
a conference on XML

Lesser Town Campus

Prague, Czech Republic

June 17-18, 2006

Contents

Contents 3

General Information 4

Preface 5

Program 7

The Road to an XSLT/XQuery IDE
George Cristian Bina 11

Index-driven XQuery Processing in the eXist XML Database
Wolfgang Meier 21

Optimization in XSLT and XQuery
Michael Kay 29

XML/RDF Query by Example

Eric van der Vlist 43

xq2xml: Transformations on XQueries

David Carlisle 63

Web 2.0: Myth and Reality

Eric van der Vlist 77

XML Data − The Current State of Affairs

Kamil Toman and Irena Mlýnková 87

First eXist Workshop

Wolfgang Meier 103

DocBook BoF
Jirka Kosek 104

Perl XML BoF
Petr Cimprich, Petr Pajas 105

Xdefinition BoF
Václav Trojan 106

General Information

Date
Saturday, June 17th, 2006

Sunday, June 18th, 2006

Location

Lesser Town Campus, Lecture Halls S5, S6
Malostranské náměst́ı 25, 110 00 Prague 1, Czech Republic

Speakers
David Carlisle, NAG Limited
Wolfgang Meier, eXist XML database

Eric van der Vlist, Dyomedea
Michael Kay, Saxonica Limited

Kamil Toman, Irena Mlýnková, Charles University, Prague
George Cristian Bina, Syncro Soft − oXygen XML editor

Organizing Comitee
Jaroslav Nešetřil, Charles University, Prague

Tomáš Kaiser, University of West Bohemia, Pilsen
Petr Cimprich, Ginger Alliance, s.r.o.
James Fuller, Webcomposite, s.r.o.

Proceedings Typesetting

Vı́t Janota, Ginger Alliance, s.r.o.

4

Preface

This publication contains papers to be presented at XML Prague 2006, a
regular conference on XML for developers, web designers, information man-

agers, and students. The conference focuses this year on XML Native Data-
bases and Querying XML. A full day of experts speaking has been extended

with an additional day dedicated for participants to hold related BoF sessions
and workshops.

The conference is hosted at the Lesser Town Campus of the Faculty of

Mathematics and Physics, Charles University, Prague. XML Prague 2006
is jointly organized by the Institute for Theoretical Computer Science and
Ginger Alliance, s.r.o.

The conference joins the academic world with the world of IT professionals.

The organizers hope this year’s conference shall be enjoyable for both audience
and speakers, providing a dynamic interchange and environment to discuss

XML technologies.

5

Ginger Alliance is a technology development company that

takes a collaborative approach to providing solutions and

cost effective outsourced development. Our aim is to make

IT simpler and faster, using standards-based and if

possible open source technologies.

Ginger Alliance is an acknowledged innovator in XML

development and its use in the creation of Service

Orientated Architectures to enable web services and

deliver mobile applications.

http://www.gingerall.com

Services

Products

Ginger Alliance can help you to address your needs by providing top-

quality professional and managed services.

Our motivated, well qualified consultants and developers provide:

Technical definition, Software development and System integration

GA Mobile Marketing & Entertainment service (GA-MME) is a tool to

create & deliver mobile content offers for marketing campaigns.

A complete solution for mobile content delivery and management,

with billing and reporting capabilities.

GA-MOM is a highly scalable and robust solution for messaging,

communication, control and integration of new and existing services.

Professional Sevices

Managed Services

GA - GinDjin Suite

GA - Messaging Oriented Middleware

Program

Saturday, June 17, 2006 - Lecture Hall S5

9:00 The Road to an XSLT/XQuery IDE, George Cristian Bina

9:35 Index-driven XQuery Processing in the eXist XML Database,
Wolfgang Meier

10:35 Coffee Break

10:55 Optimization in XSLT and XQuery, Michael Kay

11:55 Lunch Break (on your own)

13:25 XML/RDF Query by Example, Eric van der Vlist

14:30 xq2xml: Transformations on XQueries, David Carlisle

15:30 Coffee Break

15:50 XML Data - The Current State of Affairs, Kamil Toman,
Irena Mlýnková

16:25 Web 2.0: Myth and Reality, Eric van der Vlist

17:00 Lightening Sessions

17:30 End of Day

7

Sunday, June 18, 2006 - Lecture Hall S5

9:00 First eXist Workshop, Wolfgang Meier

10:40 Coffee Break

10:50 First eXist Workshop, Wolfgang Meier

13:00 End of Day

Sunday, June 18, 2006 - Lecture Hall S6

9:00 Perl XML BoF, Petr Cimprich, Petr Pajas

10:10 Xdefinition BoF, Václav Trojan

10:40 Coffee Break

10:50 DocBook BoF, Jirka Kosek

13:00 End of Day

8

Produced by

Institute for Theoretical Computer Science

(http://iti.mff.cuni.cz/)

Ginger Alliance (http://www.gingerall.com/)

with support of

University of West Bohemia in Pilsen (http://www.zcu.cz/)

Sponsored by

oXygen XML editor (http://www.oxygenxml.com/)

Main Media Partner

ROOT.cz (http://root.cz/)

Media Partners

jaxmagazine (http://jaxmag.com/)

ZVON.org (http://www.zvon.org/)

Bulgaria WebDev Magazine

(http://openideascompany.com/wdm.php)

<xml>fr (http://xmlfr.org/)

CHIP (http://chip.cz/)

9

10

The Road to an XSLT/XQuery IDE

George Cristian Bina (Syncro Soft − oXygen XML Editor)

Abstract

Most XSLT/XQuery tools provide editing and transformation support. Some

provide also debugging and profiling support. However there is a lot more to
do in order to have an XSLT/XQuery IDE similar with today’s Java IDEs for

instance. oXygen started to walk on this road providing a number of advanced
development features. An overview of the features that should be available in a

modern XSLT/XQuery IDE and more details about the part of these features
already implemented in oXygen will be presented.

Checking for errors and error reporting

When editing source code every developer needs to know whether or not his

code contains errors, to see where these errors are and to get their descriptions
so he can easily correct them. Checking the source for errors can be done on

demand or it can be performed automatically (continuous validation). The
continuous validation is important because it signals the error immediately

when it appears thus the developer is already focused on that and can more
easily correct it. The errors can be reported in a list or in a table but they

can also be marked directly in the source text. Marking errors in the source
text with visual error markers is useful especially when coupled with the
automatic validation as the detected errors are located naturally on screen.

It is important also to report as many errors as possible and do not stop after
the first one. Sometimes the developer can choose to correct an error at a

later time but if the error reporting stops on the first encountered error then
he will not get any more feedback. To summarize, an IDE should provide

support for continuous validation, visual error markers and it should report
multiple errors. The validation should be performed in background and should
not interrupt the user from editing.

11

Example 1: Error markers in oXygen on continuous validation

The error checking can verify only the XSLT/XQuery syntax or it can per-

form a more powerful checking, signaling for instance undeclared components,
XPath errors, etc. It is desirable for an IDE to have a more powerful checking

than a simple syntax check.

One of the characteristics of XSLT and XQuery is that they allow modules
that can be invalid by themselves but that can became valid if they are used in

some context (included or imported for instance). For example the following
stylesheet uses a variable handleElements that is defined in a stylesheet that
includes this one. Thus the stylesheet is invalid by itself, but when included

from a stylesheet that defines the handleElements variable it is valid.

Example 2: Invalid stylesheet − sample2module.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="*">

<xsl:if test="$handleElements=’true’">

<xsl:apply-templates/>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Example 3: Valid stylesheet that includes an invalid by itself
module − sample2main.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:variable name="handleElements" select="’true’"/>

<xsl:include href="sample2module.xsl"/>

</xsl:stylesheet>

There are two possible approaches to solve this. One is to determine the hi-

erarchy of included/imported files automatically and thus determine main files
that are not included/imported and module files that are included/imported.

12

The problem is this case is that the actual user usage of the files may be

different than what the automatic detection can give and the user has no
control over it. The other approach is to allow the user to define a main

file for a module. Then instead of performing the validation on the module
file, the main file should be validated. Thus the module gets validated in the

context it was included or imported from. The problem in this case is that
it requires specific user actions. Most of this overhead can be minimized if

there are provided some power actions to mark the files as main or module
files. For instance the user should be able to trigger an automatic marking
of files as main or module files based on the import/include structure. An

XSLT/XQuery IDE should provide the means for handling main and module
files. In oXygen we plan to implement support for allowing the user to specify

the main files for modules.

Navigation and refactoring

An XSLT/XQuery IDE should provide easy navigation through the edited

source. This is useful both when editing and when looking over the source code
and trying to understand it. Examples of navigation support include going
from a reference to its definition, finding all references or all occurrences of

some component, opening an included/imported file.

It is useful also to have an outline of the edited source, for example for

stylesheets one can get a quick view of the stylesheet looking at its defined
templates. The outliner should support synchronization with the position in

source and should allow navigation to the location of presented components.

There are some cases the navigation support should take into account.
When editing, the document may not be always wellformed so the navigation

support should consider handling also this situation. The navigation needs
a scope (current file, all the project, etc.) where the search for components

definitions or references should be performed. Between current file and all
the project the IDE should allow defining also other scopes more generic than

the current file and more restricted than the whole project. Possible scopes
can be all the files determined after computing the closure on include/import

starting from a given file or user defined working sets.

An IDE should help when performing semantic changes that are grouped
in refactoring actions. The most useful and used refactoring action is the

rename action. In general a refactoring action can affect more than one
location in a file and even more files, thus it is useful to present a diff between

the previous state of the affected files and the state of those files after the
refactoring allowing the user to see and approve the changes to be performed.

13

As for navigation the user should be able to specify the scope on which the

refactoring action applies.

Example 4: Renaming a variable with oXygen in DocBook XHTML
stylesheets

The renaming action applies to all named components defined by the lan-
guage. The IDE should determine the component name and type automat-

ically. Some components can be qualified (can belong to a namespace) and
the IDE should properly handle these cases.

A number of refactoring actions address the organization of the source code
to facilitate its understanding and reuse. These actions generally extract

parts of the code and place them in a component that can be referred from
different locations. Also the reverse should be provided, that is in-lining a

reference to a component. oXygen currently implements 3 such actions for
XSLT, namely create template from selection, create stylesheet from selection
and extract attributes as xsl:attributes. Every refactoring action requires

careful implementation as they are semantic action and the result code should
be functionally equivalent with the code before the refactoring. For instance

if we take the case of extracting a fragment of code as a template, then that
fragment of code should run in the new template in the same context as it

14

used to run, context means in this case same namespace mappings and same

variables/parameters. If a local variable is used in the code fragment that
was defined outside that fragment the refactoring action should automatically

define a parameter and call the template with that parameter passing it the
proper variable value.

Example 5: Renaming a template from a namespace

Example 6: Extract selection as template example

We have a simple stylesheet that matches on the document root and iterates
on the children of the root element printing their name followed by their
position.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="/">

<result>

<xsl:variable name="elements" select="/*/*"/>

<xsl:for-each select="$elements">

<xsl:variable name="pos" select="position()"/>

<xsl:value-of select="name()"/>

<xsl:text>-</xsl:text>

15

<xsl:value-of select="$pos"/>

</xsl:for-each>

</result>

</xsl:template>

</xsl:stylesheet>

After selecting the for-each element and extracting that as a template we

get a new template with a parameter named elements that is used to pass
along the elements local variable defined before the refactored code fragment.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="/">

<result>

<xsl:variable name="elements" select="/*/*"/>

<xsl:call-template name="printElements">

<xsl:with-param name="elements" select="$elements"/>

</xsl:call-template>

</result>

</xsl:template>

<xsl:template name="printElements">

<xsl:param name="elements"/>

<xsl:for-each select="$elements">

<xsl:variable name="pos" select="position()"/>

<xsl:value-of select="name()"/>

<xsl:text>-</xsl:text>

<xsl:value-of select="$pos"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Advanced content completion

An IDE should help easily entering content and one possibility of doing
that is by using the content completion. When presenting proposals it is

useful to have also a description of the presented proposal, similarly with
how a Java IDE presents the Javadoc documentation for a method. Basic

content completion will handle static proposals, while more advanced content
completion should support dynamic proposals as well. The static proposals

are the same for any document and do not depend on the current content, for
instance here we can include all the instructions, keywords, built-in functions.
Dynamic proposals depend on the document already entered information, here

we can include user defined functions or templates, variables and parameters,
elements and attributes belonging to the output grammar.

Both XSLT and XQuery use XPath so the IDE should be able to offer
also XPath content completion. Here we can also distinguish between static

16

and dynamic proposals. As static proposals we have functions and axes and

as dynamic proposals we have variables, parameters, elements and attributes
name tests. When computing the available name tests all the instructions

that can change the context should be taken into account.

Example 7: Name tests in context

Only the a1, a2, b1 and b2 name tests are proposed by oXygen, as the

context is determined first by the template match on the test element then
it is changed by the for-each instruction on a and b elements so inside

value-of we can only have the children of a and b and not x, x1 or x2.

To bridge the support an IDE can offer in a specific situation with more
advanced user needs, an IDE should offer also support for user defined code

templates. Thus the user can enter specific code fragments and he should be
able to easily insert and customize them in the code. For XSLT and XQuery

editors the IDE should offer an already defined set of templates covering the
most used fragments of code.

Running configurations

The IDE should provide support for defining multiple running configura-
tions. It should be possible to reuse a running configuration (transformation

scenario) defined for a stylesheet or XQuery file for other files. This will be
more useful if in defining the running configurations the user can use vari-

ables like current file, current directory, etc. These allow defining generic
running configurations like for instance applying an XSLT transformation on

17

a document with the same name as the stylesheet from the same directory

and saving the result in the same directory with the same name but with the
.html extension, then the same scenario can be used to transform x.xml with

x.xsl into x.html and for test.xml with test.xsl to test.html and so on.

Support for multiple XSLT processors and multiple XQuery servers or pro-

cessors allows the developer to use during development the same configuration
as his production system. Also this covers the usage of specific extensions.

oXygen supports the following XSLT processors: Saxon 6, Saxon8B and
Saxon8SA from Saxonica, Xalan, XSLTProc, MSXML 3.0, MSXML 4.0 and
.NET 1.0 and .NET 2.0 and allows to plug in other processors either through

JAXP or as external processors. For XQuery oXygen supports Saxon8, eXist,
Berkeley XML, X-Hive, TigerLogic and MarkLogic and also it allows to plug

in external XQuery processors.

For obtaining PDF or PS output from XML it would be desirable from an

XLST IDE to provide also support for transforming XSL-FO with a format-
ting objects processor. oXygen includes Apache FOP and can be configured
to use also commercial processors like RenderX XEP and AntennaHouse XSL

Formatter.

Debugging and profiling

The minimal debugging support like stepping through a transformation,

visualize the variables and their values, see the execution trace etc. should
be available in an XSLT/XQuery IDE.

There are also a number of advanced features an XSLT/XQuery debugger
may implement.

One such feature is the support for mapping from the output result to the

instructions that generated that output and eventually also to the source node
that represented the current context when that output was generated. This

allows easy navigation when something wrong is detected in the result output
to the source location that output was produced from.

Another advanced debugging feature is support for conditional breakpoints
that will stop the debugger not when some location is reached but when some

condition is met.

Support for changing variables in the debugger and continue the execution
with the new value can also help although this may induce unexpected and

not reproducible results.

One difficulty with implementing debugging is that both for XSLT and

XQuery there is not defined a debugging interface, thus in each case the im-
plementation is processor/server specific. It is useful for an IDE to have

18

debugging support for as many processors as possible. The users should take

into account that sometimes the source may be different than the actual pro-
cessor execution, a typical example here is for instance the lazy evaluation of

variables.

The main views provided by a profiler are the hot spots view and the in-

vocation tree. The profiling is quite related with the debugging support as
basically if someone can execute step by step a transformation then also pro-

filing information can be obtained so the difficulties encountered in debug-
ging are found also in providing profiling support. The main problem with

a profiler is to compute the processor time actually spent for an instruction
execution. Profilers just take two time readings at the start and at the end of

an instruction and compute the difference. However this time is not the ac-
tual processor time as it includes the time the processor runs other processes
on that machine or other threads of the same application. The ideal profiler

should compute the real processor time. For that, in case of Java based pro-
cessors, it should start the transformation with a Java machine and register

itself to that for getting Java profiling information. Then that information
should be correlated with the XSLT/XQuery profiling information to find the

actual processor time spent for executing an instruction. However, the main
performance problems can be discovered also with a not such accurate profiler

and very accurate execution times can be used only to observe small perfor-
mance differences. Thus the effort to obtain such accurate profiling results is
not justified.

Visual editing

Visual editing is useful for speeding up development. Here there are a

couple of concepts: drag and drop editing and visual mappers.

Drag and drop editing allows quickly creating fragments of code starting

from dropping a node from the input in the source editor. Here the XPath
expression should be resolved correctly in context.

Visual mappers allow graphically mapping between input and desired out-

put and they generate the code to implement that mapping.

Documentation and unit testing

An IDE should be able to present the documentation introduced in source

to the user when that is appropriate. For instance when configuring a trans-
formation scenario it is useful to present documentation for each parameter,

if available. Also the IDE should be able to create documentation from the
sources similar with the Javadoc documentation.

19

Unit testing is a very important component in development and an IDE

should help with defining and running unit tests.

A lot of little smart actions

The IDE editors should provide help specific to XSLT and XQuery editing

whenever possible . Little things although simple can dramatically improve
the user experience. A few examples are: transform an empty element in a

non empty one, jump to the next editing position, smart indenting, element
selection, content selection, indent on paste, toggle comment, etc.

Conclusion

Most of the features expected from an XSLT/XQuery IDE are already pro-

vided by oXygen, the XSLT support being better than the XQuery support.
Further plans are to improve the XQuery support to match the XSLT sup-

port, to add main documents support so that modules can be validated in
the context they are used in, to add more refactoring actions and to explore

the possibilities for offering a visual mapper.

20

Index-driven XQuery Processing in

the eXist XML Database

Wolfgang Meier (eXist XML database)

Introduction

eXist provides its own XQuery implementation, which is backed by an

efficient indexing scheme at the database core to support quick identification
of structural node relationships. eXist’s approach to XQuery processing can

thus not be understood without knowing the indexing scheme and vice versa.
Over the past years, two different indexing schemes for XML documents were

implemented in eXist: while the first was based on an extended level-order
numbering scheme, we recently switched to hierarchical node IDs to overcome

the limitations imposed by the former approach.
The presentation provides a quick overview of these developments. I will

try to summarize the logic behind both indexing schemes we implemented in

eXist, and point out their strengths and deficencies. Based on this foundation,
we should have a look at some central aspects of XQuery processing and

optimization.

