 infinite;
symbols: \3007 \4E00 \4E8C \4E09 \56DB \4E94 \516D \4E03 \516B \4E5D;
/* 〇 一 二 三 四 五 六 七 八 九 */
suffix: "\3001";
/* "、" */
}
ol li { list-style-type: my-cjk-decimal; }
/* the following CSS is not part of the test */
.test { font-size: 25px; }
ol { margin: 0; padding-left: 8em; }
</style>
...

 <li title="1">一
 <li title="2">二

Example 2 shows the equivalent XSL-FO markup. The counter style is declared using an axf:counter-style element. The element has attributes corresponding to the CSS properties. The axf:number-transform property on each fo:list-item-label/fo:block refers to the counter style, so the contents of the fo:block is formatted using the counter style. The XSL-FO markup is more verbose than the HTML/CSS partly because it is meant to be generated, not authored directly, and partly as a consequence of XSL-FO allowing you to put practically anything – even a table, if that’s what you want – as the list item label.

Example 2. counter-style in XSL-FO

<fo:declarations>
 <axf:counter-style name="my-cjk-decimal" system="numeric" range="0 infinite"
symbols="'〇' '一' '二' '三' '四' '五' '六' '七' '八' '九'" suffix="'、'"/>
</fo:declarations>
...
<fo:list-block provisional-distance-between-starts="60mm"
provisional-label-separation="5mm">
 <fo:list-item>
 <fo:list-item-label start-indent="5mm" end-indent="label-end()">
 <fo:block text-align="right" color="red"
 axf:number-transform="my-cjk-decimal">1</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()"><fo:block>一</fo:block>
 </fo:list-item-body>
 </fo:list-item>
 <fo:list-item>
 <fo:list-item-label start-indent="5mm" end-indent="label-end()">
 <fo:block text-align="right" color="red"
 axf:number-transform="my-cjk-decimal">2</fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()"><fo:block>二</fo:block>
 </fo:list-item-body>
 </fo:list-item>
</fo:list-block>

The CSS example is based on an @counter-styles test from the W3C I10n WG, and the corresponding XSL-FO example includes literal numbers to be formatted with the counter style, but axf:number-transform can be used with formatting objects that generate numbers – such as fo:page-number – as well.

There are two more usual ways to generate numbers to be formatted using XSL-FO:

	Generate literal numbers in the XSL-FO using xsl:number [10] in the XSLT transformation stage.

	Format literal numbers using the properties for number-to-string conversion: format, grouping-separator, grouping-size, and letter-value [11].

In both cases, however:

	Only a few formats are defined for XSLT or XSL-FO, and anything else is implementation-defined, whereas CSS-style counter styles both have more predefined formats and allow definition of custom styles within the current document.

	Formats for large numbers – e.g., numbers up to 9,999 for several CJK numbering styles – is better defined for the predefined CSS-style counter styles than for the predefined XSLT and XSL-FO formats.

2.2.2. XSL-FO to CSS: Omitting table header/footer at break

The styling of tables is one of the few areas of CSS 3 that has not advanced from CSS 2.1. The CSS3 Tables Module [12] is not actively maintained and table styling “consists of the text of the CSS2 chapter on tables, with almost no changes yet.”

The XSL-FO table model is closely aligned with the CSS 2 table model. For example, automatic table layout and fixed table layout are defined simply by referring to the definitions in section 17.52 of the CSS 2 specification [13], plus many of the table-related properties are identical to CSS properties. XSL 1.1 defines some additional properties related to tables which aren’t in CSS 2 and, obviously, haven’t been added since. Two of these are table-omit-header-at-break [14] and table-omit-footer-at-break [15], which control whether or not the table header (or footer) is repeated where the table breaks across a page.[1] They are available in CSS stylesheets as -ah-table-omit-header-at-break and -ah-table-omit-footer-at-break. Their effect on the document in Example 3 is shown in Figure 2.

Example 3. Table samples

<style type='text/css'>
@page {
 size: 50mm 50mm;
}
table {
 page-break-before: always;
 width: 100%;
 border-collapse: collapse;
}
thead, tfoot {
 background-color: #f0fff0;
}
td {
 border: thin solid black;
}
.omit {
 -ah-table-omit-header-at-break: true;
 -ah-table-omit-footer-at-break: true;
}
</style>
...
<table>
 <thead>
 <tr><td>thead</td></tr>
 </thead>
 <tfoot>
 <tr><td>tfoot</td></tr>
 </tfoot>
 <tbody>
 <tr><td>1</td></tr>
...
 <tr><td>10</td></tr>
 </tbody>
</table>

<table class="omit">
...
</table>

Figure 2. -ah-table-omit-header-at-break and -ah-table-omit-footer-at-break
	[image: -ah-table-omit-header-at-break and -ah-table-omit-footer-at-break]

2.3. Partial implementation

2.3.1. Footnotes

Footnotes in AH Formatter are both a partial implementation of XSL-FO features for CSS and a partial implementation of CSS features for XSL-FO.

XSL-FO footnotes are generated using the fo:footnote and fo:footnote-body formatting objects plus an fo:inline for the footnote citation. The contents of the fo:inline, as well as any corresponding number or symbol on the footnote itself, are expected to be included in the XSL-FO document. Example 4 shows XSL-FO markup for an fo:block containing an fo:footnote.

Example 4. XSL-FO footnote

<fo:block>
 XML文書をきれいに表示・印刷するための仕様であるXSL 1.1に対応しており<fo:footnote>
 <fo:inline baseline-shift="super" font-size="0.75em">(3)</fo:inline>
 <fo:footnote-body>
 <fo:block font-size="0.9em" text-indent="0em">
 <fo:inline baseline-shift="super" font-size="0.75em">(3)</fo:inline>
 詳細はオンラインマニュアルの「XSL仕様の実装状況」を参照してください。
 </fo:block>
 </fo:footnote-body>
</fo:footnote>
 、またW3Cで策定作業中のCSS Level 3のページ媒体向け仕様によるレイアウト指定のページ組版にも対応しています。
</fo:block>

CSS footnotes are generated by setting the float (or -ah-float) property value to footnote [17][18]. The ::footnote-call and ::footnote-body pseudo-elements specify the styling for the footnote citation and footnote, respectively. Example 5 shows CSS styles and HTML markup for the same footnote text. Figure 3 shows

Example 5. CSS footnote

.footnote {
 -ah-float: footnote;
 margin-left: 3em;
}

::footnote-call {
 content: "("counter(footnote)")";
 font-size: 8pt;
 vertical-align: super;
}

::footnote-marker {
 content: "("counter(footnote)")";
 font-size: 8pt;
 vertical-align: super;
}
...
<p>XML文書をきれいに表示・印刷するための仕様であるXSL 1.1に対応しており
詳細はオンラインマニュアルの「XSL仕様の実装状況」を参照してください。
、またW3Cで策定作業中のCSS Level 3のページ媒体向け仕様によるレイアウト指定のページ組版にも対応しています。</p>

Figure 3. CSS footnotes
[image: CSS footnotes]

So far, so good: XSL-FO and CSS have similar concepts for the components of a footnote, so much of the existing XSL-FO implementation of footnote processing in the layout engine would have been reusable for the CSS implementation. However, there are also differences that preclude simply reusing the XSL-FO machinery for CSS:

	In XSL-FO, the “footnote-reference-area”, which contains the formatted footnotes, is implicitly present in every fo:region-body [19], whereas in CSS, the page area used to display footnotes is defined using an @footnote rule [20], which might not be defined for every page (since the example user agent stylesheet is only informative).

	In CSS, the max-height property applies to the footnote area (unless it is the last page of the document), whereas in XSL-FO, there are no controls over the height of the implicit footnote-reference-area.

	In CSS, the number or symbol for the footnote is expected to be generated by the CSS formatter using the value of the predefined “footnote counter” [21], whereas in XSL-FO, the number or symbol is expected to be present in the XSL-FO document since it is expected to be generated during the XSLT stage.

The additional CSS features of maximum height for the footnote area and generating the footnote number or symbol within the formatter have been reimplemented for XSL-FO as axf:footnote-max-height [22] and <axf:footnote-number> [23], respectively.

2.4. Different surface syntax

2.4.1. Running headers and footers

XSL-FO provides more control over the position and content of running headers and footers than is currently defined for CSS. As such, it was possible to implement both CSS named strings [24] and CSS running elements [25] using the existing machinery provided by the layout engine.

The XSL-FO fo:simple-page-master [26] can have four ‘outer’ regions that can be used for running headers and footers, as Figure 4 shows. The content for the running headers and footers generated on a page come from fo:static-content [27] in the current fo:page-sequence, and, as Figure 5 shows, different fo:static-content can be directed to specific regions on particular page masters. The fo:static-content can contain block-level formatting objects that contain hard-coded text (‘static’ static-content, if you like) but can also contain fo:page-number, which renders as the current page number, and fo:retrieve-marker, which renders as content from fo:marker formatting objects from among the formatting objects that generated the areas on the current page (or on a preceding page).

Figure 4. fo:simple-page-master regions
	[image: fo:simple-page-master regions]

Figure 5. fo:static-content directed to regions on page masters
	[image: fo:static-content directed to regions on page masters]

CSS provides two mechanisms for generating running headers and footers: named strings and running elements. Named strings copy text from the document and/or stylesheet to one of 16 ‘margin boxes’ around the edges of the page, shown in Figure 6. Since the machinery implemented for running headers and footers in XSL-FO includes the ability to place areas from block-level formatting objects in the outer regions, it was possible to implement the margin boxes for the named strings using the same machinery despite the differences in syntax between the two stylesheet languages.

The content of named strings comes from elements on the current page (or a previous page), but there may be multiple instances of that type of element on the page. The string() function [28], which copies the value of the named string, has an optional second parameter for indicating whether the first, last, or another instance should be used in the margin box. The XSL-FO fo:retrieve-marker has a similar facility through the retrieve-position property, so, again, the named string selection could be implemented based on the machinery available for XSL-FO.

Figure 6. CSS margin boxes
[image: CSS margin boxes]

CSS running elements expand upon named strings by removing entire elements from the normal flow and making them available for placement in a margin box so that, for example, a book title in a running head may include an italic word. Again, fo:retrieve-marker can retrieve more that just text, so running elements could also be implemented based on the machinery implemented for XSL-FO.

2.5. Don’t implement

2.5.1. Page selection

XSL-FO and CSS have different but largely compatible mechanisms for specifying page sizes, but they differ markedly in how pages are selected for use during processing.

CSS has @page rules [29] for specifying page sizes, etc. @page rules can have :left, :right, :first, and :blank pseudo-classes so a CSS formatter can use different @page rules in different contexts. @page rules may also have a name [30], and a CSS formatter will, if necessary, force a page break to ensure that an element is formatted on a page from an @page rule with a name that matches the element’s page property value. Example 6, from the CSS Paged Media Module Level 3 Working Draft [31], shows the styles and markup for two tables that are rendered on landscape pages (which could be the same page, if they would both fit) followed by a <p> that is rendered on the “narrow” page type. A CSS formatter would have to force a page break after the second table, if necessary, as part of switching to a new page size.

Example 6. CSS named page
@page narrow { size: 9cm 18cm }
@page rotated { size: landscape }
div { page: narrow }
table { page: rotated }
...
<div>
<table>...</table>
<table>...</table>
<p>This text is rendered on a 'narrow' page</p>
</div>

In contrast, an XSL-FO document has fo:simple-page-master for defining page size, etc., and the sequence of page masters to use for an fo:page-sequence is defined in an fo:page-sequence-master. XSL-FO has fo:repeatable-page-master-alternatives and fo:conditional-page-master-reference [32] for determining which page master to use for an odd, even, first, last, rest, or any and/or blank or not blank page in a page sequence. The number of pages produced by an fo:page-sequence can be fixed, the fo:page-sequence can be set to start or end on either an odd or an even page, and there can be a maximum number of repeats set for any of the sets of page master alternatives specified in the fo:page-sequence-master, but there is no facility in XSL-FO for breaking to an alternative page master based on anything in the XSL-FO markup contained by the fo:page-sequence.

These differences in their page selection mechanisms between CSS and XSL-FO over when to switch page types/page masters have meant that it is not practical to reimplement one for the other.

3. Conclusion

The extent to which Antenna House has and hasn’t been able to merge the features of XSL-FO
and CSS by implementing parts of one as extensions in the other illustrates both that
neither stylesheet language specification is complete and that there are some fundamental
differences of approach that either can’t be bridged or aren’t worth being bridged.

[1] AH Formatter extends the true and false values with a column value [16] for specifying that the header (or footer) is omitted at column breaks but not page breaks.

Bibliography

[1] Antenna House Formatter V6. http://www.antennahouse.com/antenna1/formatter/

[2] http://www.antennahouse.com/

[3] https://www.w3.org/TR/xsl11/#fo_page-sequence-master

[4] http://www.antennahouse.com/product/ahf60/docs/

[5] http://www.antennahouse.com/product/ahf60/docs/ahf-focss6.html

[6] https://drafts.csswg.org/css-syntax/#at_rule

[7] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#ext-element-conf

[8] https://www.w3.org/TR/REC-CSS1/#list-style

[9] CSS Counter Styles Level 3 https://www.w3.org/TR/css-counter-styles/

[10] https://www.w3.org/TR/xslt20/#number

[11] https://www.w3.org/TR/xsl11/#d0e29313

[12] https://drafts.csswg.org/css3-tables/

[13] http://www.w3.org/TR/REC-CSS2/tables.html#width-layout

[14] https://www.w3.org/TR/xsl11/#table-omit-header-at-break

[15] https://www.w3.org/TR/xsl11/#table-omit-footer-at-break

[16] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.table-omit-footer-at-break

[17] https://www.w3.org/TR/2011/WD-css3-gcpm-20111129/#footnotes

[18] http://www.antennahouse.com/product/ahf60/docs/ahf-float.html#FootnoteCSS

[19] https://www.w3.org/TR/xsl11/#fo_region-body

[20] https://drafts.csswg.org/css-gcpm/#footnote-area

[21] https://drafts.csswg.org/css-gcpm/#footnote-counters

[22] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.footnote-max-height

[23] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#footnote-number

[24] https://drafts.csswg.org/css-gcpm/#named-strings

[25] https://drafts.csswg.org/css-gcpm/#running-elements

[26] https://www.w3.org/TR/xsl11/#fo_simple-page-master

[27] https://www.w3.org/TR/xsl11/#fo_static-content

[28] https://drafts.csswg.org/css-gcpm/#using-named-strings

[29] https://www.w3.org/TR/css3-page/#at-page-rule

[30] https://www.w3.org/TR/css3-page/#using-named-pages

[31] https://www.w3.org/TR/css3-page/

[32] https://www.w3.org/TR/xsl11/#fo_conditional-page-master-reference

Virtual Document Management

Ari Nordström
<ari.nordstrom@gmail.com>

Abstract

 The paper describes a proposed solution to the lack of proper identification and
 versioning of documents passing through a series of loosely connected systems,
 resulting in a lack of tracebility, the duplication of information and a host of
 other problems.

 The solution is a passive tracking system that logs transaction events occurring
 when a document passes through each system and uses them to build a workflow and
 versioning history of the document in the tracking system. This versioning
 information can then be made available to, and used by, the participating systems to
 locate and query past versions, effectively creating what can be described as a
 “virtual document management system”.

 1. Introduction

 The idea to this paper originated partly from an earlier one I wrote for Balisage, and
 partly from the very real needs of a client. The Balisage paper was all about
 introducing a version management layer on top of the eXist-DB XML database's rather
 crude versioning module, to provide the principles of versioning management capable of
 separating the unnecessary versions that would happen whenever saving a document from
 the meaningful ones; very quickly there will be lots of versions of which most are of
 little interest later.

 The significant versions, therefore, will be very difficult to find, severely limiting
 the usability of the module.

 My client's needs, on the other hand, center on no real version management to begin
 with. The document editing and publishing workflow would perhaps be best described as
 “distributed”, comprising several systems between which a document
 would be sent on its way to being published in one or more of the multitude of systems
 outputting the content[2]. The problem here is that there is no single source system, no central
 system in control. Once published, there is no way to reliably trace a publication to
 its source to determine if there is a later and updated version of that document.

 1.1. Version Management Concepts

 While this is not the place to offer a detailed discussion of version
 management basics, it is nevertheless important to introduce and define a few
 key concepts. None of these is new or original, but since the definitions and
 their use vary depending on whom you ask, I will offer mine here:
	
 Anything can be versioned. Here, I will mostly infer XML documents, but
 the paper applies to every kind of content.

	
 A new version happens when there is a significant change to the old. What
 “significant” means may vary, of course, but at the core we
 are talking about any kind of change to the information content or
 structure. A spelling fix is an update, as is, of course, a reorganisation
 of a section or an added paragraph.

	
 Two different translations should not be seen as separate versions but
 rather different renditions of the same basic document, much like GIF or JPG
 renditions of an image.

	
 Nor should two different output formats of the same document (say, PDF and
 HTML) be seen as different versions. There might be good reasons to keep
 track of them, but if their contents are the same, presentation should not
 matter when determining their version.

	
 Moving a document along document workflow stages (for example,
 “editing”, “reviewing”,
 “translated”, “approved” or
 “published” should not automatically result in new
 versions. A document could easily pass through them all without a single
 change; on the other hand, multiple versions might be required for a single
 stage such as “editing”. Therefore, workflow
 handling, including lifecycle handling, should be kept separate from
 version handling.

	
 Links, from paper-cross-references to hyperlinks, images or content
 inclusions, should include the exact version and rendition[3] of the target.

	
 Version labels are just that, labels. They help
 readability but are not in themselves important. At their core, they are
 simply numerals starting from 1.

 Importance can be attached to them by introducing various business rules;
 usually, the business rules help clarify workflow and lifecycle stages. For
 example, “1.0” will frequently represent an approved and
 published version (implying that “0.9” is a draft),
 “1.1” a derivative of that version, usually without any
 major changes to functionality, and so on.

 1.2. The Semantic Document

 Following my definitions, above, I would like to very briefly discuss the
 identification of documents, or more generically, resources.

 A filename is seldom unique or usable as a document identifier, so it is useful to
 create an abstraction for the document ID. Me, I'm partial to URNs, as they are
 straight-forward to use when implementing the above while allowing one to retain
 some of the readability of a filename.

 Imagine a “document” as a container of information about some
 subject. A base version of that document, disregarding versioning, workflow,
 presentation or language, might be identified as follows:

 urn:x-myurn-ns:r1:mydocs:00001

 What I'm saying here is simply that my document is, in this URN namespace,
 uniquely identified as “mydocs:00001”. It's an abstract document and
 only identifies the actual information, the document semantics. Adding a rendition
 language to the identifier could then be done like this:

 urn:x-myurn-ns:r1:mydocs:00001:en-GB

 This says that this particular rendition of the contents is in British
 English.

 Documents change over time, however, so to track that change, we introduce an a
 version label to the identifier:

 urn:x-myurn-ns:r1:mydocs:00001:en-GB:1

 Now, we can reliably track change to the document:

 urn:x-myurn-ns:r1:mydocs:00001:en-GB:1
urn:x-myurn-ns:r1:mydocs:00001:en-GB:2
urn:x-myurn-ns:r1:mydocs:00001:en-GB:3
...

 And if a version 10, say, was finally approved, we could translate that version to
 Finnish and identify the translation like so:

 urn:x-myurn-ns:r1:mydocs:00001:fi-FI:10

 If accepting the concepts as outlined here, it follows that this Finnish
 translation is identical to the British English
 urn:x-myurn-ns:r1:mydocs:00001:en-GB:10 document.

 2. The Problem

 So, the problem in a nutshell:

 Large numbers of XML documents are created, edited and published without a single,
 central source, a proper identification, or proper version handling. Instead, they are
 moved from one system to another in a complex and multi-ended publishing chain, where no
 single system has control over a document in the sense that it can control an identifier
 namespace and uniquely identify a document passing through a step as the same one that
 went through an earlier step.

 The various systems can be seen as a pipeline of loosely connected black boxes (see
 Figure 1) where the information is enriched and converted to
 other formats, eventually being published in Word ML on a customer PC or as content in a
 system intended to eventually be used as a central repository.

 Figure 1. Loosely Connected Black Boxes

 [image: Loosely Connected Black Boxes]

 The individual steps have control over the content while inside the black box
 representing the current step, but usually there is no way to query or track the content
 before or after the step in the publishing chain[4]. They tend to be fetched from a shared folder and delivered to another, and
 so there is no way to reliably track a single document through the publishing
 chain.

 Yet, traceability is exactly what is required by the business; it must be possible to
 trace a document back to the previous steps, including the source, to find out if a
 later version exists, and what the changes are.

 As noted, many steps along the way have some degree of control over the document
 within that step. For example, many of the first steps in the chain[5], where documents are authored[6], are database-driven. There is not necessarily any actual versioning—a
 change to an existing document is frequently done directly to the document at hand and
 so no old version is kept—but the system knows what changes are done to what document.
 It's just that no other later step, no black box in the publishing chain, can reliably
 access or keep track of that information.

 Also note that the content is led through different participant systems depending on
 the desired output which further serves to hide the tracks of a publication.

 It is easy to get lost in the relative complexities of each system and come to the
 (wrong) conclusion that fixing the problem is done by adding versioning or ID handling
 in one of the participating systems. For example, some of the steps do have ID mapping,
 where one set of IDs is mapped to another in an attempt to preserve the history of a
 document.

 This, of course, is just wrong. The problem, to put it simply, happens because a)
 there is no global, unique and persistent identification of the resources, which means
 that b) there can be no versioning of the resources[7].

 3. The Solution

 While I would usually propose a single-source document management system to handle the
 situation—something that can uniquely identify and version handle every piece of
 content, and introduce workflows to maintain complete control over the document
 throughout the publishing chain—this is, for a number of reasons, not feasible.

 Therefore, I instead suggest introducing an external system, a passive observer, to
 track the transaction events that occur when a document passes through the publishing
 chain, from one system to the next. This system would log every transaction in every
 output and every input of every black box, identifying as much information of the
 transaction as possible and so adding any available data about the document itself, but
 also about the participating system, from the system ID to timestamps to local
 identifiers, any processing (such as identity transforms, enrichment, updated structural
 IDs, etc) happening between the input and the output, and so on.

 The idea here is that by logging events happening to a document throughout the
 publishing chain, the tracking system is able to construct a versioning and workflow
 history for that document, noting where the document came from and identifying changes
 being done to the document while it is being published. The log can then be used to
 trace the document back to its origins.

 Also, when an existing document in a source system is updated and published again,
 this too is passed on to the tracking system that, based on earlier transaction
 information, recognises that the new event happens to a document already being tracked,
 and will add to the versioning history for that document.

 Ideally, the transactions should be logged in an XML document that models a workflow
 and versioning history for a resource, enabling easy access and manipulation, preferably
 in an XML database such as eXist.

 3.1. Versioning XML

 My Balisage paper (see [1]) proposes a versioning
 structure that looks like this:

 <?xml version="1.0" encoding="UTF-8"?>
<resource>

 <!-- Base URN -->
 <base></base>

 <!-- Integer version 1 -->
 <version>
 <rev>1</rev>
 <url lang="en-GB"></url>
 <metadata>
 ...
 </metadata>

 <!-- 1st decimal version -->
 <version>
 <rev>1</rev>
 <url></url>
 <metadata>
 ...
 </metadata>
 </version>

 <!-- 2d decimal version -->
 <version>
 <rev>2</rev>
 <url lang="en-GB"></url>
 <metadata>
 ...
 </metadata>
 </version>
 </version>

 <!-- Integer version 2 -->
 <version>
 <rev>2</rev>
 <url lang="en-GB"></url>
 <metadata>
 ...
 </metadata>

 <!-- Stage 1 (decimal versions) -->
 <version>
 <rev>1</rev>
 <url></url>
 <metadata>
 ...
 </metadata>
 </version>
 <version>
 <rev>2</rev>
 <url></url>
 <metadata>
 ...
 </metadata>
 </version>
 </version>
</resource>

 This identifies a base version of the document in base (compare this to
 the semantic document in Section 1.2) and then uses nested
 version elements to identify every new version, including URLs and
 metadata about the respective versions. Implied here is versioning on two levels,
 much like what software versions tend to look like (i.e. “1.0”,
 “1.1”, “1.2”, “2.0”, “2.1”,
 etc) where the first-level versions describe major updates according to some
 business rules, and the second-level versions describe minor updates within these.

 The metadata structure contains information about a specific version of
 the resource. This could include time stamps, titles, users, or basically anything
 that is deemed to be of interest.

 My proposed passive tracking system should use something similar to the
 Balisage versioning markup, above, but with some differences:
	
 The publishing chain would need to track several sets of metadata per
 version or workflow stage: the output of one system would track one set of
 metadata (about that system) while the input of the next system in line
 would track another (about that system). The document itself would likely be
 unchanged, however.

	
 If the output and input versions are stored somewhere, these would be
 pinpointed with their separate URLs (pointing at the folders used by the
 respective system) but appended to the same document version. note that
 while these versions exist for some time, during processing, they are not
 persistent.

 The result, ideally, is a versioning and workflow history of a resource based on
 the events happening to it along the publishing chain. It can by no means replace a
 complete version handling system unless the
 “versions” that happen along the way are saved and retrievable
 later.

 Of course, the tracking system could easily store any relevant contents of the
 tracked document, from a skeletal XML structure to the complete document itself, at
 any (transaction event) point in the publishing chain, most usefully, perhaps, when
 logging the first and last steps of the publishing chain. This would in effect
 create a versioning system of sorts, a virtual document management system where
 changes to the content can be tracked and queried.

 3.2. Tracking Changes

 So, to illustrate a simple publishing chain, let's assume that an existing
 document A passes through a publishing chain with three systems as follows:

 Figure 2. Publishing Chain

 [image: Publishing Chain]

 Each of the systems performs some kind of transformation, the details of which are
 unimportant for the purposes of this example.

 The following happens:
	
 The document is published from Edit 1, causing a
 transaction event registered by the tracking system. The tracker logs the
 originating system's (Edit 1) metadata, including the
 document ID for A as used by it, and possibly a URL to the source document,
 if available. The tracking system could also store the document itself, and
 add that URL to the versioning XML

 All this is added to the existing versioning XML for document A.

	
 System 1 receives the file and causes another
 transaction event. The tracker logs System 1 metadata, adding it to A's
 versioning XML. This causes a new decimal version to be created.

	
 System 1 finishes its task(s) and sends the document
 off to the next system, System 2, again causing a
 transaction event. The tracker logs updated document A metadata, and
 possibly the transient URL, in the version created in the preceding
 step.

 If storing the updated document, the tracking system will also add a URL
 and additional metadata to the versioning XML.

	
 System 2 receives the file, causing another
 transaction event. The tracking system creates a new decimal version and
 adds metadata about the receiving system (System 2), as well as (maybe) a
 transient URL. Again, the tracking system might also store that version and
 add the URL and additional metadata to the versioning XML about document
 A.

	
 System 2 finishes its task(s), causing a transaction
 event that adds metadata to the decimal version created in the preceding
 step, as well as (maybe) a transient URL. And, as before, the tracking
 system might store the document, adding another URL and more
 metadata.

	
 The System 2 output causes a transaction event,
 logging updated document A metadata, and possibly the transient URL, in the
 version created in the preceding step. And again, as before, the tracking
 system might store the document, adding another URL and more
 metadata.

 The file is then sent to System 3.

	
 System 3 receives the file, causing a transaction event. The tracking
 system again creates a new decimal version and adds metadata about the
 receiving system (System 3), as well as (maybe) a transient URL. Again, the
 tracking system might also store that version and add the URL and additional
 metadata to the versioning XML about document A.

	
 System 3 happens to be the final instance. It processes the file, causing
 a transaction event that adds metadata and possibly a URL to the version
 created in the previous step.

	
 The output is stored and logged. This would cause yet another transaction
 event, where the system metadata, document metadata and publication metadata
 would be stored, adding, of course, URLs where so required.

 Note

 Here, various additional steps could be taken to ensure that the
 publication is tracked, regardless of who (and where) the end user is so
 that the document's versioning XML as created above can be reliably
 queried later.

 Note

 The question of when a new version should be triggered,
 above, is partly a philosophical one, but also something that could depend on
 the system that causes the transaction event. For various reasons, one system
 might not cause a new version (in case of identity checks or similar) while
 another one would (for example, when transforming a document). It should be
 remembered that while the publishing chain is a mass of distributed systems
 where one does not know much about the other, the purpose of each one is
 reasonably well defined.

 3.3. Updated Versioning XML

 The Balisage versioning XML, ideally, needs an update to properly handle the
 publishing chain described above, most importantly to allow the coupling of multiple
 metadata and URL pairs within a single version so the URL and its associated
 metadata can be grouped; the above set of transactions relies on several sets of
 metadata without the content changing..

 The publishing chain described above (Section 3.2) would
 result in versioning XML like this[8]:

 <?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="file:/home/ari/Dropbox/XMLPrague/2016/virtual-document-management/rng/version-xml.rnc" type="application/relax-ng-compact-syntax"?>
<map>
 <resources>
 <resource>
 <!-- Versionless information here -->
 <metadata>About the semantic document</metadata>
 <!-- Base identifier for document A -->
 <base>urn:x-versions:r1:001</base>

 <!-- Existing version -->
 <version>
 <rev>1</rev>
 <!-- V 1.0 revisions go here -->
 </version>

 <!-- New version -->
 <version>
 <rev>2</rev>
 <doc>
 <metadata>Output from EDIT 1, EDIT 1 SYSTEM</metadata>
 <url>URL TO EDIT 1 VERSION</url>
 </doc>

 <version>
 <rev>1</rev>
 <doc>
 <metadata>SYSTEM 1 input metadata</metadata>
 <url>URL to SYSTEM 1 INPUT</url>
 </doc>
 <doc>
 <metadata>SYSTEM 1 output metadata</metadata>
 <url>URL to SYSTEM 1 OUTPUT</url>
 </doc>

 </version>
 <version>
 <rev>2</rev>
 <doc>
 <metadata>SYSTEM 2 input metadata</metadata>
 <url>URL to SYSTEM 2 INPUT</url>
 </doc>
 <doc>
 <metadata>SYSTEM 2 output metadata</metadata>
 <url>URL to SYSTEM 2 OUTPUT</url>
 </doc>
 </version>
 <version>
 <rev>3</rev>
 <doc>
 <metadata>SYSTEM 3 input metadata</metadata>
 <url>URL to SYSTEM 3 INPUT</url>
 </doc>
 <doc>
 <metadata>SYSTEM 3 output metadata</metadata>
 <url>URL to SYSTEM 3 OUTPUT</url>
 </doc>
 <doc>
 <metadata>METADATA ABOUT PUBLICATION</metadata>
 <url>URL to PUBLICATION</url>
 </doc>
 </version>
 </version>
 </resource>
 </resources>
</map>

 Let's walk through this. Here's the semantic document, identified using a document
 ID that is guaranteed to be unique within the tracking system, and the existing
 version:

 <!-- Versionless information here -->
<metadata>About the semantic document</metadata>
<!-- Base identifier for document A -->
<base>urn:x-versions:r1:001</base>

<!-- Existing version -->
<version>
 <rev>1</rev>
 <!-- V 1.0 revisions go here -->
</version>

 When a new version of the document is published, the tracking system logs a new
 virtual version by creating a new integer version:

 <version>
 <rev>2</rev>
 <doc>
 <metadata>Output from EDIT 1, EDIT 1 SYSTEM</metadata>
 <url>URL TO EDIT 1 VERSION</url>
 </doc>

 Then, for each input to a new system, and the system's corresponding output, the
 tracking system adds a new decimal version:

 <version>
 <rev>1</rev>
 <doc>
 <metadata>SYSTEM 1 input metadata</metadata>
 <url>URL to SYSTEM 1 INPUT</url>
 </doc>
 <doc>
 <metadata>SYSTEM 1 output metadata</metadata>
 <url>URL to SYSTEM 1 OUTPUT</url>
 </doc>

</version>

 Until we reach the final publication:

 <doc>
 <metadata>SYSTEM 3 output metadata</metadata>
 <url>URL to SYSTEM 3 OUTPUT</url>
</doc>
<doc>
 <metadata>METADATA ABOUT PUBLICATION</metadata>
 <url>URL to PUBLICATION</url>
</doc>

 Here, I've deliberately made the distinction between the last system's output and
 the actual publication to highlight that in the latter one, it would be easy to add
 information about where the publication is used, providing
 further help when tracing a document. This could be handled using a list such as
 this XML, or it could be a list of values in a referenced (but wholly separate)
 database.

