
a conference on XML

Lesser Town Campus

Prague, Czech Republic

June 16-17, 2007

Contents

Contents 3

General Information 5

Preface 7

Program 8

Processing XML With Fun
Eric van der Vlist 11

XProc: An XML Pipeline Language
Norman Walsh 13

Applications of XML pipelines to web applications with XPL
Erik Bruchez 25

Generative XPath

Oleg Parashchenko 33

XML Processing by Streaming

Mohamed Zergaoui 51

Python and XML
Uche Ogbuji 53

XLinq
Štěpán Bechynský 55

Beyond the simple pipeline: managing processes over time

Geert Bormans 57

DocBook: Case Studies and Anecdotes

Norman Walsh 67

Open XML Overview
Štěpán Bechynský 69

Processing the OpenDocument Format
Lars Oppermann 71

Leapfrogging microformats with XML, linking, and more

Uche Ogbuji 83

The Generic Transformation Architecture

Bryan Rasmussen 87

General Information

Date
Saturday, June 16th, 2007

Sunday, June 17th, 2007

Location
Lesser Town Campus, Lecture Halls S5, S6

Malostranské náměst́ı 25, 110 00 Prague 1, Czech Republic

Speakers
Štěpán Bechynský

Geert Bormans
Erik Bruchez
Uche Ogbuji

Lars Oppermann
Oleg Parashchenko

Bryan Rasmussen
Eric van der Vlist

Norman Walsh
Mohamed Zergaoui

Organizing Comitee

Petr Cimprich, Ginger Alliance / U-Turn Media Group
Tomáš Kaiser, University of West Bohemia, Pilsen
Jaroslav Nešetřil, Charles University, Prague

Jirka Kosek, xmlguru.cz / University of Economics, Prague
James Fuller, Webcomposite

Advisory Board

Eric van der Vlist, Dyomedea
Jaroslav Pokorný, Charles University, Prague

Proceedings Typesetting

Vı́t Janota
Jirka Kosek

5

Preface

This publication contains papers presented at XML Prague 2007.

XML Prague is a conference on XML for developers, markup geeks, infor-
mation managers, and students. The conference focuses this year on Alter-

native Approaches to XML Processing.

Experts will be speaking, for the two days, about various techniques for
optimal processing of XML, this includes discussion on emerging topics such

as pipeline processing of XML and how to work with XML office applications.

This year, all participants are encouraged to participate either through
poster session or attending the various BoF sessions that run concurrently
throughout the weekend.

The conference is hosted at the Lesser Town Campus of the Faculty of

Mathematics and Physics, Charles University, Prague. XML Prague 2007
is jointly organized by the Institute for Theoretical Computer Science and

Ginger Alliance in the framework of their cooperation supported by project
1M0545 of the Czech Ministry of Education.

The conference joins the academic world with the world of IT professionals.
The organizers hope this year’s conference shall be enjoyable for both audience

and speakers, providing a dynamic interchange and environment to discuss
XML technologies.

This is the third year we organize this event. Information about XML

Prague 2005 and 2006 was published in ITI Series 2005-254 and 2006-294
(see http://iti.mff.cuni.cz/series/).

7

Program

Saturday, June 16, 2007 − Lecture Hall S5

9:00 Processing XML With Fun, Eric van der Vlist

9:35 XProc: An XML Pipeline Language, Norman Walsh

10:35 Coffee Break

11:05 Applications of XML pipelines to web applications with
XPL, Erik Bruchez

12:10 Generative XPath, Oleg Parashchenko

12:40 Lunch Break

13:55 XML Processing by Streaming, Mohamed Zergaoui

15:00 Python and XML, Uche Ogbuji

16:00 Coffee Break

16:30 XLinq, Štěpán Bechynský

17:30 Poster Sessions

17:45 End of Day

8

Sunday, June 17, 2007 − Lecture Hall S5

9:00 Beyond the simple pipeline: managing processes over time,
Geert Bormans

9:35 DocBook, Norman Walsh

10:35 Coffee Break

11:05 Open XML Overview, Štěpán Bechynský

11:40 Processing OpenDocument, Lars Oppermann

12:10 Lunch Break

13:25 Leapfrogging microformats with XML, linking, and more,
Uche Ogbuji

14:30 A Generic Transformation Architecture, Bryan Rasmussen

15:00 End of Day

Sunday, June 17, 2007 − Lecture Hall S6

9:00 PHP and XML BoF

10:35 End of Session

9

Produced by

Institute for Theoretical Computer Science

(http://iti.mff.cuni.cz/)

Ginger Alliance (http://www.gingerall.com/)

with support of

University of West Bohemia in Pilsen (http://www.zcu.cz/)

General Sponsors

Microsoft (http://www.microsoft.com/)

Sun Microsystems (http://www.sun.com/)

Co-Sponsors

U-Turn Media Group (http://www.u-turnmediagroup.com/)

OASIS (http://www.oasis-open.org/)

Main Media Partner

ROOT.cz (http://root.cz/)

Media Partners

jaxmagazine (http://jaxmag.com/)

oXygen XML editor (http://www.oxygenxml.com/)

<xml>fr (http://xmlfr.org/)

Webcomposite (http://www.webcomposite.com)

10

Processing XML With Fun

Eric van der Vlist (Dyomedea)

Processing XML With Fun

If you find XML processing dull and boring, then you are probably using

last century’s techniques such as the DOM and this talk is for you.

You will see during the two days of XML Prague 2007 that you have no
excuse to process XML without fun and in this presentation I’ll do a quick

review of the most promising techniques that can save you from the DOM
without loosing the power of XML: it can be seen as a road map that gives you

the big picture before the following speakers lead you through more detailed
areas.

The focus of the talk is on data binding APIs, programming extensions and

XMP pipeline languages.

If you find out that you’re spending most of your time to compensate

impedance mismatches between XML trees and programming objects, you
definitely need to have a closer look at data bindings libraries: this is exactly
what they can do for you!

The good news is that whatever object oriented programming language you
use, you should be able to find such a tool.

If your programming language is statically typed, such as Java, C# or

C++, the classes matching the structure of your documents will have to be
explicitly defined and they can eventually be generated from a XML schema.

If you’re more lightweight and if your language is dynamically typed, you’ll

have the option to use a binding library that dynamically generate classes for
you if they don’t exist.

In both cases, using XML with your favorite programming language be-

comes as easy as using JSON in JavaScript!

If this isn’t enough for you and if you believe that XML is so important
than XML fragment should be considered as native datatypes, you’ll be happy

to learn that this is already happening in JavaScript and C# and that similar
proposals have been made for other programming languages. If you are using

one of these other languages, it’s time to bug their authors so that they catch
up!

11

The last category of tools that can liberate you from low level manipulations

are XML pipeline languages: they are to XML what make or ant is to source
code or what Unix pipes are to programs. You’ll find them very handy as soon

as you’ll need to chain more than a couple of treatments on XML documents.

12

XProc: An XML Pipeline Language

Norman Walsh (Sun Microsystems, Inc.)