Two indexing schemes for XML documents

The indexing scheme forms the very core of eXist and represents the basis

of all efficient query processing in the database. Understanding the ideas
behind it helps to understand why some query formulations might be faster
than their alternatives and is certainly a requirement for those who want to

work on improving eXist’s XQuery engine.
The main purpose of the indexing scheme is to allow a quick identification

of structural relationships between nodes. To determine the relationship be-
tween any pair of given nodes, the nodes themselves don’t need to be loaded

into main memory. This is a central feature since loading nodes from persis-
tent storage is in general an expensive operation. For eXist, the information

contained in the structural index is sufficient to compute a wide-range of path
expression.

21

To make this possible, every node in the document tree is labeled with

a unique identifier. The ID is chosen in such a way, that we can compute
the relationship between two nodes in the same document from the ID alone.

Ideally, no further information is needed to determine if a given node can be
the ancestor, descendant or sibling of a second node. We don’t need to have

access to the actual node data stored in the persistent DOM.
If we know all the IDs of elements A and B in a set of documents, we can

compute an XPath expression A/B or A//B by a simple join operation between
node set A and B. The concrete implementation of this join operation will
depend on the chosen labelling scheme. However, the basic idea will more or

less remain the same for most schemes. We will have a closer look at join
operations and their characteristics below.

Level-order numbering

As explained above, the indexer assigns a unique node ID to every node in

the document tree. Various labeling or numbering schemes for XML nodes
have been proposed over the past years. Whatever numbering scheme we

choose, it should allow us to determine the relationship between any two
given nodes from the ID alone.

The originial numbering scheme used in eXist was based on level-order

numbering. In this scheme, a unique integer ID is assigned to every node
while traversing the document tree in level-order. To be able to compute

the relationship between nodes, level-order numbering models the document
tree as a complete k-ary tree, i.e. it assumes that every node in the tree has

exactly k child nodes. Obviously, the number of children will differ quite a
lot between nodes in the real document. However, if a node has less than k

children, we just leave the remaining child IDs empty before continuing with
the next sibling node.

As a consequence, a lot of IDs will not be assigned to actual nodes. Since the

original level-order numbering scheme requires the resulting tree to be k-ary
complete, it runs out of available IDs quite fast, thus limiting the maximum

size of a document to be indexed.

22

Document with level-order IDs

To work around this limitation, eXist implemented a relaxed version of
the original proposal. The completeness constrained was dropped in part:

instead of assuming a fixed number of child nodes for the whole document,
eXist recomputes this number for every level of the tree. This simple trick

raised the document size limit considerably. Indexing a regularily structured
document of a few hundred megabyte was no longer an issue.

However, the numbering scheme still doesn’t work well if the document tree

is rather imbalanced. The remaining size limit may not be a huge problem for
most users, but it can really be annoying for certain types of documents. In
particular, documents using the TEI standard may hit the wall quite easily.

Apart from its size restrictions, level-order numbering has other disad-
vantages as well. In particular, inserting, updating or removing nodes in a
stored document is very expensive. Each of these operations requires at least

a partial renumbering and reindexing of the nodes in the document. As a
consequence, node updates via XUpdate or XQuery Update extensions were

never very fast in eXist.

So why did we stay with this numbering scheme for so long? One of the
main reasons was that almost all of the proposed alternative schemes had

other major drawbacks. For example, level-order numbering works well across
all XPath axes while other schemes could only be used for child and descen-

dant, but not the parent, ancestor or sibling axes.

Switching to a new scheme

In early 2006, we finally started a major redesign of the whole indexing
core of eXist. As an alternative to the old level-order numbering, we chose

to implement dynamic level numbering (DLN) as proposed by Böhme and
Rahm1. This numbering scheme is based on variable-length IDs and thus

1Böhme, T.; Rahm, E.: Supporting Efficient Streaming and Insertion of XML Data in RDBMS. Proc.
3rd Int. Workshop Data Integration over the Web (DIWeb), 2004

23

avoids to put a conceptual limit on the size of the document to be indexed. It

also has a number of positive side-effects, including fast node updates without
reindexing.

Dynamic level numbers (DLN) are hierarchical IDs, inspired by Dewey’s
decimal classification. Dewey IDs are a sequence of numeric values, separated
by some separator. The root node has ID 1. All nodes below it consist of the

ID of their parent node used as prefix and a level value. Some examples for
simple node IDs are: 1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3. In this case, 1 represents

the root node, 1.1 is the first node on the second level, 1.2 the second, and so
on.

Document with DLN IDs

Using this scheme, to determine the relation between any two given IDs is
a trivial operation and works for the ancestor-descendant as well as sibling

axes. The main challenge, however, is to find an efficient encoding which

1. restricts the storage space needed for a single ID, and

2. guarantees a correct binary comparison of the IDs with respect to docu-

ment order.

Depending on the nesting depth of elements within the document, identi-
fiers can become very long (15 levels or more should not be uncommon).

The original proposal describes a number of different approaches for en-
coding DLN IDs. We decided to implement a variable bit encoding that is

very efficient for streamed data, where the database has no knowledge of the
document structure to expect. The stream encoding uses fixed width units
(currently set to 4 bits) for the level IDs and adds further units as the num-

ber grows. A level ID starts with one unit, using the lower 3 bits for the
number while the highest bit serves as a flag. If the numeric range of the 3

bits (1..7) is exceeded, a second unit is added, and the next highest bit set to
1. The leading 1-bits thus indicate the number of units used for a single ID.

24

The following table shows the ID range that can be encoded by a given bit

pattern:

ID ranges

No. of units Bit pattern Id range

1 0XXX 1..7

2 10XX XXXX 8..71

3 110X XXXX XXXX 72..583

4 1110 XXXX XXXX XXXX 584..4679

The range of available IDs increases exponentially with the number of units
used. Based on this algorithm, an ID like 1.33.56.2.98.1.27 can be encoded

with 48 bits. This is quite efficient compared to the 64 bit integer IDs we
used before.

Besides removing the document size limit, one of the distinguishing features

of the new indexing scheme is that it is insert friendly! To avoid a renumbering
of the node tree after every insertion, removal or update of a node, we use

the idea of sublevel IDs also proposed by Böhme and Rahm. Between two
nodes 1.1 and 1.2, a new node can be inserted as 1.1/1, where the / is the

sublevel separator. The / does not start a new level. 1.1 and 1.1/1 are thus
on the same level of the tree. In binary encoding, the level separator ’.’ is

represented by a 0-bit while ’/’ is written as a 1-bit. For example, the ID
1.1/7 is encoded as follows:

0001 0 0001 1 1000

Using sub-level IDs, we can theoretically insert an arbitrary number of new

nodes at any position in the tree without renumbering the nodes.

XQuery processing

Based on the features of the numbering scheme, eXist uses structural joins

to resolve path expressions. If we know the IDs of all nodes corresponding
to e.g. article elements in a set of documents and we have a second node
set representing section nodes, we can filter out all sections being children or

descendants of an article node by applying a simple join operation on the two
node sets.

In order to find element and attribute occurrences we use the central

structural index stored in the database file elements.dbx. This is basi-
cally just a map, connecting the QNames of elements and attributes to a

list of (documentID, nodeID) pairs. Actually, most of the other index
files are structured in a similar way. To evaluate an XPath expression like

25

/article/section, we look up article and section in the structural index,

generate the node sets corresponding to the occurrences of these elements in
the input set, then compute an ancestor-descendant join between both sets.

Consequently, eXist does rarely use tree traversals to evaluate path expres-
sions. There are situations where a tree traversal is without alternative (for

example, if no suitable index is available), but eXist usually tries to avoid
it wherever it can. For example, the query engine even evaluates an expres-
sion like //A/*[B = ’C’] without access to the persistent DOM, though A/*

would normally require a scan through the child nodes of A. However, eXist
instead defers the evaluation of the wildcard part of the expression and later

filters out those nodes which cannot be children of A.

This approach to index-based query processing leads to some characteristic

features:

First, operations that require direct access on a stored node will nearly al-
ways result in a significant slow-down of the query − unless they are supported

by additional indexes. This applies, for example, to all operations requiring
an atomization step. To evaluate B = ’C’ without index assistance, the query

engine needs to do a brute force scan over all B elements. With a range index
defined on B, the expression can again be processed by just using node IDs.

Second, the query engine is optimized to process a path expression on two
given node sets in one, single operation. The join can handle the entire in-
put sequence at once. For instance, the XPath expression //A/*[B = ’C’]

is evaluated in a single operation for all context items. Also, the context se-
quence may contain nodes from an arbitrary number of different documents

in different database collections. eXist will still use only one operation to
compute the expression. It doesn’t make a difference if the input set comes

from a single large document, includes all the documents in a specific collec-
tion or even the entire database. The logic of the operation remains the same
− though the size of the processed node set does certainly have an impact on

performance.

This behaviour has further consequences: for example, eXist prefers XPath

predicate expressions over an equivalent FLWOR construct using a where

clause. The for expression forces the query engine into a step-by-step itera-

tion over the input sequence. When optimizing a FLWOR construct, we thus
try internally to process a where clause like an equivalent XPath predicate if

possible. However, computing the correct dependencies for all variables that
might be involved in the expression can be quite difficult, so a predicate does
usually guarantee a better performance.

Unfortunately, many users prefer SQL-like where clauses in places where
an XPath predicate would have the same effect and might even improve the

26

readability of the query. For example, I sometimes see queries like this:

for $i in //entry where $i/@type = ’subject’

or $i/@type = ’definition’ or $i/@type = ’title’ return $i

which could be reduced to a simple XPath:

//entry[@type = (’subject’, ’definition’, ’title’)]

Finally, for an explicit node selection by QName, the axis has only a mini-

mal effect on performance: A//B should be as fast as A/B, A/ancestor::B or
even A/following-sibling::B. The node set join itself accounts only for a
small part of the processing time, so differences in the algorithm for parent-

child or ancestor-descendant joins don’t have a huge effect on overall query
time.

eXist also has a tendency to compute node relationships bottom-up instead
of top-down. Queries on the parent or ancestor axis are fast and it is often

preferable to explore the context of a given node by going up the ancestor axis
instead of traversing the tree beginning at the top. For instance, the following
query uses a top-down approach to display the context of each match in a

query on articles :

for $section in collection("/db/articles")//section

for $match in $section//p[contains(., ’XML’)]

return

<match>

<section>$section/title/text()</section>

{$match}
</match>

This seems to be a rather natural way to formulate the query, but it forces
eXist to evaluate the inner selection $section//p[contains(., ’XML’)]

once for every section in the collection. The query engine will try to optimize
this a bit by caching parts of the expression. However, a better performance

can be achieved by slightly reformulating the query to navigate to the section
title along the ancestor axis:

ffor $match in collection("/db/articles")//section//p[contains(., ’XML’)]

return

<match>

<section>$section/ancestor::title/text()</section>

{$match}
</match>

27

Outlook

As of May 2006, the redesign of the database core is basically complete and

the code is to be merged into the main line of development. The ability to
update nodes without reindex has a huge performance impact for all applica-

tions that require dynamic document updates. The annoying document size
limits are finally history.

We are still not running out of ideas though. Our recent redesign efforts
will be extended into other areas. Concerning the database core, there are
two major work packages I would like to point out:

First, the indexing system needs to be modularized: index creation and
maintenance should be decoupled from the database core, making it possible

for users to control what is written to a specific index or even to plug in new
index types (spatial indexes, n-gram ...). Also, the existing full text index-

ing facilities have to become more extensible to better adopt to application
requirements. The current architecture is too limited with respect to text

analysis, tokenization, and selective tokenization. Plans are to replace these
classes by the modular analyzer provided by Apache’s Lucene.

The second area I would like to highlight is query optimization: currently,

query optimization does mainly deal with finding the right index to use, or
changing the execution path to better support structural joins. Unfortunately,

the logic used to select an execution path is hard-coded into the query engine
and the decision is mostly made at execution, not compile time. It is thus

often difficult to see if the correct optimization is applied or not.
What we need here is a better pre-processing query optimiser which sits

between the frontend and the query backend. Instead of selecting hard-coded
optimizations, the new optimizer should rather rewrite the query before it is
passed to the backend, thus making the process more controlable.

Also, a good part of the remaining performance issues we observe could
be solved by intelligent query rewriting. We indeed believe there’s a huge

potential here, which is not yet sufficiently used by eXist. Though node sets
are basically just sequences of node IDs, processing queries on huge node

sets can still pose a major problem with respect to memory consumption and
performance in general. Query rewriting can be used to reduce the general size
of the node sets to be processed, for instance, by exploiting the fact that eXist

supports fast navigation along all XPath axes, including parent and ancestor.
Those parts of the query with a higher selectivity can be pushed to the front

in order to limit the number of nodes passed to subsequent expressions. This
can result in a huge performance boost for queries on large document sets.

28

Optimization in XSLT and XQuery

Michael Kay (Saxonica Limited)

Abstract

XSLT and XQuery are both high-level declarative languages, and as such,
performance depends strongly on optimization. This talk gives a survey of

the optimization techniques that are used, which are based on established tech-
niques from both the functional programming and relational database tradi-

tions. The focus is on the techniques used in the speaker’s own processor,
Saxon (which implements both XSLT and XQuery) but the same range of

techniques can be expected to be found in other products. In most cases, the
same techniques apply to both languages, but there are some areas of difference
which may be significant when choosing which language is most appropriate

for your particular application.

The talk is designed primarily for users of XSLT and/or XQuery, but with
the recognition that to get the best out of your chosen XSLT or XQuery pro-

cessor, it’s useful to know a little bit about what is happening under the covers.

Introduction

Performance matters, and it’s a shared responsibility between suppliers
of products such as compilers and database engines, and the programmers

who write applications that use those languages and databases. One of the
challenges with high-level declarative languages like XSLT and XQuery (and
it applies equally well to SQL or Prolog) is that it’s not always obvious to

the programmer what the system is doing to execute a particular construct.
This makes it hard to know how to write constructs that will perform well

and avoid those that perform badly.

Adding to the difficulty is that different implementations of XSLT or XQuery
are likely to optimize the same constructs in different ways, which means that
the most efficient way of writing an expression for one processor might not

be the most efficient on another.

The aim of this talk is to try to give you some idea of the optimizations
that you can expect to find in most products, and those that might be present

29

in some but not others. It would be nice if one could say “assume that there

will be no optimization”, but unfortunately that just isn’t realistic − if there
were no optimization at all, then many simple expressions would perform

impossibly slowly.
I’m going to concentrate on in-memory processors like Saxon. For XML

database products (in fact, for any database product), 90% of optimization is
about finding the right indexes to help execute the query. If you’ve got more

than a gigabyte of data, then queries that aren’t supported by indexes are
going to take a rather long time. Wolfgang Meier has described in previous
paper at this conference the indexing techniques used in the eXist product,

which I suspect aren’t that different at a conceptual level from those used
in other XML databases. With an in-memory processor, indexing is also

important, but in a rather different way, because any index that you use has
to be constructed on the fly: when using an in-memory processor like Saxon

the cost of building indexes is therefore higher, and because documents are
smaller the benefit is less dramatic.

The term optimization is sometimes used exclusively to refer to the process

of taking a source query or stylesheet, and generating a query execution plan
which is then executed at run-time. I’m going to use the term rather more

broadly to cover all the techniques used for performance improvement, which
as well as compile-time query rewriting include design of data structures and

techniques that kick in dynamically at run-time.
Saxon, incidentally, seems to have performance which is very competitive

both among XSLT processors and among XQuery processors. It’s not possible
to achieve this solely by better optimization (in the sense of query rewriting)
because a great many queries and stylesheets are extremely simple and very

little optimization is possible. The first priority for any processor is not to
do anything fancy or clever, it is simply to be efficient at doing the simple

things.
I’m not going to cover XSLT and XQuery separately, because nearly all

the techniques are common to the two languages. The main difference be-
tween them, from this point of view, is that XSLT has a dynamic despatch

mechanism in the form of the <xsl:apply-templates> instruction and the
associated template rules. This mechanism itself needs to be efficient, of
course; but in addition, the existence and widespread use of the mechanism

means that it’s possible to do far less static analysis of an XSLT stylesheet
than is possible with XQuery.

30

The tree model

The internal design of the data structures used to represent XML trees is

probably one of the most critical factors affecting performance. This needs
to satisfy a number of conflicting requirements:

• Economical on memory. If you’re going to allow 100Mb XML docu-

ments to be processed in memory, then you can’t afford to allocate 200
bytes per node, which is what a naive implementation of the tree struc-

ture will easily occupy. Saxon achieves around 20-30 bytes per node,
depending on which features are used.

• Fast construction. Building the tree representing the input document

can take as long as the subsequent query or transformation.

• Fast access paths. Navigating the XPath axes − especially the ones
that are most commonly used − must be efficient.

• Support for document order. The semantics of XPath often require
that nodes are returned in document order. It’s often possible to achieve

this requirement without doing a sort, but when a sort is needed, it must
be efficient. That means that given two nodes, it must be very easy to

work out their relative position in document order.

Saxon meets these requirements using a data structure called the TinyTree.
This holds information in a collection of arrays. Ignoring attributes and

namespaces for the moment, information about node N in the document
(where nodes are numbered in document order) is held in the Nth element of

these arrays. The arrays are as follows:

Array Information held

depth The depth of the node in the tree

kind The kind of node (element, text, etc)

namecode An integer code representing the name of the node

next Pointer to the next following sibling

prior Pointer to the preceding sibling

typecode An integer code representing the type annotation,

in the case of schema-aware processing

alpha, beta Depends on node kind: for elements, pointers to the

list of attributes and namespaces; for text nodes,
pointers to the start and end of the string value

Note that there is no object representing a node. Instead, information
about node N can be obtained by looking at depth[N], kind[N], namecode[N],

31

and so on. While Saxon is navigating the tree, it uses transient objects to rep-

resent nodes, but these will be garbage-collected as soon as they are no longer
needed. In fact, Saxon even goes to some care to avoid creating these tran-

sient node objects, since even today object creation in Java is an expensive
operation.

Some of these arrays are created lazily. The prior array is created the first
time someone uses the preceding-sibling or preceding axis on a tree. Often

these axes are are never used, so one might as well save the space and time
used to establish the pointers. Similarly, the typecode array is used only if

the data has been schema-validated.

Perhaps the most important aspect of this design is the use of an integer

code to represent the node name. The mapping from namespace-qualified
names (QNames) to integer codes is established in a name pool, which must

be available both when the query/stylesheet is compiled, and when the source
document is constructed (either might happen first, and of course there is

a many-to-many relationship between source documents and queries). The
integer code uses 20 bits to represent the namespace URI and local name,

and a further 10 bits for the prefix; there is thus sufficient information to
reconstitute the prefix, but names can be compared efficiently by applying
a simple mask. When executing a path expression such as //ss:data, the

code for the name ss:data is compiled into the path expression, and the scan
of the tree structure merely needs to perform a masked integer comparison

against the namecodes held in the tree to see which nodes match.

