
Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index-Driven XQuery Processing in the eXist
XML Database

Wolfgang Meier
wolfgang@exist-db.org

The eXist Project

XML Prague, June 17, 2006

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Project History

Summer 2000: eXist is born!
First experiments to implement an indexing scheme for
XML on top of a relational DBS

Inspired by:
D. Shin, H.Jang, H.Jin: “Bus: An Effective Index and Retrieval
Scheme in Structured Documents”. In Proceedings of the 3rd
ACM International Conference on Digital Libraries, 1998,
Pittsburgh, PA.

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Architecture Overview

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Document Storage

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

XQuery Implementation

eXist provides its own XQuery implementation
Efficiency depends on the indexing system
Basic processing logic is sometimes quite different from
in-memory XQuery processors

eXist’s approach to XQuery can not be understood without
knowing the indexing system and vice versa!

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Introduction

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Introduction

Node Identification Schemes

Every node in the tree is labelled with a unique identifier
Quick identification of structural relationships between a
set of given nodes
Direct access to nodes by their unique identifier
Reduce I/O operations by deciding XPath expressions
based on node IDs and indexes

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Introduction

Basic Operations

Decision: for two given nodes, decide if they are in a
specific relationship, e.g. parent/child,
ancestor/descendant,
preceding-sibling/following-sibling.

Reconstruction: for a given node, determine the IDs of nodes
in its neighbourhood, e.g. parent, next-sibling,
first/last child. Some identification schemes
don’t support reconstruction very well.

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Introduction

Distinguishing Features of Node ID Schemes

Numeric vs. path-based IDs
Fixed vs. variable size
Supported axes for decision and reconstruction
Frequency of reindex operations after tree changes
(update-friendly vs. static)

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Schemes Implemented in eXist

1 Level-Order Numbering (or Virtual Node Numbering)
The “old” numbering scheme

2 Dynamic Level Numbering (DLN)
Release scheduled for July 1

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Level-Order Numbering

eXist implements an extended version
ID assigned by level-order traversal of document tree
Sparse encoding: assume a fixed fan-out of k for all nodes
located on the same level of the tree
If a node has < k children, the remaining IDs are left empty
(virtual nodes)

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Extended Level-Order Numbering

Figure: Node IDs assigned by extended level-order numbering

document

1

chapter

3

section

7

section

10

chapter

2

section

5 6

chapter

4

section

98

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Benefits

Simple arithmetic computation
Determine the relationship between any two given nodes
(decision)
From a given ID we can reconstruct the IDs of all
neighbours
Works for all XPath axes, including child, descendant,
ancestor, parent . . .
Space efficient: as all IDs can be reconstructed, we don’t
need to store node IDs in the DOM

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Disadvantages

Sparse encoding: need to insert “virtual nodes” due to
completeness constraint
eXist did already raise the document size limit
considerably, but there’s still a:

Document size limit: if the resulting tree is rather imbalanced,
the indexer may run out of available IDs at some point, even
when using 64bit integer IDs

Document size limit depends on tree structure and is hard
to predict
Not update friendly: node insertions may trigger a
complete renumbering of the tree

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Switching to a New Scheme

Work to replace level-order numbering started in Dec.
2005
Sponsored by the University of Victoria node of the
Canadian TAPoR consortium
Redesign of the indexing core of eXist
Basic query logic remains the same, so XQuery
implementation is only partially affected
First public release scheduled for July 1

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Dynamic Level Numbering (DLN)

Path-based identification scheme
Hierarchical, variable length IDs
Inspired by Dewey’s decimal classification
Node IDs consist of the ID of the parent node as prefix and
a level value: 1, 1.1, 1.2, 1.2.1 . . .

Article:
Böhme, T.; Rahm, E.: Supporting Efficient Streaming and
Insertion of XML Data in RDBMS. Proc. 3rd Int. Workshop
Data Integration over the Web (DIWeb), 2004

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Dynamic Level Numbering

Figure: Node IDs assigned by DLN

document

1

chapter

1.2

section

1.2.1

section

1.3.2

chapter

1.1

section

1.1.1

chapter

1.3

section

1.3.1

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Main Benefits

No conceptual limit on document size due to variable-size
IDs
Deciding the relation between any two given nodes is a
trivial operation
DLN is a very update-friendly scheme (contrary to most
other schemes, see below)

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Problems

Depending on nesting depth, IDs can become very long
Main challenge: find an efficient binary encoding

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Example: IDs Picked From a Real TEI Document

1 <div6 e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 " x m l : i d = " JG10229 ">
2 <head e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 7 ">
3 <name e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 7 . 3 " type=" Dramenfigur ">FAUST< / name>
4 <stage e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 7 . 4 ">unruhig< / stage>
5 <stage e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 7 . 6 "> auf seinem Sessel am Pul ten< / stage>
6 < / head>
7 <sp e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 " x m l : i d = " JG10230 ">
8 < l g e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 ">
9 < l e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 7 " n=" 1 " pa r t = "N">Hab nun ach d ie Phi losophey< / l >