 4. Implementation and Use

 An XML database should make it easy to build the XML-based versioning and workflow
 structures, and to query them later, but it can, of course, also be used to store the
 tracked content itself[9], allowing queries into the different versions. The system needs to be a
 passive observer, in that it cannot control or change any of the content it tracks;
 however, the tracked systems all require some additional functionality that allows them
 to trigger the transaction events.

 4.1. Transaction Events and Logged Metadata

 The tracking system should be a service subscribed to by the participant systems.
 While it would probably be possible to track a resource through a publishing chain
 with only some of the steps logging transactions[10], ideally, every system in the process should subscribe to the
 service.

 Essentially, the tracking functionality would be a service that logs any useful
 metadata about the originating system (system ID, timestamps, users, etc), the
 document (ID in the originating system, URL, etc), as well as any other useful
 information about the transaction, for example, automated comments or information
 entered by a user when initiating the transaction or event. Once a transaction was
 completed, the information would be passed along to the tracking system, initiating
 a change to an existing versioning XML, or perhaps a new versioning instance
 altogether, depending on how the event was triggered.

 Obviously, if a system only has a single purpose (i.e. “convert XML to
 PDF”, the type of event it triggers should be clear. A system intended
 for multiple types of processing, depending on the context[11], would benefit from including the purpose in the logged metadata.

 4.2. Using the Versioning Information

 The versioning information can be queried by any of the participating systems, for
 example, to present an overview of the document history or to track specific changes
 to a document, based on, say, a structural ID or a fixed XPath expression. It should
 be easy to present the versioning XML in HTML format, perhaps with links added to
 the older versions, or with diffing functionality added.

 Of course, any stored metadata about the changes in each version can also be
 presented to the user.

 I tend to see the information as a virtual document management system, virtual
 because none of the subscribing systems control it and because the documents
 identified by the tracking system are not real; they are all
 reverse-engineered from the available information and only available
 indirectly.

 Since the versioning and workflow information is reverse-engineered, it also
 implies that the information could be wrong and we could, in fact, risk adding a
 transaction event to the wrong resource in the tracking system or create two
 versioning trees for what should have been a single document. Exactly how, and by
 what, an event is triggered and what is included in the log, is crucial but hampered
 by the fact that the participant systems have limited, and differing,
 capabilities.

 Also consider the case where a document is sent to two parallel
 publishing outputs where the requirements of one output differ from
 the other's, forcing the editor updating the document in the originating system
 (Edit 1 in Section 3.2) to change
 the contents slightly for the two outputs. In effect, this causes a
 “fork”, a split of the contents that happens because of the
 differing requirements. Without a document management system, it is very difficult
 to keep track of, and update, the two variants.

 In order to log the two events as a fork of a single version rather than two
 separate versions[12], some business logic and some additional markup is required to handle
 the fork in the versioning XML. A separate version tree should probably be created
 for the fork and link the original and the fork to each other, for example, by
 adding an ID/IDREF pair[13]:

 <version idref="id-fork">
 <rev>2</rev>
 <doc>
 <metadata>Output from EDIT 1, EDIT 1 SYSTEM</metadata>
 <url>URL TO EDIT 1 VERSION</url>
 </doc>

 <version>
 <rev>1</rev>
 ...
 </version>
 ..
</version>

 The @idref would point at another resource in the XML, one
 with a new base identifier and a separate versioning history:

 <resource id="id-fork">
 <!-- Versionless information here -->
 <metadata>Info about the forked document A</metadata>
 <!-- Base identifier for document A fork -->
 <base>urn:x-versions:r1:002</base>

 <!-- Existing version -->
 <version>
 <rev>1</rev>
 <!-- V 1.0 revisions go here -->
 </version>
 ...
</resource>

 Or, with a separate versioning XML instance, an external reference. Adding more
 business logic, it might be useful to use the base identifier of the target (i.e.
 version/@ref="urn:x-versions:r1:002") and allow later processing to
 determine what is returned by a query to locate the fork.

 5. End Notes

 There are several points to be made about the proposed system. In no particular
 order:
	
 The paper really mostly describes what should be labelled as a workflow
 tracking system rather than a versioning one, even though it will be able to
 keep track of every version published by the editing
 system.

	
 To overcome that weakness and actually keep track of what's happening
 inside an editing system, while a document is being
 drafted, the system would have to “publish” drafts, too, and allow
 these to generate suitable transaction events.

 In fact, the tracking system could be used to add version handling
 capabilities to a single system, simply by adding functionality to output
 (“publish”) a document using different publication flags
 (“draft”, “review”, “approved”, etc),
 store the outputs, and use the events to build a versioning XML document.

	
 Of course, for full versioning capabilities regardless of the way the tracking
 system is used, any significant draft versions would also have to be saved by
 the tracking system[14].

	
 I've tried to look for solutions similar to mine out there but found
 surprisingly little of note, although Eliot Kimber's work, presented at Balisage
 2015 (see [2]), is well worth reading and touches upon
 similar ideas.

 Interestingly, having talked to my client, other parts of the company have
 touched upon similar ideas—passive trackers that log information from the
 subscribing systems—but these ideas have yet to come to pass.

 5.1. Future Work

 For the immediate future—pre-conference—I hope to do a demo of some kind, quite
 possibly using eXist-DB only and faking some transaction events within an eXist
 application. Another option would be to write a proof of concept in eXist, enriching
 its current versioning module, but that will take longer.

 In the longer term, I hope to convince my client of the usability of the approach.
 If accepted, the XML format is likely to change and adapt to their particular
 requirements (the metadata being a case in point).

 [2] The systems range from several editing environments to a complex, multi-step
 publishing chain that enriches and converts the information, ending with several
 different legacy output systems as well as a brand new one being
 developed.

 [3] Meaning translation and, when relevant, the presentation.

 [4] The illustration is merely for illustration purposes; the actual situation is
 not depicted exactly as-is anywhere in this paper.

 [5] Plural form; we are talking about several authoring systems.

 [6] Helpfully labelled as “Edit”.

 [7] How can you version handle something you can't identify?

 [8] The Relax NG schema that describes the tracking system's versioning XML is
 not done as of this writing. Specifically, the metadata structure that is
 required is far from being ready.

 [9] Making it into an almost full-fledged version management system.

 [10] Using timestamps, etc; an identity transform that changes document
 identifiers or other metadata would otherwise risk covering the
 tracks.

 [11] Such as the originating system.

 [12] This is

 [13] Or something much cooler, an extended XLink linkbase that connects the
 two. There, I managed to include XLink in this paper, too.

 [14] My Balisage paper (see [1]) discusses
 useful approaches when creating a versioning strategy.

Bibliography

 [1] Nordström, Ari. “Multilevel Versioning.” Presented at
 Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings
 of Balisage: The Markup Conference 2014. Balisage Series on Markup Technologies, vol. 13
 (2014). doi:10.4242/BalisageVol13.Nordstrom01.

 [2] Kimber, Eliot. “Hyperdocument Authoring Link Management
 Using Git and XQuery in Service of an Abstract Hyperdocument Management Model Applied to
 DITA Hyperdocuments.” Presented at Balisage: The Markup Conference 2015, Washington, DC,
 August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015. Balisage
 Series on Markup Technologies, vol. 15 (2015).
 doi:10.4242/BalisageVol15.Kimber01.

Define and Conquer

Using Semantic XML for Functional Software Specifications

Dr. Patrik Stellmann
<patrik.stellmann@gdv-dl.de>

Abstract

			The XML universe provides several standards and tools for technical
				documentation.

			This paper introduces an approach to functionally specifying software with XML
				tools and provides an overview of the challenges that we solved. An essential part
				is to use a highly specialized semantic XML schema customized for the specific
				enterprise architecture. Thus, the general idea of "highly specialized semantics" is
				introduced and some hints on how to define and maintain such a schema are
				given.

			This paper is based on over three years of experience using the combination of
				oXygen XML Editor and DITA. The concept and ideas should be applicable to other XML
				based documentation standards and editors as well.

		

Keywords: XML, DITA, oXygen XML editor, XSLT, Schema, Schematron, Functional specification

	
	1. Introduction

		
		Writing good functional software specifications is challenging and mistakes are often very
			expensive to fix. Still such documents are often written with editors like MS Word that
			provide very limited authoring assistance – especially when compared to modern integrated
			development environments.

		Being a system architect an essential part of my job is writing functional specifications.
			Additionally, I'm responsible for maintaining the book of procedures that we provide for our
			customers. The book of procedures describes the XML interfaces of our web services. It is
			written in DITA XML.

		The framework we are currently using is a mixture of DITA and DocBook: it uses DITA
			elements and the class concept. But it uses XInclude instead of DITA maps. After realizing
			the disadvantages of this approach (e.g. not being able to use DITA-OT for publishing) we
			are currently working on the conversion to real DITA and refactoring the added features as
			open source plugins[15] for oXygen XML editor[16] and DITA-OT[17].

		From a developers point of view our framework can be seen as a programming language for
			system architects. It not only helps to write a consistent technical document. It also
			provides assistance in designing a good architecture.

	
	2. Highly Specialized Semantics

		
		A functional software specification has to contain all information required for implementing,
			testing and operating the software. But in contrast to source code this information is
			provided in natural language which can hardly be interpreted by computers.

		DITA and other XML standards for technical documents, such as DocBook already define semantic
			elements on a level of detail required for authoring and publishing. But this doesn't help
			when trying to automatically interpret the actual content.

		DITA additionally provides elements for the programming domain[18], for example parameter lists. But these elements alone are usually not
			sufficient for the following reasons:

			
				They are not sufficiently specific (e.g. it's not clear, what kind of parameters
					are described).

			
	
				They are not sufficiently fine-grained (within the parameter description you might
					want to define the exact data type).

			
	
				They provide no context (the parameters of what interface are described).

			

		The specialized elements are derived from more generic ones. Our schema specializes
			elements on all levels. For example, we specialize parameter elements to add domain specific
			meaning. We also specialize topic elements to structure the definition of a software
			component. As a result for every component of our software architecture and the individual
			properties we have specialized DITA elements.

		Figure 1 illustrates how we use our highly specialized XML to specify
			a login service for an enterprise service bus (ESB). Figure 2
			shows the corresponding XML code.

		Figure 1. Sample Functional Specification

			
				[image: Sample Functional Specification]

		

		Figure 2. Sample Functional Specification Markup

			
				[image: Sample Functional Specification Markup]

		

	
	3. Solved Challenges

	
	Writing technical documents is a complex task in general. Often style guides are supposed
		to help the authors to write consistent content – especially when several authors are
		working on the same document.

	Writing functional software specifications is no different. But as an additional
		difficulty the focus of the author – in this case being a system architect – should be on
		the actual architecture and design that needs to be created – not on writing a
		document.

	Modern integrated development environments like Eclipse or MS Visual Studio provide great
		authoring assistance for writing software. This includes the following features:

		
			Content completion

		
	
			Online help

		
	
			Syntax highlighting

		
	
			Real-time validation

		
	
			Quick fixes

		

	Our highly specialized semantic XML is the starting point of an integrated development
		environment for system architects. The following sections illustrate how XML improved our
		workflow of functionally specifying software and partially even the following stages of our
		software development cycle.

	3.1. Authoring Assistance

		
		In our company there are several guidelines a system architect has to follow when
			functionally specifying software. The guidelines describe documents structure, layout
			and even the actual software architecture. Providing these guidelines in a separate
			document had only limited success as it is difficult to keep them in mind all the
			time.

		Our customized framework assists the author and enforces some of the rules of the
			style guide. The following use case illustrates how the framework guides the author.
			Assume that the author wants to add the parameter Gender to a software
			component.

		As the author starts to write, immediate authoring assistance is provided by the XML
			schema itself. The highly specialized schema provides dedicated elements for all
			relevant architectural components – e.g. for the accepted types of a field. The author
			does not have to write huge blocks of unstructured text but can pick the required
			elements. To insert new elements in oXygen's author mode the author just has to press
			enter and a list of all allowed elements is displayed. In our use cases it would look
			like shown in Figure 3.

		Figure 3. Authoring Guidance by Element Choices

			
			[image: Authoring Guidance by Element Choices]

		

		After choosing the required type – in this case an enumeration – Oxygen will
			automatically add all mandatory child elements. In case of an enumeration this is a list
			of key-name-pairs with a single entry. The architect immediately sees the fields he has
			to fill as shown in Figure 4.

		Figure 4. Authoring Assistance by Mandatory Elements and Static Content

			
			[image: Authoring Assistance by Mandatory Elements and Static Content]

		

		The framework adds static content. In our use case the prefix "Enumeration:" and the
			dash between the key and name elements are added. The architect does not have to think
			about how he should describe the enumeration and if he should use a colon or a dash
			between the key and the name.

		And finally, it is possible to provide some pure architectural hints for the author
			that are relevant for this use case. For instance, an automatically generated text can
			provide information about how to model an enumeration, as shown in Figure 5.

		Figure 5. Authoring Assistance by Hints

			
			[image: Authoring Assistance by Hints]

		

		In oXygen these hints can easily be activated and deactivated by changing the current
			CSS style so experienced authors can hide it.

	
	3.2. Identifiers and Enumeration Values

		
		A functional software specification usually contains several references to other
			architectural entities. For example, the specification of a web service references the
			data base tables it accesses. Using the exact value is obviously very important and
			still it is very hard to ensure consistency. This holds especially true as functional
			specifications tend to be modified several times.

		Our framework with its highly specialized semantic XML automatically recognizes all
			identifiers within the specification. For example, the definition of the parameter
			"Gender" of type enumeration as shown in Figure 6 defines the key "Gender"
			of type "Parameter" as well as the two enumeration keys "1" and "2". The corresponding
			XML code is shown in Figure 7.

		Figure 6. Definition of a Parameter as Enumeration

			
			[image: Definition of a Parameter as Enumeration]

		

		Figure 7. Markup of Parameter Definition

			
			[image: Markup of Parameter Definition]

		

		To refer to an identifier the architect just inserts a specialized KeyRef
			element. Depending on the key type the layout can be adapted automatically, for example
			to use italics or mono-space font or to display some prefix and suffix
			characters.

		When inserting such a specialized KeyRef element the author can just
			write the key (e.g. "Gender") and will get a warning, if the value is undefined or
			ambiguous. The author can then open a dedicated dialog that lists all defined keys and
			can select the one he needs to reference. This also helps to identify the key if the
			actual value is not known in advance.

		When referencing enumeration values the authors are often facing the challenge that on
			the technical level the key is important. But the name is essential for understanding
			its meaning in the first place. Thus, for enumeration values we used to add the name in
			parentheses next to the key. But this increases the risk of inconsistency. Since the
			enumerations are specified as pairs of key and name in another chapter of the
			specification it is possible to add the name automatically. Our framework checks and
			ensures consistency and guarantees that the author always refers to the correct
			key.

		In our example a specification of a condition would look as shown in Figure 8.

		Figure 8. Referencing Identifiers an Enumeration Values

			
			[image: Referencing Identifiers an Enumeration Values]

		

		In this example the name of the enumeration value and the brackets around the Customer
			structure were added by the framework. The gray colored text is only visible for the
			author and provides information about the KeyRef element. The three
			question marks ("???") indicate an unknown reference while the three number signs
			("###") indicate an ambiguous reference. The red or green link symbols visualize if the
			KeyRef element is valid. Additionally there are schematron rules that check
			the validity.

	
	3.3. Redundancy

		
		As a software developer you are used to avoid redundancies as they usually lead to
			inconsistencies and increased maintenance costs. However, as a reader you often prefer
			duplicated content over having to follow a cross reference – especially when you don't
			want to read the complete functional specification but only the part that appears to be
			relevant for you.

		With highly specialized semantic XML it is possible to automatically interpret the
			content. This allows the definition of schematron rules that ensure consistency. And in
			several cases this is already a sufficient solution. But it only avoids the risk of
			inconsistencies but doesn't eliminate the additional costs for maintenance.

		DITA already provides the conref ("content reference") concept. The DITA conref
			mechanism allows to reference DITA content and instead of displaying a link the content
			itself is displayed. But this works only for the same type of content. For example, when
			using the same bullet list twice. It is not possible to reuse the information itself,
			for example when a bullet list and a table contain similar information. More complex
			scenarios, like reusing textual information for figures, are obviously also not possible
			with current DITA mechanisms.

		To solve this problem our framework provides a newly developed mechanism. The
			XLST-Conref adds an XSL transformation to the existing conref concept. So before the
			referenced content is displayed it is transformed. XSLT-Conref accepts any content as
			input that is sufficiently structured to be automatically interpreted and can produce
			any output that is supported by the editor and publishing tool. The most important
			output formats are DITA XML and SVG for graphical content.

		One sample use-case is a graphical sequence diagram that illustrates the interaction
			of a software component with others, see Figure 9. The
			sequence diagram is generated using the textual description of the software component
			and collects references to functions of the component.

		Figure 9. Sequence Diagram

			
			[image: Sequence Diagram]

		

		Also note that such overviews are not only generated when the document is being
			published as PDF or HTML. The XSLT-conref is resolved in the XML editor and already
			available for the author when writing the document. This helps to keep an overview of
			the architecture when designing it.

	
	3.4. Importing External Data

		
		When designing a software architecture you usually do not have only textual content.
			For instance, in our case it is very common that a change request requires modifications
			in the data model. There are dedicated tools for working with data bases and we use Toad
			Data Modeler which produce structured output. While it is handy to use dedicated tools
			for different jobs it is desirable to have only a single document for the complete
			specification. Importing the data model information into our DITA document by
			XSLT-Conref is our solution for this challenge..

		Since the data model itself is stored in XML, it is quite simple to convert it into
			generic DITA content with a section for each entity and a table describing the
			individual columns with their type information and description. Our framework with the
			XSLT-Conref allows easy import of the data model without the need for every architect to
			write his own XSLT scripts.

		Since the XSLT-Conref can also be combined with the key mechanism described in Section 3.2 you can even automatically register all
			tables and columns as individual keys. That allows to reference them in a comfortable
			way.

	
	3.5. Filtering

		
		Filtering content based on some profiling attributes (e.g. audience) is a
			DITA standard feature. By using highly specialized semantic XML, these attributes can
			often be set already by the schema. E.g. the list of database tables might not be
			relevant for the customer. By using a specialized element ListDbAcess with
			the attribute default audience set to "internal" the author doesn't have to
			tag it manually.

	
	3.6. Work Item Tracking

		
		After the functional specification is finished the implementation is often done with the
			support of a work item tracker. For that, the content of the document needs to be split
			into smaller snippets and imported as tasks into the tracking software. Additionally, it
			is important that the work items and the document are linked in both directions. When a
			work item is assigned to a developer or tester he needs to be able to identify the
			corresponding section in the specification. And the other way around, when reading the
			specification you should be able to easily check the state of the related work
			item.

		We have solved this challenge by adding specific marker elements to the specification,
			usually directly below the title of a section. An XSLT transformation then generates a
			list of work items. The generated list can be imported directly into the tracking
			software.

		The work item and the related section are already logically linked by having the same title.
			Additionally, the work item can contain a link directly to the section in the published
			PDF or HTML. Since each work item has a unique ID within the tracking software it can be
			referenced in the document. The link in the specification points to the web interface of
			the tracking software.

		The schema defines a dedicated element for each type of work item. Thus, each marker
			element can contain specific additional fields required by the tracking software or for
			consistency checks. For instance, each work item needs to be linked to a package and
			when changing the data model the related data base objects need to be identified.

		A sample for the work item type "database-modification" could look like Figure 10. The marker element has a reddish color due to its tagging as
			"internal information" (as described in Section 3.5). Content that can't
			be edited by the author is highlighted with a gray background color.

		Figure 10. Work Item Marker

			
			[image: Work Item Marker]

		

		Note that within the marker element the author only has to fill in the name of the package
			and the list of related data base objects. All other content is generated by the
			framework: The title and the labels are static and the reference to the work item is
			generated with XSLT-Conref as already described in Section 3.3. The id
			of the tracking software is read from a separate file that has been generated during the
			import process. Content that can't be edited by the author is highlighted with a gray
			background color.

		The generated work item for this sample would have the title "CR0123 – 2.1.1 New
			Entity LOGGING" where "CR0123" is the ID of the change request.

		There are also scenarios where multiple work items are required to track the implementation
			of one section in the documentation. Of course our framework provides marker elements
			for that as well. The system architect simply adds a marker of the specific type and the
			correct list of work items is generated.

		An example of a section with multiple work items is the implementation of a stored procedure
			that is installed with two separate scripts. The document looks as shown in Figure 11.

		Figure 11. Marker for a Realization Scenario

			
			[image: Marker for a Realization Scenario]

		

		The resulting work items have the following titles:

			
				CR0123 – 2.1.2 New Stored-procedure DoLogging: Spec

			
	
				CR0123 – 2.1.2 New Stored-procedure DoLogging: Body

			

	
	3.7. Architectural Data

		
		A functional software specification should contain all the information that is required to
			implement, test and operate the software. Due to using fine-granular semantic XML a lot
			of this information is available in a form that can be extracted by an XSLT
			script.

		The extracted architectural data is used during the whole software development cycle.
			Extracted architectural data is used for the following tasks:

			
				Generate the definition of data types (e.g. enumerations) in source code.

			
	
				Generate drafts for new software components.

				This allows the developer to immediately start with the implementation of the
					functional logic instead of creating new files and required base classes.

			
	
				Generate the complete XML schema for a web service interface.

			
	
				Import the data (e.g. enumerations) into the data base to be used as targets
					in foreign keys to ensure data consistency.

			
	
				Generate drafts for XML messages for test cases.

				This allows the tester to delete the not required elements and he doesn't have
					to start from scratch.

			

		For all these tasks the consistency between functional specification and the extracted data
			is ensured by an automated conversion. Of course it occurs that during the
			implementation or another stage of the development cycle some architectural data turns
			out to be incompatible. This can be either because the existing environment is different
			from the expectation, the developer has misinterpreted the document or the functional
			specification and, thus, the extracted architectural data is simply wrong. But in all
			these cases there is a feedback mechanism that allows the system architect to solve the
			problem early on.

	

	4. Defining a Framework with fine-granular Semantics

		
		The benefits described in the previous section don't come without a cost. Defining a
			framework that support fine-granular semantics requires several components:

			
				Schema

				Depending on the tools, documentation standard and personal experience this could be
					defined with DTD, XSD or Relax-NG. From our experience Relax-NG appears to be the
					most efficient one for defining highly specialized semantics.

			
	
				Schematron Rules

				To ensure consistency between separate but related content you might need schematron rules.
					These can be integrated into the schema definition or in a separate file.

			

			
				CSS

				Using Oxygen as authoring environment you need to define CSS rules to make your
					semantic XML look the desired way when editing it. (Other editors might require some
					other way of customization.)

			
	
				Output Transformation

				Using DITA as underlying documentation standard the publishing (e.g. PDF or HTML) is
					usually done using the DITA-OT. In this case you have to adapt XSLT scripts to
					handle your specific semantic elements.

			
	
				XSLT Scripts

				Depending on the framework additional XSLT script might be required for data extraction or
					to resolve XSLT-Conref elements.

			

		Note that the definition of a highly specialized schema is not meant to compensate flaws of a
			standard. In fact, I believe that this kind of high specialization is something that a
			general standard simply can't ever provide. This is due to the customization that has to
			match the very specific organizational and architectural structure. According to this
			requirement the specific documentation framework always has to be created or adapted
			according to individual needs. And since the software architecture and organizational
			structure is usually refined and developed further over time, maintenance of the
			documentation framework is a continuous task as well.

		One side-effect is not to be underestimated: Most likely you will get a much deeper
			understanding of your actual base architecture when defining a documentation framework for
			it. In fact, it repeatedly occurred that I had difficulties to model some aspect of our
			architecture in our documentation framework. But this was always due to the lack of a clear
			design of our architecture. Describing the architecture as an XML schema helped to discover
			deficits in the architecture itself.

		In the following sections I will give some hints for creating and maintaining such a
			documentation framework.

		4.1. Attribute Defaults

			
			When defining a highly specialized semantic XML schema you will probably have several cases
				when some content is static and should not be editable by the author. This content can
				easily be added by CSS rules (when authoring) or XSL templates (when publishing).
				However, this way you always have to modify several code files of your framework when
				creating new elements.

			DITA already provides an attribute spectitle that allows the specification of a
				title for various elements within the schema. Our framework extends this concept by
				additional attributes to create prefix or suffix content for several block and inline
				elements or to define the complete header row of a table. It also allows to specify
				context sensitive content by using XPath expressions or provide some default content
				that is only being displayed when the author didn't enter some explicit content.

			The basic CSS rules and XSLT templates need to be implemented only once to evaluate these
				generic attributes. As a result, in most cases the schema designer just has to add an
				attribute with a default value when adding new elements into the schema without the need
				to modify and test any additional code.

			Default values are also used for the XSLT-Conref and implicit key definitions. The
				ListFunctionOverview element within the body of the service is shown in
				Figure 12 with expanded attribute defaults: the class
				attribute and the URI for the XSLT script to be executed. The Key element
				within the title of the login service is shown in Figure 13: it contains
				attributes to specify the type of the key and XPath expressions for the root as well as
				the namespace and the description.

			Figure 12. Expanded ListFunctionOverview Element

				
				[image: Expanded ListFunctionOverview Element]

			

			Figure 13. Expanded Key Element

				
				[image: Expanded Key Element]

			

		
		4.2. Mandatory Choices

			
			It is a common scenario that an element should allow exactly one of a list of options. For
				instance, a "conditions" element might be allowed to contain either a "list" element or
				the element "none". This can be easily modeled in any schema language. But the problem
				is, that after the author has inserted the conditions element the XML code is no more
				schema valid until he inserts the next element – either list or
				none. But there are several mechanisms that don't work with a none schema
				valid file including schematron validation, XSLT-Conref and key referencing.

			As our framework requires schema valid documents, we choices in a different way. In our
				framework the child elements of choices are always optional according to the schema. A
				schematron rule to checks if the element is empty. This way you will still ensure the
				same resulting structure but won't force the author into a situation with an invalid
				document and none working authoring assistance.

		
		4.3. Schema Changes

			
			A highly specialized semantic schema is more likely to be changed than a conventional schema
				as it is closely intertwined with the software architecture. Changes in the architecture
				might require changes in the highly specialized schema. New optional elements are
				usually no problem but it also occurs that new mandatory elements need to be added or
				old elements have to be removed. When adapting the schema also existing documentation
				has to be adapted to be valid. This can be a problem when you don't have access to all
				files – or maybe don't even know about all files that use your schema.

			So far we have identified the following options to solve this problem:

				
					Adapt the schema to the new requirements.

				
	
					Make all schema changes backward compatible.

				
	
					Create a new schema version for future documents.

				

			When adapting the schema an XSL transformation can convert the old documentation to match
				the new schema. So whenever an author has a schema invalid file after updating the
				framework he can trigger the automated transformation of his files with just a mouse
				click. But from my experience it is very difficult to write an XSLT script that reliably
				performs the required modifications.

			Making the schema backward compatible means, that all new elements have to be optional
				and all obsolete elements still need to be valid. To make sure that new content is
				written according to the new requirements and old content is adapted at some time there
				are some additional steps to be taken:

				
					Add schematron rules that report missing new elements and the existence of obsolete
						elements preferably together with a quick fix.

				
	
					Hide obsolete elements from the list of proposals when inserting a new element in
						oXygen.

				
	
					Automatically add new elements that are meant to be mandatory when the parent element is
						being inserted in oXygen.

				

			When creating new schema versions a schematron rule could check if a file uses the latest
				version of its schema. But since we are currently using XInclude, all files of a
				document need to use the identical single schema. Thus, every modification would require
				a new schema version. This will change when using DITA maps. With DITA maps it is
				possible to use a different schema for each file and, thus, create schemas that define
				only a single kind of topic – for instance an ESB service. So for the future I expect
				this approach to be the best choice.

			Currently, we are using a combination of the first two approaches: When the changes of the
				schema affect a major or critical part of the existing files, the changes are made
				backward compatible. Otherwise the schema is modified together with the
				documents.

		
		4.4. Special Cases

			
			From my experience it is either inefficient or even impossible to model all possible
				scenarios in the schema. But when a specific scenario is not modeled in the schema the
				authors might try to avoid the semantic rules. For instance, if the title element of an
				itemized list is the only element accepting free text in that context then it might
				happen that a full explanation is inserted there. Simply because the author could not
				find another element to store this information.

			To avoid suffocating your authors with your highly specialized schema you should ensure to
				also allow sufficiently generic elements. For instance, our DITA derived framework
				allows at the end of a list of specialized topics any number of generic topics. And in
				some places (e.g. within a list of function calls where each entry is meant to be a key
				reference) I have even created explicit "special-case" elements that can be
				inserted.

		
	
	5. Conclusion

		
		A framework with highly specialized semantic XML schema and the corresponding standards
			and tools significantly improve the way of functionally specifying software. Several
			concepts from the field of technical writing can be applied here as well.

		From a developers point of view such a framework can be seen as a programming language for
			system architects. The syntax allows comfortable authoring – comparable to that of
			programming languages in an integrated development – and to a great extent automatic
			processing. But additional to other ordinary programming languages you can generate
			publications to be read by humans that fulfill the requirements of professional technical
			documents.

		We have already successfully applied most of these concepts into our software development
			cycle and even new system architects quickly adapted to our style of functionally specifying
			software.

	
	6. Future Work

		
		Currently the focus is on converting the current framework to DITA maps and DITA-OT. In
			parallel the schema is continuously being refined and adapted according to the further
			development of our base software architecture.

		Additional enhancements we are planning are:

			
				Documentation Maintenance

				After a change request has been implemented the functional specification needs to
					be integrated into the overall documentation. By writing the specifications in the
					same way as our documentation this is basically some copy&paste action. This
					merge task is expected to be automatable.

			
	
				Linking Test Cases

				To ensure consistency between automated test cases and the specifications the idea
					is to link the test cases with the corresponding topic, section or list item by
					using the already existing id attribute.

			
	
				Generate Framework from Style Guide

				Another idea is to define the framework within a single specialized DITA document
					using all the concepts described here. From this document all the files defining the
					framework would be generated: the schema, Schematron rules, CSS and XSLT scripts for
					publication.

