
XML Prague 2016
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 11–13, 2016



 

XML Prague 2016 – Conference Proceedings
Copyright © 2016 Jiří Kosek

ISBN 978-80-906259-0-7 (pdf)
ISBN 978-80-906259-1-4 (ePub)
 







Table of Contents
General Information ..................................................................................................... vii

Sponsors ..........................................................................................................................  ix

Preface ..............................................................................................................................  xi

Born accessible EPUB – Romain Deltour .......................................................................  1

Extending CSS with XSL-FO, XSL-FO with CSS – Tony Graham ............................  17

Virtual Document Management – Ari Nordström .....................................................  33

Define and Conquer – Dr. Patrik Stellmann ................................................................  49

Subjugating Data Flow Programming –
R. Alexander Miłowski and Norman Walsh ...................................................................  65

Schematron QuickFix – Octavian Nadolu and Nico Kutscherauer .............................  81

Validating office documents in the publishing production workflow –
Andrew Sales ...................................................................................................................  99

Data Just Wants to Be Format-Neutral – Steven Pemberton ...................................  109

Approaches for Leveraging XML Workflows with Linked Data – Marta Bor-
riello, Christian Dirschl, Axel Polleres, Phil Ritchie, Frank Salliau, Felix Sasaki, and
Giannis Stoitsis ..............................................................................................................  121

Promises and Parallel XQuery Execution – James Wright ......................................  139

Entities and Relationships in a Document Database – Charles Greer ...................  153

Transforming JSON using XSLT 3.0 – Michael Kay .................................................  167

v



vi



General Information

Date
February 11th, 12th and 13th, 2016

Location
University of Economics, Prague (UEP)
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee
Petr Cimprich, Xyleme
Vít Janota, Xyleme
Káťa Kabrhelová, University of Economics, Prague
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Martin Svárovský, Xyleme
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee
Robin Berjon, science.ai
Petr Cimprich, Xyleme
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Ari Nordström, SGMLGuru.org
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Andrew Sales Digital Publishing
Felix Sasaki, DFKI / W3C Fellow
John Snelson, MarkLogic
Jeni Tennison, Open Data Institute
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By
XMLPrague.cz (http://xmlprague.cz)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)
Ubiqway, s.r.o. (http://www.ubiqway.com)

vii

http://xmlprague.cz
http://fis.vse.cz
http://www.ubiqway.com


viii



Sponsors

oXygen (http://www.oxygenxml.com)
Antenna House (http://www.antennahouse.com/)
le-tex publishing services (http://www.le-tex.de/en/)
Mercator IT Solutions Ltd (http://www.mercatorit.com)
OverStory Consulting Ltd (http://www.overstory.co.uk/)

  

  
  

  
  

ix

http://www.oxygenxml.com
http://www.antennahouse.com/
http://www.le-tex.de/en/
http://www.mercatorit.com
http://www.overstory.co.uk/


x



Preface

This publication contains papers presented during the XML Prague 2016 confer-
ence.

In its eleventh year, XML Prague is a conference on XML for developers,
markup geeks, information managers, and students. XML Prague focuses on
markup and semantic on the Web, publishing and digital books, XML technolo-
gies for Big Data and recent advances in XML technologies. The conference pro-
vides an overview of successful technologies, with a focus on real world applica-
tion versus theoretical exposition.

The conference takes place 11–13 February 2016 at the campus of University of
Economics in Prague. XML Prague 2016 is jointly organized by the XML Prague
Organizing Committee and by the Faculty of Informatics and Statistics, Universi-
ty of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday and Saturday morning runs in an unconference style which
provides space for various XML community meetings in parallel tracks. Friday
and Saturday afternoon are devoted to classical single-track format and papers
from it are published in the proceeedings. Additionally, we coordinate, support
and provide space for W3C XSLT and XProc working group meetings collocated
with XML Prague.

We hope that you enjoy XML Prague 2016.
 

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz


xii



Born accessible EPUB
Let’s do it!

Romain Deltour
DAISY Consortium

<rdeltour@gmail.com>

Abstract

Access to information and knowledge should be universal. That should not
be controversial, but even today –in 2016– too few digital publications are
“born accessible”. How can we raise the bar for inclusive publishing? This
article presents best practices and guidance on how to make accessible
EPUB publications.

Keywords: XML, DocBook, authoring

1. Introduction
“Access to information and knowledge is the single most powerful tool available
to promote world peace.” It is with these words that the International Digital
Publishing Forum (IDPF) –the organization responsible for the development of
the EPUB standard– reacted to the tragic terrorist attacks that hit Paris in Novem-
ber 2015. In fact, the ability to access information and knowledge, regardless of
disabilities, is recognized as a human right by the United Nations Convention on
the Rights of Persons with Disabilities [3]. However, it is a common estimate that
less than 10% of the world’s published information is accessible to people with a
print disability. How can we raise the bar?

Fortunately, digital publishing is progressively bringing positive changes. The
EPUB 3 set of specifications, developed by IDPF, have been designed with acces-
sibility as a core principle. It is possible, today, to produce “born accessible” digi-
tal publications. This article presents, in a first section, an overview of the best
practices for creating accessible EPUB 3 content. In a second section, we will
make some suggestions on how to implement these best practices.

2. Accessibility Best Practices
An accessible publication is in essence a publication that can be usable by a wide
variety of users, on a wide variety of reading devices. However, there is no single
precise definition of an “accessible publication”; in fact there may be as many def-
initions as there are readers. It is therefore particularly interesting to avoid mak-
ing too many assumptions on the target audience and reading environment, and

1



instead rely on data quality and universal design solutions. That is not to say that
publishers or book creators have to make grandiose plans to implement accessi-
bility fundamentals; a little common sense usually goes a long way. This section
presents the principles that form the cornerstones of all accessible publications.

2.1. Structure means a lot
It may sound trite to the well-versed markup specialist, but the most fundamental
accessibility guideline is to represent data with proper structure and semantics.
Not only will it open you the gates of data-purity nirvana, but –more important-
ly– it has a direct impact on how the content will be understandable and operable
by print-disabled users.

2.1.1. Structuring 101

EPUB 3 Content Documents [8] are (X)HTML5 documents; in other words, the el-
ements and attributes used to markup EPUB content are defined in the W3C
HTML5 specification [12]. It is important to have a good understanding of the
HTML elements because they convey meaning (semantics). This meaning can be
used by Reading Systems (the applications used to render EPUBs, the equivalent of
User Agents in HTML terminology) to provide adequate navigability or rendering
features. For instance, when a heading in a document is properly represented
with one of the h1 to h6 elements, a reading system can provide navigation keys
to jump to the next/previous headings, and a screen reader can announce that the
user is reading a heading. If on the contrary the heading was represented with se-
mantically-neutral span or class elements, none of this would be possible.

A particularly important reason why proper structure and semantics are sig-
nificant is that they define the logical reading order of the content. Most publica-
tions have a primary narrative that a reader should be able to follow uninterrupt-
edly. Of course, within this primary narrative, content should be marked up in
the order in which it is expected to be read: for instance, a heading would typical-
ly appear as a first child of its containing section. What may be less commonly
understood, however, is that ancillary content –e.g. sidebars, figures, footnotes,
etc.– needs to be properly identified so that it will not interrupt the reading of the
primary narrative. Such supplementary content can be marked up with aside or
figure elements. With appropriate markup, a linear reading system like a text-to-
speech-enabled reader will be able to render the primary narrative end-to-end
while ignoring ancillary content; this feature is called skippability. An additional
benefit is that, would a user decide to enable the reading of ancillary content, the
reading system can offer an exit while in the midst of reading these –thereby con-
tinuing the reading right after said content–; this feature is called escapability.

As we said earlier, most of these structuring and semantics considerations are
often common sense, especially for whoever is accustomed to designing docu-

Born accessible EPUB

2



ment-oriented data. Yet, even today, many EPUB publications are created with
poor markup quality. This is espcially the case of documents exported from lay-
out-focused tools, which far too often come out as a soup of semantically neutral
div or p elements. Fixing a badly structure document –for instance with an XSLT
transformation– is a difficult task, usually relying on ad-hoc heuristics that cannot
easily be ported to the general case. It is therefore very important to have quality
data as early as possible in the production workflow; it will make accessibility
easier to implement.

2.1.2. Extended semantics

We’ve seen already that HTML5 elements convey meaning. However, there is on-
ly so much information you can express with the limited set of available ele-
ments. While using an aside element as a container to footnotes or sidebar con-
tent rightly contributes to identifying the logical reading order of the document,
an accessible reading system would also need to distinguish a "sidebar" aside
from a "footnotes" aside in order to accurately convey the information to the
user. EPUB 3 allows to extend HTML’s built-in structural semantics by using an
epub:type attribute on any element. This attribute can hold a space-separated list
of values taken from well-defined vocabularies. IDPF maintains a default vocabu-
lary, the EPUB 3 Structural Semantics Vocabulary [21]. While it is also possible to
define custom vocabularies, the semantic inflections defined in epub:type attrib-
utes will only impact the accessibility on the reading systems who understand
them.

2.1.2.1. Example: footnotes

One example usage of semantic inflections is to define footnotes. This can be done
by setting the properties "noteref" and "footnote" on elements with the epub:type
attribute as shown in Example 1)

Example 1. An EPUB footnote

<p>Attendees of XML Prague often take the opportunity
to discuss cool topics around frosty or hot beverages
<a href="#note-bev" epub:type="noteref">1</a>.</p>
  … 
<aside id="note-bev" epub:type="footnote">
  <p>I usually favor beer over coffee, but YMMV.</p>
</aside>

In this example, the "noteref" semantic inflection identifies the link as a reference
to a note (be it a footnote or a rearnote). The "footnote" semantic inflection identi-
fies the footnote content. In addition to the use of the aside element, which on its

Born accessible EPUB

3



own declares the footnote as being out of the primary reading flow, the semantic
inflections enable an accessible reading system to announce the note reference to
a print disabled user. The user can then decide to skip the note reference so that
her reading is not interrupted.

Not only does this rich semantic markup enable good accessibility features,
but it can also be beneficial to sighted readers too. While proper styling can al-
ready be used to give visual hints about the footnote nature (for instance by using
smaller font or rendering the content at the end of the page), the additional se-
mantic information can be used to enable dedicated rendering techniques. In the
case of footnotes, some reading system will effectively use that information to
render the footnote in a pop-up box, which can be read and then dismissed with-
out losing the current reading position.

2.1.2.2. Page numbering

Another typical use case for using semantic inflection is to identify –in the mark-
up– the location of the page breaks as they occur in the print representation of a
publication. Except for a minority of digital-only publications, most of the publi-
cations are available in both digital formats and print. We have a long history of
using printed material, and we often use page number references when we want
to locate content in a publication. Because print disabled users do not have access
to print publications, it is very important that they can follow the same references
when using a digital publication. This is often a critical need, notably in educa-
tion: for instance when the math teacher asks the pupils to go read the theorem #3
on page #42, her blind student must be able to access that page as directly as a
sighted user would do.

In EPUB 3, the location of where the page breaks occur in the equivalent print
material can be identified with elements having the semantic inflection "page-
break". An empty span or div element is typically used to represent such page
markers, as described in Example 2.

Example 2. A page marker

…
<p>last paragraph of page 41</p>
<div epub:type="pagebreak" id="42"/>
<p>first paragraph of page 42</p>
…

We will see in Section 2.2 how these page markers are referenced in a page list for
easier navigation.

Born accessible EPUB

4



2.1.2.3. ARIA roles

[25], the W3C specification for Accessible Rich Internet Applications –developped
within the Web Accessibility Initiative–, defines a role attribute that can be used
to extend the semantics of HTML elements, in a similar fashion as EPUB does
with the epub:type attribute. The default list of roles defined in ARIA 1.0 was
primarily designed to represent semantics of rich internet applications, and there-
fore many of its members are seldom used for digital publications.

It shall be noted however that in the process of trying to align digital publish-
ing with the Open Web Platform, the Digital Publishing Interest Group of W3C
recently joined the ARIA Working Group to work on a Digital Publishing module
for ARIA [4]. This module defines new ARIA roles specific to the needs of digital
e-book publications. Armed with this new role ontology, the forthcoming EPUB
3.1 specification [7] (current an early editor’s draft) will likely define the ARIA
role attribute as the recommended method for inflecting semantics on HTML
content, thereby superseding the epub:type attribute.

2.2. Navigability
The ability to easily navigate within a publication is crucial to accessibility. We’ve
seen in the previous sections that properly structured content enables essential
navigability features like the ability to escape from a block of content or the abili-
ty to jump to the next or previous semantically significant content. In addition to
this in-flow navigability, it is equally important to be able to have access at once
to any significant part of the publication.

In EPUB 3, direct navigation is made possible with the Navigation Document,
which is a mandatory component of the publication. The Navigation Document is
a specialized HTML document containing one or several nav elements that have a
constrained content model. Each nav element is distinguished with a semantical
inflection and represents a special navigation tree or list. An EPUB reading sys-
tem will understand the navigation document and typically render it using a
dedicated user interface (typically a navigation side bar or popup).

The only mandated navigation component is the table of content, colloquially
referred to as the toc nav. In accessible publications, the table of content contains
exhaustive references to all the sections that are part of the primary reading flow,
regardless of their depth in the publication outline. Publishers may also want to
include the Navigation Document in the primary reading order, as any other
HTML content document. When they do, they can hide branches of the naviga-
tion tree from the rendering by using the hidden attribute. In any case, it is heavi-
ly recommended to represent the full publication hierarchy in the toc nav ele-
ment.

Another very useful –albeit optional– component of the Navigation Document
is the page list that we hinted at in Section 2.1.2.2. When the EPUB has an equiva-

Born accessible EPUB

5



lent print publication, it should contain a page list in order to be considered ac-
cessible. The page list is a nav element identified with the "pagelist" semantic in-
flection and consisting of a flat list of the publication’s pages, in the reading order.
Typically, if the publication content has been marked up as shown in Example 2,
each link in the pagelist nav will point to a pagebreak page marker.

Finally, the Navigation Document is not limited to including a table of content
and a page list. Many other navigation trees or lists can be described, such as the
navigation to the “landmarks” of the publication, a list of figures, a list of tables,
etc. In general, the more navigation components are provided, the more effective-
ly a print-disabled reader will be able to navigate in the publication.

2.3. Adaptation

Print-disabled users and sighted users alike use a vast variety of systems to read
digital publications. Some users read EPUBs on smartphones, some with a mag-
nifying tool, or rendered on a desktop display, etc. An accessible EPUB is an
EPUB that can adapt to all these various reading environements.

One aspect of EPUB that we haven’t mentioned before is that Content Docu-
ments can be declared as being “reflowable” or “fixed layout”. By default, unless
expicitly declared otherwise, a content document is considered reflowable. It ba-
sically means that the rendering of the EPUB can adapt to the size of the reading
viewport; reading systems often perform dynamic pagination, and the text re-
flows to adjust to the page dimensions. On the contrary, fixed-layout documents
are intended to be rendered as a single page with a fixed size, regardless of the
device’s screen.

Fixed-layout EPUBs are sometimes created based on the false assumption that
the digital publication should look exactly like its print equivalent. This creates
obvious usability issues: because the content cannot adapt to the reading device,
sighted users often have to madly scroll and zoom to visually navigate into a
page. Worse, fixed-layout content is usually produced from layout-oriented visu-
al designing authoring tools, and is often poorly semantically structured. Fixed-
layout EPUBs often have rather bad accessibility properties.

For the reasons above, it is largely recommended to produce reflowable
EPUBs. Although Fixed-layout EPUB make sense in some very specialized cases
(e.g. for heavily design-oriented magazines, or for some children books), they are
seldom a necessity. Even then, fixed-layout content producers should still strive
to use semantically rich structure, which will often pay off for accessibility.

Another way that users adapt content to their needs, and which has a direct
impact on accesibility, is by changing default settings like font size or background
and highlight colors. Many reading systems provide built-in mechanisms to cus-
tomize font- or color-related settings. These are often used for personal preferen-
ces, and sometimes for accessibility purposes. For instance, a dyslexic user may

Born accessible EPUB

6



want to force the use of a specialized font –like OpenDyslexic– that will make the
text easier to read. It is therefore important to make sure that the EPUB’s design
remains unobtrusive, does not rely too heavily on font or colors, and never as a
mean of conveying significant information.

2.4. Alternative Content
While EPUB content is generally primarily textual, publications also often include
non-text content like images and sometimes time-based content like video or au-
dio. Accessible publications must ensure that this content –unless when used for
pure decoration– is perceivable by the user. This is one of the top-level principle
defined by the Web Content Accessiblity Guidelines [26].

2.4.1. Images

The goldern rule is that images that are significant to the understanding of the
publications must have a text alternative set using the alt attribute of the img ele-
ment. This text alternative will for instance be read to users who rely on text-to-
speech rendering. The HTML specification contains useful guidelines1 on how to
provide text alternatives.

A perhaps lesser known rule is that even images used for decorative puropose
–which are not semantically significant–, should have an alt attribute, but with
an empty value. Doing so enables assistive devices to ignore them entirely, which
makes the image unobtrusive to the reading experience.

2.4.2. Beyond images

It is important to keep in mind that using images should be restricted to the rep-
resentation of content that cannot be otherwise represented by semantically rich-
er structures.

Tabular data, for instance, are always better marked-up with a table element
than with an image. That will allow assistive devices to provide tabular naviga-
tion features, or to render the table content with text to speech.

Likewise, some graphics or diagrams can be represented with Scalable Vector
Graphics [22]. SVG has built-in accessibility features, like the ability to declare a
title, a longer description, focus areas, etc. Using SVG also opens the gate to some
interesting –albeit experimental– advanced features like for instance the ability to
sonify a line graph to make it perceivable to visually impaired users, as shown in
the interactive “Sonifier” demo by Doug Schepers [23].

As for mathematical formulae, it is usually recommended to use MathML
markup. Like other rich markup solutions, MathML has built-in elements and at-

1 https://www.w3.org/TR/html5/embedded-content-0.html#alt

Born accessible EPUB

7

https://www.w3.org/TR/html5/embedded-content-0.html#alt
https://www.w3.org/TR/html5/embedded-content-0.html#alt


tributes to provide alternative text content; the alttext attribute can be used to
provide simple description, and the annotation-xml element can be used when
richer description is required. Note however that using MathML will not necessa-
rily make a formula accessible per se. In his article “Is MathML Accessible?” [18],
Peter Krautzberger from MathJax reminds that –appart from simply rendering
the text alternatives– there is only so much an accessibilty tool can do to extract
meaningful information from presentational MathML. Using MathML is certainly
a step forward, but it still requires paying attention to markup quality and pro-
viding text alternatives.

2.4.3. Long descriptions

Sometimes, a simple textual description is not enough to accurately describe an
image and convey its information to visually impaired users. If your picture is
worth a thousand words, good luck fitting these in an alt attribute. In this case,
there are several better ways to describe at length an image, chart, diagram, or ta-
ble.

In simplest cases, the textual content surrounding the image already conveys
the information, as shown in Example 3. In this case, no further description is re-
quired.

Example 3. Description in the context

<p>The most common Czech beers are pale lagers of pilsner type
–like the one pictured below–, with characteristic transparent
golden colour, high foaminess and lighter flavour.</p>
<img src="czech-beer.jpg" alt="a pint of Czech pilsner">

When the descriptive paragraph is not directly adjacent to the image, ARIA can
be used to make the association explicit, with the aria-describedby attribute, as
shown in Example 4.

Example 4. Description associated with ARIA

<p id="czech-beer">The most common Czech beers are pale lagers
of pilsner type with characteristic transparent golden colour,
high foaminess and lighter flavour.</p>
<p>.... more content ...</p>
<img src="czech-beer.jpg" alt="a pint of Czech pilsner"
     aria-describedby="czech-beer"/>

Another useful pattern is to embed the image in the HTML figure element, and
add the description to a caption element. As shown in Example 5.

Born accessible EPUB

8



Example 5. Image and description in a figure

<figure>
  <img src="czech-beer.jpg" alt="a pint of Czech pilsner"/>
  <figcaption>The most common Czech beers are pale lagers of
    pilsner type with characteristic transparent golden colour,
    high foaminess and lighter flavour.
  </figcaption>
</figure>

Finally, sometimes a long description is simply not available –or cannot be add-
ed– in the publication text. This case requires that the long description is placed
in an external document. Unfortunately, at the time of writing there is no consen-
sus on what is the best approach to provide external long descriptions. The
longdesc attribute, for instance, which had been removed from HTML5 and has
been recently reinstated as an HTML5 extension [13], suffers from being only usa-
ble for images (and not tables, for instance) and some browser vendors stated
they will not implement it. Work is ongoing within W3C’s Digital Publishing In-
terest Group and ARIA Working Group to better define digital publishing’s re-
quirements for extended description and provide an appropriate technical solu-
tion. In the meantime, the avid reader can follow the guidelines established by
the DIAGRAM Center [6] or look at the analysis of alternative solutions as descri-
bed by the Digital Publishing IG [5] (keeping in mind that this is a working docu-
ment).

2.4.4. Timed media

Another type of media that requires alternative textual description is timed media,
like video or audio content. A video may contain visual information that cannot
be perceived by a visually impaired user. An audio track cannot be perceived by
people with hearing impairment. In both cases, HTML’s track element can be
used to include external timed text tracks. A detailed transcript can also be provi-
ded, using the techniques described in the preceding section.

2.5. Another way to read
Many reading systems are able to render EPUB content as auditory information
with text-to-speech technologies. In EPUB 3, it is also possible to provide a built-
in audio representation, synchronized with the HTML content documents. The
specification describing this mechanism is called EPUB Media Overlays [11]. It re-
lies on the Synchronized Multimedia Integration Language [20] to describe the
timing of a pre-recorded audio representation, linked with the related fragments
of EPUB content documents. A simple Media Overlay document is shown in Ex-
ample 6.

Born accessible EPUB

9



Example 6. A simple Media Overlay document
<smil xmlns="http://www.w3.org/ns/SMIL" version="3.0">
  <body>
    <par id="par1">
      <text src="chapter1.xhtml#sentence1"/>
      <audio src="chapter1_audio.mp3" clipBegin="0s" clipEnd="10s"/>
    </par>
    <par id="par2">
      <text src="chapter1.xhtml#sentence2"/>
      <audio src="chapter1_audio.mp3" clipBegin="10s" clipEnd="20s"/>
    </par>
    <par id="par3">
      <text src="chapter1.xhtml#sentence3"/>
      <audio src="chapter1_audio.mp3" clipBegin="20s" clipEnd="30s"/>
    </par>
  </body>
</smil>

Publications with Media Overlays are particularly useful for people with print
disability; they are also popular for educational content or children litterature.
One of the benefit of providing pre-recorded audio is simply is that the publisher
has a fine control over the quality of the audio. Whether it uses narration by pro-
fessional voice actors, or text-to-speech output from heavily customized system,
pre-recorded audio usually surpasses by far the quality of an on-the-fly text-to-
speech rendering. Additionally, Media Overlays-aware reading systems can pro-
vide usability features like being able to navigate in the audio structure ("jump to
the previous/next audio phrase"), or to synchronize the highlighting of text con-
tent, or define customized highlighting color.

Beyond the traditional full-text, full-audio book, Media Overlays can also be
used to implement other kind of publications, like audio-only EPUB books. The
DAISY Consortium notably provides a set of guidelines to represent navigable
audio-only EPUB 3 [2].

2.6. Metadata
Although until now we’ve primarily discussed the representationof accessible con-
tent, another crucial aspect of accessible publishing is to provide quality metadata
about the publication. In particular, metadata can be used to describe the accessi-
bility features of the publication. With accurate metadata, print disabled users
will be able to know if their particular accessibility needs are covered; metadata
can also be used by search engines to improve the discoverability of accessible
material. Picture yourself going to a library, buying the latest novel of your favor-
ite author, and –once back at home and sitting comforably in your cozy armchair–
finding out that the novel is actually represented in morse code and absolutely

Born accessible EPUB

10



unreadable to you. Well, this is the kind of problems that print disabled users
have to face constantly, typically when using mainstream distribution channels.

Two metadata vocabularies are especially relevant to describe the accessibility
features of a publication. One is ONIX Code List 196 [17], part of the ONIX meta-
data standard developed by EDItEUR. Another is the properties defined by the
Accessibility Metadata Project and contributed to the schema.org vocabulary [19].

3. Getting it done
The previous sections presented some best practices that should be followed to
represent accessible digital publications with EPUB 3. This section intends to give
some guidance and pointers on how to implement it effectively.

3.1. Plan for it

The most fundamental advice is maybe that implementing accessibility needs to
be planned upfront. Adding accessibility features to an existing inaccessible
EPUB can be very costly, and is never a sensible long term appraoch. In an ideal
world, digital publications would be born accessible. Unfortunately, far too often,
mainstream publications need to be heavily reworked –sometimes from scratch–
by specialized organizations.

Establishing a publication process with accessibility in mind is a first step. Ac-
cessibility needs to be taken into account in every step of the process. The tools
used to create publications need to be accessible themselves, the in-house docu-
mentation system needs to be accessible, the retailing system needs to be accesi-
ble.

The importance of taking accessibility into account in the early steps of the
process is perhaps best exemplified by looking at structural and semantical quali-
ty, as described in Section 2.1. Consider on the one hand a publication workflow
putting the initial focus on print layout, with a visual design tool exporting an
EPUB with low markup quality. Enriching or fixing this markup will be very time
consuming, resulting in half-baked accessibility. On the other hand, a publication
workflow designed with accessibility in mind will often focus on data quality
very early in the process, which will allow to more easily and effectively produce
key EPUB components like table of content, page lists, package documents, etc.
At the end of the day, the result will be more accessible, and the overall cost re-
duced.

3.2. Follow the guide

Accessibility is related to many transversal aspects of the Web and Digital Pub-
lishing; knowing all the pitfalls and techniques can be challenging. Fortunately,

Born accessible EPUB

11



several guideline documents are available and can prove to be invaluable resour-
ces.

The first set of guidelines are the Web Content Accessibility Guidelines [26],
developed at W3C. Because EPUB 3 is laregely based on Web technologies, most
of the WCAG recommendations apply. WCAG consist in a rather concise set of
guidelines organized under 4 principles: perceivable, operable, understandable, and
robust. In addition, it is complemented by more extensive supporting material
which provides advanced guidance and specific details on how to develop acces-
sible content.

The second set of guidelines are the EPUB 3 Accessibility Guidelines [10], and
have been developed by Matt Garrish at IDPF. Rather than a normative docu-
ment, it describes various concrete techniques that will help in the creation of ac-
cessible EPUB 3 content. It is a good companion to the “Accessible EPUB 3” book
[9] by the same author.

3.3. Use the right tools

Tooling can play a significant role in getting accessibility right –or wrong, for that
matter, as we’ve seen in earlier sections.

While giving a complete list of tools would be out of the scope of this article,
the following list is an example of a few approaches or solutions that can be used
as part of an EPUB production system:
• XML processing languages (e.g. XSLT and XProc): automated processing of

XML or HTML –as done for instance by le-tex transpect or DAISY Pipeline– is
an effective approach to EPUB production. The processing steps can gradually
work to enrich markup, extract semantically significant data and automatical-
ly generate key EPUB components like the table of content, the page list, the
package document, etc.

• DAISY Tobi [24] and Obi [16] are authoring tools for DAISY talking books
and accessible EPUB 3 with Media Overlays. Tobi is designed to ease the proc-
ess of synchronizing a text document with human narration. Obi is designed
to produce audio-only books. Both support live recording or importing pre-
recorded audio files.

• MathML cloud [15] is a tool to convert math expressions written in a variety
of formats (LaTeX, asciimath, MathML) into text descriptions, PNG images,
SVGs, MathML. Math Cloud adopts a SaaS model intended to be integrated in
production workflows.

• aeneas [1] is a library and set of tools to automagically synchronize audio and
text. With a little further processing, the synchronization map produced by ae-
neas can easily be used to produce EPUB Media Overlays. Aeneas is also de-
ployed as a web application that can be used in a SaaS approach.

Born accessible EPUB

12



All the tools described above are open source.

3.4. Test it!
The final advice is to test the publications in various environments, with various
reading systems, and with various assistive devices. There is only so much an au-
tomated tool –like EpubCheck or specialized accessibility checkers– can report.
At the end of the day, regardless of how diligent you were in following the guide-
lines, evaluating accessibility will require the intervention of human judgement.

4. Conclusion
Providing equal access to knowledge and information, regardless of print disabil-
ities, is a fundamental human right. By making accessibility one of its core design
principle, the EPUB 3 set of specifications is bringing positive change to inclusive
publishing, which keeps improving with the successive standard revisions. The
best practices described in this article provide an overview of the techniques and
approaches to designing accessible EPUB 3 publications. The set of tips provided
in the last section hint that producing accessible EPUB 3 is far from being an in-
surmountable endeavor. In fact, various tools and guidelines exist, and comitting
to accessibility will result in generally higher quality EPUB 3 content, with im-
proved usability for all.

In the coming months, the DAISY Consortium, together with its members,
supporters, and partners, will work on establishing a “Baseline for Born Accessi-
ble EPUB”. This project will provide minimum requirements, clear guidance for
publishers, and assurance to consumers on the minimum accessibility they can
expect. By collaborating and pooling resources, we can change the world!

Bibliography
[1] Alberto Pettarin. Aeneas, a library to automagically synchronize audio and text.

ReadBeyond. 2015. https://github.com/readbeyond/aeneas .
[2] Avneesh Singh. Navigable audio-only EPUB3 Guidelines. DAISY Consortium.

2015. http://www.daisy.org/ties/navigable-audio-only-epub3-guidelines .
[3] Committee on the Rights of Persons with Disabilities. Convention on the Rights

of Persons with Disabilities. United Nations Office for the High Commissioner
for Human Rights. 30 March 2007. http://www2.ohchr.org/english/law/
disabilities-convention.htm#21 .

[4] Matt Garrish, Tzviya Siegman, Markus Gylling, and Shane McCarron. Digital
Publishing WAI-ARIA Module 1.0. W3C Working Draft. W3C. https://
www.w3.org/TR/dpub-aria-1.0/ .

Born accessible EPUB

13

https://github.com/readbeyond/aeneas
http://www.daisy.org/ties/navigable-audio-only-epub3-guidelines
http://www2.ohchr.org/english/law/disabilities-convention.htm#21
http://www2.ohchr.org/english/law/disabilities-convention.htm#21
https://www.w3.org/TR/dpub-aria-1.0/
https://www.w3.org/TR/dpub-aria-1.0/


[5] Digital Publishing Interest Group. Extended Description Analysis. Working
Document. W3C. 2015. https://w3c.github.io/dpub-accessibility/extended-
description-analysis.html .

[6] DIAGRAM Center. Image Guidelines for EPUB 3. DIAGRAM Center. http://
diagramcenter.org/59-image-guidelines-for-epub-3.html .

[7] Markus Gylling, Tzviya Siegman, and Matt Garrish. EPUB 3.1. Editor's Draft.
IDPF. 30 January 2016. http://www.idpf.org/epub/31/spec/epub-
spec-20160130.html .

[8] Markus Gylling, William McCoy, Elika J. Etemad, and Matt Garrish. EPUB
Content Documents 3.0.1. Recommended Specification. IDPF. 26 June 2014.
http://www.idpf.org/epub/301/spec/epub-contentdocs-20140626.html .

[9] Matt Garrish. Accessible EPUB 3. O'Reilly. 2012. http://shop.oreilly.com/
product/0636920025283.do .

[10] Matt Garrish. EPUB 3 Accessibility Guidelines. IDPF. http://www.idpf.org/
accessibility/guidelines/ .

[11] Marisa DeMeglio and Daniel Weck. EPUB Media Overlays 3.0.1.
Recommended Specification. IDPF. 26 June 2014. http://www.idpf.org/epub/
301/spec/epub-mediaoverlays-20140626.html .

[12] Ian Hickson et al.. HTML5. W3C Recommendation. W3C. 28 October 2014.
http://www.w3.org/TR/html5/ .

[13] Charles McCathieNevile and Mark Sadecki. HTML5 Image Description
Extension (longdesc),. W3C Recommendation. W3C. 26 February 2015. https://
www.w3.org/TR/html-longdesc/ .

[14] MathJax. MathJax Semantic Enrichment project. MathJax. https://github.com/
mathjax/MathJax/wiki/Semantic-Enrichment-project .

[15] Benetech. MathML Cloud. Benetech. https://www.mathmlcloud.org/ .
[16] DAISY Consortium. Obi. DAISY Consortium. http://www.daisy.org/project/
obi .

[17] EDItEUR. ONIX for Books. EDItEUR. 24 January 2016. http://doi.org/10.4400/
akjh .

[18] Peter Krautzberger. Is MathML Accessible?. 15 Nov 2015. http://www.idpf.org/
accessibility/guidelines/content/about.php .

[19] Accessibility Metadata Project. Schema.org properties, Accessiility Metadata
Project,. Accessibility Metadata Project. 2013. http://www.a11ymetadata.org/
the-specification/ .

Born accessible EPUB

14

https://w3c.github.io/dpub-accessibility/extended-description-analysis.html
https://w3c.github.io/dpub-accessibility/extended-description-analysis.html
http://diagramcenter.org/59-image-guidelines-for-epub-3.html
http://diagramcenter.org/59-image-guidelines-for-epub-3.html
http://www.idpf.org/epub/31/spec/epub-spec-20160130.html
http://www.idpf.org/epub/31/spec/epub-spec-20160130.html
http://www.idpf.org/epub/301/spec/epub-contentdocs-20140626.html
http://shop.oreilly.com/product/0636920025283.do
http://shop.oreilly.com/product/0636920025283.do
http://www.idpf.org/accessibility/guidelines/
http://www.idpf.org/accessibility/guidelines/
http://www.idpf.org/epub/301/spec/epub-mediaoverlays-20140626.html
http://www.idpf.org/epub/301/spec/epub-mediaoverlays-20140626.html
http://www.w3.org/TR/html5/
https://www.w3.org/TR/html-longdesc/
https://www.w3.org/TR/html-longdesc/
https://github.com/mathjax/MathJax/wiki/Semantic-Enrichment-project
https://github.com/mathjax/MathJax/wiki/Semantic-Enrichment-project
https://www.mathmlcloud.org/
http://www.daisy.org/project/obi
http://www.daisy.org/project/obi
http://doi.org/10.4400/akjh
http://doi.org/10.4400/akjh
http://www.idpf.org/accessibility/guidelines/content/about.php
http://www.idpf.org/accessibility/guidelines/content/about.php
http://www.a11ymetadata.org/the-specification/
http://www.a11ymetadata.org/the-specification/


[20] Dick Bulterman. Synchronized Multimedia Integration Language (SMIL 3.0).
W3C Recommendation. W3C. http://www.w3.org/TR/SMIL3/ .

[21] EPUB Structural Semantics Vocabulary. IDPF. http://www.idpf.org/epub/vocab/
structure/# .

[22] Erik Dahlström et al.. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C
Recommendation. W3C. http://www.w3.org/TR/SVG11/ .

[23] Doug Schepers. Invisible Visualization. 22 april 2014. http://schepers.cc/
invisible-visualization .

[24] Tobi, DAISY Consortium,. http://www.daisy.org/project/tobi .
[25] James Craig et al.. Accessible Rich Internet Applications (WAI-ARIA) 1.0. W3C

Recommendation. W3C. http://www.w3.org/TR/wai-aria/ .
[26] Ben Caldwell et al.. Web Content Accessibility Guidelines (WCAG) 2.0. W3C

Recommendation. W3C. 11 December 2008. W3C. https://www.w3.org/TR/
WCAG20/ .

Born accessible EPUB

15

http://www.w3.org/TR/SMIL3/
http://www.idpf.org/epub/vocab/structure/#
http://www.idpf.org/epub/vocab/structure/#
http://www.w3.org/TR/SVG11/
http://schepers.cc/invisible-visualization
http://schepers.cc/invisible-visualization
http://www.daisy.org/project/tobi
http://www.w3.org/TR/wai-aria/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/


16



Extending CSS with XSL-FO,
XSL-FO with CSS

Tony Graham
Antenna House, Inc.

<tony@antennahouse.com>

Abstract

Discusses the Antenna House approach to merging the features of XSL-FO
and CSS in AH Formatter. This showcases some of the features of one style-
sheet language that have crossed between the two flavours of AH Formatter
to become an extension in the other; for example, CSS numbering styles in
XSL-FO and XSL-FO table header and footer control in CSS. AH Format-
ter uses a common layout engine when formatting either XSL-FO or CSS,
plus there are a lot of common properties in XSL 1.1 and CSS 2.0. Allowing
properties to cross over to the other stylesheet language can be as simple as
adding a prefixed property in CSS or adding a namespaced property in
XSL-FO. In some cases, however, only part of the implementation in one
language can or should be reimplemented for the other, and there are some
parts for which it is not practical to reimplement for the other stylesheet lan-
guage.

1. Introduction
AH Formatter [1] from Antenna House [2] is unique in offering formatting of
XML and HTML using either XSL-FO or CSS to produce PDF, PostScript, SVG,
and a range of other output formats.

There are many similarities between the properties supported by XSL-FO and
those of CSS. It was something of a shotgun wedding, and it was followed by an
acrimonious separation, but there was a time during the development of XSL 1.0
and CSS 2 where the emphasis was on aligning XSL-FO and CSS. Their process-
ing models and syntaxes are very different, but at the time of XSL 1.0 and CSS 2,
they shared the same models for borders, margins, padding, font properties, and
many other aspects of styling markup. And, thanks to backwards compatibility,
that’s still largely true.