The TinyTree per se does not hold any indexes, so path expressions are

always evaluated directly by following the relevant axes. However, there are
a few cases where indexes are constructed externally to the tree itself:

• An <xsl:key> element in XSLT causes an index to be built for a docu-

ment the first time it is referenced in a key() function call

• A path expression of the form //xyz similarly causes an index to be built
(or more correctly, an index entry that maintains a list of all the elements
named xyz). This is again built lazily, the first time the construct is used:

the system assumes that if the construct is used once, the chances are it
will be used again.

• Saxon-SA, the commercial version of the product, indexes more aggres-

sively. If a path expression of the form /a/b/c[exp = $value] is en-
countered, for example, then it will automatically be indexed using the

xsl:key mechanism. This decision is made at compile time, but as with
<xsl:key>, the index is actually constructed on first use.

32

Experienced XSLT users often advise against use of path expressions such as

//X, preferring an explicit path such as /A/B/C/X. In fact, as the above dis-
cussion shows, //X isn’t necessarily all that bad. In XML database products,

in fact, //X often performs significantly better than an explicit path, because
many XML databases maintain persistent indexes allowing rapid retrieval of

all the elements with a given name, while an explicit path simply forces the
system to do extra checking. This is a classic example of a case where the

best way of writing an XPath expression depends on the characteristics of the
product you are using, and it’s therefore very difficult to give general advice.

Streaming

We’ve strayed into a discussion of how path expressions are evaluated, and

this leads naturally into a discussion of streamed or pipelined execution. This
is a technique widely used in all set-based languages (including, for exam-

ple, relational databases and functional programming languages) to reduce
memory usage.

The formal semantics for an expression such as A/B/C/D[@id=3] imply that
the system should first form the result of the expression A (the set of all A
children of the context node); then it should compute A/B (the set of all B

children of those A children), then A/B/C, then A/B/C/D, and then finally the
subset of this last result that satisfies the predicate @id=3. Clearly this naive

strategy requires storing a large number of node-sets in memory, and this is
costly: quite apart from the memory cost itself, allocating memory takes time,

and releasing it (via garbage collection) also takes time. It’s easy to see that
the memory is unnecessary. Most XSLT and XQuery processors will execute
an expression like this by following a navigation path that visits each of the

candidate D elements and tests to see whether it should be included in the
final result: this way, only enough memory is needed to hold the D elements

that satisfy the predicate (and further streaming into higher-level expression
may eliminate this node-set as well).

The streaming strategy works irrespective of the access path chosen for
visiting the candidate D elements. In many products, Saxon included, the

route to the Ds is the obvious one: a depth-first walk of the tree, considering
only those nodes at each level with the required name. Other products might
use a structure index to reach the D nodes, but the same rule applies: it’s not

necessary to build a list of the candidate D nodes in memory before applying
the filter.

It’s not only filter expressions that can be streamed. Similar techniques are
available for many other expressions, and the processor is likely to go to some

33

lengths to use streaming wherever possible. For example, Saxon will use a

streaming approach for the set union, intersection, and difference operators:
after ensuring that the two input node-sets are sorted in document order, they

are combined using a simple merge algorithm which itself delivers a stream of
nodes in document order. (Sorting, of course, is one of the few operations that

cannot be streamed: instead the strategy here is to avoid sorting wherever
possible.)

One benefit of a streaming strategy is that it saves memory. The other

big benefit is that it allows early exit. There are two very important cases
in XPath where early exit comes into play: firstly with a positional predi-

cate, such as A/B[1] or perhaps A/B[position() < 5], and secondly with
path expressions used existentially, in a construct such as <xsl:if test=

"//@xml:space">. In the first case, it’s possible to quit the execution as
soon as the first (or the first four) elements are found; in the second case,
where the expression is testing for the existence of a node, it’s possible to

quit as soon as it’s known that there is at least one node. Other cases where
early exit is possible include expressions like XYZ[A = 2] where as soon as

one A child is found to have the value 2, there is no need to look for any
others.

Internally, there are two ways of implementing streaming, referred to as
push and pull (this shouldn’t be confused with the use of these terms to
describe XSLT coding styles). With pull processing, the evaluation of an

outer enclosing expression typically makes repeated calls on a getNext()

method on each of its sub-expressions to get the next item in the sequence of

results delivered by that sub-expression. With push processing, the control
is in the other direction: the sub-expression makes a sequence of write()

methods to add output to a data structure set up by the containing expression.
Both methods avoid allocating memory to intermediate results, but with push
processing it is less easy to do an early exit.

XSLT 1.0 had a fairly simple structure in which data was read from source
documents using path expressions, and data was written to a result docu-

ment using XSLT instructions. It was very natural to evaluate an XSLT 1.0
stylesheet using a main loop that read input data in pull mode by calling

getNext() methods provided by the XPath processor, and then wrote out-
put data in push mode by calling write() methods provided by the various
XSLT instructions. XQuery and XSLT 2.0 allow much more flexible inter-

leaving of input and output. One way of handling this is to do everything in
“pull” mode: this is the way some XQuery engines work, if only because that

was the tradition in relational database systems. Saxon in many cases can
execute instructions in either pull or push mode, and the choice depends on

the context in which the result of the expression is used.

34

Expression rewrites

Let’s move on now to the work done by the XSLT or XQuery compiler to
devise a query execution plan. The general approach is the same as for any

language compiler:

• The source code is parsed, resulting in the creation of an expression tree to
represent its logical structure. The resulting tree is known as an abstract

syntax tree.

• Cross-references within the tree are resolved, for example variable refer-

ences and function calls

• The tree is decorated with attributes identifying static properties of the
sub-expressions: for example, whether or not a sub-expression is depen-
dent on the context item

• The tree is scanned one or more times to identify sub-expressions that can

be replaced with alternative, equivalent expressions that will (hopefully)
be faster to execute.

One can divide the rewrites done in the last phase into two categories:

rewrites that could have been done by the programmer (because the replace-
ment expressions correspond to constructs available in the language), and

those that could only be done by the optimizer, because they use special-
ized internal constructs. An example in the first category is replacing the
expression count(A)>3 by exists(A[4]). This rewrite is useful because it

might avoid having to read a million A elements: it relies on the fact that
exists(A[4]) will do an early exit as soon as the fourth A element is found.

An example in the second category is rewriting A[position()=last()] as
getLast(A). Here getLast() is an internal function that is available to the

optimizer but not to the end user.

Saxon does many ad-hoc rewrites of expressions, as the above examples

illustrate. The most important rewrites are probably those listed in the table
below:

35

Rewrite Explanation

Sort removal The semantics of path expressions require
a sort into document order, with elimina-

tion of duplicates. Saxon initially writes
the abstract tree for a path expression as
sort(A\B) where the \ operator, unlike

/, does not itself force sorting. In the vast
majority of path expressions, however, the

sort is unnecessary. Saxon detects these
cases and rewrites the expression as A\B.

Constant subexpressions Where subexpressions can be evaluated at
compile time, this is done. For example,

this applies to constructor functions such
as xs:duration("P1Y").

Independent subexpressions

in loops

Where a subexpression within a loop (for

example xsl:for-each, or a FLWOR ex-
pression) does not depend on the control-
ling variables, the expression is evaluated

outside the loop. (Or rather, it is eval-
uated on the first entry into the loop: if

the loop is executed zero times, then the
independent subexpression is not evalu-

ated. This is important to avoid spurious
errors.)

Decomposition of WHERE
expressions

A WHERE clause in a FLWOR expres-
sion is broken up so that each term ise-

valuated as a predicate on the innermost
“for” clause on which it depends. If the

predicate doesn’t depend on any of the
“for” clauses, it becomes an “if” expres-
sion wrapping the entire FLWOR.

In many cases, of course, the rules determining whether a rewrite is pos-

sible are quite subtle, because of the need to preserve the semantics of the
expression in error cases as well as non-error cases. Fortunately the XPath
specification is quite liberal in the scope it gives a processor to skip error-

detection where appropriate, but there are still corner cases that can inhibit
optimization. An example is an expression such as count(()|for $x in 1

to 5 return <a/>) where the correct answer is 5: each iteration of the loop
must produce a distinct <a> element, which means that an expression capable

of constructing new nodes cannot be pulled out of a loop.

36

Many XSLT 1.0 processors perform XPath evaluation in a completely sep-

arate module. With this approach, there is essentially one expression tree for
the XSLT instructions, and one tree for each XPath expression (though of

course it is possible to view this as a single tree). Optimization in this case
is likely to operate at the level of a single XPath expression. With XSLT 2.0,

the XPath and XSLT parts of the language are now more composable. Saxon
therefore now integrates the XSLT and XPath processing. Identical code is

generated for the two constructs

<xsl:if test="a/b/c">

<xsl:sequence select="x/y/z"/>

</xsl:if>

and

<xsl:sequence select="if (a/b/c) then x/y/z else ()"/>

However, Saxon still does XSLT optimization in two phases: first at the XPath
expression level, then at the level of an XSLT template or function.

Type checking

One of the phases of processing the expression tree is a type checking phase.

This checks, for each subexpression, whether the static types of the operands
are known to be subtypes of the required type. There are several possible

outcomes:

• The static type is a subtype of the required type (that is, all instances of
the static type are instances of the required type). In this case no further

action is needed.

• The static type overlaps the required type (some instances of the static
type are instances of the required type). In this case Saxon generates

“code” (more strictly, adds further expressions to the tree) to force a
run-time type check.

• The static type and the required type are disjoint (no instances of the

static type are instances of the required type). In this case, Saxon gen-
erates a type error at compile time, as permitted by the language speci-
fication.

While performing this analysis, Saxon also checks whether the supplied

value can be converted to the required type using the permitted conversions
such as atomization, casting of untypedAtomic values, and numeric promo-

tion, and generates the extra expressions to perform these conversions where
needed. The aim is to minimize the amount of redundant checking performed

37

at run-time, though there are some constructs where the interpretation is still

very dynamic.

During the type checking process, Saxon also removes any existing type

checking or conversion code that it finds to be redundant. This might be an
unnecessary cast that was written by the user, or it might be code added by

the optimizer in an earlier phase of processing, which can now be recognized
as redundant because more type information has become available. For exam-

ple, improved information about the type of a variable reference can become
available after the variable declaration itself has been type-checked.

There’s one special case where the static type and the required type overlap,

but where the only instance common to both is the empty sequence. For
example, this happens when the required type is xs:integer* (a sequence

of integers) and the static type of the supplied value is xs:string*. It’s
not permissible to raise a compile-time error in this situation, because with

a carefully-chosen input document, evaluation might succeed. However, it’s
almost certain that there’s a user error here, so Saxon outputs a compile-time
warning.

I always advise users to declare the types of variables and function argu-
ments as explicitly as possible. The main benefit of this is that it makes the

code more robust: errors are detected earlier, often at compile time. However,
there is also a performance implication. Very often, declaring a type causes

the type checking and perhaps conversion to be done once, perhaps on entry
to a function, when it would otherwise be done repeatedly each time a param-

eter is used. Sometimes it means that Saxon can avoid run-time type checks
entirely. It’s also possible that declaring types causes an unnecessary check,
which can slow down execution − this happens for example if you declare

the result type of an XSLT template, when no subsequent operation actually
depends on this type. In general, however, declaring types is beneficial to

performance.

Join optimization

Some XQuery researchers and implementers appear to be so steeped in

the traditions of relational databases that you might get the impression that
optimization of joins is the number one priority for an optimizer. In fact, I
think pure joins in XQuery are relatively unusual. XML is a hierarchic data

model rather than a flat one, and most relationships are expressed through
the tree structure of the XML document rather than by comparing primary

keys with foreign keys. Even when value-based relationships are exploited in
a query, it is often to produce hierarchic output, something like this:

38

for $c in //customers return

<customer name="{$c/name}"> {
for $p in $c/customer-orders/product-code

return <product code="{$p}"> {
//product[@code=$p]/description

} </product>

} </customer>

The fact that an output element is produced for each customer means that
the system has relatively little choice in its execution strategy, compared with

the SQL equivalent. Optimizing the join boils down to optimizing the filter
expression //product[@code=$p]. Saxon-SA does this by generating a key

definition equivalent to the XSLT construct

<xsl:key name="k1234" match="product" use="@code"/>

and replacing the predicate expression with the call key(’k1234’, $p). (It’s

a bit more complicated than this because of error conditions, type conversion,
and so on, but this is the basic idea.)

Saxon-SA will also use a similar technique if the filter expression is not

searching an entire document, but some transient sequence. In this case an
index will be generated for the transient sequence. This is very similar to the

hash-join approach often used in relational databases.

XSLT users are accustomed to the idea that if they want lookups to go

fast, they should define the indexes (and use them) explicitly. The database
community has become accustomed to the doctrine that this is the job of

the optimizer. To be honest, I’m not sure which approach is right. When I
see programmers spending their time trying to rearrange a query in order to

“trick” the optimizer into choosing a different execution strategy, and when I
read books devoted to educating programmers in this black art, I tend to feel
that the language has taken too much control away from the programmer.

Anyway, Saxon-SA’s XSLT processor gives you best of both worlds: you can
define the keys “by hand” you wish, and if you don’t, the optimizer will try

to do the job on your behalf.

Tail recursion

There’s one final optimization technique I would like to cover, namely tail
call optimization. This technique is common in functional programming lan-

guages, which often use recursion for situations where other languages would
use iteration. For example, it wouldn’t be uncommon in a functional pro-

gramming language to see a function to compute the sum of a sequence of
numbers defined as

39

sum($x) -> if (empty($x) then 0 else $x[1] + sum(tail($x))

Because of the availability of “for” loops, recursion over a simple sequence
isn’t quite so common in XSLT and XQuery, and it will probably be less com-

mon in XSLT 2.0 than in XSLT 1.0. However, there are still many problems
where recursive functions are necessary: an example is where the input con-

tains a sequence of transaction records containing credits and debits, and the
output is a bank statement in which the current balance after each transaction

is shown alongside the transaction.

A naive execution strategy for a recursive function (or XSLT template:

there’s no difference conceptually) like the one above will create a new stack
frame for each recursive call. You can tell when your XSLT processor doesn’t

optimize tail calls if this function works for sequences of say 300 items, but
doesn’t work for 1000, because it blows the stack limit.

The standard optimization for this in the functional programming world

is to identify tail calls − that is, situations where the calling function exits
immediately on return from the called function, without using the result, and
rearrange the processing so that the function call is done after unwinding the

stack, rather than before. The example function above doesn’t include a tail
call, because the logic uses the result of the recursive call: on return from

the called function, it performs an addition. A good book on functional pro-
gramming will give many ideas on how functions such as this can be rewritten

(automatically or by hand) to take advantage of tail call optimization.

Sometimes tail call optimization is confined to recursive calls, but it can in
fact be done for all calls. Sometimes it is done entirely by the compiler, by
rewriting the recursive function as a loop. Saxon, however, does it using a

mix of compile-time and run-time logic. Tail calls are identified and marked
as such at compile time, but the reordering of the logic to unwind the stack

before doing the call is a run-time operation.

Note that tail call optimization doesn’t give any speed-up, it’s done purely
to conserve scarce stack space. Nevertheless, it can be important for pro-

grammers to be aware of cases where it is or isn’t happening, and this will
vary greatly from one processor to another.

Further reading

I’ve made a number of references to Saxon and Saxon-SA in this paper.

Saxon is an open-source XSLT 2.0 and XQuery 1.0 processor available at
http://saxon.sf.net/. Saxon-SA is a commercial version of the same product

available from http://www.saxonica.com/. The main differences are that Saxon-
SA is schema-aware (hence the name) and − more relevantly to this paper −
that it has a more sophisticated optimizer.

40

There’s an outline of the internal architecture of Saxon at

http://www-128.ibm.com/developerworks/library/x-xslt2/.
Although this was written a while ago, the basic structure hasn’t changed.

This paper can be regarded as an update of the paper I published at XML
Europe 2004, entitled XSLT and XPath Optimization: see

http://www.idealliance.org/papers/dx xmle04/papers/02-03-02/02-03-02.html.
Some of the optimizations done by Saxon are described in greater detail in

that paper than here: on the other hand, Saxon has moved on in the meantime
so the information can’t be considered up-to-date.

Most of the academic work on XSLT and XQuery optimization is focused

on very specific techniques. Some of these techniques give dramatic improve-
ments, but are applicable only to a tiny number of real queries and stylesheets.

Despite the greater maturity and industrial exploitation of XSLT, more aca-
demic work has been done on XQuery and XPath, perhaps because these

language are smaller and more amenable to theoretical analysis, or perhaps
because XQuery fits naturally into the domain of interest of the database
research community, while XSLT doesn’t have a similar natural home in the

academic space. Beware when reading academic papers that researchers have
the luxury of choosing a subset of the language to work on. This means, for

example, that you will find papers on streaming evaluation of XPath expres-
sions that ignore positional predicates entirely.

41

42

XML/RDF Query by Example

Eric van der Vlist (Dyomedea)

Context

The French Institut national de la statistique et des études économiques

(INSEE) needs a XML vocabulary to expose the consolidated content of sev-
eral LDAP databases.

LDAP can be seen as the combination of a graph of classes, objects and
a hierarchy similar to traditional file system directories. This combination

can be compared to what we would obtain by attaching RDF triples to each
directory of a file system.

LDAP as a tree

A first approach to serializing LDAP as XML is to focus on its hierarchi-

cal dimension and to map this hierarchy into an XML tree of elements and
attributes. This could lead to something such as:

<?xml version="1.0" encoding="utf-8"?>

<annuaire>

<fr>

<insee>

<Personnes>

<inseePerson dn="uid=R3D2,ou=Personnes,o=insee,c=fr">

<telephoneNumber>0123456789</telephoneNumber>

<cn>Laurent Dupondt</cn>

<inseeFonction dn="uid=GS10,ou=Fonctions,o=insee,c=fr"/>

<inseeTimbre>SED</inseeTimbre>

<uid>R3D2</uid>

<inseeNomGIP>Dupondt</inseeNomGIP>

<inseeDomaineNT>DR40A</inseeDomaineNT>

<sn>Dupondt</sn>

<inseeGroupeDefaut>MVS:SE40</inseeGroupeDefaut>

<employeeType>Interne</employeeType>

<inseePrenomGIP>LAURENT</inseePrenomGIP>

<inseeServeurExchange>S40X01</inseeServeurExchange>

<roomNumber>113</roomNumber>

<inseeGrade>Attach

<personalTitle>M</personalTitle>

<mail>laurendt.dupondt@pas-de-pourriel.fr</mail>

43

<givenName>Laurent</givenName>

<inseeUnite dn="ou=DR54-SED,ou=Unit%C3%A9s,o=insee,c=fr"/>

<objectClass>top</objectClass>

<objectClass>person</objectClass>

<objectClass>organizationalPerson</objectClass>

<objectClass>inetOrgPerson</objectClass>

<objectClass>InseePerson</objectClass>

<employeeNumber>12345</employeeNumber>

<ou>DR54-SED</ou>

</inseePerson>

</Personnes>

</insee>

</fr>

</annuaire>

In this example, we have mapped the root of the LDAP structure into
an annuaire document element and each branch and object of the LDAP

directory into an XML element.

