XML Prague 2019, February 8"

Tagdiff:

a diffing tool for highlighting differences
in the tagging of text-oriented XML documents

Cyril Briquet

cyril.briquet@canopeer.org

Contents

* Text-oriented XML documents and use case
 diff vs. tagdiff vs. existing GUIl-based XML tools
* Description of the algorithm

* Performance

e Conclusions

Structure-oriented vs. text-oriented

XML documents

e structure-oriented XML documents

<</n many applications XML documents can be treated as
unordered trees — only ancestor relationships are significant,
while the left-to-right order among siblings is not
significant.>> [WDCO03]

use cases rely on XML documents to store structured data

e text-oriented XML documents

XML is relied upon to (algorithmically) tag sections of text;
what'’s in lateral proximity is important

use cases include literary texts, linguistic data, news,...

Use case: algorithmic tagging of

text-oriented XML documents

 algorithmic tagging of linguistic data corpus [BRP10]

* multiple processing steps (sequence of 40 tagging algorithms)

 to validate algorithms, it is useful to visually inspect:
(1) data before and after applying a given tagging algorithm
==> new tagging correct and complete?
(2) data output by a reference version and a new (faster or
more readable) version of a tagging algorithm
==> same tagging?

Command line tool requirements

* exact diffing
* no options such as filtering out
some types of information (whitespace, comments, ...)
* not a goal to merge or patch documents
* output easy to visualize
* output easy to process by other command line tools
* no GUI

diff

* well-known UNIX command line tool: diff
* based on classic diffing algorithm [Myers86]
(An O(ND) Difference Algorithm and Its Variations)
* focuses on differences between short lines (e.g. source code)

. example: 4 differences in a paragraph, but it's not obvious!

< <p>Heapsort was i1nvented by < (=<person=J. W. 1.

iams</person></link> in <link><date>1964</date></1link>. T
his was also the birth of the heap, pre esented already by
Williams as a useful data structure in its own right.</p=

> <p>Heapsort was invented by <link><person>J. W. J. W
illiams</person></link> in <link=><date>1964</d
ate=</1link>. This was also the birth of the heap, present
ed already by Williams as a useful data structure in 1its
own right.</p=

tagdiff
vertical, segmented a

___ XML items

6 . = 6 . .
- e _ S i well-delineated
6 <?eoln?> = 6 <?eoln?> from Surround|ngs
7 <?eoln?= = 7 <?eoln?=
8 <p= — 8 <p=
8 Heapsort was invented by = 8 Heapsort wagfinvented by
8 <link> = 8 <link>
8 <person= — 8 <person=
<---> 8 <b=
8 J. W. J. Williams = 8 J. W. J. Williams

8 J. W. J. Williams = 8 J. W. J. Williams
- 8 :fb}
</person= = 8 </person=
= 8 </link=
= 8 1in

S e e e always a ConteXt

= g }[\ around each difference
— =< L1LN.
<date> - 8 <date>
o= 8
8 1964 - 8 1964

tagdiff
vertical, segmented an

6
6
in-place algorithm --- 6 piece of work
€---53 6
6 </link> = 6 </link>
6 , but it is not a = 6 , but it is not a
6 <link> = 6 <link>

—— et allgnment s e
based on
segment types

Jitule long XML items

AUR further segmented
<link>

<h>
stable sort algorithm (such a
s the merge sort algorithm)
:fh}

</1ink>

6 , but it is
6 <link>

6 stable sort

MM A A
i i i i
WoOoOWOOW W

6 </link>

O O O O O O O O Oh

i
| nn

E o lme o =

diff with -y flag

 diff -y: output in two columns, but
* no segmentation of long lines (only truncation)

* all the contents displayed, no specific contextualization

<?xml version="1.0" encoding="UTF-8"?=> <?xml version="1.8" encoding="UTF-8"7?=>

<article xmlns="http://www.tagdiff.org/basic-markup"> | <article book="1" volume="28" ici="2" lang="english" xmlns="h

<p>In computer science, the heapsort algorithm is a <link=com | <p>In <link=computer science</link>, the <link><b=heap

<p>Although somewhat slower in practice on most machines than | <p=Although somewhat slower in practice on most machines than

<p>Heapsort was invented by <link=<person=J. W. J. Williams</ | <p>Heapsort was invented by <link=<person=<b=J. W. J. William