Abstract

Notes on the design and continued progress of XProc: An XML Pipeline

Language currently being developed by the XML Processing Model Working
Group at the World Wide Web Consortium. Here we’ll identify some of the

use cases that XProc is designed to address, describe highlights of the current
design, and discuss the state of the latest working draft.

Introduction

One consequence of the tremendous success of XML as a document- and

data-interchange format is that a great many applications now perform some
sort of XML processing. This processing ranges from simply loading config-

uration parameters out of an XML file to complex query and transformation
as part of the critical functionality of the application.

Another consequence is a great proliferation of XML-related specifications.
There are now several validation technologies (DTDs, W3C XML Schemas,
RELAX NG grammars, Schematron), several transformation and query tech-

nologies (XSLT 1.0, XSLT 2.0, XQuery 1.0), several presentation vocabular-
ies (XHTML, SVG, MathML, XSL-FO), and a suite of related technologies:

XInclude, XML Base, xml:id, XML HTTP Requests, Digital Signatures, En-
cryption, etc. The preceding list is neither complete, nor is any list you can

write today likely to be complete tomorrow. The number and variety of XML
specifications and technologies is likely to continue to grow for some time.

Many of these technologies can be seen as the building blocks for more
complex applications. [2] describes a whole range combinations required by
different applications:

• Appling a sequence of operations

• XInclude processing

• Parsing, validating, and transforming

• Aggregating several documents

13

• Processing single documents

• Processing multiple documents

• Processing subparts of a document

• Extracting MathML

• Styling an XML document in a browser

• Running a custom program

• Generating and applying the results of HTTP requests

• Inserting XML fragments

• Deleting XML fragments

• Wrapping and unwrapping XML fragments

• Exchanging SOAP messages

• Etc.

If you have any experience with XML, you’ll recognize that these are hardly
new problems. The question of how to link together pieces of XML infras-

tructure arose before the ink was even dry on the XML Recommendation. In
fact, the problem has been tackled many times and in many different ways.
The XProc.org1 site lists more than a dozen such technologies among the

Background Materials2.

XProc is an attempt at standardization. While all of the extant solutions

work in their own right, the lack of a standard mechanism means that there’s
very little portability and interoperability among tools. My Makefile won’t

work with your Ant script. Your SmallX pipeline isn’t compatible with my
SXPipe pipeline. Etc.

The development of XProc is motivated by a small set of design goals:

• Standardization, not design by committee

• Able to support a wide variety of components

• Prepared quickly

• Few optional features

• Relatively declarative

• Amenable to streaming
1http://xproc.org/
2http://xproc.org/#background

14

• “The simplest thing that will get the job done.”

With that in mind, let’s consider pipelines in general and XProc pipelines
in particular.

What is a pipeline?

In the words of the specification, [1], an “XML Pipeline specifies a se-
quence of operations to be performed on a collection of XML input documents.

Pipelines take zero or more XML documents as their input and produce zero
or more XML documents as their output.”

Conceptually, a pipeline is a sequence of steps. Each step takes the output
of the preceding step, performs some operation on it, and produces a new

output which will be consumed by the step that follows it.

The analogy of boxes connected by physical pipes through which water
flows is actually remarkably illustrative. For example, consider the following

example from the specification:

Figure 1: A simple, linear XInclude/Validate pipeline

Viewed from the outside, you have a box with two holes in the top and

one in the bottom. Pour water into the top and it comes out “processed” at
the bottom. Looking inside the box, we can see how the “Document” and

15

“Schema” openings at the top of the box are connected to the tops of other

boxes and how these other boxes are connected to each other.

In this example, the XInclude and Validate boxes, called “steps” in the
pipeline are atomic, they don’t have any internal structure, but in general,

each box can have an arbitrary number of openings, called “ports”, and ar-
bitrary internal structure.

In the context of XProc, the “water” that flows through the pipes are XML
documents. Not elements or nodes, not Infosets or PSVIs or XDMs, but XML
documents. XProc doesn’t impose any constraints on the implementation of

connections between the steps except that they be XML documents.

XProc Pipelines

With the caveat that [1] is still a Working Draft and subject to change,
here is an XProc pipeline that instantiates the example shown in Figure 1:

<p:pipeline name="fig1" xmlns:p="http://www.w3.org/2007/03/xproc">
<p:input port="source"/>
<p:input port="schemaDoc" sequence="yes"/>
<p:output port="result">
<p:pipe step="valid" port="result"/>

</p:output>

<p:xinclude name="include">
<p:input port="source">
<p:pipe step="fig1" port="source"/>

</p:input>
</p:xinclude>

<p:validate-xml-schema name="valid">
<p:input port="source">
<p:pipe step="include" port="result"/>

</p:input>
<p:input port="schema">
<p:pipe step="fig1" port="schemaDoc"/>

</p:input>
</p:validate-xml-schema>

</p:pipeline>

Example 1: A simple, linear XInclude/Validate XProc pipeline

The steps in a pipeline can be divided into two broad classes, compound
steps and atomic steps. Compound steps, like p:pipeline declare their in-

puts and outputs and contain additional steps which define their semantics.
Atomic steps, like p:xinclude and p:validate-xml-schema, have explicit

declarations which identify their inputs and outputs; they cannot contain
additional steps.

This pipeline defines two input ports, “source” and “schemaDoc”, and

16

one output port, “result”. The “schemaDoc” port will accept a sequence

of documents, the other ports will only accept a single document. What this
means is that this pipeline expects two inputs and produces one output, that’s

its interface to the outside world.

The body of this pipeline consists of two steps, an XInclude step and a
validate (with W3C XML Schema) step.

In order to fully understand these steps, it will be helpful to look at their
declarations:

<p:declare-step type="p:xinclude">

<p:input port="source" sequence="no"/>

<p:output port="result" sequence="no"/>

</p:declare-step>

<p:declare-step type="p:validate-xml-schema">

<p:input port="source" sequence="no"/>

<p:input port="schema" sequence="yes"/>

<p:output port="result" sequence="no"/>

<p:option name="assert-valid" value="true"/>

<p:option name="mode" value="strict"/>

</p:declare-step>

The XInclude declaration tells us that the XInclude step has exactly one
input port, named “source”, and one output, named “result”. The validate

component has two inputs, “source” and “schema”, and one output, “result”.
(We’ll ignore the options for now.)

The p:pipe elements tell us that these steps get their input from other
steps. In particular, the p:xinclude reads the pipeline’s “source” input and

the p:validate-xml-schema reads the XInclude’s “result” output and the
pipeline’s “schemaDoc”.

The p:pipe in the pipeline’s p:output tells us that the output of the
pipeline is the output of the validate step.

The default semantics of the validate step are that it fails if the document

is not valid. Therefore this pipeline either produces the XInclude-expanded,
validated document or it fails.

XProc Language Constructs

The XProc language consists of six core language constructs, exposed as

compound steps, and a library of atomic steps. In this section, we’ll consider
each of the compound steps.

17

Pipelines

A p:pipeline is a wrapper around a user-defined set of steps. This is the

root of a pipeline.

For Each

A p:for-each iterates over a sequence of documents. Many steps, like
the XInclude and validate steps we saw earlier, do not accept a sequence of

documents. If you want to apply those steps to all of the documents in a
sequence, you can wrap them in a p:for-each.