This approach gives the primary role to the hierarchical facet of LDAP and

does not natively expose its graph facet that needs to be implemented using
some kind of links such as ID/IDREF, XLink or application specific links: in

this example, we had chosen to use the LDAP “distinguished names” (dn) as
identifiers.

LDAP as a graph

This focus on the hierarchical dimension happens to be very far from the
most typical use of LDAP repositories at the INSEE: the structure adopted by

the INSEE is on the contrary rather flat with many objects under each node.
For instance, all the persons are stored under the same node (ou=Personnes,

o=insee, c=fr). To take this pattern into account, the natural thing was thus
to give the primary role to the graph dimension.

That being said, there is a standard vocabulary for describing graphs in

XML and this vocabulary is called RDF.

While it sounded very natural to use RDF to serialize LDAP in XML, I

had to take into account the fact that the initial request was to define a XML
vocabulary and that I had to maintain this vocabulary acceptable for XML

heads.

The context was thus quite similar to the one in which we were when
we’ve published the RSS 1.0 specification: defining a RDF vocabulary that is
acceptable by both XML and RDF heads.

I think that being acceptable by RDF heads is the easiest part since this

basically means that the vocabulary has to be conform to the RDF/XML
Syntax Specification: there is a clear specification to comply with.

44

Being acceptable by XML heads means that the XML vocabulary has to

“look” natural to people who do not know RDF and that the so called “RDF
tax” has to be minimized.

Concretely, that involves choosing between the many options available to
express the same set of triples in RDF/XML the one should be the most

straightforward and least surprising to someone who knows XML but do not
know RDF.

We ended up with a vocabulary that looks like:

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:a="http://xml.insee.intra/schema/annuaire/"

xmlns:l="http://xml.insee.intra/schema/ldap/">

<inseePerson

rdf:about="http://xml.insee.fr/ldap/uid=R2D2,ou=Personnes,

o=insee,c=fr">

<l:dn>uid=R2D2,ou=Personnes,o=insee,c=fr</l:dn>

<l:parent rdf:resource="http://xml.insee.fr/ldap/ou=Personnes,

o=insee,c=fr"/>

<l:ancestorOrSelf

rdf:resource="http://xml.insee.fr/ldap/uid=R2D2,ou=Personnes,

o=insee,c=fr"/>

<l:ancestorOrSelf

rdf:resource="http://xml.insee.fr/ldap/ou=Personnes,o=insee,c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/o=insee,c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/"/>

<telephoneNumber>0383918546</telephoneNumber>

<cn>Laurent Dupondt</cn>

<inseeFonction

rdf:resource="http://xml.insee.fr/ldap/uid=GS10,ou=Fonctions,

o=insee,c=fr"/>

<inseeTimbre>SED</inseeTimbre>

<uid>R2D2</uid>

<inseeNomGIP>DUPONDT</inseeNomGIP>

<inseeDomaineNT>DR40A</inseeDomaineNT>

<sn>Dupondt</sn>

<inseeGroupeDefaut>MVS:SE40</inseeGroupeDefaut>

<employeeType>Interne</employeeType>

<inseePrenomGIP>LAURENT</inseePrenomGIP>

<inseeServeurExchange>S40X01</inseeServeurExchange>

<roomNumber>113</roomNumber>

<inseeGrade>Attach

<personalTitle>M</personalTitle>

<mail>laurendt.dupondt@pas-de-pourriel.fr</mail>

<givenName>Laurent</givenName>

<inseeUnite

rdf:resource="http://xml.insee.fr/ldap/ou=DR54-SED,ou=Unit%C3%A9s,

o=insee,c=fr"/>

45

<objectClass>top</objectClass>

<objectClass>person</objectClass>

<objectClass>organizationalPerson</objectClass>

<objectClass>inetOrgPerson</objectClass>

<objectClass>InseePerson</objectClass>

<employeeNumber>12345</employeeNumber>

<ou>DR54-SED</ou>

</inseePerson>

The distinguished names have been translated into URIs usable as RDF

identifiers and the hierarchy has been expressed using <l:dn>, <l:parent>
and <l:ancestorOrSelf> elements.

The RDF tax has been limited to using these URIs as identifiers in rdf:

about and rdf:resource attributes and using <rdf:RDF> as the document

element.

The choice of these elements has been dictated by the fact that they match
the three ways to define the scope when doing LDAP queries and we’ll come
back to that point later on.

LDAP as a graph and as a tree

When I have started writing this introduction, it suddenly occurred to me

that LDAP wasn’t the only technology that superposes a graph and a tree
and that this was also the case of RDF/XML documents that are both a

graph if you read them with a RDF parser and a tree if you read them with
a XML parser.

There is thus a third way which would be to use the XML hierarchy to
describe the hierarchical dimension of LDAP and to use the RDF features to

describe the graph dimension of LDAP.

This third way could look like:

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:a="http://xml.insee.intra/schema/annuaire/"

xmlns:l="http://xml.insee.intra/schema/ldap/">

<l:root>

<l:node rdf:parseType="Resource">

<c>fr</c>

<l:node rdf:parseType="Resource">

<o>insee</o>

<l:node rdf:parseType="Resource">

<ou>Personnes</ou>

<inseePerson rdf:parseType="Resource">

<telephoneNumber>0123456789</telephoneNumber>

<cn>Laurent Dupondt</cn>

<inseeFonction

46

rdf:resource="http://xml.insee.fr/ldap/uid=GS10,ou=Fonctions,

o=insee,c=fr"/>

<inseeTimbre>SED</inseeTimbre>

<uid>R2D2</uid>

<inseeNomGIP>DUPONDT</inseeNomGIP>

<inseeDomaineNT>DR40A</inseeDomaineNT>

<sn>Dupondt</sn>

<inseeGroupeDefaut>MVS:SE40</inseeGroupeDefaut>

<employeeType>Interne</employeeType>

<inseePrenomGIP>LAURENT</inseePrenomGIP>

<inseeServeurExchange>S40X01</inseeServeurExchange>

<roomNumber>113</roomNumber>

<inseeGrade>Attach

<personalTitle>M</personalTitle>

<mail>laurendt.dupondt@pas-de-pourriel.fr</mail>

<givenName>Laurent</givenName>

<inseeUnite

rdf:resource="http://xml.insee.fr/ldap/ou=DR54-SED,

ou=Unit%C3%A9s,o=insee,c=fr"/>

<objectClass>top</objectClass>

<objectClass>person</objectClass>

<objectClass>organizationalPerson</objectClass>

<objectClass>inetOrgPerson</objectClass>

<objectClass>InseePerson</objectClass>

<employeeNumber>12345</employeeNumber>

<ou>DR54-SED</ou>

</inseePerson>

</l:node>

</l:node>

</l:node>

</l:root>

</rdf:RDF>

Being a brand new idea coming very late after the vocabulary has been
more or less finalized, this snippet isn’t something polished at all but just

there to give you an idea of where that could lead!

The problem

So far, so good and I think that we’ve made a decent job in our quest
to define a “low RDF tax” RDF/XML vocabulary. This has been a fun

small project which could justify a proposal to another XML conference but
probably not to Extreme!

The problem became more challenging when we’ve started to address the
second request: define an XML vocabulary to express queries against the

LDAP repository using a syntax that was coherent with what we’d done so
far.

We had basically three types of standards on which we could have relied...

47

LDAP filters (RFC 2254)

The first one was the RFC 2254 that defines a text format to express LDAP

filters.

LDAP queries are specified by defining a search base and a LDAP filter. For

instance, the filter "(inseeRoleApplicatif=RP$$P$SUP*)" search for objects
which attribute "inseeRoleApplicatif" matching the value "RP$$P$SUP*".
The star character * being a wildcard that replaces any character, this match

means that the attribute has to begin with "RP$$P$SUP".

As a vocabulary, we could have embedded such filters into a wrapper ele-

ment together with the search base:

<?xml version="1.0" encoding="utf-8"?>

<ldapSearch>

<base scope="subTree">Personnes,o=insee,c=fr</base>

<filter>(inseeRoleApplicatif=RP$$P$SUP*)</filter>

</ldapSearch>

That would have been handy for people familiar with LDAP, but we wanted

to provide something usable for users knowing our RDF/XML vocabulary
without requiring that they learn LDAP is they didn’t know it.

W3C XQuery

XQuery was another natural candidate. The same query would give:

xquery version "1.0";

declare namespace a = "http://xml.insee.intra/schema/annuaire/";

<rdf:RDF xmlns:rdf="#">

{
for $x in /rdf:RDF/a:inseePerson

where $x[a:inseeRoleApplicatif[starts-with(., ’RP$$P$SUP’)]]

return $x}
</rdf:RDF>

That’s handy for XML heads who see the RDF/XML serialization as pure
XML but where are the triples that RDF heads see?

Furthermore, XQuery is fairly complex and this complexity would create
two issues in our context:

• Users would have to learn XQuery.

• Implementing an XQuery engine on top of the LDAP gateway would be

a daunting task.

We’ve thus considered that while XQuery didn’t preserve the balance be-
tween XML and RDF that we had carefully built, it was also be an overkill!

48

W3C SPARQL (or any other RDF query language)

I am not a SPARQL guru, so please be kind with me if the following snippet
contains errors, but the same query expressed in SPARQL would look like:

PREFIX : http://xml.insee.intra/schema/annuaire/

SELECT ?inseePerson

WHERE {
?inseePerson rdf:type :inseePerson;

?inseePerson :inseeRoleApplicatif ?inseeRoleApplicatif.

FILTER regex(str(?inseeRoleApplicatif), "^RP$$P$SUP ")

}
Some RDF heads would be much happier with this expression but not all

of them would agree that this is the way to go: RDF query languages are still

very young and many different approaches have been proposed.
Furthermore, XML heads would be totally lost, users would have to learn

SPARQL (and before that they would have to learn how to distinguish triples

in XML fragments) and implementing a SPARQL engine on top of our LDAP
gateway would be almost as challenging as implementing an XQuery engine!

Home bred

After having rejected the three standards on which we could have relied,

we came to the conclusion that we would have to create our own query lan-
guage that should be both coherent with the syntax used by our RDF/XML

vocabulary and easy to use by non-guru-XML-literates.
These requirements rang two bells...

When I started giving presentations on XML schema languages, I used to
say that XML schemas are more complex than the instances they describe
and ended up proposing Examplotron, a schema language based on examples.

Before that, one of the easiest database I have ever used had been Borland’s
Paradox, and its query language was a Query By Example (QBE) language.

Query by example (QBE)

In his “Principles of Database Systems”, Jeffrey D. Ullman defines QBE
as a “domain calculus language” developed at IBM that “contains a number

of features not present in relational algebra or calculus, or in any of the
implemented query languages we have discussed.”

The QBE we had in mind is not that ambitious, but that statement is a

good indication that, while we would probably limit the features we would
implement, we would not be limited by the method itself.

Since we are not designing a user interface but an XML/RDF query lan-
guage, our QBE would naturally be based on a RDF/XML syntax that would

49

be as close as possible to the XML/RDF vocabulary used to formalize the

results. Being a XML vocabulary, it was also natural enough to use a spe-
cific namespace to distinguish the instructions of the query language from the
actual examples.

Also, as already mentioned, one of our goals is to define a query language
that can be read both as XML documents but also as valid XML/RDF models

and processed both from its XML infoset or from its sets RDF triples. Basic
query structure

In IBM’s original QBE, the same set of columns were used to indicate the
list of columns to print and the conditions on the columns. The distinction

between these two features was done using different sets of operators.
This reduces the “legibility as examples” of the values placed in the columns

and we have considered that it would be more readable to separate the defi-

nition of what needs to be returned from the definition of the conditions.
This led us toward a structure that looks like the classical select X from

Y structure of a SQL select statement:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:what>

.../...

</q:what>

<q:where>

.../...

</q:where>

</q:select>

</rdf:RDF>

Typical XML/RDF documents have a relatively flat structure and we can

follow this style to express the what and where clauses of our request:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:what rdf:resource="#what"/>

<q:where rdf:resource="#where"/>

</q:select>

<inseePerson rdf:ID="what"/>

<inseePerson rdf:ID="where">

<mail>jean.dupondt@insee.fr</mail>

</inseePerson>

</rdf:RDF>

The what clause is optional and when it is omitted, the query returns the

complete element specified in the where clause (this would be equivalent to a
SQL select * from ... query). In this example, that would give:

50

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where rdf:resource="#where"/>

</q:select>

<inseePerson rdf:ID="where">

<mail>jean.dupondt@insee.fr</mail>

</inseePerson>

</rdf:RDF>

In these two equivalent queries, we are requesting inseePerson elements
that have mail addresses equal to jean.dupondt@insee.fr.

While this flat style looks XML/RDFish, it is not that usual to XML heads
and we accept an alternative Russian doll syntax (using what RDF heads call

a blank node):

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:what>

<inseePerson/>

</q:what>

<q:where>

<inseePerson>

<mail>jean.dupondt@insee.fr</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

This alternative syntax produces a very similar set of RDF triples and we

consider it as strictly equivalent.
The last alternative for this same query would be to omit the what clause:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<mail>jean.dupondt@insee.fr</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

51

Introducing functions

What happens if we want to express something a little bit more complex

and write that we want the <inseePerson/> whose email address ends with
@insee.fr?

Since we are in design mode, we have many possibilities to implement that
feature.

The first one which is the one that has been adopted by IBM’s original
QBE would be to use functions in literals:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<mail>ends-with(@insee.fr)</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

I don’t like this solution for a couple of reasons:

• The functions are called using a plain text syntax that requires a parsing
which is not obvious to do with “pure” XML tools such as XSLT 1.0.

• If you look at this document with RDF glasses, the triple “ :genid3

<http://xml.insee.intra/schema/annuaire/mail>
ends-with(@insee.fr)” should mean “ :genid3 has a mail property equal

to ends-with(@insee.fr)”. Here we are interpreting it as “ :genid3 has
a mail property matching the condition ends-with(@insee.fr)” and

that just doesn’t sound right.

The way to avoid these plain text function calls is to replace them by XML

elements (or RDF triples if you prefer). The first (naive) attempt to do so
would be to write:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:what>

<inseePerson/>

</q:what>

<q:where>

<inseePerson>

<mail>

<q:ends-with>@insee.fr</q:ends-with>

52

</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

This fine looks nice to XML heads, but makes Jena scream:

:jA3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xml.insee.intra/schema/qbe/ends-with> .

Error: file:///home/vdv/cvs-private/presentations/en/extreme2005/

query4.rdf[11:43]:

E202 Expected whitespace found: ’@insee.fr’. Maybe a missing

rdf:parseType=’Literal’, or a striping problem.

Why is that? In fact, the rules that bind XML nodes to RDF triples in

the XML/RDF syntax are well designed enough that they’ve produced what
we’d expected so far but they’re biting us in this last example! Let’s think
more about these rules...

When we write:

<rdf:RDF>

<foo>

<bar>

<baz>

<bat>XXX</bat>

</baz>

</bar>

</foo>

<rdf:RDF>

the different elements are not treated as equal by the XML/RDF binding

rules and the triples that a RDF parser will extract from this document are:

Subj. Pred. Obj.

<foo> <bar> <baz>

<baz> <bat> "XXX"

<foo> and <baz> are resources that are used as subject and cannot have
literals directly attached to them while <bar> and <bat> are resources that

are used as predicates and can have literals directly attached to them.

In our naive attempt that made Jena scream, we’ve attached the literal

@insee.fr to the resource <q:ends-with> that was in a position where it
was considered as a subject.

There are a couple of solutions to work around this error.

The first one is to use the rdf:parseType attribute to specify that <mail>

should not be considered only as a predicate but also as a resource that can
be the subject of a triple:

53

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<mail rdf:parseType="Resource">

<q:ends-with>@insee.fr</q:ends-with>

</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

The trick, here, is that since <mail> is now a subject, <q:ends-with>

becomes a predicate that can have a literal directly attached to it.
Technically speaking, this does the job of making Jena happy, but I don’t

like it that much since it requires a good understanding of the XML/RDF
binding rule to be able to tell when and where you need to add rdf:parseType

="Resource" attributes. Requiring such an understanding doesn’t meet our
goal to define a query language that is understandable by “pure XML heads”.

The second solution (which we’ve adopted) is to add a level of hierarchy:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<mail>

<q:conditions>

<q:ends-with>@insee.fr</q:ends-with>

</q:conditions>

</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

The trick here is that since <q:ends-with> needs to be a predicate, we’ve
added <q:conditions> to serve has its subject. RDF parsers are happy and

that seems to be cleaner than the previous workaround because that does not
change the nature of <mail> which is and stays a predicate.

Of course, the same query can be written with a flat style with or without

an explicit what clause:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

54

<q:select>

<q:where rdf:resource="#where"/>

</q:select>

<inseePerson rdf:ID="where">

<mail>

<q:conditions>

<q:ends-with>@insee.fr</q:ends-with>

</q:conditions>

</mail>

</inseePerson>

</rdf:RDF>

Joins

So far, we’ve queried the <mail> predicate of <inseePerson> resources.

Now, let’s see what happens if we want to get <inseePerson> resources that
have an <inseeUnite> which <ou> predicate is equal to DG75-C460. In XML,

that would mean that we are looking for situations such as:

<rdf:RDF>

<insee:Person>

<inseeUnite rdf:resource="xxx"/>

</insee:Person>

<inseeUnite rdf:about="xxx">

<ou>DG75-C460</ou>

</inseeUnite>

</rdf:RDF>

But, since we are also thinking to RDF heads, such a situation needs to be
equivalent to:

<rdf:RDF>

<insee:Person>

<inseeUnite rdf:parseType="Resource">

<ou>DG75-C460</ou>

</inseeUnite>

</insee:Person>

</rdf:RDF>

And we’ll leave people use indifferently the first or the second style. Fol-

lowing a Russian doll style, our query can thus be written:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<inseeUnite rdf:parseType="Resource">

<ou>DG75-C460</ou>

55

</inseeUnite>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

Why do we accept rdf:parseType="Resource" in this case when we’ve
rejected it in the previous section? That’s a good question...