<p>Source: Wikipedia.</p> <p>Source: Wikipedia.</p>

</article>

</article>

DeltaXML XML Compare

https://docs.deltaxml.com/xml-compare/current/docs/qui-help/

@ _Untitled Comparison 1 - DeltaXML XML Compare

® @
1 Ed
Save Configure View Log

<< il < FNGERE > N >> |

<root> <root>
<a> <a>
<al/> <al/>

 — (/‘2‘1/:“
<c>)
</c> </c>
<d/>
<e>
<f/> <2§fd by Word modifications
</root>
</root>

10

Oxygen XML Editor

https://www.oxygenxml.com/files_compare_img.htmi

& Dl Files
Pt Eda Fnd Compae Opuonr Help
i B A EEE HEE $4#e BE vestiow - 3
Do oy Lo b IS fowvpen sampies personalornl w 7] 5 H 4 Curwnroad B pen 18be fa b oy darmpies bersonal sl w [= H x
A 1 Lkxel veralen="1.9" encoding="UIT-87713 -=1:.'r: veralon="1.0" escsding=—UTr-B=75 e
2 <IDOCTYPE pesacasel PUBLIC "PERSOIMEL® “peracsal.ded OGS snyieaheat type=~temtiess” hrefapesssaal 2 1 9
lf?:li@n!‘:tr! TYRE="DCEE S ea5" hzef="piriomal_ £33 A pRrsEngl :r:'..*_:-.:_i'.-‘t:mzr;w-r.ﬂ.g:q.r:wk.rm‘._: k| -
4-!-5E=lum£-: | 1.-'.._:.551-.-; o Lo hema L :-.'..i.-_'ptraml.u-ij 4
¥ {persca 1d="harris.andesrson” photo="perponsl-im iperson id-"harris.asderson” photo="perscoal- & 0
8 SOAmE < THAma L3
¥ folvesaEarriadrgivens fgivesdficTiscrglvens b
¥ claml Iyasderaands fasl 1y Coamd LR T s Tanl 1y ¥
L 1L LT k] =
= CERALloRATELS . Ander sonPeNanplE . ComcfERal]y of B 3] o
LL] <link » rdinacer="robers.caylor belen.jack <fand Iydndereond/ fami 1y 11 :
LH furl href="Rtip: /S rnnd, exEaple Com/ el harrin- 4fnaney FH
iy SFpRTaeas -t PR T pE M R LR S T R E
Ed Py TSN Lide"PolE e TAYlas™ photlse"perasail=1Ting Clink subssdiEatese"rabarr. Caflar Bl 714 HE
-] CRARET fUE]l href="RTTH:S v EEample . con'ns /RATH1D
-] CyivenRobeert<fgivens LipErsony 18
LE) tiami ly»Talylondrinmdly> {pErpon id="robert.tayiorT phoso="pRracaal-ka?
tk & asa € Ee 1%
th tmnlu:-h-rn-u:#h:h!mq-:m:m:h i an el Tr o figivend 1
e L£11Ak Earsdsra"BAFFELS. AT SOR" /5 CEamd 1 y>Taylarcf Lami 1y]
a1 £url href="BUtpf v, renaspl e . cones FobeEr T o F D 5 =1
2 4fperaons {epailbrobert.taylorkecample, comd/enai i 32
23 Speideh Lo="heles. Jathaon™ phoso="priaisal-izagn £1L0K mandger="BACELi. MO a00" > A
a4 L fusl hEef=Shuemc LOnAE SERERLG . SRS STuk 24
af COLEEEE IEn L FGLvEaD o NP 2 364D i
= Cclami ByrJacksond/ Tand]y Jperson 1d="helen.jacksosn™ phato="peracoal-1y 5
a &7 nma LTI 3 < CHAmE 5 o
- sgiescEelendrgivens Lgivencifelesgrgiveny - |
=0 laniRyTaskpana s fami iy sl 1yTaspasf faml 1 =
w E o) RS o f B 1 w
- & EETH A T | ' - Ll ¥ - ' EFE L - = El ar He mE 11
Il o ol vpen 1BDELa0 S iyt ey oy sonal. wed 3EL Aenirate - Differanoes | D (Tan-iWay Cosparoon) Bl fared

tagdiff algorithm

* main idea:
segment the XML documents into small typed segments
that are easy to align, to compare, and to visualize

* three main phases:

1) diffing the raw text versions of the XML documents
2) XML parsing and segmenting the XML documents
3)aligning sequences of the (differing) typed segments

* implementation: Java 8, ~5000 lines of code
(+ several libs: raw text diffing algorithm, XML data model)

Algorithm (1)