AH Formatter was originally developed as an XSL-FO-only formatter. CSS
support was added by using the CSS to drive the underlying layout engine, rath-
er than somehow translating the CSS into XSL-FO and formatting that XSL-FO. A
side-effect, if you like, of implementing CSS features in a layout engine that al-
ready implements XSL-FO is that features of CSS that fit the syntax and process-

17



ing model of XSL-FO can be made available to XSL-FO, and, obviously, features
of XSL-FO that can fit the syntax and processing model of CSS can also be made
available to CSS stylesheets.

2. Reimplementation strategies
There are several ways to approach reimplementing a CSS feature in XSL-FO or
an XSL-FO feature in CSS. These include:
• Full implementation – There is a direct correspondence between every aspect

of the standard feature of one stylesheet language and its reimplementation as
an extension to the other stylesheet language. For example, the CSS @counter-
style ‘at-rule’ and associated properties reimplemented as an axf:counter-
style extension element and associated properties.

• Partial implementation – Some parts of a feature of one stylesheet language
either doesn’t map well to the other or overlaps with a standard feature of the
other, so only part of the feature can usefully be reimplemented as an exten-
sion to the other stylesheet language. For example, many but not all of the fea-
tures of the support for XSL-FO footnotes could be reused when implement-
ing support for CSS footnotes, plus some of the extra features required for CSS
footnotes were reimplemented for XSL-FO as extension properties and exten-
sion elements.

• Different surface syntax – Sometimes the same or quite similar constructs
have quite different expressions in CSS and XSL-FO but boil down to the same
sorts of areas on the formatted page. For example, both the CSS 3 named
strings and running elements constructs can be and were implemented using
the machinery underlining the implementation of XSL-FO fo:marker and
fo:retrieve-marker formatting objects.

• Don't implement – Either the second stylesheet language already has an
equivalent feature or the different approaches of the two languages make it
impractical to reimplement a feature in the other language. For example, the
CSS list-style, list-style-image, and list-style-position properties
are not going to be reimplemented for XSL-FO because XSL-FO already al-
lows more control over the layout and content of list item labels than CSS
does, and the XSL-FO fo:page-sequence-master [3] is not reimplemented for
CSS because CSS has its own page selection mechanism.

2.1. Identifying reimplemented features

Some CSS or XSL-FO features of AH Formatter are easy to identify as reimple-
mentations of features of the other stylesheet language, but others aren’t. Identi-
fying reimplemented properties is mostly easy, since the AH Formatter Online

Extending CSS with XSL-FO, XSL-FO with CSS

18



Manual [4] includes a chapter [5] listing all of the XSL-FO and CSS properties that
AH Formatter implements (see Figure 1).

Figure 1. AH Formatter XSL/CSS Properties List (detail)

In general:

• XSL-FO properties with an axf: prefix are Antenna House extensions to XSL-
FO.

• CSS properties with an -ah- prefix may be Antenna House extensions or may
be still under development by the W3C CSS Working Group.

• CSS properties with an (-ah-) prefix can be used with or without an -ah-
prefix: they can be used unprefixed because they have been standardised by
the CSS WG, but the prefixed form is still supported for backwards compati-
bility with earlier AH Formatter versions.

• Unprefixed CSS properties are implemented by AH Formatter without previ-
ously being implemented in a prefixed form.

• Numbers before an XSL-FO property name indicate the section of the XSL 1.1
Recommendation in which the property is defined.

• An abbreviation in square brackets before a CSS property name indicates the
CSS module defining the property.

so:

• A CSS property without a CSS module abbreviation that corresponds to an
XSL-FO property with an XSL 1.1 section reference is likely to be an XSL-FO
property reimplemented for CSS.

• An XSL-FO property with an axf: prefix that corresponds to a CSS property
with a CSS module abbreviation is likely to be a CSS property reimplemented
for XSL-FO.

Some of the CSS “at-rule” [6] supported by AH Formatter have been reimple-
mented for XSL-FO as extension elements. The “Extended Elements” [7] section
of the Online Manual shows both the XSL-FO and CSS forms for these.

Extending CSS with XSL-FO, XSL-FO with CSS

19



There are currently no XSL-FO formatting objects that are reimplemented for
CSS as custom values of the CSS display property, but the areas generated by
some formatting objects can, obviously, also be generated by some CSS features.

2.2. Full implementation

2.2.1. CSS to XSL-FO: Counter styles

A “counter style” is the definition and/or implementation of the sequence of
numbers, letters, and/or symbols to use to represent a numbering sequence. CSS 1
defined a handful of counter styles [8] based on what HTML traditionally al-
lowed on lists. CSS Counter Styles Level 3 [9] defines the ‘@counter-style’ rule,
which provides a mechanism for defining custom counter styles, plus it defines a
number of counter styles that should all (eventually) be expected to be built into
browsers.

The core of a CSS 3 counter style is that it attaches a name to an algorithm for
generating string representations of integer counter values. A counter style may
also include properties indicating a prefix and/or suffix to add to the generated
values, additional strings to indicate negative numbers, etc. The counter style can
be used in the ‘list-style-type’ and in the CSS ‘counter()’ and ‘counters()’ func-
tions. Example 1 shows a ‘my-cjk-decimal’ counter style that is a copy of the ‘cjk-
decimal’ counter style from CSS Counter Styles Level 3. As the name suggests,
the counter style uses the ideographs for zero to nine to represent decimal num-
bers, and the numbers are followed by an ideographic comma suffix. The counter
style is used when numbering the items in an ol.

Example 1. CSS3 @counter-style

<style type='text/css'>
@counter-style my-cjk-decimal {
system: numeric;
range: 0 infinite;
symbols: \3007  \4E00  \4E8C  \4E09  \56DB  \4E94  \516D  \4E03  \516B  ►
\4E5D;
/* 〇 一 二 三 四 五 六 七 八 九 */
suffix: "\3001";
/* "、" */
}
ol li { list-style-type: my-cjk-decimal;  }
/* the following CSS is not part of the test */
.test { font-size: 25px; }
ol { margin: 0; padding-left: 8em; }
</style>
...

Extending CSS with XSL-FO, XSL-FO with CSS

20



<ol>
  <li title="1">一</li>
  <li title="2">二</li>
</ol>

Example 2 shows the equivalent XSL-FO markup. The counter style is declared
using an axf:counter-style element. The element has attributes corresponding
to the CSS properties. The axf:number-transform property on each fo:list-
item-label/fo:block refers to the counter style, so the contents of the fo:block
is formatted using the counter style. The XSL-FO markup is more verbose than
the HTML/CSS partly because it is meant to be generated, not authored directly,
and partly as a consequence of XSL-FO allowing you to put practically anything –
even a table, if that’s what you want – as the list item label.

Example 2. counter-style in XSL-FO

<fo:declarations>
  <axf:counter-style name="my-cjk-decimal" system="numeric" range="0 ►
infinite"
symbols="'〇' '一' '二' '三' '四' '五' '六' '七' '八' '九'" suffix="'、'"/>
</fo:declarations>
...
<fo:list-block provisional-distance-between-starts="60mm"
provisional-label-separation="5mm">
  <fo:list-item>
    <fo:list-item-label start-indent="5mm" end-indent="label-end()">
      <fo:block text-align="right" color="red"
                axf:number-transform="my-cjk-decimal">1</fo:block>
    </fo:list-item-label>
    <fo:list-item-body start-indent="body-start()"><fo:block>一</fo:block>
    </fo:list-item-body>
  </fo:list-item>
  <fo:list-item>
    <fo:list-item-label start-indent="5mm" end-indent="label-end()">
      <fo:block text-align="right" color="red"
                axf:number-transform="my-cjk-decimal">2</fo:block>
    </fo:list-item-label>
    <fo:list-item-body start-indent="body-start()"><fo:block>二</fo:block>
    </fo:list-item-body>
  </fo:list-item>
</fo:list-block>

The CSS example is based on an @counter-styles test from the W3C I10n WG,
and the corresponding XSL-FO example includes literal numbers to be formatted
with the counter style, but axf:number-transform can be used with formatting
objects that generate numbers – such as fo:page-number – as well.

Extending CSS with XSL-FO, XSL-FO with CSS

21



There are two more usual ways to generate numbers to be formatted using
XSL-FO:
• Generate literal numbers in the XSL-FO using xsl:number [10] in the XSLT

transformation stage.
• Format literal numbers using the properties for number-to-string conversion:

format, grouping-separator, grouping-size, and letter-value [11].
In both cases, however:
• Only a few formats are defined for XSLT or XSL-FO, and anything else is im-
plementation-defined, whereas CSS-style counter styles both have more pre-
defined formats and allow definition of custom styles within the current docu-
ment.

• Formats for large numbers – e.g., numbers up to 9,999 for several CJK num-
bering styles – is better defined for the predefined CSS-style counter styles
than for the predefined XSLT and XSL-FO formats.

2.2.2. XSL-FO to CSS: Omitting table header/footer at break

The styling of tables is one of the few areas of CSS 3 that has not advanced from
CSS 2.1. The CSS3 Tables Module [12] is not actively maintained and table styling
“consists of the text of the CSS2 chapter on tables, with almost no changes yet.”

The XSL-FO table model is closely aligned with the CSS 2 table model. For ex-
ample, automatic table layout and fixed table layout are defined simply by refer-
ring to the definitions in section 17.52 of the CSS 2 specification [13], plus many of
the table-related properties are identical to CSS properties. XSL 1.1 defines some
additional properties related to tables which aren’t in CSS 2 and, obviously,
haven’t been added since. Two of these are table-omit-header-at-break [14]
and table-omit-footer-at-break [15], which control whether or not the table
header (or footer) is repeated where the table breaks across a page.1 They are
available in CSS stylesheets as -ah-table-omit-header-at-break and -ah-
table-omit-footer-at-break. Their effect on the document in Example 3 is
shown in Figure 2.

Example 3. Table samples

<style type='text/css'>
@page {
  size: 50mm 50mm;
}
table {
  page-break-before: always;

1AH Formatter extends the true and false values with a column value [16] for specifying that the
header (or footer) is omitted at column breaks but not page breaks.

Extending CSS with XSL-FO, XSL-FO with CSS

22



  width: 100%;
  border-collapse: collapse;
}
thead, tfoot {
  background-color: #f0fff0;
}
td {
  border: thin solid black;
}
.omit {
  -ah-table-omit-header-at-break: true;
  -ah-table-omit-footer-at-break: true;
}
</style>
...
<table>
  <thead>
    <tr><td>thead</td></tr>
  </thead>
  <tfoot>
    <tr><td>tfoot</td></tr>
  </tfoot>
  <tbody>
    <tr><td>1</td></tr>
...
    <tr><td>10</td></tr>
  </tbody>
</table>

<table class="omit">
...
</table>

Figure 2. -ah-table-omit-header-at-break and -ah-table-omit-footer-at-
break

Extending CSS with XSL-FO, XSL-FO with CSS

23



2.3. Partial implementation

2.3.1. Footnotes

Footnotes in AH Formatter are both a partial implementation of XSL-FO features
for CSS and a partial implementation of CSS features for XSL-FO.

XSL-FO footnotes are generated using the fo:footnote and fo:footnote-
body formatting objects plus an fo:inline for the footnote citation. The contents
of the fo:inline, as well as any corresponding number or symbol on the footnote
itself, are expected to be included in the XSL-FO document. Example 4 shows
XSL-FO markup for an fo:block containing an fo:footnote.

Example 4. XSL-FO footnote

<fo:block>
 XML文書をきれいに表示・印刷するための仕様である XSL 1.1に対応しており<fo:footnote>
  <fo:inline baseline-shift="super" font-size="0.75em">(3)</fo:inline>
  <fo:footnote-body>
    <fo:block font-size="0.9em" text-indent="0em">
    <fo:inline baseline-shift="super" font-size="0.75em">(3)</fo:inline>
     詳細はオンラインマニュアルの「XSL仕様の実装状況」を参照してください。
   </fo:block>
  </fo:footnote-body>
</fo:footnote>
 、また W3Cで策定作業中の CSS Level 3のページ媒体向け仕様によるレイアウト指定のページ
組版にも対応しています。
</fo:block>

CSS footnotes are generated by setting the float (or -ah-float) property value
to footnote [17][18]. The ::footnote-call and ::footnote-body pseudo-ele-
ments specify the styling for the footnote citation and footnote, respectively. Ex-
ample 5 shows CSS styles and HTML markup for the same footnote text. Figure 3
shows

Example 5. CSS footnote

.footnote   {
  -ah-float: footnote;
  margin-left: 3em;
}

::footnote-call  {
  content: "("counter(footnote)")";
  font-size: 8pt;
  vertical-align: super;
}

Extending CSS with XSL-FO, XSL-FO with CSS

24



::footnote-marker  {
  content: "("counter(footnote)")";
  font-size: 8pt;
  vertical-align: super;
}
...
<p>XML文書をきれいに表示・印刷するための仕様である XSL 1.1に対応しており
<span class="footnote">詳細はオンラインマニュアルの「XSL仕様の実装状況」を参照して
ください。
</span>、また W3Cで策定作業中の CSS Level 3のページ媒体向け仕様によるレイアウト指定
のページ組版にも対応しています。</p>

Figure 3. CSS footnotes

So far, so good: XSL-FO and CSS have similar concepts for the components of a
footnote, so much of the existing XSL-FO implementation of footnote processing
in the layout engine would have been reusable for the CSS implementation. How-
ever, there are also differences that preclude simply reusing the XSL-FO machi-
nery for CSS:

Extending CSS with XSL-FO, XSL-FO with CSS

25



• In XSL-FO, the “footnote-reference-area”, which contains the formatted foot-
notes, is implicitly present in every fo:region-body [19], whereas in CSS, the
page area used to display footnotes is defined using an @footnote rule [20],
which might not be defined for every page (since the example user agent
stylesheet is only informative).

• In CSS, the max-height property applies to the footnote area (unless it is the
last page of the document), whereas in XSL-FO, there are no controls over the
height of the implicit footnote-reference-area.

• In CSS, the number or symbol for the footnote is expected to be generated by
the CSS formatter using the value of the predefined “footnote counter” [21],
whereas in XSL-FO, the number or symbol is expected to be present in the
XSL-FO document since it is expected to be generated during the XSLT stage.

The additional CSS features of maximum height for the footnote area and gener-
ating the footnote number or symbol within the formatter have been reimplemen-
ted for XSL-FO as axf:footnote-max-height [22] and <axf:footnote-number>
[23], respectively.

2.4. Different surface syntax

2.4.1. Running headers and footers

XSL-FO provides more control over the position and content of running headers
and footers than is currently defined for CSS. As such, it was possible to imple-
ment both CSS named strings [24] and CSS running elements [25] using the exist-
ing machinery provided by the layout engine.

The XSL-FO fo:simple-page-master [26] can have four ‘outer’ regions that
can be used for running headers and footers, as Figure 4 shows. The content for
the running headers and footers generated on a page come from fo:static-
content [27] in the current fo:page-sequence, and, as Figure 5 shows, different
fo:static-content can be directed to specific regions on particular page mas-
ters. The fo:static-content can contain block-level formatting objects that con-
tain hard-coded text (‘static’ static-content, if you like) but can also contain
fo:page-number, which renders as the current page number, and fo:retrieve-
marker, which renders as content from fo:marker formatting objects from among
the formatting objects that generated the areas on the current page (or on a pre-
ceding page).

Extending CSS with XSL-FO, XSL-FO with CSS

26



Figure 4. fo:simple-page-master regions

Figure 5. fo:static-content directed to regions on page masters

Extending CSS with XSL-FO, XSL-FO with CSS

27



CSS provides two mechanisms for generating running headers and footers:
named strings and running elements. Named strings copy text from the docu-
ment and/or stylesheet to one of 16 ‘margin boxes’ around the edges of the page,
shown in Figure 6. Since the machinery implemented for running headers and
footers in XSL-FO includes the ability to place areas from block-level formatting
objects in the outer regions, it was possible to implement the margin boxes for the
named strings using the same machinery despite the differences in syntax be-
tween the two stylesheet languages.

The content of named strings comes from elements on the current page (or a
previous page), but there may be multiple instances of that type of element on the
page. The string() function [28], which copies the value of the named string, has
an optional second parameter for indicating whether the first, last, or another in-
stance should be used in the margin box. The XSL-FO fo:retrieve-marker has a
similar facility through the retrieve-position property, so, again, the named
string selection could be implemented based on the machinery available for XSL-
FO.

Figure 6. CSS margin boxes

CSS running elements expand upon named strings by removing entire elements
from the normal flow and making them available for placement in a margin box
so that, for example, a book title in a running head may include an italic word.
Again, fo:retrieve-marker can retrieve more that just text, so running elements
could also be implemented based on the machinery implemented for XSL-FO.

Extending CSS with XSL-FO, XSL-FO with CSS

28



2.5. Don’t implement

2.5.1. Page selection

XSL-FO and CSS have different but largely compatible mechanisms for specifying
page sizes, but they differ markedly in how pages are selected for use during pro-
cessing.

CSS has @page rules [29] for specifying page sizes, etc. @page rules can
have :left, :right, :first, and :blank pseudo-classes so a CSS formatter can
use different @page rules in different contexts. @page rules may also have a name
[30], and a CSS formatter will, if necessary, force a page break to ensure that an
element is formatted on a page from an @page rule with a name that matches the
element’s page property value. Example 6, from the CSS Paged Media Module
Level 3 Working Draft [31], shows the styles and markup for two tables that are
rendered on landscape pages (which could be the same page, if they would both
fit) followed by a <p> that is rendered on the “narrow” page type. A CSS format-
ter would have to force a page break after the second table, if necessary, as part of
switching to a new page size.

Example 6. CSS named page

@page narrow { size: 9cm 18cm }
@page rotated { size: landscape }
div { page: narrow }
table { page: rotated }
...
<div>
<table>...</table>
<table>...</table>
<p>This text is rendered on a 'narrow' page</p>
</div>

In contrast, an XSL-FO document has fo:simple-page-master for defining page
size, etc., and the sequence of page masters to use for an fo:page-sequence is
defined in an fo:page-sequence-master. XSL-FO has fo:repeatable-page-
master-alternatives and fo:conditional-page-master-reference [32] for de-
termining which page master to use for an odd, even, first, last, rest, or any
and/or blank or not blank page in a page sequence. The number of pages pro-
duced by an fo:page-sequence can be fixed, the fo:page-sequence can be set to
start or end on either an odd or an even page, and there can be a maximum num-
ber of repeats set for any of the sets of page master alternatives specified in the
fo:page-sequence-master, but there is no facility in XSL-FO for breaking to an
alternative page master based on anything in the XSL-FO markup contained by
the fo:page-sequence.

Extending CSS with XSL-FO, XSL-FO with CSS

29



These differences in their page selection mechanisms between CSS and XSL-
FO over when to switch page types/page masters have meant that it is not practi-
cal to reimplement one for the other.

3. Conclusion
The extent to which Antenna House has and hasn’t been able to merge the fea-
tures of XSL-FO and CSS by implementing parts of one as extensions in the other
illustrates both that neither stylesheet language specification is complete and that
there are some fundamental differences of approach that either can’t be bridged
or aren’t worth being bridged.

Bibliography
[1] Antenna House Formatter V6. http://www.antennahouse.com/antenna1/
formatter/

[2] http://www.antennahouse.com/
[3] https://www.w3.org/TR/xsl11/#fo_page-sequence-master
[4] http://www.antennahouse.com/product/ahf60/docs/
[5] http://www.antennahouse.com/product/ahf60/docs/ahf-focss6.html
[6] https://drafts.csswg.org/css-syntax/#at_rule
[7] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#ext-element-
conf

[8] https://www.w3.org/TR/REC-CSS1/#list-style
[9] CSS Counter Styles Level 3 https://www.w3.org/TR/css-counter-styles/
[10] https://www.w3.org/TR/xslt20/#number
[11] https://www.w3.org/TR/xsl11/#d0e29313
[12] https://drafts.csswg.org/css3-tables/
[13] http://www.w3.org/TR/REC-CSS2/tables.html#width-layout
[14] https://www.w3.org/TR/xsl11/#table-omit-header-at-break
[15] https://www.w3.org/TR/xsl11/#table-omit-footer-at-break
[16] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.table-
omit-footer-at-break

[17] https://www.w3.org/TR/2011/WD-css3-gcpm-20111129/#footnotes

Extending CSS with XSL-FO, XSL-FO with CSS

30

http://www.antennahouse.com/antenna1/formatter/
http://www.antennahouse.com/antenna1/formatter/
http://www.antennahouse.com/
https://www.w3.org/TR/xsl11/#fo_page-sequence-master
http://www.antennahouse.com/product/ahf60/docs/
http://www.antennahouse.com/product/ahf60/docs/ahf-focss6.html
https://drafts.csswg.org/css-syntax/#at_rule
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#ext-element-conf
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#ext-element-conf
https://www.w3.org/TR/REC-CSS1/#list-style
https://www.w3.org/TR/css-counter-styles/
https://www.w3.org/TR/xslt20/#number
https://www.w3.org/TR/xsl11/#d0e29313
https://drafts.csswg.org/css3-tables/
http://www.w3.org/TR/REC-CSS2/tables.html#width-layout
https://www.w3.org/TR/xsl11/#table-omit-header-at-break
https://www.w3.org/TR/xsl11/#table-omit-footer-at-break
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.table-omit-footer-at-break
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.table-omit-footer-at-break
https://www.w3.org/TR/2011/WD-css3-gcpm-20111129/#footnotes


[18] http://www.antennahouse.com/product/ahf60/docs/ahf-
float.html#FootnoteCSS

[19] https://www.w3.org/TR/xsl11/#fo_region-body
[20] https://drafts.csswg.org/css-gcpm/#footnote-area
[21] https://drafts.csswg.org/css-gcpm/#footnote-counters
[22] http://www.antennahouse.com/product/ahf60/docs/ahf-
ext.html#axf.footnote-max-height

[23] http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#footnote-
number

[24] https://drafts.csswg.org/css-gcpm/#named-strings
[25] https://drafts.csswg.org/css-gcpm/#running-elements
[26] https://www.w3.org/TR/xsl11/#fo_simple-page-master
[27] https://www.w3.org/TR/xsl11/#fo_static-content
[28] https://drafts.csswg.org/css-gcpm/#using-named-strings
[29] https://www.w3.org/TR/css3-page/#at-page-rule
[30] https://www.w3.org/TR/css3-page/#using-named-pages
[31] https://www.w3.org/TR/css3-page/
[32] https://www.w3.org/TR/xsl11/#fo_conditional-page-master-reference

Extending CSS with XSL-FO, XSL-FO with CSS

31

http://www.antennahouse.com/product/ahf60/docs/ahf-float.html#FootnoteCSS
http://www.antennahouse.com/product/ahf60/docs/ahf-float.html#FootnoteCSS
https://www.w3.org/TR/xsl11/#fo_region-body
https://drafts.csswg.org/css-gcpm/#footnote-area
https://drafts.csswg.org/css-gcpm/#footnote-counters
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.footnote-max-height
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#axf.footnote-max-height
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#footnote-number
http://www.antennahouse.com/product/ahf60/docs/ahf-ext.html#footnote-number
https://drafts.csswg.org/css-gcpm/#named-strings
https://drafts.csswg.org/css-gcpm/#running-elements
https://www.w3.org/TR/xsl11/#fo_simple-page-master
https://www.w3.org/TR/xsl11/#fo_static-content
https://drafts.csswg.org/css-gcpm/#using-named-strings
https://www.w3.org/TR/css3-page/#at-page-rule
https://www.w3.org/TR/css3-page/#using-named-pages
https://www.w3.org/TR/css3-page/
https://www.w3.org/TR/xsl11/#fo_conditional-page-master-reference


32



Virtual Document Management
Ari Nordström

<ari.nordstrom@gmail.com>

Abstract

The paper describes a proposed solution to the lack of proper identification
and versioning of documents passing through a series of loosely connected
systems, resulting in a lack of tracebility, the duplication of information and
a host of other problems.

The solution is a passive tracking system that logs transaction events
occurring when a document passes through each system and uses them to
build a workflow and versioning history of the document in the tracking
system. This versioning information can then be made available to, and used
by, the participating systems to locate and query past versions, effectively
creating what can be described as a “virtual document management sys-
tem”.

1. Introduction
The idea to this paper originated partly from an earlier one I wrote for Balisage,
and partly from the very real needs of a client. The Balisage paper was all about
introducing a version management layer on top of the eXist-DB XML database's
rather crude versioning module, to provide the principles of versioning manage-
ment capable of separating the unnecessary versions that would happen whenev-
er saving a document from the meaningful ones; very quickly there will be lots of
versions of which most are of little interest later.

The significant versions, therefore, will be very difficult to find, severely limit-
ing the usability of the module.

My client's needs, on the other hand, center on no real version management to
begin with. The document editing and publishing workflow would perhaps be
best described as “distributed”, comprising several systems between which a
document would be sent on its way to being published in one or more of the mul-
titude of systems outputting the content1. The problem here is that there is no sin-
gle source system, no central system in control. Once published, there is no way
to reliably trace a publication to its source to determine if there is a later and up-
dated version of that document.

1The systems range from several editing environments to a complex, multi-step publishing chain that
enriches and converts the information, ending with several different legacy output systems as well as
a brand new one being developed.

33



1.1. Version Management Concepts
While this is not the place to offer a detailed discussion of version management
basics, it is nevertheless important to introduce and define a few key concepts.
None of these is new or original, but since the definitions and their use vary de-
pending on whom you ask, I will offer mine here:
• Anything can be versioned. Here, I will mostly infer XML documents, but the

paper applies to every kind of content.
• A new version happens when there is a significant change to the old. What
“significant” means may vary, of course, but at the core we are talking about
any kind of change to the information content or structure. A spelling fix is an
update, as is, of course, a reorganisation of a section or an added paragraph.

• Two different translations should not be seen as separate versions but rather
different renditions of the same basic document, much like GIF or JPG rendi-
tions of an image.

• Nor should two different output formats of the same document (say, PDF and
HTML) be seen as different versions. There might be good reasons to keep
track of them, but if their contents are the same, presentation should not mat-
ter when determining their version.

• Moving a document along document workflow stages (for example, “editing”,
“reviewing”, “translated”, “approved” or “published” should not automati-
cally result in new versions. A document could easily pass through them all
without a single change; on the other hand, multiple versions might be re-
quired for a single stage such as “editing”. Therefore, workflow handling, in-
cluding lifecycle handling, should be kept separate from version handling.

• Links, from paper-cross-references to hyperlinks, images or content inclu-
sions, should include the exact version and rendition2 of the target.

• Version labels are just that, labels. They help readability but are not in them-
selves important. At their core, they are simply numerals starting from 1.

Importance can be attached to them by introducing various business rules;
usually, the business rules help clarify workflow and lifecycle stages. For ex-
ample, “1.0” will frequently represent an approved and published version
(implying that “0.9” is a draft), “1.1” a derivative of that version, usually with-
out any major changes to functionality, and so on.

1.2. The Semantic Document
Following my definitions, above, I would like to very briefly discuss the identifi-
cation of documents, or more generically, resources.

2Meaning translation and, when relevant, the presentation.

Virtual Document Management

34



A filename is seldom unique or usable as a document identifier, so it is useful
to create an abstraction for the document ID. Me, I'm partial to URNs, as they are
straight-forward to use when implementing the above while allowing one to re-
tain some of the readability of a filename.

Imagine a “document” as a container of information about some subject. A
base version of that document, disregarding versioning, workflow, presentation
or language, might be identified as follows:

urn:x-myurn-ns:r1:mydocs:00001
What I'm saying here is simply that my document is, in this URN namespace,
uniquely identified as “mydocs:00001”. It's an abstract document and only identi-
fies the actual information, the document semantics. Adding a rendition language
to the identifier could then be done like this:

urn:x-myurn-ns:r1:mydocs:00001:en-GB
This says that this particular rendition of the contents is in British English.

Documents change over time, however, so to track that change, we introduce
an a version label to the identifier:

urn:x-myurn-ns:r1:mydocs:00001:en-GB:1
Now, we can reliably track change to the document:

urn:x-myurn-ns:r1:mydocs:00001:en-GB:1
urn:x-myurn-ns:r1:mydocs:00001:en-GB:2
urn:x-myurn-ns:r1:mydocs:00001:en-GB:3
...

And if a version 10, say, was finally approved, we could translate that version to
Finnish and identify the translation like so:

urn:x-myurn-ns:r1:mydocs:00001:fi-FI:10
If accepting the concepts as outlined here, it follows that this Finnish translation
is identical to the British English urn:x-myurn-ns:r1:mydocs:00001:en-GB:10
document.

2. The Problem
So, the problem in a nutshell:

Large numbers of XML documents are created, edited and published without
a single, central source, a proper identification, or proper version handling. In-
stead, they are moved from one system to another in a complex and multi-ended
publishing chain, where no single system has control over a document in the
sense that it can control an identifier namespace and uniquely identify a docu-
ment passing through a step as the same one that went through an earlier step.

Virtual Document Management

35



The various systems can be seen as a pipeline of loosely connected black boxes
(see Figure 1) where the information is enriched and converted to other formats,
eventually being published in Word ML on a customer PC or as content in a sys-
tem intended to eventually be used as a central repository.

Figure 1. Loosely Connected Black Boxes

The individual steps have control over the content while inside the black box rep-
resenting the current step, but usually there is no way to query or track the con-
tent before or after the step in the publishing chain3. They tend to be fetched from
a shared folder and delivered to another, and so there is no way to reliably track a
single document through the publishing chain.

Yet, traceability is exactly what is required by the business; it must be possible
to trace a document back to the previous steps, including the source, to find out if
a later version exists, and what the changes are.

As noted, many steps along the way have some degree of control over the
document within that step. For example, many of the first steps in the chain4,
where documents are authored5, are database-driven. There is not necessarily any
actual versioning—a change to an existing document is frequently done directly
to the document at hand and so no old version is kept—but the system knows
what changes are done to what document. It's just that no other later step, no
black box in the publishing chain, can reliably access or keep track of that infor-
mation.

Also note that the content is led through different participant systems de-
pending on the desired output which further serves to hide the tracks of a publi-
cation.

It is easy to get lost in the relative complexities of each system and come to the
(wrong) conclusion that fixing the problem is done by adding versioning or ID
handling in one of the participating systems. For example, some of the steps do

3The illustration is merely for illustration purposes; the actual situation is not depicted exactly as-is
anywhere in this paper.
4Plural form; we are talking about several authoring systems.
5Helpfully labelled as “Edit”.

Virtual Document Management

36



have ID mapping, where one set of IDs is mapped to another in an attempt to
preserve the history of a document.

This, of course, is just wrong. The problem, to put it simply, happens because
a) there is no global, unique and persistent identification of the resources, which
means that b) there can be no versioning of the resources6.

3. The Solution
While I would usually propose a single-source document management system to
handle the situation—something that can uniquely identify and version handle
every piece of content, and introduce workflows to maintain complete control
over the document throughout the publishing chain—this is, for a number of rea-
sons, not feasible.

Therefore, I instead suggest introducing an external system, a passive observ-
er, to track the transaction events that occur when a document passes through the
publishing chain, from one system to the next. This system would log every
transaction in every output and every input of every black box, identifying as
much information of the transaction as possible and so adding any available data
about the document itself, but also about the participating system, from the sys-
tem ID to timestamps to local identifiers, any processing (such as identity trans-
forms, enrichment, updated structural IDs, etc) happening between the input and
the output, and so on.

The idea here is that by logging events happening to a document throughout
the publishing chain, the tracking system is able to construct a versioning and
workflow history for that document, noting where the document came from and
identifying changes being done to the document while it is being published. The
log can then be used to trace the document back to its origins.

Also, when an existing document in a source system is updated and publish-
ed again, this too is passed on to the tracking system that, based on earlier trans-
action information, recognises that the new event happens to a document already
being tracked, and will add to the versioning history for that document.

Ideally, the transactions should be logged in an XML document that models a
workflow and versioning history for a resource, enabling easy access and manip-
ulation, preferably in an XML database such as eXist.

3.1. Versioning XML

My Balisage paper (see [1]) proposes a versioning structure that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<resource>

6How can you version handle something you can't identify?

Virtual Document Management

37



    
    <!-- Base URN -->
    <base></base>
    
    <!-- Integer version 1 -->
    <version>
        <rev>1</rev>
        <url lang="en-GB"></url>
        <metadata>
            ...
        </metadata>
        
        <!-- 1st decimal version -->
        <version>
            <rev>1</rev>
            <url></url>
            <metadata>
                ...
            </metadata>
        </version>
        
        <!-- 2d decimal version -->
        <version>
            <rev>2</rev>
            <url lang="en-GB"></url>
            <metadata>
                ...
            </metadata>
        </version>
    </version>
    
    <!-- Integer version 2 -->
    <version>
        <rev>2</rev>
        <url lang="en-GB"></url>
        <metadata>
            ...
        </metadata>
        
        <!-- Stage 1 (decimal versions) -->
        <version>
            <rev>1</rev>
            <url></url>
            <metadata>
                ...
            </metadata>

Virtual Document Management

38



        </version>
        <version>
            <rev>2</rev>
            <url></url>
            <metadata>
                ...
            </metadata>
        </version>
    </version>
</resource>

This identifies a base version of the document in base (compare this to the seman-
tic document in Section 1.2) and then uses nested version elements to identify
every new version, including URLs and metadata about the respective versions.
Implied here is versioning on two levels, much like what software versions tend
to look like (i.e. “1.0”, “1.1”, “1.2”, “2.0”, “2.1”, etc) where the first-level versions
describe major updates according to some business rules, and the second-level
versions describe minor updates within these.

The metadata structure contains information about a specific version of the re-
source. This could include time stamps, titles, users, or basically anything that is
deemed to be of interest.

My proposed passive tracking system should use something similar to the Ba-
lisage versioning markup, above, but with some differences:

• The publishing chain would need to track several sets of metadata per version
or workflow stage: the output of one system would track one set of metadata
(about that system) while the input of the next system in line would track an-
other (about that system). The document itself would likely be unchanged,
however.

• If the output and input versions are stored somewhere, these would be pin-
pointed with their separate URLs (pointing at the folders used by the respec-
tive system) but appended to the same document version. note that while
these versions exist for some time, during processing, they are not persistent.

The result, ideally, is a versioning and workflow history of a resource based on
the events happening to it along the publishing chain. It can by no means replace
a complete version handling system unless the “versions” that happen along the
way are saved and retrievable later.

Of course, the tracking system could easily store any relevant contents of the
tracked document, from a skeletal XML structure to the complete document itself,
at any (transaction event) point in the publishing chain, most usefully, perhaps,
when logging the first and last steps of the publishing chain. This would in effect
create a versioning system of sorts, a virtual document management system
where changes to the content can be tracked and queried.

Virtual Document Management

39



3.2. Tracking Changes
So, to illustrate a simple publishing chain, let's assume that an existing document
A passes through a publishing chain with three systems as follows:

Figure 2. Publishing Chain

Each of the systems performs some kind of transformation, the details of which
are unimportant for the purposes of this example.
The following happens:
1. The document is published from Edit 1, causing a transaction event regis-

tered by the tracking system. The tracker logs the originating system's (Edit
1) metadata, including the document ID for A as used by it, and possibly a
URL to the source document, if available. The tracking system could also
store the document itself, and add that URL to the versioning XML

All this is added to the existing versioning XML for document A.
2. System 1 receives the file and causes another transaction event. The tracker

logs System 1 metadata, adding it to A's versioning XML. This causes a new
decimal version to be created.

3. System 1 finishes its task(s) and sends the document off to the next system,
System 2, again causing a transaction event. The tracker logs updated docu-
ment A metadata, and possibly the transient URL, in the version created in
the preceding step.

If storing the updated document, the tracking system will also add a URL
and additional metadata to the versioning XML.

4. System 2 receives the file, causing another transaction event. The tracking
system creates a new decimal version and adds metadata about the receiving
system (System 2), as well as (maybe) a transient URL. Again, the tracking
system might also store that version and add the URL and additional meta-
data to the versioning XML about document A.

5. System 2 finishes its task(s), causing a transaction event that adds metadata to
the decimal version created in the preceding step, as well as (maybe) a transi-
ent URL. And, as before, the tracking system might store the document, add-
ing another URL and more metadata.

6. The System 2 output causes a transaction event, logging updated document A
metadata, and possibly the transient URL, in the version created in the pre-
ceding step. And again, as before, the tracking system might store the docu-
ment, adding another URL and more metadata.

The file is then sent to System 3.

Virtual Document Management

40



7. System 3 receives the file, causing a transaction event. The tracking system
again creates a new decimal version and adds metadata about the receiving
system (System 3), as well as (maybe) a transient URL. Again, the tracking
system might also store that version and add the URL and additional meta-
data to the versioning XML about document A.

8. System 3 happens to be the final instance. It processes the file, causing a
transaction event that adds metadata and possibly a URL to the version cre-
ated in the previous step.

9. The output is stored and logged. This would cause yet another transaction
event, where the system metadata, document metadata and publication met-
adata would be stored, adding, of course, URLs where so required.

Note
Here, various additional steps could be taken to ensure that the publi-
cation is tracked, regardless of who (and where) the end user is so that
the document's versioning XML as created above can be reliably quer-
ied later.

Note
The question of when a new version should be triggered, above, is partly a
philosophical one, but also something that could depend on the system
that causes the transaction event. For various reasons, one system might
not cause a new version (in case of identity checks or similar) while another
one would (for example, when transforming a document). It should be re-
membered that while the publishing chain is a mass of distributed systems
where one does not know much about the other, the purpose of each one is
reasonably well defined.

3.3. Updated Versioning XML
The Balisage versioning XML, ideally, needs an update to properly handle the
publishing chain described above, most importantly to allow the coupling of mul-
tiple metadata and URL pairs within a single version so the URL and its associ-
ated metadata can be grouped; the above set of transactions relies on several sets
of metadata without the content changing..