Each output of the p:for-each receives the sequence of documents pro-
duced by each iteration on that port.

Viewport

A p:viewport operates on portions of a document. In other words, it can
process each section of a large document. The result of the viewport is a

copy of the original document with each of the processed sections replaced by
the result of the processing applied by the viewport.

Consider this example:

<p:pipeline xmlns:p="http://www.w3.org/2007/03/xproc">
<p:input port="source">
<p:inline>
<document>
<title>Document title</title>
<section>

<title>First section title</title>
<para>Some text</para>

</section>
<section>

<title>Second section title</title>
<para>Some text</para>

</section>
</document>

</p:inline>
</p:input>
<p:output port="result"/>

<p:viewport match="section">
<p:output port="result"/>
<p:xslt>
<p:input port="stylesheet">
<p:inline>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/1999/xhtml"
version="1.0">

18

<xsl:template match="section">
<div><xsl:apply-templates/></div>

</xsl:template>
<xsl:template match="title">
<h2><xsl:apply-templates/></h2>

</xsl:template>
<xsl:template match="para">
<p><xsl:apply-templates/></p>

</xsl:template>
</xsl:stylesheet>

</p:inline>
</p:input>

</p:xslt>
</p:viewport>

</p:pipeline>

Example 2: XProc Viewport

Here we use inline documents to specify the source (or the default source,
in any event) and the stylesheet. We’ve also use default input bindings to

simplify the pipeline. The result is:

<?xml version="1.0" encoding="UTF-8"?>
<document>

<title>Document title</title>
<div xmlns="http://www.w3.org/1999/xhtml">
<h2>First section title</h2>
<p>Some text</p>

</div>
<div xmlns="http://www.w3.org/1999/xhtml">
<h2>Second section title</h2>
<p>Some text</p>

</div>
</document>

Example 3: XProc Viewport Results

As you can see, each of the section elements has been independently
transformed and replaced by the transformation.

Choose

The p:choose component allows the pipeline author to specify different
pipelines (perhaps validating with one schema or another) based on the eval-

uation of an XPath 1.0 expression.

Try/Catch

The p:try and p:catch steps provide a level of exception handling. Any

error that occurs in the p:try branch will be captured and the p:catch

branch will be evaluated instead. In other words, if no error occurs in the

19

p:try branch, then that is the result of the step otherwise, the p:catch

branch is evaluated and its output is the result of the step.

Group

The p:group element is a generic wrapper for collecting together a set of
steps. This is often done so that options and parameters can be calculated

once for a set of steps.

XProc Step Library

The step library consists of almost thirty atomic steps that can be used in a

pipeline. Implementors may provide additional components and may provide
mechanisms that allow others to create thier own extension components.

In addition to steps for many of the standard XML technologies (XInclude,

validate, XSLT, etc.), there are a variety of smaller “micro-components” that
can perform simple operations such as deleting elements or attributes, insert-

ing content, renaming namespaces, replacing strings, wrapping and unwrap-
ping content, etc.

Although all of these simpler steps can, and often are, implemented using
XSLT, the advantage of these simpler steps is that many of them can be

streamed.

User-defined Libraries

One of the significant features of XProc is that a p:pipeline is itself a step.

Pipeline authors can modularize their pipelines by decomposing complex tasks
and calling their own pipeline modules.

If, for example, I often processed DocBook documents, I could create a
pipeline library with a “DocBook-to-HTML” pipeline:

<p:pipeline-library xmlns:p="http://www.w3.org/2007/03/xproc"
namespace="http://nwalsh.com/xproc/pipelines">

<p:pipeline name="docbook-to-html">
<p:input port="source"/>
<p:output port="result"/>

<p:xinclude/>

<p:validate-relax-ng>
<p:input port="schema">
<p:document href="/home/ndw/docbook.org/xml/5.0CR3/rng/docbook.rng"/>

</p:input>
</p:validate-relax-ng>

20

<p:xslt2>
<p:input port="stylesheet">
<p:document href="/sourceforge/docbook/xsl2/base/html/docbook.xsl"/>

</p:input>
</p:xslt2>

</p:pipeline>

</p:pipeline-library>

Example 4: Pipeline Library

If I then wished to process a particular document, say a paper for a con-
ference, I could import that library and use it:

<p:pipeline xmlns:p="http://www.w3.org/2007/03/xproc"
xmlns:px="http://xproc.org/2007/03/xproc/ex"
xmlns:nw="http://nwalsh.com/xproc/pipelines">

<p:input port="source">
<p:document href="xproc.xml"/>

</p:input>

<p:import href="library.xml"/>

<nw:docbook-to-html/>

<p:store name="store">
<p:option name="href" value="xproc.html"/>

</p:store>

<px:tidy name="tidy">
<p:option name="href" select="/*/@href">
<p:pipe step="store" port="result"/>

</p:option>
</px:tidy>

</p:pipeline>

Example 5: XML Prague Paper Pipeline

The px:tidy step is an example of an extension step. It performs “Tidy”

processing on an HTML document. The p:store step produces, as it’s out-
put, a document which includes the URI where the document was actually

stored. The href option of the px:tidy step uses XPath to extract that
value.

State of the art

The design of XProc has come a long way. Our Working Group charter

expires in October, 2007. There is every reason to be optimistic that we’ll
have a completed W3C Recommendation before our charter expires.

21

Most questions of language design, syntax and semantics, have been settled.

Some work remains on the details of the step library. That’s one area where
user feedback might have a significant influence on the time required to finish.

Luckily, I believe we have all the components we need to satisfy the [2].
At the time of this writing, the two largest issues left undecided have to

do with handling parameters and dealing with how pipeline state is exposed
inside atomic components.

But, with luck and hard work, these questions will be answered before you
read this.

22

References

1. N. Walsh, A. Milowski (eds.). XProc: An XML PipelineLanguage. W3C Working Draft,
5 April 2007.
http://www.w3.org/TR/xproc/

2. A. Milowski (ed.). XML Processing Model Requirements and Use Cases. W3C Working
Draft, 11 April 2006.
http://www.w3.org/TR/xproc-requirements

23

24

Applications of XML pipelines to

web applications with XPL

Erik Bruchez (Orbeon, Inc.)

Abstract

The XProc XML pipeline language is well on its way to be standardized at
W3C. But, exactly, what are XML pipelines good for? And how do they work

in practice?

In this talk, we attempt to answer these questions by presenting use cases for

XML pipelines implemented with XPL, a close cousin of XProc. We show in
particular how XML pipelines fill a niche in the constantly evolving web appli-
cations ecosystem. Can XML pipelines help deal with multiple web browsers?

With REST services? With the plethora of syndication formats such as RSS
and Atom? With Ajax? We suggest that the answer is yes in all these cases.

We also show how XML pipelines can play a particularly interesting role
when used in conjunction with XForms.

The talk will feature live demonstrations using open source software.

XPL and XProc

XPL stands for XML Pipeline Language . It was developed by Alessandro
Vernet and Erik Bruchez at Orbeon in 2002, along with an implementation
which became open source in 2004 under LGPL. In 2005, the authors sub-

mitted a specification for XPL at W3C. They now participate in the XProc
Working Group at W3C, which was created subsequently.