Diffing of the raw text versions

* classic diffing algorithm [Myers86]:
identifies which sections of the raw text versions
of two XML documents are equal, and which are differing

* measured performance slow for large number of differences

=> optimization required

13

Algorithm (1 continued)

Optimization of the diffing algorithm

* optimization: split the two XML documents
into short sections with limited number of differences so that
the [Myers86] diffing algorithm performance remains good

* splitting points?
* must match in the two documents
* default splitting points: paragraph boundaries,
but can be specified by the user as a regexp

e example:
document 1: ...|<p>|...|</p>|...|<p>|...|</p>|...|<p>|...|</p>|... 1
document 2: ...|<p>|...|[</p>|...I<p>|...|</p>]|...|<DP>|...|</D>]...

Algorithm (2.1)

XML parsing

XML parsing (SAX, but could be DOM)

* no schema required and no validation performed

=> enables to find differences in non-valid documents

* chunk-based (non-DOM) data model (previous work [BRP10])
* 1 opening, empty, or closing tag ==> 1 XML chunk

* end of line \n" ==> processing instruction ==> 1 XML
chunk

|<?xml version="1.0" encoding="UTF-8"7?>|<?eoln?>|<article
book="1" ici="2" lang="english" volume="20">|<?eoln?>|<?

eoln?>|<p>|In computer science, ...|... s

Algorithm (2.2)

Segmentation

* 1 XML chunk + 1 diffing type + 1 offset == 1 typed segment

* 8 type values
(given by classic diffing algorithm of the previous phase):

equal text, equal tag, equal PI, equal comment,
differing text, differing tag, differing PI, differing comment

» offsets in the equal-data version of the XML documents
(typed segments of a differing type don’t have an offset)

16

Algorithm (2.2 continued)

Segmentation

<?xml version="1.0" encoding=| equal processing instruction
"UTF-8"7>| equal processing instruction

<?eoln?>| equal processing instruction

<article book="1" ici="2" lan| differing tag

g="english" volume="20">| differing tag

<?eo0ln?>| equal processing instruction

<?eo0ln?>| equal processing instruction

<p>| equal tag

“long” segments are further segmented
(max column width, e.g. 29 for 80 chars terminal) 17

Algorithm (3.1)

Alignment of equal data

* neighboring differing segments are grouped together
e sequences of equal data aligned

based on their offsets in the equal-data version
 alternation of equal-data and differing-data sequences

document 1 sequences document 2 sequences
seqi: |<link>] seq <link>|
seq i+1: |in-place algorithm| seq j+1: ||
piece of work]|
|

seq i+2: |</link>] seq j+2: |</link>] 18

Algorithm (3.2)

Alignment of differing data

* differing-data sequences still need alignment
with their counterparts

document 1 sequences ocument 2 sequences

|<link>| = |<link>|

lin-place algorithm| ? |

(gap) ? piece of work|

(9ap) ? |

|</link>] = </link>| 19

Algorithm (3.2 continued)
Alignment of differing data:

optimization algorithm

* combinatorial alignment problem solved (many times)
for each matching pair of (rather short) differing sequences

* systematic recursive enumeration of all possible alignments
(with pruning of unpromising solutions to boost performance)

* optimization (minimization) algorithm:

the alignment with the lowest “cost” is selected

cost of 2 typed segments of same type and equal data
< cost of 2 typed segments of same type and differing data
< cost of 1 typed segment matched with 1 gap
< cost of 2 typed segments of different types 20

Performance (small test corpus)

e a pair of small XML documents:
14 lines and about 2 kB each, 26 differences

e a pair of medium XML documents:
~1000 lines (x70),115 kB each, 743 differences

 a 2" pair of medium XML documents:
~4000 lines (x4), 500 kB each, 3638 differences

21

Performance (runtimes)

runtime (ms), smaller is better

90000

80000

70000

60000

50000

40000

30000

20000

10000

Intel Celeron (nan-mptimized]

Intel Core 7 (non-op
Intel Celeron (o

Ized)

small
documents

medium
documents 1

pairs of documents

medium
documents 2

22

Conclusions

 tagdiff.
a command line tool for diffing text-oriented XML documents
(no schema required, no XML validation performed);
visualization is vertical, segmented and typed

* (optimized) use of classic diffing algorithm [Myers86]

* alignment done by an optimization algorithm
(which we think could be integrated into existing XML tools)
applied to many small sequences of typed segments
that are easy to align, compare and visualize 23

Thank You !

24

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