			

	

				[15] DITA-SEMIA (DITA Semantic Information Architecture) is a joint development by GDV DL
					(www.gdv-dl.de) and parson (www.parson-europe.com) being published
					on github: github.com/dita-semia

			

				[16] www.oxygenxml.com

			

				[17] http://www.dita-ot.org/

			

			[18] DITA programming elements:
				https://docs.oasis-open.org/dita/v1.0/langspec/pr-d.html

		

Subjugating Data Flow Programming

R. Alexander Miłowski

 MarkLogic, Inc.

<alex.milowski@marklogic.com>

Norman Walsh

 MarkLogic, Inc.

<norman.walsh@marklogic.com>

Abstract
XProc 1.0 is data flow language and W3C recommendation that provides
 the ability to describe steps for processing XML documents for some
 end purpose. While there has been some adoption, it has not been as
 successful as we would have liked. In this paper, we examine the
 issues surrounding the usability of XProc 1.0 pipelines, rethink our
 end goals, and describe a proposal for a new direction.

 1. What is Data Flow Programming?

 When processing data, developers often conceptualize a work flow through which the
 data and their associated files are processed. A work flow can be considered an abstract
 sequence of steps that are chained together to perform some useful process. Each step,
 in turn, consumes and produces some set of artifacts which are often files stored within
 some repository. Chaining these steps together produces a work flow that is
 data-driven.

 These work flows can be broadly categorized as control-flow oriented or data-flow
 oriented. When control-flow oriented, each step in the work flow is orchestrated by some
 control language or dependency semantics. Meanwhile, when data-flow oriented, each step
 in the work flow is invoked when its inputs “arrive” at the step. While either are
 sufficient for implementing work flows in general, there is a preference for data-flow
 oriented technologies within certain domains (e.g., scientific data processing)
 [sciweb].

 Data-flow programming languages have a long heritage and are often associated with
 graph visualization tools for visualizing the connections of inputs and outputs. Tools
 like Taverna [taverna] and Kepler [kepler] have
 blended the distinction between the visualization, the tool, and the underlying
 data-flow engine for scientific computing. These systems consist of a sequence of
 step-wise operations where outputs are matched to inputs to perform operations on data
 sources that are often Web services.

 Each step executes some kind of script (e.g., Python), component language (e.g., XSLT
 [xslt]), or operation (e.g., HTTP GET) to interact with data and
 services. In many cases, the artifacts produced by the step are not realized except
 within the engine to facilitate the connection between steps. That is, output artifacts
 are not saved unless explicitly requested to do so.

 XProc 1.0 [xproc1] is an example of a data-flow programming
 language. XProc provides facilities for describing the processing of XML data as a
 sequence of steps that operate on inputs and produce outputs. The language facilitates
 connecting the steps to describe the overall process as a flow of data between
 steps.

 An XProc implementation is responsible for turning these descriptions and their
 necessary referenced ancillary files (e.g., XSLT transforms, XQuery
 [xquery], etc.) into an executable pipeline. Data (i.e., XML
 documents) can then be attached to the declared inputs of this data flow to cause steps
 to execute in the particular ways specified and subsequently cause outputs to be
 produced.

 Further work on XProc has been in the direction of generalizing this data-flow
 specification language to allow XProc to process any kind of data and not just XML
 documents. These changes allow XProc to be considered in various application spaces
 where tools like Taverna and Kepler have been utilized in the past as well as unexplored
 applications. Yet, these tools have been oriented towards programmers who develop steps
 in a programming language such as Python.

 This brings into question whether XProc's use of an XML specification language has the
 right focus for these new consumers. Moreover, for some existing users, an XML syntax
 may be inconvenient or obscure the connections within a particular pipeline. That is,
 having an XML syntax for “programming” pipelines may not be the right
 design center.

 2. Rethinking XProc

 XProc 1.0 was specifically designed to describe the relationships between inputs,
 outputs, and steps. Specifically, XML syntax allows defaulting connections between
 outputs of preceding siblings and the inputs of immediately following siblings. The
 intent was to make simple pipelines easier to specify.

 Unfortunately, the language is used to describe a data flow graph and the connection
 (edges) within this graph must be made to fit within the constraints of a tree due to
 the use of an XML syntax. As such, simple meets and joins result in a more verbose
 syntax.

 Complicating things further, an author's use of a pipeline may evolve over time and
 modifying a pipeline can become increasingly difficult. Just adding another step between
 processes may require more than a simple insertion. Unnamed steps may be required to be
 named and referenced just to make the step connections.

 Even further, small manipulations of outputs to adjust for inputs require insertion of
 a step. There is not always an easy mechanism for referencing an output and using XPath
 (or XQuery) to manipulate a result as preparation for input to another step. While this
 is truly another step, the need for a verbose construct for what may be a simple
 manipulation leaves the user wanting for simplicity.

 Finally, these and other issues of verbosity make the language difficult to use for
 the uninitiated and cumbersome for the experienced user. There exists a gap between
 simple and complex pipelines in XProc that is difficult to bridge. Even though some of
 that gap is conceptual, the syntax stands in the way of guiding a developer through the
 use of the language.

 The end result of successfully using XProc is often rewarding. The overall process and
 what it accomplishes is often impressive, useful, and provides improved methods for
 packaging and deployment. Yet, the path towards that solution was fraught with errors
 and treachery; bringing the use of XProc into question.

 This experience yields several questions:
	
 Do users need data flow programming concepts?

	
 Do users need to be explicitly aware that they are using pipelines and
 data flow programming?

	
 Is there a better syntax for XProc?

 In our opinion, the answer to (1) above is a resounding “yes”. Data flow
 programming is useful and practical concept for manipulating documents as artifacts
 produced by a chain of processes. Many specifications are designed to be layered (e.g.,
 XInclude before XSLT) and so there is an implicit assumption of some basic level of data
 flow within applications.

 Yet, in considering (2), it is unclear whether data flows and the connections between
 steps need to be as explicit as described in XProc 1.0. Our experience with users
 indicate that, in part, the gap in understanding simple versus more complex pipelines
 has a lot to do with a lack of understanding that data flows between adjacent sibling
 steps via the implicit connection of primary input and output ports.

 Finally, for question (3) and considering the goal of attempting to simplify XProc for
 users, a syntax more akin to a functional language that allows direct use of XPath would
 allow simple manipulations (e.g., projections) to be directly specified without
 inserting steps. Modest modifications to a pipeline could be entertained by simply
 adjusting or adding a path or predicate expression. The result might be a more compact
 syntax that would facilitate a better understanding of the flow of data.

 3. XProc as an XQuery Function Library

 One consideration is that XProc's utility is possibly really in the steps it provides.
 If XProc's steps were available as a set of functions, they could be used directly in a
 variety of programming languages. This would allow the orchestration to take advantage
 of the native language's capabilities for manipulating XML and other data.

 As manipulating XML data is a major focus of the language, use of XPath within some
 language is a requirement. While one could conceive of utilizing XPath within various
 programming languages, one obvious choice to consider is XQuery. By choosing XQuery,
 orchestrating processing is then a task of describing a sequence queries to execute in a
 particular XQuery programming context.

 Many of the steps provided by XProc have a large set of options in addition to the
 inputs and outputs they process. As a function library, the signature of these step
 functions would likely be complicated with many parameters that must be specified. This
 would make the invocation of a step function difficult.

 For example, XSLT has two inputs (“source” and
 “stylesheet”), parameters that would be specified as a map, and four
 options (“initial-mode”, “template-name”,
 “output-base-uri”, “version”). This would likely end up
 with a seven-parameter function invocation where the order of the parameters is
 important and fraught with user error.

 Example 1. XSLT Step Function Invocation

 p:xslt(doc("doc.xml"),doc("stylesheet.xsl"),
 map { "toc" : true() },(),(),(),"2.0")

 Ideally, we'd like to default or omit option values but XQuery and XPath do not allow
 this as of version 3.1. We'd like to be able to do as in other languages (e.g., Python)
 and have named parameters with defaults. Then a user can just name a parameter they are
 using and omit the rest.

 Example 2. XSLT Step Function Invocation with Named Parameters

 p:xslt(doc("doc.xml"),doc("stylesheet.xsl"),
 $parameters := map { "toc" : true() },
 $version := "2.0")

 While the invocation is not necessarily more compact, the meaning of the invocation is
 much more clear. The lack of positional parameters helps prevent the user from making
 simple errors, defaults are implied by omission rather than required to be remembered,
 and options can be specified in any order as they are today in XProc 1.0.

 The invocation of a step as function implies that it returns the output as some
 sequence type. As a step can return multiple outputs and can also return a sequence of
 documents on a particular output port, within the constraints of XPath 3.0, we can
 conceive of two alternative representations: a map or a function.

 A map has the advantage that each output port name would be a key of the map and each
 associated value the output. As maps are immutable, the map would need to be constructed
 and returned. As such, the result of the step would need to be computed and placed into
 the map. Constructing the map “by hand” is somewhat tedious and seems likely to interfere
 with parallelism.

 A function has the advantage of allowing some aspects of parallelism. When the
 function is invoked, the output port name is passed and the result of the computation by
 the step is returned. That deferred request for the sequence of results enables some
 parallelism as requested by the user.

 With the new => operator in XQuery 3.1, the output of a step invocation
 can be implied as the first argument of the right-hand side. This allows explicit
 chaining as shown in Example 3 where the primary result of
 p:xinclude is the first parameter to
 p:validate-with-xml-schema. Again, we take explicit advantage on the
 features of XQuery to improve usability.

 Example 3. Example Pipeline

 declare variable $source as external;

p:xinclude($source)
=> p:validate-with-xml-schema(doc("schema.xsd"))
=> p:xslt(doc("style.xsl"))

 Moreover, users can now declare their own steps by implementing them in XQuery as long
 as they return the right kind of construct. Annotations may be able to be used to
 differentiate between “regular functions” and “step
 functions”. Yet, the distinct declaration of a step is lost in the syntax of the
 XQuery.

 An unfortunate consequence of this approach is that we have lost the explicit
 description of the data flow graph. While a clever implementation may be able to tease
 apart those steps that are able to be run in parallel, the most likely outcome is
 execution will wait for the step to finish. As a result, pipelines will necessarily take
 a more tree-like graph structure that fan out from root of execution.

 In such a resulting language, the data flow aspects of XProc is subjugated to the
 control of the XQuery processor. The ability for such a processor to defer executing
 and synchronized flows between steps affords the ability for the data flow to have its
 natural parallelism. As such, to have parallelism, we need to consider the problem the
 other way around and have the data flow in control of the overall pipeline.

 4. Parallelism: What is it good for?

 One of the original promises of XProc was that the steps could be run in
 parallel:

 An XML Pipeline should not inhibit a sophisticated implementation from performing
 parallel operations, lazy or greedy processing, and other optimizations
 [xproc1-req].

 Yet, time has shown that users seem to care little about this requirement. Development
 of parallel XProc implementations has stalled, most current implementations have no
 parallel execution, and no users seems to have noticed. Simply, the uses of XProc have
 not in so far dictated this as a required enhancement to the existing implementations
 being used.

 By making the connections between steps (i.e., blocks of execution) more explicit, the
 user is declaring to the processor the dependencies between major portions of
 processing. The value is not necessarily embedded in just enabling parallelism. The
 value is in separating concerns and allowing for alternative routes for an artifact (an
 output) to be processed.

 By discarding any attempt at supporting parallelism of steps we are possibly
 discarding a very important distinction: the outputs of steps are results which may be
 reprocessed, inspected, logged, etc. Moreover, the connections between steps are
 insertion points for easy modification of the behavior of the pipeline.

 Regardless, users always care about performance. Whether a pipeline runs within or
 exceeds an expected time period is very important in many applications. So, while
 surfacing control over parallelism may not be important to the pipeline author, the
 underlying effects produced by enabling parallelism most certainly is important. Hence,
 we want to remove the need to for the author to think about parallelism whilst creating
 constructs than enable its use by the implementation.

 We want to retain the data flow aspects of XProc and so we recast our goals as
 follows:

 	
 From the perspective of the data flow language, a step is a black box that
 takes inputs and produces outputs.

	
 A step has a distinct signature of inputs, outputs, and options (parameters)
 that can mapped to various implementations and/or functions within a domain
 language (e.g., XQuery).

	
 The connections between steps produce artifacts that should be able to be
 easily inspected and re-purposed.

	
 The context of a step invocation should facilitate modifications and the
 outputs of steps are places where future choices can be made for modification of
 the pipeline.

	
 Steps may be able to be executed in parallel and still yield equivalent
 results. The data flow language should not exclude that possibility.

 5. Subjugating Steps in Data Flows

 The overall goal of describing a data flow is describing the graph of inputs and
 outputs between steps. The nodes in the graph are steps with a certain number of inward
 and outward arrows. The graph has explicit nodes that represent inputs (generators) and
 outputs (sinks). Over the edges of the graph flows data that drives the pipeline
 processes.

 An example of this conceptual model is shown in Figure 1
 where an input document is validated by one of two schemas depending on a version
 attribute. Afterwards, the result is transformed and the result of the transformation is
 the result of the pipeline. The encoding of this in XProc V1.0 is shown in Example 4

 Figure 1. XProc Example 3 - Conceptual

 [image: XProc Example 3 - Conceptual]

 Example 4. XProc,Example 3 in XProc V1.0

 <p:pipeline xmlns:p="http://www.w3.org/ns/xproc" version="1.0">

 <p:choose>
 <p:when test="xs:decimal(/*/@version)<2.0">
 <p:validate-with-xml-schema>
 <p:input port="schema">
 <p:document href="v1schema.xsd"/>
 </p:input>
 </p:validate-with-xml-schema>
 </p:when>

 <p:otherwise>
 <p:validate-with-xml-schema>
 <p:input port="schema">
 <p:document href="v2schema.xsd"/>
 </p:input>
 </p:validate-with-xml-schema>
 </p:otherwise>
 </p:choose>

 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stylesheet.xsl"/>
 </p:input>
 </p:xslt>

</p:pipeline>

 In XProc 1.0, the dominate construct is the step. Most constructs are implemented by
 steps, contain steps, or declare new steps that can be re-used elsewhere. The
 connections between steps are either implicit (as in Example 4) or
 described via various annotations of names and references to those names.

 The result is the design center for XProc 1.0 is the nodes of processing within the
 graph and not the edges that describe flow of data. This violates goals (3) and (4) from
 the previous section. There is literal or no element-level constructions that represents
 a connection in the XML syntax in XProc 1.0.

 Further complicating things is that a step is not a black box. A step can describe a
 reusable portion of a graph and then act like a step. Thus the terminology can be
 confusing as everything must be a step but everything isn't really always a step. This
 complicates achieving goals (1) through (4) as well.

 In the conceptual graph, there are two basic flows:
	
 source → validate → transform → result

	
 source → if (v1) then validate-v1 else validate-v2 → result

 We need a data flow language that subjugates steps and focuses on the describing the
 data flow and its connections. It needs to be clear from the syntax how to discern the
 shape of the graph, the connections between steps, and any kinds of guards or special
 processing that might happen to control the flow of data.

 Steps should be able to be treated as black boxes with a specific signature. The data
 flow language should not need to know much about a step other than its signature to be
 able to describe to an implementation how to invoke a step. This kind of implementation
 agnosticism will enable the same data flow language to be used in radically different
 environments.

 6. Überproc: a hammer for all your nails

 The fundamental question at this point is whether we've lost our way in amongst our
 musing of new and better ways to specify pipelines. For some, XProc is another and more
 complicated way of doing what Makefiles or Ant build scripts can already accomplish. For
 others, it is a frustrating but useful way to specify complex processes on
 documents.

 Example 5. A Simple Example

 xproc version = "2.0";

"doc.xml" → xinclude()
 → [$1,"stylesheet.xsl"] → xslt()
 ≫ "result.html"

 Consider the example shown in Example 5 that processes a fixed
 file with XInclude and transforms it to HTML with XSLT. The pipeline data flow starts
 with the URI reference to the input document on line 3 that is fed into the XInclude()
 step via the chain operator (a right arrow). Following the XInclude step is a binding
 of the result and the stylesheet as the inputs for an XSLT transformation. Finally, on
 the last line, the output is sent to a particular file (a URI) via the append operator
 (a double greater than). The flow of data from source to result is clear and stated in
 a compact syntax.

 In Example 4 is an original example from the XProc 1.0
 specification of an example pipeline that validates using two different schemas based on
 a version attribute in the document source. This example has been reworked a new syntax
 in Example 6 that will now be described in brief.

 Example 6. XProc, Example 3 Reworked

 xproc version = "2.0";

 inputs $source as document-node();
outputs $result as document-node();

$source → { if (xs:decimal($1/*/@version) < 2.0)
 then [$1,"v1schema.xsd"] → validate-with-xml-schema() ≫ @1
 else [$1,"v2schema.xsd"] → validate-with-xml-schema() ≫ @1
 }
 → [$1,"stylesheet.xsl"] → xslt()
 ≫ $result

 At the top we have a declaration of the inputs and outputs of the pipeline. As a
 top-level module, this example can be invoked by a processor. When the processor does
 so, it must provide and input document to process as $source and optionally
 provide binding (e.g., a file name) for output document $result.

 The purpose of a pipeline document is to describe a data flow. While step signatures
 can be declared, we are not currently addressing the issue of describing steps and their
 implementation any further. This is consistent with XProc 1.0 where steps that are not
 pipelines in themselves are opaque.

 The main construct used to define a data flow is a step chain. A step chain starts
 with a set of input port bindings is followed by a sequence of applications of the chain
 operator (-> or → U+2192).

 For example, a simple invocation of XInclude
 is:
$in → xinclude()

 The XInclude step has a single input port named source and so that port
 name can be explicitly specified:

source=$in → xinclude()

 A second step can be easily added to the chain in a similar way. When a preceding
 step produces output, we can refer to it positionally:

$in → xinclude()
 → [source=$1,stylesheet="stylesheet.xsl"] → xslt()

 In this case, a list of port bindings is specified by name. The positional variable
 $1 refers to the first output of the preceding step (XInclude). The
 literal for "stylesheet.xsl" is a URI reference for loading a stylesheet.
 The chain operator passes along this information as input bindings to the XSLT step
 invocation.

 We can shorten the invocation to:

$in → xinclude()
 → [$1,"stylesheet.xsl"] → xslt()

 Finally, to assign results to an output port, we use the append operator
 (>> or ≫ U+226B). The append operator can only be preceded
 by a step chain on the left side. On the right is a variable reference (or list of
 variables for multiple outputs), a literal for storing data, or positional output port
 reference (e.g., @1, @2, etc.).

 $in → xinclude()
 → [$1,"stylesheet.xsl"] → xslt()
 ≫ $out

 In this new syntax, the use of variables on right side of an append operator is
 two-fold. First, when there is a declared output port of the same name, the operator
 sends the output of the chain to that port. All references to such output ports are
 merged as they occur.

 Second, when an port variable is not already declared, the variable is used to signal
 a connection within the graph. Conceptually, we can think of such a port variable as
 being a box into which we place the output. We then take the box to where it is used as
 input to other step chains and “unpack copies” of what is contained in the
 box.

 A variable reference from an append operator may be used as input for multiple step
 chains:

 $in → xinclude()
 ≫ $included
$included → [$1,"stylesheet.xsl"] → xslt()
 ≫ $out
$included → [$1,"summary.xsl"] → xslt()
 ≫ $out

 We can also build up more complex flows by block expressions. A block expression is
 contained in curly brackets and can contain constructs like conditionals:

 $in → { if ($1/doc/cheese='cheddar')
 then consume() ≫ @1
 else reject() ≫ @1
 }
 ≫ $out

 A block expression always has a set of positional inputs and outputs that are
 addressable as $n and @n, respectively. Unlike XProc 1.0,
 what is contained within the block expression does not have to have uniform outputs.
 Instead, whatever flow executes can append outputs to the positional outputs of the
 block expression. If no such append operations occur, the block expression has empty
 output.

 Various XProc 1.0 “compound steps” translate to operators. For example,
 iteration over input sequences is now a simple ! operator that can be
 inserted into any step chain:
$in//section ! { [$1,"chunk.xsl"] → xslt() ≫ @1 } ≫ $chunks

 where the sections are iterated over by the block expression to transform each section
 with XSLT.

 Also, in the previous example is a projection. Expressions can now be applied to
 inputs to produce new sequences without invoking a step to do so. In the example, the
 very first operator turns the input into a sequence of section
 elements.

 XProc 1.0 has a “viewport” compound step that was not generally well
 understood by users. The operation has replacement semantics over certain matching
 sub-trees. In the new syntax, the operator is called “replace” to more
 directly match its semantics. It applies a block expression and expects a replacement as
 a result on the first positional port.

 For example, replacing sections by their transformation is specified as
 follows:
$in → replace ($1//section) {
 [$1,"chunk.xsl"] → xslt() ≫ @1
 }
 ≫ $out

 Moreover, with this new concept and syntax we can also innovate and pull in more
 familiar constructions from other pipelining systems. For example, the tee
 program can be added as its own operation (tee or ⊤ U+22A4).
 It has the same semantics of sending a single input to two places. It has the nice
 result of allowing inserting small step chains within larger ones:
$in → xinclude() ⊤ { $1 ≫ "included.xml" }
 → [$1,"stylesheet.xsl"] → xslt()
 ≫ $out

 In this example the output of XInclude is serialized to a document
 (included.xml) and is also sent to XSLT to be transformed. Any block
 expression can follow the tee operator. This allows complex flows to be built without
 assigning outputs to intermediary variables.

 Finally, it is useful in any programming languages to build expressions and assign
 them to variables for reuse and clarity. A data flow language such as XProc has the task
 of understanding the relationship between the variable binding and the possible
 interactions with the inputs the variables may be built from. These dependencies
 predicate what parts of the flow must be completed before the value of the expression
 can be built.

 A simple let clause is allowed within block expressions and must contain a lexically
 scoped block expression itself. Within the block expression or each subsequent variable
 binding, preceding and ancestor variables may be used in expressions. These variable
 declarations share the same scoping rules as port variable references.

 For example, the previous example that checks for a version attribute for validation
 could use a variable to retrieve the version:

 $in → {

 let $version := xs:decimal($1/*/@version) {
 if ($version < 2)
 then [$1,"schema1.xsd"] → validate-with-xml-schema() ≫ @1
 else if ($version < 3)
 then [$1,"schema2.xsd"] → validate-with-xml-schema() ≫ @1
 else fail("No schema available")
 }

}

 Finally, there are many more aspects of XProc both from the requirements for 2.0 and
 functionality of 1.0 that have not been addressed here. Solutions for literal documents,
 binary and non-XML documents, templating, re-use mechanism, step declaration, and other
 features have been worked through. Their descriptions can be found in the forthcoming
 proposal for this syntax.

7. A Complete Example

 This example was translated from an existing XProc 1.0 pipeline that inserts data in a
 MarkLogic database. The purpose of the pipeline is to perform two updates. One update
 inserts one document for each weather report element. The other update generates a set
 of queries that update the position of the weather stations in the database. Both of
 these updates are driven by the same input data.

 Example 7. Database Import Example

 xproc version = "2.0";

import "marklogic.xpl";
namespace s="http://weather.milowski.com/V/APRS/";
namespace ml="http://example.com/extensions/marklogic"

option $xdb.user as xs:string;
option $xdb.password as xs:string;
option $xdb.host as xs:string;
option $xdb.port as xs:string;

inputs $data as document-node();
outputs $records as xs:integer,
 $positions as xs:integer;

$data/s:aprs/s:report[@type != 'encoded']
 → $1/s:aprs/s:report[@type != 'position']
 → $1/s:aprs/s:report[not(@error)]
 ≫ $filtered

$filtered
 → replace (/s:aprs/s:report) {
 let $uri := 'http://weather.milowski.com/station/' ||
 $1/*/@id || '/' ||
 $1/*/@id/@received || '.xml'
 {
 $1 → ml:insert-document(
 user=$xdb.user, password=$xdb.password,
 host=$xdb.host, port=$xdb.port,
 uri=$uri)
 data { <inserted/> } ≫ @1
 }
 }
 → $1/*/inserted → count()
 ≫ $records

$filtered
 → [$1,"make-position-update.xsl"] → xslt()
 → replace (/queries/query) {
 $1 → ml:adhoc-query(
 user=$xdb.user, password=$xdb.password,
 host=$xdb.host, port=$xdb.port)
 ≫ @1
 }
 → $1/*/query → count()
 ≫ $positions

 8. The Future of XProc

 XProc started as a mechanism to process XML documents. Since its origins, the Web and
 the systems that are built upon its technologies have matured and extended far beyond
 the reaches of XML. Yet, the needs of data processing are even more important than when
 the working group started.

 We have the explicit charge in version 2.0 to address the needs of processing data in
 a heterogeneous environment. Data of many kinds of formats needs to be processed by
 pipelines. For XProc to survive in this ecosystem, the standard may benefit from
 adapting a new perspective.

 The interesting position of the proposal in this paper is that XProc is now about
 processing data and is agnostic to the kind of data and steps. If that data happens to
 be semi-structured data (e.g. XML, HTML, JSON), we can envision a world where
 XQuery-like expressions allow the flow to make decisions based on those expressions.
 Simply stated, checking a version on a JSON object should be no more difficult than
 doing the same on an XML document.

 By focusing on the data flow, we are step agnostic. A valid implementation strategy
 for a product in a JSON-only world would be to implement no XML-related steps. A
 similar position might be useful for log processing or relational databases.

 Admittedly, such specialization ignores the very interesting aspects of positioning
 XProc to process data from a variety of data sources and formats. By doing so, XProc
 matches more directly the reality of the enterprise: data comes in all shapes and sizes.
 We want to accept and process all data as it is, enriching it via stepwise processes,
 and produce more useful information via data flow programming.

References

 [1]
 Enabling scientific data on the web,
 R Alexander Miłowski,
 University of Edinburgh,
 2014-11-27
 https://www.era.lib.ed.ac.uk/handle/1842/9957

 [2]
 The Taverna workflow suite: designing and executing workflows of Web Services on
 the desktop, web or in the cloud,
 Katherine Wolstencroft,
 Robert Haines,
 Donal Fellows,
 Alan Williams,
 David Withers,
 Stuart Owen,
 Stian Soiland-Reyes,
 Ian Dunlop,
 Paul Fisher,
 Jiten Bhagat,
 Khalid Belhajjame,
 Finn Bacall,
 Alex Hardisty,
 Abraham Nieva de la Hidalga,
 Maria P. Balcazar Vargas,
 Shoaib Sufi, and
 Carole Goble,

 Nucleic Acids Research, 2013-05-02,
 doi:10.1093/nar/gkt328

 http://nar.oxfordjournals.org/content/early/2013/05/02/nar.gkt328

 [3]
 Kepler: an extensible system for design and execution of scientific
 workflows,
 I. Altintas,
 C. Berkley,
 E. Jaeger,
 M. Jones,
 B. Ludascher, and
 S. Mock,

 16th International Conference on Scientific and Statistical Database
 Management, 2004 pp. 423-424

 [4]
 XSL Transformations (XSLT) Version 2.0,
 Michael Kay,
 W3C,
 2007-01-23
 http://www.w3.org/TR/xslt20/

 [5]
 XProc: An XML Pipeline Language,
 W3C,
 2010-05-11,
 Norman Walsh,
 Alex Miłowski, and
 Henry S. Thompson
 http://www.w3.org/TR/xproc/

 [6]
 XQuery 3.0: An XML Query Language,
 W3C, 2013-10-22,
 Jonathan Robie,
 Don Chamberlin,
 Michael Dyck, and
 John Snelson
 http://www.w3.org/TR/xquery-30/

 [7]
 XML Processing Model Requirements and Use Cases,
 W3C, 2006-04-11,
 Alex Milowski
 http://www.w3.org/TR/xproc-requirements/

Schematron QuickFix

Octavian Nadolu

 oXygen XML Editor

<octavian_nadolu@oxygenxml.com>

Nico Kutscherauer

 data2type GmbH

<kutscherauer@schematron-quickfix.com><kutscherauer@data2type.de>

Abstract

 Fixing XML validation errors can be challenging for many users, especially if they
 are not very familiar with the syntax and structure of XML. For many years,
 development tools have provided ways to allow users to select actions that
 automatically fix reported issues for certain programming languages (such as Java,
 C, etc.). This functionality is usually called "Quick Fixes". In a similar way, XML
 tools provide Quick Fixes for XML validation errors. For instance, Eclipse has
 included XML Quick Fixes for over 10 years. Another example of this idea is the
 spell checking functionality, which provides a list of possible corrections and
 allows the user to select one of them as a replacement for an incorrect word.

 The validation of XML documents against DTD, XML Schema, or RELAX NG schema
 provides a limited set of possible problems and is usually only able to detect basic
 structural errors (such as a missing element or attribute) and the corresponding
 automatic fixes are usually rather straightforward. A more interesting case would be
 if you are using Schematron to identify issues in XML documents, as the fixes in
 this case may range from trivial to very complex and there is no automatic way of
 fixing them.

 Schematron solves the limitation that other types of schema have when validating
 XML documents because it allows the schema author to define the errors and control
 the messages that are presented to the user. Thus the validation errors are more
 accessible to users and it ensures that they understand the problem. These messages
 may also include hints for what the user can do to fix the problem, but this creates
 a gap because the user still needs to manually correct the issue. This could cause
 people to waste valuable time and creates the possibility of making additional
 errors while trying to manually fix the reported problem. Providing a Quick Fix
 functionality for Schematron validation errors will bridge this gap, saving time and
 avoiding the potential for causing other issues.

 Two years ago, the idea of Schematron QuickFix (SQF) was discussed during the XML
 Prague conference and it started to take shape. It has now reached a point where we
 have a draft specification available, a W3C community group dedicated to XML Quick Fixes, and
 two independent SQF implementations. The first draft of the Schematron QuickFix
 specification was published in April 2015 and it is now available on GitHub and within
 the W3C "Quick-Fix Support for XML Community Group".

 Schematron QuickFix defines a simple language to specify the actions that are used
 to fix the detected issues, layered on top of XPath and XSLT, and integrated within
 Schematron schemas through the Schematron annotation support.

 In this session, we will present various use cases that are solved with Schematron
 QuickFixes, ranging from simple to complex, sometimes involving changes in multiple
 locations within a document, or even in external documents. We will also discuss the
 language and challenges related to the SQF implementation. Join us to learn how SQF
 can be useful in your next XML project!

 1. Introduction

 Helping users to solve errors in XML documents has always been a challenge. There are
 various solutions to automatically generate proposals that fix the errors and to
 present them to the user. The fix proposals can be generated by the validation engine,
 or based on the error messages, or on error codes that we get from the validation
 engine. However, a language that can allow the developer to define fixes is more
 powerful and flexible.

 Schematron has become more and more popular in the XML world. Companies are using
 Schematron to enforce business rules on their documents and to verify the quality of
 their documents. Schematron is a language that defines rules for the structure and
 content that an XML document should follow.

 Schematron QuickFix (SQF) has been developed as an extension of the Schematron
 language. It is a language that allows developers to define fixes for the Schematron
 validation errors.

 2. Validation Errors

 From the user's point of view the validation error can be described by three things:
 the validation message, the location of the error (system ID and position in the
 document), and how to fix that error.

 Figure 1. Validation Errors

 [image: Validation Errors]

 Figure 2. Validation Error Description

 [image: Validation Error Description]

 When an XML document is validated against DTD, XSD or RNG schema, the error messages
 refer more to the XML syntax of the document and are not easily understood by the user.
 To fix this type of errors, the user must understand the validation messages, check the
 location of the problems, and determine what operations must be done.