XPL is very close from XProc (as of May 2007). In particular, both lan-
guages:

• Have the same goal: performing sequences of operations on XML docu-

ments.

• Have an XML-based syntax.

• Support the exchange of XML documents between “steps” such as XSLT,
XInclude, and many more.

25

• Support steps with multiple inputs and outputs.

• Support iterations and conditionals.

XProc possesses features over XPL, including:

• Exception handling.

• Viewports.

• Passing sequences of documents instead of just one document between
steps.

• Parameters and options.

• A standard step library.

For most practical purposes, XProc can be seen as a superset of XPL. Most

existing XPL pipelines can be transformed into XProc with a simple XSLT
stylesheet, provided that the same steps are available on both sides. (This
means that the use cases presented in this paper can be easily implemented

with XProc.) Conversely, a subset of XProc can be implemented on top of
XPL with a similar transformation.

XPL and Orbeon Forms

XPL is at the core of the open source Orbeon Forms platform. Orbeon
Forms has evolved over time from a general-purpose XML transformation

platform, to a web presentation platform, and finally to a forms solution. In
that solution, XPL holds together critical parts of the platform, including:

• Putting together models and views in an MVC page architecture.

• Providing configurable post-processing of resulting documents, including
XForms processing.

• Implementing an Ajax server hooking-up to the XForms engine.

• Implementing lightweight REST services that can be called from XForms

submissions.

The following sections present these use cases in more details.

XML Pipelines and MVC

A Model-View-Controller (MVC) architecture is one that clearly separates
data and presentation. XML pipelines can be used as controllers in such an

architecture. Consider a pipeline provided with access to an HTTP request
and response. In this pipeline:

26

• A “request” step extracts a portion of the URL path.

• A “choose” step contains one “when” branch per path to process.

• Each branch does the following:

– Call a “model” sub-pipeline step in charge of obtaining the data to

present.

– Call a “view” sub-pipeline, stylesheet or XHTML+XForms step to

format the data obtained by the model.

• A “serialize” step sends the result back to the client as serialized HTML.

Rather than requiring application authors to write controller pipelines, it

is possible to define a higher-level description of application components. For
example, a page declaration can look as follows:

<page id="view-account" path-info="/atm-view-account"

model="view-account-model.xpl"

view="view-account-view.xhtml"/>

The description is then “compiled” into an actual XPL pipeline (this can

be done with XSLT or natively) and the pipeline is executed.

XML Pipelines, Document Types and Client Capa-

bilities

Building on the basic MVC architecture presented above, consider the dif-

ferent tasks that can possibly be performed on a document before actually
reaching a web client:

• A pseudo-HTML document (i.e. an XML document representing a plain

HTML document in no namespace):

– Is serialized according to the XSLT 2.0 HTML serialization rules.

– Is accompanied by a text/html media type.

• Depending on the client, an XHTML document may be processed in
different ways:

– If the client supports XHTML (Firefox), the document:

∗ Is serialized according to the XSLT 2.0 XHTML serialization rules.

∗ Is accompanied by an application/xhtml+xml media type.

– If the client doesn’t support XHTML (IE), the document:

27

∗ Is moved from the XHTML namespace to the null namespace.

∗ Is serialized according to the XSLT 2.0 HTML serialization rules.

∗ Is accompanied by a text/html media type.

• An XHTML document containing XForms markup may be processed in

different ways:

– If the client supports XForms, the document is sent as described above
for XHTML clients.

– If the client does not support XForms:

∗ The document goes through an “XForms” step that transforms
XHTML+XForms into XHTML+JavaScript+CSS.

∗ The resulting XHTML document is then processed as described
above.

• An XSL-FO document is converted to (for example) PDF and sent as

application/pdf.

• An Atom or RSS document:

– Is serialized according to the XSLT 2.0 XML serialization rules and
accompanied with the proper media type.

– Alternatively, an RSS document may be first converted to Atom with
an “XSLT” step (or the other way around).

• An XML document embedding test or binary (Base64) data is serialized

as plain text or binary.

• Any other document is simply sent to the browser according to the XSLT
2.0 XML serialization rules.

A single pipeline (which can be called an “epilogue” pipeline) can imple-
ment the above with an outer “choose” step testing on the content of the

document (typically the root element of the document, but XForms for ex-
ample requires to look deeper).

Similarly, an epilogue pipeline can also be used to adapt content to portal

environments, which require HTML fragments instead of complete HTML
documents, using an “XSLT” step to extract the content of an HTML or

XHTML body before serializing it.

XML Pipelines and REST

A typical REST service receives XML data from a client browser, and
returns back XML (in practice, many variations on the payload are possible,

28

including using JSON, HTML, or plain text formats). Given rich enough

steps, pipelines can be used to implement a wide range of REST services. As
an example, this is a simple service which has the task of returning a window
of results in a search. It can be expressed this way with a pipeline:

• A “request” step to extract the data submitted by XForms. This can be

a POSTed document, URL parameters, etc.

• A “validation” step validates the posted data.

• A “SQL” step calls up a relational database to obtain the search results.

• A “serialize” step to convert the XML result into a stream sent to an
HTTP response.

Pipelines can also be used to implement adapter services. For example,

assume a REST service which doesn’t support XML but returns a plain text
format. An adapter pipeline uses, in this order:

• A “request” step to extract the POSTed data.

• An “http” step to call the service with the extracted data.

• An “XSLT 2.0” step with regular expressions to extract the data returned
by the service and format an XML response.

• A “serialize” step to convert the XML result into a stream sent by to an

HTTP response.

XML Pipelines and Ajax

The server component of an Ajax application is often just a REST service,
its only particularity being that it is consumed by a web browser. In some

cases, Ajax servers perform more sophisticated tasks that can only be imple-
mented natively. But even in such cases, pipelines can (you guessed it) take
care of a lot of the plumbing.

As an example of this, Orbeon Forms has a built-in Ajax server which is
the interface between the client-side part of the XForms engine (written in

JavaScript and running in the browser) and the server-side part of the engine
(written in Java and running on the server). It performs the following tasks:

• A “request” step extracts request headers and HTTP method.

• When the request is an HTTP POST:

– A “request” step extracts the body of the message and exports it as
a temporary URI.

29

– A “generator” step dereferences the URI and parses it as XML.

– The payload is validated with Relax NG.

– An “XForms server” step receives the XML payload and processes it.

– The response from the XForms server is validated with Relax NG.

– A “serializer” step serializes the response from the XForms server and
sends it back through HTTP as XML.

• When the request is a pseudo-Ajax submission (used for background up-
loads in HTML iframes):

– A “request” step extracts request parameters.

– An “XSLT” step formats the parameters into an XML document.

– The payload is validated with Relax NG.

– An “XForms server” step receives the XML payload and processes it.

– The response from the XForms server is validated with Relax NG.

– An “XSLT” step serializes and embed the XML response into a small
XHTML document.

– A “serializer” step serializes the response from the XForms server and

sends it back through HTTP as HTML.