In the previous section, we would have been adding rdf:parseType="Re-

source" in a <mail> element if and only if we wanted to add a condition and

that seemed arbitrary. Here we are adding rdf:parseType="Resource" to
<inseeUnite> because we want to specify that <inseeUnite> is a resource
and not only a property and that should be much easier to swallow by anyone,

XML or RDF head!

Join and condition

So far so good, but how does that scale? Can we, for instance, add a
condition after a join and search the <inseePerson> which <inseeUnite>

have a <ou> that starts with DDEQ?
That’s easy enough and what we’ve seen so far works well together:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:q="http://xml.insee.intra/schema/qbe/">

<q:select>

<q:where>

<inseePerson>

<inseeUnite rdf:parseType="Resource">

<ou>

<q:conditions>

<q:starts-with>DG75</q:starts-with>

</q:conditions>

</ou>

</inseeUnite>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

What about several conditions?

What if I want to meet two different conditions?
To keep it simple we’ve adopted the principle that by default, all the con-

ditions grouped under a single where clause are anded:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

56

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<cn>

<q:conditions>

<q:contains>a</q:contains>

</q:conditions>

</cn>

<mail>

<q:conditions>

<q:contains>o</q:contains>

</q:conditions>

</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

This simple rule is enough to express set of conditions that must all be

verified. For other cases, we have introduced two sets of elements that need
to be used in conjunction:

• <q:if> and <q:if-not> are containers for sets of conditions that must

or must not be verified.

• <a:any> and <q:all> are containers for sets of conditions that perform
a logical “or” or a logical “and” between these conditions.

An <q:if> or a <q:if-not> must always be used together with an embed-

ded <q:all> or <q:any>. This allows to represent the four possible combina-
tions and also to meet the XML/RDF triple binding rules without having to

require additional rdf:parseType attributes.
The last query is thus a shortcut for:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<q:if>

<q:all>

<cn>

<q:conditions>

<q:contains>a</q:contains>

</q:conditions>

</cn>

<mail>

<q:conditions>

57

<q:contains>o</q:contains>

</q:conditions>

</mail>

</q:all>

</q:if>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

The other combinations would be:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<q:if-not>

<q:all>

<cn>

<q:conditions>

<q:contains>a</q:contains>

</q:conditions>

</cn>

<mail>

<q:conditions>

<q:contains>o</q:contains>

</q:conditions>

</mail>

</q:all>

</q:if-not>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<q:if>

<q:any>

<cn>

<q:conditions>

<q:contains>a</q:contains>

</q:conditions>

</cn>

<mail>

<q:conditions>

<q:contains>o</q:contains>

58

</q:conditions>

</mail>

</q:any>

</q:if>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

and

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<q:if-not>

<q:any>

<cn>

<q:conditions>

<q:contains>a</q:contains>

</q:conditions>

</cn>

<mail>

<q:conditions>

<q:contains>o</q:contains>

</q:conditions>

</mail>

</q:any>

</q:if-not>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

The same <q:if>, <q:if-not>, <q:any> and <q:all> elements can be
used with the same meaning under <q:conditions> elements, for instance:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/">

<q:select>

<q:where>

<inseePerson>

<mail>

<q:conditions>

<q:if-not>

<q:all>

<q:contains>a</q:contains>

<q:contains>@insee.fr</q:contains>

<q:starts-with>laurent</q:starts-with>

59

</q:all>

</q:if-not>

</q:conditions>

</mail>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

Search base

We’ve seen how what LDAP would call query filters can be expressed using
our query language, what about LDAP search base?

I have already said that we had added the following properties to our
RDF/XML vocabulary to support this feature:

<l:dn>uid=R2D2,ou=Personnes,o=insee,c=fr</l:dn>

<l:parent rdf:resource="http://xml.insee.fr/ldap/ou=Personnes,o=insee,c=fr"/>

<l:ancestorOrSelf

rdf:resource="http://xml.insee.fr/ldap/uid=R2D2,

ou=Personnes,o=insee,c=fr"/>

<l:ancestorOrSelf

rdf:resource="http://xml.insee.fr/ldap/ou=Personnes,o=insee,c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/o=insee,c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/c=fr"/>

<l:ancestorOrSelf rdf:resource="http://xml.insee.fr/ldap/"/>

These properties will be used in our queries like any other property and

will match the three different types of search base.
The first one, most commonly used at the INSEE is a search base with

a scope equal to “subTree”. That means that the search is performed in

the object itself and all its descendants. To express that, we will use the
<l:ancestorOrSelf> property, for instance:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:l="http://xml.insee.intra/schema/ldap/">

<q:select>

<q:where>

<inseePerson>

<l:ancestorOrSelf rdf:parseType="Resource">

<l:dn>o=insee,c=fr</l:dn>

</l:ancestorOrSelf>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

60

The second case is a scope equal to “oneLevel” and this one means that the

search is to be performed among the immediate children of the search base.
To express that, we will use the <l:parent> property:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:l="http://xml.insee.intra/schema/ldap/">

<q:select>

<q:where>

<inseePerson>

<l:parent rdf:parseType="Resource">

<l:dn>o=insee,c=fr</l:dn>

</l:parent>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

The third and last case is a scope equal to “base” and in that case, the

search has to be performed on the object itself. For that last case, we will be
using the <l:dn> property:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:q="http://xml.insee.intra/schema/qbe/"

xmlns="http://xml.insee.intra/schema/annuaire/"

xmlns:l="http://xml.insee.intra/schema/ldap/">

<q:select>

<q:where>

<inseePerson>

<l:dn>o=insee,c=fr</l:dn>

</inseePerson>

</q:where>

</q:select>

</rdf:RDF>

Current status

The query language is now more or less stabilized. A first proof of concept

has been implemented with Orbeon PresentationServer that transforms these
queries into XQuery queries using a XSLT 1.0 transformation and queries an
XML database (eXist).

The final implementation is now under development. It will transform

these queries into LDAP searches sent to the LDAP repository and serialize
the answers as RDF/XML.

The main difficulty in this implementation is to support the joins that do
exist in LDAP filters and have to be performed by the gateway itself.

61

Conclusion

While this project is being developed for a very specific target, the design

decisions have not been influenced by the context and I believe that this expe-
rience could be generalized to any project needing a query language matching

these three conditions :

• The source to query is expressed (or can be expressed) as RDF/XML.

• The query language needs to make sense for both XML and RDF heads.

• The query language needs to look like the source to query (QBE).

I’d like to thank my customer (INSEE) for having funded this work and

Franck Cotton who is leading this project.

62

xq2xml: Transformations on XQue-

ries

David Carlisle (NAG Limited)

Abstract

xq2xml consists of a set of XSLT2 stylesheets to manipulate XQuery ex-
pressions. The two main applications are converting to XQueryX and XSLT.

The initial parsing of the XQuery expression is performed by the W3C
Working Group test parser (maintained by Scott Boag). This presents an

XML view of the parse tree, which may then be manipulated by XSLT.

The transformation to XSLT2 was mainly designed to highlight the similar-

ities and differences between XQuery and XSLT, and this talk will discuss the
relationship between the two languages. However it may also be seen as the

first stage in an XQuery implementation, which is completed by executing the
generated XSLT with an XSLT2 processor. xq2xml has been regularly tested

in this mode with the XQuery test suite.

Other transformations are provided to (for example) rewrite expressions

using the optional axes in XQuery to equivalent expressions that do not use
optional axes.

More details, and full source of xq2xml, may be obtained from
http://monet.nag.co.uk/xq2xml/index.html.

Transformations on Queries

XQuery is a new Query language being specified by a W3C Working Group

which is designed to Query XML documents. It is strongly related to XSLT,
and has been developed in parallel with XSLT2 and XPath2.

One of the strengths of XSLT is that it utilises an XML syntax which allows
XSLT files to be used as data for queries and transformations. Unfortunately

XQuery uses a non-XML syntax which means that it is not directly available
to be used as the source of such queries. There is an XML Syntax for XQuery,

XQueryX, but this is not widely supported, in fact the xq2xml suite was (as far
as I am aware) the first tool set to offer any support for generating XQueryX.

63

So the original aim of xq2xml was to offer an XML view of an XQuery ex-

pression to allow queries and transformations on XQuery source files. Before
looking at the details of the implementation, it is probably worthwhile to list

some of the kinds of operations that one may wish to do on a Query (or set
of Queries) considered as data:

Query for specific language constructs.

For example one may wish to query for extension pragmas, or use of the
doc() function, which may not be safe in certain environments, and either
transform the query not to use these constructs, or to warn of their use.

Another example (that is provided as an example in the distribution) is

to transform any Query using the optional axes that are in XPath but
may not be supported by all XQuery implementations into a Query that

does not use these axes.

Query for the declaration of external variables which may be de-

clared in a Query.

Any such variables need to be initialised by the external environment
before executing the Query, and in many environments it is useful to be

able to extract the variable names (and types if declared) from the Query
text.

Convert to another syntax.

A conversion to XQueryX is provided as an example.

Convert to a different language.

A conversion to XSLT is provided in the xq2xml suite. Another interest-

ing project would be to convert (at least parts of) an XQuery expression
to SQL.

An XML view of XQuery: the parser

The first stage of processing XQuery is to parse it. Fortunately The Scott

Boag, on behalf of W3C Working Groups, makes available an open source
(Java) XQuery parser. This is based on a JavaCC grammar that is automat-

ically extracted from the XML source files of the XQuery specification, and
is used by the working groups to test the feasibility of the grammar being

specified.

As originally supplied, this parser emitted a textual display of the parse
tree produced by parsing a supplied XQuery. A trivial modification, originally

64

supplied as part of xq2xml, but now incorporated into the parser provides a

Java class that displays the parse tree as XML. The XQuery:

1 + 2

is reported as the XML:

<XPath2>

<QueryList>

<Module>

<MainModule>

<Prolog/>

<QueryBody>

<Expr>

<AdditiveExpr><data>+</data>

<PathExpr>

<IntegerLiteral><data>1</data></IntegerLiteral>

</PathExpr>

<PathExpr>

<IntegerLiteral><data>2</data></IntegerLiteral>

</PathExpr>

</AdditiveExpr>

</Expr>

</QueryBody>

</MainModule>

</Module>

</QueryList>

</XPath2>

Apart from the two outer elements, XPath2 and QueryList, the element
names in this representation are all directly taken from the production names

in the EBNF defining XQuery. It is this XML view of the XQuery expression
that forms the basis of all the transformations provided by xq2xml.

XQuery to XQueryX

Originally, when contemplating basing Query transformations on an XML
view of XQuery, I had hoped to be able to use XQueryX, and XML syntax

for XQuery being specified by the W3C. Unfortunately at the time there
appeared to be no available (or even announced) tools to generate XQueryX,

and so I decided to make generation of XQueryX the first transformation to
be provided by xq2xml. The XSLT2 stylesheet, xq2xsl, takes input the XML

generated by the XQuery parser and generates XQueryX. This transformation
is surprisingly intricate, as XQueryX differs from a “natural” encoding of the

XQuery grammar in several respects.

The XQueryX encoding of the above example produced by the xq2xqx
stylesheet is as follows:

65

<xqx:module xmlns:xqx="http://www.w3.org/2005/XQueryX">

<xqx:mainModule>

<xqx:queryBody>

<xqx:addOp>

<xqx:firstOperand>

<xqx:integerConstantExpr>

<xqx:value>1</xqx:value>

</xqx:integerConstantExpr>

</xqx:firstOperand>

<xqx:secondOperand>

<xqx:integerConstantExpr>

<xqx:value>2</xqx:value>

</xqx:integerConstantExpr>

</xqx:secondOperand>

</xqx:addOp>

</xqx:queryBody>

</xqx:mainModule>

</xqx:module>

I decided to base other transformations in the xq2xml suite directly on
the XML produced by the parser rather than going through the XQueryX

syntax, even though that is more standardised. The XQueryX encoding is
surprisingly complex, and yet loses many features that may be important to
an author of a Query, for example abbreviated syntax is not supported, so a

Query such as //abc if encoded as XQueryX and transformed back to XQuery
would be represented as /descendent-or-self::node()/abc. This may not

be desirable if for example the transform is just intended to expand optional
axes, a user may not be expecting other parts of the Query to change. Also,

while the expanded form of the abbreviated syntax has the same semantics,
it may have different run time behaviour, Query optimisers may find it easier
to recognise the syntactic construct using // and optimise it to use database

indexes or other techniques.

XQuery to XSLT

The initial parsing of the XQuery is as described in the previous section.
However the resulting XML is then transformed with xq2xsl.xsl rather than

xq2xqx.xsl which results in XSLT rather than XQueryX. The simple test
query above results in:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:local="http://www.w3.org/2005/XQuery-local-functions"

xmlns:xq="java:Xq2xml"

xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"

version="2.0"

66

extension-element-prefixes="xq"

exclude-result-prefixes="xq xs xdt local fn">

<xsl:param name="input" as="item()" select="1"/>

<xsl:output indent="yes"/>

<xsl:template name="main">

<xsl:for-each select="$input">

<xsl:sequence select="(1 + 2)"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Most of this is just standard boilerplate declaring some namespaces that
are predefined in XQuery but must be explicitly declared in XSLT. The ac-

tual expression (which is also valid XPath in this case) appears as the select
attribute to xsl:sequence.

However not every XQuery consists of a single XPath expression, so con-

sider a slightly more complicated example:

declare variable $x := <a> zzz ;

$x/b

This is converted to:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:local="http://www.w3.org/2005/XQuery-local-functions"

xmlns:xq="java:Xq2xml"

xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"

version="2.0"

extension-element-prefixes="xq"

exclude-result-prefixes="xq xs xdt local fn">

<xsl:param name="input" as="item()" select="1"/>

<xsl:output indent="yes"/>

<xsl:variable name="x" as="item()*">

<xsl:for-each select="$input">

<xsl:element name="a">

<xsl:element name="b">

<xsl:text>zzz</xsl:text>

</xsl:element>

</xsl:element>

</xsl:for-each>

</xsl:variable>

<xsl:template name="main">

<xsl:for-each select="$input">

<xsl:sequence select="$x/ b "/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

XQuery variable declarations and element constructors map naturally to

equivalent XSLT instructions. When a subexpression is required to be eval-

67

uated as XPath rather than XSLT then (as before) xsl:sequence is used to

switch to XPath evaluation.
The remaining complication is if the XQuery expression that is being eval-

uated as XPath contains a sub expression that is mapped to XSLT. XML

(and XSLT) rules mean that it is not possible to directly embed the XSLT
instructions in XPath. So in this case a function definition is constructed to

hold the XSLT sub expression, as in the following example:

count((<a/>,1+2,))

Which is converted to the following XSLT:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:local="http://www.w3.org/2005/XQuery-local-functions"

xmlns:xq="java:Xq2xml"

xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"

version="2.0"

extension-element-prefixes="xq"

exclude-result-prefixes="xq xs xdt local fn">

<xsl:param name="input" as="item()" select="1"/>

<xsl:output indent="yes"/>

<xsl:template name="main">

<xsl:for-each select="$input">

<xsl:sequence select="count((xq:xpath d1e27(.)))"/>

</xsl:for-each>

</xsl:template>

<xsl:function name="xq:xpath d1e27" as="item()*">

<xsl:param name="xq:here"/>

<xsl:for-each select="$xq:here">

<xsl:element name="a"/>

<xsl:sequence select="(1 + 2)"/>

<xsl:element name="b"/>

</xsl:for-each>

</xsl:function>

</xsl:stylesheet>

These two techniques, switching from XPath to XSLT via a function call,
and from XSLT to XPath via xsl:sequence allow the whole of XQuery to

be more or less directly mapped to XSLT in a simple manner. The two ex-
ceptions are typeswitch and “order by” which do not have direct equivalents
in XSLT. Typeswitch is fairly simply mapped to an xsl:choose expression

testing types with the instance of operator. Order by is rather more compli-
cated as described below. Minor discrepancies between default handling of

namespaces and white space account for much of the complication in the code
(and probably most of any remaining bugs).

68

As with any conversion between two programming languages, one possible

view of the converter is that it is the first stage of an XQuery implementa-
tion, one just needs to pass the output of the converter to a suitable XSLT

engine to execute the code. At the time of writing the only publicly avail-
able XSLT2 processor that is complete enough to run these transformations

is Saxon 8, which includes a native implementation of XQuery, so the use-
fulness of xq2xsl as a stand-alone XQuery implementation maybe somewhat

limited at present, however it does provide a demonstration of an alternative
implementation strategy, which has been tested against all releases of the
XQuery test suite (up to 0.8.6), and hopefully version 1 of the test suite will

be released, and tested against xq2xsl before the conference date. Even with
Saxon, the transformations may have some practical use, converting function

libraries written in XQuery into a form that may be directly included in XSLT
using xsl:import, without having to use any proprietary extension functions

to call XQuery from XSLT. As XSLT2 matures and more implementations
are made available, it may be that xq2xsl does in fact become a practical im-
plementation of XQuery in contexts where there is a readily available XSLT

engine but no direct access to XQuery.

XQuery and XSLT compared

XQuery and XSLT clearly have a lot in common. They are developed in

parallel and share a data model (XDM) used to describe all inputs and results,
and share, in XPath2, the majority of the syntax used in either language to

select nodes and to evaluate function calls and other expressions.

The major syntactic differences are in node construction, where XSLT uses
XML syntax, literal result elements and xsl:element instructions, whereas

XQuery uses non-XML syntax both for computed element constructors (com-
parable to xsl:element) and direct element constructors (modelled on literal

XML elements, but using a syntax that mimics XML rather than being XML).

Ignoring these syntactic differences, the major differences are in the features
that are in one language but not the other:

• XQuery has no analogue of template application, so no analogue of xsl:
apply-templates, it does not have any grouping facility comparable to

xsl:for-each-group, and its regular expression support is more limited,
having the XPath regular expression functions, which are limited to doing
replacement on strings, but does not have an analogue of xsl:analyze-

string which may be used to construct nodes as a result of regular ex-
pression matching.

• XSLT lacks XQuery’s typeswitch expression and it does not have a direct

69

analogue of FLWOR expressions.

As described below (and implemented in xq2xsl) it is possible to implement

the “missing” features from XQuery in XSLT, although, especially in the
case of FLWOR, not in a particularly natural. It is not really practical to

implement the “missing” XSLT features in XQuery as grouping at regular
expression matching, at least really require the use of higher order functions

and neither XQuery nor XSLT provide any general syntax for manipulating
functions as objects, and so rely on special syntactic forms being present in

the language to handle these special cases.