 For the validation of an XML document against a Schematron schema, the errors are in
 fact failed constraints or business rules and are meant to be easily understandable by
 the user. The Schematron developers can better explain what operations should be done in
 order to fix a problem because they control the error messages. Also, the location of
 the problem can be specified better in the Schematron schema.

 However, in both cases, to fix the error the user must do the operations manually and
 this can result in generating even more errors. The automation of the error-fixing
 process will help the user to solve the problem faster and with fewer or no
 errors.

 A good example of error fixing is a spell checker. A spell checker presents errors but
 also offers a set of solutions to fix them. Similarly, solutions can be generated for
 XML validation errors.

 3. Fixing Validation Errors

 Over the course of time various IDEs (such as Eclipse or IntelliJ IDEA) have
 implemented fixes for XML validation errors and helped the user to solve the errors by
 offering fix proposals. The fix proposals can be implemented directly in the validation
 engine, or it would be better to have an implementation that does not depend on the
 validation engine. A way to solve this is by analyzing the validation message, error
 code, and the error location that the engine provides.

 We can say that the validation errors can be split into two categories:

 	
 Predefined – Defined in the validation engine. This is the case when an
 XML document is validated against a DTD, XSD or RNG schema.

	
 Custom – Defined by the user. This is the case when an XML document is
 validated against a Schematron schema.

 3.1. Fixing Predefined Errors

 For the predefined errors, fixes can be provided automatically based on the
 message, error code (if there is one), and location of the error. A limitation of
 this approach could be that each validation engine might provide its own predefined
 messages and error codes. Therefore, you will need an implementation for each
 validation engine.

 However, by providing fix proposals for these types of errors, the user will be
 helped with not only solving the problem, but also understanding it. The messages
 from the validation processor are often difficult to understand for novice users.
 For example, when an ID definition is missing, you might get the following error
 message:

 cvc-id.1: There is no ID/IDREF binding for IDREF
 'robert.tayor'.

 It would be more appropriate to have a more understandable message, such as:
 "There is an invalid ID reference: 'robert.tayor'. Would you like to change it to
 the similar ID: 'robert.taylor'?"

 Another example could be when an XSL document is validated and we have an
 undeclared function. This might cause the following error to be presented:

 XPST0017 XPath syntax error at char 0 on line 1802 near {...x($boxID,
 func:getButtonId(...}: Cannot find a matching 2-argument function named
 {http://www.oxygenxml.com/doc/xsl/functions}createBox()

 In this case, a more appropriate way to present the error might be: "The function
 'func:getButtonId()' has not been defined. Would you like to create this function or
 change the reference to a function with a similar name?"

 3.2. Fixing Custom Errors

 When an XML document is validated against a Schematron schema, we obtain
 customized errors. The errors are defined in the Schematron schema using the
 sch:assert and sch:report elements. In this case, it
 is difficult, and almost impossible, to generate a fix based on the error message
 and location.

 Therefore, a solution to propose fixes for this type of errors is to define the
 fixes directly in the schema. A Schematron developer can create fixes and associate
 them with the assert or report message.

 These fixes can be defined using the annotations support from Schematron.
 Schematron allows elements and attributes from other namespaces to be added as
 annotations in the schema. Thus, these annotations will not interact with the
 default validation of the Schematron schemas and they will be ignored by Schematron
 processors that do not support them.

 4. Schematron Quick Fixes

 To allow users to create fixes for the Schematron error messages, the Schematron
 QuickFix (SQF) language was created as an extension of Schematron. Using the SQF
 language, users can define fixes for assert or
 report error messages.

 The Schematron QuickFix has been defined as a simple but powerful language. It defines
 some basic operations that need to be implemented by the processor.

 Figure 3. Simple Schematron QuickFix example

 [image: Simple Schematron QuickFix example]

 The operations can be done with precision in a specified place and you do not need to
 modify the entire document.

 The first draft of the Schematron QuickFix specification was published in April 2015
 on the W3C Quick-Fix Support
 for XML community group page.

 4.1. SQF Benefits

 The Schematron schema can be used to validate any type of XML document. Thus,
 business rules or constraints can be defined for projects containing DITA, DocBook,
 XHTML, or TEI documents, and also for stylesheets or XML Schemas.

 For DITA, DocBook, XHTML, or TEI documents, simple styling rules can be imposed,
 such as:

 	
 The title should not contain bold.

	
 A list should contain more than one list item.

 Also, more complex rules can be added, such as:
	
 Ensure that the table layout is correct.

	
 Text needs to be normalized (NFC).

 For XSLT, XSD, or RNG documents, you can define coding styles, such as:

 	
 The names of the variables must not contain '-', and it is recommended to
 use the camel case format.

	
 The names of templates and functions should not exceed a specified
 length.

 Some of these rules can be solved very easily, but a less experienced user might
 still make mistakes and add other errors. On the other hand, a user with experience
 might be able solve them rather easily, but might need to perform a few
 operations.

 For more complex problems (for instance, problems that will update multiple nodes
 in the document or make complex conversions), it would be better to have an action
 to do this automatically.

 4.2. SQF Implementations

 An SQF fix consists of a set of operations that must be performed in an XML
 document. These are basic operations (add, delete, replace, and string replace) that
 need to make precise changes in the document. This means that when a fix is applied,
 only the affected part of the XML document should be changed and the DOCTYPE
 declaration, entities, etc. must be preserved.

 There are two types of implementations that can be used to execute Schematron QuickFixes:

 	
 Using an engine (implemented in Java, C, or other language) that
 collects the fixes during the Schematron validation process, and
 performs the modification precisely (using the engine programming
 language) when the fix is applied.

	
 Using an XSLT engine that generates a set of XSLT scripts during the
 Schematron validation process, and these scripts are applied when the
 fix is executed.

 5. Schematron QuickFix Language

 As shown in the example above (see Figure 3), the QuickFix
 (defined by the sqf:fix element) is structured as follows:

 	
 ID – Used to reference the QuickFix by
 sch:assert or sch:report elements.

	
 Title and description – The title is
 used for the name of the QuickFix. The optional description
 can be used to give the user additional information regarding the
 QuickFix.

	
 Operation – The Activity Elements
 that specify the actions of the QuickFix.

	
 Additional features – There are also some additional
 features that had no place in our simple example (such as User
 Entries and use-when conditions).

 5.1. Reference a QuickFix

 To reference a QuickFix, the sch:assert or sch:report
 element needs a sqf:fix attribute with the ID of the QuickFix. In many
 cases there are multiple possible solutions for one error, and the
 sqf:fix attribute is able to reference more than one QuickFix. In
 this case, the sqf:fix attribute should contain a list of those
 QuickFix IDs (separated with whitespace) that should be referenced:

 Example 1. Reference to Multiple QuickFixes

 <sch:rule context="title">
 <sch:report test="exists(b)"
 sqf:fix="resolveBold deleteBold">
Bold element is not allowed in title.</sch:report>
 <sqf:fix id="resolveBold">
 <sqf:description>
 <sqf:title>Change the bold element into text
 </sqf:title>
 <sqf:p>Remove the bold (b) markup and keep the
 text content</sqf:p>
 </sqf:description>
 <sqf:replace match="b" select="text()"/>
 </sqf:fix>
 <sqf:fix id="deleteBold">
 <sqf:description>
 <sqf:title>Delete the bold element</sqf:title>
 <sqf:p>Remove the bold (b) markup including the
 text content</sqf:p>
 </sqf:description>
 <sqf:delete match="b"/>
 </sqf:fix>
</sch:rule>

 5.1.1. Scope

 The referenced QuickFix needs to be in the scope of the
 sch:report or sch:assert element. It is in the
 scope if the sqf:fix element is a child of the same
 sch:rule element (which contains the sch:report or
 sch:assert element) or if the QuickFix was defined globally. To
 define a QuickFix globally, the top-level element sqf:fixes should
 contain one or more sqf:fix elements. QuickFixes that are specified
 in this way are available for all sch:report or
 sch:assert elements of the schema.

 Example 2. Global QuickFixes

 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
queryBinding="xslt2">
 <sch:pattern>
 <sch:rule context="title">
 <sch:report test="exists(b)"
 sqf:fix="resolveBold deleteBold">
 Bold element is not allowed in title.</sch:report>
 </sch:rule>
 </sch:pattern>
 <sqf:fixes>
 <sqf:fix id="resolveBold">
 <sqf:description>
 <sqf:title>Change the bold element into text
 </sqf:title>
 <sqf:p>Remove the bold (b) markup and keep the
 text content</sqf:p>
 </sqf:description>
 <sqf:replace match="b" select="text()"/>
 </sqf:fix>
 <sqf:fix id="deleteBold">
 <sqf:description>
 <sqf:title>Delete the bold element</sqf:title>
 <sqf:p>Remove the bold (b) markup including the
 text content</sqf:p>
 </sqf:description>
 <sqf:delete match="b"/>
 </sqf:fix>
 </sqf:fixes>
</sch:schema>

 5.1.2. QuickFix Groups

 To avoid long lists of IDs, it is possible to reference a QuickFix
 group. A QuickFix group is a set of QuickFixes. A reference to a
 QuickFix group is equal to a reference to each QuickFix in this group.

 Example 3. Reference to a QuickFix Group

 <sch:report test="exists(b)"
 sqf:fix="bold">
 Bold element is not allowed in title.</sch:report>
<sqf:group id="bold">
 <sqf:fix id="resolveBold">
 <sqf:description>
 <sqf:title>Change the bold element into text
 </sqf:title>
 <sqf:p>Remove the bold (b) markup and keep the
 text content</sqf:p>
 </sqf:description>
 <sqf:replace match="b" select="text()"/>
 </sqf:fix>
 <sqf:fix id="deleteBold">
 <sqf:description>
 <sqf:title>Delete the bold element</sqf:title>
 <sqf:p>Remove the bold (b) markup including the
 text content</sqf:p>
 </sqf:description>
 <sqf:delete match="b"/>
 </sqf:fix>
</sqf:group>

 To reference a QuickFix group, the sqf:group element also has
 an id attribute. For the sch:assert or
 sch:report elements, there is no difference between
 referencing a QuickFix or QuickFix group.

 A QuickFix group can also be defined globally (in an sqf:fixes
 element) or locally (in an sch:rule element).

 5.2. Title and Description

 The title (sqf:title element) is very important for a QuickFix. It is
 a challenge for the developer to create short titles that provide the user with
 enough information to understand what will happen when the QuickFix is executed. The
 developer can also deliver more information by using sqf:p
 elements.

 Also, as with Schematron error messages, the title and optional description can be
 customized by using the Schematron elements sch:value-of or
 sch:name.

 Example 4. Customized Title and Description

 <sqf:fix id="delete">
 <sqf:description>
 <sqf:title>Delete the <sch:name/> element</sqf:title>
 <sqf:p>The <sch:name/> element is misplaced in the
 <sch:name path=".."/> element.</sqf:p>
 <sqf:p>This QuickFix will delete the <sch:name/>
 element<sch:value-of select="
 if (./node())
 then ' with all its content.'
 else '.'"/>
 </sqf:p>
 </sqf:description>
 <sqf:delete/>
</sqf:fix>

 This QuickFix deletes the context node of the error (matched by the
 sch:rule element). This is a common solution, and if specified in
 this way, it can be reused in various contexts.

 5.3. Activity Elements

 After the description, the developer must specify what the QuickFix should
 actually do. To define actions, the developer can choose between four types of
 Activity Elements.

 The developer can also add any number of Activity Elements to one QuickFix. Each
 Activity Element is executed separately, in the context of the node where the error
 occurred (matched by the sch:rule element).

 All Activity Elements have a match attribute to select nodes by
 XPath, relative to the context node of the error. These nodes are called
 anchor nodes. The kind of processing of the anchor nodes
 depends on the type, additional attributes, and the content of the Activity Element.
 An Activity Element that has no match attribute selects the context of
 the error as its anchor node.

 There are four types of Activity Elements:

 	
 sqf:delete

	
 sqf:replace

 	
 sqf:add

	
 sqf:stringReplace

 5.3.1. Delete Nodes

 The delete action is the simplest type of Activity Element. The
 sqf:delete element deletes the anchor nodes.

 Example 5. Delete the Error Context

 <sch:rule context="p">
 <sch:report test="normalize-space(.) = ''"
 sqf:fix="delete">
 <sch:name/> element without text is not allowed.</sch:report>
 <sqf:fix id="delete">
 <sqf:description>
 <sqf:title>Delete the <sch:name/> element</sqf:title>
 </sqf:description>
 <sqf:delete/>
 </sqf:fix>
</sch:rule>

 The empty p element is deleted by the QuickFix
 delete.

 Example 6. Delete Nodes by Using the Match Attribute

 <sch:rule context="title">
 <sch:report test="comment()"
 sqf:fix="deleteComment">
 Comments are not allowed in the <sch:name/> element.</sch:report>
 <sqf:fix id="deleteComment">
 <sqf:description>
 <sqf:title>Delete the comment.</sqf:title>
 </sqf:description>
 <sqf:delete match="comment()"/>
 </sqf:fix>
</sch:rule>

 All comments in the title element are deleted by the QuickFix
 deleteComment.

 5.3.2. Replace Nodes with New Content

 The Activity Element sqf:replace replaces each anchor node with
 new content. There are three methods to create new content in SQF. In some
 cases, they can also be combined.

 5.3.2.1. Replace by Using SQF Attributes

 The combination of the attributes node-type and
 target creates exactly one node. The node-type
 attribute specifies the type of the node with the values:
 element, attribute,
 processing-instruction, pi,
 comment, or keep. The value pi is
 the short version of processing-instruction. The value
 keep is provided to create the same type of node as the
 anchor node.

 If the value of the node-type attribute is not
 comment, the target attribute is required to
 specify the name of the new node. The attribute value is analyzed like an
 attribute value template (as defined in XSLT: https://www.w3.org/TR/xslt20/#attribute-value-templates). An
 XPath expression, which is marked with curly brackets
 ({XPath}), is evaluated to generate the node name. After
 evaluation, the value needs to be a valid xs:QName.

 You can combine this method of specifying the value or content of the new
 node with one of the other two methods of creating new content. If the
 attributes node-type and target create an element,
 the new content generated by using the second method (described below)
 becomes the new content of this element. Otherwise, the new content is
 transformed into an atomic value (attribute value, comment value, etc.) in
 the same way as child nodes of xsl:attribute elements are
 transformed to attribute values in XSLT.

 5.3.2.2. Replace by Using XPath

 The select attribute of the Activity Element creates new
 content by using XPath. The given XPath expression is evaluated in the
 context of the anchor node. The return value is used to generate new
 content. Returned nodes are copied and atomic values are transformed to text
 nodes.

 If the select attribute is set, the Activity Element must be
 empty.

 Example 7. Create Nodes with the SQF Attributes and Copy Nodes with
 XPath

 <sch:rule context="b">
 <sch:report test="ancestor::b"
 sqf:fix="italic">
 Bold in bold is not allowed.</sch:report>
 <sqf:fix id="italic">
 <sqf:description>
 <sqf:title>Change it to italic.</sqf:title>
 </sqf:description>
 <sqf:replace target="i" node-type="element" select="node()"/>
 </sqf:fix>
</sch:rule>

 The recursive b element is replaced by an i
 element. The content is copied.

 5.3.2.3. Replace by Using New Content

 If the select attribute is omitted, the content of the
 Activity Element is used to create new content. The content is evaluated in
 the same way as the content of an xsl:template element in XSLT
 2.0. That also means that any element that is not in the XSLT namespace is
 handled as a Literal Result Element. Exceptions are the SQF element
 sqf:keep and the Schematron elements sch:let,
 sch:value-of, and sch:name. The Schematron
 elements are handled in the same way as in Schematron. The
 sqf:keep element will copy nodes that are selected by the
 XPath expression in the select attribute.

 The initial context of this "template" will be the anchor node.

 Example 8. Create Nodes with New Content

 <sqf:fix id="italic">
 <sqf:description>
 <sqf:title>Change it to italic.</sqf:title>
 </sqf:description>
 <sqf:replace>
 <i>
 <sqf:keep select="node()"/>
 </i>
 </sqf:replace>
</sqf:fix>

 This QuickFix example performs the same actions as the previous
 example (Example 7), but uses a
 different way.

 5.3.3. Add the New Content

 To insert new content without replacing existing nodes, the Activity Element
 sqf:add is used. It creates new content in the same way as the
 sqf:replace element, but the new content is inserted relative
 to each anchor node instead of replacing it.

 To specify the exact position, the sqf:add element can have a
 position attribute to indicate that the new content is inserted
 after (value after), before (value before) the anchor
 node, as the first (value first-child – default value), or as the
 last child (value last-child) of the anchor node. If the new
 content is an attribute, the position attribute should not be used
 because it is always added automatically as an attribute of the anchor
 node.

 Example 9. Add Nodes

 <sch:rule context="h2">
 <sch:assert test="preceding::h1"
 sqf:fix="addH1">
 A h2 should not be used without a h1 before.</sch:assert>
 <sqf:fix id="addH1">
 <sqf:description>
 <sqf:title>Add a h1 element before the h2 element.</sqf:title>
 </sqf:description>
 <sqf:add node-type="element" target="h1" position="before"/>
 </sqf:fix>
</sch:rule>

 Directly before the h2, a new h1 is inserted.
 Because there is no content defined for the new element, the h1
 is empty.

 5.3.4. Replace Substrings

 The Activity Element sqf:stringReplace is a special case. There
 is a restriction for the anchor nodes in that they must be text nodes. These
 text nodes are analyzed by a regular expression provided in the
 regex attribute. Each substring of the anchor text node that
 matches to the regular expression is replaced by new content. The new content is
 created in the same way as the sqf:replace element, although the
 attributes target and node-type are not available for
 the sqf:stringReplace element.

 Example 10. Replace Substrings

 <sch:report test="matches(., '____')"
 sqf:fix="form">
 More than three underscores in a row shouldn't be used.</sch:report>
<sqf:fix id="form">
 <sqf:description>
 <sqf:title>Replace the misused characters by a form element.</sqf:title>
 </sqf:description>
 <sqf:stringReplace regex="___+">
 <form/>
 </sqf:stringReplace>
</sqf:fix>

 5.4. Additional Features

 5.4.1. User Entry

 For some solutions of an error, it is impossible to define a QuickFix without
 getting more information from the user. For instance, if the Schematron error is
 that the title element is empty (and it should not be). For this
 case, the solution would be to define a new title. A predefined QuickFix for
 this issue is impossible because there is an unlimited number of possible
 titles. Therefore, additional input from the user is needed.

 For this case, one or more User Entries can be defined
 for any QuickFix. The User Entry acts like a parameter whose value is set by the
 user during the execution of the QuickFix.

 Example 11. User Entry

 <sch:rule context="title">
 <sch:assert test="normalize-space(.) != ''"
 sqf:fix="title">
 A title shouldn't be empty.</sch:assert>
 <sqf:fix id="title">
 <sqf:description>
 <sqf:title>Set a title</sqf:title>
 <sqf:p>This QuickFix will set a title by using a
 User Entry.</sqf:p>
 </sqf:description>
 <sqf:user-entry name="title">
 <sqf:description>
 <sqf:title>Please enter the new title.
 </sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:replace target="title" node-type="element"
 select="$title" />
 </sqf:fix>
</sch:rule>

 The sqf:user-entry element has a name attribute and
 contains an sqf:description element. The name
 attribute specifies the name of the User Entry. For XPath expressions of all
 Activity Elements, a variable is now available that has the name of the User
 Entry, and the variable can be used to access the value of the User
 Entry.

 The sqf:description element is used to define a title
 (sqf:title) and optionally an additional description
 (sqf:p elements) of the particular use-case of the User
 Entry.

 5.4.2. Use-when Condition

 In some cases, the usefulness of a QuickFix depends on the context of the
 error. For one error, the QuickFix might make sense, but for another error of
 the same kind, it might be useless because it would create another error.

 Example 12. Useless QuickFix

 Schematron schema:

 <sch:rule context="title">
 <sch:report test="exists(b)"
 sqf:fix="resolveBold deleteBold">
 Bold element is not allowed in title.</sch:report>
 <sch:assert test="normalize-space(.) != ''">
 A title shouldn't be empty.</sch:assert>
 <sqf:fix id="resolveBold">
 <!--...-->
 </sqf:fix>
 <sqf:fix id="deleteBold">
 <sqf:description>
 <sqf:title>Delete the bold element</sqf:title>
 <sqf:p>Remove the bold (b) markup including the
 text content</sqf:p>
 </sqf:description>
 <sqf:delete match="b"/>
 </sqf:fix>
</sch:rule>

 XML instance:

 <article>
 <section>
 <title>This title should be bold</title>
 </section>
 <section>
 <title>This title should be bold</title>
 </section>
</article>

 Both titles will produce the same error, but for the first title, the
 QuickFix deleteBold is useless because after its execution the
 title element would be empty and would produce another kind
 of error (caused by the sch:assert element).

 To avoid such a subsequent error, the use-when condition helps. The XPath
 expression in the use-when attribute of the sqf:fix
 element is a condition to provide the QuickFix:

 Example 13. Use-when Condition

 <sqf:fix id="deleteBold"
 use-when="node()[normalize-space(.) != ''] except b">
 <sqf:description>
 <sqf:title>Delete the bold element</sqf:title>
 <sqf:p>Remove the bold (b) markup including the
 text content</sqf:p>
 </sqf:description>
 <sqf:delete match="b"/>
</sqf:fix>

 The QuickFix deleteBold is proposed to the user only if the
 title element contains text other than whitespaces and has
 a node that is not a b element.

 The use-when attribute is also available for each Activity
 Element, so the developer is able to specify use-when conditions for each single
 Activity Element.

 6. Projects Using SQF

 There are some projects available that use the SQF language to propose fixes:

 	
 Dynamic Information Model (DIM) project (https://github.com/oxygenxml/dim) – Uses SQF to propose fixes for
 the Schematron rules.

	
 TEI (http://wiki.tei-c.org/index.php/Category:Schematron) – A page that
 contains Schematron schemas and SQF that can be used to determine and fix
 various problems in TEI documents.

	
 <oXygen/> DITA framework – A built-in framework in oXygen XML Editor for
 DITA documents that contains a set of Schematron schemas and SQF fixes that can
 be used to impose rules and propose fixes to solve errors.

	
 <oXygen/> User Manual (https://github.com/oxygenxml/userguide) – A public version of the
 oXygen XML Editor user guide that provides an example where SQF rules have been
 implemented on a DITA project.

 7. Conclusions and Future Plans

 The Schematron QuickFix language is useful for XML projects because it offers
 proposals to solve the Schematron validation errors and warnings. Thus, the users
 understand the problem better, make fewer mistakes, and solve the problem in less time.
 The language is very simple, has just a few elements, and can be easily adopted by the
 Schematron developers to create quick-fix proposals.

 From the implementations perspective, SQF should not be difficult to implement because
 the language has only four basic operations (add, delete, replace, and string replace)
 that must be supported.

 In the near future, we plan to publish the second draft of the Schematron QuickFix
 specification that will contain new things such as how you can execute fixes on other
 documents, new definitions, and examples for the SQF elements.

 We intend to update the specification and add other elements or change their behavior,
 based upon discussions and feedback that we have received on the SQF GitHub project.
 For example, the call-fix element will be able to reference a group
 of operations and support will be added to allow the developer to generate the fixes
 dynamically.

Validating office documents in the publishing production workflow

 Andrew Sales

 Andrew Sales Digital Publishing Limited

<andrew@andrewsales.com>

Abstract

 This paper will present an innovative, open-source approach to verifying the quality of content, by applying business rules to the markup that underlies OOXML and ODF. These are normally onerous to author in full, as they entail (in the case of word-processing documents) inferring structure from a sequence of styled paragraphs and other items. It will show how these rules can be expressed declaratively and succinctly, using a schema language. It will also demonstrate how this language can be interpreted by a processor to produce human-readable reports, including as annotations in the original source. Finally, it will outline how this information can potentially be put to use in correcting defects in content, via the Schematron QuickFix (SQF) framework.

 The paper builds on work presented at XML London 2015 and available on GitHub at https://github.com/AndrewSales/schematron4word.

Keywords: Schematron, validation, OOXML, ODF, SQF

 1. Background

 The paper previously presented[1] on work in this area focused on the idea of applying quality assurance to styled word-processing documents as the basis of sound data capture. Some publishers need to do it this way, on grounds of convenience or cost — often legacy workflows will exist. Whereas macros may have been used to perform this kind of in-application validation historically, the availability of office formats as XML now means XSLT and thereby Schematron are viable, and arguably more maintainable and more portable, alternatives.

 Beyond validation, it is also possible to insert error messages at the location of the fault into the original document, in the form of comments for editorial review.

 This approach has been shown to work in both OOXML and ODF, and in other office documents, for example spreadsheets.

 However, writing this kind of Schematron schema, even with the aid of libraries of abstract patterns, can entail long-winded and convoluted constraints because of the nature of the task: attempting to impose an implied structure on a series of styles and other objects. Since a better fit would appear to be a schema language for styled documents, this approach was proposed. A schema language has already been devised; the present paper pursues the challenge of a processor for this language which can be used to validate styled documents and so enable the display of any errors in situ in the original, with the potential to fix them (semi-)automatically.

 2. A processor for style schemas

 Francis Cave's "style schema"[2] seeks to express word-processing document constraints using a custom schema language. It is close to RELAX NG in format (by which means it is also specified), with some document-specific additions, such as sections and body/header/footer, as shown in this excerpt (as RNC for readability):
Section = element Section { Body, Header?, Footer? }
Header = element Header { (Para | Table)+ }
Footer = element Footer { (Para | Table)+ }
Para =
 element Para {
 (Drawing
 | DocProperty
 | Text
 | Tab
 | Bookmark
 | Comment
 | ParaAnyOf)*,
 style_att
 }
ParaAnyOf =
 element OneOrMore {
 element Choice {
 (Drawing
 | DocProperty
 | Text
 | Tab
 | Bookmark
 | Comment
 | ParaAnyOf)+
 }
 }
 Applying these schema-specified constraints to an office document requires a custom processor to interpret them.

 The earlier paper proposed generating Schematron from the style schema to do this, as that technology had been used so far successfully with manually-authored constraints. Certain things are quick and easy to achieve with Schematron in this way, such as enumerating all the allowed styles for a document, and, with a little more interpretation, which are mandatory and in what order. This is a good starting point. However, choice and optionality can make assertions lengthy and complex and with a style schema of any length or complexity in itself, the number of requisite assertions could grow considerably.

 Moreover, there is the problem of maintaining context. In a Schematron schema expected to constrain allowed sequences of styles, you must elaborate the possible contexts (in rule/@context), and where styles are re-used in a schema these can be many.

 Faced with these considerations, a bespoke processor is appealing as it would offer most control and be designed specifically for the task, but is a significant undertaking. With a formal expression of the grammar in place, utilities such as REx[19] can produce a Java class or XSLT which could be adapted to suit[20]. This would entail generating the EBNF for a given style schema (the productions will vary from schema to schema) and some customisation of the resulting parser to report an error's XPath.

 However, validating documents against a grammar clearly has several well-established precedents in XML processing, so these perhaps present a more convenient route. If the style schema can be successfully transformed into one of the existing XML schema languages, then it should be possible to exploit pre-existing parsing technology.

 3. An implementation: DTD + SAX handler

 As a first cut, the tried-and-tested DTD was selected. They may seem rather outmoded in the schema era, but DTDs still have much to offer. The transform was reasonably straightforward: the limitations and simplicity of DTD syntax are a boon in this respect. Also, SAX[21] libraries provide a convenient way to harvest an XPath to the location of an error. As a quick win, this approach seems promising.

 The general approach is:

 	
 transform the style schema to a DTD, declaring style names as pseudo-elements;

	
 transform the styled source to pseudo-elements;

	
 set up a validating parser that reports the XPath to any errors encountered in the styled source transformed in the previous step;

	
 insert annotations into the styled source by way of an identity transform, using the XPaths reported in the previous step.

 3.1. Transforming the style schema to a DTD

 For this, we treat each distinct stylename declared in the schema as an element to declare in the DTD output:

<!-- each element that can have a stylename is declared as an element -->
<xsl:template match="sts:Para | sts:Table | sts:Text" mode="declare">
 <xsl:text><!ELEMENT </xsl:text>
 <xsl:sequence select="if(@styleID) then asdp:get-stylename(.) else name()"/>
 <xsl:text> (#PCDATA</xsl:text>
 <xsl:if test="$declare-built-in-inline-elements">
 <xsl:text>|%built-in-inline;</xsl:text>
 </xsl:if>
 <xsl:text>)*>
</xsl:text>
</xsl:template>

 Built-in styles (such as bold, italic etc) are declared in a static, pre-built module:

<!ENTITY % built-in-inline "b|i|ul|sub|sup|sc|url">
 <!ENTITY % auto-generated SYSTEM "auto-gen.dtd">
 %auto-generated;

 where auto-gen.dtd is the automatically-generated part, e.g:

<!ELEMENT Document ((Para.articlehead,
(Para.bodytext
)+, ((Para.bibhead,
(Para.bib
)+))?, Footer))>

<!ELEMENT Para.Footer (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.Footer xpath CDATA #REQUIRED>

<!ELEMENT Para.articlehead (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.articlehead xpath CDATA #REQUIRED>

<!ELEMENT Para.bodytext (#PCDATA|%built-in-inline;|Text.bibref)*>
<!ATTLIST Para.bodytext xpath CDATA #REQUIRED>

<!ELEMENT Text.bibref (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibref xpath CDATA #REQUIRED>

<!ELEMENT Para.bibhead (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.bibhead xpath CDATA #REQUIRED>

<!ELEMENT Para.bib (#PCDATA|%built-in-inline;|Text.bibdate|Text.bibnum)*>
<!ATTLIST Para.bib xpath CDATA #REQUIRED>

<!ELEMENT Text.bibdate (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibdate xpath CDATA #REQUIRED>

<!ELEMENT Text.bibnum (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibnum xpath CDATA #REQUIRED>

<!ELEMENT Footer (Para.Footer)>

 Character styles (in style schema parlance, Para/Text[@styleID]) receive similar treatment and are inserted into the mixed content model, as in Para.bodytext and Para.bib above. The purpose of attribute xpath is discussed in the next section.

 3.2. Transforming the source document styles to pseudo-elements

 This approach of course necessitates transforming the input document too, so that it can still be usefully validated. To achieve this, we treat each styled paragraph, inline style or object (such as tables, drawings etc) as a pseudo-element. The transform therefore has to do two things:

	create elements from styles that correspond with those declared in the DTD generated from the style schema; and

	provide a route back to the location in the source document, so that a meaningful report of the error can be made.

 The former can be taken from the w:styleId attribute in the (e.g. paragraph or run) properties,[22] with the structure type (paragraph/character style, header, footer) prepended:

<Para.bib><Text.bibnum>[2]</Text.bibnum>
<url address="https://www.oasis-open.org/standards">https://www.oasis-open.org/standards#opendocumentv1.2</url>. Retrieved <Text.bibdate>2015-03-08</Text.bibdate>.</Para.bib>

 For the latter, XPaths to the nodes in the original are inserted as an attribute:

<Para.bib xpath="/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/wx:sub-section[1]/w:p[3]"> [...]
 and the character styles mentioned above carried through:

<Text.bibnum xpath="/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/wx:sub-section[1]/w:p[2]/w:r[1]">[1]</Text.bibnum>

 This is still a direct translation of the flat (in this case, WordProcessingML) format; no attempt is made to infer structure at the stage of generating these pseudo-elements.