Pipelines can also be used to solve the lack of cross-domain support from
XMLHttpRequest. A proxy pipeline can:

• Use a “request” step to obtain relevant request data.

• Use an “http” step to forward the step to an external service. Because

this runs on the server, there is no cross-context issue.

• Forward the response back to the browser through HTTP.

XML Pipelines and XForms

XForms applications interact with the world mainly through a mechanism

of submissions (expressed using the xforms:submission element) which allow
serializing XML instance data and submit the serialization through a partic-

ular protocol. XML data can be returned by the protocol as well. There is
no limit to the number of protocols and serializations supported by XForms
submissions. XForms 1.1 (currently in Last Call) specifies the behavior for

the http, https, file, and mailto protocols and provides different serializations
including SOAP, but implementations are allowed to support additional pro-

tocols and serializations. An implementation could define serializations to
and from JSON over HTTP, for example.

30

XForms 1.1 extends the HTTP and HTTPS support available in XForms

1.0, with the intent to fully support REST interfaces. This allows XForms
applications to natively talk with RESTful services that speak XML. However,

when services do not directly support REST (or SOAP) with XML, there is
a clear impedance mismatch. XML pipelines can play the role of impedance

adapters between XForms and non-REST services, and even between XForms
and REST services where adapting protocols is desirable.

There are also tasks that are not conveniently done directly in XForms.
For example, XForms does not directly support XSLT 2.0, but an XSLT
2.0 transformation can be implemented in an XML pipeline called from an

XForms submission.
With XForms, i18n resources and vocabularies (used for example to fill-out

selection controls) are often stored externally and loaded into XML instance
data during XForms initialization. When these resources are static, they can

simply be loaded off a regular web server. When they must come from a
database or other locations, again there is an impedance mismatch, which is
elegantly solved with pipelines.

Conclusion

The use cases described in this paper show that XML pipelines can play
the role of a glue that allows putting together web applications entirely out

of XML technologies. The XProc specification makes one more component
of this architecture a standard. The last missing piece of the puzzle may well

be a standard specification for a web application controller.

31

32

Generative XPath

Oleg Parashchenko (Saint-Petersburg State University, Russia)

Abstract

Generative XPath is an XPath 1.0 implementation, which can be adapted to
different hierarchical memory structures and different programming languages.

It is based on a small, easy to implement virtual machine, which is already
available for different platforms, including plain C, Java and .NET.

Introduction

As a consultant in the areas of XML and technical documentation, I often
face the task of data transformation. In many cases I can’t use convenient

tools such as XPath or XSLT (at least, not initially), rather I am limited to
the scripting tools of the source platform.

In my projects, the source data is tree-like, and one of the most required of
functionalities is navigating over trees. After implementing this functionality

several times for different platforms, I noticed I’m writing essentially the same
code again and again, with the only difference being the actual programming

language and tree data type. There were two problems:

• The code is hard to write, debug and maintain. What is of few characters
length in XPath, is several screens of actual code.

• Re-phrasing Greenspun’s Tenth Rule of Programming: “Any sufficiently
complicated tree navigation library contains an ad hoc informally-specified

bug-ridden slow implementation of half of Xpath.”

Obviously, it’s better to use XPath than custom libraries. But what’s
if XPath is not available for the platform of choice? Implementing XPath

correctly isn’t an easy task.
Here is an alternative approach. Generative XPath is an XPath 1.0 pro-

cessor that can be adapted to different hierarchical memory structures and
different programming languages. Customizing Generative XPath to a spe-

cific environment is several magnitudes of order easier than implementing
XPath from scratch.

33

The paper is organized as follows. First, I introduce a few use cases for using

XPath over hierarchical data. Then the architecture of the Generative XPath
approach is explained, followed by a description of the Virtual Machine (VM).

The next sections are highly technical and details-oriented, they contain the
specification of the interfaces between a program and the VM. The paper

continues by highlighting some features of the compiled XPath code. Then
we talk about correctness and performance of our system. Finally, we compare

Generative XPath with related work and outline further development.

Generative XPath downloads can be found at the XSieve project page:

http://sourceforge.net/projects/xsieve/.

Use cases

Here is a selection of a few use cases when XPath over something, which is

not exactly XML, is possible.

File system

Many XPath tutorials say that the basic XPath syntax is similar to filesys-
tem addressing. Indeed, in both cases we have relative and absolute paths,

and the step separator is slash. Representing the file system as XML is a
topic of several projects. For example, one of them, FSX [1], was presented

by Kaspar Giger and Erik Wilde at the WWW2006 conference.

Figure 1: File system as tree

Compilers and interpreters

Compilers and interpreters deal a lot with abstract syntax trees (ASTs),

which appear as the result of parsing expressions. A possible AST for the
expression 1+b+2*3 is shown on the picture.

Figure 2: AST for the expression 1+b+2*3’

34

Suppose that an optimizer wants to calculate expressions at the compilation

stage. One of the possible reductions would be to use “mult” operations when
operands are numbers. A corresponding XPath over an AST might look so:

//mult[count(number)=count(*)]

Text processors

The visual representation of a document introduces an informal structure,

with such elements as titles, paragraphs or emphasis.

Figure 3: A sample document

The informal structure can be approximated by a tree, in which the nodes

are implied by the styles and formatting overrides.

Figure 4: The tree, inferred from the formatting

Now it is easy to get, for example, all the titles of the first level:

//Heading1

Architecture

The Generative XPath approach consists of two main components:

35

• XPath compiler

• Runtime environment

The XPath compiler transforms XPath expressions to the executable code

for the virtual machine (VM). The runtime environment helps an applica-
tion to execute the compiled code. The runtime environment can be further
divided into three logical layers:

• The application layer

• The VM layer

• The customization layer

The application layer is the program which needs an XPath implementation
over its tree-like data structures.

The VM layer is:

• The VM itself

• Compiled XPath code

• Runtime support library

The compiled XPath code relies on the runtime support library, which is

also written in the VM language.
The customization layer is an intermediate between the application layer

and the VM layer, which are completely independent. In particular, the
customization layer maps the application-specific trees to a form, suitable for
the VM.

Figure 5: The elements of the Generative XPath architecture

36

The application layer uses the customization layer to:

• Load and initialize the VM

• Start XPath evaluation and access the result

The VM layer uses the customization layer to:

• Get a collection of nodes by a node (XPath axes)

• Compare nodes in the document order

• Query node properties, such as name or string value

The internal structure of nodes is of no interest to the VM layer, it handles

the nodes as “black box” items.
To add XPath support to an application, the developer needs to:

• Find or create a suitable VM implementation

• Implement the customization layer

Virtual Machine

Each VM instruction is represented as a list, in which the first element is

the name of the instruction, and the remaining elements are the instruction’s
arguments. Here is an example of a program to calculate factorial:

(define (fac n)

(if (< n 2)

1

(* n (fac (- n 1)))))

(fac 1) ; Evaluates to 1

(fac 6) ; Evaluates to 720

This code uses the following instructions. define creates a new function
named fac which takes one argument n. The conditional instruction if eval-

uates the first argument, which is the comparison <, and either returns 1, or
continues recursive execution and returns the result of the multiplication.