The publishing chain described above (Section 3.2) would result in versioning
XML like this7:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="file:/home/ari/Dropbox/XMLPrague/2016/virtual-document-

7The Relax NG schema that describes the tracking system's versioning XML is not done as of this writ-
ing. Specifically, the metadata structure that is required is far from being ready.

Virtual Document Management

41



management/rng/version-xml.rnc" type="application/relax-ng-compact-
syntax"?>
<map>
    <resources>
        <resource>
            <!-- Versionless information here -->
            <metadata>About the semantic document</metadata>
            <!-- Base identifier for document A -->
            <base>urn:x-versions:r1:001</base>
            
            <!-- Existing version -->
            <version>
                <rev>1</rev>
                <!-- V 1.0 revisions go here -->
            </version>
            
            <!-- New version -->
            <version>
                <rev>2</rev>
                <doc>
                    <metadata>Output from EDIT 1, EDIT 1 SYSTEM</►
metadata>
                    <url>URL TO EDIT 1 VERSION</url>
                </doc>
                
                <version>
                    <rev>1</rev>
                    <doc>
                        <metadata>SYSTEM 1 input metadata</metadata>
                        <url>URL to SYSTEM 1 INPUT</url>
                    </doc>
                    <doc>
                        <metadata>SYSTEM 1 output metadata</metadata>
                        <url>URL to SYSTEM 1 OUTPUT</url>
                    </doc>
                    
                </version>
                <version>
                    <rev>2</rev>
                    <doc>
                        <metadata>SYSTEM 2 input metadata</metadata>
                        <url>URL to SYSTEM 2 INPUT</url>
                    </doc>
                    <doc>
                        <metadata>SYSTEM 2 output metadata</metadata>
                        <url>URL to SYSTEM 2 OUTPUT</url>

Virtual Document Management

42



                    </doc>                    
                </version>
                <version>
                    <rev>3</rev>
                    <doc>
                        <metadata>SYSTEM 3 input metadata</metadata>
                        <url>URL to SYSTEM 3 INPUT</url>
                    </doc>
                    <doc>
                        <metadata>SYSTEM 3 output metadata</metadata>
                        <url>URL to SYSTEM 3 OUTPUT</url>
                    </doc>
                    <doc>
                        <metadata>METADATA ABOUT PUBLICATION</metadata>
                        <url>URL to PUBLICATION</url>
                    </doc>
                </version>
            </version>
        </resource>
    </resources>
</map>

Let's walk through this. Here's the semantic document, identified using a docu-
ment ID that is guaranteed to be unique within the tracking system, and the exist-
ing version:

<!-- Versionless information here -->
<metadata>About the semantic document</metadata>
<!-- Base identifier for document A -->
<base>urn:x-versions:r1:001</base>

<!-- Existing version -->
<version>
    <rev>1</rev>
    <!-- V 1.0 revisions go here -->
</version>

When a new version of the document is published, the tracking system logs a
new virtual version by creating a new integer version:

<version>
    <rev>2</rev>
    <doc>
        <metadata>Output from EDIT 1, EDIT 1 SYSTEM</metadata>
        <url>URL TO EDIT 1 VERSION</url>
    </doc>

Virtual Document Management

43



Then, for each input to a new system, and the system's corresponding output, the
tracking system adds a new decimal version:

<version>
    <rev>1</rev>
    <doc>
        <metadata>SYSTEM 1 input metadata</metadata>
        <url>URL to SYSTEM 1 INPUT</url>
    </doc>
    <doc>
        <metadata>SYSTEM 1 output metadata</metadata>
        <url>URL to SYSTEM 1 OUTPUT</url>
    </doc>
    
</version>

Until we reach the final publication:
<doc>
    <metadata>SYSTEM 3 output metadata</metadata>
    <url>URL to SYSTEM 3 OUTPUT</url>
</doc>
<doc>
    <metadata>METADATA ABOUT PUBLICATION</metadata>
    <url>URL to PUBLICATION</url>
</doc>

Here, I've deliberately made the distinction between the last system's output and
the actual publication to highlight that in the latter one, it would be easy to add
information about where the publication is used, providing further help when
tracing a document. This could be handled using a list such as this XML, or it
could be a list of values in a referenced (but wholly separate) database.

4. Implementation and Use
An XML database should make it easy to build the XML-based versioning and
workflow structures, and to query them later, but it can, of course, also be used to
store the tracked content itself8, allowing queries into the different versions. The
system needs to be a passive observer, in that it cannot control or change any of
the content it tracks; however, the tracked systems all require some additional
functionality that allows them to trigger the transaction events.

4.1. Transaction Events and Logged Metadata
The tracking system should be a service subscribed to by the participant systems.
While it would probably be possible to track a resource through a publishing

8Making it into an almost full-fledged version management system.

Virtual Document Management

44



chain with only some of the steps logging transactions9, ideally, every system in
the process should subscribe to the service.

Essentially, the tracking functionality would be a service that logs any useful
metadata about the originating system (system ID, timestamps, users, etc), the
document (ID in the originating system, URL, etc), as well as any other useful in-
formation about the transaction, for example, automated comments or informa-
tion entered by a user when initiating the transaction or event. Once a transaction
was completed, the information would be passed along to the tracking system, in-
itiating a change to an existing versioning XML, or perhaps a new versioning in-
stance altogether, depending on how the event was triggered.

Obviously, if a system only has a single purpose (i.e. “convert XML to PDF”,
the type of event it triggers should be clear. A system intended for multiple types
of processing, depending on the context10, would benefit from including the pur-
pose in the logged metadata.

4.2. Using the Versioning Information
The versioning information can be queried by any of the participating systems,
for example, to present an overview of the document history or to track specific
changes to a document, based on, say, a structural ID or a fixed XPath expression.
It should be easy to present the versioning XML in HTML format, perhaps with
links added to the older versions, or with diffing functionality added.

Of course, any stored metadata about the changes in each version can also be
presented to the user.

I tend to see the information as a virtual document management system, vir-
tual because none of the subscribing systems control it and because the docu-
ments identified by the tracking system are not real; they are all reverse-engi-
neered from the available information and only available indirectly.

Since the versioning and workflow information is reverse-engineered, it also
implies that the information could be wrong and we could, in fact, risk adding a
transaction event to the wrong resource in the tracking system or create two ver-
sioning trees for what should have been a single document. Exactly how, and by
what, an event is triggered and what is included in the log, is crucial but ham-
pered by the fact that the participant systems have limited, and differing, capabil-
ities.

Also consider the case where a document is sent to two parallel publishing out-
puts where the requirements of one output differ from the other's, forcing the edi-
tor updating the document in the originating system (Edit 1 in Section 3.2) to
change the contents slightly for the two outputs. In effect, this causes a “fork”, a

9Using timestamps, etc; an identity transform that changes document identifiers or other metadata
would otherwise risk covering the tracks.
10Such as the originating system.

Virtual Document Management

45



split of the contents that happens because of the differing requirements. Without
a document management system, it is very difficult to keep track of, and update,
the two variants.

In order to log the two events as a fork of a single version rather than two sep-
arate versions11, some business logic and some additional markup is required to
handle the fork in the versioning XML. A separate version tree should probably
be created for the fork and link the original and the fork to each other, for exam-
ple, by adding an ID/IDREF pair12:

<version idref="id-fork">
    <rev>2</rev>
    <doc>
        <metadata>Output from EDIT 1, EDIT 1 SYSTEM</metadata>
        <url>URL TO EDIT 1 VERSION</url>
    </doc>
    
    <version>
        <rev>1</rev>
        ...
    </version>
    ..
</version>

The @idref would point at another resource in the XML, one with a new base
identifier and a separate versioning history:

<resource id="id-fork">
    <!-- Versionless information here -->
    <metadata>Info about the forked document A</metadata>
    <!-- Base identifier for document A fork -->
    <base>urn:x-versions:r1:002</base>
    
    <!-- Existing version -->
    <version>
        <rev>1</rev>
        <!-- V 1.0 revisions go here -->
    </version>
    ...
</resource>

Or, with a separate versioning XML instance, an external reference. Adding more
business logic, it might be useful to use the base identifier of the target (i.e.

11This is
12Or something much cooler, an extended XLink linkbase that connects the two. There, I managed to
include XLink in this paper, too.

Virtual Document Management

46



version/@ref="urn:x-versions:r1:002") and allow later processing to deter-
mine what is returned by a query to locate the fork.

5. End Notes
There are several points to be made about the proposed system. In no particular
order:

• The paper really mostly describes what should be labelled as a workflow
tracking system rather than a versioning one, even though it will be able to
keep track of every version published by the editing system.

• To overcome that weakness and actually keep track of what's happening inside
an editing system, while a document is being drafted, the system would have
to “publish” drafts, too, and allow these to generate suitable transaction
events.

In fact, the tracking system could be used to add version handling capabil-
ities to a single system, simply by adding functionality to output (“publish”) a
document using different publication flags (“draft”, “review”, “approved”,
etc), store the outputs, and use the events to build a versioning XML docu-
ment.

• Of course, for full versioning capabilities regardless of the way the tracking
system is used, any significant draft versions would also have to be saved by
the tracking system13.

• I've tried to look for solutions similar to mine out there but found surprisingly
little of note, although Eliot Kimber's work, presented at Balisage 2015 (see
[2]), is well worth reading and touches upon similar ideas.

Interestingly, having talked to my client, other parts of the company have
touched upon similar ideas—passive trackers that log information from the
subscribing systems—but these ideas have yet to come to pass.

5.1. Future Work

For the immediate future—pre-conference—I hope to do a demo of some kind,
quite possibly using eXist-DB only and faking some transaction events within an
eXist application. Another option would be to write a proof of concept in eXist,
enriching its current versioning module, but that will take longer.

In the longer term, I hope to convince my client of the usability of the ap-
proach. If accepted, the XML format is likely to change and adapt to their particu-
lar requirements (the metadata being a case in point).

13My Balisage paper (see [1]) discusses useful approaches when creating a versioning strategy.

Virtual Document Management

47



Bibliography
[1] Nordström, Ari. “Multilevel Versioning.” Presented at Balisage: The Markup

Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of
Balisage: The Markup Conference 2014. Balisage Series on Markup
Technologies, vol. 13 (2014). doi:10.4242/BalisageVol13.Nordstrom01.

[2] Kimber, Eliot. “Hyperdocument Authoring Link Management Using Git and
XQuery in Service of an Abstract Hyperdocument Management Model
Applied to DITA Hyperdocuments.” Presented at Balisage: The Markup
Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of
Balisage: The Markup Conference 2015. Balisage Series on Markup
Technologies, vol. 15 (2015). doi:10.4242/BalisageVol15.Kimber01.

Virtual Document Management

48



Define and Conquer
Using Semantic XML for Functional Software Specifications

Dr. Patrik Stellmann
<patrik.stellmann@gdv-dl.de>

Abstract

The XML universe provides several standards and tools for technical docu-
mentation.

This paper introduces an approach to functionally specifying software
with XML tools and provides an overview of the challenges that we solved.
An essential part is to use a highly specialized semantic XML schema cus-
tomized for the specific enterprise architecture. Thus, the general idea of
"highly specialized semantics" is introduced and some hints on how to de-
fine and maintain such a schema are given.

This paper is based on over three years of experience using the combina-
tion of oXygen XML Editor and DITA. The concept and ideas should be ap-
plicable to other XML based documentation standards and editors as well.

Keywords: XML, DITA, oXygen XML editor, XSLT, Schema, Schema-
tron, Functional specification

1. Introduction
Writing good functional software specifications is challenging and mistakes are
often very expensive to fix. Still such documents are often written with editors
like MS Word that provide very limited authoring assistance – especially when
compared to modern integrated development environments.

Being a system architect an essential part of my job is writing functional speci-
fications. Additionally, I'm responsible for maintaining the book of procedures
that we provide for our customers. The book of procedures describes the XML in-
terfaces of our web services. It is written in DITA XML.

The framework we are currently using is a mixture of DITA and DocBook: it
uses DITA elements and the class concept. But it uses XInclude instead of DITA
maps. After realizing the disadvantages of this approach (e.g. not being able to
use DITA-OT for publishing) we are currently working on the conversion to real
DITA and refactoring the added features as open source plugins1 for oXygen
XML editor2 and DITA-OT3.

From a developers point of view our framework can be seen as a program-
ming language for system architects. It not only helps to write a consistent techni-
cal document. It also provides assistance in designing a good architecture.

49



2. Highly Specialized Semantics
A functional software specification has to contain all information required for im-
plementing, testing and operating the software. But in contrast to source code this
information is provided in natural language which can hardly be interpreted by
computers.

DITA and other XML standards for technical documents, such as DocBook al-
ready define semantic elements on a level of detail required for authoring and
publishing. But this doesn't help when trying to automatically interpret the actual
content.

DITA additionally provides elements for the programming domain4, for ex-
ample parameter lists. But these elements alone are usually not sufficient for the
following reasons:
• They are not sufficiently specific (e.g. it's not clear, what kind of parameters

are described).
• They are not sufficiently fine-grained (within the parameter description you

might want to define the exact data type).
• They provide no context (the parameters of what interface are described).
The specialized elements are derived from more generic ones. Our schema spe-
cializes elements on all levels. For example, we specialize parameter elements to
add domain specific meaning. We also specialize topic elements to structure the
definition of a software component. As a result for every component of our soft-
ware architecture and the individual properties we have specialized DITA ele-
ments.

Figure 1 illustrates how we use our highly specialized XML to specify a login
service for an enterprise service bus (ESB). Figure 2 shows the corresponding
XML code.

1DITA-SEMIA (DITA Semantic Information Architecture) is a joint development by GDV DL
(www.gdv-dl.de) and parson (www.parson-europe.com) being published on github: github.com/
dita-semia
2www.oxygenxml.com
3http://www.dita-ot.org/
4DITA programming elements: https://docs.oasis-open.org/dita/v1.0/langspec/pr-d.html

Define and Conquer

50



Figure 1. Sample Functional Specification

Define and Conquer

51



Figure 2. Sample Functional Specification Markup

Define and Conquer

52



3. Solved Challenges

Writing technical documents is a complex task in general. Often style guides are
supposed to help the authors to write consistent content – especially when sever-
al authors are working on the same document.

Writing functional software specifications is no different. But as an additional
difficulty the focus of the author – in this case being a system architect – should
be on the actual architecture and design that needs to be created – not on writing
a document.

Modern integrated development environments like Eclipse or MS Visual Stu-
dio provide great authoring assistance for writing software. This includes the fol-
lowing features:

• Content completion
• Online help
• Syntax highlighting
• Real-time validation
• Quick fixes

Our highly specialized semantic XML is the starting point of an integrated devel-
opment environment for system architects. The following sections illustrate how
XML improved our workflow of functionally specifying software and partially
even the following stages of our software development cycle.

3.1. Authoring Assistance

In our company there are several guidelines a system architect has to follow
when functionally specifying software. The guidelines describe documents struc-
ture, layout and even the actual software architecture. Providing these guidelines
in a separate document had only limited success as it is difficult to keep them in
mind all the time.

Our customized framework assists the author and enforces some of the rules
of the style guide. The following use case illustrates how the framework guides
the author. Assume that the author wants to add the parameter Gender to a soft-
ware component.

As the author starts to write, immediate authoring assistance is provided by
the XML schema itself. The highly specialized schema provides dedicated ele-
ments for all relevant architectural components – e.g. for the accepted types of a
field. The author does not have to write huge blocks of unstructured text but can
pick the required elements. To insert new elements in oXygen's author mode the
author just has to press enter and a list of all allowed elements is displayed. In
our use cases it would look like shown in Figure 3.

Define and Conquer

53



Figure 3. Authoring Guidance by Element Choices

After choosing the required type – in this case an enumeration – Oxygen will au-
tomatically add all mandatory child elements. In case of an enumeration this is a
list of key-name-pairs with a single entry. The architect immediately sees the
fields he has to fill as shown in Figure 4.

Figure 4. Authoring Assistance by Mandatory Elements and Static Content

The framework adds static content. In our use case the prefix "Enumeration:" and
the dash between the key and name elements are added. The architect does not
have to think about how he should describe the enumeration and if he should use
a colon or a dash between the key and the name.

And finally, it is possible to provide some pure architectural hints for the au-
thor that are relevant for this use case. For instance, an automatically generated
text can provide information about how to model an enumeration, as shown in
Figure 5.

Figure 5. Authoring Assistance by Hints

In oXygen these hints can easily be activated and deactivated by changing the
current CSS style so experienced authors can hide it.

3.2. Identifiers and Enumeration Values
A functional software specification usually contains several references to other ar-
chitectural entities. For example, the specification of a web service references the
data base tables it accesses. Using the exact value is obviously very important and
still it is very hard to ensure consistency. This holds especially true as functional
specifications tend to be modified several times.

Define and Conquer

54



Our framework with its highly specialized semantic XML automatically rec-
ognizes all identifiers within the specification. For example, the definition of the
parameter "Gender" of type enumeration as shown in Figure 6 defines the key
"Gender" of type "Parameter" as well as the two enumeration keys "1" and "2".
The corresponding XML code is shown in Figure 7.

Figure 6. Definition of a Parameter as Enumeration

Figure 7. Markup of Parameter Definition

To refer to an identifier the architect just inserts a specialized KeyRef element. De-
pending on the key type the layout can be adapted automatically, for example to
use italics or mono-space font or to display some prefix and suffix characters.

When inserting such a specialized KeyRef element the author can just write
the key (e.g. "Gender") and will get a warning, if the value is undefined or ambig-
uous. The author can then open a dedicated dialog that lists all defined keys and
can select the one he needs to reference. This also helps to identify the key if the
actual value is not known in advance.

When referencing enumeration values the authors are often facing the chal-
lenge that on the technical level the key is important. But the name is essential for
understanding its meaning in the first place. Thus, for enumeration values we
used to add the name in parentheses next to the key. But this increases the risk of
inconsistency. Since the enumerations are specified as pairs of key and name in
another chapter of the specification it is possible to add the name automatically.

Define and Conquer

55



Our framework checks and ensures consistency and guarantees that the author
always refers to the correct key.

In our example a specification of a condition would look as shown in Figure 8.

Figure 8. Referencing Identifiers an Enumeration Values

In this example the name of the enumeration value and the brackets around the
Customer structure were added by the framework. The gray colored text is only
visible for the author and provides information about the KeyRef element. The
three question marks ("???") indicate an unknown reference while the three num-
ber signs ("###") indicate an ambiguous reference. The red or green link symbols
visualize if the KeyRef element is valid. Additionally there are schematron rules
that check the validity.

3.3. Redundancy
As a software developer you are used to avoid redundancies as they usually lead
to inconsistencies and increased maintenance costs. However, as a reader you of-
ten prefer duplicated content over having to follow a cross reference – especially
when you don't want to read the complete functional specification but only the
part that appears to be relevant for you.

With highly specialized semantic XML it is possible to automatically interpret
the content. This allows the definition of schematron rules that ensure consisten-
cy. And in several cases this is already a sufficient solution. But it only avoids the
risk of inconsistencies but doesn't eliminate the additional costs for maintenance.

DITA already provides the conref ("content reference") concept. The DITA
conref mechanism allows to reference DITA content and instead of displaying a
link the content itself is displayed. But this works only for the same type of con-
tent. For example, when using the same bullet list twice. It is not possible to reuse
the information itself, for example when a bullet list and a table contain similar
information. More complex scenarios, like reusing textual information for figures,
are obviously also not possible with current DITA mechanisms.

To solve this problem our framework provides a newly developed mecha-
nism. The XLST-Conref adds an XSL transformation to the existing conref con-
cept. So before the referenced content is displayed it is transformed. XSLT-Conref
accepts any content as input that is sufficiently structured to be automatically in-
terpreted and can produce any output that is supported by the editor and pub-
lishing tool. The most important output formats are DITA XML and SVG for
graphical content.

Define and Conquer

56



One sample use-case is a graphical sequence diagram that illustrates the inter-
action of a software component with others, see Figure 9. The sequence diagram
is generated using the textual description of the software component and collects
references to functions of the component.

Figure 9. Sequence Diagram

Also note that such overviews are not only generated when the document is be-
ing published as PDF or HTML. The XSLT-conref is resolved in the XML editor
and already available for the author when writing the document. This helps to
keep an overview of the architecture when designing it.

3.4. Importing External Data
When designing a software architecture you usually do not have only textual con-
tent. For instance, in our case it is very common that a change request requires
modifications in the data model. There are dedicated tools for working with data
bases and we use Toad Data Modeler which produce structured output. While it
is handy to use dedicated tools for different jobs it is desirable to have only a sin-
gle document for the complete specification. Importing the data model informa-
tion into our DITA document by XSLT-Conref is our solution for this challenge..

Since the data model itself is stored in XML, it is quite simple to convert it into
generic DITA content with a section for each entity and a table describing the in-
dividual columns with their type information and description. Our framework
with the XSLT-Conref allows easy import of the data model without the need for
every architect to write his own XSLT scripts.

Since the XSLT-Conref can also be combined with the key mechanism descri-
bed in Section 3.2 you can even automatically register all tables and columns as
individual keys. That allows to reference them in a comfortable way.

3.5. Filtering
Filtering content based on some profiling attributes (e.g. audience) is a DITA
standard feature. By using highly specialized semantic XML, these attributes can
often be set already by the schema. E.g. the list of database tables might not be

Define and Conquer

57



relevant for the customer. By using a specialized element ListDbAcess with the
attribute default audience set to "internal" the author doesn't have to tag it man-
ually.

3.6. Work Item Tracking

After the functional specification is finished the implementation is often done
with the support of a work item tracker. For that, the content of the document
needs to be split into smaller snippets and imported as tasks into the tracking
software. Additionally, it is important that the work items and the document are
linked in both directions. When a work item is assigned to a developer or tester
he needs to be able to identify the corresponding section in the specification. And
the other way around, when reading the specification you should be able to easily
check the state of the related work item.

We have solved this challenge by adding specific marker elements to the spec-
ification, usually directly below the title of a section. An XSLT transformation
then generates a list of work items. The generated list can be imported directly
into the tracking software.

The work item and the related section are already logically linked by having
the same title. Additionally, the work item can contain a link directly to the sec-
tion in the published PDF or HTML. Since each work item has a unique ID within
the tracking software it can be referenced in the document. The link in the specifi-
cation points to the web interface of the tracking software.

The schema defines a dedicated element for each type of work item. Thus,
each marker element can contain specific additional fields required by the track-
ing software or for consistency checks. For instance, each work item needs to be
linked to a package and when changing the data model the related data base ob-
jects need to be identified.

A sample for the work item type "database-modification" could look like Fig-
ure 10. The marker element has a reddish color due to its tagging as "internal in-
formation" (as described in Section 3.5). Content that can't be edited by the author
is highlighted with a gray background color.

Figure 10. Work Item Marker

Define and Conquer

58



Note that within the marker element the author only has to fill in the name of the
package and the list of related data base objects. All other content is generated by
the framework: The title and the labels are static and the reference to the work
item is generated with XSLT-Conref as already described in Section 3.3. The id of
the tracking software is read from a separate file that has been generated during
the import process. Content that can't be edited by the author is highlighted with
a gray background color.

The generated work item for this sample would have the title "CR0123 – 2.1.1
New Entity LOGGING" where "CR0123" is the ID of the change request.

There are also scenarios where multiple work items are required to track the
implementation of one section in the documentation. Of course our framework
provides marker elements for that as well. The system architect simply adds a
marker of the specific type and the correct list of work items is generated.

An example of a section with multiple work items is the implementation of a
stored procedure that is installed with two separate scripts. The document looks
as shown in Figure 11.

Figure 11. Marker for a Realization Scenario

The resulting work items have the following titles:
• CR0123 – 2.1.2 New Stored-procedure DoLogging: Spec
• CR0123 – 2.1.2 New Stored-procedure DoLogging: Body

3.7. Architectural Data
A functional software specification should contain all the information that is re-
quired to implement, test and operate the software. Due to using fine-granular se-
mantic XML a lot of this information is available in a form that can be extracted
by an XSLT script.

The extracted architectural data is used during the whole software develop-
ment cycle. Extracted architectural data is used for the following tasks:
• Generate the definition of data types (e.g. enumerations) in source code.
• Generate drafts for new software components.

This allows the developer to immediately start with the implementation of
the functional logic instead of creating new files and required base classes.

Define and Conquer

59



• Generate the complete XML schema for a web service interface.
• Import the data (e.g. enumerations) into the data base to be used as targets in

foreign keys to ensure data consistency.
• Generate drafts for XML messages for test cases.

This allows the tester to delete the not required elements and he doesn't
have to start from scratch.

For all these tasks the consistency between functional specification and the extrac-
ted data is ensured by an automated conversion. Of course it occurs that during
the implementation or another stage of the development cycle some architectural
data turns out to be incompatible. This can be either because the existing environ-
ment is different from the expectation, the developer has misinterpreted the
document or the functional specification and, thus, the extracted architectural da-
ta is simply wrong. But in all these cases there is a feedback mechanism that al-
lows the system architect to solve the problem early on.

4. Defining a Framework with fine-granular Semantics
The benefits described in the previous section don't come without a cost. Defining
a framework that support fine-granular semantics requires several components:
• Schema

Depending on the tools, documentation standard and personal experience
this could be defined with DTD, XSD or Relax-NG. From our experience Re-
lax-NG appears to be the most efficient one for defining highly specialized se-
mantics.

• Schematron Rules
To ensure consistency between separate but related content you might

need schematron rules. These can be integrated into the schema definition or
in a separate file.

• CSS
Using Oxygen as authoring environment you need to define CSS rules to

make your semantic XML look the desired way when editing it. (Other editors
might require some other way of customization.)

• Output Transformation
Using DITA as underlying documentation standard the publishing (e.g.

PDF or HTML) is usually done using the DITA-OT. In this case you have to
adapt XSLT scripts to handle your specific semantic elements.

• XSLT Scripts
Depending on the framework additional XSLT script might be required for

data extraction or to resolve XSLT-Conref elements.

Define and Conquer

60



Note that the definition of a highly specialized schema is not meant to compen-
sate flaws of a standard. In fact, I believe that this kind of high specialization is
something that a general standard simply can't ever provide. This is due to the
customization that has to match the very specific organizational and architectural
structure. According to this requirement the specific documentation framework
always has to be created or adapted according to individual needs. And since the
software architecture and organizational structure is usually refined and devel-
oped further over time, maintenance of the documentation framework is a contin-
uous task as well.

One side-effect is not to be underestimated: Most likely you will get a much
deeper understanding of your actual base architecture when defining a documen-
tation framework for it. In fact, it repeatedly occurred that I had difficulties to
model some aspect of our architecture in our documentation framework. But this
was always due to the lack of a clear design of our architecture. Describing the
architecture as an XML schema helped to discover deficits in the architecture it-
self.

In the following sections I will give some hints for creating and maintaining
such a documentation framework.

4.1. Attribute Defaults
When defining a highly specialized semantic XML schema you will probably
have several cases when some content is static and should not be editable by the
author. This content can easily be added by CSS rules (when authoring) or XSL
templates (when publishing). However, this way you always have to modify sev-
eral code files of your framework when creating new elements.

DITA already provides an attribute spectitle that allows the specification of
a title for various elements within the schema. Our framework extends this con-
cept by additional attributes to create prefix or suffix content for several block
and inline elements or to define the complete header row of a table. It also allows
to specify context sensitive content by using XPath expressions or provide some
default content that is only being displayed when the author didn't enter some
explicit content.

The basic CSS rules and XSLT templates need to be implemented only once to
evaluate these generic attributes. As a result, in most cases the schema designer
just has to add an attribute with a default value when adding new elements into
the schema without the need to modify and test any additional code.

Default values are also used for the XSLT-Conref and implicit key definitions.
The ListFunctionOverview element within the body of the service is shown in
Figure 12 with expanded attribute defaults: the class attribute and the URI for the
XSLT script to be executed. The Key element within the title of the login service is
shown in Figure 13: it contains attributes to specify the type of the key and XPath
expressions for the root as well as the namespace and the description.

Define and Conquer

61



Figure 12. Expanded ListFunctionOverview Element

Figure 13. Expanded Key Element

4.2. Mandatory Choices

It is a common scenario that an element should allow exactly one of a list of op-
tions. For instance, a "conditions" element might be allowed to contain either a
"list" element or the element "none". This can be easily modeled in any schema
language. But the problem is, that after the author has inserted the conditions ele-
ment the XML code is no more schema valid until he inserts the next element –
either list or none. But there are several mechanisms that don't work with a
none schema valid file including schematron validation, XSLT-Conref and key
referencing.

As our framework requires schema valid documents, we choices in a different
way. In our framework the child elements of choices are always optional accord-
ing to the schema. A schematron rule to checks if the element is empty. This way
you will still ensure the same resulting structure but won't force the author into a
situation with an invalid document and none working authoring assistance.

4.3. Schema Changes

A highly specialized semantic schema is more likely to be changed than a conven-
tional schema as it is closely intertwined with the software architecture. Changes
in the architecture might require changes in the highly specialized schema. New
optional elements are usually no problem but it also occurs that new mandatory
elements need to be added or old elements have to be removed. When adapting
the schema also existing documentation has to be adapted to be valid. This can be
a problem when you don't have access to all files – or maybe don't even know
about all files that use your schema.

So far we have identified the following options to solve this problem:

• Adapt the schema to the new requirements.

• Make all schema changes backward compatible.

Define and Conquer

62



• Create a new schema version for future documents.

When adapting the schema an XSL transformation can convert the old documen-
tation to match the new schema. So whenever an author has a schema invalid file
after updating the framework he can trigger the automated transformation of his
files with just a mouse click. But from my experience it is very difficult to write an
XSLT script that reliably performs the required modifications.

Making the schema backward compatible means, that all new elements have
to be optional and all obsolete elements still need to be valid. To make sure that
new content is written according to the new requirements and old content is
adapted at some time there are some additional steps to be taken:

• Add schematron rules that report missing new elements and the existence of
obsolete elements preferably together with a quick fix.

• Hide obsolete elements from the list of proposals when inserting a new ele-
ment in oXygen.

• Automatically add new elements that are meant to be mandatory when the
parent element is being inserted in oXygen.

When creating new schema versions a schematron rule could check if a file uses
the latest version of its schema. But since we are currently using XInclude, all files
of a document need to use the identical single schema. Thus, every modification
would require a new schema version. This will change when using DITA maps.
With DITA maps it is possible to use a different schema for each file and, thus,
create schemas that define only a single kind of topic – for instance an ESB serv-
ice. So for the future I expect this approach to be the best choice.

Currently, we are using a combination of the first two approaches: When the
changes of the schema affect a major or critical part of the existing files, the
changes are made backward compatible. Otherwise the schema is modified to-
gether with the documents.

4.4. Special Cases

From my experience it is either inefficient or even impossible to model all possi-
ble scenarios in the schema. But when a specific scenario is not modeled in the
schema the authors might try to avoid the semantic rules. For instance, if the title
element of an itemized list is the only element accepting free text in that context
then it might happen that a full explanation is inserted there. Simply because the
author could not find another element to store this information.

To avoid suffocating your authors with your highly specialized schema you
should ensure to also allow sufficiently generic elements. For instance, our DITA
derived framework allows at the end of a list of specialized topics any number of
generic topics. And in some places (e.g. within a list of function calls where each

Define and Conquer

63



entry is meant to be a key reference) I have even created explicit "special-case" el-
ements that can be inserted.

5. Conclusion

A framework with highly specialized semantic XML schema and the correspond-
ing standards and tools significantly improve the way of functionally specifying
software. Several concepts from the field of technical writing can be applied here
as well.

From a developers point of view such a framework can be seen as a program-
ming language for system architects. The syntax allows comfortable authoring –
comparable to that of programming languages in an integrated development –
and to a great extent automatic processing. But additional to other ordinary pro-
gramming languages you can generate publications to be read by humans that
fulfill the requirements of professional technical documents.

We have already successfully applied most of these concepts into our software
development cycle and even new system architects quickly adapted to our style
of functionally specifying software.

6. Future Work

Currently the focus is on converting the current framework to DITA maps and
DITA-OT. In parallel the schema is continuously being refined and adapted ac-
cording to the further development of our base software architecture.

Additional enhancements we are planning are:

• Documentation Maintenance
After a change request has been implemented the functional specification

needs to be integrated into the overall documentation. By writing the specifi-
cations in the same way as our documentation this is basically some
copy&paste action. This merge task is expected to be automatable.

• Linking Test Cases
To ensure consistency between automated test cases and the specifications

the idea is to link the test cases with the corresponding topic, section or list
item by using the already existing id attribute.

• Generate Framework from Style Guide
Another idea is to define the framework within a single specialized DITA

document using all the concepts described here. From this document all the
files defining the framework would be generated: the schema, Schematron
rules, CSS and XSLT scripts for publication.

Define and Conquer

64



Subjugating Data Flow Programming
R. Alexander Miłowski

MarkLogic, Inc.
<alex.milowski@marklogic.com>

Norman Walsh
MarkLogic, Inc.

<norman.walsh@marklogic.com>

Abstract

XProc 1.0 is data flow language and W3C recommendation that provides
the ability to describe steps for processing XML documents for some end
purpose. While there has been some adoption, it has not been as successful
as we would have liked. In this paper, we examine the issues surrounding
the usability of XProc 1.0 pipelines, rethink our end goals, and describe a
proposal for a new direction.

1. What is Data Flow Programming?

When processing data, developers often conceptualize a work flow through
which the data and their associated files are processed. A work flow can be con-
sidered an abstract sequence of steps that are chained together to perform some
useful process. Each step, in turn, consumes and produces some set of artifacts
which are often files stored within some repository. Chaining these steps together
produces a work flow that is data-driven.

These work flows can be broadly categorized as control-flow oriented or data-
flow oriented. When control-flow oriented, each step in the work flow is orches-
trated by some control language or dependency semantics. Meanwhile, when da-
ta-flow oriented, each step in the work flow is invoked when its inputs “arrive” at
the step. While either are sufficient for implementing work flows in general, there
is a preference for data-flow oriented technologies within certain domains (e.g.,
scientific data processing) [1].
Data-flow programming languages have a long heritage and are often associ-

ated with graph visualization tools for visualizing the connections of inputs and
outputs. Tools like Taverna [2] and Kepler [3] have blended the distinction be-
tween the visualization, the tool, and the underlying data-flow engine for scientif-
ic computing. These systems consist of a sequence of step-wise operations where
outputs are matched to inputs to perform operations on data sources that are of-
ten Web services.

65



Each step executes some kind of script (e.g., Python), component language
(e.g., XSLT [4]), or operation (e.g., HTTP GET) to interact with data and services.
In many cases, the artifacts produced by the step are not realized except within
the engine to facilitate the connection between steps. That is, output artifacts are
not saved unless explicitly requested to do so.

XProc 1.0 [5] is an example of a data-flow programming language. XProc pro-
vides facilities for describing the processing of XML data as a sequence of steps
that operate on inputs and produce outputs. The language facilitates connecting
the steps to describe the overall process as a flow of data between steps.

An XProc implementation is responsible for turning these descriptions and
their necessary referenced ancillary files (e.g., XSLT transforms, XQuery [6], etc.)
into an executable pipeline. Data (i.e., XML documents) can then be attached to
the declared inputs of this data flow to cause steps to execute in the particular
ways specified and subsequently cause outputs to be produced.

Further work on XProc has been in the direction of generalizing this data-flow
specification language to allow XProc to process any kind of data and not just
XML documents. These changes allow XProc to be considered in various applica-
tion spaces where tools like Taverna and Kepler have been utilized in the past as
well as unexplored applications. Yet, these tools have been oriented towards pro-
grammers who develop steps in a programming language such as Python.

This brings into question whether XProc's use of an XML specification lan-
guage has the right focus for these new consumers. Moreover, for some existing
users, an XML syntax may be inconvenient or obscure the connections within a
particular pipeline. That is, having an XML syntax for “programming” pipelines
may not be the right design center.

2. Rethinking XProc
XProc 1.0 was specifically designed to describe the relationships between inputs,
outputs, and steps. Specifically, XML syntax allows defaulting connections be-
tween outputs of preceding siblings and the inputs of immediately following sib-
lings. The intent was to make simple pipelines easier to specify.

Unfortunately, the language is used to describe a data flow graph and the con-
nection (edges) within this graph must be made to fit within the constraints of a
tree due to the use of an XML syntax. As such, simple meets and joins result in a
more verbose syntax.

Complicating things further, an author's use of a pipeline may evolve over
time and modifying a pipeline can become increasingly difficult. Just adding an-
other step between processes may require more than a simple insertion. Un-
named steps may be required to be named and referenced just to make the step
connections.

Subjugating Data Flow Programming

66



Even further, small manipulations of outputs to adjust for inputs require in-
sertion of a step. There is not always an easy mechanism for referencing an out-
put and using XPath (or XQuery) to manipulate a result as preparation for input
to another step. While this is truly another step, the need for a verbose construct
for what may be a simple manipulation leaves the user wanting for simplicity.

Finally, these and other issues of verbosity make the language difficult to use
for the uninitiated and cumbersome for the experienced user. There exists a gap
between simple and complex pipelines in XProc that is difficult to bridge. Even
though some of that gap is conceptual, the syntax stands in the way of guiding a
developer through the use of the language.

The end result of successfully using XProc is often rewarding. The overall
process and what it accomplishes is often impressive, useful, and provides im-
proved methods for packaging and deployment. Yet, the path towards that solu-
tion was fraught with errors and treachery; bringing the use of XProc into ques-
tion.

This experience yields several questions:

1. Do users need data flow programming concepts?

2. Do users need to be explicitly aware that they are using pipelines and data
flow programming?

3. Is there a better syntax for XProc?

In our opinion, the answer to (1) above is a resounding “yes”. Data flow pro-
gramming is useful and practical concept for manipulating documents as artifacts
produced by a chain of processes. Many specifications are designed to be layered
(e.g., XInclude before XSLT) and so there is an implicit assumption of some basic
level of data flow within applications.