10 < l e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 8 " pa r t = "N">Medizin und Ju r i s t e rey , < / l >
11 < l e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 9 " pa r t = "N">Und l e i d e r auch d ie Theologie< / l >
12 < l e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 1 0 " pa r t = "N">
13 Durchaus<note e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 1 0 . 4 " place=" unspec i f i ed " anchored=" yes ">
14 < h i e x i s t : i d = " 1 . 4 6 . 9 . 7 . 8 . 8 . 4 . 1 0 . 4 . 4 ">Durchaus] < / h i > V o l l s t ä n d i g . < / note>
15 s t u d i r t mi t he isser Müh.
16 < / l >
17 < / l g >
18 < / sp>
19 < / d iv6>

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Binary Encoding of a Level Value

Variable-length encoding using fixed-size units (currently: 4
bits)
Efficient for streamed data: fan-out does not need to be
known in advance
Start with a minimal number of bits, further units are added
as needed
Highest 1-bits indicate number of units used

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Stream Encoding of a Single Level Value

Units Bit pattern ID range
1 0XXX 1..7
2 10XX XXXX 8..71
3 110X XXXX XXXX 72..583
4 1110 XXXX XXXX XXXX 584..4679
5 1111 0XXX XXXX XXXX XXXX 4680..37447
6 1111 10XX XXXX XXXX XXXX XXXX 37448..299591

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

DLN Encoding

A DLN is encoded as a sequence of stream-encoded level
values separated by a 0-bit.

ID Bit string Bits
1.3 0001 0 0011 9
1.80 0001 0 1100 0000 1001 17
1.10000.1 0001 0 11110001010011001001 0 0001 30

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Node Set Processing

Higher computational costs: comparing two DLN IDs is
slower than comparing two level-order IDs (long integer)
Many operations need to parse the bit string

⇒ Be careful with ID comparisons; avoid unnecessary sort
operations

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Node Identification Schemes in eXist

Processing Example: DLN.isChildOf()

1 public boolean i sCh i l dO f (NodeId parent) {
2 DLN other = (DLN) parent ;
3 i f (! s t a r t s W i t h (o ther))
4 return fa lse ;
5 i n t l e v e l s = getLevelCount (o ther . b i t I n d e x + 2) ;
6 return l e v e l s == 1;
7 }

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Node Updates

Using level-order numbering, inserting/updating a node is
very slow
We need to renumber and reindex all nodes following the
insertion point
Using more spare IDs does just delay the reindex

⇒ Bad scalability: reindex takes longer and longer as the
document grows

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Benefits of DLN

Using DLNs, we can now completely avoid renumbering the
document tree!

DLN introduces subvalues in addition to the level values
Between two nodes 1.1 and 1.2, a new node can be
inserted as 1.1/1
1.1 and 1.1/1 are on the same level of the tree
To insert a node before 1.1, we assign level-value 0, i.e.
1.0/1
The next node inserted after 1.0/1 then gets ID 1.0/0/1

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Applying an XUpdate

1 < x u : m o d i f i c a t i o n s version=" 1.0 " xmlns:xu=" h t t p : / /www. xmldb . org / xupdate ">
2 < x u : i n s e r t−before s e l e c t = " / document / chapter [2] ">
3 <xu:element name=" chapter ">
4 <xu:element name=" sec t ion " / >
5 < / xu:element>
6 < / x u : i n s e r t−before>
7
8 < x u : i n s e r t−before s e l e c t = " / document / chapter [1] ">
9 <xu:element name=" chapter ">

10 <xu:element name=" sec t ion " / >
11 < / xu:element>
12 < / x u : i n s e r t−before>
13 < / x u : m o d i f i c a t i o n s >

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Node Update Example

Figure: Node tree after updates

document

1

chapter

1.1

section

1.1.1

section

1.1.2

chapter

1.2

section

1.2.1

chapter

1.1/1

chapter

1.0/1

section

1.0/1.1

section

1.1/1.1

= inserted nodes

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Binary Encoding of Subvalues

To store a DLN with subvalue, we use a 1-bit to separate
subvalues
Level values are separated with a 0-bit as before
Example: 1.1/7 is encoded as 0001 0 0001 1 1000

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Updating Nodes via XUpdate and XQuery Update

Update Problems

Repeatedly insert a node in front of the first child of an
element
IDs grow very fast: 1.1/0/1, 1.1/0/0/1, 1.1/0/0/0/1
To handle this edge case, eXist triggers a defragmentation
run after several insertions
Defragmentation is required here anyway to reduce the
growth of dom.dbx

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

General Principles

Access to the persistent DOM is always expensive!

Try to process expressions without loading the actual DOM
node
Avoid traversals of the DOM tree

Most optimizations in eXist try to execute the query in such a
way that a structural joins can be applied to node sets

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Node References

Every node in eXist is identified by a tuple

<docId, nodeId>

docId unique identifier for the document
nodeId ID assigned by a level-order traversal of the

document tree

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Structural Index

Maps element and attribute QNames to a list of docId,
nodeId
Created by default for every element or attribute in a
document

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Structural Joins

Example: a/descendant::b
If all IDs of a and b nodes in the DB are known, a structural join
operation can be applied on the two node sets to evaluate the
path expression.