The program for the VM is actually a program written in the programming
language Scheme R5RS [2]. The VM itself is:

• A subset of Scheme R5RS

• A few extension functions

• Functions defined in the customization layer

37

There are a lot of Scheme implementations to choose from [3], some of them

are tailored for embedding. For example, C applications can use Guile [4],
and Java applications can use [5].

As Scheme is a small language, its implementation can be written from

scratch with little efforts. A possible approach is explained in Marc Feeley’s
presentation “The 90 Minute Scheme to C compiler” [6]. Furthermore, the

XPath compiler generates code which doesn’t use complex features of the
language:

• No continuations, dynamic-wind and related features

• Only a few simple macro definitions are used

Compiled XPath code and the support library rely on the extension func-

tions defined in the following SRFI documents [7]:

• SRFI 8: receive: Binding to multiple values

• SRFI 13: String Library

• SRFI 42: Eager Comprehensions

With time, the extension functions will be re-implemented for the VM

runtime support library, and the dependencies on SRFIs will be removed.

Interacting with the VM

This section explains how the application layer communicates with the

customization layer, and the latter with the VM layer. I will give concrete
code examples rather than explaining principles only. As a result, this section

is highly technical.
The code is written in C for the Scheme implementation “Guile”. A com-

pletely working program can be found in the Generative XPath distribution

in the folder examples/c_string.

Booleans, numbers, strings

To exchange data with the VM, the application and customization layers
need to convert data to a format which the VM can understand (hereinafter

referenced with the prefix “vm-”). The exact details depend on the VM
implementation.

For example, in Guile, the following functions can be used to convert
boolean, number and string values to vm-values:

SCM gh_bool2scm(int x)

SCM gh_double2scm(double x)

SCM gh_str02scm(const char *s)

38

Having a vm-value, one gets the value using the following Guile functions

and macro:

int gh_scm2bool(SCM obj)

double gh_scm2double(SCM obj)

SCM_STRING_CHARS(scm)

Lists

The Scheme list is a recursive data type, consisting of pairs. For each pair,
the first element (usually referred to as car) is an item of the list, the second

element (cdr) is the tail of the list. Having the car and the cdr, the list can
be re-constructed using the function cons. The list is finished when the cdr

is the special value “empty list”.

For example, consider the list (1 2 3). Its car is 1’, its cdr is the list (2 3).
The list can be re-written as (cons 1 (cons 2 (cons 3 ’()))) where ’()

is the empty list.
To create or deconstruct vm-lists, use the VM functions for car, cdr and

cons. For example, to construct the list (1 2 3) in Guile, the following code
is possible:

SCM scm = SCM_EOL; // empty list

for (int i = 3; i; i--) {

scm = gh_cons(gh_int2scm(i), scm);

}

And here is an example of walking over a list. For simplicity, we suppose
it consists of integers only:

void

print_list_of_integers(SCM list) {

for (

SCM scm = list; // start with the first element

scm != SCM_EOL; // walk until the end of list

scm = gh_cdr(scm) // go to the next element

) {

printf("List item: %i\n", gh_scm2int(gh_car(scm)));

}

}

Boxes

There is no such type as “box” is Scheme. It’s our extension to represent

application’s tree nodes. “Box” is a Scheme value, which contains a link to the

39

tree node and possibly additional information, useful for the customization

layer.
In other words, box is a form of tree node that can be used in Scheme code.

Creating such objects for Guile is a slightly cumbersome task. It is required
to register a new type together with its garbage collection support functions.

The code might look like this:

//

// Underlying object for boxes

//

typedef struct _vmbox {

my_node *node; // pointer to the tree node

... // more data, if required

} vmbox;

//

// Initialization of a new type, attaching the garbage

// collection functions and the destructor.

//

scm_t_bits vmbox_tag;

...

//

// Creating a box

//

SCM

make_box(my_node *node, ...extra...) {

SCM smob;

vmbox *box = (vmbox*)scm_gc_malloc(sizeof(vmbox), "box");

box->node = node;

...extra...

SCM_NEWSMOB(smob, vmbox_tag, box);

return smob;

}

//

// Unboxing a node

//

my_node *

unbox(SCM vmbox) {

scm_assert_smob_type(vmbox_tag, vmbox);

40

vmbox *box = (vmbox*)SCM_SMOB_DATA(scm_box);

return box->node;

}

Details of creating and managing custom types in Guile are described in
the Guile manual [8] in the section “Defining New Types (Smobs)”.

Boxes-2

The application layer and the VM layer don’t care how boxes are created
and managed. These details are left to the customization layer. However,

here are few guidelines.

The only case when the application layer can create a box from a node is

when the node is the root of a tree. All other boxes are created only inside
the customization layer.

The only operations on boxes, available to the application layer, are:

• unboxing (extracting the node from a box), and

• applying an XPath.

Initializing the VM layer

The VM layer is initialized with help of the customization layer. The
initialization steps are as follows:

• Initialize the VM

• Set up the environment for the VM, such as include paths for libraries

• Load VM extensions, such as SRFI extensions

• Create the box type and register the interface functions

• Load the Generative XPath runtime library

Loading XPath code

The XPath compiler transforms an XPath expression into Scheme code with
the free variables c, k and n (the context node, position and size, respectively).

Before loading the code, an application should bind these variables, otherwise
loading might fail.

The details are not shown here. Instead, an alternate approach is suggested:

• Convert each XPath code to a procedure

• Load all procedures at once

41

• Locate the procedures in the Scheme environment

Converting XPath code is a simple task, the code should be wrapped this
way:

(define (xpathNNN c k n)

... original code goes here ...

)

The code fragment above defines a procedure with the name xpathNNN

(it’s the responsibility of the application to assign unique names) and three
context parameters.

Supposing all such definitions are stored in the file vmcode.scm, they can
all be loaded at once:

gh_eval_file("vmcode.scm");

Finally, here is how to locate the loaded procedures:

SCM xpathNNN = gh_lookup("xpathNNN");

if (xpathNNN == SCM_UNDEFINED) {

puts("XPath procedure ’xpathNNN’ isn’t found");

}

Executing loaded XPath

Suppose the variable xpath contains a loaded compiled XPath code, wrapped
to a procedure as described in the previous section. Before calling the proce-
dure, its arguments should be prepared.

The first argument is a context node in its box form. The application layer
gets the box as the result of boxing the root node or as the result of executing

another XPath expression.
The second and the third arguments are the context position and context

size, respectively. Unless the application uses XPath expressions with the
functions position() and last() at the top level (outside any predicate),

these arguments are ignored. Otherwise, they should be vm-integers, and the
application should supply the correct values.

Guile example:

//

// xpathNNN is an XPath procedure

// box is the context node

// We don’t care about context position and size

//

ret = gh_call3(xpath, box, SCM_UNSPECIFIED, SCM_UNSPECIFIED);

42

Interpreting the result

Generative XPath always returns the result as a list. The actual type of

the result is interpreted as follows:

• If the list is empty, the result is the empty node set.

• If the type of the first element of the list is boolean, number or string,
then this element is the result.

• Otherwise, the result is the node set.