Yet, in considering (2), it is unclear whether data flows and the connections
between steps need to be as explicit as described in XProc 1.0. Our experience
with users indicate that, in part, the gap in understanding simple versus more
complex pipelines has a lot to do with a lack of understanding that data flows be-
tween adjacent sibling steps via the implicit connection of primary input and out-
put ports.

Finally, for question (3) and considering the goal of attempting to simplify
XProc for users, a syntax more akin to a functional language that allows direct
use of XPath would allow simple manipulations (e.g., projections) to be directly
specified without inserting steps. Modest modifications to a pipeline could be en-
tertained by simply adjusting or adding a path or predicate expression. The result
might be a more compact syntax that would facilitate a better understanding of
the flow of data.

Subjugating Data Flow Programming

67



3. XProc as an XQuery Function Library
One consideration is that XProc's utility is possibly really in the steps it provides.
If XProc's steps were available as a set of functions, they could be used directly in
a variety of programming languages. This would allow the orchestration to take
advantage of the native language's capabilities for manipulating XML and other
data.

As manipulating XML data is a major focus of the language, use of XPath
within some language is a requirement. While one could conceive of utilizing
XPath within various programming languages, one obvious choice to consider is
XQuery. By choosing XQuery, orchestrating processing is then a task of describ-
ing a sequence queries to execute in a particular XQuery programming context.

Many of the steps provided by XProc have a large set of options in addition to
the inputs and outputs they process. As a function library, the signature of these
step functions would likely be complicated with many parameters that must be
specified. This would make the invocation of a step function difficult.

For example, XSLT has two inputs (“source” and “stylesheet”), parameters
that would be specified as a map, and four options (“initial-mode”, “template-
name”, “output-base-uri”, “version”). This would likely end up with a seven-pa-
rameter function invocation where the order of the parameters is important and
fraught with user error.

Example 1. XSLT Step Function Invocation
p:xslt(doc("doc.xml"),doc("stylesheet.xsl"),
       map { "toc" : true() },(),(),(),"2.0")

Ideally, we'd like to default or omit option values but XQuery and XPath do not
allow this as of version 3.1. We'd like to be able to do as in other languages (e.g.,
Python) and have named parameters with defaults. Then a user can just name a
parameter they are using and omit the rest.

Example 2. XSLT Step Function Invocation with Named Parameters
p:xslt(doc("doc.xml"),doc("stylesheet.xsl"),
       $parameters := map { "toc" : true() },
       $version := "2.0") 

While the invocation is not necessarily more compact, the meaning of the invoca-
tion is much more clear. The lack of positional parameters helps prevent the user
from making simple errors, defaults are implied by omission rather than required
to be remembered, and options can be specified in any order as they are today in
XProc 1.0.

The invocation of a step as function implies that it returns the output as some
sequence type. As a step can return multiple outputs and can also return a se-

Subjugating Data Flow Programming

68



quence of documents on a particular output port, within the constraints of XPath
3.0, we can conceive of two alternative representations: a map or a function.

A map has the advantage that each output port name would be a key of the
map and each associated value the output. As maps are immutable, the map
would need to be constructed and returned. As such, the result of the step would
need to be computed and placed into the map. Constructing the map “by hand”
is somewhat tedious and seems likely to interfere with parallelism.

A function has the advantage of allowing some aspects of parallelism. When
the function is invoked, the output port name is passed and the result of the com-
putation by the step is returned. That deferred request for the sequence of results
enables some parallelism as requested by the user.

With the new => operator in XQuery 3.1, the output of a step invocation can
be implied as the first argument of the right-hand side. This allows explicit chain-
ing as shown in Example 3 where the primary result of p:xinclude is the first pa-
rameter to p:validate-with-xml-schema. Again, we take explicit advantage on
the features of XQuery to improve usability.

Example 3. Example Pipeline
declare variable $source as external;

p:xinclude($source)
=> p:validate-with-xml-schema(doc("schema.xsd"))
=> p:xslt(doc("style.xsl"))

Moreover, users can now declare their own steps by implementing them in
XQuery as long as they return the right kind of construct. Annotations may be
able to be used to differentiate between “regular functions” and “step functions”.
Yet, the distinct declaration of a step is lost in the syntax of the XQuery.

An unfortunate consequence of this approach is that we have lost the explicit
description of the data flow graph. While a clever implementation may be able to
tease apart those steps that are able to be run in parallel, the most likely outcome
is execution will wait for the step to finish. As a result, pipelines will necessarily
take a more tree-like graph structure that fan out from root of execution.

In such a resulting language, the data flow aspects of XProc is subjugated to
the control of the XQuery processor. The ability for such a processor to defer exe-
cuting and synchronized flows between steps affords the ability for the data flow
to have its natural parallelism. As such, to have parallelism, we need to consider
the problem the other way around and have the data flow in control of the overall
pipeline.

4. Parallelism: What is it good for?
One of the original promises of XProc was that the steps could be run in parallel:

Subjugating Data Flow Programming

69



An XML Pipeline should not inhibit a sophisticated implementation from per-
forming parallel operations, lazy or greedy processing, and other optimizations
[7].

Yet, time has shown that users seem to care little about this requirement. Devel-
opment of parallel XProc implementations has stalled, most current implementa-
tions have no parallel execution, and no users seems to have noticed. Simply, the
uses of XProc have not in so far dictated this as a required enhancement to the
existing implementations being used.

By making the connections between steps (i.e., blocks of execution) more ex-
plicit, the user is declaring to the processor the dependencies between major por-
tions of processing. The value is not necessarily embedded in just enabling paral-
lelism. The value is in separating concerns and allowing for alternative routes for
an artifact (an output) to be processed.

By discarding any attempt at supporting parallelism of steps we are possibly
discarding a very important distinction: the outputs of steps are results which
may be reprocessed, inspected, logged, etc. Moreover, the connections between
steps are insertion points for easy modification of the behavior of the pipeline.

Regardless, users always care about performance. Whether a pipeline runs
within or exceeds an expected time period is very important in many applica-
tions. So, while surfacing control over parallelism may not be important to the
pipeline author, the underlying effects produced by enabling parallelism most
certainly is important. Hence, we want to remove the need to for the author to
think about parallelism whilst creating constructs than enable its use by the im-
plementation.

We want to retain the data flow aspects of XProc and so we recast our goals as
follows:

1. From the perspective of the data flow language, a step is a black box that takes
inputs and produces outputs.

2. A step has a distinct signature of inputs, outputs, and options (parameters)
that can mapped to various implementations and/or functions within a do-
main language (e.g., XQuery).

3. The connections between steps produce artifacts that should be able to be easi-
ly inspected and re-purposed.

4. The context of a step invocation should facilitate modifications and the out-
puts of steps are places where future choices can be made for modification of
the pipeline.

5. Steps may be able to be executed in parallel and still yield equivalent results.
The data flow language should not exclude that possibility.

Subjugating Data Flow Programming

70



5. Subjugating Steps in Data Flows
The overall goal of describing a data flow is describing the graph of inputs and
outputs between steps. The nodes in the graph are steps with a certain number of
inward and outward arrows. The graph has explicit nodes that represent inputs
(generators) and outputs (sinks). Over the edges of the graph flows data that
drives the pipeline processes.

An example of this conceptual model is shown in Figure 1 where an input
document is validated by one of two schemas depending on a version attribute.
Afterwards, the result is transformed and the result of the transformation is the
result of the pipeline. The encoding of this in XProc V1.0 is shown in Example 4

validate

v2schema.xsd

validate

v1schema.xsd

if (xs:int(/*/@version)<2.0)

then else

xslt

stylesheet.xsl

in

out

Figure 1. XProc Example 3 - Conceptual

Example 4. XProc,Example 3 in XProc V1.0
<p:pipeline xmlns:p="http://www.w3.org/ns/xproc" version="1.0">

  <p:choose>
    <p:when test="xs:decimal(/*/@version)<2.0">
      <p:validate-with-xml-schema>
        <p:input port="schema">
          <p:document href="v1schema.xsd"/>
        </p:input>
      </p:validate-with-xml-schema>

Subjugating Data Flow Programming

71



    </p:when>

    <p:otherwise>
      <p:validate-with-xml-schema>
        <p:input port="schema">
          <p:document href="v2schema.xsd"/>
        </p:input>
      </p:validate-with-xml-schema>
    </p:otherwise>
  </p:choose>

  <p:xslt>
    <p:input port="stylesheet">
      <p:document href="stylesheet.xsl"/>
    </p:input>
  </p:xslt>

</p:pipeline>

In XProc 1.0, the dominate construct is the step. Most constructs are implemented
by steps, contain steps, or declare new steps that can be re-used elsewhere. The
connections between steps are either implicit (as in Example 4) or described via
various annotations of names and references to those names.

The result is the design center for XProc 1.0 is the nodes of processing within
the graph and not the edges that describe flow of data. This violates goals (3) and
(4) from the previous section. There is literal or no element-level constructions
that represents a connection in the XML syntax in XProc 1.0.

Further complicating things is that a step is not a black box. A step can de-
scribe a reusable portion of a graph and then act like a step. Thus the terminology
can be confusing as everything must be a step but everything isn't really always a
step. This complicates achieving goals (1) through (4) as well.

In the conceptual graph, there are two basic flows:

1. source → validate → transform → result

2. source → if (v1) then validate-v1 else validate-v2 → result

We need a data flow language that subjugates steps and focuses on the de-
scribing the data flow and its connections. It needs to be clear from the syntax
how to discern the shape of the graph, the connections between steps, and any
kinds of guards or special processing that might happen to control the flow of da-
ta.

Steps should be able to be treated as black boxes with a specific signature. The
data flow language should not need to know much about a step other than its sig-
nature to be able to describe to an implementation how to invoke a step. This

Subjugating Data Flow Programming

72



kind of implementation agnosticism will enable the same data flow language to
be used in radically different environments.

6. Überproc: a hammer for all your nails
The fundamental question at this point is whether we've lost our way in amongst
our musing of new and better ways to specify pipelines. For some, XProc is an-
other and more complicated way of doing what Makefiles or Ant build scripts
can already accomplish. For others, it is a frustrating but useful way to specify
complex processes on documents.

Example 5. A Simple Example

xproc version = "2.0";

"doc.xml" → xinclude() 
          → [$1,"stylesheet.xsl"] → xslt() 
          ≫ "result.html"

Consider the example shown in Example 5 that processes a fixed file with XIn-
clude and transforms it to HTML with XSLT. The pipeline data flow starts with
the URI reference to the input document on line 3 that is fed into the XInclude()
step via the chain operator (a right arrow). Following the XInclude step is a bind-
ing of the result and the stylesheet as the inputs for an XSLT transformation. Fi-
nally, on the last line, the output is sent to a particular file (a URI) via the append
operator (a double greater than). The flow of data from source to result is clear
and stated in a compact syntax.

In Example 4 is an original example from the XProc 1.0 specification of an ex-
ample pipeline that validates using two different schemas based on a version at-
tribute in the document source. This example has been reworked a new syntax in
Example 6 that will now be described in brief.

Example 6. XProc, Example 3 Reworked

xproc version = "2.0";

 inputs $source as document-node();
outputs $result as document-node();

$source → { if (xs:decimal($1/*/@version) < 2.0)
            then [$1,"v1schema.xsd"] → validate-with-xml-schema() ≫ @1
            else [$1,"v2schema.xsd"] → validate-with-xml-schema() ≫ @1 
          }
        → [$1,"stylesheet.xsl"] → xslt()
        ≫ $result

Subjugating Data Flow Programming

73



At the top we have a declaration of the inputs and outputs of the pipeline. As a
top-level module, this example can be invoked by a processor. When the process-
or does so, it must provide and input document to process as $source and op-
tionally provide binding (e.g., a file name) for output document $result.

The purpose of a pipeline document is to describe a data flow. While step sig-
natures can be declared, we are not currently addressing the issue of describing
steps and their implementation any further. This is consistent with XProc 1.0
where steps that are not pipelines in themselves are opaque.

The main construct used to define a data flow is a step chain. A step chain
starts with a set of input port bindings is followed by a sequence of applications
of the chain operator (-> or → U+2192).

For example, a simple invocation of XInclude is:

$in → xinclude()
The XInclude step has a single input port named source and so that port

name can be explicitly specified:

source=$in → xinclude()
A second step can be easily added to the chain in a similar way. When a pre-

ceding step produces output, we can refer to it positionally:

$in → xinclude() 
    → [source=$1,stylesheet="stylesheet.xsl"] → xslt()
In this case, a list of port bindings is specified by name. The positional variable

$1 refers to the first output of the preceding step (XInclude). The literal for
"stylesheet.xsl" is a URI reference for loading a stylesheet. The chain operator
passes along this information as input bindings to the XSLT step invocation.

We can shorten the invocation to:

$in → xinclude() 
    → [$1,"stylesheet.xsl"] → xslt()
Finally, to assign results to an output port, we use the append operator (>> or

≫ U+226B). The append operator can only be preceded by a step chain on the left
side. On the right is a variable reference (or list of variables for multiple outputs),
a literal for storing data, or positional output port reference (e.g., @1, @2, etc.).

$in → xinclude() 
    → [$1,"stylesheet.xsl"] → xslt() 
    ≫ $out

In this new syntax, the use of variables on right side of an append operator is
two-fold. First, when there is a declared output port of the same name, the opera-
tor sends the output of the chain to that port. All references to such output ports
are merged as they occur.

Subjugating Data Flow Programming

74



Second, when an port variable is not already declared, the variable is used to
signal a connection within the graph. Conceptually, we can think of such a port
variable as being a box into which we place the output. We then take the box to
where it is used as input to other step chains and “unpack copies” of what is con-
tained in the box.

A variable reference from an append operator may be used as input for multi-
ple step chains:

$in → xinclude() 
    ≫ $included
$included → [$1,"stylesheet.xsl"] → xslt() 
          ≫ $out
$included → [$1,"summary.xsl"] → xslt() 
          ≫ $out

We can also build up more complex flows by block expressions. A block expres-
sion is contained in curly brackets and can contain constructs like conditionals:

$in → { if ($1/doc/cheese='cheddar')
        then consume() ≫ @1
        else reject() ≫ @1 
      }
    ≫ $out

A block expression always has a set of positional inputs and outputs that are ad-
dressable as $n and @n, respectively. Unlike XProc 1.0, what is contained within
the block expression does not have to have uniform outputs. Instead, whatever
flow executes can append outputs to the positional outputs of the block expres-
sion. If no such append operations occur, the block expression has empty output.

Various XProc 1.0 “compound steps” translate to operators. For example, iter-
ation over input sequences is now a simple ! operator that can be inserted into
any step chain:

$in//section ! { [$1,"chunk.xsl"] → xslt() ≫ @1 } ≫ $chunks
where the sections are iterated over by the block expression to transform each
section with XSLT.

Also, in the previous example is a projection. Expressions can now be applied
to inputs to produce new sequences without invoking a step to do so. In the ex-
ample, the very first operator turns the input into a sequence of section ele-
ments.

XProc 1.0 has a “viewport” compound step that was not generally well under-
stood by users. The operation has replacement semantics over certain matching
sub-trees. In the new syntax, the operator is called “replace” to more directly
match its semantics. It applies a block expression and expects a replacement as a
result on the first positional port.

For example, replacing sections by their transformation is specified as follows:

Subjugating Data Flow Programming

75



$in → replace ($1//section) { 
        [$1,"chunk.xsl"] → xslt() ≫ @1 
      } 
    ≫ $out

Moreover, with this new concept and syntax we can also innovate and pull in
more familiar constructions from other pipelining systems. For example, the tee
program can be added as its own operation (tee or ⊤ U+22A4). It has the same
semantics of sending a single input to two places. It has the nice result of allow-
ing inserting small step chains within larger ones:

$in → xinclude() ⊤ { $1 ≫ "included.xml" }
    → [$1,"stylesheet.xsl"] → xslt()
    ≫ $out

In this example the output of XInclude is serialized to a document
(included.xml) and is also sent to XSLT to be transformed. Any block expression
can follow the tee operator. This allows complex flows to be built without assign-
ing outputs to intermediary variables.

Finally, it is useful in any programming languages to build expressions and
assign them to variables for reuse and clarity. A data flow language such as XProc
has the task of understanding the relationship between the variable binding and
the possible interactions with the inputs the variables may be built from. These
dependencies predicate what parts of the flow must be completed before the val-
ue of the expression can be built.

A simple let clause is allowed within block expressions and must contain a
lexically scoped block expression itself. Within the block expression or each sub-
sequent variable binding, preceding and ancestor variables may be used in ex-
pressions. These variable declarations share the same scoping rules as port varia-
ble references.

For example, the previous example that checks for a version attribute for vali-
dation could use a variable to retrieve the version:

$in → {

  let $version := xs:decimal($1/*/@version) {
    if ($version < 2)
    then [$1,"schema1.xsd"] → validate-with-xml-schema() ≫ @1
    else if ($version < 3)
    then [$1,"schema2.xsd"] → validate-with-xml-schema() ≫ @1
    else fail("No schema available")
  }

}

Subjugating Data Flow Programming

76



Finally, there are many more aspects of XProc both from the requirements for 2.0
and functionality of 1.0 that have not been addressed here. Solutions for literal
documents, binary and non-XML documents, templating, re-use mechanism, step
declaration, and other features have been worked through. Their descriptions can
be found in the forthcoming proposal for this syntax.

7. A Complete Example
This example was translated from an existing XProc 1.0 pipeline that inserts data
in a MarkLogic database. The purpose of the pipeline is to perform two updates.
One update inserts one document for each weather report element. The other up-
date generates a set of queries that update the position of the weather stations in
the database. Both of these updates are driven by the same input data.

Example 7. Database Import Example
xproc version = "2.0";

import "marklogic.xpl";
namespace s="http://weather.milowski.com/V/APRS/";
namespace ml="http://example.com/extensions/marklogic"

option $xdb.user as xs:string;
option $xdb.password as xs:string;
option $xdb.host as xs:string;
option $xdb.port as xs:string;

inputs $data as document-node();
outputs $records as xs:integer,
        $positions as xs:integer;
        

$data/s:aprs/s:report[@type != 'encoded']
 → $1/s:aprs/s:report[@type != 'position']
 → $1/s:aprs/s:report[not(@error)]
 ≫ $filtered

$filtered
 → replace (/s:aprs/s:report) {
     let $uri := 'http://weather.milowski.com/station/' ||
                 $1/*/@id || '/' || 
                 $1/*/@id/@received || '.xml'
     {                
       $1 → ml:insert-document(
              user=$xdb.user, password=$xdb.password,
              host=$xdb.host, port=$xdb.port,

Subjugating Data Flow Programming

77



              uri=$uri)
       data { <inserted/> } ≫ @1
     }
   }
 → $1/*/inserted → count() 
 ≫ $records

$filtered
 → [$1,"make-position-update.xsl"] → xslt()
 → replace (/queries/query) {
     $1 → ml:adhoc-query(
          user=$xdb.user, password=$xdb.password,
          host=$xdb.host, port=$xdb.port)
        ≫ @1
   }
 → $1/*/query → count() 
 ≫ $positions

8. The Future of XProc
XProc started as a mechanism to process XML documents. Since its origins, the
Web and the systems that are built upon its technologies have matured and ex-
tended far beyond the reaches of XML. Yet, the needs of data processing are even
more important than when the working group started.

We have the explicit charge in version 2.0 to address the needs of processing
data in a heterogeneous environment. Data of many kinds of formats needs to be
processed by pipelines. For XProc to survive in this ecosystem, the standard may
benefit from adapting a new perspective.

The interesting position of the proposal in this paper is that XProc is now
about processing data and is agnostic to the kind of data and steps. If that data
happens to be semi-structured data (e.g. XML, HTML, JSON), we can envision a
world where XQuery-like expressions allow the flow to make decisions based on
those expressions. Simply stated, checking a version on a JSON object should be
no more difficult than doing the same on an XML document.

By focusing on the data flow, we are step agnostic. A valid implementation
strategy for a product in a JSON-only world would be to implement no XML-re-
lated steps. A similar position might be useful for log processing or relational da-
tabases.
Admittedly, such specialization ignores the very interesting aspects of posi-

tioning XProc to process data from a variety of data sources and formats. By do-
ing so, XProc matches more directly the reality of the enterprise: data comes in all
shapes and sizes. We want to accept and process all data as it is, enriching it via

Subjugating Data Flow Programming

78



stepwise processes, and produce more useful information via data flow program-
ming.

References
[1] Enabling scientific data on the web, R Alexander Miłowski, University of

Edinburgh, 2014-11-27 https://www.era.lib.ed.ac.uk/handle/1842/9957
[2] The Taverna workflow suite: designing and executing workflows of Web Services on

the desktop, web or in the cloud, Katherine Wolstencroft, Robert Haines, Donal
Fellows, Alan Williams, David Withers, Stuart Owen, Stian Soiland-Reyes, Ian
Dunlop, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex
Hardisty, Abraham Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib
Sufi, and Carole Goble, Nucleic Acids Research, 2013-05-02, doi:10.1093/nar/
gkt328 http://nar.oxfordjournals.org/content/early/2013/05/02/nar.gkt328

[3] Kepler: an extensible system for design and execution of scientific workflows, I.
Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, 16th
International Conference on Scientific and Statistical Database Management, 2004
pp. 423-424

[4] XSL Transformations (XSLT) Version 2.0, Michael Kay, W3C, 2007-01-23 http://
www.w3.org/TR/xslt20/

[5] XProc: An XML Pipeline Language, W3C, 2010-05-11, Norman Walsh, Alex
Miłowski, and Henry S. Thompson http://www.w3.org/TR/xproc/

[6] XQuery 3.0: An XML Query Language, W3C, 2013-10-22, Jonathan Robie, Don
Chamberlin, Michael Dyck, and John Snelson http://www.w3.org/TR/
xquery-30/

[7] XML Processing Model Requirements and Use Cases, W3C, 2006-04-11, Alex
Milowski http://www.w3.org/TR/xproc-requirements/

Subjugating Data Flow Programming

79

https://www.era.lib.ed.ac.uk/handle/1842/9957
http://nar.oxfordjournals.org/content/early/2013/05/02/nar.gkt328
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xproc-requirements/


80



Schematron QuickFix
Octavian Nadolu

oXygen XML Editor
<octavian_nadolu@oxygenxml.com>

Nico Kutscherauer
data2type GmbH

<kutscherauer@schematron-quickfix.com>

Abstract

Fixing XML validation errors can be challenging for many users, especially
if they are not very familiar with the syntax and structure of XML. For
many years, development tools have provided ways to allow users to select
actions that automatically fix reported issues for certain programming lan-
guages (such as Java, C, etc.). This functionality is usually called "Quick
Fixes". In a similar way, XML tools provide Quick Fixes for XML valida-
tion errors. For instance, Eclipse has included XML Quick Fixes for over 10
years. Another example of this idea is the spell checking functionality, which
provides a list of possible corrections and allows the user to select one of
them as a replacement for an incorrect word.

The validation of XML documents against DTD, XML Schema, or RE-
LAX NG schema provides a limited set of possible problems and is usually
only able to detect basic structural errors (such as a missing element or at-
tribute) and the corresponding automatic fixes are usually rather straight-
forward. A more interesting case would be if you are using Schematron to
identify issues in XML documents, as the fixes in this case may range from
trivial to very complex and there is no automatic way of fixing them.

Schematron solves the limitation that other types of schema have when
validating XML documents because it allows the schema author to define
the errors and control the messages that are presented to the user. Thus the
validation errors are more accessible to users and it ensures that they under-
stand the problem. These messages may also include hints for what the user
can do to fix the problem, but this creates a gap because the user still needs
to manually correct the issue. This could cause people to waste valuable time
and creates the possibility of making additional errors while trying to man-
ually fix the reported problem. Providing a Quick Fix functionality for Sche-
matron validation errors will bridge this gap, saving time and avoiding the
potential for causing other issues.

81



Two years ago, the idea of Schematron QuickFix (SQF) was discussed
during the XML Prague conference and it started to take shape. It has now
reached a point where we have a draft specification available, a W3C com-
munity group dedicated to XML Quick Fixes1, and two independent SQF
implementations. The first draft of the Schematron QuickFix specification
was published in April 2015 and it is now available on GitHub2 and within
the W3C "Quick-Fix Support for XML Community Group".

Schematron QuickFix defines a simple language to specify the actions
that are used to fix the detected issues, layered on top of XPath and XSLT,
and integrated within Schematron schemas through the Schematron anno-
tation support.

In this session, we will present various use cases that are solved with
Schematron QuickFixes, ranging from simple to complex, sometimes in-
volving changes in multiple locations within a document, or even in exter-
nal documents. We will also discuss the language and challenges related to
the SQF implementation. Join us to learn how SQF can be useful in your
next XML project!

1. Introduction

Helping users to solve errors in XML documents has always been a challenge.
There are various solutions to automatically generate proposals that fix the errors
and to present them to the user. The fix proposals can be generated by the valida-
tion engine, or based on the error messages, or on error codes that we get from
the validation engine. However, a language that can allow the developer to define
fixes is more powerful and flexible.

Schematron has become more and more popular in the XML world. Compa-
nies are using Schematron to enforce business rules on their documents and to
verify the quality of their documents. Schematron is a language that defines rules
for the structure and content that an XML document should follow.

Schematron QuickFix (SQF) has been developed as an extension of the Sche-
matron language. It is a language that allows developers to define fixes for the
Schematron validation errors.

2. Validation Errors

From the user's point of view the validation error can be described by three
things: the validation message, the location of the error (system ID and position
in the document), and how to fix that error.

1 https://www.w3.org/community/quickfix/
2 http://schematron-quickfix.github.io/sqf

Schematron QuickFix

82

https://www.w3.org/community/quickfix/
http://schematron-quickfix.github.io/sqf
https://www.w3.org/community/quickfix/
http://schematron-quickfix.github.io/sqf


Figure 1. Validation Errors

Figure 2. Validation Error Description

When an XML document is validated against DTD, XSD or RNG schema, the er-
ror messages refer more to the XML syntax of the document and are not easily
understood by the user. To fix this type of errors, the user must understand the
validation messages, check the location of the problems, and determine what op-
erations must be done.

For the validation of an XML document against a Schematron schema, the er-
rors are in fact failed constraints or business rules and are meant to be easily un-
derstandable by the user. The Schematron developers can better explain what op-
erations should be done in order to fix a problem because they control the error
messages. Also, the location of the problem can be specified better in the Schema-
tron schema.

However, in both cases, to fix the error the user must do the operations man-
ually and this can result in generating even more errors. The automation of the
error-fixing process will help the user to solve the problem faster and with fewer
or no errors.

A good example of error fixing is a spell checker. A spell checker presents er-
rors but also offers a set of solutions to fix them. Similarly, solutions can be gener-
ated for XML validation errors.

3. Fixing Validation Errors
Over the course of time various IDEs (such as Eclipse or IntelliJ IDEA) have im-
plemented fixes for XML validation errors and helped the user to solve the errors

Schematron QuickFix

83



by offering fix proposals. The fix proposals can be implemented directly in the
validation engine, or it would be better to have an implementation that does not
depend on the validation engine. A way to solve this is by analyzing the valida-
tion message, error code, and the error location that the engine provides.

We can say that the validation errors can be split into two categories:

• Predefined – Defined in the validation engine. This is the case when an XML
document is validated against a DTD, XSD or RNG schema.

• Custom – Defined by the user. This is the case when an XML document is vali-
dated against a Schematron schema.

3.1. Fixing Predefined Errors

For the predefined errors, fixes can be provided automatically based on the mes-
sage, error code (if there is one), and location of the error. A limitation of this ap-
proach could be that each validation engine might provide its own predefined
messages and error codes. Therefore, you will need an implementation for each
validation engine.

However, by providing fix proposals for these types of errors, the user will be
helped with not only solving the problem, but also understanding it. The messag-
es from the validation processor are often difficult to understand for novice users.
For example, when an ID definition is missing, you might get the following error
message:

cvc-id.1: There is no ID/IDREF binding for IDREF 'robert.tayor'.
It would be more appropriate to have a more understandable message, such

as: "There is an invalid ID reference: 'robert.tayor'. Would you like to change it to
the similar ID: 'robert.taylor'?"

Another example could be when an XSL document is validated and we have
an undeclared function. This might cause the following error to be presented:

XPST0017 XPath syntax error at char 0 on line 1802 near {...x($boxID, func:get-
ButtonId(...}: Cannot find a matching 2-argument function named {http://
www.oxygenxml.com/doc/xsl/functions}createBox()

In this case, a more appropriate way to present the error might be: "The func-
tion 'func:getButtonId()' has not been defined. Would you like to create this func-
tion or change the reference to a function with a similar name?"

Schematron QuickFix

84



3.2. Fixing Custom Errors
When an XML document is validated against a Schematron schema, we obtain
customized errors. The errors are defined in the Schematron schema using the
sch:assert and sch:report elements. In this case, it is difficult, and almost im-
possible, to generate a fix based on the error message and location.

Therefore, a solution to propose fixes for this type of errors is to define the
fixes directly in the schema. A Schematron developer can create fixes and asso-
ciate them with the assert or report message.

These fixes can be defined using the annotations support from Schematron.
Schematron allows elements and attributes from other namespaces to be added as
annotations in the schema. Thus, these annotations will not interact with the de-
fault validation of the Schematron schemas and they will be ignored by Schema-
tron processors that do not support them.

4. Schematron Quick Fixes
To allow users to create fixes for the Schematron error messages, the Schematron
QuickFix (SQF) language was created as an extension of Schematron. Using the
SQF language, users can define fixes for assert or report error messages.

The Schematron QuickFix has been defined as a simple but powerful lan-
guage. It defines some basic operations that need to be implemented by the pro-
cessor.

Schematron QuickFix

85



Figure 3. Simple Schematron QuickFix example

The operations can be done with precision in a specified place and you do not
need to modify the entire document.

The first draft of the Schematron QuickFix specification was published in
April 2015 on the W3C Quick-Fix Support for XML community group3 page.

4.1. SQF Benefits

The Schematron schema can be used to validate any type of XML document.
Thus, business rules or constraints can be defined for projects containing DITA,
DocBook, XHTML, or TEI documents, and also for stylesheets or XML Schemas.

For DITA, DocBook, XHTML, or TEI documents, simple styling rules can be
imposed, such as:
• The title should not contain bold.
• A list should contain more than one list item.
Also, more complex rules can be added, such as:
• Ensure that the table layout is correct.
• Text needs to be normalized (NFC).

For XSLT, XSD, or RNG documents, you can define coding styles, such as:
• The names of the variables must not contain '-', and it is recommended to use

the camel case format.

3 https://www.w3.org/community/quickfix/

Schematron QuickFix

86

https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/


• The names of templates and functions should not exceed a specified length.
Some of these rules can be solved very easily, but a less experienced user might
still make mistakes and add other errors. On the other hand, a user with experi-
ence might be able solve them rather easily, but might need to perform a few op-
erations.

For more complex problems (for instance, problems that will update multiple
nodes in the document or make complex conversions), it would be better to have
an action to do this automatically.

4.2. SQF Implementations
An SQF fix consists of a set of operations that must be performed in an XML
document. These are basic operations (add, delete, replace, and string replace)
that need to make precise changes in the document. This means that when a fix is
applied, only the affected part of the XML document should be changed and the
DOCTYPE declaration, entities, etc. must be preserved.

There are two types of implementations that can be used to execute Schema-
tron QuickFixes:
• Using an engine (implemented in Java, C, or other language) that collects the
fixes during the Schematron validation process, and performs the modifica-
tion precisely (using the engine programming language) when the fix is ap-
plied.

• Using an XSLT engine that generates a set of XSLT scripts during the Schema-
tron validation process, and these scripts are applied when the fix is executed.

5. Schematron QuickFix Language
As shown in the example above (see Figure 3), the QuickFix (defined by the
sqf:fix element) is structured as follows:
• ID – Used to reference the QuickFix by sch:assert or sch:report elements.
• Title and description – The title is used for the name of the QuickFix. The op-

tional description can be used to give the user additional information regarding
the QuickFix.

• Operation – The Activity Elements that specify the actions of the QuickFix.
• Additional features – There are also some additional features that had no place

in our simple example (such as User Entries and use-when conditions).

5.1. Reference a QuickFix
To reference a QuickFix, the sch:assert or sch:report element needs a sqf:fix
attribute with the ID of the QuickFix. In many cases there are multiple possible

Schematron QuickFix

87



solutions for one error, and the sqf:fix attribute is able to reference more than
one QuickFix. In this case, the sqf:fix attribute should contain a list of those
QuickFix IDs (separated with whitespace) that should be referenced:

Example 1. Reference to Multiple QuickFixes

<sch:rule context="title">
    <sch:report test="exists(b)" 
                sqf:fix="resolveBold deleteBold"> 
Bold element is not allowed in title.</sch:report>
    <sqf:fix id="resolveBold">
        <sqf:description>
            <sqf:title>Change the bold element into text
            </sqf:title>
            <sqf:p>Remove the bold (b) markup and keep the 
                   text content</sqf:p>
        </sqf:description>
        <sqf:replace match="b" select="text()"/>
    </sqf:fix>
    <sqf:fix id="deleteBold">
        <sqf:description>
            <sqf:title>Delete the bold element</sqf:title>
            <sqf:p>Remove the bold (b) markup including the 
                   text content</sqf:p>
        </sqf:description>
        <sqf:delete match="b"/>
    </sqf:fix>
</sch:rule>

5.1.1. Scope

The referenced QuickFix needs to be in the scope of the sch:report or
sch:assert element. It is in the scope if the sqf:fix element is a child of the
same sch:rule element (which contains the sch:report or sch:assert element)
or if the QuickFix was defined globally. To define a QuickFix globally, the top-lev-
el element sqf:fixes should contain one or more sqf:fix elements. QuickFixes
that are specified in this way are available for all sch:report or sch:assert ele-
ments of the schema.

Example 2. Global QuickFixes

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" 
xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
queryBinding="xslt2">
    <sch:pattern>
        <sch:rule context="title">

Schematron QuickFix

88



            <sch:report test="exists(b)" 
                        sqf:fix="resolveBold deleteBold"> 
            Bold element is not allowed in title.</sch:report>
        </sch:rule>
    </sch:pattern>
    <sqf:fixes>
        <sqf:fix id="resolveBold">
            <sqf:description>
                <sqf:title>Change the bold element into text
                </sqf:title>
                <sqf:p>Remove the bold (b) markup and keep the 
                       text content</sqf:p>
            </sqf:description>
            <sqf:replace match="b" select="text()"/>
        </sqf:fix>
        <sqf:fix id="deleteBold">
            <sqf:description>
                <sqf:title>Delete the bold element</sqf:title>
                <sqf:p>Remove the bold (b) markup including the 
                       text content</sqf:p>
            </sqf:description>
            <sqf:delete match="b"/>
        </sqf:fix>
    </sqf:fixes>
</sch:schema>

5.1.2. QuickFix Groups

To avoid long lists of IDs, it is possible to reference a QuickFix group. A QuickFix
group is a set of QuickFixes. A reference to a QuickFix group is equal to a refer-
ence to each QuickFix in this group.

Example 3. Reference to a QuickFix Group
<sch:report test="exists(b)" 
    sqf:fix="bold"> 
    Bold element is not allowed in title.</sch:report>
<sqf:group id="bold">
    <sqf:fix id="resolveBold">
        <sqf:description>
            <sqf:title>Change the bold element into text
            </sqf:title>
            <sqf:p>Remove the bold (b) markup and keep the 
                text content</sqf:p>
        </sqf:description>
        <sqf:replace match="b" select="text()"/>
    </sqf:fix>

Schematron QuickFix

89



    <sqf:fix id="deleteBold">
        <sqf:description>
            <sqf:title>Delete the bold element</sqf:title>
            <sqf:p>Remove the bold (b) markup including the 
                text content</sqf:p>
        </sqf:description>
        <sqf:delete match="b"/>
    </sqf:fix>
</sqf:group>

To reference a QuickFix group, the sqf:group element also has an id attribute.
For the sch:assert or sch:report elements, there is no difference between refer-
encing a QuickFix or QuickFix group.

A QuickFix group can also be defined globally (in an sqf:fixes element) or lo-
cally (in an sch:rule element).

5.2. Title and Description
The title (sqf:title element) is very important for a QuickFix. It is a challenge
for the developer to create short titles that provide the user with enough informa-
tion to understand what will happen when the QuickFix is executed. The devel-
oper can also deliver more information by using sqf:p elements.

Also, as with Schematron error messages, the title and optional description
can be customized by using the Schematron elements sch:value-of or sch:name.

Example 4. Customized Title and Description

<sqf:fix id="delete">
    <sqf:description>
        <sqf:title>Delete the <sch:name/> element</sqf:title>
        <sqf:p>The <sch:name/> element is misplaced in the 
               <sch:name path=".."/> element.</sqf:p>
        <sqf:p>This QuickFix will delete the <sch:name/> 
               element<sch:value-of select="
               if (./node()) 
             then ' with all its content.' 
             else '.'"/>
        </sqf:p>
    </sqf:description>
    <sqf:delete/>
</sqf:fix>

This QuickFix deletes the context node of the error (matched by the sch:rule ele-
ment). This is a common solution, and if specified in this way, it can be reused in
various contexts.

Schematron QuickFix

90



5.3. Activity Elements
After the description, the developer must specify what the QuickFix should ac-
tually do. To define actions, the developer can choose between four types of Ac-
tivity Elements.

The developer can also add any number of Activity Elements to one QuickFix.
Each Activity Element is executed separately, in the context of the node where the
error occurred (matched by the sch:rule element).

All Activity Elements have a match attribute to select nodes by XPath, relative
to the context node of the error. These nodes are called anchor nodes. The kind of
processing of the anchor nodes depends on the type, additional attributes, and
the content of the Activity Element. An Activity Element that has no match attrib-
ute selects the context of the error as its anchor node.

