

An XSLT compiler written in XSLT
Can it Perform?

Michael Kay, Saxonica
John Lumley, Saxonica+jwL

XML Prague 2019

The XX Compiler

XSLT
Stylesheet

Source
Document

XJ
Compiler

Result
Tree

SEF (Stylesheet
Export File)

XX
Compiler

Saxon-J Saxon-JS

What the Compilers Do

• Static Preprocessing
– include/import, use-when, shadow attributes

• Structural Validation and normalization

• XPath Parsing

• Resolving component references

• Type Checking
– inject code for run-time checks and conversions

• Optimization

• Streamability Analysis

The Compiler as Transformer...

At a first level of approximation,

The XSLT Compiler is a
multiphase tree-to-tree transformation
operating in 6 passes

So it makes sense to write it in XSLT...

XJ / XX Differences

• XJ uses an in-memory tree of Java
objects
– mutable
– decorated with arbitrary object values

• XX uses an XDM tree
– immutable
– decorated with string-valued attributes

Performance Engineering Process

Set Targets

Improve

Measure Done?

Analyse

STOP

Targets for XX

• Task:
– Use the compiler to compile itself

• Baseline:
– Time taken by XJ: 240ms
– Time taken by XX on Java: 2040msTime taken by XX on Java: 2040ms
– Time taken by XX on Chrome: 90s

• Target:
– XX on Java: 720msXX on Java: 720ms
– XX on Node.js: 3s

2040

720

Measurement Techniques

• Transform -t -repeat:50
– "whole task" measure, no breakdown

• Transform -TP:profile.html
– breakdown by templates/functions

• Java-level profiling

• "Subtractive measurement"
– stop doing X, see the difference

• "Additive measurement"
– do X twice, see the difference

Measurement Repeatability

• Eliminate Java warm-up time

• Cut out background tasks

• Use a consistent configuration

• Let the CPU cool down

• Plug into mains power!

• Use the "best" numbers
– external factors will never speed things up!

• Use counters rather than timing

Phase 1 Improvement

• XPath Parsing
– XX calls a Java/JS XPath parser
– Needs to supply static context for each

expression

• Eager evaluation of the fixed parts
– global functions and variables

• Lazy evaluation of the variable parts
– namespace context, local variables

• Progress: 2040ms 1280ms➾

Phase 3: Tree copying revisited

• XML Prague 2018: Efficient tree
copying by avoiding parent pointers
– implemented in Saxon 9.9
– no performance benefits ☹
– the reason: NAMESPACES

• do less copying

• use copy-namespaces=no

• internals: tunnel parameters

• Progress: 1120ms => 825ms

Phase 3: Tree copying revisited

• XML Prague 2018: Efficient tree
copying by avoiding parent pointers
– implemented in Saxon 9.9
– no performance benefits ☹
– the reason: NAMESPACES

• do less copying

• use copy-namespaces=no

• internals: tunnel parameters

• Progress: 1120ms 825ms➾

Phase 4: Algorithmic Improvements

• New algorithm for computing import
precedence "on the fly"
– avoids post-order tree traversal

• New algorithm for encoding
SequenceTypes as strings
– for fast parsing and fast comparison

• Progress: 825ms 725ms➾

Phase 5: Coup de grâce

• XPath processing in parallel
– xsl:for-each saxon:threads="8"

• Progress: 725ms 550ms➾

So what about Node.js?

• Ask us at

2020

Observations and Conclusions

• It can be done

• Debugging complex stylesheets is hard
– as a spin-off, we improved diagnostics

• Measuring small improvements is difficult

• There's often a hot-spot that gives a big
improvement for small effort

• When there isn't, you have to be
prepared to make radical changes

	You Pull, I’ll Push: on the Polarity of Pipelines
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