 3.3. Validator with error location reporting

 A validating instance of the Apache Xerces2-J[23] SAXParser is created with some org.xml.sax.helpers.DefaultHandler methods overridden:

private ArrayList<ParseError> errs;
	private ParseError error;
	private Stack<String> context;
	
	Validator(){
		errs = new ArrayList<ParseError>();
		context = new Stack<String>();
	}

 public void startElement(String uri, String localName, String qName, Attributes atts) throws SAXException {
		context.push(atts.getValue("xpath"));
		
		if(error != null){
			error.setXPath(context.peek());
			errs.add(error);
			error = null;
		}
	}
	
	public void endElement(String uri, String localName, String qName) throws SAXException {
		String xpath = context.pop();

		if(error != null){
			error.setXPath(xpath);
			errs.add(error);
			error = null;
		}	
	}

 public void error(SAXParseException e) throws SAXException {
	 error = new ParseError(e.getMessage());
	}

 A stack is maintained so that errors reported just before an endElement event (typically about the completeness of the element just ended) have their XPath location reported correctly. A complete document of errors is emitted on endDocument(), e.g.

<errors>
 <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/w:p[10]'>Element type "Para.Normal" must be declared.</error>
 <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/wx:sub-section[1]/w:p[1]'>Element type "Para.Heading2" must be declared.</error>
 <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-section[1]/w:p[1]'>The content of element type "Document" must match "(Para.articlehead,Para.bodytext+,(Para.bibhead,Para.bib+)?,Footer)".</error>
</errors>

 Note that the final error reported in this example pertains to the root element ("Document" is not complete when the document ends), so the XPath reported here is by default associated with the first paragraph in the body of the original document, to enable it to be displayed when rendered.

 3.4. Inserting errors into the source

 To present these errors to the user we are faced with two challenges, one technical, the other semantic. The first is relatively trivial: adapt the existing errs2xsl.xsl to accept an error document emitted by the custom validator. Here, we simply test for that document's presence via a parameter passed to the stylesheet and process any errors it contains just as though they had come from the Schematron SVRL. The second is more significant to the user, as we are showing them error messages designed for markup, but they are looking at styles in an unstructured environment. In this case, a crude re-wording in the XSLT of the parser-specific messages suffices, as a limited variety of errors is expected. So, for instance the error message Element type "Para.Normal" must be declared. becomes unrecognised style "Normal" when rendered in the UI.

 3.5. Filling in the gaps with Schematron

 So much for checking the implied structure of the document. But there remains the issue of the expected content of the individual pseudo-elements. For example, the style schema expresses that a given style should have fixed text via the text content of Text, as in the case of bibhead, which style should cue the start of the bibliography:
<Define name="bibhead">
 <Para styleID="bibhead">
 <Text>References</Text>
 </Para>
</Define>

This can be expressed by generating a rule such as:
<rule context='Para.bibhead'>
 <let name='fixed-text' value='"References"'/>
 <assert test='. = $fixed-text'><name/> should have the text content '<value-of select='$fixed-text'/>'; got '<value-of select='.'/>'</assert>
</rule>

Further extension of the style schema format is desirable, to introduce more datatyping, for instance by the simple addition of XSD types. For example, to constrain the content of bibdate to a valid date it would be nice to be able to specify this:
<Para styleID="bib">
 <Text styleID="bibdate" type='xs:date'/>
 <Text styleID="bibnum"/>
</Para>

 and have the corresponding constraint applied automatically by Schematron in much the same way as the previous example.

 4. Post mortem

 There are certainly limitations to this approach, in that you probably still need to hand-craft some Schematron rules, but so it goes; the majority of the work in checking the structure implied by styles is done by the style schema validator, and some constraining of text content by auto-generated Schematron.

 Another consideration is that the main focus for the schema language as it stands is documents in the strict sense, as opposed to say spreadsheets or presentations. Other kinds of office document may benefit, but it is hoped that at least the concept is more or less proven.

 What we lose, as indicated above, is the user-defined or customisable error message, or at least something which has more meaning in the style-centric world. Instead we are reliant on interpreting and re-wording XML parser messages.

 There is also no inherent support yet in the style schema format for cross-references or "co-occurrence constraints". In their absence, the constrainer is again reliant on custom Schematron.

 And it goes without saying that this is merely one implementation: other schema languages are of course available.

 5. Fixing the source

 When this technique was first applied as part of a journals workflow, there was no Schematron involved, only pure XSLT to validate and in some cases re-process the document to fix basic errors. Now, we have Schematron Quick Fix,[24] which offers a formal approach and implementation.

 In this case, the question is what fixes can be usefully applied and where to apply them.

 The same difficulty besets what can be fixed as it does all of this validation activity: namely that we are inferring structure from markup that may imply it, rather than validating an already instantiated structure. This means a certain amount of guesswork is required about the document author's intentions. Under these circumstances, caution is advised in amending the source, but unambiguous cases (such as the wrong boilerplate text given in a particular style) should prove uncontroversial, not to mention very useful.

 In order to allay editorial concerns about fixing less certain cases, perhaps it would be worthwhile implementing them as part of the change tracking markup, as in this (ODF this time) snippet:
<office:text>
 <text:tracked-changes>
 <text:changed-region xml:id="ct179952656" text:id="ct179952656">
 <text:deletion>
 <office:change-info>
 <dc:creator>SQF</dc:creator>
 <dc:date>2016-01-24T00:00:00</dc:date>
 </office:change-info>
 <text:p text:style-name="Standard">Bibliography</text:p>
 </text:deletion>
 </text:changed-region>
 <text:changed-region xml:id="ct179952552" text:id="ct179952552">
 <text:insertion>
 <office:change-info>
 <dc:creator>SQF</dc:creator>
 <dc:date>2016-01-24T00:00:00</dc:date>
 </office:change-info>
 </text:insertion>
 </text:changed-region>
 </text:tracked-changes>
 <text:p text:style-name="Standard">
 <text:change text:change-id="ct179952656"/>
 <text:change-start text:change-id="ct179952552"/>References<text:change-end text:change-id="ct179952552"/>
 </text:p>
 </office:text>

 Here, the original document has been amended – the bibliography heading corrected – albeit "non-invasively". This approach would mean that, once rendered, the editor can use the built-in review tools to accept or reject the change, or otherwise address the issue.

 6. Next steps

 There is still clearly more implementation work to be done on both the schema and processor side. If this technique is of wider interest, contributions to the effort are very welcome. The focus has been on word-processing mostly in this instance, but it is conceivable that style schemas for other office documents could prove useful.

 I would like to express my gratitude to those fellow-sufferers who have kindly allowed their brains to be picked over time: Alex Brown, Francis Cave, Jirka Kosek, Horst Kucharczyk and Kourosh Mojar.

[19] http://www.bottlecaps.de/rex/

[20] For an illuminating discussion of validators generated in this way, see Tony Graham's paper on validating XSL-FO[3].

[21] Simple API for XML, http://sax.sourceforge.net/

[22] Although it will be absent in some cases, such as default styles, and is addressed e.g. by Para.Normal (appropriately enough perhaps for a phantom stylename) to denote Word's default paragraph style.

[23] http://xerces.apache.org/xerces2-j/

[24] http://www.schematron-quickfix.com/

Bibliography

 [1]

 The application of Schematron schemas to word-processing documents.
 Andrew Sales.

 XML London 2015.
 June 6-7th, 2015.
 .
 doi:doi:10.14337/XMLLondon15.Sales01

 [2]

 A style schema for word-processing
 documents.
 Francis Cave.
 February 2015.
 Personal communication.

 [3]

 Validating XSL-FO with Relax NG and Schematron.
 Tony Graham.

 XML London 2015.
 June 6-7th, 2015.
 .
 doi:doi:10.14337/XMLLondon15.Graham01

Data Just Wants to Be Format-Neutral

Steven Pemberton

 CWI, Amsterdam

Abstract

 Invisible XML is a technique for treating any parsable format
 as if it were XML, and thus allowing any parsable object to be
 injected into an XML pipeline. The parsing can also be undone, thus
 allowing roundtripping.

 This paper discusses issues with automatic serialisation, and
 the relationship between Invisible XML grammars and data
 schemas.

1. Abstraction
and Representation

All numbers are abstractions. There is no
thing that is the number 3, you can't point to
it, only to a representation of it. The best that we can say is
that the number three is what it is that three apples and three
chairs have in common.

Given the right context, we understand that "CXXVII", "127",
"7F", "1111111" and "one hundred and twenty-seven" are all
representations of the same number: the underlying concept is
identical. We choose the representations we use either through
familiarity, or for convenience. For instance, while it is
relatively easy to add numbers expressed in roman numerals
together, it is very hard to multiply them; binary representations
are used in computers because the electronics needed to manipulate
them are much simpler.

And so it is with data representations in general. To take an
example, there is no essential difference
between the JSON

{"temperature": {"scale": "C"; "value": 21}}

and an equivalent XML

<temperature scale="C" value="21"/>

or

<temperature>
 <scale>C</scale>
 <value>21</value>
</temperature>

since the underlying abstractions being represented are the
same. We choose which representations of our data to use, JSON,
CSV, XML, or whatever, depending on habit, convenience, or the
context we want to use that data in.

On the other hand, having an interoperable
generic toolchain such as that provided by XML
to process data is of immense value. How do we resolve the
conflicting requirements of convenience, habit, and context, and
still enable a generic toolchain?

2. Invisible XML

Invisible XML [ixml] is a method
for treating non-XML documents as if they were XML, enabling
authors to write documents and data in a format they prefer while
providing XML for processes that are more effective with XML
content.

The essence of Invisible XML is based on the observation
that, looked at in the right way, an XML document is no more than
the parse tree of some external form, so that all that is needed is
to parse the external form using some general-purpose parsing
algorithm, and then serialise the resulting parse-tree as
XML.

To take a very simple example, imagine a grammar for a very
simple expression language that allows such expressions as:

a×(3+b)

The grammar could look like this:

expression: ^expr.
expr: term; ^sum; ^diff.
sum: expr, "+", term.
diff: expr, "-", term.
term: factor; ^prod; ^div.
prod: term, "×", factor.
div: term, "÷", factor.
factor: ^letter; ^digit; "(", expr, ")".
letter: ^["a"-"z"].
digit: ^["0"-"9"].

The format used is a 1-level van Wingaarden grammar
[vwf], a variant of BNF
[bnf]. Each rule consists of a
non-terminal to be defined, followed by a colon, and a
definition followed by a full-stop. A
definition consists of a number of
alternatives separated by semicolons. Each
alternative consists of a list of
non-terminals and
terminals separated by commas. A terminal is
enclosed in quotes. An alternative, as a shorthand, may also
consist of a range of characters enclosed in square
brackets.

The only thing that needs to be explained here is the use of
the "^" symbol, which marks non-terminals in the parse tree that
are required to show up in the final XML serialisation. To
illustrate, if we parse the example expression
"a×(3+b)" with this grammar we
would get the following parse tree:

^expr
| term
| | ^prod
| | | term
| | | | factor
| | | | | ^letter
| | | | | | ^"a"
| | | "×"
| | | factor
| | | | "("
| | | | expr
| | | | | ^sum
| | | | | | expr
| | | | | | | term
| | | | | | | | factor
| | | | | | | | | ^digit
| | | | | | | | | | ^"3"
| | | | | | "+"
| | | | | | term
| | | | | | | factor
| | | | | | | | ^letter
| | | | | | | | | ^"b"
| | | | ")"

Serialising this as XML, retaining all nodes, would give the
following XML instance:

<expr>
 <term>
 <prod>
 <term>
 <factor>
 <letter>a</letter>
 </factor>
 </term>
 ×
 <factor>
 (
 <expr>
 <sum>
 <expr>
 <term>
 <factor>
 <digit>3</digit>
 </factor>
 </term>
 </expr>
 +
 <term>
 <factor>
 <letter>b</letter>
 </factor>
 </term>
 </sum>
 </expr>
)
 </factor>
 </prod>
 </term>
</expr>

However, serialising it retaining only the marked nodes gives
us the following XML:

<expr>
 <prod>
 <letter>a</letter>
 <sum>
 <digit>3</digit>
 <letter>b</letter>
 </sum>
 </prod>
</expr>

3. Serialisation

Since in general the input form and the generated XML are
isomorphic, returning the generated XML to its original format is
just a process of serialisation, nothing that a suitable bit of
XSLT couldn't do, or even CSS in some simple cases.

For instance, to take an example from the original paper,
where a piece of CSS

body {color: blue; font-weight: bold}

is parsed into XML as:

<css>
 <rule>
 <selector>body</selector>
 <block>
 <property>
 <name>color</name>
 <value>blue</value>
 </property>
 <property>
 <name>font-weight</name>
 <value>bold</value>
 </property>
 </block>
 </rule>
</css>

Rejoicing in the possibility of formatting CSS with CSS, the
following simple bit of CSS would return the XML back into regular
CSS format:

block::before {content: "{"}
block::after {content: "}"}
name::after {content: ":"}
property::after {content: ";"}

The original paper also shows how to produce an alternative
XML serialisation of the CSS snippet using attributes:

<css>
 <rule>
 <selector>body</selector>
 <block>
 <property name="color" value="blue"/>
 <property name="font-weight" value="bold"/>
 </block>
 </rule>
</css>

which could be round-tripped with the following piece of
CSS:

block::before {content: "{"}
block::after {content:"}"}
property::before {content: attr(name) ":" attr(value) ";"}

However, considering the XML above for the expression, it is
harder (a combinatorial problem) to round-trip the XML using CSS
because of the loss of context caused by eliding intermediate nodes
like term, factor and
expr. For instance, if
<sum> is a direct child of
<prod>, then it must have been enclosed in
brackets in the original expression, and therefore the
serialisation must include brackets around such
<sum>s, but you can only infer it, and it
is impossible to infer if the original had
twoÂ pairs of brackets around
it.Â

An alternative option to such inference is to regard the
grammar of a format as a specification of a presentation language
for the parse-tree of that format, and write a suitable program
that walks the tree hand-in-hand with the grammar.

4. Serialisation
by Tree Walking

If you have the parse tree that was used to generate the XML
serialization, then serialising it back to its original form is
trivially easy: the parse tree is traversed depth first, and each
time a terminal symbol is reached, it is copied to the
output:

serialise(t)=
 for node in children(t):
 select:
 terminal(node):
 output(node)
 nonterminal(node):
 serialise(node)

However, in the general case you will not have the original
parse-tree, and so life is harder. Because of the lack of context
referred to earlier, caused by the elision of intermediate nodes in
the parse tree, you essentially have to recreate the parse-tree.
This can be done by 'parsing' the XML serialisation using the
original grammar.

5. Earley Parsing

In the literature, the Earley parsing algorithm
[earley] is often referred to as a
"state chart" parsing algorithm [aho].
However, from a modern computing perspective, it is more useful to
see it as a serialised parallel parsing processor.

Each rule, such as

sum: expr, "+", term.

represents, in Unix terms, a process. The right hand side is
a series of 'instructions' for matching the input, starting at the
current position. These are executed sequentially.

However, if a right hand side has several alternatives
(separated by ";" in ixml grammars), such as

factor: ^letter; ^digit; "(", ^expr, ")".

then the processed is 'forked' (again in Unix terminology) to
produce a sub-process for each alternative, each processing from
the same start position.

The processes are put in a queue, ordered on the position in
the input they are parsing from. All processes for position
n are run before processes for position
n+1 (not essential, but reduces the need for
keeping the whole input around during processing).

If a process successfully matches an input symbol, it is
paused and added to the queue for position
n+1.

If a process reaches the end of its 'instructions', it
succeeds (terminates successfully, and returns
to its parent rule).

If a process meets an input symbol it wasn't expecting, it
fails (terminates unsuccessfully, and returns
to its parent rule).

For a rule with more than one alternative, if one or more
succeeds, the rule itself succeeds, otherwise it fails.

More than one alternative can succeed if the grammar is
ambiguous. For instance, with the simple grammar:

div: "i"; div, "÷", div.

the string

i÷i÷i

can be parsed in two ways, essentially either as

div(i, div(i, i))

or

div(div(i, i), i)

or in other words, either as

i÷(i÷i)

or as

(i÷i)÷i.

The whole process ends when all the sub-processes have
terminated; if the top-level process succeeds, than you have
successfully parsed the input, and otherwise not.

There is one other issue: if a rule has already been queued
for a particular position, it is not added a second time, instead
being linked to the already-queued version.

6. Parsing a Parse
Tree

Parsing a parse tree is a similar procedure. The top level
rule must be matched against the XML tree. A 'marked' terminal in
the grammar must be present in the XML, as must a marked
nonterminal, which is then further treated as a nonterminal in the
original algorithm. A non-marked terminal is assumed to be present.
Finally an unmarked nonterminal is treated the same as any
nonterminal in the original algorithm.

This parsing will produce a parsetree that can then be used
for serialisation as described above.

The only thing to note is that parsing the parsetree can also
produce an ambiguous result. For example, suppose an expression
grammar allowed the use of several sorts of brackets, where the
brackets had no separate semantic meaning, so that as well
as

a×((b+1)×(c+1))

you could also write

a×({b+1}×{c+1})

with the following grammar fragment:

factor: ^letter; ^digit; "(", expr, ")"; "{", expr, "}".

Since the brackets do not appear in the final serialised
parsetree, there is no way to tell from it if an original bracketed
expression had been

(b+1)

or

{b+1}

since they both produce the identical serialisation. This
implies that while roundtripping will be semantically identical, it
won't necessarily be character-by-character identical. If this is
not wanted, then to overcome it, effective information about the
elided characters has to appear in the
serialisation. For instance by using rules like:

factor: ^letter; ^digit; ^pexpr; ^bexpr.
pexpr: "(", expr, ")".
bexpr: "{", expr, "}".

7. Representation
Neutrality

A major consequence of Invisible XML is that the external
representation of any format is relatively unimportant: it is the
data represented that matters, and in particular the resulting
parse-tree. This means from the point of view of IXML that any
external representation of a format is equivalent, as long as it
has the same parse tree.

Take for instance the syntax of an ixml grammar, a part of
which looks like this:

ixml: (^rule)+.
rule: @name, colon, definition, stop.
definition: (^alternative)+semicolon.
alternative: (term)*comma.
term: symbol; repetition.
 ...
name: (letter)+.
colon: ":".

As long as the resulting serialised parsetree is the same, we
could easily choose another format for the grammars. For
instance:

<ixml> ::= (^<rule>)+
<rule> ::= @<name> <define-symbol> <definition>
<definition> ::= (^<alternative>)+<bar>
<alternative> ::= (<term>)*
<term> ::= <symbol> | <repetition>
 ...
<name> ::= "<" (<letter>)+ ">"

<define-symbol> ::= "::="
<bar> ::= "|"

(Note that these two grammar fragments, both describe
and use the format described).

The only repercussion this has on Invisible XML is during the
delivery, we not only have to say what the syntax is of the
document that we are parsing, but also what syntax of that syntax
is, if it is not the standard one. So for instance the mediatype
could look like:

application/xml-invisible; syntax=http://example.com/syntax/css; in=http://example.com/syntax/invisible-xml-alt

8. Normalising
Grammars

So what is the resulting parse tree of a particular ixml
grammar? The way to find out is to process the grammar in the
following way. For each symbol in every rule:

	if it is an implicit terminal delete it

	if it is a refinement, replace it with the definition of
that refinement enclosed with brackets, unless this refinement is
already a part of it (i.e. the refinement is recursive).

and then delete all rules that are no longer used.

So for example, for the expressions grammar, we would end
with:

expr: (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
sum: (^letter; ^digit; ^prod; ^div; ^sum; ^diff),
 (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
diff: (^letter; ^digit; ^prod; ^div; ^sum; ^diff),
 (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
prod: (^letter; ^digit; ^prod; ^div; ^sum; ^diff),
 (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
div: (^letter; ^digit; ^prod; ^div; ^sum; ^diff),
 (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
letter: ^["a"-"z"].
digit: ^["0"-"9"].

which has eliminated all refinements, and all non-productive
terminal symbols.

This resulting parse-tree definition is essentially a
definition of the data-structure for the internal representation of
the document, in other words a form of schema.

As another example, take this fragment of the ixml grammar
for itself:

ixml: (^rule)+.
rule: @name, colon, definition, stop.
definition: (^alternative)+semicolon.
alternative: (term)*comma.
term: symbol; repetition.
symbol: terminal; ^nonterminal; ^refinement.
terminal: ^explicit-terminal; ^implicit-terminal.repetition: ^one-or-more; ^zero-or-more.

The first rule:

ixml: (^rule)+.

doesn't change.

rule: @name, colon, definition, stop.

becomes:

rule: @name, ":", (^alternative)+semicolon , ".".

by substituting all the definitions for the refinements. This
is then processed again to give:

rule: @name, ":", (^alternative)+";" , ".".

and finally the (unmarked) terminals are deleted:

rule: @name, (^alternative)+.

The rule

definition: (^alternative)+semicolon.

becomes by a similar process:

definition: (^alternative)+.

(but will be later deleted, as it is no longer used).

The rule

alternative: (term)*comma.

becomes by a similar process

alternative: (symbol; repetition)*.

which then can be processed again to give

alternative: (terminal; ^nonterminal; ^refinement; ^one-or-more; ^zero-or-more)*.

and then one final time to give

alternative: (^explicit-terminal; ^implicit-terminal; ^nonterminal; ^refinement; ^one-or-more; ^zero-or-more)*.

and so on.

So our final parse-tree description for this grammar fragment
is:

ixml: (^rule)+.
rule: @name, (^alternative)+.
alternative: (^explicit-terminal; ^implicit-terminal; ^nonterminal; ^refinement; ^one-or-more; ^zero-or-more)*.

one-or-more: (^alternative)+; (^alternative)+, ^separator.
zero-or-more: (^alternative)+; (^alternative)+, ^separator.
separator: ^explicit-terminal; ^implicit-terminal; @nonterminal; @refinement.
symbol: ^explicit-terminal; ^implicit-terminal; ^nonterminal; ^refinement.
terminal: ^explicit-terminal; ^implicit-terminal.
explicit-terminal: @string.
implicit-terminal: @string.
nonterminal: @name.
refinement: @name.
attribute: @name.

From a data-structuring point of view, these are type
definitions, semicolons representing unions, commas representing
structs, and repetitions representing lists.

9. Subsets

A corollary of the observation above that any external
representation of a format is equivalent, as long as it has the
same parse tree, is that if a format has a normalised grammar that
is a subset of another normalised grammar, and the same root node,
then the first language is compatible with the second (but not the
other way round).

10. Data Conversion

Since external representation is no longer important, it
would be easy to transform one format to another, as long as their
normalised grammars are compatible. So transforming an ixml grammar
to one in a different representation is as simple as parsing it
with one grammar and serialising it with another.

11. Conclusion

XML has provided us with a standard data-representation
layer, and a standard processing pipeline. With a relatively small
addition we can open up the pipeline to all structured documents,
making XML truly ubiquitous.

 References

[1] Pemberton, Steven. "Invisible
XML." Presented at Balisage: The Markup Conference
2013, Montréal, Canada, August 6 - 9, 2013. In
Proceedings of Balisage: The Markup Conference 2013. Balisage
Series on Markup Technologies, vol. 10 (2013).
doi:10.4242/BalisageVol10.Pemberton01.

[2] Backus-Naur Form,
http://en.wikipedia.org/wiki/Backus-Naur_Form

[3] S. Pemberton, 1982, Executable Semantic Definition of
Programming Languages Using Two-level Grammars,
http://www.cwi.nl/~steven/vw.html[vw]

[4] https://en.wikipedia.org/wiki/Earley_parser

[5] Aho, AV, and Ullman, JD, "The Theory of Parsing,
Translation, and Compiling", Prentice-Hall, 1972, ISBN
0139145567

From XML to RDF step by step: Approaches for Leveraging XML Workflows with Linked Data

Marta Borriello

 Vistatec

<marta.borriello@vistatec.com>

Christian Dirschl

 Wolters Kluwer Germany

<cdirschl@wolterskluwer.de>

Axel Polleres
<axel.polleres@wu.ac.at>

Phil Ritchie
<philr@vistatec.ie>

Frank Salliau
<frank.salliau@ugent.be>

Felix Sasaki
<felix.sasaki@dfki.de>

Giannis Stoitsis
<stoitsis@agroknow.com>

 1. Introduction

 1.1. Motivation

 There have been many discussions about benefits and drawbacks of XML vs. RDF. In practice more and more XML and linked data technologies are being used together. This leads to opportunities and uncertainties: for years companies have invested heavily in XML workflows. They are not willing to throw them away for the benefits of linked data.

 In XML workflows XML content is

 	
 Generated, from scratch or based on existing content;
	

	processed, e.g.: validated, queried, transformed; and

	stored in various forms, e.g.: as XML, in a different format (e.g. PDF / HTML output); and

	potentially input to other XML or non-XML workflows.

 Each part of the workflow may include huge amounts of XML data. This can be XML files themselves, but also additional related items like: XSLT or XSL-FO stylesheets for transformation or printing, XQuery based queries, or XML Schema / DTD / Relax NG schemata for validation etc.

 For many potential users of linked data, giving up these workflows is not an option. Also, changing even a small part of the workflow may lead to high costs. Imagine one element linkedDataStorage added to an imaginary XML document:

 Example 1. XML document with linked data embedded in an element

 <myData>
 <head>...</head>
 <body>
 <linkedDataStorage>...</linkedDataStorage> ...
 </body>
</myData>

 Adding this element to an XML element may break various aspects of the workflow,
 like:

 	
 Validation: the underlying schema does not understand the new element.

	
 Transformation: a transformation may expect a certain element as the first
 child element of body. If linkedDataStorage is the first child,
 the transformation would fail.

 One may argue that good XML schema will leave space for expansion using lax validated parts or by accepting attributes from other namespaces, for example. Nevertheless, in practice we have to work with a lot of existing XML Schemas, related tooling and workflows. So creating extension points and deploying lax validation may not be an option in real life.

 Whereas the strict validation against schemas on the one hand is in the XML world
 often seen as a feature of the toolchain, on the other hand, such adding of elements and
 schemaless integration of different (parts of) datasets is actually one of the main
 “selling points of RDF”. However, note that on the contrary, even in the RDF world,
 users are starting to demand tools for stricter schema validation, which has recently
 lead to the foundation of a respective working group around RDF Data Shapes in
 W3C.[25] So, overall there seems to be lots to learn for
 both sides from each other.

 This paper wants to help with XML and RDF integration to foster incremental adoption
 of linked data, without the need to get rid of existing XML workflows. We are
 discussing various integration approaches. They all have benefits and drawbacks.
 The reader needs to be careful in deciding which approach to choose.

 1.2. The Relation to RDF Chimera

 In her keynote at XML Prague 2012 and a subsequent blog post, Jeni Tennison
 discussed RDF chimera. She is arguing that for representing RDF, syntaxes like
 RDF/XML or JSON or JSON-LD should be seen as a means to achieve something - a road,
 but not a destination. An example is a query to an RDF data store, and the outcome
 is represented in an HTML page.

 The goal of our paper is different. We assume that there is existing content that
 benefits from data integration with linked data -
 without turning the content into a linked data model. Let’s look at an example:
 imagine we have the sentence Berlin is the capital of Germany!. There
 are many linked data sources like DBpedia that contain information about Berlin; it would add
 an enormous value to existing content (or content creation workflows) if such
 information could be taken into account. This does not mean - like in the case of
 RDF chimera - to give up the XML based workflows, but to provide means for the data
 integration. In this view we can see the linked data process as a type of
 enrichment, hence we call the process enriching XML
 content with linked data based information.

 1.3. Background: The FREME Project

 FREME[26] is an European project funded under the H2020
 Framework Programme. FREME is providing a set of
 interfaces (APIs and GUIs) for multilingual and semantic enrichment of digital
 content. The project started in February 2015, will last for two years and
 encompasses eight partners. The partners provide technology from the realm of
 language and data processing, business cases from various domains, and expertise in
 business modeling. This expertise is of specific importance since both language and
 linked data technologies are not yet widely adopted. The challenge of XML
 re-engineering for the sake of linked data processing is one hindrance that needs to
 be overcome to achieve more adoption.

 FREME provides six e-Services for processing of digital content:

 	
 e-Internationalisation based on the Internationalisation Tag Set (ITS)
 Version 2.0.

	
 e-Link based on the Natural Language Processing Interchange Format (NIF)
 and linked (open) data sources.

	
 e-Entity based on entity recognition software and existing linked entity
 datasets.

	
 e-Terminology based on cloud terminology services for terminology
 management and terminology annotation web service to annotate terminology in
 ITS 2.0 enriched content.

	
 e-Translation based on cloud machine translation services for building
 custom machine translation systems.

	
 e-Publishing based on cloud content authoring environment (for example
 e-books, technical documentation, marketing materials etc.) and its export
 for publishing in Electronic Publication (EPUB3) format.

 This paper will not provide details about the services - examples and more
 information on FREME can be found at http://api.freme-project.eu/doc/current/

 All e-services have in common that XML content is a potential input and output
 format: via FREME, XML content can be enriched with additional information, to add
 value to the content. But FREME is only one example: many other linked data projects
 involve companies working with linked data content.

 2. Business Case Motivation Examples

 2.1. The Case of Agro-Know and Wolters Kluwer - Linked Data in XML Publishing Workflows

 Agro-Know is data oriented company that helps organisations to manage, organise
 and open their agricultural and food information. One of the main activities of
 Agro-Know is the aggregation of bibliographic references from diverse sources to
 support online search services like AGRIS of the Food and Agricultural Organisation of the United Nations.
 Agro-Know is doing so by aggregating metadata records from data providers such as
 journals, small publishers, universities, research centers, libraries and national
 aggregators. The metadata aggregation workflow of Agro-Know includes parts for
 metadata analysis, harvesting, filtering, transformation, enrichment, indexing and
 publishing. The main goal of applying the different steps of the workflow is to end
 up with a well formated and complete metadata record that is compatible to the
 metadata standard for agricultural sciences, namely AGRIS AP.
 The majority of the metadata records that are collected are in XML following several
 metadata formats such as DC, AGRIS AP, DOAJ, MODS, MARC 21 etc. The processed
 metadata records are published in AGRIS AP, JSON and RDF.

 Within such metadata aggregation workflow, Agro-Know is facing several challenges
 related to the enrichment of the metadata records. One such example is
 non-structured information about authors that in many cases is not following an
 authority file and includes additional information in the same XML tag like
 affiliation, email and location. This information cannot be automatically
 transformed to structured information and remaining in the tag, it reduces the
 quality of provided filtering options in the search functionality of the online
 service. In addition to that, since an authority file is not used on the data
 provider side, this results in an ambiguity problem as the same author may appear
 with many different variations of the name. Another problem is the absence of
 subject terms in the metadata records from a multilingual vocabulary such as AGROVOC, that consists of more than 32.000 terms available in 23
 languages. Including AGROVOC terms in the metadata records can semantically enhance
 the information and can enable better discovering services at the front end
 application.

 To solve such problems, Agro-Know is using the FREME e-services in order to
 improve a) the online services that are offered to the end users and b) the
 semantics of the metadata records that is provided to other stakeholders of this
 data value chain, such as publishers. The main goal will be to add the structured
 information in the XML records by keeping the level of intervention at a minimum
 level in order to eliminate the revisions required in the existing workflows.
 Examples of how an XML part referring to authors can be enriched using FREME
 e-services is presented in the table below. In this case, including the ORCID identifier may help in
 disambiguation but also in the enrichment of the information as we can show to the
 end user of the online service additional valuable information directly retrieved
 from ORCID.