There are four types of Activity Elements:
• sqf:delete
• sqf:replace
• sqf:add
• sqf:stringReplace

5.3.1. Delete Nodes

The delete action is the simplest type of Activity Element. The sqf:delete ele-
ment deletes the anchor nodes.

Example 5. Delete the Error Context

<sch:rule context="p">
    <sch:report test="normalize-space(.) = ''" 
        sqf:fix="delete"> 
        <sch:name/> element without text is not allowed.</sch:report>
    <sqf:fix id="delete">
        <sqf:description>
            <sqf:title>Delete the <sch:name/> element</sqf:title>
        </sqf:description>
        <sqf:delete/>
    </sqf:fix>
</sch:rule>

The empty p element is deleted by the QuickFix delete.

Example 6. Delete Nodes by Using the Match Attribute

<sch:rule context="title">
    <sch:report test="comment()" 
        sqf:fix="deleteComment"> 

Schematron QuickFix

91



        Comments are not allowed in the <sch:name/> element.</sch:report>
    <sqf:fix id="deleteComment">
        <sqf:description>
            <sqf:title>Delete the comment.</sqf:title>
        </sqf:description>
        <sqf:delete match="comment()"/>
    </sqf:fix>
</sch:rule>

All comments in the title element are deleted by the QuickFix deleteComment.

5.3.2. Replace Nodes with New Content

The Activity Element sqf:replace replaces each anchor node with new content.
There are three methods to create new content in SQF. In some cases, they can al-
so be combined.

5.3.2.1. Replace by Using SQF Attributes

The combination of the attributes node-type and target creates exactly one
node. The node-type attribute specifies the type of the node with the values:
element, attribute, processing-instruction, pi, comment, or keep. The value
pi is the short version of processing-instruction. The value keep is provided
to create the same type of node as the anchor node.

If the value of the node-type attribute is not comment, the target attribute is
required to specify the name of the new node. The attribute value is analyzed like
an attribute value template (as defined in XSLT: https:// www.w3.org/ TR/
xslt20/#attribute-value-templates). An XPath expression, which is marked
with curly brackets ({XPath}), is evaluated to generate the node name. After eval-
uation, the value needs to be a valid xs:QName.

You can combine this method of specifying the value or content of the new
node with one of the other two methods of creating new content. If the attributes
node-type and target create an element, the new content generated by using the
second method (described below) becomes the new content of this element. Oth-
erwise, the new content is transformed into an atomic value (attribute value, com-
ment value, etc.) in the same way as child nodes of xsl:attribute elements are
transformed to attribute values in XSLT.

5.3.2.2. Replace by Using XPath

The select attribute of the Activity Element creates new content by using XPath.
The given XPath expression is evaluated in the context of the anchor node. The
return value is used to generate new content. Returned nodes are copied and
atomic values are transformed to text nodes.

Schematron QuickFix

92

https://www.w3.org/TR/xslt20/#attribute-value-templates
https://www.w3.org/TR/xslt20/#attribute-value-templates


If the select attribute is set, the Activity Element must be empty.

Example 7. Create Nodes with the SQF Attributes and Copy Nodes with XPath

<sch:rule context="b">
    <sch:report test="ancestor::b" 
        sqf:fix="italic"> 
        Bold in bold is not allowed.</sch:report>
    <sqf:fix id="italic">
        <sqf:description>
            <sqf:title>Change it to italic.</sqf:title>
        </sqf:description>
        <sqf:replace target="i" node-type="element" select="node()"/>
    </sqf:fix>
</sch:rule>

The recursive b element is replaced by an i element. The content is copied.

5.3.2.3. Replace by Using New Content

If the select attribute is omitted, the content of the Activity Element is used to
create new content. The content is evaluated in the same way as the content of an
xsl:template element in XSLT 2.0. That also means that any element that is not
in the XSLT namespace is handled as a Literal Result Element. Exceptions are the
SQF element sqf:keep and the Schematron elements sch:let, sch:value-of,
and sch:name. The Schematron elements are handled in the same way as in Sche-
matron. The sqf:keep element will copy nodes that are selected by the XPath ex-
pression in the select attribute.

The initial context of this "template" will be the anchor node.

Example 8. Create Nodes with New Content

<sqf:fix id="italic">
    <sqf:description>
        <sqf:title>Change it to italic.</sqf:title>
    </sqf:description>
    <sqf:replace>
        <i>
            <sqf:keep select="node()"/>
        </i>
    </sqf:replace>
</sqf:fix>

This QuickFix example performs the same actions as the previous example (Ex-
ample 7), but uses a different way.

Schematron QuickFix

93



5.3.3. Add the New Content

To insert new content without replacing existing nodes, the Activity Element
sqf:add is used. It creates new content in the same way as the sqf:replace ele-
ment, but the new content is inserted relative to each anchor node instead of re-
placing it.

To specify the exact position, the sqf:add element can have a position attrib-
ute to indicate that the new content is inserted after (value after), before (value
before) the anchor node, as the first (value first-child – default value), or as
the last child (value last-child) of the anchor node. If the new content is an at-
tribute, the position attribute should not be used because it is always added au-
tomatically as an attribute of the anchor node.

Example 9. Add Nodes

<sch:rule context="h2">
    <sch:assert test="preceding::h1" 
        sqf:fix="addH1"> 
        A h2 should not be used without a h1 before.</sch:assert>
    <sqf:fix id="addH1">
        <sqf:description>
            <sqf:title>Add a h1 element before the h2 element.</►
sqf:title>
        </sqf:description>
        <sqf:add node-type="element" target="h1" position="before"/>
    </sqf:fix>
</sch:rule>

Directly before the h2, a new h1 is inserted. Because there is no content defined
for the new element, the h1 is empty.

5.3.4. Replace Substrings

The Activity Element sqf:stringReplace is a special case. There is a restriction
for the anchor nodes in that they must be text nodes. These text nodes are ana-
lyzed by a regular expression provided in the regex attribute. Each substring of
the anchor text node that matches to the regular expression is replaced by new
content. The new content is created in the same way as the sqf:replace element,
although the attributes target and node-type are not available for the
sqf:stringReplace element.

Example 10. Replace Substrings

<sch:report test="matches(., '____')" 
    sqf:fix="form"> 
    More than three underscores in a row shouldn't be used.</sch:report>

Schematron QuickFix

94



<sqf:fix id="form">
    <sqf:description>
        <sqf:title>Replace the misused characters by a form element.</►
sqf:title>
    </sqf:description>
    <sqf:stringReplace regex="___+">
        <form/>
    </sqf:stringReplace>
</sqf:fix>

5.4. Additional Features

5.4.1. User Entry

For some solutions of an error, it is impossible to define a QuickFix without get-
ting more information from the user. For instance, if the Schematron error is that
the title element is empty (and it should not be). For this case, the solution
would be to define a new title. A predefined QuickFix for this issue is impossible
because there is an unlimited number of possible titles. Therefore, additional in-
put from the user is needed.

For this case, one or more User Entries can be defined for any QuickFix. The
User Entry acts like a parameter whose value is set by the user during the execu-
tion of the QuickFix.

Example 11. User Entry
<sch:rule context="title">
    <sch:assert test="normalize-space(.) != ''" 
        sqf:fix="title"> 
        A title shouldn't be empty.</sch:assert>
    <sqf:fix id="title">
        <sqf:description>
            <sqf:title>Set a title</sqf:title>
            <sqf:p>This QuickFix will set a title by using a 
                User Entry.</sqf:p>
        </sqf:description>
        <sqf:user-entry name="title">
            <sqf:description>
                <sqf:title>Please enter the new title.
                </sqf:title>
            </sqf:description>
        </sqf:user-entry>
        <sqf:replace target="title" node-type="element"
            select="$title" />
    </sqf:fix>
</sch:rule>

Schematron QuickFix

95



The sqf:user-entry element has a name attribute and contains an
sqf:description element. The name attribute specifies the name of the User En-
try. For XPath expressions of all Activity Elements, a variable is now available
that has the name of the User Entry, and the variable can be used to access the
value of the User Entry.

The sqf:description element is used to define a title (sqf:title) and op-
tionally an additional description (sqf:p elements) of the particular use-case of
the User Entry.

5.4.2. Use-when Condition

In some cases, the usefulness of a QuickFix depends on the context of the error.
For one error, the QuickFix might make sense, but for another error of the same
kind, it might be useless because it would create another error.

Example 12. Useless QuickFix

Schematron schema:
<sch:rule context="title">
    <sch:report test="exists(b)" 
        sqf:fix="resolveBold deleteBold"> 
        Bold element is not allowed in title.</sch:report>
    <sch:assert test="normalize-space(.) != ''"> 
         A title shouldn't be empty.</sch:assert>
    <sqf:fix id="resolveBold">
        <!--...-->
    </sqf:fix>
    <sqf:fix id="deleteBold">
        <sqf:description>
            <sqf:title>Delete the bold element</sqf:title>
            <sqf:p>Remove the bold (b) markup including the 
                text content</sqf:p>
        </sqf:description>
        <sqf:delete match="b"/>
    </sqf:fix>
</sch:rule>

XML instance:
<article>
    <section>
        <title><b>This title should be bold</b></title>
    </section>
    <section>
        <title>This title should be bold<b/></title>
    </section>
</article>

Schematron QuickFix

96



Both titles will produce the same error, but for the first title, the QuickFix
deleteBold is useless because after its execution the title element would be
empty and would produce another kind of error (caused by the sch:assert ele-
ment).

To avoid such a subsequent error, the use-when condition helps. The XPath ex-
pression in the use-when attribute of the sqf:fix element is a condition to pro-
vide the QuickFix:

Example 13. Use-when Condition

<sqf:fix id="deleteBold"
    use-when="node()[normalize-space(.) != ''] except b">
    <sqf:description>
        <sqf:title>Delete the bold element</sqf:title>
        <sqf:p>Remove the bold (b) markup including the 
            text content</sqf:p>
    </sqf:description>
    <sqf:delete match="b"/>
</sqf:fix>

The QuickFix deleteBold is proposed to the user only if the title element con-
tains text other than whitespaces and has a node that is not a b element.

The use-when attribute is also available for each Activity Element, so the develop-
er is able to specify use-when conditions for each single Activity Element.

6. Projects Using SQF
There are some projects available that use the SQF language to propose fixes:

• Dynamic Information Model (DIM) project (https://github.com/oxygenxml/
dim) – Uses SQF to propose fixes for the Schematron rules.

• TEI (http://wiki.tei-c.org/index.php/Category:Schematron ) – A page that con-
tains Schematron schemas and SQF that can be used to determine and fix vari-
ous problems in TEI documents.

• <oXygen/> DITA framework – A built-in framework in oXygen XML Editor
for DITA documents that contains a set of Schematron schemas and SQF fixes
that can be used to impose rules and propose fixes to solve errors.

• <oXygen/> User Manual (https://github.com/oxygenxml/userguide) – A public
version of the oXygen XML Editor user guide that provides an example where
SQF rules have been implemented on a DITA project.

Schematron QuickFix

97

https://github.com/oxygenxml/dim
https://github.com/oxygenxml/dim
http://wiki.tei-c.org/index.php/Category:Schematron
https://github.com/oxygenxml/userguide


7. Conclusions and Future Plans
The Schematron QuickFix language is useful for XML projects because it offers
proposals to solve the Schematron validation errors and warnings. Thus, the
users understand the problem better, make fewer mistakes, and solve the prob-
lem in less time. The language is very simple, has just a few elements, and can be
easily adopted by the Schematron developers to create quick-fix proposals.

From the implementations perspective, SQF should not be difficult to imple-
ment because the language has only four basic operations (add, delete, replace,
and string replace) that must be supported.

In the near future, we plan to publish the second draft of the Schematron
QuickFix specification that will contain new things such as how you can execute
fixes on other documents, new definitions, and examples for the SQF elements.

We intend to update the specification and add other elements or change their
behavior, based upon discussions and feedback that we have received on the SQF
GitHub project4. For example, the call-fix element will be able to reference a group
of operations and support will be added to allow the developer to generate the
fixes dynamically.

4 https://github.com/schematron-quickfix/sqf

Schematron QuickFix

98

https://github.com/schematron-quickfix/sqf
https://github.com/schematron-quickfix/sqf
https://github.com/schematron-quickfix/sqf


Validating office documents in the
publishing production workflow

Andrew Sales
Andrew Sales Digital Publishing Limited

<andrew@andrewsales.com>

Abstract

This paper will present an innovative, open-source approach to verifying the
quality of content, by applying business rules to the markup that underlies
OOXML and ODF. These are normally onerous to author in full, as they
entail (in the case of word-processing documents) inferring structure from a
sequence of styled paragraphs and other items. It will show how these rules
can be expressed declaratively and succinctly, using a schema language. It
will also demonstrate how this language can be interpreted by a processor to
produce human-readable reports, including as annotations in the original
source. Finally, it will outline how this information can potentially be put to
use in correcting defects in content, via the Schematron QuickFix (SQF)
framework.

The paper builds on work presented at XML London 2015 and available
on GitHub at https://github.com/AndrewSales/schematron4word.

Keywords: Schematron, validation, OOXML, ODF, SQF

1. Background
The paper previously presented[1] on work in this area focused on the idea of ap-
plying quality assurance to styled word-processing documents as the basis of
sound data capture. Some publishers need to do it this way, on grounds of con-
venience or cost — often legacy workflows will exist. Whereas macros may have
been used to perform this kind of in-application validation historically, the availa-
bility of office formats as XML now means XSLT and thereby Schematron are via-
ble, and arguably more maintainable and more portable, alternatives.

Beyond validation, it is also possible to insert error messages at the location of
the fault into the original document, in the form of comments for editorial review.

This approach has been shown to work in both OOXML and ODF, and in oth-
er office documents, for example spreadsheets.

However, writing this kind of Schematron schema, even with the aid of libra-
ries of abstract patterns, can entail long-winded and convoluted constraints be-
cause of the nature of the task: attempting to impose an implied structure on a

99

https://github.com/AndrewSales/schematron4word


series of styles and other objects. Since a better fit would appear to be a schema
language for styled documents, this approach was proposed. A schema language
has already been devised; the present paper pursues the challenge of a processor
for this language which can be used to validate styled documents and so enable
the display of any errors in situ in the original, with the potential to fix them
(semi-)automatically.

2. A processor for style schemas
Francis Cave's "style schema"[2] seeks to express word-processing document con-
straints using a custom schema language. It is close to RELAX NG in format (by
which means it is also specified), with some document-specific additions, such as
sections and body/header/footer, as shown in this excerpt (as RNC for readabili-
ty):

Section = element Section { Body, Header?, Footer? }
Header = element Header { (Para | Table)+ }
Footer = element Footer { (Para | Table)+ }
Para =
  element Para {
    (Drawing
     | DocProperty
     | Text
     | Tab
     | Bookmark
     | Comment
     | ParaAnyOf)*,
    style_att
  }
ParaAnyOf =
  element OneOrMore {
    element Choice {
      (Drawing
       | DocProperty
       | Text
       | Tab
       | Bookmark
       | Comment
       | ParaAnyOf)+
    }
  }

Applying these schema-specified constraints to an office document requires a
custom processor to interpret them.

The earlier paper proposed generating Schematron from the style schema to
do this, as that technology had been used so far successfully with manually-auth-

Validating office documents in the publishing production workflow

100



ored constraints. Certain things are quick and easy to achieve with Schematron in
this way, such as enumerating all the allowed styles for a document, and, with a
little more interpretation, which are mandatory and in what order. This is a good
starting point. However, choice and optionality can make assertions lengthy and
complex and with a style schema of any length or complexity in itself, the num-
ber of requisite assertions could grow considerably.

Moreover, there is the problem of maintaining context. In a Schematron sche-
ma expected to constrain allowed sequences of styles, you must elaborate the
possible contexts (in rule/@context), and where styles are re-used in a schema
these can be many.

Faced with these considerations, a bespoke processor is appealing as it would
offer most control and be designed specifically for the task, but is a significant un-
dertaking. With a formal expression of the grammar in place, utilities such as
REx1 can produce a Java class or XSLT which could be adapted to suit2. This
would entail generating the EBNF for a given style schema (the productions will
vary from schema to schema) and some customisation of the resulting parser to
report an error's XPath.

However, validating documents against a grammar clearly has several well-
established precedents in XML processing, so these perhaps present a more con-
venient route. If the style schema can be successfully transformed into one of the
existing XML schema languages, then it should be possible to exploit pre-existing
parsing technology.

3. An implementation: DTD + SAX handler
As a first cut, the tried-and-tested DTD was selected. They may seem rather out-
moded in the schema era, but DTDs still have much to offer. The transform was
reasonably straightforward: the limitations and simplicity of DTD syntax are a
boon in this respect. Also, SAX3 libraries provide a convenient way to harvest an
XPath to the location of an error. As a quick win, this approach seems promising.

The general approach is:

1. transform the style schema to a DTD, declaring style names as pseudo-ele-
ments;

2. transform the styled source to pseudo-elements;

3. set up a validating parser that reports the XPath to any errors encountered in
the styled source transformed in the previous step;

1http://www.bottlecaps.de/rex/
2For an illuminating discussion of validators generated in this way, see Tony Graham's paper on vali-
dating XSL-FO[3].
3Simple API for XML, http://sax.sourceforge.net/

Validating office documents in the publishing production workflow

101

http://www.bottlecaps.de/rex/
http://sax.sourceforge.net/


4. insert annotations into the styled source by way of an identity transform, us-
ing the XPaths reported in the previous step.

3.1. Transforming the style schema to a DTD
For this, we treat each distinct stylename declared in the schema as an element to
declare in the DTD output:

<!-- each element that can have a stylename is declared as an element -->
<xsl:template match="sts:Para | sts:Table | sts:Text" mode="declare">
    <xsl:text><!ELEMENT </xsl:text>
    <xsl:sequence select="if(@styleID) then asdp:get-stylename(.) else ►
name()"/>
    <xsl:text> (#PCDATA</xsl:text>
    <xsl:if test="$declare-built-in-inline-elements">
        <xsl:text>|%built-in-inline;</xsl:text>
    </xsl:if>
    <xsl:text>)*>
</xsl:text>
</xsl:template>

Built-in styles (such as bold, italic etc) are declared in a static, pre-built module:
<!ENTITY % built-in-inline "b|i|ul|sub|sup|sc|url">
          <!ENTITY % auto-generated SYSTEM "auto-gen.dtd">
          %auto-generated;

where auto-gen.dtd is the automatically-generated part, e.g:
<!ELEMENT Document ((Para.articlehead, 
(Para.bodytext
)+, ((Para.bibhead, 
(Para.bib
)+))?, Footer))>

<!ELEMENT Para.Footer (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.Footer xpath CDATA #REQUIRED>

<!ELEMENT Para.articlehead (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.articlehead xpath CDATA #REQUIRED>

<!ELEMENT Para.bodytext (#PCDATA|%built-in-inline;|Text.bibref)*>
<!ATTLIST Para.bodytext xpath CDATA #REQUIRED>

<!ELEMENT Text.bibref (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibref xpath CDATA #REQUIRED>

<!ELEMENT Para.bibhead (#PCDATA|%built-in-inline;)*>
<!ATTLIST Para.bibhead xpath CDATA #REQUIRED>

Validating office documents in the publishing production workflow

102



<!ELEMENT Para.bib (#PCDATA|%built-in-inline;|Text.bibdate|Text.bibnum)*>
<!ATTLIST Para.bib xpath CDATA #REQUIRED>

<!ELEMENT Text.bibdate (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibdate xpath CDATA #REQUIRED>

<!ELEMENT Text.bibnum (#PCDATA|%built-in-inline;)*>
<!ATTLIST Text.bibnum xpath CDATA #REQUIRED>

<!ELEMENT Footer (Para.Footer)>
Character styles (in style schema parlance, Para/Text[@styleID]) receive similar
treatment and are inserted into the mixed content model, as in Para.bodytext
and Para.bib above. The purpose of attribute xpath is discussed in the next sec-
tion.

3.2. Transforming the source document styles to pseudo-elements

This approach of course necessitates transforming the input document too, so
that it can still be usefully validated. To achieve this, we treat each styled para-
graph, inline style or object (such as tables, drawings etc) as a pseudo-element.
The transform therefore has to do two things:

• create elements from styles that correspond with those declared in the DTD
generated from the style schema; and

• provide a route back to the location in the source document, so that a mean-
ingful report of the error can be made.

The former can be taken from the w:styleId attribute in the (e.g. paragraph or
run) properties,4 with the structure type (paragraph/character style, header, foot-
er) prepended:

<Para.bib><Text.bibnum>[2]</Text.bibnum>
<url address="https://www.oasis-open.org/standards">https://www.oasis-
open.org/standards#opendocumentv1.2</url>. Retrieved ►
<Text.bibdate>2015-03-08</Text.bibdate>.</Para.bib>

For the latter, XPaths to the nodes in the original are inserted as an attribute:

<Para.bib xpath="/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-
section[1]/wx:sub-section[1]/w:p[3]"> [...]

and the character styles mentioned above carried through:

4Although it will be absent in some cases, such as default styles, and is addressed e.g. by Para.Normal
(appropriately enough perhaps for a phantom stylename) to denote Word's default paragraph style.

Validating office documents in the publishing production workflow

103



<Text.bibnum xpath="/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-
section[1]/wx:sub-section[1]/w:p[2]/w:r[1]">[1]</Text.bibnum>

This is still a direct translation of the flat (in this case, WordProcessingML) for-
mat; no attempt is made to infer structure at the stage of generating these pseudo-
elements.

3.3. Validator with error location reporting

A validating instance of the Apache Xerces2-J5 SAXParser is created with some
org.xml.sax.helpers.DefaultHandler methods overridden:

private ArrayList<ParseError> errs;
    private ParseError error;
    private Stack<String> context;
    
    Validator(){
        errs = new ArrayList<ParseError>();
        context = new Stack<String>();
    }
        
  public void startElement(String uri, String localName, String qName, ►
Attributes atts) throws SAXException {
        context.push(atts.getValue("xpath"));
        
        if(error != null){
            error.setXPath(context.peek());
            errs.add(error);
            error = null;
        }
    }
    
    public void endElement(String uri, String localName, String qName) ►
throws SAXException {
        String xpath = context.pop();

        if(error != null){
            error.setXPath(xpath);
            errs.add(error);
            error = null;
        }    
    }
      
  public void error(SAXParseException e) throws SAXException {

5http://xerces.apache.org/xerces2-j/

Validating office documents in the publishing production workflow

104

http://xerces.apache.org/xerces2-j/


       error = new ParseError(e.getMessage());
    }

A stack is maintained so that errors reported just before an endElement event
(typically about the completeness of the element just ended) have their XPath lo-
cation reported correctly. A complete document of errors is emitted on
endDocument(), e.g.

<errors>
    <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-
section[1]/w:p[10]'>Element type "Para.Normal" must be declared.</error>
    <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-
section[1]/wx:sub-section[1]/w:p[1]'>Element type "Para.Heading2" must ►
be declared.</error>
    <error location='/w:wordDocument[1]/w:body[1]/wx:sect[1]/wx:sub-
section[1]/w:p[1]'>The content of element type "Document" must ►
match "(Para.articlehead,Para.bodytext+,(Para.bibhead,Para.bib
+)?,Footer)".</error>
</errors>

Note that the final error reported in this example pertains to the root element
("Document" is not complete when the document ends), so the XPath reported
here is by default associated with the first paragraph in the body of the original
document, to enable it to be displayed when rendered.

3.4. Inserting errors into the source
To present these errors to the user we are faced with two challenges, one techni-
cal, the other semantic. The first is relatively trivial: adapt the existing
errs2xsl.xsl to accept an error document emitted by the custom validator. Here,
we simply test for that document's presence via a parameter passed to the style-
sheet and process any errors it contains just as though they had come from the
Schematron SVRL. The second is more significant to the user, as we are showing
them error messages designed for markup, but they are looking at styles in an un-
structured environment. In this case, a crude re-wording in the XSLT of the pars-
er-specific messages suffices, as a limited variety of errors is expected. So, for in-
stance the error message Element type "Para.Normal" must be declared. be-
comes unrecognised style "Normal" when rendered in the UI.

3.5. Filling in the gaps with Schematron
So much for checking the implied structure of the document. But there remains
the issue of the expected content of the individual pseudo-elements. For example,
the style schema expresses that a given style should have fixed text via the text
content of Text, as in the case of bibhead, which style should cue the start of the
bibliography:

Validating office documents in the publishing production workflow

105



<Define name="bibhead">
    <Para styleID="bibhead">
        <Text>References</Text>
    </Para>
</Define>

This can be expressed by generating a rule such as:

<rule context='Para.bibhead'>
  <let name='fixed-text' value='"References"'/>
  <assert test='. = $fixed-text'><name/> should have the text ►
content '<value-of select='$fixed-text'/>'; got '<value-of select='.'/►
>'</assert>
</rule>

Further extension of the style schema format is desirable, to introduce more data-
typing, for instance by the simple addition of XSD types. For example, to con-
strain the content of bibdate to a valid date it would be nice to be able to specify
this:

<Para styleID="bib">
  <Text styleID="bibdate" type='xs:date'/>
  <Text styleID="bibnum"/>
</Para>

and have the corresponding constraint applied automatically by Schematron in
much the same way as the previous example.

4. Post mortem
There are certainly limitations to this approach, in that you probably still need to
hand-craft some Schematron rules, but so it goes; the majority of the work in
checking the structure implied by styles is done by the style schema validator,
and some constraining of text content by auto-generated Schematron.

Another consideration is that the main focus for the schema language as it
stands is documents in the strict sense, as opposed to say spreadsheets or presenta-
tions. Other kinds of office document may benefit, but it is hoped that at least the
concept is more or less proven.

What we lose, as indicated above, is the user-defined or customisable error
message, or at least something which has more meaning in the style-centric
world. Instead we are reliant on interpreting and re-wording XML parser mes-
sages.

There is also no inherent support yet in the style schema format for cross-ref-
erences or "co-occurrence constraints". In their absence, the constrainer is again
reliant on custom Schematron.

Validating office documents in the publishing production workflow

106



And it goes without saying that this is merely one implementation: other sche-
ma languages are of course available.

5. Fixing the source
When this technique was first applied as part of a journals workflow, there was
no Schematron involved, only pure XSLT to validate and in some cases re-process
the document to fix basic errors. Now, we have Schematron Quick Fix,6 which
offers a formal approach and implementation.

In this case, the question is what fixes can be usefully applied and where to
apply them.

The same difficulty besets what can be fixed as it does all of this validation ac-
tivity: namely that we are inferring structure from markup that may imply it,
rather than validating an already instantiated structure. This means a certain
amount of guesswork is required about the document author's intentions. Under
these circumstances, caution is advised in amending the source, but unambigu-
ous cases (such as the wrong boilerplate text given in a particular style) should
prove uncontroversial, not to mention very useful.

In order to allay editorial concerns about fixing less certain cases, perhaps it
would be worthwhile implementing them as part of the change tracking markup,
as in this (ODF this time) snippet:

<office:text>
      <text:tracked-changes>
          <text:changed-region xml:id="ct179952656" ►
text:id="ct179952656">
              <text:deletion>
                  <office:change-info>
                      <dc:creator>SQF</dc:creator>
                      <dc:date>2016-01-24T00:00:00</dc:date>
                  </office:change-info>
                  <text:p text:style-name="Standard">Bibliography</►
text:p>
              </text:deletion>
          </text:changed-region>
          <text:changed-region xml:id="ct179952552" ►
text:id="ct179952552">
              <text:insertion>
                  <office:change-info>
                      <dc:creator>SQF</dc:creator>
                      <dc:date>2016-01-24T00:00:00</dc:date>
                  </office:change-info>
              </text:insertion>

6http://www.schematron-quickfix.com/

Validating office documents in the publishing production workflow

107

http://www.schematron-quickfix.com/


          </text:changed-region>
      </text:tracked-changes>
      <text:p text:style-name="Standard">
          <text:change text:change-id="ct179952656"/>
          <text:change-start text:change-id="ct179952552"/►
>References<text:change-end text:change-id="ct179952552"/>
      </text:p>
  </office:text>

Here, the original document has been amended – the bibliography heading cor-
rected – albeit "non-invasively". This approach would mean that, once rendered,
the editor can use the built-in review tools to accept or reject the change, or other-
wise address the issue.

6. Next steps
There is still clearly more implementation work to be done on both the schema
and processor side. If this technique is of wider interest, contributions to the ef-
fort are very welcome. The focus has been on word-processing mostly in this in-
stance, but it is conceivable that style schemas for other office documents could
prove useful.

Bibliography
[1] The application of Schematron schemas to word-processing documents. Andrew

Sales. XML London 2015. June 6-7th, 2015. doi:10.14337/
XMLLondon15.Sales01.

[2] A style schema for word-processing documents. Francis Cave. February 2015.
Personal communication.

[3] Validating XSL-FO with Relax NG and Schematron. Tony Graham. XML London
2015. June 6-7th, 2015. doi:10.14337/XMLLondon15.Graham01.

I would like to express my gratitude to those fellow-sufferers who have kindly al-
lowed their brains to be picked over time: Alex Brown, Francis Cave, Jirka Kosek,
Horst Kucharczyk and Kourosh Mojar.

Validating office documents in the publishing production workflow

108



Data Just Wants to Be Format-Neutral
Steven Pemberton
CWI, Amsterdam

Abstract

Invisible XML is a technique for treating any parsable format as if it were
XML, and thus allowing any parsable object to be injected into an XML
pipeline. The parsing can also be undone, thus allowing roundtripping.

This paper discusses issues with automatic serialisation, and the rela-
tionship between Invisible XML grammars and data schemas.

1. Abstraction and Representation
All numbers are abstractions. There is no thing that is the number 3, you can't
point to it, only to a representation of it. The best that we can say is that the num-
ber three is what it is that three apples and three chairs have in common.

Given the right context, we understand that "CXXVII", "127", "7F", "1111111"
and "one hundred and twenty-seven" are all representations of the same number:
the underlying concept is identical. We choose the representations we use either
through familiarity, or for convenience. For instance, while it is relatively easy to
add numbers expressed in roman numerals together, it is very hard to multiply
them; binary representations are used in computers because the electronics nee-
ded to manipulate them are much simpler.

And so it is with data representations in general. To take an example, there is
no essential difference between the JSON

{"temperature": {"scale": "C"; "value": 21}}
and an equivalent XML

<temperature scale="C" value="21"/>
or

<temperature>
  <scale>C</scale>
  <value>21</value>
</temperature>

since the underlying abstractions being represented are the same. We choose
which representations of our data to use, JSON, CSV, XML, or whatever, depend-
ing on habit, convenience, or the context we want to use that data in.

On the other hand, having an interoperable generic toolchain such as that pro-
vided by XML to process data is of immense value. How do we resolve the con-

109



flicting requirements of convenience, habit, and context, and still enable a generic
toolchain?

2. Invisible XML
Invisible XML [ixml] is a method for treating non-XML documents as if they were
XML, enabling authors to write documents and data in a format they prefer while
providing XML for processes that are more effective with XML content.

The essence of Invisible XML is based on the observation that, looked at in the
right way, an XML document is no more than the parse tree of some external
form, so that all that is needed is to parse the external form using some general-
purpose parsing algorithm, and then serialise the resulting parse-tree as XML.

To take a very simple example, imagine a grammar for a very simple expres-
sion language that allows such expressions as:

a×(3+b)
The grammar could look like this:

expression: ^expr. 
expr: term; ^sum; ^diff.
sum: expr, "+", term.
diff: expr, "-", term.
term: factor; ^prod; ^div.
prod: term, "×", factor.
div: term, "÷", factor.
factor: ^letter; ^digit; "(", expr, ")".
letter: ^["a"-"z"].
digit: ^["0"-"9"].

The format used is a 1-level van Wingaarden grammar [vwf], a variant of BNF
[bnf]. Each rule consists of a non-terminal to be defined, followed by a colon, and
a definition followed by a full-stop. A definition consists of a number of alternatives
separated by semicolons. Each alternative consists of a list of non-terminals and
terminals separated by commas. A terminal is enclosed in quotes. An alternative,
as a shorthand, may also consist of a range of characters enclosed in square brack-
ets.

The only thing that needs to be explained here is the use of the "^" symbol,
which marks non-terminals in the parse tree that are required to show up in the
final XML serialisation. To illustrate, if we parse the example expression "a×
(3+b)" with this grammar we would get the following parse tree:

^expr
|   term
|   |   ^prod
|   |   |   term
|   |   |   |   factor

Data Just Wants to Be Format-Neutral

110



|   |   |   |   |   ^letter
|   |   |   |   |   |   ^"a"
|   |   |  "×"
|   |   |   factor
|   |   |   |   "("
|   |   |   |   expr
|   |   |   |   |   ^sum
|   |   |   |   |   |   expr
|   |   |   |   |   |   |   term
|   |   |   |   |   |   |   |   factor
|   |   |   |   |   |   |   |   |   ^digit
|   |   |   |   |   |   |   |   |   |    ^"3"
|   |   |   |   |   |   "+"
|   |   |   |   |   |   term
|   |   |   |   |   |   |   factor
|   |   |   |   |   |   |   |   ^letter
|   |   |   |   |   |   |   |   |   ^"b"
|   |   |   |   ")"

Serialising this as XML, retaining all nodes, would give the following XML in-
stance:

<expr>
  <term>
    <prod>
      <term>
        <factor>
          <letter>a</letter>
        </factor>
      </term>
      ×
      <factor>
        (
        <expr>
          <sum>
            <expr>
              <term>
                <factor>
                  <digit>3</digit>
                </factor>
              </term>
            </expr>
            +
            <term>
               <factor>
                 <letter>b</letter>
               </factor>

Data Just Wants to Be Format-Neutral

111



            </term>
          </sum>
        </expr>
        )
      </factor>
    </prod>
  </term>
</expr>

However, serialising it retaining only the marked nodes gives us the following
XML:

<expr>
    <prod>
        <letter>a</letter>
        <sum>
            <digit>3</digit>
            <letter>b</letter>
        </sum>
    </prod>
</expr>

3. Serialisation
Since in general the input form and the generated XML are isomorphic, returning
the generated XML to its original format is just a process of serialisation, nothing
that a suitable bit of XSLT couldn't do, or even CSS in some simple cases.

For instance, to take an example from the original paper, where a piece of CSS
body {color: blue; font-weight: bold}

is parsed into XML as:
<css>
   <rule>
      <selector>body</selector>
      <block>
         <property>
            <name>color</name>
            <value>blue</value>
         </property>
         <property>
            <name>font-weight</name>
            <value>bold</value>
         </property>
      </block>
   </rule>
</css>

Data Just Wants to Be Format-Neutral

112



Rejoicing in the possibility of formatting CSS with CSS, the following simple bit
of CSS would return the XML back into regular CSS format:

block::before {content: "{"}
block::after {content: "}"}
name::after {content: ":"}
property::after {content: ";"}

The original paper also shows how to produce an alternative XML serialisation of
the CSS snippet using attributes:

<css>
   <rule>
      <selector>body</selector>
      <block>
         <property name="color" value="blue"/>
         <property name="font-weight" value="bold"/>
      </block>
   </rule>
</css>

which could be round-tripped with the following piece of CSS:
block::before {content: "{"}
block::after {content:"}"}
property::before {content: attr(name) ":" attr(value) ";"}

However, considering the XML above for the expression, it is harder (a combina-
torial problem) to round-trip the XML using CSS because of the loss of context
caused by eliding intermediate nodes like term, factor and expr. For instance, if
<sum> is a direct child of <prod>, then it must have been enclosed in brackets in
the original expression, and therefore the serialisation must include brackets
around such <sum>s, but you can only infer it, and it is impossible to infer if the
original had twoÂ pairs of brackets around it.Â 

An alternative option to such inference is to regard the grammar of a format
as a specification of a presentation language for the parse-tree of that format, and
write a suitable program that walks the tree hand-in-hand with the grammar.

4. Serialisation by Tree Walking
If you have the parse tree that was used to generate the XML serialization, then
serialising it back to its original form is trivially easy: the parse tree is traversed
depth first, and each time a terminal symbol is reached, it is copied to the output:

serialise(t)=
   for node in children(t):
      select: 
         terminal(node):

Data Just Wants to Be Format-Neutral

113



            output(node)
         nonterminal(node):
            serialise(node)

However, in the general case you will not have the original parse-tree, and so life
is harder. Because of the lack of context referred to earlier, caused by the elision of
intermediate nodes in the parse tree, you essentially have to recreate the parse-
tree. This can be done by 'parsing' the XML serialisation using the original gram-
mar.

5. Earley Parsing
In the literature, the Earley parsing algorithm [earley] is often referred to as a
"state chart" parsing algorithm [aho]. However, from a modern computing per-
spective, it is more useful to see it as a serialised parallel parsing processor.

Each rule, such as
sum: expr, "+", term.

represents, in Unix terms, a process. The right hand side is a series of 'instruc-
tions' for matching the input, starting at the current position. These are executed
sequentially.

However, if a right hand side has several alternatives (separated by ";" in ixml
grammars), such as

factor: ^letter; ^digit; "(", ^expr, ")".
then the processed is 'forked' (again in Unix terminology) to produce a sub-proc-
ess for each alternative, each processing from the same start position.

The processes are put in a queue, ordered on the position in the input they are
parsing from. All processes for position n are run before processes for position n
+1 (not essential, but reduces the need for keeping the whole input around during
processing).

If a process successfully matches an input symbol, it is paused and added to
the queue for position n+1.

If a process reaches the end of its 'instructions', it succeeds (terminates success-
fully, and returns to its parent rule).

If a process meets an input symbol it wasn't expecting, it fails (terminates un-
successfully, and returns to its parent rule).

For a rule with more than one alternative, if one or more succeeds, the rule
itself succeeds, otherwise it fails.