Based on decision as well as reconstruction
Join only compares the node IDs
No access to the persistent DOM
Structural joins replace tree traversals

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Structural Join

[1, 1.1]

[1, 1.2]

[1, 1.2.1]

[1, 1.3]

[1, 1.4]

[2, 1.1]

[2, 1.2]

Ancestors: A

[docId, nodeId]

[1, 1.1.2]

[1, 1.1.3]

[1, 1.2.1]

[1, 1.2.2]

[1, 1.3.1]

[2, 1.1.2]

[2, 1.2.1]

Descendants: B

[docId, nodeId]

A/descendant−or−self::B

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Index Usage and Structural Joins

Strategies

Depending on the context of the query, we can use different
strategies to process a ancestor-descendant join:

1 Iterate through the descendant list, recursively reconstruct
the parent ID for every descendant and check if it is
contained in the ancestor list

2 Iterate through the ancestor list and check if it has any
descendants in the descendant list

For the DLN scheme, strategy 2 can be more efficient than 1.

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Outline

1 Introducing eXist

2 Node Identification Schemes and Indexing
Introduction
Node Identification Schemes in eXist
Updating Nodes via XUpdate and XQuery Update

3 XQuery Processing
Index Usage and Structural Joins
Consequences for Query Processing

4 Outlook

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Consequences for Query Processing

Axes
For an explicit node selection by QName, A//B should be as
fast as A/B or even A/ancestor::B

A/B/C/D will usually be slower than A//D

Node join algorithm itself consumes less time than the
index lookups

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Consequences for Query Processing and Optimization

Optimization
Performance is best if the query engine can process a path
expression on two given node sets in one, single operation!

A join can typically handle the entire context sequence at
once
Context sequence may contain nodes from different
documents in different db collections

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Some Optimization Examples

Predicates and comparisons
//A[B = ’C’]

The predicate is processed as a set operation, filtering out all A
nodes for which the general comparison did not return a match.
If a range index is defined on A, the general comparison is
evaluated in a single index lookup.

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Some Optimization Examples

Wildcard Tests
//A/*[B = ’C’]

eXist defers the evaluation of the wildcard test until the
predicate has been evaluated. Nodes not matching the wildcard
are filtered out. No access to the persistent DOM needed!

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Further Consequences

eXist prefers XPath predicate expressions over an equivalent
FLWOR construct using a “where” clause!

Many users tend to formulate SQL-style queries
“for” expression forces the query engine into a step-by-step
iteration over the input sequence: possible optimizations
are lost
Whenever possible, the query engine will process a
“where” clause like an equivalent XPath with predicate

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Example

for $i in //entry where $i/@type = ’subject’
or $i/@type = ’definition’ or $i/@type =
’title’ return $i

could be rewritten as:

//entry[@type = (’subject’, ’definition’,
’title’)]

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Further Consequences

Using the ancestor or parent axis is likely faster than a
top-down approach!

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Consequences for Query Processing

Example

1 f o r $ sec t ion i n c o l l e c t i o n (" / db / a r t i c l e s ") / / sec t i on
2 f o r $match i n $ sec t ion / / p [conta ins (. , ’XML ’)]
3 r e t u r n
4 <match>
5 <sec t ion>{$ sec t ion / t i t l e / t e x t () } < / sec t ion >
6 {$ match }
7 < / match>

Faster formulation

1 f o r $match i n c o l l e c t i o n (" / db / a r t i c l e s ") / / sec t i on / / p [conta ins (. , ’XML ’)]
2 r e t u r n
3 <match>
4 <sec t ion>{$ sec t ion / a n c e s t o r : : t i t l e / t e x t () } < / sec t ion >
5 {$ match }
6 < / match>

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Outlook: Indexing

Indexing system needs to be more modularized
Decouple index create and maintenance from the db core
Plug in new index types (spatial indexes, n-gram. . .)
Better design, so indexes can provide relevant information
to query optimizer

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Outlook: Query Optimization

Currently, most optimizations are implicit
“Query plan” is hard-coded into the query engine
Hard to maintain/debug/profile

eXist needs a better, query-rewriting optimization engine!

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Query Rewriting

Exploit the fact that eXist supports fast evaluation along the
ancestor or parent axes
Move higher selective subexpressions to the front
Reduce size of node sets to be processed
Reduce I/O operations

There’s still a huge potential for query optimization!

Introducing eXist Node Identification Schemes and Indexing XQuery Processing Outlook

Thank you!

Website:
http://exist-db.org

Contact:

Email: wolfgang@exist-db.org
IRC http://irc.exist-db.org

	Introducing eXist
	Node Identification Schemes and Indexing
	Introduction
	Node Identification Schemes in eXist
	Updating Nodes via XUpdate and XQuery Update

	XQuery Processing
	Index Usage and Structural Joins
	Consequences for Query Processing

	Outlook