 	Before FREME	Result of deploying
 FREME
	
 <dc:creator>
<ags:creatorPersonal>
Stoitsis, Giannis,
Agroknow
</ags:creatorPersonal>
</dc:creator>

 	
 <dc:creator>
<ags:creatorPersonal>Stoitsis,
Giannis</ags:creatorPersonal>
<nameIdentifier schemeURI=
"http://orcid.org/"
 nameIdentifierScheme=
"ORCID">0000-0003-3347-8265
</nameIdentifier>
<affiliation>Agroknow</affiliation>
</dc:creator>

	
 <dc:subject>
<ags:subjectClassification
scheme="ags:ASC">
<![CDATA[J10]]>
</ags:subjectClassification>
</dc:subject>

 	
 <dc:subject
freme-enrichment=
"http://aims.fao.org/aos/agrovoc/c_426
 http://aims.fao.org/aos/agrovoc/c_24135
 http://aims.fao.org/aos/agrovoc/c_4644
 http://aims.fao.org/aos/agrovoc/c_7178">
<ags:subjectClassification scheme=
 "ags:ASC"><![CDATA[J10]]>
</ags:subjectClassification>
</dc:subject>

 Wolters Kluwer is a global information service provider with businesses mainly in
 the legal, tax, health and financial market. The fundamental transformation process
 from folio to digital and service offerings that is currently disrupting the whole
 industry requires also more efficient and streamlined production processes. In the
 last ten years, the industry has very much focused on XML based publishing
 workflows, where all relevant information resides as metadata within the documents,
 which are structured according to proprietary DTDs or XML schemas. The industry is
 slowly starting to adapt linked data principles, because they offer the required
 flexibility, scalability and information interoperability that XML or also
 relational database models do not offer. As a first step, metadata is extracted from
 the documents and stored in parallel in graph databases. Already this step requires
 a major shift in technology as well as business culture, because the focus and
 added-value moves away from pure content to data and information.

 Wolters Kluwer Health is customer of Agro-know and has integrated its XML delivery
 channel for enriched scientific references mainly in the area of agriculture.
 Agro-know is offering more and more added value services using linked data
 principles and in this course reduces the traditional XML-based delivery pipeline
 step by step in order to stimulate usage of the superior channels. This change
 causes major challenges at the customer’s side. Semantic Web technology and
 standards are not yet common solutions in publishing. Therefore technical
 infrastructure as well as skills have to be developed in order to get things even
 started. This requires a certain transition period, where the old delivery channel
 remains stable and the customer can prepare the changes.

 In such a scenario, Wolters Kluwer recommends that the source provider enables
 the customer to locally keep his old production workflow in place as long as it is
 needed. This could be achieved e.g. by making the conversion script available as
 open source. In addition, a proper documentation about the differences from old to
 new is also vital for success. Ideally, a direct communication flow between vendor
 and customer would help to lower concerns and accelerate uptake of the new
 process.

 2.2. The Case of Vistatec - Linked Data in XML Localization Workflows

 Vistatec is a leading provider of digital content translation and locale
 adaptation services for international businesses. These businesses use a variety of
 Vistatec multilingual services to publish a range of content types including:
 corporate communications; marketing collateral; e-commerce catalogues; and product,
 travel destination, and leisure experience descriptions.

 Vistatec's production processes are highly automated and based on XML standards
 for systems integration, process component interoperability and the capture and use
 of metadata.

 The localization process, content types and end consumers of the content all
 benefit greatly from FREME semantic enrichment and entity discovery and linking
 e-services.

 The successful adoption of technology hinges upon the ease of use. Vistatec has
 adapted its open source XLIFF editor, Ocelot, to consume FREME e-services in a transparent and optimal way
 using configurable pipelines.

 The table below summarizes the steps of a typical localization workflow and the
 benefits that can be realized through the use of FREME e-services:

 	Process Step	FREME e-service	Benefit
	Conversion of native document to Extensible Localization
 Interchange File Format	e-Internationalization	Define translatable portions of the document.
	Translation	e-Terminology and e-Entity	These services help linguists to identify and use appropriate
 translations suitable for the subject domain.
	Semantic enrichment	e-Link	Suggest information resources which relate to the subject matter
 of the content.
	Content publication	e-Pub	Incorporation of markup for entity definitions and hyperlinks to
 information resources which relate closely to the subject matter of
 the content.

 A tutorial from the FREME documentation[27] shows how
 XLIFF can be processed via FREME e-Services. We process the following XLIFF element,
 using the example sentence from a previous section:

 <source>Berlin is the capital of Germany!</source>

 The e-Entity service identifies Berlin as a named entity with a
 certain type and a unique URI. The result of the process is not stored in XML, but
 as a linked data representation including offsets
 that point to the string content. The URI

 <http://freme-project.eu/#char=25,32>

 identifies the entity, offsets and entity related information. A complete linked
 data representation, using the turtle syntax, looks as follows.

 Example 2. Linked data representation using offsets for pointing to existing XML content

<http://freme-project.eu/#char=25,32> ...
(1) nif:anchorOf "Germany"^^xsd:string ;
(2) nif:beginIndex "25"^^xsd:int ;
(3) nif:endIndex "32"^^xsd:int ; ...
(4) itsrdf:taClassRef <http://nerd.eurecom.fr/ontology#Location>;
(5) itsrdf:taIdentRef <http://dbpedia.org/resource/Germany>.

 The linked data statements expressed in above representation are:

 	
 The annotation is (1) anchored in the string Germany.

	
 The annotation (2) starts at character 25 and (3) ends at character
 32.

	
 The annotation is related to (4) the class URI
 http://nerd.eurecom.fr/ontology#Location.

	
 The entity is (5) uniquely identified with the URI
 http://dbpedia.org/resource/Germany.

 The example should make clear why we are not looking at a data conversion task
 (like in the discussion on RDF chimera), but at a data integration task. We don’t
 aim at changing the XLIFF source element, but at relating it to the information
 provided via the linked data representations. The data integration approaches
 discussed in Section 3 are ways to achieve this goal.

 2.3. The Case of iMinds - Linked Data in Book Metadata

 iMinds, Flanders’ digital research hub, conducts research on book publishing in
 close collaboration with the Flemish publishing industry. An important aspect in
 book publishing is book metadata. As the volume in published books increases, and as
 the book industry becomes more and more digital, book metadata also becomes
 increasingly important: book publishers want their books to be found on retail
 sites. Correct and rich metadata is a prerequisite for online
 discoverability.

 Within the publishing value chain, stakeholders have since long agreed to use a
 standard format for book metadata: ONIX for Books[28].
 This XML-based standard has been adopted worldwide and is used by publishers to
 communicate book product information in a consistent way in electronic form.

 ONIX for Books is developed and maintained by EditEUR[29], the international group coordinating development of the standards
 infrastructure for electronic commerce in the book, e-book and serials sectors. The
 ONIX for Books standard and corresponding workflow are solidly embedded in the
 publishing retail chain, from publisher to distributor to retailer. Migrating to
 other technologies, e.g. using linked data, requires a substantial investment which
 stakeholders in this industry are very reluctant to make.

 We do not recommend to substitute this standard with a fully fledged linked data
 approach. However, we find there are cases where linked data can be beneficial as
 enrichment of existing ONIX metadata. The example below shows a possible usage of
 linked data in ONIX.

 Author information as linked data: An ONIX file typically contains information about the author(s) of a book. These
 are called contributors (other types of contributors are illustrators, translators
 etc.).

 Below you can find a block of metadata with information about the author of a
 book, Jonathan Franzen. A possible enrichment with linked data might be to insert
 the link to the authority record about Jonathan Franzen on viaf.org, via the Entity
 tag. Please note that these tags are not valid within the current ONIX schema and
 are used here merely as an example of a possible enrichment.

 This enrichment may prove useful in several ways:

 	
 disambiguation of the author (using the VIAF identifier); and

	
 providing a link to more information on the author.

 Example 3. A potential approach for embedding linked data identifiers into ONIX
<Contributor>
 <NameIdentifier>
 <NameIDType>
 <IDTypeName>Meta4Books ContributorID</IDTypeName>
 <IDValue>65097</IDValue>
 </NameIDType>
 </NameIdentifier>
 <ContributorRole>A01</ContributorRole>
 <SequenceNumber>1</SequenceNumber>
 <NamesBeforeKey>Jonathan</NamesBeforeKey>
 <KeyNames>Franzen</KeyNames>
 <Entity>
 <URI>http://viaf.org/viaf/84489381/</URI>
 </Entity>
</Contributor>

 3. Approaches for Linked Data Integration in XML Workflows

 The following approaches are a non exhaustive list. The aim is to provide examples
 that are currently in use and show their benefits and drawbacks. The examples are
 anchored in the business cases described in Section 2. The structure of the approach description is always
 as follows:

 	
 Name the example;

	
 Explain what actually happens with some XML code snippets; and

	
 Explain drawbacks and benefits, both from a linked data and an XML processing
 point of view.

 3.1. Approach 1: Convert XML to Linked Data

 What actually happens: XML is converted into
 linked data. The XML content itself is not touched, but an additional set of data,
 i.e. a linked data representation is created.

 <xs:element name="lingualityType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="monolingual"/>
 <xs:enumeration value="bilingual"/>
 <xs:enumeration value="multilingual"/>
 </xs:restriction>
</xs:simpleType>
</xs:element>

 During the mapping of XML to linked data several decisions have to be taken.
 Sometimes information is being lost. A real example is the mapping of META-SHARE to
 linked data[30]. META-SHARE provides metadata for
 describing linguistic resources.

 Using this element could look like this, expressing that a resource is
 multilingual, e.g. a multilingual dictionary:

 <lingualityType>multilingual</lingualityType>

 A linked data model that represents this data type could look as follows:

 Example 4. Linked data model that represents parts of the META-SHARE schema
Class
ms:linguality
 rdf:type owl:ObjectProperty ;
 rdfs:domain ms:Resource ;
 rdfs:range ms:Linguality .
Property
ms:Linguality
 rdf:type owl:Class .
Instances
ms:monolingual a ms:Linguality.
ms:bilingual a ms:Linguality.
ms:multilingual a ms:Linguality.

 This statement expresses the same information like in the XML representation: a
 given resource, e.g. a dictionary, is multilingual.

 What are the benefits: The benefit of this
 approach is that existing XML workflows don’t need to be changed at all. The linked
 data representation is just an additional publication channel for the information.
 In this sense, the approach is similar to the RDF chimera discussion. It is however
 still different, since the conversion from XML to RDF involves RDF focused data
 modeling and aims at integration with further linked data sources.

 The additional RDF representation can be integrated with other linked resources
 without influencing the XML workflow. This is what actually is being done with the
 META-SHARE case: via the LingHub portal[31], META-SHARE
 and other types of metadata for linguistic resources is converted to RDF and being
 made available. A user then can process integrated, multiple linked data sources
 without even knowing that there is an XML representation available.

 What are the drawbacks: The approach requires a
 completely new tool chain, aiming at linked data integration based on XML (or other
 format based) data sources. The existing setup, e.g. used to analyze the XML
 structures with XQuery or to transform it via XSLT, cannot be used. A query like
 “Give me all linguistic resources that are multilingual” can be executed via XPath
 easily in the XML representation. In standard XQuery there is no bridge to SPARQL.
 However, work has been done to create this bridge, see Section 5.

 Another drawback of this approach is that it is not always possible to convert XML
 completely into RDF - in particular, RDF has no facility for representing mixed
 content, an essential part of processing textual, human language content. A takeaway
 of Section 1.2 is that data should always be in the format that best fits
 its representation, and URIs can serve as a bridge between formats. The usage of
 URIs for bridging between RDF and XML is discussed in Section 3.5.

 3.2. Approach 2: Embedd Linked Data into XML via Structured Markup

 What actually happens: linked data is embedded
 into HTML. Various syntaxes can be used, e.g. JSON-LD, RDFa, or microdata. This
 approach is deployed e.g. in schema.org; see the schema.org homepage for various markup examples.

 We take again the sentence Berlin is the capital of Germany from a
 previous section. The integration of information from Wikipedia with the string
 Berlin can be achieved as follows:

 <a itemscope itemtype="http://schema.org/Place" itemprop="url"
 href="https://en.wikipedia.org/wiki/Berlin">Berlin

 With this approach search engines will interpret the
 link https://en.wikipedia.org/wiki/Berlin as a machine readable link to integrate additional information about the place
 Berlin, taken from Wikipedia as a data source. The item being the source of data
 integration is identified as being of type place via the URI
 http://schema.org/Place.

 What are the benefits: the approach works well in
 situation in which the hooks for data integration can be embedded into XML or HTML
 content. The search engine optimization scenario via schema.org is the prototypical
 case for doing this. The embedding may also be done in a dedicated markup part for
 metadata using the JSON-LD or other linked data syntaxes, without changing the text
 content; see for details Section 3.4.

 What are the drawbacks: RDFa and Microdata
 changes the content and includes new markup. That may not be an option for XML tool
 chains that don’t “understand” the new markup, e.g. lead to validation errors.
 JSON-LD or turtle may have the same issues: where should a tool store this data in
 the XML structure if no general metadata location is available?

 3.3. Approach 3: Anchor Linked Data in XML Attributes

 What actually happens: an identifier is embedded
 in the XML structure. This identifier serves as a bridge between the XML and RDF
 structures. The below example uses the its:taClassRef attribute to
 store the identifier.

 <source ...>
 <mrk ...its:taIdentRef="http://dbpedia.org/resource/Berlin">
 Berlin</mrk> is the capital of Germany!</source>

 The data integration task, i.e. fetching additional information from linked data
 sources about Berlin, can be executed relying on this information. The
 outcome may then be stored directly in the XML source. Below we assume that the
 population was fetched using the DBpedia information.

 <source ...>
 <mrk ...its:taIdentRef="http://dbpedia.org/resource/Berlin">
 Berlin</mrk> (population: 3517424)...</source>

 For different purposes, separate linked data queries could be set up. They rely on
 the same identifier http://dbpedia.org/resource/Berlin.

 What are the benefits: using an XML attribute
 that is already available in the format in question means that no new types of
 markup is needed. That is, existing XML toolchains can stay as is, including
 validation or transformation processes.

 What are the drawbacks: the data integration is
 postponed. The completed integration, if needed, needs to choose one of the other
 approaches discussed in this paper. Also, the data integration does not leave a
 trace. Further processing steps in the (XML) toolchain cannot identify that the
 string (population: 3517424) is a result of a data integration
 process.

 3.4. Approach 4: Embed Linked Data in Metadata Sections of XML Files

 What actually happens: many XML vocabularies have
 metadata sections that may contain arbitrary content. This is also true for XLIFF
 discussed in Section 2.2. The outcome of the linked data processing could
 be stored in such a section.

 What are the benefits: Compared to Section 3.2, the size of the content itself is not growing with additional, linked data
 related markup.

 What are the drawbacks: There is no per se
 relation to the content. Like in Example 2, one may create pointers to the XML content, here using character offsets.
 But the pointers may be fragile, if one thinks e.g. of reformatting, insertion or
 deletion of content or markup. In addition, some linked data syntaxes may interfere
 with XML validation or well formedness constraints.

 3.5. Approach 5: Anchor Linked Data via Annotations in XML Content

 What actually happens: A generalized approach of
 Section 3.3
 means that linked data is stored separately from XML structures and that there is a
 reference from linked data to the XML content in question. In Section 2.2, we were using character offsets. The W3C Web
 Annotation Data Model allows to realize such anchoring. Character offsets
 are just one way of anchoring the annotation. One can also use XPath expressions,
 see the following example.

 Example 5. Anchoring annotations in XML via the Web annotation data model

 { "id": "http://example.com/myannotations/a1",
 "type": "Annotation",
 "target": { "type": "SpecificResource",
 "source": "http://example.com/myfile.xml",
 "selector": { "type": "FragmentSelector",
 "conformsTo": "http://www.w3.org/TR/xpath/",
 "value": "/xlf:unit[1]/xlf:segment[1]/xlf:source/xlf:mrk[1]" },
 "itsrdf:taIdentRef": "http://dbpedia.org/resource/Berlin",
 "itsrdf:taClassRef": "http://schema.org/Place",
 "http://dbpedia.org/property/population" : "3517424" } }

 The XPath expression in above linked data representation (which uses the JSON-LD
 syntax) selects the XLIFF mrk element from the example in Section 3.3.

 What are the benefits: In addition to the
 approach 3, here we are able to add the linked data information in the separate
 annotation, e.g. the population of Berlin; there is no need to change the content
 itself. If needed for certain applications, we can use this annotation approach to
 generate others. URIs pointing to the content are an important aspect of such format
 conversions. THe forehand mentioned ITS 2.0 specification shows an example of 1)
 generating linked
 data annotations anchored in XML content, and 2) integrating the
 separate annotations into the markup content. The forehand described FREME framework deploys this approach in its ITS enabled e-Internationalisation.

 What are the drawbacks: the resolution of linked
 data information potentially can be computationally expensive, see e.g. lot’s of
 XPath expressions to compute for annotations. Also, if the source content changes,
 the anchoring mechanism may not work anymore. Some mechanisms are more robust (e.g.
 XPath expressions), some may be more precise (e.g. the character offset based
 anchoring).

 4. Relating Business Cases and Integration Approaches

 The following table relates the three business cases and the various integration
 approaches.

 	Business case	Integration approaches being
 considered	Actual current or experimental
 praxis
	Linked data in XML publishing
 workflows	Approach 1: convert XML into linked data	XML workflow kept, linked data conversion scripts to be made
 available
	Linked data in XML localization
 workflows	Approach 3: anchor linked data in XML attributes; Approach 4: embed
 linked data in metadata sections of XML files	No established practice in localisation industry
	Linked data in book metadata	Approach 4: embed linked data in metadata sections of XML
 files	No established practice in localisation industry

 It becomes obvious that industries take different approaches towards linked data
 integration. This can be explained with availability of native linked data tooling,
 knowledge about its usage, and complexity and potential costs of adapting existing XML
 workflows.

 5. Routes to bridge between RDF and XML

 As for Approach 1 (converting XML into linked data),
 in fact existing XML transformation tools like XSLT and XQuery could be used out of the
 box with the caveat that the result is mostly tied to the RDF/XML representation, that
 has various disadvantages, foremost verbosity. More "modern" RDF serializations like
 Turtle or JSON-LD cannot be created out of the box by XML tools straightforwardly, plus
 additional filtering of querying on the resulting RDF triples needs to be encoded
 directly into the XML toolchain, which might be easier solvable in the RDF world itself,
 e.g. using SPARQL. Likewise, as for Approach 2, we have
 already identified, that the XML toolchain is not tailored to process and consume RDF or
 similar meta-data formats natively. We face the same problem in Approaches 3-5, where RDF-like sources are just linked out of XML
 content, without the necessary toolchain tightly coupled to XML tools that could process
 the RDF content natively.

 So, there is certainly a gap to bridge here in terms of tooling, but recently, that
 partially seems to change: there are academic approaches to encode SPARQL into XML
 processors, such as encoding SPARQL to XSLT or XQuery, cf. e.g. Fischer et al. (2011)
 and Groppe et al. (2008). Plus there are actually some XML processors like SAXON start supporting SPARQL
 natively, cf. https://developer.marklogic.com/learn/semantics-exercises/sparql-and-xquery.

 Alternatively, given that SPARQL actually can produce XML or JSON (among others) as
 output format[32], it is possible to directly consume the
 results of SPARQL queries in XML tools, however more complex use cases need some
 scripting around this, plus intermediate results for an overall transformation need to
 be stored and processed separately, ending up in a heterogeneous toolchain, comprising
 XML tools, SPARQL processors and potentially even another scripting language on top.

 Additionally, there are new “hybrid” but integrated toolchains arising that try to
 combine the two worlds of XML and RDF in a “best-of-both-worlds” approach: most
 prominently, we’d like to mention as an example here the XSPARQL project[33], that aims at integrating SPARQL into XQuery in a compilation
 approach: that is, queries on RDF data or to a remote SPARQL endpoint serving Linked
 Data can be embedded into an XQuery. For instance, the following query transforms
 geographic RDF data queried from the file http://nunolopes.org/foaf.rdf into
 a KML file:

 prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

<kml xmlns="http://www.opengis.net/kml/2.2">{
 for $name $long $lat from <http://nunolopes.org/foaf.rdf>
 where { $person a foaf:Person; foaf:name $name;
 foaf:based_near [a geo:Point;
 geo:long $long;
 geo:lat $lat] }
 return <Placemark>
 <name>{fn:concat("Location of ", $name)}</name>
 <Point>
 <coordinates>{fn:concat($long, ",", $lat, ",0")}</coordinates>
 </Point>
 </Placemark> }
</kml>

 The boldface part of the above query is actually SPARQL syntax embedded into XQuery.
 An XSPARQL compiler translates this query to a native XQuery that delegates these query
 parts to a native SPARQL query processor. More details on this approach can be found in
 Bischof et al. (2012).

 Note that also the other way, i.e. transforming XML data into RDF is supported in this
 approach, by allowing SPARQL’s CONSTRUCT clauses in the return claus of an XQuery, as
 shown in the following short example, which transforms XML data from Open Streetmap to
 RDF:
prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
prefix kml: <http://earth.google.com/kml/2.0>
let $loc := "WU Wien" for $place in doc
 (fn:concat("http://nominatim.openstreetmap.org/search?q=",
 fn:encode-for-uri($loc),
 "&format=xml"))
let $geo := fn:tokenize($place//place[1]/@boundingbox, ",")
construct { <http://www.polleres.net/foaf.rdf#me>
foaf:based_near [geo:lat {$geo[1]}; geo:long {$geo[3]}] }

 More recently, XSPARQL has been extended to cover the recent SPARQL1.1 specification,
 plus support for JSON as input and output format (by internally representing JSON in a
 canonical XML representation have been added, cf. Dell’Aglio et al. (2014).

 While XSPARQL, which has actually started as a W3C member submission in 2009[34], is just one possible route, the authors believe that joint
 efforts in standardization bodies to bridge the gaps between RDF and XML in order to
 enable such transformations and integrated tooling in a standard way should be further
 pursued.

 6. Conclusion

 This paper discussed the motivation for integrating RDF and XML. We looked at various
 business case scenarios that can benefit from this integration. We then discussed
 several approaches to realize the integration. Finally, we looked into technical
 solutions that integrate the actual XML and RDF technology stacks.

 A reviewer of this paper suggested consider XProc for integrating RDF and XML
 workflows. XProc 2.0 will have the
 ability to pass information other than XML data between steps; it would be possible to
 pass RDF data between XProc steps and have filtering and processing steps for that RDF
 data. This would allow processing of XML data with XML tools (XSLT, XQuery), while
 tracking and also processing RDF data with e.g. SPARQL or XSPARQL. This approach sounds
 promising but has not been explored in this paper, so we leave it to future work.

 A next steps could be to discuss the integration approaches in a broader community,
 e.g. in a dedicated forum like a W3C community group. This could also help to move the
 forehand described XML - RDF standardization work forward. Such standardization has been
 discussed in the past. It is the hope of the authors of this paper that it brings new
 insights to this discussion, with the real-life needs from actual applications who more
 and more are in need of the integration.

 7. Acknowledgments

 The creation of this paper was supported by the FREME project under the Horizon 2020 Framework Programme of the European Commission, Grant Agreement Number 644771.

[25] See http://www.w3.org/2014/data-shapes/.

[26] See the FREME project homepage at http://freme-project.eu/ for more
 information.

[27] See http://api.freme-project.eu/doc/0.4/tutorials/spot-entities-in-xliff.html

[28] See http://www.editeur.org/83/Overview/

[29] See http://www.editeur.org/.

[30] See http://www.lrec-conf.org/proceedings/lrec2014/pdf/664_Paper.pdf for more
 details on the META-SHARE case and on how the conversion from XML to linked data was
 achieved.

[31] See http://linghub.lider-project.eu/.

[32] See http://www.w3.org/TR/sparql11-overview/#sparql11-results for details.

[33] See http://xsparql.sourceforge.net for details.

[34] See http://www.w3.org/Submission/2009/01/.

Bibliography

 [1] Bischof, S., S. Decker, T. Krennwallner, N. Lopes and A. Polleres. Mapping between RDF and XML with XSPARQL. Journal on Data Semantics (JoDS), 1(3):147-185, 2012.

 [2] Dell'Aglio, D., A. Polleres, N. Lopes and S. Bischof. Querying the web of data with XSPARQL 1.1. In ISWC2014 Developers Workshop, volume 1268 of CEUR Workshop Proceedings. CEUR-WS.org, October 2014.

 [3] Fischer, P., D. Florescu, M. Kaufmann and D. Kossmann D (2011). Translating SPARQL and SQL to XQuery. In: Proceedings of XML Prague’11, pp 81–98.

 [4] Groppe S., J. Groppe, V. Linnemann, D. Kukulenz, N. Hoeller, C. Reinke (2008). Embedding SPARQL into XQuery/XSLT. In: SAC’08. ACM, New York, pp 2271–2278.

Promises and Parallel XQuery Execution

James Wright
<james.jw@hotmail.com>

 1. What is it?

 Its a simple library which implements the promise pattern
 as seen in many other languages and frameworks. Most notably those in the javascript
 community, such as jQuery, Q.js and even EMCAScript 6.

 The pattern resolves around the idea of deferred execution through what is called a
 deferred. When an action is deferred, it returns a function, known as a
 promise that when executed at a later time, will perform and return the
 results of the work it deferred.

 Since the work is deferred and can be executed at an arbitrary time. There is the
 ability to attach further processing at a later date but prior to actual execution, via
 callback functions. This may sound confusing and hard to imagine, but I 'promise' the
 examples that follow will make it clearer. No pun intended.

 2. Why?

 The main driver behind implementing the promise pattern was to realize
 parallel execution of XQuery code within a single query. The overall
 benefit is to reduce execution time for longer costlier queries, as well as reduce
 overal complexity of solutions. Additionally, this pattern is a a means for building
 what I call durable pipeline logic. If this sounds enticing, keep reading!

 I hope that through sharing my findings as well as illustrating the pattern, other
 XQuery developers, implementations and even the language itself can begin to introduce
 robust async functionality into their offerings.

 2.1. Methods of Parallism

 As it stands there a several ways to achieve parallel processing with XQuery. Some
 systems implement specific functionality with async methods, such as exsit-db's
 util:eval-async or Marklogic's spawn, both
 which accept an inline XQuery expression, string or file URI.

 Alternatively a scheduling approach or batch driven process can be leveraged,
 where a command script schedules or spawns query execution in external
 procceses.

 Although all these approaches are effective, they often leave the domain of a
 single query and generally do not provide robust error handling mechanisms.
 Additionally in my experience, they often lead to complex multi teired scripts which
 are more prone to failure and costlier to maintain.

 Another approach exists, and has been used with great success for years, and its
 called the promise pattern.

 3. Introducing the Promise Pattern

 The idea behind the promise pattern is simple. It provides a mechanism to 'defer' a
 piece of work, resulting in a new object, called a 'Promise'. A promise is usually a non
 executed piece of work, which has the added benefit of accepting callbacks.

 Before I dive any futher, boot up BaseX and follow along!

 3.1. Install Steps

 The module which makes the promise pattern happen can be found here: https://github.com/james-jw/xq-promise

 3.1.1. Dependencies

 This module is dependent on BaseX.

 3.1.2. Automatic Install

 Install as an EXPath Module using the following BaseX command:

repo:install("https://raw.githubusercontent.com/james-jw/xq-promise/master/dist/xq-promise-0.8.1-beta.xar")

 3.1.3. Manual Install Steps (Windows)

 1. Install BaseX

 2. Copy the xq-promise-x.x.x-Beta.jar into your
 basex\lib directory

 3. As well as the the xq-promise.xqm file into your basex\repo
 directory

 4. Install the xq-promise.xqm module using the following command

 basex REPO INSTALL xq-promise.xqm

 3.1.5. Declaration

 To use the module in your scripts simple import it like so:

 import module namespace promise = 'https://github.com/james-jw/xq-promise';

 4. The Basics of a Promise

 The xq-promise module, in it's current iteration, includes several
 methods for creating and interacting with promises.

 4.1. defer

 The first and most important function is defer.

 defer($work as function(*),
 $arguments as item()*,
 $callbacks as map(*,function(*))*)
 as function(map(*,function(*)*))

 The signature may look daunting but the pattern is simple. Use the
 defer method to defer a piece of work for later execution by
 passing in a function item and the future arguments as a sequence.

 Lets see how this works with a 'Hello World' example:

 import module namespace promise = 'http://github.com/james-jw/xq-promise';
let $greet := function($name) {
 'Hello ' || $name || '!'
}
let $promise := promise:defer($greet, 'world')
return
 $promise

 In the above example, we defer the execution of $greet until after
 the return of $promise. Upon execution of the script we should see
 hello world!.

 But wait! If you examine the output. The value returned is:

 function (anonymous)#0.

 This is not at all what we want! Yet this is where the power of the promise
 pattern hopefully starts to be realized. Formost, as mentioned prior, a promise is a
 function. To retrieve it's value, it must be called. Change the
 last line of the above example as follows:

 $promise()

 With the above modifcation we get the expected answer: Hello
 world!

 So far we have deferred a simple piece of work and then learned how to execute it
 at a later. Now let me introduce the real power of the promise
 pattern with callbacks

 5. Callbacks

 A callback is a function which will be executed on the success or failure
 of some defered work.

 6.1. Adding callbacks

 For example:

 let $extractListItems := function ($res as map(*)) { $res?list?* }
let $error := function ($err) {
 trace($err, 'Failed: ') => prof:void()
}
let $retrieve := p:defer($worker, ($req, $uri))
 => p:then(parse-json(?))
 => p:fail($error)
let $extract = p:then($retrieve, $extractListItems)
return
 $extract()

 Note the calls to then and fail using the arrow
 operator. These calls add additional callbacks to the callback chain on the
 promise returning from defer resulting in an agumented promise
 which is stored in retrieve. Because of this, concise chaining can
 be accomplished!

 Also note how the $extractListItems callback is appended to the
 $retrieve promise, resulting in a new promise
 $extract, which when executed, will initiate the full chain of
 callbacks!

 6.1.2. Chaining Helper Functions

 Four methods, two of which were just demonstrated, matching the callback event
 names exist for attaching callbacks in a chain fashion leveraging the new
 => (arrow) operator in XQuery 3.1. For example:

 let $retrieve := p:defer(http:send-request(?, ?), ($req, $uri))
 => p:then(parse-json(?))
 => p:then($extractlistItems)
 => p:always(trace(?))
 => p:done(file:write-text(?, $path))
 => p:fail($error)
return
 $retrieve()

 7.1. then

 The then callback will be invoked upon success of deferred execution.
 It acts as a pipeline function for transforming the response over successive
 callback executions. Unlike the next two events, but similar to fail,
 this method can alter the pipeline result, and generally does.

 7.2. done

 Called on success.

 This method has no effect on the pipeline result and thus it's return value will
 be discarded. Its main purpose is for reacting to successful deferred execution as
 opposed to affecting its outcome like then does.

 A common use case for done is logging.

 7.3. always

 Operates the same as done, except it also is called on the promise's
 failure, not only success. For example, if only an always callback is
 provided and an error occurs in the original defered, the always
 callback will be provided the error details prior to the query ceasing with an
 exception. This allows for error logging or other duties. Error handling and
 mitigation; however, is relgated to the final callback fail

 7.4. fail

 This final callback fail is called if a deferred action fails.