More than one alternative can succeed if the grammar is ambiguous. For in-
stance, with the simple grammar:

div: "i"; div, "÷", div.
the string

Data Just Wants to Be Format-Neutral

114



i÷i÷i
can be parsed in two ways, essentially either as

div(i, div(i, i))
or

div(div(i, i), i)
or in other words, either as

i÷(i÷i)
or as

(i÷i)÷i.
The whole process ends when all the sub-processes have terminated; if the top-
level process succeeds, than you have successfully parsed the input, and other-
wise not.

There is one other issue: if a rule has already been queued for a particular po-
sition, it is not added a second time, instead being linked to the already-queued
version.

6. Parsing a Parse Tree
Parsing a parse tree is a similar procedure. The top level rule must be matched
against the XML tree. A 'marked' terminal in the grammar must be present in the
XML, as must a marked nonterminal, which is then further treated as a nontermi-
nal in the original algorithm. A non-marked terminal is assumed to be present.
Finally an unmarked nonterminal is treated the same as any nonterminal in the
original algorithm.

This parsing will produce a parsetree that can then be used for serialisation as
described above.

The only thing to note is that parsing the parsetree can also produce an am-
biguous result. For example, suppose an expression grammar allowed the use of
several sorts of brackets, where the brackets had no separate semantic meaning,
so that as well as

a×((b+1)×(c+1))
you could also write

a×({b+1}×{c+1})
with the following grammar fragment:

factor: ^letter; ^digit; "(", expr, ")"; "{", expr, "}".
Since the brackets do not appear in the final serialised parsetree, there is no way
to tell from it if an original bracketed expression had been

Data Just Wants to Be Format-Neutral

115



(b+1)
or

{b+1}
since they both produce the identical serialisation. This implies that while round-
tripping will be semantically identical, it won't necessarily be character-by-char-
acter identical. If this is not wanted, then to overcome it, effective information
about the elided characters has to appear in the serialisation. For instance by us-
ing rules like:

factor: ^letter; ^digit; ^pexpr; ^bexpr.
pexpr: "(", expr, ")".
bexpr: "{", expr, "}".

7. Representation Neutrality
A major consequence of Invisible XML is that the external representation of any
format is relatively unimportant: it is the data represented that matters, and in
particular the resulting parse-tree. This means from the point of view of IXML
that any external representation of a format is equivalent, as long as it has the
same parse tree.

Take for instance the syntax of an ixml grammar, a part of which looks like
this:

ixml: (^rule)+.
rule: @name, colon, definition, stop.
definition: (^alternative)+semicolon.
alternative: (term)*comma.
term: symbol; repetition.
 ...
name: (letter)+.
colon: ":".

As long as the resulting serialised parsetree is the same, we could easily choose
another format for the grammars. For instance:

<ixml> ::= (^<rule>)+
<rule> ::= @<name> <define-symbol> <definition>
<definition> ::= (^<alternative>)+<bar>
<alternative> ::= (<term>)*
<term> ::= <symbol> | <repetition>
 ...
<name> ::= "<" (<letter>)+ ">"
<define-symbol> ::= "::=" 
<bar> ::= "|"

Data Just Wants to Be Format-Neutral

116



(Note that these two grammar fragments, both describe and use the format descri-
bed).

The only repercussion this has on Invisible XML is during the delivery, we not
only have to say what the syntax is of the document that we are parsing, but also
what syntax of that syntax is, if it is not the standard one. So for instance the me-
diatype could look like:

application/xml-invisible; syntax=http://example.com/syntax/css; ►
in=http://example.com/syntax/invisible-xml-alt

8. Normalising Grammars
So what is the resulting parse tree of a particular ixml grammar? The way to find
out is to process the grammar in the following way. For each symbol in every
rule:
1. if it is an implicit terminal delete it
2. if it is a refinement, replace it with the definition of that refinement enclosed

with brackets, unless this refinement is already a part of it (i.e. the refinement
is recursive).

and then delete all rules that are no longer used.
So for example, for the expressions grammar, we would end with:
expr: (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
sum:  (^letter; ^digit; ^prod; ^div; ^sum; ^diff),    
      (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
diff: (^letter; ^digit; ^prod; ^div; ^sum; ^diff),
      (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
prod: (^letter; ^digit; ^prod; ^div; ^sum; ^diff), 
      (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
div:  (^letter; ^digit; ^prod; ^div; ^sum; ^diff), 
      (^letter; ^digit; ^prod; ^div; ^sum; ^diff).
letter: ^["a"-"z"].
digit: ^["0"-"9"].

which has eliminated all refinements, and all non-productive terminal symbols.
This resulting parse-tree definition is essentially a definition of the data-struc-

ture for the internal representation of the document, in other words a form of
schema.

As another example, take this fragment of the ixml grammar for itself:
ixml: (^rule)+.
rule: @name, colon, definition, stop.
definition: (^alternative)+semicolon.
alternative: (term)*comma.
term: symbol; repetition.
symbol: terminal; ^nonterminal; ^refinement.

Data Just Wants to Be Format-Neutral

117



terminal: ^explicit-terminal; ^implicit-terminal.repetition: ^one-or-
more; ^zero-or-more.

The first rule:
ixml: (^rule)+.

doesn't change.
rule: @name, colon, definition, stop.

becomes:
rule: @name, ":", (^alternative)+semicolon , ".".

by substituting all the definitions for the refinements. This is then processed again
to give:

rule: @name, ":", (^alternative)+";" , ".".
and finally the (unmarked) terminals are deleted:

rule: @name, (^alternative)+.
The rule

definition: (^alternative)+semicolon.
becomes by a similar process:

definition: (^alternative)+.
(but will be later deleted, as it is no longer used).

The rule
alternative: (term)*comma.

becomes by a similar process
alternative: (symbol; repetition)*.

which then can be processed again to give
alternative: (terminal; ^nonterminal; ^refinement; ^one-or-more; ^zero-
or-more)*.

and then one final time to give
alternative: (^explicit-terminal; ^implicit-terminal; ^nonterminal; ►
^refinement; ^one-or-more; ^zero-or-more)*.

and so on.
So our final parse-tree description for this grammar fragment is:
ixml: (^rule)+.
rule: @name, (^alternative)+.
alternative: (^explicit-terminal; ^implicit-terminal; ^nonterminal; ►
^refinement; ^one-or-more; ^zero-or-more)*.

Data Just Wants to Be Format-Neutral

118



one-or-more: (^alternative)+; (^alternative)+, ^separator.
zero-or-more: (^alternative)+; (^alternative)+, ^separator.
separator: ^explicit-terminal; ^implicit-terminal; @nonterminal; ►
@refinement.
symbol: ^explicit-terminal; ^implicit-terminal; ^nonterminal; ►
^refinement.
terminal: ^explicit-terminal; ^implicit-terminal.
explicit-terminal: @string.
implicit-terminal: @string.
nonterminal: @name.
refinement: @name.
attribute: @name.

From a data-structuring point of view, these are type definitions, semicolons rep-
resenting unions, commas representing structs, and repetitions representing lists.

9. Subsets
A corollary of the observation above that any external representation of a format
is equivalent, as long as it has the same parse tree, is that if a format has a normal-
ised grammar that is a subset of another normalised grammar, and the same root
node, then the first language is compatible with the second (but not the other way
round).

10. Data Conversion
Since external representation is no longer important, it would be easy to trans-
form one format to another, as long as their normalised grammars are compati-
ble. So transforming an ixml grammar to one in a different representation is as
simple as parsing it with one grammar and serialising it with another.

11. Conclusion
XML has provided us with a standard data-representation layer, and a standard
processing pipeline. With a relatively small addition we can open up the pipeline
to all structured documents, making XML truly ubiquitous.

References
[1] Pemberton, Steven. "Invisible XML." Presented at Balisage: The Markup

Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of
Balisage: The Markup Conference 2013. Balisage Series on Markup
Technologies, vol. 10 (2013). doi:10.4242/BalisageVol10.Pemberton01.

Data Just Wants to Be Format-Neutral

119



[2] Backus-Naur Form, http://en.wikipedia.org/wiki/Backus-Naur_Form
[3] S. Pemberton, 1982, Executable Semantic Definition of Programming

Languages Using Two-level Grammars, http://www.cwi.nl/~steven/
vw.html[vw]

[4] https://en.wikipedia.org/wiki/Earley_parser
[5] Aho, AV, and Ullman, JD, "The Theory of Parsing, Translation, and

Compiling", Prentice-Hall, 1972, ISBN 0139145567

Data Just Wants to Be Format-Neutral

120

https://en.wikipedia.org/wiki/Earley_parser


From XML to RDF step by step:
Approaches for Leveraging XML
Workflows with Linked Data

Marta Borriello
Vistatec

<marta.borriello@vistatec.com>
Christian Dirschl

Wolters Kluwer Germany
<cdirschl@wolterskluwer.de>

Axel Polleres
<axel.polleres@wu.ac.at>

Phil Ritchie
<philr@vistatec.ie>

Frank Salliau
<frank.salliau@ugent.be>

Felix Sasaki
<felix.sasaki@dfki.de>

Giannis Stoitsis
<stoitsis@agroknow.com>

1. Introduction

1.1. Motivation
There have been many discussions about benefits and drawbacks of XML vs.
RDF. In practice more and more XML and linked data technologies are being
used together. This leads to opportunities and uncertainties: for years companies
have invested heavily in XML workflows. They are not willing to throw them
away for the benefits of linked data.

In XML workflows XML content is
• Generated, from scratch or based on existing content;
• processed, e.g.: validated, queried, transformed; and
• stored in various forms, e.g.: as XML, in a different format (e.g. PDF / HTML

output); and

121



• potentially input to other XML or non-XML workflows.
Each part of the workflow may include huge amounts of XML data. This can be
XML files themselves, but also additional related items like: XSLT or XSL-FO
stylesheets for transformation or printing, XQuery based queries, or XML Sche-
ma / DTD / Relax NG schemata for validation etc.

For many potential users of linked data, giving up these workflows is not an
option. Also, changing even a small part of the workflow may lead to high costs.
Imagine one element linkedDataStorage added to an imaginary XML docu-
ment:

Example 1. XML document with linked data embedded in an element

<myData>
 <head>...</head>
 <body>
 <linkedDataStorage>...</linkedDataStorage> ...
 </body>
</myData>

Adding this element to an XML element may break various aspects of the work-
flow, like:
• Validation: the underlying schema does not understand the new element.
• Transformation: a transformation may expect a certain element as the first

child element of body. If linkedDataStorage is the first child, the transforma-
tion would fail.

One may argue that good XML schema will leave space for expansion using lax
validated parts or by accepting attributes from other namespaces, for example.
Nevertheless, in practice we have to work with a lot of existing XML Schemas, re-
lated tooling and workflows. So creating extension points and deploying lax vali-
dation may not be an option in real life.

Whereas the strict validation against schemas on the one hand is in the XML
world often seen as a feature of the toolchain, on the other hand, such adding of
elements and schemaless integration of different (parts of) datasets is actually one
of the main “selling points of RDF”. However, note that on the contrary, even in
the RDF world, users are starting to demand tools for stricter schema validation,
which has recently lead to the foundation of a respective working group around
RDF Data Shapes in W3C.22 So, overall there seems to be lots to learn for both
sides from each other.

This paper wants to help with XML and RDF integration to foster incremental
adoption of linked data, without the need to get rid of existing XML workflows.

22See http://www.w3.org/2014/data-shapes/.

Approaches for Leveraging XML Workflows with Linked Data

122

http://www.w3.org/2014/data-shapes/


We are discussing various integration approaches. They all have benefits and
drawbacks. The reader needs to be careful in deciding which approach to choose.

1.2. The Relation to RDF Chimera
In her keynote at XML Prague 2012 and a subsequent blog post, Jeni Tennison
discussed RDF chimera23. She is arguing that for representing RDF, syntaxes like
RDF/XML or JSON or JSON-LD should be seen as a means to achieve something -
a road, but not a destination. An example is a query to an RDF data store, and the
outcome is represented in an HTML page.

The goal of our paper is different. We assume that there is existing content
that benefits from data integration with linked data - without turning the content
into a linked data model. Let’s look at an example: imagine we have the sentence
Berlin is the capital of Germany!. There are many linked data sources like
DBpedia24 that contain information about Berlin; it would add an enormous val-
ue to existing content (or content creation workflows) if such information could
be taken into account. This does not mean - like in the case of RDF chimera - to
give up the XML based workflows, but to provide means for the data integration.
In this view we can see the linked data process as a type of enrichment, hence we
call the process enriching XML content with linked data based information.

1.3. Background: The FREME Project
FREME25 is an European project funded under the H2020 Framework Pro-
gramme. FREME is providing a set of interfaces (APIs and GUIs) for multilingual
and semantic enrichment of digital content. The project started in February 2015,
will last for two years and encompasses eight partners. The partners provide
technology from the realm of language and data processing, business cases from
various domains, and expertise in business modeling. This expertise is of specific
importance since both language and linked data technologies are not yet widely
adopted. The challenge of XML re-engineering for the sake of linked data pro-
cessing is one hindrance that needs to be overcome to achieve more adoption.

FREME provides six e-Services for processing of digital content:
• e-Internationalisation based on the Internationalisation Tag Set (ITS) Version

2.0.
• e-Link based on the Natural Language Processing Interchange Format (NIF)

and linked (open) data sources.
• e-Entity based on entity recognition software and existing linked entity data-

sets.

23 http://www.jenitennison.com/2012/06/30/rdf-chimera.html
24 http://dbpedia.org/about
25See the FREME project homepage at http://freme-project.eu/ for more information.

Approaches for Leveraging XML Workflows with Linked Data

123

http://www.jenitennison.com/2012/06/30/rdf-chimera.html
http://dbpedia.org/about
http://www.jenitennison.com/2012/06/30/rdf-chimera.html
http://dbpedia.org/about
http://freme-project.eu/


• e-Terminology based on cloud terminology services for terminology manage-
ment and terminology annotation web service to annotate terminology in ITS
2.0 enriched content.

• e-Translation based on cloud machine translation services for building custom
machine translation systems.

• e-Publishing based on cloud content authoring environment (for example e-
books, technical documentation, marketing materials etc.) and its export for
publishing in Electronic Publication (EPUB3) format.

This paper will not provide details about the services - examples and more infor-
mation on FREME can be found at http://api.freme-project.eu/doc/current/

All e-services have in common that XML content is a potential input and out-
put format: via FREME, XML content can be enriched with additional informa-
tion, to add value to the content. But FREME is only one example: many other
linked data projects involve companies working with linked data content.

2. Business Case Motivation Examples

2.1. The Case of Agro-Know and Wolters Kluwer - Linked Data in XML
Publishing Workflows

Agro-Know is data oriented company that helps organisations to manage, organ-
ise and open their agricultural and food information. One of the main activities of
Agro-Know is the aggregation of bibliographic references from diverse sources to
support online search services like AGRIS26 of the Food and Agricultural Organi-
sation of the United Nations. Agro-Know is doing so by aggregating metadata re-
cords from data providers such as journals, small publishers, universities, re-
search centers, libraries and national aggregators. The metadata aggregation
workflow of Agro-Know includes parts for metadata analysis, harvesting, filter-
ing, transformation, enrichment, indexing and publishing. The main goal of ap-
plying the different steps of the workflow is to end up with a well formated and
complete metadata record that is compatible to the metadata standard for agricul-
tural sciences, namely AGRIS AP27. The majority of the metadata records that are
collected are in XML following several metadata formats such as DC, AGRIS AP,
DOAJ, MODS, MARC 21 etc. The processed metadata records are published in
AGRIS AP, JSON and RDF.

Within such metadata aggregation workflow, Agro-Know is facing several
challenges related to the enrichment of the metadata records. One such example
is non-structured information about authors that in many cases is not following

26 http://agris.fao.org/
27 http://www.fao.org/docrep/008/ae909e/ae909e00.HTM

Approaches for Leveraging XML Workflows with Linked Data

124

http://api.freme-project.eu/doc/current/
http://agris.fao.org/
http://www.fao.org/docrep/008/ae909e/ae909e00.HTM
http://agris.fao.org/
http://www.fao.org/docrep/008/ae909e/ae909e00.HTM


an authority file and includes additional information in the same XML tag like
affiliation, email and location. This information cannot be automatically trans-
formed to structured information and remaining in the tag, it reduces the quality
of provided filtering options in the search functionality of the online service. In
addition to that, since an authority file is not used on the data provider side, this
results in an ambiguity problem as the same author may appear with many dif-
ferent variations of the name. Another problem is the absence of subject terms in
the metadata records from a multilingual vocabulary such as AGROVOC28, that
consists of more than 32.000 terms available in 23 languages. Including AGRO-
VOC terms in the metadata records can semantically enhance the information
and can enable better discovering services at the front end application.

To solve such problems, Agro-Know is using the FREME e-services in order to
improve a) the online services that are offered to the end users and b) the seman-
tics of the metadata records that is provided to other stakeholders of this data val-
ue chain, such as publishers. The main goal will be to add the structured informa-
tion in the XML records by keeping the level of intervention at a minimum level
in order to eliminate the revisions required in the existing workflows. Examples
of how an XML part referring to authors can be enriched using FREME e-services
is presented in the table below. In this case, including the ORCID29 identifier may
help in disambiguation but also in the enrichment of the information as we can
show to the end user of the online service additional valuable information direct-
ly retrieved from ORCID.

Before FREME Result of deploying FREME
<dc:creator>
<ags:creatorPersonal>
Stoitsis, Giannis,
Agroknow
</ags:creatorPersonal>
</dc:creator>

<dc:creator>
<ags:creatorPersonal>Stoitsis,
Giannis</ags:creatorPersonal>
<nameIdentifier schemeURI=
"http://orcid.org/"
 nameIdentifierScheme=
"ORCID">0000-0003-3347-8265
</nameIdentifier>
<affiliation>Agroknow</affiliation>
</dc:creator>

28 http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
29 http://orcid.org/

Approaches for Leveraging XML Workflows with Linked Data

125

http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://orcid.org/
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://orcid.org/


<dc:subject>
<ags:subjectClassification
scheme="ags:ASC">
<![CDATA[J10]]>
</ags:subjectClassification>
</dc:subject>

<dc:subject
freme-enrichment=
"http://aims.fao.org/aos/agrovoc/c_426
 http://aims.fao.org/aos/agrovoc/c_24135
 http://aims.fao.org/aos/agrovoc/c_4644
 http://aims.fao.org/aos/agrovoc/c_7178">
<ags:subjectClassification scheme=
 "ags:ASC"><![CDATA[J10]]>
</ags:subjectClassification>
</dc:subject>

Wolters Kluwer is a global information service provider with businesses mainly
in the legal, tax, health and financial market. The fundamental transformation
process from folio to digital and service offerings that is currently disrupting the
whole industry requires also more efficient and streamlined production process-
es. In the last ten years, the industry has very much focused on XML based pub-
lishing workflows, where all relevant information resides as metadata within the
documents, which are structured according to proprietary DTDs or XML sche-
mas. The industry is slowly starting to adapt linked data principles, because they
offer the required flexibility, scalability and information interoperability that XML
or also relational database models do not offer. As a first step, metadata is extrac-
ted from the documents and stored in parallel in graph databases. Already this
step requires a major shift in technology as well as business culture, because the
focus and added-value moves away from pure content to data and information.

Wolters Kluwer Health is customer of Agro-know and has integrated its XML
delivery channel for enriched scientific references mainly in the area of agricul-
ture. Agro-know is offering more and more added value services using linked da-
ta principles and in this course reduces the traditional XML-based delivery pipe-
line step by step in order to stimulate usage of the superior channels. This change
causes major challenges at the customer’s side. Semantic Web technology and
standards are not yet common solutions in publishing. Therefore technical infra-
structure as well as skills have to be developed in order to get things even started.
This requires a certain transition period, where the old delivery channel remains
stable and the customer can prepare the changes.

In such a scenario, Wolters Kluwer recommends that the source provider ena-
bles the customer to locally keep his old production workflow in place as long as
it is needed. This could be achieved e.g. by making the conversion script available
as open source. In addition, a proper documentation about the differences from
old to new is also vital for success. Ideally, a direct communication flow between
vendor and customer would help to lower concerns and accelerate uptake of the
new process.

Approaches for Leveraging XML Workflows with Linked Data

126



2.2. The Case of Vistatec - Linked Data in XML Localization Workflows
Vistatec is a leading provider of digital content translation and locale adaptation
services for international businesses. These businesses use a variety of Vistatec
multilingual services to publish a range of content types including: corporate
communications; marketing collateral; e-commerce catalogues; and product, trav-
el destination, and leisure experience descriptions.

Vistatec's production processes are highly automated and based on XML
standards for systems integration, process component interoperability and the
capture and use of metadata.

The localization process, content types and end consumers of the content all
benefit greatly from FREME semantic enrichment and entity discovery and link-
ing e-services.

The successful adoption of technology hinges upon the ease of use. Vistatec
has adapted its open source XLIFF30 editor, Ocelot31, to consume FREME e-serv-
ices in a transparent and optimal way using configurable pipelines.

The table below summarizes the steps of a typical localization workflow and
the benefits that can be realized through the use of FREME e-services:

Process Step FREME e-service Benefit
Conversion of native
document to Extensible
Localization Interchange
File Format

e-Internationalization Define translatable por-
tions of the document.

Translation e-Terminology and e-En-
tity

These services help lin-
guists to identify and use
appropriate translations
suitable for the subject do-
main.

Semantic enrichment e-Link Suggest information re-
sources which relate to the
subject matter of the con-
tent.

30 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
31 http://open.vistatec.com/ocelot/index.php?title=Main_Page

Approaches for Leveraging XML Workflows with Linked Data

127

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
http://open.vistatec.com/ocelot/index.php?title=Main_Page
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
http://open.vistatec.com/ocelot/index.php?title=Main_Page


Content publication e-Pub Incorporation of markup
for entity definitions and
hyperlinks to information
resources which relate
closely to the subject mat-
ter of the content.

A tutorial from the FREME documentation32 shows how XLIFF can be processed
via FREME e-Services. We process the following XLIFF element, using the exam-
ple sentence from a previous section:

<source>Berlin is the capital of Germany!</source>
The e-Entity service identifies Berlin as a named entity with a certain type and a
unique URI. The result of the process is not stored in XML, but as a linked data
representation including offsets that point to the string content. The URI

<http://freme-project.eu/#char=25,32>
identifies the entity, offsets and entity related information. A complete linked da-
ta representation, using the turtle syntax, looks as follows.

Example 2. Linked data representation using offsets for pointing to existing
XML content

<http://freme-project.eu/#char=25,32> ...
(1) nif:anchorOf          "Germany"^^xsd:string ;
(2) nif:beginIndex        "25"^^xsd:int ;
(3) nif:endIndex          "32"^^xsd:int ; ...
(4) itsrdf:taClassRef     <http://nerd.eurecom.fr/ontology#Location>;
(5) itsrdf:taIdentRef     <http://dbpedia.org/resource/Germany>.

The linked data statements expressed in above representation are:
• The annotation is (1) anchored in the string Germany.
• The annotation (2) starts at character 25 and (3) ends at character 32.
• The annotation is related to (4) the class URI http://nerd.eurecom.fr/ontolo-
gy#Location.

• The entity is (5) uniquely identified with the URI http://dbpedia.org/resource/
Germany.

The example should make clear why we are not looking at a data conversion task
(like in the discussion on RDF chimera), but at a data integration task. We don’t
aim at changing the XLIFF source element, but at relating it to the information

32See http://api.freme-project.eu/doc/0.4/tutorials/spot-entities-in-xliff.html

Approaches for Leveraging XML Workflows with Linked Data

128

http://api.freme-project.eu/doc/0.4/tutorials/spot-entities-in-xliff.html


provided via the linked data representations. The data integration approaches
discussed in Section 3 are ways to achieve this goal.

2.3. The Case of iMinds - Linked Data in Book Metadata

iMinds, Flanders’ digital research hub, conducts research on book publishing in
close collaboration with the Flemish publishing industry. An important aspect in
book publishing is book metadata. As the volume in published books increases,
and as the book industry becomes more and more digital, book metadata also be-
comes increasingly important: book publishers want their books to be found on
retail sites. Correct and rich metadata is a prerequisite for online discoverability.

Within the publishing value chain, stakeholders have since long agreed to use
a standard format for book metadata: ONIX for Books33. This XML-based stand-
ard has been adopted worldwide and is used by publishers to communicate book
product information in a consistent way in electronic form.

ONIX for Books is developed and maintained by EditEUR34, the international
group coordinating development of the standards infrastructure for electronic
commerce in the book, e-book and serials sectors. The ONIX for Books standard
and corresponding workflow are solidly embedded in the publishing retail chain,
from publisher to distributor to retailer. Migrating to other technologies, e.g. us-
ing linked data, requires a substantial investment which stakeholders in this in-
dustry are very reluctant to make.

We do not recommend to substitute this standard with a fully fledged linked
data approach. However, we find there are cases where linked data can be benefi-
cial as enrichment of existing ONIX metadata. The example below shows a possi-
ble usage of linked data in ONIX.

Author information as linked data: An ONIX file typically contains informa-
tion about the author(s) of a book. These are called contributors (other types of
contributors are illustrators, translators etc.).

Below you can find a block of metadata with information about the author of
a book, Jonathan Franzen. A possible enrichment with linked data might be to in-
sert the link to the authority record about Jonathan Franzen on viaf.org, via the
Entity tag. Please note that these tags are not valid within the current ONIX sche-
ma and are used here merely as an example of a possible enrichment.

This enrichment may prove useful in several ways:

• disambiguation of the author (using the VIAF identifier); and

• providing a link to more information on the author.

33See http://www.editeur.org/83/Overview/
34See http://www.editeur.org/.

Approaches for Leveraging XML Workflows with Linked Data

129

http://www.editeur.org/83/Overview/
http://www.editeur.org/


Example 3. A potential approach for embedding linked data identifiers into
ONIX

<Contributor>
 <NameIdentifier>
  <NameIDType>
   <IDTypeName>Meta4Books ContributorID</IDTypeName>
   <IDValue>65097</IDValue>
  </NameIDType>
 </NameIdentifier>
 <ContributorRole>A01</ContributorRole>
 <SequenceNumber>1</SequenceNumber>
 <NamesBeforeKey>Jonathan</NamesBeforeKey>
 <KeyNames>Franzen</KeyNames>
 <Entity>    
  <URI>http://viaf.org/viaf/84489381/</URI>
 </Entity>
</Contributor>

3. Approaches for Linked Data Integration in XML Workflows
The following approaches are a non exhaustive list. The aim is to provide exam-
ples that are currently in use and show their benefits and drawbacks. The exam-
ples are anchored in the business cases described in Section 2. The structure of the
approach description is always as follows:
• Name the example;
• Explain what actually happens with some XML code snippets; and
• Explain drawbacks and benefits, both from a linked data and an XML process-

ing point of view.

3.1. Approach 1: Convert XML to Linked Data
What actually happens: XML is converted into linked data. The XML content it-
self is not touched, but an additional set of data, i.e. a linked data representation
is created.

<xs:element name="lingualityType">
 <xs:simpleType>
  <xs:restriction base="xs:string">
   <xs:enumeration value="monolingual"/>
   <xs:enumeration value="bilingual"/>
   <xs:enumeration value="multilingual"/>
 </xs:restriction>
</xs:simpleType>
</xs:element>

Approaches for Leveraging XML Workflows with Linked Data

130



During the mapping of XML to linked data several decisions have to be taken.
Sometimes information is being lost. A real example is the mapping of META-
SHARE to linked data35. META-SHARE provides metadata for describing lin-
guistic resources.

Using this element could look like this, expressing that a resource is multilin-
gual, e.g. a multilingual dictionary:

<lingualityType>multilingual</lingualityType>
A linked data model that represents this data type could look as follows:

Example 4. Linked data model that represents parts of the META-SHARE
schema

### Class
ms:linguality
    rdf:type owl:ObjectProperty ;
    rdfs:domain ms:Resource ;
    rdfs:range ms:Linguality .
### Property
ms:Linguality 
    rdf:type owl:Class .
#### Instances
ms:monolingual a ms:Linguality.
ms:bilingual a ms:Linguality.
ms:multilingual a ms:Linguality.

This statement expresses the same information like in the XML representation: a
given resource, e.g. a dictionary, is multilingual.

What are the benefits: The benefit of this approach is that existing XML work-
flows don’t need to be changed at all. The linked data representation is just an ad-
ditional publication channel for the information. In this sense, the approach is
similar to the RDF chimera discussion. It is however still different, since the con-
version from XML to RDF involves RDF focused data modeling and aims at inte-
gration with further linked data sources.

The additional RDF representation can be integrated with other linked resour-
ces without influencing the XML workflow. This is what actually is being done
with the META-SHARE case: via the LingHub portal36, META-SHARE and other
types of metadata for linguistic resources is converted to RDF and being made
available. A user then can process integrated, multiple linked data sources with-
out even knowing that there is an XML representation available.

35See http://www.lrec-conf.org/proceedings/lrec2014/pdf/664_Paper.pdf  for more details on the
META-SHARE case and on how the conversion from XML to linked data was achieved.
36See http://linghub.lider-project.eu/.

Approaches for Leveraging XML Workflows with Linked Data

131

http://www.lrec-conf.org/proceedings/lrec2014/pdf/664_Paper.pdf
http://linghub.lider-project.eu/


What are the drawbacks: The approach requires a completely new tool chain,
aiming at linked data integration based on XML (or other format based) data
sources. The existing setup, e.g. used to analyze the XML structures with XQuery
or to transform it via XSLT, cannot be used. A query like “Give me all linguistic
resources that are multilingual” can be executed via XPath easily in the XML rep-
resentation. In standard XQuery there is no bridge to SPARQL. However, work
has been done to create this bridge, see Section 5.

Another drawback of this approach is that it is not always possible to convert
XML completely into RDF - in particular, RDF has no facility for representing
mixed content, an essential part of processing textual, human language content.
A takeaway of Section 1.2 is that data should always be in the format that best fits
its representation, and URIs can serve as a bridge between formats. The usage of
URIs for bridging between RDF and XML is discussed in Section 3.5.

3.2. Approach 2: Embedd Linked Data into XML via Structured Markup
What actually happens: linked data is embedded into HTML. Various syntaxes
can be used, e.g. JSON-LD, RDFa, or microdata. This approach is deployed e.g. in
schema.org37; see the schema.org homepage for various markup examples.

We take again the sentence Berlin is the capital of Germany from a pre-
vious section. The integration of information from Wikipedia with the string
Berlin can be achieved as follows:

<a itemscope itemtype="http://schema.org/Place" itemprop="url"
 href="https://en.wikipedia.org/wiki/Berlin">Berlin</a>

With this approach search engines will interpret the link https://
en.wikipedia.org/ wiki/ Berlin as a machine readable link to integrate addi-
tional information about the place Berlin, taken from Wikipedia as a data source.
The item being the source of data integration is identified as being of type place
via the URI http://schema.org/Place.

What are the benefits: the approach works well in situation in which the
hooks for data integration can be embedded into XML or HTML content. The
search engine optimization scenario via schema.org is the prototypical case for
doing this. The embedding may also be done in a dedicated markup part for met-
adata using the JSON-LD or other linked data syntaxes, without changing the text
content; see for details Section 3.4.

What are the drawbacks: RDFa and Microdata changes the content and in-
cludes new markup. That may not be an option for XML tool chains that don’t
“understand” the new markup, e.g. lead to validation errors. JSON-LD or turtle
may have the same issues: where should a tool store this data in the XML struc-
ture if no general metadata location is available?

37 http://schema.org/

Approaches for Leveraging XML Workflows with Linked Data

132

http://schema.org/
http://schema.org/


3.3. Approach 3: Anchor Linked Data in XML Attributes

What actually happens: an identifier is embedded in the XML structure. This
identifier serves as a bridge between the XML and RDF structures. The below ex-
ample uses the its:taClassRef attribute to store the identifier.

<source ...>
 <mrk ...its:taIdentRef="http://dbpedia.org/resource/Berlin">
  Berlin</mrk> is the capital of Germany!</source>

The data integration task, i.e. fetching additional information from linked data
sources about Berlin, can be executed relying on this information. The outcome
may then be stored directly in the XML source. Below we assume that the popu-
lation was fetched using the DBpedia information.

<source ...>
 <mrk ...its:taIdentRef="http://dbpedia.org/resource/Berlin">
  Berlin</mrk> (population: 3517424)...</source>

For different purposes, separate linked data queries could be set up. They rely on
the same identifier http://dbpedia.org/resource/Berlin.

What are the benefits: using an XML attribute that is already available in the
format in question means that no new types of markup is needed. That is, exist-
ing XML toolchains can stay as is, including validation or transformation process-
es.

What are the drawbacks: the data integration is postponed. The completed in-
tegration, if needed, needs to choose one of the other approaches discussed in this
paper. Also, the data integration does not leave a trace. Further processing steps
in the (XML) toolchain cannot identify that the string (population: 3517424) is
a result of a data integration process.

3.4. Approach 4: Embed Linked Data in Metadata Sections of XML Files

What actually happens: many XML vocabularies have metadata sections that
may contain arbitrary content. This is also true for XLIFF discussed in Section 2.2.
The outcome of the linked data processing could be stored in such a section.

What are the benefits: Compared to Section 3.2, the size of the content itself is
not growing with additional, linked data related markup.

What are the drawbacks: There is no per se relation to the content. Like in
Example 2, one may create pointers to the XML content, here using character off-
sets. But the pointers may be fragile, if one thinks e.g. of reformatting, insertion or
deletion of content or markup. In addition, some linked data syntaxes may inter-
fere with XML validation or well formedness constraints.

Approaches for Leveraging XML Workflows with Linked Data

133



3.5. Approach 5: Anchor Linked Data via Annotations in XML Content

What actually happens: A generalized approach of Section 3.3 means that linked
data is stored separately from XML structures and that there is a reference from
linked data to the XML content in question. In Section 2.2, we were using charac-
ter offsets. The W3C Web Annotation Data Model38 allows to realize such anchor-
ing. Character offsets are just one way of anchoring the annotation. One can also
use XPath expressions, see the following example.

Example 5. Anchoring annotations in XML via the Web annotation data model

{  "id": "http://example.com/myannotations/a1",
 "type": "Annotation",
 "target": { "type": "SpecificResource",
  "source": "http://example.com/myfile.xml",
  "selector": { "type": "FragmentSelector",
   "conformsTo": "http://www.w3.org/TR/xpath/",
   "value": "/xlf:unit[1]/xlf:segment[1]/xlf:source/xlf:mrk[1]" },
  "itsrdf:taIdentRef": "http://dbpedia.org/resource/Berlin",
  "itsrdf:taClassRef": "http://schema.org/Place",
  "http://dbpedia.org/property/population" : "3517424"  } }

The XPath expression in above linked data representation (which uses the JSON-
LD syntax) selects the XLIFF mrk element from the example in Section 3.3.

What are the benefits: In addition to the approach 3, here we are able to add
the linked data information in the separate annotation, e.g. the population of Ber-
lin; there is no need to change the content itself. If needed for certain applications,
we can use this annotation approach to generate others. URIs pointing to the con-
tent are an important aspect of such format conversions. THe forehand men-
tioned ITS 2.0 specification shows an example of 1) generating linked data anno-
tations anchored in XML content39, and 2) integrating the separate annotations in-
to the markup content40. The forehand described FREME framework deploys this
approach in its ITS enabled e-Internationalisation41.

What are the drawbacks: the resolution of linked data information potentially
can be computationally expensive, see e.g. lot’s of XPath expressions to compute
for annotations. Also, if the source content changes, the anchoring mechanism
may not work anymore. Some mechanisms are more robust (e.g. XPath expres-
sions), some may be more precise (e.g. the character offset based anchoring).

38 http://www.w3.org/TR/2015/WD-annotation-model-20151015/
39 http://www.w3.org/TR/its20/#conversion-to-nif
40 https://www.w3.org/TR/its20/#nif-backconversion
41 http://api.freme-project.eu/doc/0.4/knowledge-base/eInternationalization.html

Approaches for Leveraging XML Workflows with Linked Data

134

http://www.w3.org/TR/2015/WD-annotation-model-20151015/
http://www.w3.org/TR/its20/#conversion-to-nif
http://www.w3.org/TR/its20/#conversion-to-nif
https://www.w3.org/TR/its20/#nif-backconversion
https://www.w3.org/TR/its20/#nif-backconversion
http://api.freme-project.eu/doc/0.4/knowledge-base/eInternationalization.html
http://www.w3.org/TR/2015/WD-annotation-model-20151015/
http://www.w3.org/TR/its20/#conversion-to-nif
https://www.w3.org/TR/its20/#nif-backconversion
http://api.freme-project.eu/doc/0.4/knowledge-base/eInternationalization.html


4. Relating Business Cases and Integration Approaches
The following table relates the three business cases and the various integration
approaches.

Business case Integration approaches
being considered

Actual current or experi-
mental praxis

Linked data in XML pub-
lishing workflows

Approach 1: convert XML
into linked data

XML workflow kept,
linked data conversion
scripts to be made availa-
ble

Linked data in XML local-
ization workflows

Approach 3: anchor
linked data in XML attrib-
utes; Approach 4: embed
linked data in metadata
sections of XML files

No established practice in
localisation industry

Linked data in book met-
adata

Approach 4: embed
linked data in metadata
sections of XML files

No established practice in
localisation industry

It becomes obvious that industries take different approaches towards linked data
integration. This can be explained with availability of native linked data tooling,
knowledge about its usage, and complexity and potential costs of adapting exist-
ing XML workflows.

