
XML Prague 2019, February 8th

Tagdiff:
a diffing tool for highlighting differences

in the tagging of text-oriented XML documents

Cyril Briquet

cyril.briquet@canopeer.org

2

Contents

● Text-oriented XML documents and use case
● diff vs. tagdiff vs. existing GUI-based XML tools
● Description of the algorithm
● Performance
● Conclusions

3

Structure-oriented vs. text-oriented
XML documents

● structure-oriented XML documents

 <<In many applications XML documents can be treated as
unordered trees – only ancestor relationships are significant,
while the left-to-right order among siblings is not
significant.>> [WDC03]

use cases rely on XML documents to store structured data

● text-oriented XML documents

XML is relied upon to (algorithmically) tag sections of text;
what’s in lateral proximity is important

use cases include literary texts, linguistic data, news,...

4

Use case: algorithmic tagging of
 text-oriented XML documents

● algorithmic tagging of linguistic data corpus [BRP10]

● multiple processing steps (sequence of 40 tagging algorithms)

● to validate algorithms, it is useful to visually inspect:

(1) data before and after applying a given tagging algorithm

 ==> new tagging correct and complete?

(2) data output by a reference version and a new (faster or

 more readable) version of a tagging algorithm

 ==> same tagging?

5

Command line tool requirements

● exact diffing
● no options such as filtering out

some types of information (whitespace, comments, …)
● not a goal to merge or patch documents
● output easy to visualize
● output easy to process by other command line tools
● no GUI

6

diff

● well-known UNIX command line tool: diff
● based on classic diffing algorithm [Myers86]

(An O(ND) Difference Algorithm and Its Variations)
● focuses on differences between short lines (e.g. source code)
● example: 4 differences in a paragraph, but it’s not obvious!

7

tagdiff
vertical, segmented and typed diffing

always a context

around each difference

XML items
well-delineated

from surroundings

8

tagdiff
vertical, segmented and typed diffing

alignment
based on

segment types long XML items
further segmented

9

diff with -y flag

● diff -y: output in two columns, but

 * no segmentation of long lines (only truncation)

 * all the contents displayed, no specific contextualization

10

DeltaXML XML Compare
https://docs.deltaxml.com/xml-compare/current/docs/gui-help/

11

Oxygen XML Editor
https://www.oxygenxml.com/files_compare_img.html

12

tagdiff algorithm

● main idea:

 segment the XML documents into small typed segments

 that are easy to align, to compare, and to visualize

● three main phases:

1)diffing the raw text versions of the XML documents

2)XML parsing and segmenting the XML documents

3)aligning sequences of the (differing) typed segments

● implementation: Java 8, ~5000 lines of code

(+ several libs: raw text diffing algorithm, XML data model)

13

Algorithm (1)
Diffing of the raw text versions

● classic diffing algorithm [Myers86]:

identifies which sections of the raw text versions

of two XML documents are equal, and which are differing

● measured performance slow for large number of differences

=> optimization required

14

Algorithm (1 continued)
Optimization of the diffing algorithm

● optimization: split the two XML documents

into short sections with limited number of differences so that

the [Myers86] diffing algorithm performance remains good

● splitting points?

 * must match in the two documents

 * default splitting points: paragraph boundaries,

 but can be specified by the user as a regexp

● example:

document 1: ...|<p>|...|</p>|...|<p>|...|</p>|...|<p>|...|</p>|...

document 2: ...|<p>|...|</p>|...|<p>|...|</p>|...|<p>|...|</p>|…

15

Algorithm (2.1)
XML parsing

● XML parsing (SAX, but could be DOM)

● no schema required and no validation performed

=> enables to find differences in non-valid documents

● chunk-based (non-DOM) data model (previous work [BRP10])

 * 1 opening, empty, or closing tag ==> 1 XML chunk

 * end of line ‘\n’ ==> processing instruction ==> 1 XML
chunk

 |<?xml version="1.0" encoding="UTF-8"?>|<?eoln?>|<article
book="1" ici="2" lang="english" volume="20">|<?eoln?>|<?
eoln?>|<p>|In computer science, ...|…

16

Algorithm (2.2)
Segmentation

● 1 XML chunk + 1 diffing type + 1 offset == 1 typed segment

● 8 type values

(given by classic diffing algorithm of the previous phase):

equal text, equal tag, equal PI, equal comment,

differing text, differing tag, differing PI, differing comment

● offsets in the equal-data version of the XML documents

(typed segments of a differing type don’t have an offset)

17

Algorithm (2.2 continued)
Segmentation

|<?xml version="1.0" encoding=| equal processing instruction

|"UTF-8"?>| equal processing instruction

|<?eoln?>| equal processing instruction

|<article book="1" ici="2" lan| differing tag

|g="english" volume="20">| differing tag

|<?eoln?>| equal processing instruction

|<?eoln?>| equal processing instruction

|<p>| equal tag

…

“long” segments are further segmented

(max column width, e.g. 29 for 80 chars terminal)

18

Algorithm (3.1)
Alignment of equal data

● neighboring differing segments are grouped together
● sequences of equal data aligned

based on their offsets in the equal-data version
● alternation of equal-data and differing-data sequences

document 1 sequences document 2 sequences

seq i: |<link>| seq j: |<link>|

seq i+1: |in-place algorithm| seq j+1: ||

 |piece of work|

 ||

seq i+2: |</link>| seq j+2: |</link>|

19

Algorithm (3.2)
Alignment of differing data

● differing-data sequences still need alignment

with their counterparts

document 1 sequences document 2 sequences

|<link>| = |<link>|

|in-place algorithm| ? ||

(gap) ? |piece of work|

(gap) ? ||

|</link>| = |</link>|

without alignment |in-place algorithm|

 would be misaligned with ||

20

Algorithm (3.2 continued)
Alignment of differing data:
optimization algorithm

● combinatorial alignment problem solved (many times)

for each matching pair of (rather short) differing sequences
● systematic recursive enumeration of all possible alignments

(with pruning of unpromising solutions to boost performance)
● optimization (minimization) algorithm:

the alignment with the lowest “cost” is selected

 cost of 2 typed segments of same type and equal data

< cost of 2 typed segments of same type and differing data

< cost of 1 typed segment matched with 1 gap

< cost of 2 typed segments of different types

21

Performance (small test corpus)

● a pair of small XML documents:

14 lines and about 2 kB each, 26 differences

● a pair of medium XML documents:

~1000 lines (x70),115 kB each, 743 differences

● a 2nd pair of medium XML documents:

~4000 lines (x4), 500 kB each, 3638 differences

22

Performance (runtimes)

23

Conclusions

● tagdiff:

a command line tool for diffing text-oriented XML documents

(no schema required, no XML validation performed);

visualization is vertical, segmented and typed

● (optimized) use of classic diffing algorithm [Myers86]

● alignment done by an optimization algorithm

(which we think could be integrated into existing XML tools)

applied to many small sequences of typed segments

that are easy to align, compare and visualize

24

Thank You !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