It is not really surprising, nor a criticism of XQuery, that it is effectively

a profile of XSLT. It is designed to be more amenable for use as a database
query language, and in that mode XSLT’s traditional “push” mode, driven by
the implicitly recursive calls on apply-templates, isn’t really a good fit for

the underlying architecture, (or, it appears, with the mindset of the typical
database user!). Template application is far more natural (and was really

designed for) traditional “document” uses. The fact that XQuery also drops
support for grouping is rather more surprising, especially given the pain that

has been experienced by XSLT1 users (which also had no explicit support for
grouping) who have to learn the various idioms that have been developed.
Hopefully a future version of XQuery will add a grouping construct.

Typeswich

xq2xsl maps typeswitch to xslt’s xsl:choose expression, testing on the
value of “instance of” expressions.

typeswitch (2)

case $zip as element(*)

return 7

case $postal as element(ll)

return 8

default $x return 9

<xsl:variable as="item()*" name="xq:ts" select="(2 ,$xq:empty)"/>

<xsl:choose>

<xsl:when test="$xq:ts instance of element(*)">

<xsl:variable as=" element(*)" name="zip" select="$xq:ts"/>

<xsl:sequence select=" 7 "/>

</xsl:when>

<xsl:when test="$xq:ts instance of element(ll)">

<xsl:variable as=" element(ll)" name="postal" select="$xq:ts"/>

<xsl:sequence select=" 8 "/>

</xsl:when>

<xsl:otherwise>

<xsl:variable as="item()*" name="x" select="$xq:ts"/>

70

<xsl:sequence select=" 9 "/>

</xsl:otherwise>

</xsl:choose>

The spurious trailing ",$xq:empty" in the definition of the main variable

xq:ts whose type is to be tested is there to ensure that the XSLT compiler
does not statically determine its type (which would allow it to raise static
errors on branches of the xsl:choose that could not arise). Early releases

used ,() but at some point Saxon’s optimiser recognised this expression and
still statically evaluated the type of xq:ts in some cases. xq:empty is a

parameter with default definition of (). It is never given a different value,
but it prevents the expression from being evaluated at compile time.

FLWOR expressions

The order by clause in a FLWOR expression is the one XQuery feature that

does not easily translate to XSLT. This is essentially because it doesn’t easily
fit in the XQuery/XPath data model as its natural semantics requires nested
sequences (called tuples in the XQuery documentation) but XPath sequences

can not contain sequences, only atomic values. The XQuery Formal semantics
also explicitly omits to give semantics to Order By for the same reason.

The xq2xsl translation does (baring bugs) provide a full translation of a
FLWOR expression into XSLT, however as translation of the most general

case is rather verbose, the system detects some special cases and translates
them more directly. These special cases will be discussed first.

FLWOR: XPath

If the converter is in XPath mode, and detects a FLWOR expression that
corresponds to an XPath For expression (specifically it has no “at” clause, no

variable type declaration, no let clause, where or order by clauses) then the
expression essentially translates to itself.

If any other FLWOR expression occurs in XPath mode, then the converter

switches to XSLT mode (which typically means generating a new function
call).

FLWOR: XSLT, no tuples

If the converter is in XSLT mode and the FLWOR expression has no order
by clause, or if there is an order by clause but only one for -variable (and

no let-variables) then the FLWOR expression is translated fairly naturally
to a nested set of xsl:for-each instructions, and each clause of the order

by is converted to an xsl:sort instruction (or two xsl:sort instructions if
empty-first ordering is required).

71

FLWOR: XSLT, cartesian product

Note this case is not currently detected by the system, and FLWOR ex-
pressions that could be converted as described here are converted as described

in the next section, which produces a more verbose and possibly less efficient
translation.

Consider a general 2 -variable for expression, in which the sequence over
which the inner variable ranges does not depend on the outer variable. This

means that we can assume that each for -variable is ranging over a sequence
contained in a variable that has been calculated before the FLWOR expres-

sion.

for $i in $is, $j in $js

order by f($i,$j)

return

g($i,$j)

for some functions f and g then this can be rewritten as:

let $ci :=count($is) return

let $cj :=count($js) return

for $n in (0 to $ci * $cj)

let $i :=$is[$n mod $ci)+1]

let $j := $js[($n idiv $ci) +1]

order by f($i, $j)

return

g($i,$j)

This rewrite has produced a FLWOR expression with just one variable, so
may be translated to XSLT for-each as described in the previous section.

Cases with more variables could be handled in exactly the same way, with
appropriate div and mod expressions to calculate the required indices.

FLWOR: XSLT, dependent product (general case)

The general two variable case is:

for $i in $is,

$j in F($i)

order by f(i,j)
return

g($i,$j)

However this may be rewritten as:

let $one := (

for $i at $ip in $is,

$j at $jp in F($i)

return

encode($ip,$jp)

72

)

return

for $z in $one

let $indexes:=decode($z)

let $ip:=$indexes[1]

let $i:= $is[$ip]

let $jp:=$indexes[2]

let $j:= (F($i))[$jp]

order by f($i,$j)

return

g($i,$j)

where encode is anything that encodes a sequence of integers as a single item

and decode is anything that gets the sequence of integers back. specifically
the current converter encodes a sequence of integers as a string using:

codepoints-to-string(($x1+32,$x2+32,...))

and decodes using

for $i in string-to-codepoints(.) return($i - 32)

Note this uses a single character per integer, which limits the method to a
million or so entries per sequence, but could easily use more characters per
integer, so this is not really a real restriction in the method

The main disadvantage of all this is that the expressions F($i) above that

generate the sequences get evaluated multiple times and might be expensive.
This could be optimised by the converter (for example detecting the case

that the sequences do not depend on the range variables, and so using the
method in the previous section, but some of the optimisations are probably

more easily done by the XSLT compiler. For example I believe Saxon does
not evaluate variables that are never used, so there is no real need for the
converter to analyse the expressions and see if all the variables defined are

needed.

Other differences

FLWOR and typeswitch expressions are the only major structural differ-
ences that ought to affect a translation from XQuery to XSLT, however as

the languages were not designed to be explicitly equivalent, there are many
places where a translator has to do far more work to produce a fully equiv-
alent expression. Unfortunately this often impacts on the readability of the

generated code.

To give one example, XQuery allows elements to be constructed using a
“direct element constructor” that mimics XML syntax:

73

<elem a="2">...</elem>

Constructs an element with name elem and attribute a with value 2. If you

were translating this to XSLT in order to teach the general principles or to
produce easily maintainable XSLT code, one would hope to translate this to

an XSLT literal result element (which would look identical). Unfortunately
XQuery and XSLT have different behaviour if two attributes of the same name

either appear in the literal element, or are generated in the element content.
In XSLT this is not an error (any earlier attribute nodes of the same name
are silently discarded, but in XQuery this is an error condition.) In order

to fully comply with the XQuery specification xq2xsl never uses the literal
attribute syntax to generate attribute nodes, the entire sequence generated

by any attribute constructors and the element content is first generated into
a temporary variable, and then this sequence queried for duplicate attributes

before being copied into the constructed element.

<xsl:element name="elem">

<xsl:variable name="content" as="item()*">

<xsl:attribute name="a">

<xsl:text>2</xsl:text>

</xsl:attribute>

<xsl:text>...</xsl:text>

</xsl:variable>

<xsl:variable name="att" select="$content[. instance of

attribute()]/node-name(.)"/>

<xsl:if test="count($att)!=count(distinct-values($att))">

<xsl:sequence

select="error(QName(’http://www.w3.org/2005/xqt-errors’,

’XQDY0025’),’duplicated attribute’)"/>

</xsl:if>

<xsl:sequence select="$content"/>

</xsl:element>

The number of such “unnatural” translations is growing steadily (largely

driven by the XQuery Test suite, which while it has some problems, does
cover a large part of the XQuery language). It is not currently implemented

but it would be possible, and perhaps useful, to have a switch to turn off these
transformations that are there to gain strict XQuery conformance, and instead
produce more natural, and most likely more efficient, XSLT code. Especially

in cases such as this, where the only non-conformance in the “natural” code
is in an error condition.

FullAxis: XQuery to XQuery

The stylesheet fullaxis.xsl is a small stylesheet that imports xq2xq.xsl
(a stylesheet that just performs an “identity transformation”, writing the

74

Query back in XQuery syntax) and adds a few simple templates to rewrite

any use of the optional axes in XQuery (ancestor, ancestor-or-self, preceding,
preceding-sibling, following, following-sibling). This should be useful if you
have to use a system that inconveniences its users by not providing these axes.

Presumably there will be such systems as the Working Group have gone
to the trouble of making these axes optional, although not supporting the

axes would be a surprising choice for any implementor as (as demonstrated
here) removing the axes does not limit the expressive power (so doesn’t of-

fer any new implementation strategies as would perhaps be the case if path
expressions were strictly limited to forward searches). It just inconveniences

the user by making them type a more unwieldy expression (which is proba-
bly harder to optimise as it is harder to spot a general expression than the
restricted form of an axis). This stylesheet can’t help with the optimisation

(or lack thereof) but does at least produce an equivalent expression.
So for example:

$y/preceding::*[2]/string(@i)

is rewritten to:

$y/

(let $here := . return

reverse(root()/descendant::*[. << $here][not(descendant::node()[. is

$here])]))

[2]/string(@i)

Licence, support, availability

xq2xsl is a personal project by the author, David Carlisle, it is released
under the W3C free software licence. It is not a supported product of my

employer NAG Ltd, but it is distributed with their support (and currently
from a web site controlled by NAG). There is no guarantee of support, however
I am always pleased to receive comments and will try to respond to them in

good time.

75

76

Web 2.0: Myth and Reality

Eric van der Vlist (Dyomedea)

Abstract

The Web 2.0 is both a new buzzword and a real progress. In this article,
I’ll to separate the myth from the reality.

Definition

The first difficulty when we want to make an opinion about Web 2.0 is to

distinguish its perimeter.

When you need to say if an application is XML or not, that’s quite easy:

the application is an XML application if and only if it conforms to the XML
1.0 (or 1.1) recommendation.

That’s not so easy for Web 2.0 since Web 2.0 is not a standard but a set

of practices.

In that sense, Web 2.0 can be compared to REST [1] (Representational

State Transfer) which is also a set of practices. Fair enough will you say, but
it’s easy to say if an application is RESTfull. Why would that be different
with Web 2.0?

REST is a concept that is clearly described in a single document: Roy
Fielding’s thesis [2] which gives a precise definition of what REST is.

On the contrary, Web 2.0 is a blurred concept which aggregates a number
of tendencies and everyone seems to have his own definition of Web 2.0 as
you can see by the number of articles describing what the Web 2.0 is.

If we really need to define Web 2.0, I’ll take two definitions.

The first one is the one given by the French version of Wikipedia [3]:

“Web 2.0 is a term often used to describe what is perceived as an impor-
tant transition of the World Wide Web, from a collection of web sites to a
computing platform providing web application to users. The proponents

of this vision believe that the services of Web 2.0 will come to replace
traditional office applications.”

This article also gives an history of the term:

77

“The term was coined by Dale Dougherty of O’Reilly Media during a

brainstorming session with MediaLive International to develop ideas for
a conference that they could jointly host. Dougherty suggested that the

Web was in a renaissance, with changing rules and evolving business mod-
els.”

And it goes on by giving a series of examples that illustrate the difference

between good old “Web 1.0” and Web 2.0:

“DoubleClick was Web 1.0; Google AdSense is Web 2.0. Ofoto is Web
1.0; Flickr is Web 2.0.”

Google who has launched AdSense in 2003 was doing Web 2.0 without

knowing it one year before the term has been invented in 2004!

Technical layer

Let’s focus on the technical side of Web 2.0 first.

One of the characteristics of Web 2.0 is to be available to today’s users

using reasonably recent versions of any browser. That’s one of the reasons
why Mike Shaver said in its opening keynote [4] at XTech 2005 that “201cWeb
2.0 isn’t a big bang but a series of small bangs”.

Restricted by the set of installed browsers, Web 2.0 has no other choice

than to rely on technologies that can be qualified of “matured”:

• HTML (or XHTML pretending to be HTML since Internet Explorer
doesn’t accept XHTML documents declared as such) − the last version

of HTML has been published in 1999.

• A subset of CSS 2.0 supported by Internet Explorer − CSS 2.0 has been

published in 1998.

• Javascript − a technology introduced by Netscape in its browser in 1995.

• XML − published in 1998.

• Atom or RSS syndication − RSS has been created by Netscape in 1999.

• HTTP protocol − the latest HTTP version has been published in 1999.

• URIs − published in 1998.

• REST − a thesis published in 2000.

• Web Services − XML-RPC APIs for Javascript were already available in
2000.

78

The usage of XML over HTTP in asynchronous mode has been given the

name “Ajax”.

Web 2.0 appears to be the full appropriation by web developers of mature
technologies to achieve a better user experience.

If it’s a revolution, this is a revolution in the way to use these technologies
together, not a revolution in the technologies themselves.

Office applications

Can these old technologies really replace office applications? Is Web 2.0

about rewriting MS Office in Javascript and could that run in a browser?

Probably not if the rule was to keep the same paradigm with the same level

of features.

We often quote the famous “80/20” rule after which 80% of the features

would require only 20% of the development efforts and sensible applications
should focus on these 80% of features.

Office applications have crossed the 80/20 border line years ago and have
invented a new kind of 80/20 rule: 80% of the users use probably less than

20% of the features.

I think that a Web 2.0 application focussing on the genuine 80/20 rule for
a restricted application or group of users would be a tough competition to
traditional office applications.

This seems to be the case for applications such as Google Maps (that could

compete with GIS applications on the low end market) or some of the new
wysiwyg text editing applications that flourish on the web.

A motivation that may push users to adopt these web applications is the
attractiveness of systems that help us manage our data.

This is the case of Gmail, Flickr, del.icio.us or LinkedIn to name few: while
these applications relieve us from the burden of the technical management of

our data they also give us a remote access from any device connected to the
internet.

What is seen today as a significant advantage for managing our mails,
pictures, bookmarks or contacts could be seen in the future as a significant

advantage for managing our office documents.

Social layer

If the French version of Wikipedia [3] has the benefit of being concise, its is
slightly out of date and doesn’t describe the second layer of Web 2.0, further
developed during the second Web 2.0 conference in October 2005.

The English version of Wikipedia [5] adds the following examples to the

79

list of Web 1.0/Web 2.0 sites:

Britannica Online (1.0)/ Wikipedia (2.0), personal sites (1.0)/ blogging

(2.0), content management systems (1.0)/ wikis (2.0), directories (taxon-
omy) (1.0) / tagging (“folksonomy”) (2.0)

These examples are interesting because technically speaking, Wikipedia,
blogs, wikis or folksonomies are mostly Web 1.0.

They illustrate what Paul Graham is calling Web 2.0 “democracy” [6].

Web 2.0 democracy is the fact that to “lead the web to its full potential”
(as the W3C tagline says) the technical layer of the internet must be com-

plemented by a human network formed by its users to produce, maintain and
improve its content.

There is nothing new here either and I remember Edd Dumbill launching
WriteTheWeb [7] in 2000, “a community news site dedicated to encouraging

the development of the read/write web” because the “tide is turning” and the
web is no longer a one way web.

This social effect was also the guide line of Tim O’Reilly in his keynote
session [8] at OSCON 2004, one year before becoming the social layer of Web

2.0.

Another definition

With a technical and a social layer, isn’t Web 2.0 becoming a shapeless bag
in which we’re grouping anything that’s looking new on the web?

We can see in the technical layer a consequence of the social layer, the

technical layer being needed to provide the interactivity required by the social
layer.

This analysis would exclude from Web 2.0 applications such as Google Maps
which have no social aspect but are often quoted as typical examples of Web

2.0.
Paul Graham tries to find common trends between these layers in the second

definition that I’ll propose in this article:

“Web 2.0 means using the web the way it’s meant to be used. The ‘trends’

we’re seeing now are simply the inherent nature of the web emerging from
under the broken models that got imposed on it during the Bubble.”

This second definition reminds me other taglines and buzzword heard dur-

ing these past years:

• The W3C tagline is “Leading the Web to Its Full Potential”. Ironically,
Web 2.0 is happening, technically based on many technologies specified

80

by the W3C, without the W3C. It is very tempting to interpret the recent

announcement of a “Rich Web Clients Activity” [9] as an attempt to catch
a running train.

• Web Services are an attempt to make the web available to applications
which was meant to be from the early ages of Web 1.0.

• The Semantic Web − which seems to have completely missed the Web

2.0 train − is the second generation of the web seen by the inventor of
Web 1.0.

• REST is the description of web applications using the web as it is meant

to be used.

• XML is “SGML on the web” which was possible with HTTP as it was
meant to be used.

Here again, Web 2.0 appears to be the continuation of the “little big bangs”

of the web.

Technical issues

In maths, continuous isn’t the same as differentiable and in technology too,

continuous evolutions can change direction.

Technical evolutions are often a consequence of changes in priorities that
lead to these changes of direction.

The priorities of client/server applications that we developed in the 90’s

were:

• the speed of the user interfaces,

• their quality,

• their transactional behaviour,

• security.

They’ve been swept out by web applications which priorities are:

• a universal addressing system,

• universal access,

• globally fault tolerant: when a computer stops, some services might stop

working but the web as a whole isn’t affected,

• scalability (web applications support more users than client/server ones
dreamed to support),

81

• a user interface relatively coherent that enables sharing services through

URIs,

• open standards.

Web 2.0 is taking back some of the priorities of client/server applications
and one needs to be careful that these priorities are met without compromising

what is the strength of the web.

Technically speaking, we are lucky enough to have best practices formal-

ized in REST and Web 2.0 developers should be careful to design RESTfull
exchanges between browsers and servers to take full advantage of the web.

Ergonomic issues

Web 2.0 run in a web browsers and they should make sure that users
can keep their Web 1.0 habits, especially with respect to URIs (including

the ability to create bookmarks, send URIs by mail and use their back and
forward buttons).

Let’s take a simple example to illustrate the point.

Have you noticed that Google, presented as a leading edge Web 2.0 company

is stubbornly Web 1.0 on its core business: the search engine itself?

It is easy to imagine what a naive Web 2.0 search engine might look like.

That might start with a search page similar to the current Google suggest
[10]. When you start writing your query terms, the service suggests possible

completions of you terms.

When you would send the query, the page wouldn’t move. Some animation

could keep you waiting even if that’s usually not necessary with a high speed
connection on Google. The query would be sent and the results brought back
asynchronously. Then, the list of matches would be displayed in the same

page.

The user experience would be fast and smooth, but there are enough draw-

backs with this scenario that Google doesn’t seem to find it worth trying:

• The URI in the address bar would stay the same: users would have no
way to bookmark a search result or to copy and past it to send to a friend.

• Back and forward buttons would not work as expected.

• These result pages would be accessible to crawlers.