Example of interpreting the result in Guile:

if (SCM_EOL == ret) {

puts("empty node set");

} else {

SCM node, val = gh_car(ret);

if (SCM_BOOLP(val)) {

printf("boolean, %i\n", gh_scm2bool(val));

} else if (SCM_NUMBERP(val)) {

printf("number, %f\n", gh_scm2double(val));

} else if (SCM_STRINGP(val)) {

printf("string, %s\n", SCM_STRING_CHARS(val));

} else {

printf("nodeset:\n");

for(; SCM_EOL != ret; ret = gh_cdr(ret)) {

val = gh_car(ret);

node = unbox(val);

print_node(node);

}

}

}

Interface to the tree

This section described the functions which return information about the
application’s trees. These functions are the part of the customization layer.

box gx-ffi:root(box c)

Input is the context node c, the function should return the root node of the

tree. Note that the root node and the highest-level element are two different
things.

43

list gx-ffi:axis-child(box c, symbol node-test,

string/symbol namespace-uri, string/symbol local-name)

And twelve functions with the same input and output parameters:

gx-ffi:axis-descendant, gx-ffi:axis-parent,
gx-ffi:axis-ancestor, gx-ffi:axis-following-sibling,

gx-ffi:axis-preceding-sibling, gx-ffi:axis-following,
gx-ffi:axis-preceding, gx-ffi:axis-attribute,

gx-ffi:axis-namespace, gx-ffi:axis-self,
gx-ffi:axis-descendant-or-self, gx-ffi:axis-ancestor-or-self.

These functions should return the corresponding XPath axes for the node

c. The nodes in axes are sorted in the document order, except for the four
axes in which the nodes are sorted in the reverse document order: ancestor,

ancestor-or-self, preceding, preceding-sibling.
The symbol node-test defines the filter for the node type. The range of the

values is: *, text, comment, processing-instruction, node. The semantics
are identical to those defined in the XPath specification. Note that * doesn’t
mean “all the nodes”, it means “all the nodes of the axis’ principal type”.

The strings namespace-uri and local-name are the filters for the names
of the nodes. Alternatively, if these parameters are the symbol *, then no

filtering by name is required.

number/boolean gx-ffi:<=>(box n1, box n2)

The function compares the nodes in the document order. It returns:

• -1, if the node n1 comes before the node n2,

• 0, if n1 and n2 are the same nodes,

• 1, if n1 comes after n2,

• #f, in case of error.

The function can return #f if the nodes are from different documents. But
it also can return -1 or 1, as long as the result is consistent for all the nodes

of these documents.

string gx-ffi:string(box n)

string gx-ffi:namespace-uri(box n)

string gx-ffi:local-name(box n)

string gx-ffi:name(box n)

These are the counterparts to the XPath functions string(),
namespace-uri(), local-name() and name(). The special cases such as no

parameters or a nodeset as the parameter are handled by Generative XPath
itself. These functions have only one node as the parameter.

44

boolean gx-ffi:lang(box c, string lang)

node/boolean gx-ffi:id(box c, string id)

These are the simplified counterparts to the XPath functions lang() and
id(). The variable c is the context node. The function gx-ffi:id() should
return either a node, or #f (false).

XPath compiler

The description of the XPath compiler consist of two parts:

• The tools

• Outline of the internals of the compiler.

Tools

The XPath compiler is a standalone command-line program
ast_to_code.scm (wrapped by the shell script run.sh). The program gets
an XPath expression as a command line argument and dumps the compiled

XPath code to the standard output.

$./run.sh ’//a/b’

The section “Loading XPath code” suggests to wrap each compiled code

in a procedure and store the result in a file. The program bulk.scm performs
exactly this task. Edit the file, adding the required XPath expressions, and

run it.

There is also an improved version of the program, bulk_escaped.scm,

which allows for compilation of XPath expressions with invalid XML names
by URI-escaping them. For example, instead of writing

/*[name()=’C:’]/*[name()=’Program Files’]

we can use a more nice expression

/C%3A/Program%20Files

The compiler is written in Scheme. If an application embeds the VM as a

full-featured Scheme implementation, then the application can compile XPath
expression in runtime using the library function gx:xpath-to-code-full.

Compiler internals

The compiler parses and rewrites XPath expressions using the libraries of
the project ssax-sxml [9]. In particular, the first step is to convert XPath to an

45

abstract syntax tree (AST) using the function txp:sxpath->ast. The AST

tree is rewritten, bottom-up, to code using SXSLT, a Scheme counterpart of
XSLT.

The code is generated as straightforwardly as possible, with no attempts
at optimization. It is supposed that the generated code is later processed by
an optimizer. Here is an example of the code generated for 1+2:

(gx:unit

(+ (gx:number (gx:sidoaed (gx:unit 1)))

(gx:number (gx:sidoaed (gx:unit 2))))))

In our approach, each XPath step should return a sequence, therefore we
wrap atomic values to lists using the function gx:unit. When processing

+, the compiler doesn’t look down the AST tree in search for optimization,
but generates the common code. First, the arguments are sorted in the doc-

ument order (“sidoaed” stands for “sort in document order and eliminate
duplicates”), and than converted to numbers. The code is suboptimal, but,

fortunately, easy to optimize.
The majority of the XPath core functions are implemented in the runtime

support library. For the remainder, the library takes care of the special cases,
defined in the XPath specification, and calls the customization layer only if
required. For example, here is the code of the function gx:string:

(define (gx:string nset)

(if (null? nset)

""

(let ((val (car nset))) (cond

((boolean? val) (if val "true" "false"))

((number? val) (cond

... NaN/infinity/integer cases ...

(else (number->string val))))

((string? val) val)

(else (gx-ffi:string val))))))

It checks, in order, if the argument is the empty node set, or boolean,
number or string value, and acts accordingly. Otherwise, the argument is a

node set, sorted in the document order, and the result is the string value of
the first node, as returned by the customization layer.

Compilation of XPath step sequences is non-trivial. The syntactic form for
it is called “list comprehension”. The expression step1/step2 is compiled

to:

46

(list-ec

(:list c ... step1 code ...)

(:list c2 ... step2 code ...)

c2))

The literal interpretation is as expected: execute step1, bind the variable
c to each node of the result, execute step2 and bind the variable c2 to each

node of the result. The whole result of list-ec is the list of the values of c2.
A similar construction is used to represent filtering. The only added com-

plexity is preprocessing the input list and annotating the nodes with the
context position and size, and unpacking the annotations before evaluating
the predicate.

The main feature of the generated code (and the support library) is that it
is recursion-free. Only higher-order constructions, such as list comprehension

and morphisms, are used. As result, it is possible to substitute all the function
calls by the bodies of the functions and get one big code block. I believe it

allows to perform aggressive optimization of the generated code, and it’s the
topic of further investigations.