5. Routes to bridge between RDF and XML
As for Approach 1 (converting XML into linked data), in fact existing XML trans-
formation tools like XSLT and XQuery could be used out of the box with the cav-
eat that the result is mostly tied to the RDF/XML representation, that has various
disadvantages, foremost verbosity. More "modern" RDF serializations like Turtle
or JSON-LD cannot be created out of the box by XML tools straightforwardly,
plus additional filtering of querying on the resulting RDF triples needs to be en-
coded directly into the XML toolchain, which might be easier solvable in the RDF
world itself, e.g. using SPARQL. Likewise, as for Approach 2, we have already
identified, that the XML toolchain is not tailored to process and consume RDF or
similar meta-data formats natively. We face the same problem in Approaches 3-5,
where RDF-like sources are just linked out of XML content, without the necessary
toolchain tightly coupled to XML tools that could process the RDF content native-
ly.

Approaches for Leveraging XML Workflows with Linked Data

135



So, there is certainly a gap to bridge here in terms of tooling, but recently, that
partially seems to change: there are academic approaches to encode SPARQL into
XML processors, such as encoding SPARQL to XSLT or XQuery, cf. e.g. Fischer et
al. (2011) and Groppe et al. (2008). Plus there are actually some XML processors
like SAXON start supporting SPARQL natively, cf. https://
developer.marklogic.com/learn/semantics-exercises/sparql-and-xquery.

Alternatively, given that SPARQL actually can produce XML or JSON (among
others) as output format42, it is possible to directly consume the results of
SPARQL queries in XML tools, however more complex use cases need some
scripting around this, plus intermediate results for an overall transformation
need to be stored and processed separately, ending up in a heterogeneous tool-
chain, comprising XML tools, SPARQL processors and potentially even another
scripting language on top.

Additionally, there are new “hybrid” but integrated toolchains arising that try
to combine the two worlds of XML and RDF in a “best-of-both-worlds” approach:
most prominently, we’d like to mention as an example here the XSPARQL
project43, that aims at integrating SPARQL into XQuery in a compilation ap-
proach: that is, queries on RDF data or to a remote SPARQL endpoint serving
Linked Data can be embedded into an XQuery. For instance, the following query
transforms geographic RDF data queried from the file http://nunolopes.org/
foaf.rdf into a KML file:

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

<kml xmlns="http://www.opengis.net/kml/2.2">{
 for $name $long $lat from <http://nunolopes.org/foaf.rdf>
 where { $person a foaf:Person; foaf:name $name;
         foaf:based_near [ a geo:Point;
         geo:long $long; 
         geo:lat $lat ] } 
 return <Placemark>
  <name>{fn:concat("Location of ", $name)}</name>
   <Point>
    <coordinates>{fn:concat($long, ",", $lat, ",0")}</coordinates>
   </Point>
 </Placemark> }
</kml>

The boldface part of the above query is actually SPARQL syntax embedded into
XQuery. An XSPARQL compiler translates this query to a native XQuery that del-

42See http://www.w3.org/TR/sparql11-overview/#sparql11-results for details.
43See http://xsparql.sourceforge.net for details.

Approaches for Leveraging XML Workflows with Linked Data

136

https://developer.marklogic.com/learn/semantics-exercises/sparql-and-xquery
https://developer.marklogic.com/learn/semantics-exercises/sparql-and-xquery
http://nunolopes.org/foaf.rdf
http://nunolopes.org/foaf.rdf
http://www.w3.org/TR/sparql11-overview/#sparql11-results
http://xsparql.sourceforge.net


egates these query parts to a native SPARQL query processor. More details on
this approach can be found in Bischof et al. (2012).

Note that also the other way, i.e. transforming XML data into RDF is suppor-
ted in this approach, by allowing SPARQL’s CONSTRUCT clauses in the return
claus of an XQuery, as shown in the following short example, which transforms
XML data from Open Streetmap to RDF:

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
prefix kml: <http://earth.google.com/kml/2.0>
let $loc := "WU Wien" for $place in doc
  (fn:concat("http://nominatim.openstreetmap.org/search?q=",
    fn:encode-for-uri($loc),
    "&amp;format=xml"))
let $geo := fn:tokenize($place//place[1]/@boundingbox, ",")
construct { <http://www.polleres.net/foaf.rdf#me>
foaf:based_near [ geo:lat {$geo[1]}; geo:long {$geo[3]} ] }

More recently, XSPARQL has been extended to cover the recent SPARQL1.1 speci-
fication, plus support for JSON as input and output format (by internally repre-
senting JSON in a canonical XML representation have been added, cf. Dell’Aglio
et al. (2014).

While XSPARQL, which has actually started as a W3C member submission in
200944, is just one possible route, the authors believe that joint efforts in standard-
ization bodies to bridge the gaps between RDF and XML in order to enable such
transformations and integrated tooling in a standard way should be further pur-
sued.

6. Conclusion
This paper discussed the motivation for integrating RDF and XML. We looked at
various business case scenarios that can benefit from this integration. We then
discussed several approaches to realize the integration. Finally, we looked into
technical solutions that integrate the actual XML and RDF technology stacks.

A reviewer of this paper suggested consider XProc for integrating RDF and
XML workflows. XProc 2.045 will have the ability to pass information other than
XML data between steps; it would be possible to pass RDF data between XProc
steps and have filtering and processing steps for that RDF data. This would allow
processing of XML data with XML tools (XSLT, XQuery), while tracking and also
processing RDF data with e.g. SPARQL or XSPARQL. This approach sounds
promising but has not been explored in this paper, so we leave it to future work.

44See http://www.w3.org/Submission/2009/01/.
45 https://www.w3.org/TR/xproc20/

Approaches for Leveraging XML Workflows with Linked Data

137

https://www.w3.org/TR/xproc20/
http://www.w3.org/Submission/2009/01/
https://www.w3.org/TR/xproc20/


A next steps could be to discuss the integration approaches in a broader com-
munity, e.g. in a dedicated forum like a W3C community group. This could also
help to move the forehand described XML - RDF standardization work forward.
Such standardization has been discussed in the past. It is the hope of the authors
of this paper that it brings new insights to this discussion, with the real-life needs
from actual applications who more and more are in need of the integration.

7. Acknowledgments
The creation of this paper was supported by the FREME project under the Hori-
zon 2020 Framework Programme of the European Commission, Grant Agreement
Number 644771.

Bibliography
[1] Bischof, S., S. Decker, T. Krennwallner, N. Lopes and A. Polleres. Mapping

between RDF and XML with XSPARQL. Journal on Data Semantics (JoDS),
1(3):147-185, 2012.

[2] Dell'Aglio, D., A. Polleres, N. Lopes and S. Bischof. Querying the web of data
with XSPARQL 1.1. In ISWC2014 Developers Workshop, volume 1268 of
CEUR Workshop Proceedings. CEUR-WS.org, October 2014.

[3] Fischer, P., D. Florescu, M. Kaufmann and D. Kossmann D (2011). Translating
SPARQL and SQL to XQuery. In: Proceedings of XML Prague’11, pp 81–98.

[4] Groppe S., J. Groppe, V. Linnemann, D. Kukulenz, N. Hoeller, C. Reinke
(2008). Embedding SPARQL into XQuery/XSLT. In: SAC’08. ACM, New York,
pp 2271–2278.

Approaches for Leveraging XML Workflows with Linked Data

138



Promises and Parallel XQuery Execution
James Wright

<james.jw@hotmail.com>

1. What is it?
Its a simple library which implements the promise1 pattern as seen in many other
languages and frameworks. Most notably those in the javascript community, such
as jQuery, Q.js and even EMCAScript 6.

The pattern resolves around the idea of deferred execution through what is
called a deferred. When an action is deferred, it returns a function, known as a
promise that when executed at a later time, will perform and return the results of
the work it deferred.

Since the work is deferred and can be executed at an arbitrary time. There is
the ability to attach further processing at a later date but prior to actual execution,
via callback functions. This may sound confusing and hard to imagine, but I
'promise' the examples that follow will make it clearer. No pun intended.

2. Why?
The main driver behind implementing the promise pattern was to realize
parallel execution of XQuery code within a single query. The overall benefit is
to reduce execution time for longer costlier queries, as well as reduce overal com-
plexity of solutions. Additionally, this pattern is a a means for building what I call
durable pipeline logic. If this sounds enticing, keep reading!

I hope that through sharing my findings as well as illustrating the pattern,
other XQuery developers, implementations and even the language itself can be-
gin to introduce robust async functionality into their offerings.

2.1. Methods of Parallism
As it stands there a several ways to achieve parallel processing with XQuery.
Some systems implement specific functionality with async methods, such as ex-
sit-db's util:eval-async or Marklogic's spawn, both which accept an inline
XQuery expression, string or file URI.

Alternatively a scheduling approach or batch driven process can be leveraged,
where a command script schedules or spawns query execution in external procce-
ses.

Although all these approaches are effective, they often leave the domain of a
single query and generally do not provide robust error handling mechanisms.

1 https://api.jquery.com/category/deferred-object/

139

https://api.jquery.com/category/deferred-object/
https://api.jquery.com/category/deferred-object/


Additionally in my experience, they often lead to complex multi teired scripts
which are more prone to failure and costlier to maintain.

Another approach exists, and has been used with great success for years, and
its called the promise pattern.

3. Introducing the Promise Pattern
The idea behind the promise pattern is simple. It provides a mechanism to 'defer'
a piece of work, resulting in a new object, called a 'Promise'. A promise is usually
a non executed piece of work, which has the added benefit of accepting callbacks.

Before I dive any futher, boot up BaseX and follow along!

3.1. Install Steps

The module which makes the promise pattern happen can be found here: https://
github.com/james-jw/xq-promise

3.1.1. Dependencies

This module is dependent on BaseX2.

3.1.2. Automatic Install

Install as an EXPath Module using the following BaseX command:

repo:install("https://raw.githubusercontent.com/james-jw/xq-promise/►
master/dist/xq-promise-0.8.1-beta.xar")

3.1.3. Manual Install Steps (Windows)

1. Install BaseX
2. Copy the xq-promise-x.x.x-Beta.jar into your basex\lib directory
3. As well as the the xq-promise.xqm file into your basex\repo directory
4. Install the xq-promise.xqm module using the following command

basex REPO INSTALL xq-promise.xqm

3.1.5. Declaration

To use the module in your scripts simple import it like so:

import module namespace promise = 'https://github.com/james-jw/xq-
promise';

2 http://www.basex.org

Promises and Parallel XQuery Execution

140

https://github.com/james-jw/xq-promise
https://github.com/james-jw/xq-promise
http://www.basex.org
http://www.basex.org


4. The Basics of a Promise
The xq-promise module, in it's current iteration, includes several methods for
creating and interacting with promises.

4.1. defer

The first and most important function is defer.

defer($work as function(*), 
      $arguments as item()*, 
      $callbacks as map(*,function(*))*) 
  as function(map(*,function(*)*))

The signature may look daunting but the pattern is simple. Use the defer method
to defer a piece of work for later execution by passing in a function item and the
future arguments as a sequence.

Lets see how this works with a 'Hello World' example:

import module namespace promise = 'http://github.com/james-jw/xq-
promise';
let $greet := function($name) {
   'Hello ' || $name || '!'
}
let $promise := promise:defer($greet, 'world')
return
  $promise

In the above example, we defer the execution of $greet until after the return of
$promise. Upon execution of the script we should see hello world!.

But wait! If you examine the output. The value returned is:
function (anonymous)#0.
This is not at all what we want! Yet this is where the power of the promise

pattern hopefully starts to be realized. Formost, as mentioned prior, a promise is
a function. To retrieve it's value, it must be called. Change the last line of the
above example as follows:

$promise()

With the above modifcation we get the expected answer: Hello world!
So far we have deferred a simple piece of work and then learned how to exe-

cute it at a later. Now let me introduce the real power of the promise3 pattern
with callbacks
3 https://api.jquery.com/category/deferred-object/

Promises and Parallel XQuery Execution

141

https://api.jquery.com/category/deferred-object/
https://api.jquery.com/category/deferred-object/


5. Callbacks
A callback is a function which will be executed on the success or failure of some
defered work.

6.1. Adding callbacks
For example:

let $extractListItems := function ($res as map(*)) { $res?list?* } 
let $error := function ($err) {
     trace($err, 'Failed: ') => prof:void()
}
let $retrieve := p:defer($worker, ($req, $uri))
          => p:then(parse-json(?))
          => p:fail($error)
let $extract = p:then($retrieve, $extractListItems)
return
   $extract()

Note the calls to then and fail using the arrow operator. These calls add addi-
tional callbacks to the callback chain on the promise returning from defer result-
ing in an agumented promise which is stored in retrieve. Because of this, con-
cise chaining can be accomplished!

Also note how the $extractListItems callback is appended to the $retrieve
promise, resulting in a new promise $extract, which when executed, will initiate
the full chain of callbacks!

6.1.2. Chaining Helper Functions

Four methods, two of which were just demonstrated, matching the callback event
names exist for attaching callbacks in a chain fashion leveraging the new => (ar-
row) operator in XQuery 3.1. For example:

let $retrieve := p:defer(http:send-request(?, ?), ($req, $uri))
       => p:then(parse-json(?))
       => p:then($extractlistItems)
       => p:always(trace(?))
       => p:done(file:write-text(?, $path))
       => p:fail($error)
return
   $retrieve()

7.1. then
The then callback will be invoked upon success of deferred execution. It acts as a
pipeline function for transforming the response over successive callback execu-

Promises and Parallel XQuery Execution

142



tions. Unlike the next two events, but similar to fail, this method can alter the
pipeline result, and generally does.

7.2. done

Called on success.
This method has no effect on the pipeline result and thus it's return value will

be discarded. Its main purpose is for reacting to successful deferred execution as
opposed to affecting its outcome like then does.

A common use case for done is logging.

7.3. always

Operates the same as done, except it also is called on the promise's failure, not on-
ly success. For example, if only an always callback is provided and an error oc-
curs in the original defered, the always callback will be provided the error details
prior to the query ceasing with an exception. This allows for error logging or oth-
er duties. Error handling and mitigation; however, is relgated to the final callback
fail

7.4. fail

This final callback fail is called if a deferred action fails.
A failure occurs if any deferred work or callback function throws an excep-

tion. The fail callback allows handling and potentially mitigating these errors
during a fork-join, fork or even serial process. Without a fail callback an exception
will go uncaught and cause the entire query to stop. In essense, adding a fail call-
back to a deferred chain, is equivalent to the catch in a try/catch clause.

Upon failure, the callback will be provided a map(*) containing the error de-
tails as well as some additional information:

map {
  'code': 'error code',
  'description': 'error description',
  'value': 'error value',
  'module': 'file',
  'line': 'line number',
  'column': 'column number',
  'additional': map {
     'deferred': 'Function item which failed. Can be used to retry the ►
request',
     'arguments': 'The arguments provided to the failed deferred.'
   }
}

Promises and Parallel XQuery Execution

143



Similar to a catch clause, the fail callback has the option of returning a value as
opposed to propegating or throwing an error itself:

promise:defer($work) 
  => promise:fail(function ($err) {
      if($err?code = 'XQPTY0005') then 'I fixed it!'
      else fn:error(xs:QName('local:error'), 'Unfixable error!')
  })

In the above example we see that if the $err?code returned matches XQPTY0005.
The error will be mitigated and the result will be the value I fixed it!. This is
because, as stated, if a fail callback returns a value, the failure will be handled
with value returned from the fail callback replaced in the pipline.

If no suitable replacement value exists, but the error should simply be ignor-
ed. The fail callback would return the empty-sequence.

promise:defer($work) 
  => promise:fail(function ($err) {
      if($err?code = 'XQPTY0005') then () 
      else fn:error(xs:QName('local:error'), 'Unfixable error!')
  })

In this example the error code XQPTY0005 will result in the empty sequence ()
and thus the error being ignored.

Alternatively, if the error code is not XQPTY0005 and the failure cannot be ig-
nored. Throwing an exception within the callback using fn:error would cause
the enitre fork and query to cease in addition to reporting the error in the console.

7.4.1. Understanding callback chains

When multiple callbacks are added to a promise, multiple levels of processing
and error handling can be achieved. The order callbacks are added is important,
especially in regards to then and fail. In order to help better explain, lets take
the following example which chains up a series of callbacks:

promise:defer($work)
  => p:then(parse-json(?))
  => p:done(trace(?, 'Json Parsed: '))
  => p:fail(json-parse-error-handler(?))
  => p:then(transform-json(?))
  => p:fail(transform-error-handler(?))
  => p:always(trace(?, 'Result: '))
I am going to try and do a blow by blow of the above example. Hopefully it

will be clear how order plays a role in callbacks and error handling.
In the above example, the $work variable we will assume returns a json string.
If the parsing of the json string in the first callback parse-json, throws an ex-

ception, the json-parse-error-handler will get an error map(*) as described

Promises and Parallel XQuery Execution

144



earlier and will have the opportunity to remedy the error. For example, it could
try parsing the file differently.

Alternatively, should the parsing succeeded, the done callback would get the
resulting parsed json object, and in this example, log it to the console with the tag:

Json Parsed: { ...
If a failure occurs but the json-parse-error-handler callback returns a val-

ue, or no error occurs at all with parse-json succeeding, the value from either case
would be passed to the following transform-json function. Should this follow-
ing transform succeed. The result will be seen in the console due to the always
callback. If however; an error occurs, the transform-error-handler would be
called with the appropriate error map(*) instead.

Alternatively, had the previous error handler json-parse-error-handler
thrown an error instead of returning a value as demonstrated in the previous
paragraph. The transform-error-handler would have been provided this error
for mitigation as well.

In either case, this last error handler will either return a value, or fail. If it re-
turns a value and thus resolves the error, the always callback will be provided
this result, which will be logged to the console. Otherwise, if an exception is
thrown, the always callback will still be called with the error details, but since no
further error handlers exist in the chain, the exception will go uncaught and be
thrown after the always callback completes its duties. This will result in the entire
query being terminated.

7.5. when
Now that hopefully pipelines makes sense, Another critical method in the prom-
ise4 pattern is the when function.

when($promises asfunction(map(*,function(*)), 
     $callbacks as map(*,function(*))*) 
   asfunction(map(*,function(*)))

The purpose of when is to combine 2 or more promised actions into a single prom-
ise. This is extremly powerful. Like the defer method disscussed earlier, the when
method also returns a deferred promise, which accepts callbacks just the same.

For example:
let $write-and-return-users:= function ($name, $users) as item()* {(
      file:write($name, $users),
      $users
)}
let $extractDocName := promise:defer(doc(?), $doc-uri) 
  => promise:then($extract-name)

4 https://api.jquery.com/category/deferred-object/

Promises and Parallel XQuery Execution

145

https://api.jquery.com/category/deferred-object/
https://api.jquery.com/category/deferred-object/
https://api.jquery.com/category/deferred-object/


let $extractUsers := promise:defer(json-doc(?), $uri) 
  => promise:then($extract-list-items) 
let $users:= promise:when(($extractDocName, $extractUsers))
               => promise:then($write-and-return-users)
               => promise:fail(trace(?, 'Requesting users failed: '))
})
return
    $users() ! trace(.?username, 'Retrieved: ')

In this example, we perform two deferred actions and then merge their results in
the $write-and-return-users callback. Since this item is attached to the when's
promise on the then callback, its result will be seen on the call to $users().

We could continue to attach callbacks as needed until we are ready. There is
no limit.

7.6.1. Multiple Callbacks per event

Multiple callbacks, not just one, can be attached to each of the 4 events. For exam-
ple:

(: same $req, etc.. from above :)
let $extract-links := function ($res) { $res//a }
let $promise := promise:defer($request, 'http://www.google.com') 
    => promise:then(($extract-body, $extract-links)) 
    => promise:fail(trace(?), ('Execution failed!'))
return
  $promise()

Foremost, note the sequence of callbacks passed into then. Both of these will be
called in order. The result of the first callback will be passed to the second. In this
example, since then is a pipeline callback. The result will be all the links in the
document.

Second, note the fail callback. It uses the power of XQuery 3.0 and function
items5 to add a trace call when any part of the execution fails. How convenient!

Hopefully its starting to come clear how the promise pattern can be quite use-
ful.

8. The Power of Promises and Parallel Execution

It should be clear now: how to defer work for later execution, what a promise is,
and how to join multiple promises. It still may not be entirely clear what the ben-
efit this pattern has in the context of XQuery; however that is about to change.

5 http://docs.basex.org/wiki/XQuery_3.0#Function_Items

Promises and Parallel XQuery Execution

146

http://docs.basex.org/wiki/XQuery_3.0#Function_Items
http://docs.basex.org/wiki/XQuery_3.0#Function_Items
http://docs.basex.org/wiki/XQuery_3.0#Function_Items


8.1. fork-join
Let me introduce two last methods, and the whole reason I wrote this library.

fork-join($promises as function(*)*) as item()*
It is simple yet powerful. It accepts a sequence of promises, or single arity func-
tions and executes them in a fork join fashion, spawning threads as needed de-
pending on the work load, followed by rejoining the work on the main thread.

As seen earlier, promises can be used to build up a piece of work for later exe-
cution. With this ability, coupled with fork-join. Parallelized XQuery processing
becomes a reality.

Lets see how we can use this capability by comparing a simple example in-
volving making http requests. The example will use the promise pattern but not
fork-join just yet.

import module namespace promise = 'https://github.com/james-jw/xq-
promise';
let $work := http:send-request(<http:request method="GET" />, ?)
let $extract-doc := function ($res) { $res[2] }
let $extract-links := function ($res) { $res//*:a[@href => ►
matches('^http')] }
let $promises :=
  for $uri in ((1 to 5) !  ('http://www.google.com', 'http://►
www.yahoo.com', 'http://www.msnbc.com'))
  let $defer := promise:defer($work, $uri)
       => promise:then($extract-doc))
       => promise:done(trace(?, 'Results found: '))
  return 
    promise:then($defer, $extract-links )
return 
 $promises ! .()

In the above example, we use promises to queue up 25 requests and then execute
them in order with:

 $promises ! .()
If you run this example in BaseX GUI and watch the output window, you will see
the requests come in as the query executes. This is due to the addition of the
trace? 'Results Found: ' callback.

Also notice, only one request is executed at a time. Each request must wait for
the full response and processing of the previous. This is a current limitation of
BaseX, since by design it runs each query in its own single thread. There are sev-
eral workarounds such as splitting up the work via a master query, or using a
string concatenated XQuery expression to spawn another process. Although ef-
fective, all these workarounds require extra effort and multiple components. Ad-
ditionally they leave the language's domain and the context of the current query..

Promises and Parallel XQuery Execution

147



Luckily, with the introduction of this module xq-promise. This is no longer
the case! Lets change the previous example so it uses the newly introduced fork-
join method to speed up the process, by splitting the requested work into multi-
ple threads before returning the final joined value.

Luckily the previous example already used defer so the change is only one
line. Replace:

$promises ! .()

which manually executes each promise on the main thread, with:

promise:fork-join($promises)

If you watch this execute in BaseX you will quickly see its executing much faster,
with multiple requests being processed at once.

On my machine, the first example without fork-join took on average 55 sec-
onds. With fork-join this time dropped to 6 seconds!

That is a clear advantage! Playing around with compute size and max forks,
which I will introduce shortly, I have been able to get this even lower, to around 2
seconds!!

8.2. fork

In addition to fork-join is the simple fork method. The fork method operates
much like defer, in that it returns a promise which accepts callbacks. Unlike de-
fer however, the work its provided is executed immediately in a new thread. This
is as opposed to being deferred for later execution.

For example, lets imagine we want to optimize the performance of a web re-
sponse. During the processing, an external API is queried in addition other inter-
nal processing. The internal call is not dependend on the external call, until the
end, and thus these operations can run in parrallel:

let $request := http:send-request($req, ?)
let $promise := promise:fork($request, 'http://myapi.com')
let $hardAnswer := some-heavy-work()
return
  ($hardAnswer, $promise())

In the above example, the work of sending the http request, and waiting for it's
response, will be forked immediately letting the main thread continue with com-
puting the $hardAnswer. Once that is done, both it and the promise can be re-
turned.

Hopefully its clear now what the use cases for both fork-join and fork are
and how to use them!

Promises and Parallel XQuery Execution

148



9. Performance
Below is a chart showing execution with and without fork-join being imployed.
The Y axis shows the full execution time in miliseconds while the X shows the
number of items processed.

With a Quad-Core machine, the execution time is cut to nearly a quarter. Id
expect it to be around an eigth on an 8 core machine.

Here is the xquery script used in the above test:
import module namespace promise = "https://github.com/james-jw/xq-
promise";
import module namespace geo = "http://expath.org/ns/geo";
declare namespace gml = "http://www.opengis.net/gml";

let $counties := db:open('DetailedCounties')//feature/gml:*
let $first := $counties[1]
return
  promise:fork-join(
     for $county in $counties
     return promise:defer(geo:intersection($first, ?), $county)
  )

10. Limitations
With any async process their are limitations. So far these are the only noticed lim-
itations:

Promises and Parallel XQuery Execution

149



• Updating database nodes in a callback

• Using a transform clause in a callback

11. Implementation
This library is implemented for BaseX6 via the QueryModule7 class. It leverages
Jave 7's ForkJoinPool8 and RecursiveTasks9 .

Here are three java source files as part of the implementation:

11.1. XqPromise

The XqPromise class implements QueryModule10 from the BaseX API and expo-
ses the methods described earlier:

• defer

• when

• fork-join

• is-promise

11.2. XqDeferred

This class is at the core of the promise11 pattern and represents a unit of work to
perform in the future. It implements the XQFunction interface from the BaseX12

API. and thus is an XQuery Function. The purpose of this function item is to de-
fer the execution of work. Not only is it a function, but it also maintains the para-
mters it should leverage when called.

If called, it executes it's work, with the provided arguments work.

11.3. XqForkJoinTask

Implements RecursiveTask13 and performs the forking process leveraging a fixed
ForkJoinPool14

The pool size is deteremined by default by the number of CPU cores. The

6 http://www.basex.org
7 http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
8 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
9 https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
10 http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
11 http://www.basex.org
12 http://www.basex.org
13 https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
14 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Promises and Parallel XQuery Execution

150

http://www.basex.org
http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
http://www.basex.org
http://www.basex.org
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://www.basex.org
http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
http://docs.basex.org/javadoc/org/basex/query/QueryModule.html
http://www.basex.org
http://www.basex.org
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


12. Moving Forward
Given the level of ease in executing this implementation in BaseX I am hopeful
the same can be said for other implementations of XQuery 3.1.

With the addition of the Promise pattern to the XQuery repitiore, I could also
see a possiblity for the easy addition of an async keyword within the language
using a transformation on the XQuery code.

For example, the following query, with the addition of the 'async' keyword in
the for block:

let $req := <http:request …>
for async $uri in $uris
let $item := http:send-request($req, $uri)
return 
   <something>{$item}</something>
could be transformed to the following query, leveraging the promise pattern:
let $req := <http:request …>
let $for-func := function ($uri) {
   let $item := http:send-request($req, $uri)
   return
      <something>{$item}</something> 
}

return p:fork-join(
  for $uri in $uris
  return
    p:defer($for-func, ($uri))
)

Notice how the structure is maintained. The transformation would simply require
the wrapping of the entire for block in a fork-join call, followed by wrapping the
contents of the for block contents in a function item.

13. Shout Out!
If you like what you see here please star the repo and find me on github15 or link-
edIn16

14. Contribute
If you have any ideas to make it better, feel free to leave feedback, make a pull
request, log an issue or simply question ask a question! Additionally if your inter-

15 https://github.com/james-jw
16 https://www.linkedin.com/pub/james-wright/61/25a/101

Promises and Parallel XQuery Execution

151

https://github.com/james-jw
https://www.linkedin.com/pub/james-wright/61/25a/101
https://www.linkedin.com/pub/james-wright/61/25a/101
https://github.com/james-jw
https://www.linkedin.com/pub/james-wright/61/25a/101


esting in making this work in another database system, Id be glad to provide any
guidance and assistance in making that happen!

Happy forking!

Promises and Parallel XQuery Execution

152



Entities and Relationships
in a Document Database

Charles Greer
MarkLogic Corporation

<cgreer@marklogic.com>

Abstract

Those working with NoSQL databases agree that some flavor of this technol-
ogy will supplant the relational database in coming years. While the post-
relational world to some looks like "polyglot persistence" in which enterpri-
ses use multiple database technologies, each in a best-fit scenario, there is an
alternate emerging trend of the hybrid database, in which a single platform
can handle workloads of varying types, and provide the benefits of central
administration and systems architecture. We think the document-oriented
database, with XML as a foundation, is the basis for the next generation of
hybrid databases, because the document model is expressive enough to en-
capsulate simpler models within it. The final step in replacing older rela-
tional database technology is to encapsulate its native model and expose that
model to new capabilities. So this paper explores how to work with Entities,
Attributes, and Relationships on top of a document database and XML.

Keywords: XML, RDF, Data Integration, Enterprise Architecture

1. Introduction: Reseeding the Enterprise
I love the spectrum of "greenfield" and "brownfield" to characterize enterprise IT.

One one end of this spectrum are "greenfield projects." These are systems that
are constructed from scratch, with no integration requirements or dependencies
on other systems. "Greenfield" does not exist. On the other end is the "brown-
field." A prototypical "brownfield project" grows up within a mature enterprise,
in which integrations are ad hoc or point-to-point, and in which the complex inter-
actions of systems and data can make change management slow and expensive.
This is the starting state of all real enterprise projects.

So enterprise architects, who accept that all fields are brown, face a continual
challenge to improve data services, to evolve architectures, to maintain the old
while delivering the new. Proactive management of an IT portfolio requires focus
on real requirements, systems architecture, data architecture, and on how to de-
ploy applications.

153



In this essay I use outrageous metaphors about growing and cultivating enter-
prise IT, with emphasis on how to build new systems by seeding them from old
ones.

Dirt This story's setting is a set of software systems. I call it dirt because it
forms a substrate on which our information systems run. "Dirt" consists
of databases and applications that move data around. In particular we
call out the data hub, an architectural pattern that aggregates, normal-
izes, and disseminates enterprise data.

Seeds Entity/Attribute/Relationship diagrams (or simply E/R diagrams) per-
vade enterprise IT documentation. Here, we emphasize the pattern be-
hind such diagrams, which is a method of decomposing complex types
into tuples, and propose a declarative model for incremental enterprise
data integration. E/R diagrams contain information about how the data
needs to be used, how it propagates. Such E/R models can be very small.

Trees We use trees, specifically XML trees, to encode and persist our entity in-
stances. Trees can encode source data from relational systems, and mod-
el-valid instance data together. Moreover, we know how to index and
query trees.

Fruit The purpose of aggregating data and indexing it is to enable applica-
tions, for the data to provide value to the business as a whole. In this
case, exposing entities and relationships via a SQL-like query language
is one kind of fruit. Search over tree structures is another. Ideally such
fruit is low-hanging.

So let's dig in more deeply to the dirt and explore data integration!

2. Dirt

Substrate of Data Integration Efforts
In the beginning there was an ERP system that ran the business.

Then came the website that sold things.
Then there was the HR system, and the Wiki.
Each system had its own database, and they did not speak to, or of, one anoth-

er.

Entities and Relationships in a Document Database

154



Then came perl. Perl could extract data from the ERP, massage it, send it to
the webite, from the website to the ERP, from the HR system, translate, to the
website, and from the Wiki to hell.

Then came the data warehouse, and all movement ceased.
This is the brownfield, the dirt in which we built the messy conglomerates of

thousands of systems and data stores. They call them silos, and everybody wants
what's in them. New applications all need the data from the old systems. And its
all locked up in purpose-built relational systems and schemas.

A common pattern emerges, in which we extract data from source systems,
get it ready for downstream ones, and load that data into a new one. ETL.

Entities and Relationships in a Document Database

155



In the ETL process, businesses inevitably need to rework data models. The up-
stream transactional system manages data in one (relational) schema. The down-
stream one reworks the data into facts and dimensions. Another turns the data
into web-ready denormalized tables. Oh, and there are sixteen transactional sys-
tems and three data warehouses. Each system requires a model, and the ETL lay-
er provides the glue and the mapping logic between the disparate models.

Yes, it's a mess.
In contrast to this absurdist view of ETL, there is another type of data integra-

tion that really is simply data aggregation. A document database requires no
schema up-front. With very simple exported structures (one row maps to one
document) it's simple to move data from a SQL query result into a document-ori-
ented database. A data hub using a schema-agnostic technology offers the prom-
ise of simple, but dumb, aggregation of data.

Entities and Relationships in a Document Database

156



The source data from several databases arrives at a single new system, but
with no model reconciliation. We can search it, but the meaning of the data has
been lost in translation.

While this integration is cleaner looking than traditional ETL, and many enter-
prises have benefited from such a schemaless data aggregation, we can do better.
We can cultivate meaning in the dirt, create the beginnings of a common emer-
gent model across data sources. We'll call these initial chunks of meaning seeds,
just to stretch the metaphor further.

3. Seeds
Partial and incremental E/R models
Lacking in schemaless integration is a conveyance of meaning from source sys-
tem to targets. The schemas from the source databases have not been recast in a
common vocabulary, and as such there's not as much value in the aggregated da-
ta as there could be.

A simple metamodeling approach to data hubs might help. Let's say that we
are interested in building an application whose domain is all of the people that I
do business with, across many business units and relationship types. Though
there may be duplicates and there may be differences in how people are represen-
ted, it's a reasonable dataset to want to extract, merge, and republish.

Say I want to search by last name. I'm going to create a very straightforward
E/R diagram intended to "receive" instance data about people. It has just an id,
and a last name. The very minimum I need to create an application that can
search explicitly by lastName.

Entities and Relationships in a Document Database

157



We can even store such entity types in a document database by making a
document structure for them. How about a flavor of JSON Schema?

{
  "info": {
    "title": "Person",
    "version": "0.0.1"
  },
  "definitions": {
    "Person": {
      "properties": {
        "id": {
          "type": "string"
        },
        "lastName": {
          "type": "string"
        }
      }
    }
}
For any given source system, there is an implicit relationship between that

source and this new entity type. For each source schema, there is some mapping
(or function) that can create an instance of Person. The point is that we are not
particularly concerned with merging any more than absolutely necessary to meet
the requirements of my integration today.

An example:

Entities and Relationships in a Document Database

158



In this example, lastNamein my entity type will be sourced from the columns
contactLastName, lname, and lastName respectively.

// generated, then edited function stub
xquery version "1.0-ml";
module namespace person = "http://entities.org/Person/0.0.1";
(: create person from shipper document :)
declare function person:from-shippers($source as document-node())
mas map:map
{
  let $new-person := map:map()
  let $_ := map:put($new-person, "id", guid())
  let $_ := map:put($new-person, "lastName", data($source/►
contactLastName))
  return $new-person
};
(: create person from employee document :)
declare function person:from-employees($source as document-node())
mas map:map
{
  let $new-person := map:map()
  let $_ := map:put($new-person, "id", guid())
  let $_ := map:put($new-person, "lastName", data($source/lname)
  return $new-person
};
(: create person from customer :)
declare function person:from-customers($source as document-node())
mas map:map
{

Entities and Relationships in a Document Database

159



  let $new-person := map:map()
  let $_ := map:put($new-person, "id", guid())
  let $_ := map:put($new-person, "lastName", data($source/lastName))
  return $new-person
};

Now it's one thing to present an entity type with two attributes. It's another to
create a real data hub. But this process is iterative, and I just want to give you a
taste. An entity type is versioned - we update the version with each change in or-
der to keep track of the evoluion of the integration.

Let's say that the next version of our entity type requires addresses, and also
provides for a graph representation of people knowing each other. The E/R dia-
gram now looks something like the following. It has several more attributes, ands
in a relationship. Instances of Person may now refer to other instances.

I represent this new model in JSON thus:

{
  "info": {
    "title": "Person",
    "version": "0.0.2"
  },
  "definitions": {
    "Person": {
      "properties": {
        "id": {
          "type": "string"
        },
        "firstName": {
          "type": "string"
        },
        "lastName": {
          "type": "string"
        },
        "fullName": {
          "type": "string"
        },

Entities and Relationships in a Document Database

160



        "address": {
          "type": "string"
        },
        "friendOf": {
          "$ref": "#/definitions"
        }
      },
      "primary-key":["id"]
    }
}
Maybe in six months we'll use another field from that source system. If the

structure is still not appreciably changed, we can simply append to the new mod-
el, and update transforms that are used to fill it.

I was neglecting a good part. We are using a hybrid database, which stores
tress, but can query triples and tuples too.

These JSON documents actually surface to triples to an RDF index. My docu-
ment database happens to map XPath expressions to generated triples and to ex-
pose them to a SPARQL engine. The document above surfaces these triples:

@prefix es: <http://marklogic.com/entity-services#> .
@prefix doc: <http://example.org/> .
@prefix type: <http://example.org/Person-0.0.2/> .
@prefix prop: <http://example.org/Person-0.0.2/Person/> .

doc:Person-0.0.2 a es:EntityTypeDoc ;
    es:title "Person" ;
    es:version "0.0.2" ;
    es:definitions type:Person .
type:Person a es:EntityType ;
    es:version "0.0.2" ;
    es:property 
        prop:id,
        prop:firstName,
        prop:lastName,
        prop:fullName,
        prop:address,
        prop:friendOf ;
    es:primaryKey prop:id .
prop:id a es:Property ;
    es:title "id" ;
    es:datatype "string";
    a es:PrimaryKey .
prop:firstName a es:Property ;
    es:datatype "string";
    es:title "firstName" .
prop:lastName a es:Property ;

Entities and Relationships in a Document Database

161



    es:datatype "string";
    es:title "lastName" .
prop:fullName a es:Property ;
    es:datatype "string";
    es:title "fullName" .
prop:address a es:Property ;
    es:datatype "string";
    es:title "address" .
prop:friendOf a es:Property ;
    es:ref type:Person ; 
    es:title "friendOf" .

