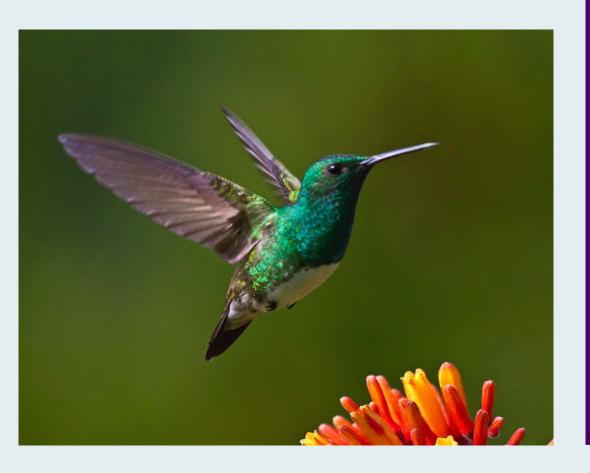


A compiler should be written in its own language

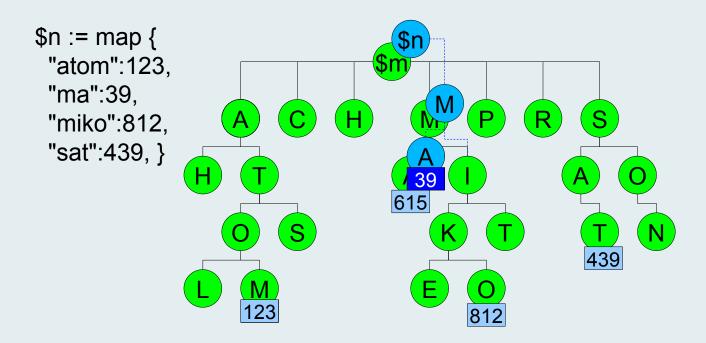


XSLT
Transformations
take
(at least)
linear time

JSON trees
can be updated
in
constant time

Digression: { persistent | immutable | tries | versioned |

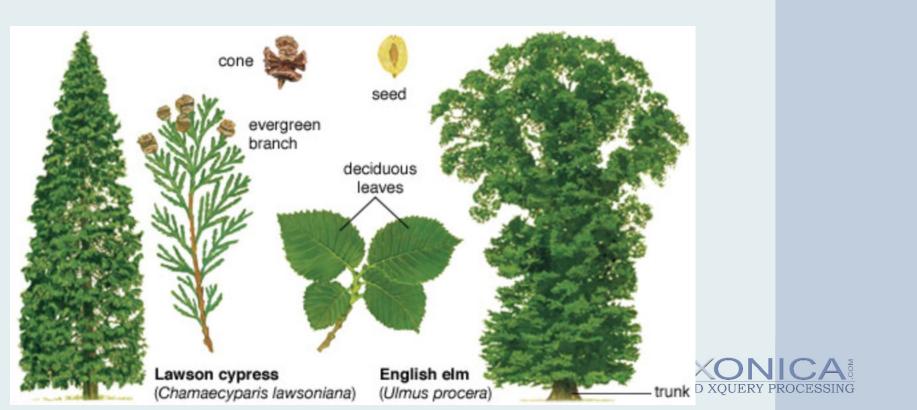
```
$m := map {
    "atom":123,
    "ma":615,
    "miko":812,
    "sat":439, }


H T A D A O 615

    K T T N 439
```

n := map:put(m, "ma", 39)

Digression: { persistent | immutable | tries | versioned |



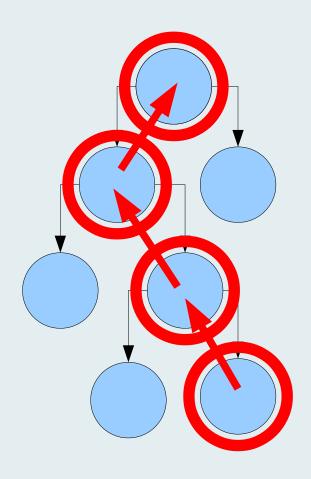
Trie updates are cheap because there are no parent pointers

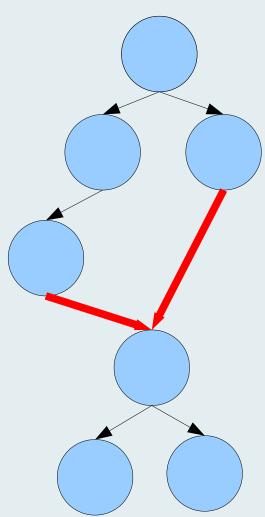
There is no intrinsic reason why XML trees have parent pointers and JSON trees do not

6

Access to parents and ancestors is useful

```
if (ancestor::*/@xml:lang = 'de')
```


But you can find your way back to ancestor nodes by retracing your steps

Without parent pointers, copying subtrees becomes trivial

KL-tree

 K-nodes: Java objects with pointers to children

 L-nodes: transient wrappers around K-nodes containing parent pointer and sibling position

 L-nodes have identity, can be sorted into document order, support all 13 XPath axes

Fast but not fast enough

With the Saxon
TinyTree
it's a bit
more
complicated

The TinyTree

Depth	Kind	Name	A	В	Next/Up
0	Doc	-	-	-	-
1	Elem	2345	➤ first att	➤ first ns	0
2	WS	-	XXX	XXX	3
2	Elem	5678	➤ first att	➤ first ns	4
3	Text	-	➤ content	length	3
2	Elem	5678	➤ first att	➤ first ns	6

Very fast searching for elements by name

Where can we use cheap subtree copying?

```
<xsl:copy-of select="*"/>
```

? <xsl:mode
on-no-match=
"shallow-copy"/>

XSLT Update Extension?

<uxsl:update>
 <uxsl:delete select=".//note"/>
</uxsl:update>

XQUERY <x>{a/b/c}</x>

XQUERY
UPDATE

transform \$doc {
 delete .//note
}

Summary

- You need access to parents but you don't need parent pointers
- Without parent pointers, copying subtrees is cheap
- If subtree copying is cheap, small changes can be made in constant time
 - (which enables us to write an XSLT compiler in XSLT)
- Performance figures: see paper