 A failure occurs if any deferred work or callback function throws an exception.
 The fail callback allows handling and potentially mitigating these
 errors during a fork-join, fork or even serial process. Without a fail callback an
 exception will go uncaught and cause the entire query to stop. In essense, adding a
 fail callback to a deferred chain, is equivalent to the catch in a
 try/catch clause.

 Upon failure, the callback will be provided a map(*) containing the
 error details as well as some additional information:

 map {
 'code': 'error code',
 'description': 'error description',
 'value': 'error value',
 'module': 'file',
 'line': 'line number',
 'column': 'column number',
 'additional': map {
 'deferred': 'Function item which failed. Can be used to retry the request',
 'arguments': 'The arguments provided to the failed deferred.'
 }
}

 Similar to a catch clause, the fail callback has the
 option of returning a value as opposed to propegating or throwing an error
 itself:

 promise:defer($work)
 => promise:fail(function ($err) {
 if($err?code = 'XQPTY0005') then 'I fixed it!'
 else fn:error(xs:QName('local:error'), 'Unfixable error!')
 })

 In the above example we see that if the $err?code returned matches
 XQPTY0005. The error will be mitigated and the result will be the
 value I fixed it!. This is because, as stated, if a fail
 callback returns a value, the failure will be handled with value returned from the
 fail callback replaced in the pipline.

 If no suitable replacement value exists, but the error should simply be ignored.
 The fail callback would return the empty-sequence.

 promise:defer($work)
 => promise:fail(function ($err) {
 if($err?code = 'XQPTY0005') then ()
 else fn:error(xs:QName('local:error'), 'Unfixable error!')
 })

 In this example the error code XQPTY0005 will result in the empty
 sequence () and thus the error being ignored.

 Alternatively, if the error code is not XQPTY0005 and the failure
 cannot be ignored. Throwing an exception within the callback using
 fn:error would cause the enitre fork and query to cease in addition
 to reporting the error in the console.

 7.4.1. Understanding callback chains

 When multiple callbacks are added to a promise, multiple levels
 of processing and error handling can be achieved. The order callbacks are added
 is important, especially in regards to then and fail.
 In order to help better explain, lets take the following example which chains up
 a series of callbacks:

promise:defer($work)
 => p:then(parse-json(?))
 => p:done(trace(?, 'Json Parsed: '))
 => p:fail(json-parse-error-handler(?))
 => p:then(transform-json(?))
 => p:fail(transform-error-handler(?))
 => p:always(trace(?, 'Result: '))

 I am going to try and do a blow by blow of the above example. Hopefully it
 will be clear how order plays a role in callbacks and error handling.

 In the above example, the $work variable we will assume returns a
 json string.

 If the parsing of the json string in the first callback
 parse-json, throws an exception, the
 json-parse-error-handler will get an error map(*) as described
 earlier and will have the opportunity to remedy the error. For example, it could
 try parsing the file differently.

 Alternatively, should the parsing succeeded, the done callback would get the
 resulting parsed json object, and in this example, log it to the console with
 the tag:

 Json Parsed: { ...

 If a failure occurs but the json-parse-error-handler callback
 returns a value, or no error occurs at all with parse-json succeeding, the value
 from either case would be passed to the following transform-json
 function. Should this following transform succeed. The result will be seen in
 the console due to the always callback. If however; an error
 occurs, the transform-error-handler would be called with the
 appropriate error map(*) instead.

 Alternatively, had the previous error handler
 json-parse-error-handler thrown an error instead of returning a
 value as demonstrated in the previous paragraph. The
 transform-error-handler would have been provided this error for
 mitigation as well.

 In either case, this last error handler will either return a value, or fail.
 If it returns a value and thus resolves the error, the always
 callback will be provided this result, which will be logged to the console.
 Otherwise, if an exception is thrown, the always callback will still be called
 with the error details, but since no further error handlers exist in the chain,
 the exception will go uncaught and be thrown after the always
 callback completes its duties. This will result in the entire query being
 terminated.

 7.5. when

 Now that hopefully pipelines makes sense, Another critical method in the promise
 pattern is the when function.

 when($promises asfunction(map(*,function(*)),
 $callbacks as map(*,function(*))*)
 asfunction(map(*,function(*)))

 The purpose of when is to combine 2 or more promised actions into a
 single promise. This is extremly powerful. Like the defer method
 disscussed earlier, the when method also returns a deferred
 promise, which accepts callbacks just the same.

 For example:

 let $write-and-return-users:= function ($name, $users) as item()* {(
 file:write($name, $users),
 $users
)}
let $extractDocName := promise:defer(doc(?), $doc-uri)
 => promise:then($extract-name)
let $extractUsers := promise:defer(json-doc(?), $uri)
 => promise:then($extract-list-items)
let $users:= promise:when(($extractDocName, $extractUsers))
 => promise:then($write-and-return-users)
 => promise:fail(trace(?, 'Requesting users failed: '))
})
return
 $users() ! trace(.?username, 'Retrieved: ')

 In this example, we perform two deferred actions and then merge their results in
 the $write-and-return-users callback. Since this item is attached to
 the when's promise on the then callback, its result will
 be seen on the call to $users().

 We could continue to attach callbacks as needed until we are ready. There is no
 limit.

 7.6.1. Multiple Callbacks per event

 Multiple callbacks, not just one, can be attached to each of the 4 events. For
 example:

 (: same $req, etc.. from above :)
let $extract-links := function ($res) { $res//a }
let $promise := promise:defer($request, 'http://www.google.com')
 => promise:then(($extract-body, $extract-links))
 => promise:fail(trace(?), ('Execution failed!'))
return
 $promise()

 Foremost, note the sequence of callbacks passed into then. Both
 of these will be called in order. The result of the first callback will be
 passed to the second. In this example, since then is a pipeline
 callback. The result will be all the links in the document.

 Second, note the fail callback. It uses the power of XQuery 3.0
 and function items to add a trace call when any part of the execution
 fails. How convenient!

 Hopefully its starting to come clear how the promise pattern can
 be quite useful.

 8. The Power of Promises and Parallel Execution

 It should be clear now: how to defer work for later execution, what a promise is, and
 how to join multiple promises. It still may not be entirely clear what the benefit this
 pattern has in the context of XQuery; however that is about to change.

 8.1. fork-join

 Let me introduce two last methods, and the whole reason I wrote this
 library.

 fork-join($promises as function(*)*) as item()*

 It is simple yet powerful. It accepts a sequence of promises, or single arity
 functions and executes them in a fork join fashion, spawning threads as needed
 depending on the work load, followed by rejoining the work on the main thread.

 As seen earlier, promises can be used to build up a piece of work for
 later execution. With this ability, coupled with fork-join.
 Parallelized XQuery processing becomes a reality.

 Lets see how we can use this capability by comparing a simple example involving
 making http requests. The example will use the promise pattern but not
 fork-join just yet.

 import module namespace promise = 'https://github.com/james-jw/xq-promise';
let $work := http:send-request(<http:request method="GET" />, ?)
let $extract-doc := function ($res) { $res[2] }
let $extract-links := function ($res) { $res//*:a[@href => matches('^http')] }
let $promises :=
 for $uri in ((1 to 5) ! ('http://www.google.com', 'http://www.yahoo.com', 'http://www.msnbc.com'))
 let $defer := promise:defer($work, $uri)
 => promise:then($extract-doc))
 => promise:done(trace(?, 'Results found: '))
 return
 promise:then($defer, $extract-links)
return
 $promises ! .()

 In the above example, we use promises to queue up 25 requests and then execute
 them in order with:

 $promises ! .()

 If you run this example in BaseX GUI and watch the output window, you will see the
 requests come in as the query executes. This is due to the addition of the
 trace? 'Results Found: ' callback.

 Also notice, only one request is executed at a time. Each request must wait for
 the full response and processing of the previous. This is a current limitation of
 BaseX, since by design it runs each query in its own single thread.
 There are several workarounds such as splitting up the work via a master query, or
 using a string concatenated XQuery expression to spawn another process. Although
 effective, all these workarounds require extra effort and multiple components.
 Additionally they leave the language's domain and the context of the current
 query..

 Luckily, with the introduction of this module xq-promise. This is no
 longer the case! Lets change the previous example so it uses the newly introduced
 fork-join method to speed up the process, by splitting the
 requested work into multiple threads before returning the final joined value.

 Luckily the previous example already used defer so the change is only
 one line. Replace:

 $promises ! .()

 which manually executes each promise on the main thread, with:

 promise:fork-join($promises)

 If you watch this execute in BaseX you will quickly see its executing much faster,
 with multiple requests being processed at once.

 On my machine, the first example without fork-join took on average 55
 seconds. With fork-join this time dropped to 6 seconds!

 That is a clear advantage! Playing around with compute size and
 max forks, which I will introduce shortly, I have been able to get
 this even lower, to around 2 seconds!!

 8.2. fork

 In addition to fork-join is the simple fork method. The
 fork method operates much like defer, in that it returns a promise
 which accepts callbacks. Unlike defer however, the work its provided is executed
 immediately in a new thread. This is as opposed to being deferred for later
 execution.

 For example, lets imagine we want to optimize the performance of a web response.
 During the processing, an external API is queried in addition other internal
 processing. The internal call is not dependend on the external call, until the end,
 and thus these operations can run in parrallel:

 let $request := http:send-request($req, ?)
let $promise := promise:fork($request, 'http://myapi.com')
let $hardAnswer := some-heavy-work()
return
 ($hardAnswer, $promise())

 In the above example, the work of sending the http request, and waiting for it's
 response, will be forked immediately letting the main thread continue with computing
 the $hardAnswer. Once that is done, both it and the promise can be
 returned.

 Hopefully its clear now what the use cases for both fork-join and
 fork are and how to use them!

 9. Performance

 Below is a chart showing execution with and without fork-join being imployed. The Y
 axis shows the full execution time in miliseconds while the X shows the number of items
 processed.

 With a Quad-Core machine, the execution time is cut to nearly a quarter. Id expect it
 to be around an eigth on an 8 core machine.

 Here is the xquery script used in the above test:

 import module namespace promise = "https://github.com/james-jw/xq-promise";
import module namespace geo = "http://expath.org/ns/geo";
declare namespace gml = "http://www.opengis.net/gml";

let $counties := db:open('DetailedCounties')//feature/gml:*
let $first := $counties[1]
return
 promise:fork-join(
 for $county in $counties
 return promise:defer(geo:intersection($first, ?), $county)
)

 10. Limitations

 With any async process their are limitations. So far these are the only noticed
 limitations:

 	
 Updating database nodes in a callback

	
 Using a transform clause in a callback

 11. Implementation

 This library is implemented for BaseX
 via the QueryModule class. It leverages Jave 7's ForkJoinPool and RecursiveTasks .

 Here are three java source files as part of the implementation:

 11.1. XqPromise

 The XqPromise class implements QueryModule from the BaseX API and exposes the methods described
 earlier:

 	
 defer

	
 when

	
 fork-join

	
 is-promise

 11.2. XqDeferred

 This class is at the core of the promise pattern and represents a unit of work to perform in the future.
 It implements the XQFunction interface from the BaseX API. and thus is an XQuery
 Function. The purpose of this function item is to defer the execution of work. Not
 only is it a function, but it also maintains the paramters it should leverage when
 called.

 If called, it executes it's work, with the provided arguments work.

 11.3. XqForkJoinTask

 Implements RecursiveTask and performs the forking process leveraging a fixed ForkJoinPool

 The pool size is deteremined by default by the number of CPU cores. The

 12. Moving Forward

 Given the level of ease in executing this implementation in BaseX I am hopeful the
 same can be said for other implementations of XQuery 3.1.

 With the addition of the Promise pattern to the XQuery repitiore, I could also see a
 possiblity for the easy addition of an async keyword within the language using a
 transformation on the XQuery code.

 For example, the following query, with the addition of the 'async' keyword in the for
 block:
let $req := <http:request …>
for async $uri in $uris
let $item := http:send-request($req, $uri)
return
 <something>{$item}</something>

 could be transformed to the following query, leveraging the promise pattern:

 let $req := <http:request …>
let $for-func := function ($uri) {
 let $item := http:send-request($req, $uri)
 return
 <something>{$item}</something>
}

return p:fork-join(
 for $uri in $uris
 return
 p:defer($for-func, ($uri))
)

 Notice how the structure is maintained. The transformation would simply require the
 wrapping of the entire for block in a fork-join call, followed by wrapping the contents
 of the for block contents in a function item.

 13. Shout Out!

 If you like what you see here please star the repo and find me on github or linkedIn

 14. Contribute

 If you have any ideas to make it better, feel free to leave feedback, make a pull
 request, log an issue or simply question ask a question! Additionally if your
 interesting in making this work in another database system, Id be glad to provide any
 guidance and assistance in making that happen!

 Happy forking!

Entities and Relationships in a Document Database

Charles Greer

 MarkLogic Corporation

<cgreer@marklogic.com>

Abstract

 Those working with NoSQL databases agree that some flavor of this technology
 will supplant the relational database in coming years. While the
 post-relational world to some looks like "polyglot persistence" in which
 enterprises use multiple database technologies, each in a best-fit scenario,
 there is an alternate emerging trend of the hybrid database, in which a
 single platform can handle workloads of varying types, and provide the benefits
 of central administration and systems architecture. We think the
 document-oriented database, with XML as a foundation, is the basis for the next
 generation of hybrid databases, because the document model is expressive enough
 to encapsulate simpler models within it. The final step in replacing
 older relational database technology is to encapsulate its native model and
 expose that model to new capabilities. So this paper explores how to work with
 Entities, Attributes, and Relationships on top of a document database and XML.

Keywords: XML, RDF, Data Integration, Enterprise Architecture

 1. Introduction: Reseeding the Enterprise

 I love the spectrum of "greenfield" and "brownfield" to characterize enterprise
 IT.

 One one end of this spectrum are "greenfield projects." These are systems that are constructed
 from scratch, with no integration requirements or dependencies on other systems. "Greenfield"
 does not exist. On the other end is the "brownfield." A prototypical "brownfield project"
 grows up within a mature enterprise, in which integrations are ad
 hoc or point-to-point, and in which the complex interactions of systems
 and data can make change management slow and expensive. This is the starting state of
 all real enterprise projects.

 So enterprise architects, who accept that all fields are brown, face a continual
 challenge to improve data services, to evolve architectures, to maintain the old while
 delivering the new. Proactive management of an IT portfolio requires focus on real
 requirements, systems architecture, data architecture, and on how to deploy
 applications.

 In this essay I use outrageous metaphors about growing and cultivating enterprise IT,
 with emphasis on how to build new systems by seeding them from old ones.

 	Dirt
	
 This story's setting is a set of software systems. I call it dirt
 because it forms a substrate on which our information systems run.
 "Dirt" consists of databases and applications that move data around. In
 particular we call out the data hub, an architectural pattern that
 aggregates, normalizes, and disseminates enterprise data.

	Seeds
	
 Entity/Attribute/Relationship diagrams (or simply E/R diagrams)
 pervade enterprise IT documentation. Here, we emphasize
 the pattern behind such diagrams, which is a method of decomposing
 complex types into tuples, and propose a declarative model for
 incremental enterprise data integration. E/R diagrams contain
 information about how the data needs to be used, how it propagates. Such
 E/R models can be very small.

	Trees
	
 We use trees, specifically XML trees, to encode and persist our
 entity instances. Trees can encode source data from relational systems,
 and model-valid instance
 data together. Moreover, we know how to index and query trees.

	Fruit
	
 The purpose of aggregating data and indexing it is to enable
 applications, for the data to provide value to the business as a whole.
 In this case, exposing entities and relationships via a SQL-like query
 language is one kind of fruit. Search over tree structures is another.
 Ideally such fruit is low-hanging.

 So let's dig in more deeply to the dirt and explore data integration!

 2. Dirt

Substrate of Data Integration Efforts

 In the beginning there was an ERP system that ran the business.

 Then came the website that sold things.

 Then there was the HR system, and the Wiki.

 Each system had its own database, and they did not speak to, or of, one
 another.

 Then came perl. Perl could extract data from the ERP,
 massage it, send it to the webite, from the website to the ERP, from the HR system,
 translate, to the website, and from the Wiki to hell.

 Then came the data warehouse, and all movement ceased.

 This is the brownfield, the dirt in which we built the messy conglomerates of thousands
 of systems and data stores. They call them silos, and everybody wants what's in them.
 New applications all need the data from the old systems. And its all locked up in purpose-built relational
 systems and schemas.

 A common pattern emerges, in which we extract data from source systems, get it ready
 for downstream ones, and load that data into a new one. ETL.

 In the ETL process, businesses inevitably need to rework data models. The upstream
 transactional system manages data in one (relational) schema. The downstream one reworks
 the data into facts and dimensions. Another turns the data into web-ready denormalized
 tables. Oh, and there are sixteen transactional systems and three data warehouses. Each
 system requires a model, and the ETL layer provides the glue and the mapping logic
 between the disparate models.

 Yes, it's a mess.

 In contrast to this absurdist view of ETL, there is another type of data integration
 that really is simply data aggregation. A document database requires no schema up-front.
 With very simple exported structures (one row maps to one document) it's simple
 to move data from a SQL query result into a document-oriented
 database. A data hub using a schema-agnostic technology offers the promise of simple,
 but dumb, aggregation of data.

 The source data from several databases arrives at a single new system, but with no
 model reconciliation. We can search it, but the meaning of the data has been lost in
 translation.

 While this integration is cleaner looking than traditional ETL, and many enterprises
 have benefited from such a schemaless data aggregation, we can do better. We can
 cultivate meaning in the dirt, create the beginnings of a common emergent model across
 data sources. We'll call these initial chunks of meaning seeds, just to stretch the
 metaphor further.

 3. Seeds

Partial and incremental E/R models

 Lacking in schemaless integration is a conveyance of meaning from source system to
 targets. The schemas from the source databases have not been recast in a common
 vocabulary, and as such there's not as much value in the aggregated data as there could
 be.

 A simple metamodeling approach to data hubs might help. Let's say that we are
 interested in building an application whose domain is all of the people that I do
 business with, across many business units and relationship types. Though there may be
 duplicates and there may be differences in how people are represented, it's a reasonable
 dataset to want to extract, merge, and republish.

 Say I want to search by last name. I'm going to create a very straightforward E/R
 diagram intended to "receive" instance data about people. It has just an id, and a last
 name. The very minimum I need to create an application that can search explicitly by
 lastName.

 We can even store such entity types in a document database by making a document structure
 for them. How about a flavor of JSON
 Schema?
{
 "info": {
 "title": "Person",
 "version": "0.0.1"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 }
 }
}

 For any given source system, there is an implicit relationship between that source and
 this new entity type. For each source schema, there is some mapping (or function) that
 can create an instance of Person. The point is that we are not
 particularly concerned with merging any more than absolutely necessary to meet the
 requirements of my integration today.

 An example:

 In this example, lastNamein my entity type will be sourced from the
 columns contactLastName, lname, and lastName
 respectively.

// generated, then edited function stub
xquery version "1.0-ml";
module namespace person = "http://entities.org/Person/0.0.1";
(: create person from shipper document :)
declare function person:from-shippers($source as document-node())
mas map:map
{
 let $new-person := map:map()
 let $_ := map:put($new-person, "id", guid())
 let $_ := map:put($new-person, "lastName", data($source/contactLastName))
 return $new-person
};
(: create person from employee document :)
declare function person:from-employees($source as document-node())
mas map:map
{
 let $new-person := map:map()
 let $_ := map:put($new-person, "id", guid())
 let $_ := map:put($new-person, "lastName", data($source/lname)
 return $new-person
};
(: create person from customer :)
declare function person:from-customers($source as document-node())
mas map:map
{
 let $new-person := map:map()
 let $_ := map:put($new-person, "id", guid())
 let $_ := map:put($new-person, "lastName", data($source/lastName))
 return $new-person
};

 Now it's one thing to present an entity type with two attributes. It's another to
 create a real data hub. But this process is iterative, and I just want to give you a
 taste. An entity type is versioned - we update the version with each change in order to
 keep track of the evoluion of the integration.

 Let's say that the next version of our entity type requires addresses, and also
 provides for a graph representation of people knowing each other. The E/R diagram now
 looks something like the following. It has several more attributes, ands in a
 relationship. Instances of Person may now refer to other instances.

 I represent this new model in JSON
 thus:
{
 "info": {
 "title": "Person",
 "version": "0.0.2"
 },
 "definitions": {
 "Person": {
 "properties": {
 "id": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "fullName": {
 "type": "string"
 },
 "address": {
 "type": "string"
 },
 "friendOf": {
 "$ref": "#/definitions"
 }
 },
 "primary-key":["id"]
 }
}

 Maybe in six months we'll use another field from that source system. If the structure
 is still not appreciably changed, we can simply append to the new model, and update
 transforms that are used to fill it.

 I was neglecting a good part. We are using a hybrid database, which stores tress, but
 can query triples and tuples too.

 These JSON documents actually surface to triples to an RDF index. My document
 database happens to map XPath expressions to generated triples and to expose them to a
 SPARQL engine. The document above surfaces these
 triples:
@prefix es: <http://marklogic.com/entity-services#> .
@prefix doc: <http://example.org/> .
@prefix type: <http://example.org/Person-0.0.2/> .
@prefix prop: <http://example.org/Person-0.0.2/Person/> .

doc:Person-0.0.2 a es:EntityTypeDoc ;
 es:title "Person" ;
 es:version "0.0.2" ;
 es:definitions type:Person .
type:Person a es:EntityType ;
 es:version "0.0.2" ;
 es:property
 prop:id,
 prop:firstName,
 prop:lastName,
 prop:fullName,
 prop:address,
 prop:friendOf ;
 es:primaryKey prop:id .
prop:id a es:Property ;
 es:title "id" ;
 es:datatype "string";
 a es:PrimaryKey .
prop:firstName a es:Property ;
 es:datatype "string";
 es:title "firstName" .
prop:lastName a es:Property ;
 es:datatype "string";
 es:title "lastName" .
prop:fullName a es:Property ;
 es:datatype "string";
 es:title "fullName" .
prop:address a es:Property ;
 es:datatype "string";
 es:title "address" .
prop:friendOf a es:Property ;
 es:ref type:Person ;
 es:title "friendOf" .
These
 triples can be combine with external ones, such as those used in enterprise ontology
 management. Also, they can be queried alongside RDF reference data ingested from
 disparate sources.

 We also declare performance-related information about the entity type
 model:
{
 "info": {
 "title": "Person",
 "version": "0.0.2"
 },
 "definitions": {
 "Person": {
 "properties": {
 ...
 }.
 "primary-key":["id"],
 "range-index":["lastName"],
 "word-lexicon":["fullName"]
 }
}

 What makes this incremental approach possible, is that in our systems architecture we
 had the ability to store not just the newly minted model, but also whatever sources came
 along with it. We instantiate the model, in other words, alongside its source within XML
 tree structures.

 4. Trees

Real XML trees.

 You've seen how we can use NoSQL databases to aggregate information, and I claim can make simple E/R diagrams more complex over time
 without disrupting the business. XML documents enable this kind of flexible combination
 of structures and schemas.

 Within the data hub, we use a particular pattern to integrate data from upstream
 systems. This so-called "envelope pattern" wraps instance data together with raw sources
 in a single XML document tree. This simple mechanism ensures that, no matter how minimal the
 entity type, the raw source is available for word searches, and even for retrieval by
 downstream systems. Thus the lineage of the data can be preserved by keeping the
 original document stored together with whatever instance data we've extracted.

 Expressed in XML, we

 	
 Create a new wrapper document, the <envelope>

	
 Create an XML serialization of an entity instance within the envelope.

	
 Include the source document inside a child of <envelope>

 <es:envelope xmlns:es="http://marklogic.com/entity-services">
 <Person>
 <id><123/id>
 <firstName>Barty</firstName>
 <lastName>Crouch</lastName>
 <fullName>Barty Crouch</fullName>
 ...
 </Person>
 <es:sources>
 ... original document here ...
 </es:sources>
</es:envelope>

 XML can also make envelopes from other document-based sources: spreadsheets,
 .docx documents, or ESB messages.

 So what can we do with an entity instance once its instantiated in a tree structure
 and an XML database?

 Anything we can already do with trees!

 We know how to index and search XML documents really well. With the added benefit of
 an entity type model, the structure of an entity instance is deterministic.

 The envelope is a map of instance data to documents, preserving the fidelity of
 individual properties and data types. Moreover, since our model also asserted index
 definitions, it can generate a configuration that specifies indexes. Here is a
 configuration artifact that defines range-path-index definitions for an
 entity type:

 {
 "database-name": "%%DATABASE%%",
 "schema-database": "%%SCHEMAS_DATABASE%%",
 "path-namespace":[
 {
 "prefix":"es",
 "namespace-uri":"http://marklogic.com/entity-services"
 }
],
 "range-path-index": [
 {
 "collation": "http://marklogic.com/collation/",
 "invalid-values": "reject",
 "path-expression": "/es:envelope/es:entity/Person/lastName",
 "range-value-positions": false,
 "scalar-type": "string"
 }
...
]
}

 From the model, in other words, we can infer that the "fullName" property in
 this person record is always found at the XPath
 /es:envelope/es:entity/Person/fullName, and thus we can index just that
 property.

 Ultimately, the E/R model that we created before, combined with a
 document-based persistence strategy, has enabled a data-driven way to accelerate
 application development.

 5. Fruit

Denormalize, Index, Join

 Data hubs in a large integration project combine document services with row or
 tuple-oriented ones. Application developers have access to instance data as documents,
 rows, or triples, in a manner consistent with the queryable entity type metadata.

 One thing developers can make is search appications. Because their persisted
 structure is a simple XML tree, and because there's a trival transformation of this
 instance data to JSON, web developers can manipulate instance data from a search
 interface with ease.

 I've also got something else interesting. Entity instances look a lot like rows; they
 are flat structures, relationships being references to other flat structures. "Rows"
 imply that we should be able to access the entity data via some SPARQL or even SQL-like
 interface, one that projects, joins, filters and sorts. ODBC clients such as BI tools,
 web apps, and SPARQL clients alike can query across instance data, the entity model, and
 enterprise reference data all with one interface. In fact, in our futuristic database,
 this kind of query will work
 too:
SELECT
 a.lastName as lastName,
 friend.lastName as friendsName
FROM
 Person a, Person friend
WHERE
 a.lastName = "Smith" and
 a.friendOf = friend.id

 Futuristic? Maybe. I make no committments. But it would be tasty fruit, probably
 low hanging.

 6. Hybrid Data Hubs

 Behind the envelope pattern is a notion that we need not create a model in order to
 load data. However, type-conformant instance data can be materialized alongside source
 documents. There's just one system for operations and security.

 Storing entities alongside source documents and reference data within XML trees is an
 approach to data aggregation and modeling that leverages a hybrid storage solution. The
 benefits of such an approach can be significant; operational systems in an enterprise
 are not, after all, insignificant with regard to support services. For every database in
 production one needs a backup and disaster recovery plan, an audit and security policy,
 an administration layer, and of course a separate loading and egress strategy.

 By using incremental and evolutionary entity-relationship models, overlaid upon a
 document database, an architectural team can leverage a single document-oriented
 database to manage a data hub. With this pattern we avoid the messy alternatives
 present in today's ETL scenarios.

Transforming JSON using XSLT 3.0

 Michael Kay

 Saxonica

<mike@saxonica.com>

Abstract

 The XSLT 3.0 and XPath 3.1 specifications, now at Candidate Recommendation status, introduces capabilities for importing
 and exporting JSON data, either by converting it to XML, or by representing it natively using new data structures: maps and arrays.
 The purpose of this paper is to explore the usability of these facilities for tackling some practical transformation tasks.

 Two representative transformation tasks are considered, and solutions for each are provided either by converting the JSON
 data to XML and transforming that in the traditional way, or by transforming the native representation of JSON as maps and
 arrays.

 The exercise demonstrates that the absence of parent or ancestor axes in the native representation of JSON means that
 the transformation task needs to be approached in a very different way.

 1. Introduction

 JSON [2] has become a significant alternative to XML as a syntax for data interchange.
 The usually-cited reasons[35] include:

 	JSON is simpler: the grammar is smaller. The extra complexity of XML might be justified for some
 applications, but there are many others for which it adds costs without adding benefits.

	JSON is a better fit to the data models of popular programming languages like Javascript,
 and this means that manipulating JSON in such languages is easier than manipulating XML.

	JSON is better supported for web applications (for example, for reasons that are hard to justify,
 JSON is not subject to the same security restrictions as XML for cross-site scripting).

 However, some of the transformation tasks for which XSLT is routinely
 used (for example, hierarchic inversion) are difficult to achieve in general-purpose
 languages like JavaScript.

 XSLT 3.0 [4] (together with XPath 3.1 [5]) provides capabilities for handling JSON data. These
 capabilities include:

 Two new functions json-to-xml() and xml-to-json() to convert between JSON and XML.
 These perform lossless conversion. The json-to-xml() function delivers XML using a
 custom XML vocabulary designed for the purpose, and the xml-to-json() function requires
 the input XML to use this vocabulary, though this can of course be generated by
 transforming XML in a different vocabulary.

 Two new data types are introduced: maps and arrays. These correspond to the "objects"
 and "arrays" of the JSON model. In fact they are generalizations of JSON objects and
 arrays: for example, the keys in map can be numbers or dates, whereas JSON only allows
 strings, and the corresponding values can be any data type (for example, a sequence of
 XML nodes), whereas JSON only allows objects, arrays, strings, numbers, or booleans.

 A new function parse-json() is provided to convert from lexical JSON to the
 corresponding structure of maps and arrays. (There is also a convenience function json-doc()
 which does the same thing, but taking the input from a file rather than from a string.)

 A new JSON serialization method is provided, allowing a structure of maps and arrays
 to be serialized as lexical JSON, for example by selecting suitable options on the
 serialize() function.

 While XSLT 3.0 offers all these capabilities
 [36],
 it does not have any new features that
 are specifically designed to enable JSON transformations — that is, conversion of one
 JSON structure to another. This paper addresses the question: can such transformations
 be written in XSLT 3.0, and if so, what is the best way of expressing them?

 Note that I'm not trying to suggest in this paper that XSLT should become the language of choice for transforming
 any kind of data whether or not there is any relationship to XML. But the web is a heterogeneous place, and any
 technology that fails to handle a diversity of data formats is by definition confined to a niche. XSLT 2.0 added
 significant capabilities to transform text (using regular expressions); the EXPath initiative has added function
 libraries to process binary data[1]; and the support for JSON in XSLT 3.0 continues this trend. XSLT will always be
 primarily a language for transforming XML, but to do this job well it needs to be capable of doing other things as well.

 2. Two Transformation Use Cases

 We'll look at two use cases to study this question, in the hope that these are
 representative of a wider range of transformation tasks.

 The first is a simple "bulk update": given a JSON representation of a product
 catalogue, apply a price change to a selected subset of the products.

 The second is a more complex structural transformation: a hierarchic inversion. We'll
 start with a dataset that shows a set of courses and lists the students taking each
 course, and transform this into a dataset showing a set of students with the courses
 that each student takes.

 For each of these problems, we'll look first at how it can be tackled by converting
 the data to XML, transforming the XML, and then converting back to JSON. Then we'll
 examine whether the problem can be solved entirely within the JSON space, without
 conversion to XML: that is, by manipulating the native representation of the JSON data
 as maps and arrays. We'll find that this isn't so easy, but that the difficulties can be
 overcome.