The web developer who would implement this Web 2.0 application should

take care to provide good workarounds for each of these drawbacks. This is
certainly possible, but that requires some effort.

82

Falling into these traps would be really counter-productive to Web 2.0

since we have seen that these are ergonomic issues that justify this evolution
to make the web easier to use.

Development

The last point on which one must be careful when developing Web 2.0
applications are development tools.

The flow of press releases made by software vendors to announce develop-

ment tools for Ajax based applications may put an end to this problem, but
Web 2.0 often means developing complex scripts that are subject to interop-

erability issues between browsers.

Does that mean that Web 2.0 should ignore declarative definitions of user
interface (such as in XForms, XUL or XAML) or even in the 4GL’s that had
been invented for client/server applications in the early 90’s?

A way to avoid this regression is to use a framework that hides most of the

Javascript development.

Catching up with the popular “Ruby on Rails”, web publications frame-
works are beginning to propose Web 2.0 extensions.

This is the case of Cocoon which new version 2.1.8 includes a support of

Ajax but also of Orbeon PresentationServer which includes in its version 3.0
a fully transparent support of Ajax through its Xforms engine.

This features enables to write user interfaces in standard XForms (without a

single line of Javascript) and to deploy these applications on todays browsers,
the system using Ajax interactions between browsers and servers to implement
XForms.

Published in 2003, XForms is only two years old, way too young to be part

of the Web 2.0 technical stack. Orbeon PresentationServer is a nifty way to
use XForms before it can join the other Web 2.0 technologies!

Business model

What about the business model?

The definition of Paul Graham for whom Web 2.0 is a web rid of the
bad practises of the internet bubble is interesting when you know that some

analysts believe that a Web 2.0 bubble is on its way.

This is the case of Rob Hof (Business Week) who deploys a two step argu-
mentation [11]:

1. “It costs a whole lot less to fund companies to revenue these days”, which
Joe Kraus (JotSpot) explains [12] by the facts that:

83

• Hardware is 100x cheaper,

• Infrastructure software is free,

• Access to Global Labor Markets,

• Internet marketing is cheap and efficient for niche markets.

2. Even though venture capital investment seems to stay level, cheaper costs
mean that much more companies are being funded with the same level of

investment. Furthermore, cheaper costs also means that more companies
can be funded by non VC funds.

Rob Hof also remarks that many Web 2.0 startups are created with no

other business model than being sold in the short term.
Even if it is composed to smaller bubbles, a Web 2.0 bubble might be on

the way.
Here again, the golden rule is to take profit of the Web 1.0 experience.

Data Lock-In era

If we need a solid business model for Web 2.0, what can it be?

One of the answers to this question was in the Tim O’Reilly keynote at
OSCON 2004 [8] that I have already mentioned.

Giving its views on the history of computer technologies since their begin-
ning, Tim O’Reilly showed how this history can be split into three eras:

• During the “Hardware Lock-In” era, computer constructors ruled the

market.

• Then came the “Software Lock-In” era dominated by software vendors.

• We are now entering the “Data Lock-In” era.

In this new era, illustrated by the success of sites such as Google, Amazon,
or eBay, the dominating actors are companies that can gather more data than

their competitors and their main asset is the content given or lent by their
users for free.

When you outsource your mails to Google, you publish a review or even
buy something on Amazon, upload your pictures to Flickr or add a bookmark
in del.icio.us, you tie yourself to this site and you trade a service against their

usage of your data.
A number of people are talking against what François Joseph de Kermadec

[13] is calling the “fake freedom” [14] given by Web 2.0.
Against this fake freedom, users should be careful:

• to trade data against real services,

84

• to look into the terms of use of each site to know which rights they grant

in exchange if these services,

• to demand technical means, based on open standards, to get their data
back.

So what?

What are the conclusions of this long article?
Web 2.0 is a term to qualify a new web that is emerging right now.
This web will use the technologies that we already know in creative ways

to develop a collaborative “two way web”.
Like any other evolution, Web 2.0 comes with a series of risks: technical,

ergonomic, financial and threats against our privacy.
Beyond the marketing buzzword, Web 2.0 is a fabulous bubble of new ideas,

practices and usages.
The fact that its shape is still so blurred shows that everything is still open

and that personal initiatives are still important.
The Web 2.0 message is a message of hope!

85

References

1. REST
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest arch style.htm

2. Roy Fielding’s thesis
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm

3. Web 2.0 definitions on Wikipedia [French]
http://fr.wikipedia.org/wiki/Web 2.0

4. Mike Shaver’s opening keynote at XTech 2005
http://xmlfr.org/actualites/ tech/050531-0001#N117

5. Web 2.0 definitions on Wikipedia [English]
http://en.wikipedia.org/wiki/Web 2.0

6. Web 2.0 seen by Paul Graham
http://www.paulgraham.com/web20.html

7. WriteTheWeb
http://writetheweb.com/about/

8. Tim O’Reilly’s keynote session at OSCON 2004
http://conferences.oreillynet.com/cs/os2004/view/e sess/5515at

9. Rich Web Clients Activity
http://www.w3.org/2006/rwc/

10. Google suggest
http://www.google.com/webhp?complete=1&hl=en

11. Rob Hof analysis
http://www.businessweek.com/the thread/techbeat/

archives/2005/10/no web 20 bubbl.html

12. Joe Kraus explanation
http://bnoopy.typepad.com/bnoopy/2005/06/its a great tim.html

13. François Joseph de Kermadec
http://www.oreillynet.com/pub/au/1339

14. A fake freedom by François Joseph de Kermadec
http://www.oreillynet.com/lpt/wlg/7977

86

XML Data − The Current State of

Affairs

Kamil Toman and Irena Mlýnková (Charles University)

Abstract

At present the eXtensible Markup Language (XML) is used almost in all
spheres of human activities. Its popularity results especially from the fact that

it is a self-descriptive metaformat that allows to define the structure of XML
data using other powerful tools such as DTD or XML Schema. Consequently,

we can witness a massive boom of techniques for managing, querying, updat-
ing, exchanging, or compressing XML data.

On the other hand, for majority of the XML processing techniques we can

find various spots which cause worsening of their time or space efficiency.
Probably the main reason is that most of them consider XML data too glob-

ally, involving all their possible features, though the real data are often much
simpler. If they do restrict the input data, the restrictions are often unnatural.

In this contribution we discuss the level of complexity of real XML collec-
tions and their schemes, which turns out to be surprisingly low. We involve

and compare results and findings of existing papers on similar topics as well
as our own analysis and we try to find the reasons for these tendencies and
their consequences.

Introduction

Currently XML and related technologies [7] have already achieved the lead-
ing role among existing standards for data representation and are used almost

in all spheres of human activities. They are popular for various reasons, but
especially because they enable to describe the allowed structure of XML doc-
uments using powerful tools such as DTD [7] or XML Schema [9, 20, 6]. Thus

we can witness a massive boom of various XML techniques for managing,
processing, exchanging, querying, updating, and compressing XML data that

mutually compete in speed, efficiency, and minimum space and/or memory
requirements.

87

On the other hand, for majority of the techniques we can find various

critical spots which cause worsening of their time and/or space efficiency.
In the worst and unfortunately quite often case such bottlenecks negatively

influence directly the most interesting features of a particular technique.

If we study the bottlenecks further, we can distinguish two typical prob-

lematic situations. Firstly, we can distinguish a group of general techniques
that take into account all possible features of input XML data − an approach
that is at first glance correct. Nevertheless the standards were proposed as

generally as possible enabling future users to choose what suits them most,
whereas the real XML data are usually not as “rich” as they could be − they

are often surprisingly simple. Thus the effort spent on every possible feature
is mostly useless and it can even be harmful.

Secondly, there are techniques that do restrict features of input XML data
in some way. Hence it is natural to expect the bottlenecks to occur only
in situations when given data do not correspond to the restrictions. The

problem is that such restrictions are often “unnatural”. They do not result
from inherent features of real XML data collections but from other, more

down-to-earth, reasons, e.g. limitations of the basic proposal of a particular
technique, complexity of such solution etc.

A solution to the given problems could be a detailed analysis of real XML
data and their classification. Up to now, there are several works which analyze
real XML collections from various points of view. All the papers have the

same aim − to describe typical features and complexity of XML data −
and all conclude that the real complexity is low indeed. In this paper we

briefly describe, discuss, and compare results and findings of the papers as
well as our own analysis. We try to find the reasons for these tendencies, their

consequences and influence on future processing.

The paper is structured as follows: The first section introduces thecon-
sidered problems. The following, second, section contains a brief overview

of formalism used throughout the paper. Section 4 classifies, describes, and
discusses XML data analyses. The last, fifth, section provides conclusions.1

Formal definitions

For structural analysis of XML data it is natural to view XML documents

as ordered trees and DTDs or XSDs (i.e. XML Schema definitions) as sets
of regular expressions over element names. Attributes are often omitted for

simplicity. We use notation and definitions for XML documents and DTDs

1We will not describe neither the basics of XML, DTD, or XML Schema. We suppose that XML and
DTD have already become almost a common knowledge whereas description of XML Schema is omitted for
the paper length.

88

from [8] and [5]. (For XSDs are often used the same or similar ones − we

omit them for the paper length.)

Definition 1. An XML document is a finite ordered tree with node labels
from a finite alphabet Σ. The tree is called Σ-tree.

Definition 2. A DTD is a collection of element declarations of the form e
→ α where e ∈ Σ is an element name and α is its content model, i.e. regular
expression over Σ. The content model α is defined as α := ε | pcdata | f |
α1, α2, ..., αn | α1|α2|...|αn | β* | β+ | β?, where ε denotes the empty content
model, pcdata denotes the text content, f denotes a single element name, “,”

and “|” stand for concatenation and union (of content models α1, α2, ...αn),
and “*”, “+”, and “?” stand for zero or more, one or more, and optional

occurrence(s) (of content model β). One of the element names s ∈ Σ is called
a start symbol.

Definition 3. A Σ-tree satisfies the DTD if its root is labeled by start symbol

s and for every node n and its label e, the sequence e1, e2, ...ek of labels of its
child nodes matches the regular expression α, where e → α.

Basic analyses of XML data usually focus on depth of content models
and/or XML documents, reachability of content models and/or elements,
types of recursion, types of paths and cycles, fan-ins and fan-outs. They

are usually similar for both XML documents and XML schemes (regardless
the used language).

Definition 4. Depth of a content model α is inductively defined as follows:
depth(ε) = 0;
depth(pcdata) = depth(f) = 1;

depth(α1, α2, ..., αn) = depth(α1|α2|...|αn) = max(depth(αi)) + 1; 1 ≤ i ≤ n
depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Definition 5. Distance of elements e1 and e2 is the number of edges in Σ-tree
separating their corresponding nodes.

Level of an element is distance of its node from the root node. The level of
the root node is 0.

Depth of an XML document is the largest level among all the elements.

Definition 6. An element name e′ is reachable from e, denoted by e ⇒ e′, if

either e → α and e′ occurs in α or ∃ e′′ such that e ⇒ e′′ and e′′ ⇒ e′.
A content model α is derivable, denoted by e ⇒ α, if either e → α or e

⇒ α′, e′ → α′′, and α = α′[e′/α′′], where α′[e′/α′′] denotes the content model
obtained by substituting α′′ for all occurrences of e′ in α′.

An element name e is reachable, if r ⇒ e, where r is the name of root

89

element. Otherwise it is called unreachable.

Definition 7. An element e is recursive if there exists at least one element

d in the same document such that d is a descendant of e and d has the same
label as e.

The element-descendant association is called an ed-pair.

Definition 8. An element e is called trivially recursive if it is recursive and
for every α such as e ⇒ α e is the only element that occurs in α and neither

of its occurrences is enclosed by “*” or “+”.

An element e is called linearly recursive if it is recursive and for every α
such as e ⇒ α e is the only recursive element that occurs in α and neither of

its occurrences is enclosed by “*” or “+”.

An element e is called purely recursive if it is recursive and for every α

such as e ⇒ α e is the only recursive element that occurs in α.

An element that is not purely recursive is called generally recursive element.

Definition 9. Simple path (in a non-recursive DTD) is a list of elements e1,
e2,... ek, where ei → αi and ei+1 occurs in αi for 1 ≤ i < k. Parameter k is

called length of a simple path.

Simple cycle is a path in the form e1, e2,... ek, e1, where e1, e2,... ek are

distinct element names.

Chain of stars is a simple path of elements e1, e2,... ek+1, where ei+1 is in

the corresponding αi followed by “*” or “+” for 1 ≤ i ≤ k. Parameter k is
called length of a chain of stars.

Definition 10. Fan-in of an element e is the cardinality of the set {e′ |
e′ → α′ and e occurs in α′}. An element name with large fan-in value is

called hub.

Definition 11. Element fan-out of element e is the cardinality of the set {e′
| e → α and e′ occurs in α}.

Minimum element fan-out of element e is the minimum number of elements
allowed by its content model α.

Maximum element fan-out of element e is the maximum number of elements
allowed by content model α.

Attribute fan-out of element e is the number of its attributes.

There are also XML constructs, that can be called advanced, such as types

of mixed content, DNA patterns, or relational patterns.

Definition 12. An element is called trivial if it has an arbitrary amount of
attributes and its content model α := ε | pcdata.

90

A mixed content of element is called simple if it consist only of trivial

elements. Otherwise it is called complex.

Definition 13. An nonrecursive element e is called DNA pattern if its con-
tent model α is not mixed and consists of a nonzero amount of trivial elements

and just one nontrivial and nonrecursive element which is not enclosed by “*”
or “+”. The nontrivial subelement is called degenerated branch.

Depth of a DNA pattern e is the maximum depth of its degenerated branch.

Definition 14. A nonrecursive element e is called relational pattern if it has
an arbitrary amount of attributes and its content model α := (e1, e2, ..., en)∗ |
(e1, e2, ..., en)+ | (e1|e2|...|en)∗ | (e1|e2|...|en)+ and it is not mixed.

A nonrecursive element e is called shallow relational pattern if it has an
arbitrary amount of attributes and its content model α := f∗ | f+ and it is

not mixed.

Analyses and results

Up to now several papers have focused on analysis of real XML data. They

analyze either the structure of DTDs, the structure of XSDs, the structure
of XML data regardless their schema, or the structure of XML documents in
relation to corresponding schema. The sample data usually essentially differ.

DTD analysis

Probably the first attempt to analyze the structure of XML data can be

found in [18]. The paper is relatively old (especially with regard to the fast
development of XML standards) and it contains a quantitative analysis of 12

DTDs and a general discussion of how they are (mis)used.
The analysis involves:

• the size of DTDs, i.e. the number of elements, attributes, and entity
references,

• the structure of DTDs, i.e. the number of root elements and depth of
content models, and

• some specific aspects, i.e. the use of mixed-content, ANY, IDs and IDREFs,
or the kind of attribute decorations used (i.e. implied, required, and

fixed attributes).

The discussion of current (mis)using of DTDs brings various conclusions,
involving especially shortcomings of DTD. Most of them have already been

overcome in XML Schema − e.g. the necessity to use XML itself for de-
scription of the structure of XML data, the missing operator for unordered

91

sequences, insufficient tools for inheritance and modularity, the requirement

for typed IDREFs (i.e. those which cannot refer to any ID) etc.
There are also interesting observations concerning structure of the data, es-

pecially the finding that content models have the depth less than 6 and that
IDs and IDREFs are not used frequently (probably due to the above mentioned

problem with typing). According to the author the most important conclu-
sion is that DTDs are usually incorrect (both syntactically and semantically)

and thus are not a reliable source of information.

Second paper [8] that also focuses on DTDs describes analyses which are more

statistical than in the previous case. It analyzes 60 DTDs further divided
according to their intended future use into three categories:

• app, i.e. DTDs designed for data interchange,

• data, i.e. DTDs for data that can easily be stored in a database, and

• meta, i.e. DTDs for describing the structure of document markup.

The statistics described in the paper focus on graph theoretic properties of
DTDs and can be divided into:

• local, i.e. describing kinds of content models found at individual element
declarations (e.g. the number of mixed-content elements) and

• global, i.e. describing graph structure of the DTD (e.g. the maximum
path length allowed by the DTD).

Local properties focus on four types of features − content model classifica-
tions, syntactic complexity, non-determinism, and ambiguity. The classifica-
tion of content models involves pcdata, ε, any, mixed content, “|” only (but

not mixed) content, “,” only content, complex content (i.e. with both “|”s
and “,”s), list content (i.e. the usage of “+” or“*” for one element), and single

content (i.e. the optional usage of “?” for one element); the syntactic com-
plexity is expressed by the previously defined depth function. The question of

both non-determinism and ambiguity (i.e. a special case of non-determinism)
of content models is a bit controversial since non-deterministic content mod-

els are not allowed by the XML standards. The most important findings for
local properties are that the content model of DTDs is usually not complex
(the maximum depth is 9, whereas its mode is even 3) and that despite the

standards, there are both non-deterministic and ambiguous content models.
Global properties discussed in the paper involve reachability, recursions,

simple paths and cycles, chains of stars and hubs. The most important find-
ings are listed below.

92

• Unreachable elements are either root elements or useless, whereas the

mode of their number is 1, i.e. the root element is usually stated clearly.

• There are no linear recursive elements, whereas the number of non-linear

recursive elements is significant (i.e. they occur in 58% of all DTDs).

• The maximum length of simple path is surprisingly small (mostly less
than 8), whereas on the other hand the number of simple paths as well

as simple cycles is either small (less than 100) or large (more than 500).

• The length of the longest chain of stars is usually small (its mode is 3).

• Hubs exist in all categories od DTDs and their number is significant.

Last found paper [12] which focuses on DTD analysis is trying to adapt soft-
ware metrics to DTDs. It defines five metrics, also based on their graph

representation − i.e. size, complexity, depth, fan-in, and fan-out, whereas
all of them were already defined and discussed. Regrettably, there are just 2
DTD examples for which the statistics were counted.

DTD vs. XML schema

With the arrival of XML Schema, as the extension of DTD, has arisen a
natural question: Which of the extra features of XML Schema not allowed
in DTD are used in practise? Paper [5] is trying to answer it using analysis

of 109 DTDs and 93 XSDs. Another aim of the paper is to analyze the real
structural complexity for both the languages, i.e. the degree of sophistication

of regular expressions used.

The former part of the paper focuses on analysis of XML Schema features.

The features and their resulting percentage are:

• extension2 (27%) and restriction (73%) of simple types,

• extension (37%) and restriction (7%) of complex types,

• final (7%), abstract (12%), and block (2%) attribute of complex type
definitions,

• substitution groups (11%),

• unordered sequences of elements (4%),

• unique (7%) and key/keyref (4%) features,

• namespaces (22%), and

2Extension of a simple type means adding attributes to the simple type, i.e. creating a complex type with
simple content.