These triples can be combine with external ones, such as those used in enterprise
ontology management. Also, they can be queried alongside RDF reference data
ingested from disparate sources.

We also declare performance-related information about the entity type model:
{
  "info": {
    "title": "Person",
    "version": "0.0.2"
  },
  "definitions": {
    "Person": {
      "properties": {
       ...
      }.
      "primary-key":["id"],
      "range-index":["lastName"],
      "word-lexicon":["fullName"]
    }
}
What makes this incremental approach possible, is that in our systems archi-

tecture we had the ability to store not just the newly minted model, but also
whatever sources came along with it. We instantiate the model, in other words,
alongside its source within XML tree structures.

4. Trees
Real XML trees.
You've seen how we can use NoSQL databases to aggregate information, and I
claim can make simple E/R diagrams more complex over time without disrupting
the business. XML documents enable this kind of flexible combination of struc-
tures and schemas.

Within the data hub, we use a particular pattern to integrate data from up-
stream systems. This so-called "envelope pattern" wraps instance data together

Entities and Relationships in a Document Database

162



with raw sources in a single XML document tree. This simple mechanism ensures
that, no matter how minimal the entity type, the raw source is available for word
searches, and even for retrieval by downstream systems. Thus the lineage of the
data can be preserved by keeping the original document stored together with
whatever instance data we've extracted.

Expressed in XML, we

1. Create a new wrapper document, the <envelope>

2. Create an XML serialization of an entity instance within the envelope.

3. Include the source document inside a child of <envelope>

<es:envelope xmlns:es="http://marklogic.com/entity-services">
    <Person>
            <id><123/id>
            <firstName>Barty</firstName>
            <lastName>Crouch</lastName>
            <fullName>Barty Crouch</fullName>
            ...
    </Person>
    <es:sources>
          ... original document here ...
    </es:sources>
</es:envelope>

XML can also make envelopes from other document-based sources: spread-
sheets, .docx documents, or ESB messages.

So what can we do with an entity instance once its instantiated in a tree struc-
ture and an XML database?

Anything we can already do with trees!

Entities and Relationships in a Document Database

163



We know how to index and search XML documents really well. With the add-
ed benefit of an entity type model, the structure of an entity instance is determin-
istic.

The envelope is a map of instance data to documents, preserving the fidelity
of individual properties and data types. Moreover, since our model also asserted
index definitions, it can generate a configuration that specifies indexes. Here is a
configuration artifact that defines range-path-index definitions for an entity
type:

{
  "database-name": "%%DATABASE%%",
  "schema-database": "%%SCHEMAS_DATABASE%%",
  "path-namespace":[
      {
          "prefix":"es", 
          "namespace-uri":"http://marklogic.com/entity-services"
      }
  ],
  "range-path-index": [
      {
          "collation": "http://marklogic.com/collation/",
          "invalid-values": "reject",
          "path-expression": "/es:envelope/es:entity/Person/lastName",
          "range-value-positions": false,
          "scalar-type": "string"
      }
...
  ]
}

From the model, in other words, we can infer that the "fullName" property in this
person record is always found at the XPath /es:envelope/es:entity/Person/
fullName, and thus we can index just that property.

Ultimately, the E/R model that we created before, combined with a document-
based persistence strategy, has enabled a data-driven way to accelerate applica-
tion development.

5. Fruit

Denormalize, Index, Join
Data hubs in a large integration project combine document services with row or
tuple-oriented ones. Application developers have access to instance data as docu-
ments, rows, or triples, in a manner consistent with the queryable entity type
metadata.

Entities and Relationships in a Document Database

164



One thing developers can make is search appications. Because their persisted
structure is a simple XML tree, and because there's a trival transformation of this
instance data to JSON, web developers can manipulate instance data from a
search interface with ease.

I've also got something else interesting. Entity instances look a lot like rows;
they are flat structures, relationships being references to other flat structures.
"Rows" imply that we should be able to access the entity data via some SPARQL
or even SQL-like interface, one that projects, joins, filters and sorts. ODBC clients
such as BI tools, web apps, and SPARQL clients alike can query across instance
data, the entity model, and enterprise reference data all with one interface. In fact,
in our futuristic database, this kind of query will work too:

SELECT
  a.lastName as lastName,
  friend.lastName as friendsName
FROM 
  Person a, Person friend
WHERE
  a.lastName = "Smith" and
  a.friendOf = friend.id
Futuristic? Maybe. I make no committments. But it would be tasty fruit, prob-

ably low hanging.

6. Hybrid Data Hubs
Behind the envelope pattern is a notion that we need not create a model in order
to load data. However, type-conformant instance data can be materialized along-
side source documents. There's just one system for operations and security.

Storing entities alongside source documents and reference data within XML
trees is an approach to data aggregation and modeling that leverages a hybrid
storage solution. The benefits of such an approach can be significant; operational
systems in an enterprise are not, after all, insignificant with regard to support

Entities and Relationships in a Document Database

165



services. For every database in production one needs a backup and disaster re-
covery plan, an audit and security policy, an administration layer, and of course a
separate loading and egress strategy.

By using incremental and evolutionary entity-relationship models, overlaid
upon a document database, an architectural team can leverage a single docu-
ment-oriented database to manage a data hub. With this pattern we avoid the
messy alternatives present in today's ETL scenarios.

Entities and Relationships in a Document Database

166



Transforming JSON using XSLT 3.0
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

The XSLT 3.0 and XPath 3.1 specifications, now at Candidate Recommen-
dation status, introduces capabilities for importing and exporting JSON da-
ta, either by converting it to XML, or by representing it natively using new
data structures: maps and arrays. The purpose of this paper is to explore the
usability of these facilities for tackling some practical transformation tasks.

Two representative transformation tasks are considered, and solutions
for each are provided either by converting the JSON data to XML and
transforming that in the traditional way, or by transforming the native rep-
resentation of JSON as maps and arrays.

The exercise demonstrates that the absence of parent or ancestor axes in
the native representation of JSON means that the transformation task needs
to be approached in a very different way.

1. Introduction
JSON [2] has become a significant alternative to XML as a syntax for data inter-
change. The usually-cited reasons1 include:
• JSON is simpler: the grammar is smaller. The extra complexity of XML might

be justified for some applications, but there are many others for which it adds
costs without adding benefits.

• JSON is a better fit to the data models of popular programming languages like
Javascript, and this means that manipulating JSON in such languages is easier
than manipulating XML.

• JSON is better supported for web applications (for example, for reasons that
are hard to justify, JSON is not subject to the same security restrictions as XML
for cross-site scripting).

However, some of the transformation tasks for which XSLT is routinely used (for
example, hierarchic inversion) are difficult to achieve in general-purpose lan-
guages like JavaScript.

1I include here only the reasons that I consider to be credible. Many comments on the topic also claim
that XML is more verbose or that its performance is worse, but this appears to be folklore rather than
fact.

167



XSLT 3.0 [4] (together with XPath 3.1 [5]) provides capabilities for handling
JSON data. These capabilities include:

Two new functions json-to-xml() and xml-to-json() to convert between
JSON and XML. These perform lossless conversion. The json-to-xml() function
delivers XML using a custom XML vocabulary designed for the purpose, and the
xml-to-json() function requires the input XML to use this vocabulary, though
this can of course be generated by transforming XML in a different vocabulary.

Two new data types are introduced: maps and arrays. These correspond to the
"objects" and "arrays" of the JSON model. In fact they are generalizations of JSON
objects and arrays: for example, the keys in map can be numbers or dates, where-
as JSON only allows strings, and the corresponding values can be any data type
(for example, a sequence of XML nodes), whereas JSON only allows objects, ar-
rays, strings, numbers, or booleans.

A new function parse-json() is provided to convert from lexical JSON to the
corresponding structure of maps and arrays. (There is also a convenience func-
tion json-doc() which does the same thing, but taking the input from a file rath-
er than from a string.)

A new JSON serialization method is provided, allowing a structure of maps
and arrays to be serialized as lexical JSON, for example by selecting suitable op-
tions on the serialize() function.

While XSLT 3.0 offers all these capabilities 2, it does not have any new features
that are specifically designed to enable JSON transformations — that is, conver-
sion of one JSON structure to another. This paper addresses the question: can
such transformations be written in XSLT 3.0, and if so, what is the best way of ex-
pressing them?

Note that I'm not trying to suggest in this paper that XSLT should become the
language of choice for transforming any kind of data whether or not there is any
relationship to XML. But the web is a heterogeneous place, and any technology
that fails to handle a diversity of data formats is by definition confined to a niche.
XSLT 2.0 added significant capabilities to transform text (using regular expres-
sions); the EXPath initiative has added function libraries to process binary da-
ta[1]; and the support for JSON in XSLT 3.0 continues this trend. XSLT will al-
ways be primarily a language for transforming XML, but to do this job well it
needs to be capable of doing other things as well.

2. Two Transformation Use Cases
We'll look at two use cases to study this question, in the hope that these are repre-
sentative of a wider range of transformation tasks.

The first is a simple "bulk update": given a JSON representation of a product
catalogue, apply a price change to a selected subset of the products.

2Some of these features are optional, so not every XSLT 3.0 processor will provide them.

Transforming JSON using XSLT 3.0

168



The second is a more complex structural transformation: a hierarchic inver-
sion. We'll start with a dataset that shows a set of courses and lists the students
taking each course, and transform this into a dataset showing a set of students
with the courses that each student takes.

For each of these problems, we'll look first at how it can be tackled by convert-
ing the data to XML, transforming the XML, and then converting back to JSON.
Then we'll examine whether the problem can be solved entirely within the JSON
space, without conversion to XML: that is, by manipulating the native representa-
tion of the JSON data as maps and arrays. We'll find that this isn't so easy, but that
the difficulties can be overcome.

3. Use Case 1: Bulk Update
Rather than invent our own example, we'll take this one from json-schema.org:

[
    {
        "id": 2,
        "name": "An ice sculpture",
        "price": 12.50,
        "tags": ["cold", "ice"],
        "dimensions": {
            "length": 7.0,
            "width": 12.0,
            "height": 9.5
        },
        "warehouseLocation": {
            "latitude": -78.75,
            "longitude": 20.4
        }
    },
    {
        "id": 3,
        "name": "A blue mouse",
        "price": 25.50,
        "dimensions": {
            "length": 3.1,
            "width": 1.0,
            "height": 1.0
        },
        "warehouseLocation": {
            "latitude": 54.4,
            "longitude": -32.7
        }
    }
]

Transforming JSON using XSLT 3.0

169



The transformation we will tackle is: for all products having the tag "ice", increase
the price by 10%, leaving all other data unchanged.

First we'll do this by converting the JSON to XML, then transforming the XML
in the traditional XSLT way, and then converting back. If we convert the above
JSON to XML using the json-to-xml() function in XSLT 3.0, the result (indented
for readability) looks like this:

[
<?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
   <map>
      <number key="id">2</number>
      <string key="name">An ice sculpture</string>
      <number key="price">12.50</number>
      <array key="tags">
         <string>cold</string>
         <string>ice</string>
      </array>
      <map key="dimensions">
         <number key="length">7.0</number>
         <number key="width">12.0</number>
         <number key="height">9.5</number>
      </map>
      <map key="warehouseLocation">
         <number key="latitude">-78.75</number>
         <number key="longitude">20.4</number>
      </map>
   </map>
   <map>
      <number key="id">3</number>
      <string key="name">A blue mouse</string>
      <number key="price">25.50</number>
      <map key="dimensions">
         <number key="length">3.1</number>
         <number key="width">1.0</number>
         <number key="height">1.0</number>
      </map>
      <map key="warehouseLocation">
         <number key="latitude">54.4</number>
         <number key="longitude">-32.7</number>
      </map>
   </map>
</array>

And we can now achieve the transformation by converting the JSON to XML,
transforming it, and then converting back:

Transforming JSON using XSLT 3.0

170



<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  version="3.0"
  xpath-default-namespace="http://www.w3.org/2005/xpath-functions">
  
  <xsl:mode on-no-match="shallow-copy"/>
  
  <xsl:param name="input"/>
  
  <xsl:output method="text"/>
  
  <xsl:template name="xsl:initial-template">
    <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-
text($input))"/>
    <xsl:variable name="transformed-xml" as="document-node()">
      <xsl:apply-templates select="$input-as-xml"/>
    </xsl:variable>
    <xsl:value-of select="xml-to-json($transformed-xml)"/>
  </xsl:template>
  
  <xsl:template match="map[array[@key='tags']/string='ice']/►
number[@key='price']/text()">
        <xsl:value-of select="xs:decimal(.)*1.1"/>
  </xsl:template>

</xsl:stylesheet>

Sure enough, when we apply the transformation, we get the required output (in-
dented for clarity):

[
    {
        "id": 2,
        "name": "An ice sculpture",
        "price": 13.75,
        "tags": [
            "cold",
            "ice"
        ],
        "dimensions": {
            "length": 7,
            "width": 12,
            "height": 9.5
        },
        "warehouseLocation": {
            "latitude": -78.75,

Transforming JSON using XSLT 3.0

171



            "longitude": 20.4
        }
    },
    {
        "id": 3,
        "name": "A blue mouse",
        "price": 25.5,
        "dimensions": {
            "length": 3.1,
            "width": 1,
            "height": 1
        },
        "warehouseLocation": {
            "latitude": 54.4,
            "longitude": -32.7
        }
    }
]

Now, the question arises, how would we do this transformation without convert-
ing the data to XML and back again?

Here we immediately see a difficulty. We can't use the same approach because
in the map/array representation of JSON, there is no parent axis. In the XML-
based transformation above, the semantics of the pattern
map[array[@key='tags']/ string='ice']/ number[@key='price']/ text() de-
pend on matching a text node according to properties of its parent (a <number>
element) and grandparent (a <map> element). In the map/array model, we can't
match a string by its context in the same way, because a string does not have a
parent or grandparent.

However, all is not lost. With a little help from a general-purpose helper style-
sheet, we can write the transformation like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jlib="http://►
saxonica.com/ns/jsonlib"
  xmlns:map="http://www.w3.org/2005/xpath-functions/map"
  xmlns:array="http://www.w3.org/2005/xpath-functions/array" ►
version="3.0">

  <xsl:param name="input"/>

  <xsl:output method="json"/>
  
  <xsl:import href="maps-and-arrays.xsl"/>
  
  <xsl:mode on-no-match="deep-copy"/>

Transforming JSON using XSLT 3.0

172



  <xsl:template name="xsl:initial-template">
    <xsl:apply-templates select="json-doc($input)"/>
  </xsl:template>
  
  <xsl:template match=".[. instance of map(*)][?tags = 'ice']">
    <xsl:map>
      <xsl:sequence select="map:for-each(., 
                function($k, $v){ map{$k : if ($k = 'price') then $v*1.1 ►
else $v }})"/>
    </xsl:map>
  </xsl:template>
</xsl:stylesheet>

This relies on the helper stylesheet, maps-and-arrays.xsl, containing default
processing for maps and arrays that performs the equivalent of the traditional
"identity template" (called shallow-copy processing in XSLT 3.0): specifically, pro-
cessing an array that isn't matched by a more specific template rule should create
a new array whose contents are the result of applying templates to the members
of the array; while processing a map should similarly create a new map whose
entries are the result of applying templates to the entries in the existing map. Un-
fortunately the shallow-copy mode in XSLT 3.0 doesn't work this way; it has the
effect of deep-copying maps and arrays.

For maps, we can write a shallow-copy template like this (it's not actually nee-
ded for this use case):

<xsl:template match=".[. instance of map(*)]" mode="#all">
  <xsl:choose>
    <xsl:when test="map:size(.) le 1">
      <xsl:sequence select="."/>
    </xsl:when>
    <xsl:otherwise>
      <xsl:map>
        <xsl:variable name="entries" as="map(*)*" 
           select="map:for-each(., function($k : $v) { map:entry($k, ►
$v) })"/>
        <xsl:apply-templates select="$entries" mode="#current"/>
      </xsl:map>
    </xsl:otherwise>
  </xsl:choose>
</xsl:template>

This divides maps into two categories. Applying templates to a map with less
than two entries returns the map unchanged. Applying templates to a larger map
splits the map into a number of singleton maps, one for each entry, and applies

Transforming JSON using XSLT 3.0

173



templates recursively to each of these singleton maps. In the absence of overrid-
ing template rules for any of these entries, the entire map is deep-copied.

To make it easier to write a template rule that matches a singleton map with a
given key, we can define a library function:

<xsl:function name="jlib:is-map-entry" as="xs:boolean">
    <xsl:param name="map" as="item()"/>
    <xsl:param name="key" as="xs:anyAtomicType"/>
    <xsl:sequence select=". instance of map(*) and map:size(*) eq 1 and ►
map:contains($key)"/>
</xsl:function>

An overriding template rule can then be written like this:
<xsl:template match=".[jlib:is-map-entry(., 'price')]">...</xsl:template>

Writing a shallow-copy template rule for arrays is a little bit trickier because of
the absence of XSLT 3.0 instructions for creating arrays: we hit the problem of
composability, where XPath constructs such as array{} cannot directly invoke
XSLT instructions like <xsl:apply-templates/ >; and we also hit the problem
that the only way of iterating over a general array (one whose members can be
arbitrary sequences) is to use the higher-order function array:for-each().

One way to write it might be like this:
  <xsl:template match=".[. instance of array(*)]">
    <xsl:sequence select="array:for-each(., jlib:apply-templates#1)"/>
  </xsl:template>
  
  <xsl:function name="jlib:apply-templates">
    <xsl:param name="input"/>
    <xsl:apply-templates select="$input"/>
  </xsl:function>

But this has the disadvantage that tunnel parameters are not passed through a
stylesheet function call; in addition, the current template rule and current mode
are lost. We can get around these problems using this more complicated formula-
tion, which uses head-tail recursion:

<xsl:template match=".[. instance of array(*)]" mode="#all">
    <xsl:choose>
      <xsl:when test="array:size(.) = 0">
        <xsl:sequence select="[]"/>
      </xsl:when>
      <xsl:otherwise>
        <xsl:variable name="head" as="item()*">
          <xsl:apply-templates select="array:head(.)" mode="#current"/>
        </xsl:variable>
        <xsl:variable name="tail" as="array(*)">
          <xsl:apply-templates select="array:tail(.)" mode="#current"/>

Transforming JSON using XSLT 3.0

174



        </xsl:variable>
        <xsl:sequence select="array:join((array{$head}, $tail))"/>
      </xsl:otherwise>
    </xsl:choose>
  </xsl:template>

The complexity here doesn't really matter greatly, because the code only needs to
be written once.

Returning to our specific use case, of updating prices in a product catalog, the
main limitation of our solution is that all the update logic is contained in a single
template rule, which works for this case but might not work for more complex
cases. The match pattern for the template rule matches a map that needs to be
changed, and this matching can only consider the content of the map, not the con-
text in which it appears. Moreover, the template body does all the work of creat-
ing a replacement map monolithically without further calls on <xsl:apply-
templates>; it would be possible to make such calls, but the syntax doesn't make
it easy.

4. Use Case 2: Hierarchic Inversion
In our second case, we'll look at a structural transformation: changing a JSON
structure with information about the students enrolled for each course to its in-
verse, a structure with information about the courses for which each student is
enrolled.

Here is the input dataset:
[{
    "faculty": "humanities",
    "courses": [
        {
            "course": "English",
            "students": [
                {
                    "first": "Mary",
                    "last": "Smith",
                    "email": "mary_smith@gmail.com"
                },
                {
                    "first": "Ann",
                    "last": "Jones",
                    "email": "ann_jones@gmail.com"
                }
            ]
        },
        {
            "course": "History",

Transforming JSON using XSLT 3.0

175



            "students": [
                {
                    "first": "Ann",
                    "last": "Jones",
                    "email": "ann_jones@gmail.com"
                },
                {
                    "first": "John",
                    "last": "Taylor",
                    "email": "john_taylor@gmail.com"
                }
            ]
        }
    ]
},
{
    "faculty": "science",
    "courses": [
        {
            "course": "Physics",
            "students": [
                {
                    "first": "Anil",
                    "last": "Singh",
                    "email": "anil_singh@gmail.com"
                },
                {
                    "first": "Amisha",
                    "last": "Patel",
                    "email": "amisha_patel@gmail.com"
                }
            ]
        },
        {
            "course": "Chemistry",
            "students": [
                {
                    "first": "John",
                    "last": "Taylor",
                    "email": "john_taylor@gmail.com"
                },
                {
                    "first": "Anil",
                    "last": "Singh",
                    "email": "anil_singh@gmail.com"
                }

Transforming JSON using XSLT 3.0

176



            ]
        }
    ]
}]

The goal is to produce a list of students, sorted by last name then first name, each
containing a list of courses taken by that student, like this:

[
    {
        "email": "ann_jones@gmail.com",
        "courses": [
            "English",
            "History"
        ]
    },
    {
        "email": "amisha_patel@gmail.com",
        "courses": ["Physics"]
    },
    {
        "email": "anil_singh@gmail.com",
        "courses": [
            "Physics",
            "Chemistry"
        ]
    },
    {
        "email": "mary_smith@gmail.com",
        "courses": ["English"]
    },
    {
        "email": "john_taylor@gmail.com",
        "courses": [
            "History",
            "Chemistry"
        ]
    }
]

As before, a stylesheet can be written that does this by converting JSON to XML,
transforming the XML, and then converting back. The XML representation of our
input dataset looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<array xmlns="http://www.w3.org/2005/xpath-functions">
   <map>
      <string key="faculty">humanities</string>

Transforming JSON using XSLT 3.0

177



      <array key="courses">
         <map>
            <string key="course">English</string>
            <array key="students">
               <map>
                  <string key="first">Mary</string>
                  <string key="last">Smith</string>
                  <string key="email">mary_smith@gmail.com</string>
               </map>
               <map>
                  <string key="first">Ann</string>
                  <string key="last">Jones</string>
                  <string key="email">ann_jones@gmail.com</string>
               </map>
            </array>
         </map>
         <map>
            <string key="course">History</string>
            <array key="students">
               <map>
                  <string key="first">Ann</string>
                  <string key="last">Jones</string>
                  <string key="email">ann_jones@gmail.com</string>
               </map>
               <map>
                  <string key="first">John</string>
                  <string key="last">Taylor</string>
                  <string key="email">john_taylor@gmail.com</string>
               </map>
            </array>
         </map>
      </array>
   </map>
   <map>
      <string key="faculty">science</string>
      <array key="courses">
         <map>
            <string key="course">Physics</string>
            <array key="students">
               <map>
                  <string key="first">Anil</string>
                  <string key="last">Singh</string>
                  <string key="email">anil_singh@gmail.com</string>
               </map>
               <map>
                  <string key="first">Amisha</string>

Transforming JSON using XSLT 3.0

178



                  <string key="last">Patel</string>
                  <string key="email">amisha_patel@gmail.com</string>
               </map>
            </array>
         </map>
         <map>
            <string key="course">Chemistry</string>
            <array key="students">
               <map>
                  <string key="first">John</string>
                  <string key="last">Taylor</string>
                  <string key="email">john_taylor@gmail.com</string>
               </map>
               <map>
                  <string key="first">John</string>
                  <string key="last">Taylor</string>
                  <string key="email">john_taylor@gmail.com</string>
               </map>
            </array>
         </map>
      </array>
   </map>
</array>

Here is the stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  version="3.0"
  xmlns="http://www.w3.org/2005/xpath-functions"
  xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
  expand-text="yes">

  <xsl:param name="input"/>
  
  <xsl:output method="text"/>
  
  <xsl:template name="xsl:initial-template">
    <xsl:variable name="input-as-xml" select="json-to-xml(unparsed-
text($input))"/>
    <xsl:variable name="transformed-xml" as="element(array)">
      <array>
      <xsl:for-each-group select="$input-as-xml//string[@key='email']" ►
group-by=".">
        <xsl:sort select="../string[@key='last']"/>
        <xsl:sort select="../string[@key='first']"/>
        <map>

Transforming JSON using XSLT 3.0

179



          <string key="email">{current-grouping-key()}</string>
          <array key="courses">
            <xsl:for-each select="current-group()">
              <string>{../../../*[@key='course']}</string>
            </xsl:for-each>
          </array>
        </map>
      </xsl:for-each-group>
      </array>
    </xsl:variable>
    <xsl:value-of select="xml-to-json($transformed-xml)"/>
  </xsl:template>
 
</xsl:stylesheet>

Is it possible to write this as a transformation on the maps-and-arrays representa-
tion of JSON, without converting first to XML? The challenge is again that we
can't use the parent axis to find the course associated with each student. Instead,
the approach we will use is to flatten the data into a simple sequence of tuples
containing the values that we need (last name, first name, email, and course), and
then use XSLT grouping on this sequence of tuples. We'll represent the intermedi-
ate form as a sequence of maps.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  version="3.0"
  xmlns="http://www.w3.org/2005/xpath-functions"
  xpath-default-namespace="http://www.w3.org/2005/xpath-functions"
  expand-text="yes">

  <xsl:param name="input"/>
  
  <xsl:output method="json"/>
  
  <xsl:template name="xsl:initial-template">
    <xsl:variable name="input-as-array" select="json-doc($input)" ►
as="array(*)"/>
    <xsl:variable name="flattened" as="map(*)*">
      <xsl:for-each select="$input-as-array?*?courses?*">
        <xsl:variable name="course" select="?course"/>
        <xsl:for-each select="?students?*">
          <xsl:map>
            <xsl:map-entry key="'course'" select="$course"/>
            <xsl:map-entry key="'last'" select="?last"/>
            <xsl:map-entry key="'first'" select="?first"/>
            <xsl:map-entry key="'email'" select="?email"/>
          </xsl:map>

Transforming JSON using XSLT 3.0

180



        </xsl:for-each>
      </xsl:for-each>
    </xsl:variable>
    <xsl:variable name="groups" as="map(*)*">
      <xsl:for-each-group select="$flattened" group-by="?email">
        <xsl:sort select="?last"/>
        <xsl:sort select="?first"/>
        <xsl:map>
          <xsl:map-entry key="'email'" select="current-grouping-key()"/>
          <xsl:map-entry key="'courses'" select="array{ current-group()?
course }"/>
        </xsl:map>
      </xsl:for-each-group>
    </xsl:variable>
    <xsl:sequence select="array{$groups}"/>
  </xsl:template>
 
</xsl:stylesheet>

Interestingly, this technique of flattening the data into a sequence of maps (turn-
ing it into first normal form) and then rebuilding a hierarchy using XSLT group-
ing is probably a very general one; it could equally have been used for our first
use case.

5. On the Question of Parent Pointers
I'm not sure if it was ever a conscious decision that XML structures should be
navigable in all directions (in particular, in the parent/ancestor direction), while
JSON structures should only be navigable downwards. It's not only the XDM
model (used by XSLT and XPath) that makes this choice; the same divergence of
approach applies equally when processing XML or JSON in Javascript. Both XML
and JSON are specified primarily in terms of the lexical grammar rather than the
tree data model, and it's not obvious from looking at the two grammars why this
difference in the tree models should arise.

The ability to navigate upwards (and to a lesser extent, sideways, to preceding
and following siblings) clearly has advantages and disadvantages. Without up-
wards navigation, a transformation process that operates primarily as a recursive
tree walk cannot discover the context of leaf nodes (for example, when processing
a price, what product does it relate to?), so this information needs to be passed
down in the form of parameters. However, the convenience of being able to deter-
mine the context of a node comes at a significant price. Most notably, the exis-
tence of owner pointers means that a subtree cannot be shared: it is difficult to
implement the xsl:copy-of instruction without making a physical copy of the
affected subtree. This means that each phase of a transformation typically incurs
cost proportional to document size. It is difficult to implement iterative transfor-

Transforming JSON using XSLT 3.0

181



mations, consisting of small incremental changes to localized parts of the tree.
This difficulty was reported a while ago [3] in a project that attempted to use the
XSLT rules engine to perform optimization on the XSLT abstract syntax tree; the
high performance cost of making small changes to the tree made this infeasible in
practice.

The ability to navigate freely in the tree also seems to imply a need to main-
tain a concept of node identity (whereby two nodes that are independently cre-
ated differ in identity even if they are otherwise indistinguishable). Node identity
also comes at a considerable price, in particular by imbuing the language seman-
tics with subtle side-effects: calling the same function twice with the same argu-
ments does not produce the same result.

The model that has been adopted for JSON, with no node identity and no pa-
rent navigation, makes certain kinds of transformation more difficult to express,
but it may also make other kinds of transformation (especially the kind alluded
to, involving many incremental and localized changes to the tree structure) much
more feasible.

6. Conclusions
From these two use cases, we seem to be able to draw the following tentative con-
clusions:

• Transformation of JSON structures is possible in XSLT 3.0 either by first con-
verting to XML trees, then transforming the XML trees in the traditional way,
then transforming back to JSON; or by directly manipulating the maps-and-
arrays representation of JSON in the XDM 3.0 data model.

• When transforming the maps-and-arrays representation, the use of traditional
rule-based recursive-descent pattern matching is inhibited by the fact that no
parent or ancestor axis is available. This problem can be circumvented by first
flattening the data – moving data from upper nodes in the hierarchy so that it
is held redundantly in leaf nodes.

• The absence of built-in shallow-copy templates for maps and arrays is an irri-
tation, but is not a real problem because these only need to be written once
and can be imported from a standard stylesheet module.

• The lack of an instruction, analogous to <xsl:map>, for constructing arrays at
the XSLT level is a further inconvenience; it means that data constructed at the
XSLT level has to be captured in a variable so that the XPath array construc-
tors can be used to create the array.

• Similarly, it would be useful to be able to invoke <xsl:apply-templates> as a
function, to allow its use within the function supplied to map:for-each() or
array:for-each() – preferably without losing tunnel parameters.

Transforming JSON using XSLT 3.0

182



References
[1] Binary Module 1.0 EXPath Module, 3 December 2013. http://expath.org/spec/
binary

[2] Introducing JSON http://json.org
[3] Writing an XSLT Optimizer in XSLT Proc. Extreme Markup Languages,

Montreal, 2007. Available at http://conferences.idealliance.org/extreme/html/
2007/Kay01/EML2007Kay01.html and with improved rendition at http://
www.saxonica.com/papers/Extreme2007/EML2007Kay01.html

[4] XSL Transformations (XSLT) Version 3.0. W3C Candidate Recommendation,
19 November 2015. Ed. Michael Kay. http://www.w3.org/TR/xslt-30

[5] XML Path Language (XPath) 3.1. W3C Candidate Recommendation, 17
December 2015. Ed. Jonathan Robie, Michael Dyck, and Josh Spiegel. http://
www.w3.org/TR/xpath-31

Transforming JSON using XSLT 3.0

183

http://expath.org/spec/binary
http://expath.org/spec/binary
http://json.org
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xpath-31
http://www.w3.org/TR/xpath-31


184



 



 

Jiří Kosek (ed.)

XML Prague 2016
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2016

ISBN 978-80-906259-0-7 (pdf)
ISBN 978-80-906259-1-4 (ePub)


	XML Prague 2016
	Table of Contents
	General Information
	Sponsors
	Preface
	Born accessible EPUB
	1. Introduction
	2. Accessibility Best Practices
	2.1. Structure means a lot
	2.1.1. Structuring 101
	2.1.2. Extended semantics
	2.1.2.1. Example: footnotes
	2.1.2.2. Page numbering
	2.1.2.3. ARIA roles


	2.2. Navigability
	2.3. Adaptation
	2.4. Alternative Content
	2.4.1. Images
	2.4.2. Beyond images
	2.4.3. Long descriptions
	2.4.4. Timed media

	2.5. Another way to read
	2.6. Metadata

	3. Getting it done
	3.1. Plan for it
	3.2. Follow the guide
	3.3. Use the right tools
	3.4. Test it!

	4. Conclusion
	Bibliography

	Extending CSS with XSL-FO, XSL-FO with CSS
	1. Introduction
	2. Reimplementation strategies
	2.1. Identifying reimplemented features
	2.2. Full implementation
	2.2.1. CSS to XSL-FO: Counter styles
	2.2.2. XSL-FO to CSS: Omitting table header/footer at break

	2.3. Partial implementation
	2.3.1. Footnotes

	2.4. Different surface syntax
	2.4.1. Running headers and footers

	2.5. Don’t implement
	2.5.1. Page selection


	3. Conclusion
	Bibliography

	Virtual Document Management
	1. Introduction
	1.1. Version Management Concepts
	1.2. The Semantic Document

	2. The Problem
	3. The Solution
	3.1. Versioning XML
	3.2. Tracking Changes
	3.3. Updated Versioning XML

	4. Implementation and Use
	4.1. Transaction Events and Logged Metadata
	4.2. Using the Versioning Information

	5. End Notes
	5.1. Future Work

	Bibliography

	Define and Conquer
	1. Introduction
	2. Highly Specialized Semantics
	3. Solved Challenges
	3.1. Authoring Assistance
	3.2. Identifiers and Enumeration Values
	3.3. Redundancy
	3.4. Importing External Data
	3.5. Filtering
	3.6. Work Item Tracking
	3.7. Architectural Data

	4. Defining a Framework with fine-granular Semantics
	4.1. Attribute Defaults
	4.2. Mandatory Choices
	4.3. Schema Changes
	4.4. Special Cases

	5. Conclusion
	6. Future Work

	Subjugating Data Flow Programming
	1. What is Data Flow Programming?
	2. Rethinking XProc
	3. XProc as an XQuery Function Library
	4. Parallelism: What is it good for?
	5. Subjugating Steps in Data Flows
	6. Überproc: a hammer for all your nails
	7. A Complete Example
	8. The Future of XProc
	References

	Schematron QuickFix
	1. Introduction
	2. Validation Errors
	3. Fixing Validation Errors
	3.1. Fixing Predefined Errors
	3.2. Fixing Custom Errors

	4. Schematron Quick Fixes
	4.1. SQF Benefits
	4.2. SQF Implementations

	5. Schematron QuickFix Language
	5.1. Reference a QuickFix
	5.1.1. Scope
	5.1.2. QuickFix Groups

	5.2. Title and Description
	5.3. Activity Elements
	5.3.1. Delete Nodes
	5.3.2. Replace Nodes with New Content
	5.3.2.1. Replace by Using SQF Attributes
	5.3.2.2. Replace by Using XPath
	5.3.2.3. Replace by Using New Content

	5.3.3. Add the New Content
	5.3.4. Replace Substrings

	5.4. Additional Features
	5.4.1. User Entry
	5.4.2. Use-when Condition


	6. Projects Using SQF
	7. Conclusions and Future Plans

	Validating office documents in the publishing production workflow
	1. Background
	2. A processor for style schemas
	3. An implementation: DTD + SAX handler
	3.1. Transforming the style schema to a DTD
	3.2. Transforming the source document styles to pseudo-elements
	3.3. Validator with error location reporting
	3.4. Inserting errors into the source
	3.5. Filling in the gaps with Schematron

	4. Post mortem
	5. Fixing the source
	6. Next steps
	Bibliography

	Data Just Wants to Be Format-Neutral
	1. Abstraction and Representation
	2. Invisible XML
	3. Serialisation
	4. Serialisation by Tree Walking
	5. Earley Parsing
	6. Parsing a Parse Tree
	7. Representation Neutrality
	8. Normalising Grammars
	9. Subsets
	10. Data Conversion
	11. Conclusion
	References

	From XML to RDF step by step: Approaches for Leveraging XML Workflows with Linked Data
	1. Introduction
	1.1. Motivation
	1.2. The Relation to RDF Chimera
	1.3. Background: The FREME Project

	2. Business Case Motivation Examples
	2.1. The Case of Agro-Know and Wolters Kluwer - Linked Data in XML Publishing Workflows
	2.2. The Case of Vistatec - Linked Data in XML Localization Workflows
	2.3. The Case of iMinds - Linked Data in Book Metadata

	3. Approaches for Linked Data Integration in XML Workflows
	3.1. Approach 1: Convert XML to Linked Data
	3.2. Approach 2: Embedd Linked Data into XML via Structured Markup
	3.3. Approach 3: Anchor Linked Data in XML Attributes
	3.4. Approach 4: Embed Linked Data in Metadata Sections of XML Files
	3.5. Approach 5: Anchor Linked Data via Annotations in XML Content

	4. Relating Business Cases and Integration Approaches
	5. Routes to bridge between RDF and XML
	6. Conclusion
	7. Acknowledgments
	Bibliography

	Promises and Parallel XQuery Execution
	1. What is it?
	2. Why?
	2.1. Methods of Parallism

	3. Introducing the Promise Pattern
	3.1. Install Steps
	3.1.1. Dependencies
	3.1.2. Automatic Install
	3.1.3. Manual Install Steps (Windows)
	3.1.4. 
	3.1.5. Declaration


	4. The Basics of a Promise
	4.1. defer

	5. Callbacks
	6. 
	6.1. Adding callbacks
	6.1.1. 
	6.1.2. Chaining Helper Functions


	7. 
	7.1. then
	7.2. done
	7.3. always
	7.4. fail
	7.4.1. Understanding callback chains

	7.5. when
	7.6. 
	7.6.1. Multiple Callbacks per event


	8. The Power of Promises and Parallel Execution
	8.1. fork-join
	8.2. fork

	9. Performance
	10. Limitations
	11. Implementation
	11.1. XqPromise
	11.2. XqDeferred
	11.3. XqForkJoinTask

	12. Moving Forward
	13. Shout Out!
	14. Contribute

	Entities and Relationships in a Document Database
	1. Introduction: Reseeding the Enterprise
	2. Dirt
	3. Seeds
	4. Trees
	5. Fruit
	6. Hybrid Data Hubs

	Transforming JSON using XSLT 3.0
	1. Introduction
	2. Two Transformation Use Cases
	3. Use Case 1: Bulk Update
	4. Use Case 2: Hierarchic Inversion
	5. On the Question of Parent Pointers
	6. Conclusions
	References

	Table of Contents