 3. Use Case 1: Bulk Update

 Rather than invent our own example, we'll take this one from json-schema.org:

 [
 {
 "id": 2,
 "name": "An ice sculpture",
 "price": 12.50,
 "tags": ["cold", "ice"],
 "dimensions": {
 "length": 7.0,
 "width": 12.0,
 "height": 9.5
 },
 "warehouseLocation": {
 "latitude": -78.75,
 "longitude": 20.4
 }
 },
 {
 "id": 3,
 "name": "A blue mouse",
 "price": 25.50,
 "dimensions": {
 "length": 3.1,
 "width": 1.0,
 "height": 1.0
 },
 "warehouseLocation": {
 "latitude": 54.4,
 "longitude": -32.7
 }
 }
]

 The transformation we will tackle is: for all products having the tag "ice", increase
 the price by 10%, leaving all other data unchanged.

 First we'll do this by converting the JSON to XML, then transforming the XML in the
 traditional XSLT way, and then converting back. If we convert the above JSON to XML
 using the json-to-xml() function in XSLT 3.0, the result (indented for readability) looks like this:

 [
<?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
 <map>
 <number key="id">2</number>
 <string key="name">An ice sculpture</string>
 <number key="price">12.50</number>
 <array key="tags">
 <string>cold</string>
 <string>ice</string>
 </array>
 <map key="dimensions">
 <number key="length">7.0</number>
 <number key="width">12.0</number>
 <number key="height">9.5</number>
 </map>
 <map key="warehouseLocation">
 <number key="latitude">-78.75</number>
 <number key="longitude">20.4</number>
 </map>
 </map>
 <map>
 <number key="id">3</number>
 <string key="name">A blue mouse</string>
 <number key="price">25.50</number>
 <map key="dimensions">
 <number key="length">3.1</number>
 <number key="width">1.0</number>
 <number key="height">1.0</number>
 </map>
 <map key="warehouseLocation">
 <number key="latitude">54.4</number>
 <number key="longitude">-32.7</number>
 </map>
 </map>
</array>

 And we can now achieve the transformation by converting the JSON to XML, transforming
 it, and then converting back:

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions">

 <xsl:mode on-no-match="shallow-copy"/>

 <xsl:param name="input"/>

 <xsl:output method="text"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-text($input))"/>
 <xsl:variable name="transformed-xml" as="document-node()">
 <xsl:apply-templates select="$input-as-xml"/>
 </xsl:variable>
 <xsl:value-of select="xml-to-json($transformed-xml)"/>
 </xsl:template>

 <xsl:template match="map[array[@key='tags']/string='ice']/number[@key='price']/text()">
 	 <xsl:value-of select="xs:decimal(.)*1.1"/>
 </xsl:template>

</xsl:stylesheet>

 Sure enough, when we apply the transformation, we get the required output (indented for clarity):

 [
 {
 "id": 2,
 "name": "An ice sculpture",
 "price": 13.75,
 "tags": [
 "cold",
 "ice"
],
 "dimensions": {
 "length": 7,
 "width": 12,
 "height": 9.5
 },
 "warehouseLocation": {
 "latitude": -78.75,
 "longitude": 20.4
 }
 },
 {
 "id": 3,
 "name": "A blue mouse",
 "price": 25.5,
 "dimensions": {
 "length": 3.1,
 "width": 1,
 "height": 1
 },
 "warehouseLocation": {
 "latitude": 54.4,
 "longitude": -32.7
 }
 }
]

 Now, the question arises, how would we do this transformation without converting the
 data to XML and back again?

 Here we immediately see a difficulty. We can't use the same approach because in the
 map/array representation of JSON, there is no parent axis. In the XML-based
 transformation above, the semantics of the pattern
 map[array[@key='tags']/string='ice']/number[@key='price']/text() depend
 on matching a text node according to properties of its parent (a
 <number> element) and grandparent (a <map> element).
 In the map/array model, we can't match a string by its context in the same way, because
 a string does not have a parent or grandparent.

 However, all is not lost. With a little help from a general-purpose helper stylesheet,
 we can write the transformation like this:

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jlib="http://saxonica.com/ns/jsonlib"
 xmlns:map="http://www.w3.org/2005/xpath-functions/map"
 xmlns:array="http://www.w3.org/2005/xpath-functions/array" version="3.0">

 <xsl:param name="input"/>

 <xsl:output method="json"/>

 <xsl:import href="maps-and-arrays.xsl"/>

 <xsl:mode on-no-match="deep-copy"/>

 <xsl:template name="xsl:initial-template">
 <xsl:apply-templates select="json-doc($input)"/>
 </xsl:template>

 <xsl:template match=".[. instance of map(*)][?tags = 'ice']">
 <xsl:map>
 <xsl:sequence select="map:for-each(.,
 function($k, $v){ map{$k : if ($k = 'price') then $v*1.1 else $v }})"/>
 </xsl:map>
 </xsl:template>
</xsl:stylesheet>

 This relies on the helper stylesheet, maps-and-arrays.xsl, containing
 default processing for maps and arrays that performs the equivalent of the traditional
 "identity template" (called shallow-copy processing in XSLT 3.0): specifically,
 processing an array that isn't matched by a more specific template rule should create a
 new array whose contents are the result of applying templates to the members of the
 array; while processing a map should similarly create a new map whose entries are the
 result of applying templates to the entries in the existing map. Unfortunately the
 shallow-copy mode in XSLT 3.0 doesn't work this way; it has the effect of deep-copying
 maps and arrays.

 For maps, we can write a shallow-copy template like this (it's not actually needed for
 this use case):

 <xsl:template match=".[. instance of map(*)]" mode="#all">
 <xsl:choose>
 <xsl:when test="map:size(.) le 1">
 <xsl:sequence select="."/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:map>
 <xsl:variable name="entries" as="map(*)*"
 select="map:for-each(., function($k : $v) { map:entry($k, $v) })"/>
 <xsl:apply-templates select="$entries" mode="#current"/>
 </xsl:map>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

 This divides maps into two categories. Applying templates to a map with less than two
 entries returns the map unchanged. Applying templates to a larger map splits the map
 into a number of singleton maps, one for each entry, and applies templates recursively
 to each of these singleton maps. In the absence of overriding template rules for any of
 these entries, the entire map is deep-copied.

 To make it easier to write a template rule that matches a singleton map with a given
 key, we can define a library function:

 <xsl:function name="jlib:is-map-entry" as="xs:boolean">
 <xsl:param name="map" as="item()"/>
 <xsl:param name="key" as="xs:anyAtomicType"/>
 <xsl:sequence select=". instance of map(*) and map:size(*) eq 1 and map:contains($key)"/>
</xsl:function>

 An overriding template rule can then be written like this:

 <xsl:template match=".[jlib:is-map-entry(., 'price')]">...</xsl:template>

 Writing a shallow-copy template rule for arrays is a little bit trickier because of
 the absence of XSLT 3.0 instructions for creating arrays: we hit the problem of
 composability, where XPath constructs such as array{} cannot directly invoke XSLT
 instructions like <xsl:apply-templates/>; and we also hit the problem
 that the only way of iterating over a general array (one whose members can be arbitrary
 sequences) is to use the higher-order function array:for-each().

 One way to write it might be like this:

 <xsl:template match=".[. instance of array(*)]">
 <xsl:sequence select="array:for-each(., jlib:apply-templates#1)"/>
 </xsl:template>

 <xsl:function name="jlib:apply-templates">
 <xsl:param name="input"/>
 <xsl:apply-templates select="$input"/>
 </xsl:function>

 But this has the disadvantage that tunnel parameters are not passed through a
 stylesheet function call; in addition, the current template rule and current mode are
 lost. We can get around these problems using this more complicated formulation, which
 uses head-tail recursion:

 <xsl:template match=".[. instance of array(*)]" mode="#all">
 <xsl:choose>
 <xsl:when test="array:size(.) = 0">
 <xsl:sequence select="[]"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="head" as="item()*">
 <xsl:apply-templates select="array:head(.)" mode="#current"/>
 </xsl:variable>
 <xsl:variable name="tail" as="array(*)">
 <xsl:apply-templates select="array:tail(.)" mode="#current"/>
 </xsl:variable>
 <xsl:sequence select="array:join((array{$head}, $tail))"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 The complexity here doesn't really matter greatly, because the code only needs to be
 written once.

 Returning to our specific use case, of updating prices in a product catalog, the main
 limitation of our solution is that all the update logic is contained in a single
 template rule, which works for this case but might not work for more complex cases. The
 match pattern for the template rule matches a map that needs to be changed, and this
 matching can only consider the content of the map, not the context in which it appears.
 Moreover, the template body does all the work of creating a replacement map
 monolithically without further calls on <xsl:apply-templates>; it would be possible to
 make such calls, but the syntax doesn't make it easy.

 4. Use Case 2: Hierarchic Inversion

 In our second case, we'll look at a structural transformation: changing a JSON
 structure with information about the students enrolled for each course to its inverse, a
 structure with information about the courses for which each student is enrolled.

 Here is the input dataset:

 [{
 "faculty": "humanities",
 "courses": [
 {
 "course": "English",
 "students": [
 {
 "first": "Mary",
 "last": "Smith",
 "email": "mary_smith@gmail.com"
 },
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 }
]
 },
 {
 "course": "History",
 "students": [
 {
 "first": "Ann",
 "last": "Jones",
 "email": "ann_jones@gmail.com"
 },
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 }
]
 }
]
},
{
 "faculty": "science",
 "courses": [
 {
 "course": "Physics",
 "students": [
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 },
 {
 "first": "Amisha",
 "last": "Patel",
 "email": "amisha_patel@gmail.com"
 }
]
 },
 {
 "course": "Chemistry",
 "students": [
 {
 "first": "John",
 "last": "Taylor",
 "email": "john_taylor@gmail.com"
 },
 {
 "first": "Anil",
 "last": "Singh",
 "email": "anil_singh@gmail.com"
 }
]
 }
]
}]

 The goal is to produce a list of students, sorted by last name then
 first name, each containing a list of courses taken by that student, like this:

 [
 {
 "email": "ann_jones@gmail.com",
 "courses": [
 "English",
 "History"
]
 },
 {
 "email": "amisha_patel@gmail.com",
 "courses": ["Physics"]
 },
 {
 "email": "anil_singh@gmail.com",
 "courses": [
 "Physics",
 "Chemistry"
]
 },
 {
 "email": "mary_smith@gmail.com",
 "courses": ["English"]
 },
 {
 "email": "john_taylor@gmail.com",
 "courses": [
 "History",
 "Chemistry"
]
 }
]

 As before, a stylesheet can be written that does this by converting JSON to XML,
 transforming the XML, and then converting back. The XML representation of our input
 dataset looks like this:

 <?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
 <map>
 <string key="faculty">humanities</string>
 <array key="courses">
 <map>
 <string key="course">English</string>
 <array key="students">
 <map>
 <string key="first">Mary</string>
 <string key="last">Smith</string>
 <string key="email">mary_smith@gmail.com</string>
 </map>
 <map>
 <string key="first">Ann</string>
 <string key="last">Jones</string>
 <string key="email">ann_jones@gmail.com</string>
 </map>
 </array>
 </map>
 <map>
 <string key="course">History</string>
 <array key="students">
 <map>
 <string key="first">Ann</string>
 <string key="last">Jones</string>
 <string key="email">ann_jones@gmail.com</string>
 </map>
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 </array>
 </map>
 </array>
 </map>
 <map>
 <string key="faculty">science</string>
 <array key="courses">
 <map>
 <string key="course">Physics</string>
 <array key="students">
 <map>
 <string key="first">Anil</string>
 <string key="last">Singh</string>
 <string key="email">anil_singh@gmail.com</string>
 </map>
 <map>
 <string key="first">Amisha</string>
 <string key="last">Patel</string>
 <string key="email">amisha_patel@gmail.com</string>
 </map>
 </array>
 </map>
 <map>
 <string key="course">Chemistry</string>
 <array key="students">
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 <map>
 <string key="first">John</string>
 <string key="last">Taylor</string>
 <string key="email">john_taylor@gmail.com</string>
 </map>
 </array>
 </map>
 </array>
 </map>
</array>

 Here is the stylesheet:

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xmlns="http://www.w3.org/2005/xpath-functions"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
 expand-text="yes">

 <xsl:param name="input"/>

 <xsl:output method="text"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-text($input))"/>
 <xsl:variable name="transformed-xml" as="element(array)">
 <array>
 <xsl:for-each-group select="$input-as-xml//string[@key='email']" group-by=".">
 <xsl:sort select="../string[@key='last']"/>
 <xsl:sort select="../string[@key='first']"/>
 <map>
 <string key="email">{current-grouping-key()}</string>
 <array key="courses">
 <xsl:for-each select="current-group()">
 <string>{../../../*[@key='course']}</string>
 </xsl:for-each>
 </array>
 </map>
 </xsl:for-each-group>
 </array>
 </xsl:variable>
 <xsl:value-of select="xml-to-json($transformed-xml)"/>
 </xsl:template>

</xsl:stylesheet>

 Is it possible to write this as a transformation on the maps-and-arrays representation
 of JSON, without converting first to XML? The challenge is again that we can't use the
 parent axis to find the course associated with each student. Instead, the approach we
 will use is to flatten the data into a simple sequence of tuples containing the values
 that we need (last name, first name, email, and course), and then use XSLT grouping on
 this sequence of tuples. We'll represent the intermediate form as a sequence of maps.

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="3.0"
 xmlns="http://www.w3.org/2005/xpath-functions"
 xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
 expand-text="yes">

 <xsl:param name="input"/>

 <xsl:output method="json"/>

 <xsl:template name="xsl:initial-template">
 <xsl:variable name="input-as-array" select="json-doc($input)" as="array(*)"/>
 <xsl:variable name="flattened" as="map(*)*">
 <xsl:for-each select="$input-as-array?*?courses?*">
 <xsl:variable name="course" select="?course"/>
 <xsl:for-each select="?students?*">
 <xsl:map>
 <xsl:map-entry key="'course'" select="$course"/>
 <xsl:map-entry key="'last'" select="?last"/>
 <xsl:map-entry key="'first'" select="?first"/>
 <xsl:map-entry key="'email'" select="?email"/>
 </xsl:map>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="groups" as="map(*)*">
 <xsl:for-each-group select="$flattened" group-by="?email">
 <xsl:sort select="?last"/>
 <xsl:sort select="?first"/>
 <xsl:map>
 <xsl:map-entry key="'email'" select="current-grouping-key()"/>
 <xsl:map-entry key="'courses'" select="array{ current-group()?course }"/>
 </xsl:map>
 </xsl:for-each-group>
 </xsl:variable>
 <xsl:sequence select="array{$groups}"/>
 </xsl:template>

</xsl:stylesheet>

 Interestingly, this technique of flattening the data into a sequence of maps (turning
 it into first normal form) and then rebuilding a hierarchy using XSLT grouping is
 probably a very general one; it could equally have been used for our first use case.

 5. On the Question of Parent Pointers

 I'm not sure if it was ever a conscious decision that XML structures should be
 navigable in all directions (in particular, in the parent/ancestor direction), while
 JSON structures should only be navigable downwards. It's not only the XDM model (used by
 XSLT and XPath) that makes this choice; the same divergence of approach applies equally
 when processing XML or JSON in Javascript. Both XML and JSON are specified primarily
 in terms of the lexical grammar rather than the tree data model, and it's not obvious
 from looking at the two grammars why this difference in the tree models should arise.

 The ability to navigate upwards (and to a lesser extent, sideways, to preceding and
 following siblings) clearly has advantages and disadvantages. Without upwards navigation,
 a transformation process that operates primarily as a recursive tree walk cannot discover the
 context of leaf nodes (for example, when processing a price, what product does it relate to?),
 so this information needs to be passed down in the form of parameters. However, the convenience
 of being able to determine the context of a node comes at a significant price. Most notably,
 the existence of owner pointers means that a subtree cannot be shared: it is difficult
 to implement the xsl:copy-of instruction without making a physical copy of
 the affected subtree. This means that each phase of a transformation typically incurs
 cost proportional to document size. It is difficult to implement iterative transformations,
 consisting of small incremental changes to localized parts of the tree. This difficulty
 was reported a while ago [3] in a project that attempted
 to use the XSLT rules engine to perform optimization on the XSLT abstract syntax tree;
 the high performance cost of making small changes to the tree made this infeasible in
 practice.

 The ability to navigate freely in the tree also seems to imply a need to maintain
 a concept of node identity (whereby two nodes that are independently created differ in identity
 even if they are otherwise indistinguishable). Node identity also comes at a considerable price,
 in particular by imbuing the language semantics with subtle side-effects: calling the same
 function twice with the same arguments does not produce the same result.

 The model that has been adopted for JSON, with no node identity and no parent navigation,
 makes certain kinds of transformation more difficult to express, but it may also make other
 kinds of transformation (especially the kind alluded to, involving many incremental and localized
 changes to the tree structure) much more feasible.

 6. Conclusions

 From these two use cases, we seem to be able to draw the following tentative
 conclusions:

 	
 Transformation of JSON structures is possible in XSLT 3.0 either by first
 converting to XML trees, then transforming the XML trees in the traditional way,
 then transforming back to JSON; or by directly manipulating the maps-and-arrays
 representation of JSON in the XDM 3.0 data model.

	
 When transforming the maps-and-arrays representation, the use of
 traditional rule-based recursive-descent pattern matching is inhibited by the
 fact that no parent or ancestor axis is available. This problem can be
 circumvented by first flattening the data – moving data from upper nodes in the
 hierarchy so that it is held redundantly in leaf nodes.

	
 The absence of built-in shallow-copy templates for maps and arrays is an
 irritation, but is not a real problem because these only need to be written once
 and can be imported from a standard stylesheet module.

	
 The lack of an instruction, analogous to <xsl:map>, for
 constructing arrays at the XSLT level is a further inconvenience; it means that
 data constructed at the XSLT level has to be captured in a variable so that the
 XPath array constructors can be used to create the array.

	
 Similarly, it would be useful to be able to invoke
 <xsl:apply-templates> as a function, to allow its use within
 the function supplied to map:for-each() or array:for-each() – preferably without
 losing tunnel parameters.

[35] I include here only the reasons that I consider to be credible. Many comments on the topic
 also claim that XML is more verbose or that its performance is worse, but this appears to be folklore rather than fact.

[36] Some of these features are optional, so not every XSLT 3.0 processor will provide them.

References

 [1]
 Binary Module 1.0 EXPath Module, 3 December 2013. http://expath.org/spec/binary

 [2]
 Introducing JSON http://json.org

 [3]
 Writing an XSLT Optimizer in XSLT Proc. Extreme Markup Languages, Montreal, 2007.
 Available at http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
 and with improved rendition at http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html

 [4]

 XSL Transformations (XSLT) Version 3.0. W3C Candidate Recommendation, 19 November 2015. Ed. Michael Kay.
 http://www.w3.org/TR/xslt-30

 [5]

 XML Path Language (XPath) 3.1. W3C Candidate Recommendation, 17 December 2015. Ed. Jonathan Robie, Michael Dyck, and Josh Spiegel.
 http://www.w3.org/TR/xpath-31

Jiří Kosek (ed.)

XML Prague 2016

Conference Proceedings

Published by

Ing. Jiří Kosek

Filipka 326

463 23 Oldřichov v Hájích

Czech Republic

E-book was produced from DocBook XML sources

using XSLT.

1st edition

Prague 2016

ISBN 978-80-906259-0-7 (pdf)

ISBN 978-80-906259-1-4 (ePub)

OEBPS/images/enumeration-1.png
Gender

OEBPS/images/LoginServiceXml2.png
<EsbService xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance” xsi:ncllamespaceSchemalocation="urn:gdvdl:demo-ph.xsd"
14="HD3-520-05">
<citlexcKey>Login</Key></citle>
<body>
<shortdesc 1
<Header>
<Namespace>ESB-Services/Common</Nanespace>
<Type/>
<ListDbAccess/>
<ListRequiredComponents><lione/></ListRequiredConponents>
</Beager>
<ListFunctionOverview/>
</body>
<EsbServiceRunktion 19-"J63-520-05">
<citlexcey>Login</Key></citle>
<body>
<shortdesc 1
<Header>
<ListDbAccess>
<DbTable Aocess:
<DbTable Nazespace:
</ListDbAccess>
<ListEsbCalls><lione/></ListEsbCalls>
</Beader>
</body>
<Request 10-"K33-520-05">
<vitle/>
<body>
<overview/>
<structuze 1

3-520-05">Provides functions for login and logoff.</shortdesc>

"133-520-05">Validates the user and passvord and returns a login token on success.</shortdescs

rite” Nanespace="DBROOT">LOGIN_TOKEN</DbTable>
BROOT">USERS/DbTable>

£33-520-05">

CCo-457-05">
<Definition>
<Hey>Username</Key>
<Type><Datatype Valuc="String"/><Presence Valuc=
</Definition>
<Description><p 1
</Fiela>
<Field 10-"TNK-SSY-05">
<Definition>
<Hey>Passwora</Key>
<Type><Datatype Valuc:
</Definition>
<Description><p 19-"ICY-VSY-05">Password of the user.</p></Description>
</Fiela>
</Root>
</Definition>
</structure>
</body>
</Request>
<Worklow
<vitle/>

‘required/></Type>

'SB4-VSY-0S">Name of the user.</p></Description>

tring/><Presence Value="required/></Type>

MH3-520-05">

"VSH-JTY-Q5">The function checks if
<HeyRef KeyType="XML-Field" Nanespace
is valid according to

<HeyRef ¥eyType="DB-Column" Nanespace"DBROOT/USER">USER. USERNAMES /KeyRet> and
<HeyRef KeyType="NML-Field" SB-Services/Comnon/Login/Login/Request " >Password</KeyRer>
matches
<Heyret BROOT/USER">USER. BASSWORDS /KeyRef>. 1f

this is the case a new login token is generated and stored in a new dataset in

<HeyRef B-Table" Nanespace="DBROOT">LOGIN_TOKEN</KeyRef>.

<HeyRet BROOT/LOGIN_TOKEN">LOGIN_TOKEN. VALID_TO</KeyRet>

S8-Services/Comnon/Login/Login/Request " >Usernane</KeyRer>

">USER. LOGIN_PERIOD</KeyRe£>.</p>
</body>

</Workflows

<Response 1d-"GL3-520-05">

OEBPS/images/LoginServicePDF2.png
2.4 ESB-Service: Login

Provides functions for login and logoff.

Namespace ESB-Services/Common
Type Windows Webservice
DB Access * DBROOT.LOGIN_ TOKEN (read/write)

* DBROOT.USER (read)

Required Components <None>

Overview of the Functions
= Login

Validates the user and password and returns a login token on success. (Details: see
Function: Login.)

= Logoff
This function causes the passed login token to become invalid. (Details: see Function:

Logoff.)

24.1 Function: Login

Validates the user and password and returns a login token on success.

DB Access * LOGIN_TOKEN (write)
= USER (read)

ESB Calls <None>

2411 Request

XML Interface

<LoginRequest>

Username Name of the user.
(String, required)

Password Password of the user.
(String, required)

2412 Workflow

The function checks if Username is valid according to USER.USERNAME and Password
matches with USER.PasSWORD. If this is the case a new login token is generated
and stored in a new dataset in LOGIN TOKEN. LOGIN TOKEN.VALID TO is computed
according to USER.LOGIN PERIOD.

2.4.1.3 Antwort (Response)

OEBPS/images/validationError.png
Message
"z

© Validation error > Location

™

How to fix it

OEBPS/images/validationErrorMsg.png
Desciption System D Location
© cvcidentity-consiraint. 4.3: Key keyref! with value harrs'not \Samples\personalipersonal-schemanl 60:13
© cveid. 1 There s no ID/IDREF binding for IDREF robert.tayor' \Samples|personalpersonal-schema.anl 12:28
© cveid. 1: There i no ID/IDREF binding for IDREF harrs'. \Samples\personal\personal-schemaxml 21:23

OEBPS/images/publishing-chain.png
Edit1

> system1

>|

System2

>|

System3

output]

OEBPS/images/533e925c-8ac6-4dee-aeff-039e861af1d7.png
Shippers

Database

Person 0.0.1

Employees

Database [f]

Customers
Database [YERTTYE]

OEBPS/images/3e0e52ab-0644-403b-bbd8-fe5785d4a3c1.jpeg
Person-0.0.2
id
firstName
lastName
fullName
address
friendOf

OEBPS/images/04da6b21-963a-4108-8745-fbcb78c88381.png
This child

node
This is orchestration contains the
instance tree

This
document This
contains. transform

the values contains.

ofarow code to

fetched extract This child
from a instance node
sqL values contains the
query from the raw source

sources

OEBPS/images/overstory-logo.png
OverStory.

OEBPS/images/enumeration-keydef.png
#Gender

Enumeration:
* #r14-rMaled
* #v24 - vFemalet

OEBPS/images/743d8108-0e40-406a-87cf-a75075ac518b.png
Database

RDBMS E

Database
Database | _e
[o]

SQLVIEW Target
RDBMS Model

Data Warehouse

Database

RDBMS

OEBPS/images/mercator-logo.png

OEBPS/images/letex-logo.png
erfteX

publishing services

OEBPS/images/enumeration-3.png
Gender

Enumeration:

Use key "0" only for a meaning like "none” o "false”

* v Key ¢ - >Name

OEBPS/images/enumeration-2.png
Gender

Enumeration:
* v Key - »Name ¢

OEBPS/images/sqf_Lang.png
<sqf-fo

id="resolveBold"

<sqf:description>

/ Title

<sqf:title>Change the bold element into text</sqf:title>

<sqf:p>Removes the bold (b) markup and keeps the fext content.</sgF:p>

</sqf-description>

<sqf-replace maich="b" SElecE"text 7]

<Jsqifoe

AN
“ Description

OEBPS/images/SQFFix.png
<sch:rule context="title">

<sch:report test="exists(b)" Ed] esolveBold'P

Bold element is not allowed in title.</sch:report>

resolveBold">

OEBPS/images/xslErr.png
© Function "funcicreateBox()" has not been defined
fo Create function *func:createBox(param0 param1)”

A Change reference to "func:createControl(boxiD, buttonID)”

A Change reference to "func:createControlitem(boD, buttoniD)"

OEBPS/images/3bb453b9-8b35-4c70-bf33-ca42d24db885.png
Dati | Database
Dat

Dati | Databzse == . Database

o
‘ [
NS Database

Pata Warehouse

Dati | Database

OEBPS/images/44218bef-4397-468e-8e7f-2268412b7ebb.jpeg
Person 0.0.1

id
lastName

OEBPS/images/8750fbe1-dd96-40c7-9940-a555cf106aeb.png
Database

RDBMS

Database

RDBMS

Database

RDBMS

Database

Content Store
Document Per Row

OEBPS/images/footnote-css.png
AH Formatter {3V, XSL-FO % {ifi - 7= #/i<° CSS % f#i > 7= XML/

HTML 73 2 2@, fHAR « FIRIY 7 b 7 =7 T,

XML L2 & S FEoR - BRI 5 720 D4R Td % XSL 1.1 I2x)

IELTHEY O, Fz W3C THRIENEEF D CSS Level 3 D~— PR

THARIZE D LA 7 U MEEDA—JHMIZ S 3 L TWET,

FILAR T & SHE/)ICIG U T AH Formatter (XSL-FO, CSS Zf{#fio

7-#HAR) . AH XSL Formatter (XSL-FO % {fi - 72#Hhk) . AH CSS

Formatter (CSS Zffi~7-#fk) NHEINLTWET,

@ XSL-FO & CSS ZIRAEESHAH Z LT TEEHA

®) FEMIA L T A v =2 T AD [XSLAAEO EERI) &SR

LTLIEEV,

OEBPS/images/sequence-diagram.png
Login

OEBPS/images/table-omit.png
thead thead
1 6

2 7

3 8

4 9

5 10
tfoot tfoot

-ah-table-omit-header-at-break:
-ah-table-omit-footer-at-break:

false
false

thead

10

tfoot

NN B W]NO]—

-ah-table-omit-header-at-break:
-ah-table-omit-footer-at-break:

true
true

OEBPS/images/keyref.png
If the field s#»TypeofPersond = = of structure <#>Customerd>=
has the value #24 (Organization)- the field &f»Gendr " = must
be empty.

OEBPS/images/enumeration-xml.png
<Parameter id="LXH-FJ3-25">
<Hey>Gender</Key>
<Datatyp>
<Enumeracion>
<Value 10="ZEN-E33-25">
<Hey>1</Key>
<Name>Male</Name>
</Value>
<Value 14="KWH-373-25">
<Hey>2</Key>
<Name>Female</Name>
</Value>
</Enumeration>
</Datatyp>
</Parameter>

OEBPS/images/oxygen-logo-epub.png
<oXygen/>

xml editor

OEBPS/images/xmlprague.png
s XMmiprague

OEBPS/images/ah-logo.png
7 A Data Usability Company
4/‘ANTENNA HOUSE

OEBPS/images/df9adb04-de90-4235-a90b-03ccad1d0449.png

OEBPS/images/Final-xq-promise.jpg
25000

20000

15000

10

100 1000

T
2000

3200 5000

T
6500

——fork
——no-fork

OEBPS/images/1ef4d0f1-b2ae-4995-b28e-d796217aa3a9.png
Database

Database

Website

Database

Database

Wik

OEBPS/images/properties-list.png
k= XSL/CSS Properties List

onformance and

The following table shows XSL-FO properties and their corresponding CSS properties. A blank cell indicates that no corresponding CSS property is implemented for the XSL-FO prop-
erty, or vice-versa. See also XSL-FC

S Conformance to leam the current implementation status for each property. CSS Conformance also defines the CSS module
abbreviations, such as [CSS3-GCPM] etc,, that are used in the table. Showing properties as corresponding does do not always mean that their specifications in XSL-FO and CSS are
completely aligned. Some correspondences just indicate that the properties are functionally equivalent or mostly similar.

XsL css

Description
axfabbreviation-character-count

-ah-abbreviation-character-count

Specifies the minimum number of characters considered to be an abbreviation.
7.6.1 absolute-position [C5521] position

axfaction-type -ah-action-type

Specifies the action of External Link or Form Actions

OEBPS/images/distributed-systems.png
Edit1

Edt2

Bt

System 1 > System 2 > system3 »[output]
~
System 4 |——p[output

System s

»[outeu]

OEBPS/images/margin-boxes.png

OEBPS/images/KeyAttributeDefault.png
<Key

:nanespace
desc

"+ topic/topic reference/reference GDVDL-Component-d/Key "
"Component”

‘parenc: :cicle/parent
"body/Header /Nanespace™
“body/shortdescsLogin</Keys

OEBPS/images/ListFunctionOverview.png
<ListFunctionOverview
lass = "+ topic/section GDVDL-Web-Service-d/ListRunctionOverview
crixsl = "urn:gdvdl:web-service:ListFunctionOvervie.xsl"/>

OEBPS/images/stored-procedure.png
"2.1.2 New Stored-procedure »DoLogging:

~ Implementation Scenario: Stored-procedure

Package(es) * #lnplementation*

Work Item(s) [XSLT-Conref] B0 € =]
© database-script: Spec (#12346)
© database-script: Body (+12347)

OEBPS/images/NewEntity.png
“2.1.1 New Entity »LOGGING«

~Work Item: database-modification

Package(es) * #lnplementation*
Affected DB Object(s) « #rocemiee
Work Item(s) [XSLT-Conref] B0 &9]

* database-modification (* 12345)

OEBPS/images/ac51568d-bc54-4dac-865d-54beb36221d7.png
Database

Document
Database

Search and Transform
Results

Queries:
Join,Project Filter Sort