93

• redefinition of types and groups (0%).

As it is evident, the most exploited features are restriction of simple types,

extension of complex types, and namespaces. The first one reflects the lack
of types in DTD, the second one confirms the naturalness of object-oriented

approach (i.e. inheritance), whereas the last one probably results from mutual
modular usage of XSDs. The other features are used minimally or are not
used at all.

Probably the most interesting finding is, that 85% of XSDs define so called
local tree languages [17], i.e. languages that can be defined by DTDs as well,
and thus that the expressiveness beyond local tree grammars is needed rarely.

XML schema analysis

Paper [5] mentioned in the previous section analyzed the properties of
DTDs and XSDs together. Nevertheless its first part focused only on sta-

tistical analysis of real usage of new XML Schema features. Paper [14] has
a similar aim − it defines 11 metrics of XSDs and two formulae that use the

metrics to compute complexity and quality indices of XSDs. The metrics are:

• the number of (both globally and locally defined) complex type decla-
rations, which can be further divided into text-only, element-only, and

mixed-content,

• the number of simple type declarations,

• the number of annotations,

• the number of derived complex types,

• the average number of attributes per complex type declaration,

• the number of global (both simple and complex) type declarations,

• the number of global type references,

• the number of unbounded elements,

• the average bounded element multiplicity size, where multiplicity size is
defined as (maxOccurs - minOccurs + 1),

• the average number of restrictions per simple type declaration,

• element fanning, i.e. the average fan-in/fan-out.

On the basis of the experience in analyzing many XSDs the authors define
two indices for expressing their quality and complexity.

94

Definition 15. Quality Index = (Ratio of simple to complex type declara-

tions) * 5 + (Percentage of annotations over total number of elements) * 4
+ (Average restrictions per simple type declarations) * 4 + (Percentage of
derived complex type declarations over total number of complex type declara-

tions) * 3 (Average bounded element multiplicity size) * 2 (Average attributes
per complex type declaration) * 2

Complexity Index = (Number of unbounded elements) * 5 + (Element fan-

ning) * 3 + (Number of complex type declarations) + (Number of simple type
declarations) + (Number of attributes per complex type declaration)

Unfortunately, there is just one XSD example for which the statistics were
counted.

XML document analysis

Previously mentioned analyses focused on descriptions of the allowed struc-
ture of XML documents. By contrast paper [15] (and its extension [2]) ana-

lyzes directly the structure of their instances, i.e. XML documents, regardless
eventually existing DTDs or XSDs.3 It analyzes about 200 000 XML docu-
ments publicly available on the Web, whereas the statistics are divided into

two groups − statistics about the Web and statistics about the XML docu-
ments.

The Web statistics involve:

• clustering of the source web sites by zones consisting of Internet domains
(e.g. .com, .edu, .net etc.) and geographical regions (e.g. Asia, EU etc.),

• the number and volume (i.e. the sum of sizes) of documents per zone,

• the number of DTD (48%) and XSD (0.09%) references,

• the number of namespace references (40%),

• distribution of files by extension (e.g. .rdf, .rss, .wml, .xml etc.), and

• distribution of document out-degree, i.e. the number of href, xmlhref,
and xlink:href attributes.

Obviously most of them describe the structure of the XML Web and cate-
gories of the source XML documents.

Statistics about the structure of XML documents involve:

• the size of XML documents (in bytes),

3The paper just considers whether the document does or does not reference a DTD or an XSD.

95

• the amount of markup, i.e. the amount of element and attribute nodes

versus the amount of text nodes and the size of text content versus the
size of the structural part,

• the amount of mixed content elements,

• the depth of XML documents and the distribution of node types (i.e.
element, attribute, or text nodes) per level,

• element and attribute fan-out

• the number of distinct strings, and

• recursion.

The most interesting findings of the research are as follows:

• The size of documents varies from 10B to 500kB; the average size is 4,6kB.

• For documents up to 4kB the number of element nodes is about 50%, the

number of attribute nodes about 30%. Surprisingly, for larger documents
the number of attribute nodes rises to 50%, whereas the number of ele-

ment nodes declines to 38%. The structural information still dominates
the size of documents.

• Although there are only 5% of all elements with mixed content, they were

found in 72% of documents.

• Documents are relatively shallow − 99% of documents have fewer than 8

levels, whereas the average depth is 4.

• The average element fan-out for the first three levels is 9, 6, and 0.2; the
average attribute fan-out for the first four levels is 0.09, 1, 1.5, and 0.5.

Surprisingly, 18% of all elements have no attributes at all.

A great attention is given to recursion which seems to be an important
aspect of XML data. The authors mention the following findings:

• 15% of all XML documents contain recursive elements.

• Only 260 distinct recursive elements were found. In 98% of recursive

documents there is only one recursive element used.

• 95% of recursive documents do not refer to any DTD or XSD.

• Most elements in ed pairs have the distance up to 5.

• The most common average fan-outs are 1 (60%) and 2 (37%), the average
recursive fan-out is 2.2.

96

Lastly, paper [13] that focuses on analysis of XML documents consists of two

parts − a discussion of different techniques for XML processing and an anal-
ysis of real XML documents. The sample data consists of 601 XHTML web
pages, 3 documents in DocBook format4, an XML version of Shakespeare’s

plays5 (i.e. 37 XML documents with the same simple DTD) and documents
from XML Data repository project6. The analyzed properties are the maxi-

mum depth, the average depth, the number of simple paths, and the number
of unique simple paths; the results are similar to previous cases.

XML documents vs. XML schemes

The work initiated in the previously mentioned articles is taken up recently

by paper [16]. It enhances the preceding analyses and defines several new
constructs for describing the structure of XML data (e.g. DNA or relational
patterns). It analyzes XML documents together with their DTDs or XSDs

eventually that were collected semi-automatically with interference of human
operator. The reason is that automatic crawling of XML documents generates

a set of documents that are unnatural and often contain only trivial data
which cause misleading results. The collected data consist of about 16 500

XML documents of more than 20GB in size, whereas only 7.4% have neither
DTD nor XSD. Such low ratio is probably caused by the semi-automatic

gathering.

The data were first divided into following six categories:

• data-centric documents, i.e. documents designed for database processing
(e.g. database exports, lists of employees etc.),

• document-centric documents, i.e. documents which were designed for hu-

man reading (e.g. Shakespeare’s plays, XHTML [1] documents etc.)

• documents for data exchange (e.g. medical information on patients etc.),

• reports, i.e. overviews or summaries of data (usually of database type),

• research documents, i.e. documents which contain special (scientific or

technical) structures (e.g. protein sequences, DNA/RNA structures etc.),
and

• semantic web documents, i.e. RDF [4] documents.

The statistics described in the paper are also divided into several categories.

They were computed for each category and if possible also for both XML
4http://www.docbook.org/
5http://www.ibiblio.org/xml/examples/shakespeare/
6http://www.cs.washington.edu/research/xmldatasets/

97

documents and XML schemes and the results were compared. The categories

are as follows:

• global statistics, i.e. overall properties of XML data (e.g. number of ele-

ments of various types such as empty, text, mixed, recursive etc., number
of attributes, text length in document, paths and depths etc.),

• level statistics, i.e. distribution of elements, attributes, text nodes, and
mixed contents per each level,

• fan-out statistics, i.e. distribution of branching per each level,

• recursive statistics, i.e. types and complexity of recursion (e.g. exploita-

tion rates, depth, branching, distance of ed-pairs etc.),

• mixed-content statistics, i.e. types and complexity of mixed contents (e.g.

depth, percentage of simple mixed contents etc.),

• DNA statistics, i.e. statistics focussing on DNA patterns (e.g. number of

occurrences, width, or depth), and

• relational statistics, i.e. statistics focussing on both relational and shallow
relational patterns (e.g. number of occurrences, width, or fan-out).

Most interesting findings and conclusions for all categories of statistics are

as follows:

• The amount of tagging usually dominates the size of document.

• The lowest usage of mixed-content (0.2%) and empty (26.8%) elements
can be found in data-centric documents.

• The highest usage of mixed-content elements (77%) can be found in
document-centric documents.

• Documents of all categories are typically shallow. (For 95% of documents
the maximum depth is 13, the average depth is about 5.)

• The highest amounts of elements, attributes, text nodes, and mixed con-
tents as well as fan-outs are always at first levels and then their number

of occurrences rapidly decreases.

• Recursion occurs quite often, especially in document-centric (43%) and

exchange (64%) documents, although the number of distinct recursive
elements is typically low (for each category less than 5).

• Recursion, if used, is rather simple − the average depth, branching as
well as distance of ed-pairs is always less than 10.

98

• The most common types of recursion are linear (20% for document-centric

and 33% for exchange documents) and pure (19% for document-centric
and 23% for exchange documents).

• Unlike document instances almost all schemes specify usually only the
most general type of recursion.

• The percentage of simple mixed contents is relatively high (e.g. 79%

for document-centric or even 99% for exchange documents) and thus the
depth of mixed contents is generally low (on the average again less than

10).

• The number of occurrences of DNA patterns is rather high, especially for

research, document-centric, and exchange documents. On the other hand
the average depth and width is always low (less than 7).

• The number of occurrences of relational patterns is high, especially for

semantic-web, research, and exchange documents. The complexity (i.e.
depth and width) is again quite low.

• XML schemes usually provide too general information, whereas the in-
stance documents are much simpler and more specific.

Discussion

The previous overview of existing analyses of XML data brings various

interesting information. In general, we can observe that the real complexity
of both XML documents and their schemes is amazingly low.

Probably the most surprising findings are that recursive and mixed-content

elements are not as unimportant as they are usually considered to be. Their
proportional representation is more than significant and in addition their com-

plexity is quite low. Unfortunately, effective processing of both the aspects is
often omitted with reference to their irrelevancy. Apparently, the reasoning is
false whereas the truth is probably related to difficulties connected with their

processing.

Another important discovery is that the usual depth of XML documents

is small, the average number is always less than 10. This observation is
already widely exploited in techniques which represent XML documents as
a set of points in multidimensional space and store them in corresponding

data structures, e.g. R-trees [11], UB-trees [3], BUB-trees [10] etc. The
effectiveness of these techniques is closely related to the maximum depth of

XML documents or maximum number of their simple paths. Both of the
values should be of course as small as possible.

99

Next considerable fact is that the usage of schemes for expressing allowed

structures of XML documents is not as frequent as it is expected to be. The
situation is particularly wrong for XSDs which seem to appear sporadically.

And even if they are used, their expressive power does not exceed the power
of DTDs. The question is what is the reason for this tendency and if we can

really blame purely the complexity of XML Schema. Generally, the frequent
absence of schema is of course a big problem for methods which are based on

its existence, e.g. schema-driven database mapping methods [19].
Concerning the XML schemes there is also another important, though not

surprising finding, that XML documents often do not fully exploit the gener-

ality allowed by schema definitions. It is striking especially in case of types
of recursion but the statement is valid almost generally. Extreme cases are

of course recursion that theoretically allows XML documents with infinite
depth or complete subgraphs typical for document-centric XML documents.

This observation shows that although XML schemes provide lots of structural
information on XML documents they can be too loose or even inaccurate.

The last mentioned analysis indicates, that there are also types of con-

structs (such as simple mixed contents, DNA patterns, or relational patterns
etc.), that are quite common and can be easily and effectively processed using,

e.g., relational databases. Hence we can expect that a method that focuses
on such constructs would be much more effective than the general ones.

Last but not least, we must mention the problem of both syntactic and se-
mantic incorrectness of analyzed XML documents, DTDs, and XSDs. Authors

of almost all previously mentioned papers complain of huge percentage of use-
less sample data − an aspect which unpleasantly complicates the analyses. A
consequent question is whether we can include schema non-determinism and

ambiguity into this set of errors or if it expresses a demand for extension of
XML recommendations.

Conclusion

The main goal of this paper was to briefly describe, discuss, and classify
papers on analyses of real XML data and particularly their results and find-

ings. The whole overview shows that the real data show lots of regularities
and pattern usages and are not as complex as they are often expected to be.
Thus there exists plenty of space for improvements in XML processing based

on this enhanced categorization.

Acknowledgement

This work was supported in part by the National Programme of Research

(Information Society Project 1ET100300419).

100

References

1. The Extensible HyperText Markup Language (Second Edition). W3C Recommendation,
August 2002. http://www.w3.org/TR/xhtml1/

2. D. Barbosa and L. Mignet and P. Veltri. Studying the XML Web: Gathering Statistics
from an XML Sample. In World Wide Web, pages 413-438, Hingham, MA, USA, 2005.
Kluwer Academic Publishers.

3. R. Bayer. The Universal B-Tree for Multidimensional Indexing: General Concepts.
In WWCA ’97, Worldwide Computing and Its Applications, International Conference,
pages 198-209, Tsukuba, Japan, 1997. Springer.

4. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Recommendation, Febru-
ary 2004. http://www.w3.org/TR/rdf-syntax-grammar/

5. G. J. Bex and F. Neven and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. WebDB ’04, Proceedings of the 7th International Workshop on the
Web and Databases, pages 79-84, New York, NY, USA, 2004, ACM Press.

6. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition. W3C
Recommendation, October 2004, www.w3.org/TR/xmlschema-2/

7. T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler and F. Yergeau. Exten-
sible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, February
2004, http://www.w3.org/TR/REC-xml/

8. B. Choi. What are real DTDs like?. In WebDB ’02, Proceedings of the 5th International
Workshop on the Web and Databases, pages 43-48, Madison, Wisconsin, USA, 2002,
ACM Press.

9. D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. W3C
Recommendation, October 2004, www.w3.org/TR/xmlschema-0/

10. R. Fenk. The BUB-Tree. In VLDB ’02, Proceedings of 28th International Conference
on Very Large Data Bases, Hong Kong, China, 2002, Morgan Kaufman Publishers.

11. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIG-
MOD’84, Proceedings of Annual Meeting, pages 47-57, Boston, Massachusetts, 1984,
ACM Press.

12. M. Klettke and L. Schneider and A. Heuer. Metrics for XML Document Collections. In
XMLDM Workshop, pages 162-176, Prague, Czech Republic, 2002.

13. J. Kosek and M. Kratký and V. Snášel. Struktura reálných XML dokument̊u a metody
indexovańı. In ITAT 2003 Workshop on Information Technologies Applications and
Theory, High Tatras, Slovakia, 2003. (in Czech)

14. A. McDowell and C. Schmidt and K. Yue. Analysis and Metrics of XML Schema. In
SERP ’04, Proceedings of the International Conference on Software Engineering Re-
search and Practice, pages 538-544, 2004, CSREA Press.

15. L. Mignet and D. Barbosa and P. Veltri. The XML Web: a First Study. In WWW ’03,
Proceedings of the 12th international conference on World Wide Web, Volume 2, pages
500-510, New York, NY, USA, 2003, ACM Press.

101

16. I. Mlýnková and K. Toman and J. Pokorný. Statistical Analysis of Real XML Data
Collections. Technical report 2006/5, Charles University, June 2006,
http://kocour.ms.mff.cuni.cz/ mlynkova/doc/tr2006-5.pdf

17. M. Murata and D. Lee and M. Mani. Taxonomy of XML Schema Languages using
Formal Language Theory. In Extreme Markup Languages, Montreal, Canada, 2001.

18. A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were Afraid
to Ask (Extended Abstract). In Selected papers from the 3rd International Workshop
WebDB 2000 on The World Wide Web and Databases, pages 171-183, London, UK,
2001, Springer-Verlag.

19. J. Shanmugasundaram and K. Tufte and C. Zhang and G. He and D. J. DeWitt and
J. F. Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, pages 302-314, Edinburgh, Scotland, UK, 1999, Morgan Kaufmann.

20. H. S. Thompson and D. Beech and M. Maloney and N. Mendelsohn. XML Schema Part
1: Structures Second Edition. W3C Recommendation, October 2004,
www.w3.org/TR/xmlschema-1/

102

First eXist Workshop

Wolfgang Meier (eXist XML database)

Abstract

We would like to give eXist users and developers room to learn from each
other, present projects, discuss ideas, problems and our roadmap for the fu-

ture. The schedule is still very much open (time planned: 9am to 2pm). All
community members are invited to contribute and propose presentations or

topics to discuss. In particular, we would be interested to see presentations
on concrete projects you are working at, including problems you encountered

or wishes you may have. The workshop should not be too much developer-
oriented.

103

DocBook BoF

Jirka Kosek (www.kosek.cz)

Abstract

Are you using DocBook and want to know which new features are available

in a brand new DocBook version 5.0? Then come and join DocBook BoF.
During this BoF Jirka Kosek will present new features of DocBook V5.0.

You will see how to edit, validate and process DocBook V5.0 content and
how easily you can create customized DocBook versions using RELAX NG
schema language. At the end of the session there will be enough time do

discuss various DocBook issues with other users.
Jirka Kosek is a member of OASIS DocBook TC and a developer of open-

source XSLT stylesheets for processing DocBook content. Do not miss this
unique chance to meet core DocBook developer and register for XML Prague

2006 today.

DocBook V5.0 http://www.docbook.org/specs/wd-docbook-docbook-5.0a1.html

104

Perl XML BoF

Petr Cimprich, Petr Pajas (Ginger Alliance, Charles University, Prague)

Abstract

Perl is a powerful environment to work with XML, though not always easy
for new users. CPAN contains several hundreds of Perl XML modules and

choosing the right modules for your project requires some experience. During
this BoF, you can meet with authors and experienced users of Perl XML

CPAN modules, to learn from them, and to contribute by your own knowledge.

105

Xdefinition BoF

Václav Trojan (Syntea)

Abstract

Xdefinition is a tool that enables the description of both the structure and

the properties of data values in an XML document. Moreover, the Xdefinition
allows the description of the processing methods of specified XML objects.

With Xdefinition it is possible to validate XML documents and to describe
most of the XML transformations.

Xdefinition enables the merging in one source of both the validation of XML

documents and processing of data (using “actions”). Compared to the “clas-
sical” technologies based on DTD and XML schemas, the advantage of Xdef-

inition is higher readability and easier maintenance. Xdefinition has been
designed for processiong very large XML data files, up to many gigabytes in

size. Moreover, Xdefinition may serve as the tool for both description and
implementation of metalanguges based on XML technologies.

A basic property of Xdefinition is maximum respect for the structure of

the described data. The form of Xdefinition is − as described for XML data
− an XML document with a structure similar to the described XML origin

data. This allows you to quickly and intuitively design Xdefinitions for any
given XML data. In most cases this requires just the replacement of XML

data values with simple scripts. You can also gradually add to your script the
required actions for data processing, so you can take a step-by-step approach

to your work.

106