Compliance and performance

Correct implementation of the XPath 1.0 standard is the main constraint

for the Generative XPath project. To reach this goal, I use:

• A set of unit tests

• Testing with real world stylesheets

For the latter, I use XSieve [10], a mix of XSLT and Scheme. Initially,
many XSLT constructions are converted to the XSieve form. For example,

<xsl:apply-templates select=@*|node() >

becomes

<s:scheme>

(x:apply-templates (x:eval @*|node()))

</s:scheme>

Secondly, I extract all the x:eval expressions and replace them with the
corresponding compiled code. As a result, most of the XPath selects are

performed by Generative XPath.
Now we can run the original stylesheet, then the Generative XPath version

of the stylesheet, and compare the results. They should be the same. I exe-
cuted this test for DocBook stylesheets, and the test was passed successfully.

47

Therefore, with a high degree of confidence, Generative XPath is a compliant

implementation of XPath.

Performance is still a topic of further work. The generated code is not opti-
mized for speed, instead, it is in a form suitable for analysis by an optimizer,
which is under construction.

In the worst case, in an unfair setup and measurement, Generative XPath

is 30 times slower than a libxml2 implementation of XPath. However, I expect
that speed is comparable in the case of fair conditions, and Generative XPath

might be faster when the optimizer is implemented.

Related work

The majority of XSLT/XQuery processors somehow allow custom trees in

theirs XPath engines, but this is mostly a side-effect, not intended function-
ality. I’m aware of a few projects, in which virtualization of XML is the main

selling point:

• Jaxen [11] (Java),

• JXPath [12] (Java) from Apache Software Foundation,

• XML Virtual Garden [13] (Java) from IBM,

• IXPathNavigable interface [14] (.NET) from Microsoft,

• XLinq [15] (.NET) from Microsoft.

The main limitation of these projects is that they are bound to the platform
of choice. For example, we can’t use Jaxen if we develop in .NET. Worse, we

can’t use any of the mentioned tools if we are programming in plain C.

Unlike the above projects, Generative XPath is highly portable as it is

based on a small, easy to implement virtual machine.

Conclusion and further work

Generative XPath is an XPath 1.0 processor, which can be adapted to dif-
ferent hierarchical memory structures and different programming languages.

Generative XPath consists of the compiler and the runtime environment. The
latter is based on a simple virtual machine, which is a subset of the program-

ming language Scheme.

In this paper, we’ve explained why XPath over arbitrary tree-like structures

is useful at all, described the architecture, interfaces, tools and internals of
Generative XPath, and given links to the related developments.

48

The next step for the Generative XPath project is the development of an

optimizer. The corresponding announcements and downloads will be available
from the XSieve project page: http://sourceforge.net/projects/xsieve/.

49

References

1. K Giger, E Wilde. XPath filename expansion in a Unix shell, in Proceedings of the 15th
international conference on World Wide Web, 2006.
http://www2006.org/programme/files/xhtml/p95/pp095-wilde.html

2. R. Kelsey, W. Clinger, J. Rees (eds.). Revised5 Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation, Vol. 11, No. 1, August, 1998.
http://www.brics.dk/~hosc/11-1/

3. Schemers.org. Implementations. http://schemers.org/Implementations/

4. Free Software Foundation, Inc. Guile (About Guile).
http://www.gnu.org/software/guile/guile.html

5. S. G. Miller. Second Interpreter of Scheme Code. http://sisc-scheme.org/

6. M. Feeley. The 90 Minute Scheme to C compiler.
http://www.iro.umontreal.ca/~boucherd/mslug/meetings/

20041020/minutes-en.html

7. The SRFI Editors. Scheme Requests for Implementation. http://srfi.schemers.org/

8. Free Software Foundation. GNU Guile Manual.
http://www.gnu.org/software/guile/manual/

9. O. Kiselyov. SXML Specification.
http://okmij.org/ftp/Scheme/xml.html#SXML-spec

10. O. Paraschenko. XSieve book. http://xsieve.sourceforge.net/

11. Apache Software Foundation. JXPath − JXPath Home.
http://jakarta.apache.org/commons/jxpath/index.html

12. jaxen. universal Java XPath engine − jaxen. http://jaxen.org/

13. IBM alphaWorks. Virtual XML Garden.
http://www.alphaworks.ibm.com/tech/virtualxml

14. Microsoft Corporation. XPathNavigator in the .NET Framework.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

cpguide/html/cpconXPathNavigatorOverDifferentStores.asp

15. E. Meijer, B. Beckman. XLINQ: XML Programming Refactored (The Return Of The
Monoids), in Proceedings of XML 2005, November 2005.
http://research.microsoft.com/~emeijer/Papers/XMLRefactored.html

50

XML Processing by Streaming

Mohamed Zergaoui (Innovimax)

Abstract

The first part will be to present the state of the art of XML Streaming
processing by reviewing the products in place (joost, cocoon, saxon, etc.), the

API available (SAX, Stax, XOM), languages (CDuce, XDuce, XJ), and the
spec in progress or stalled (STX, XML Processing, XQuery update). Speaking

of what is currently in preparation (i.e. an XML Streaming XG at W3C). And
taking the time to present what has already been done in SGML time (Balise

and Omnimark, cursor idea that can be find in Arbortext OID in ACL, etc.)
Then the goal is to present all the area where some work has still to be

done and give some hints on an elaborated vision of XML Processing trough
different kind of process: around constraints, normalizing, streamable path,
multilayer transformation, and last but not least constraints aware streamable

path. Some light will be spot on static analysis of XSLT and XQuery to detect
streamable instances. What are the needed evolutions of the cursor model?

What are XDuce-like languages added values?

51

52

Python and XML

Uche Ogbuji (Zepheira, LLC)

Python/XML libraries

Python is a popular language for general-purpose development, including
Web development, but it has not always had the coziest relationship with

XML. There is a history of often unnecessary philosophical differences be-
tween boosters of Python and of XML. Partly because of this the state of
the art has been unfortunately slow to develop, despite the work of many

open-source developers in the XML-SIG and elsewhere. At present there are
several options for XML processing in Python. Because of Python’s flexibil-

ity and the breadth of library and tool options, it can be a very productive
language for XML projects.

The most popular libraries for general-purpose XML processing in Python
are:

• PySAX (python.sax in the standard library)

• PyDOM (python.dom in the standard library)

• ElementTree (in the standard library since Python 2.5)

• lxml

• 4Suite+Amara

PySAX and PyDOM are standard SAX and DOM (with some minor

language-specific variations to fit the language). ElementTree is a tree data
structure optimized for speed, space, with an API that emphasizes simple use

of Python conventions. lxml is a Python wrapper around the popular and
very high performance libxml2 and libxslt2, written in C. 4Suite is a library
that provides a broad range of XML processing capabilities, but at some ex-

pense in friendliness for Python developers. Amara XML toolkit is a 4Suite
add-on that adds a very Python-friendly layer, as well as some additional

processing facilities. 4Suite and Amara are so often used in tandem that I
treat them as a joint library in this discussion.

53

Two key APIs to compare for XML processing are ElementTree’s and

Amara’s. Both are designed to emphasize Python-friendly idiom, and are
tree APIs. The basic species of tree API defines a standard object structure

to represent the parts and pieces of XML. You can think of this as defining a
class and naming convention to correspond to each type of information item

in the XML Infoset spec. All elements are represented using the same classes
and object reference names. All attributes are represented using the same

classes and object reference names, different from that of elements, and so on
for text and, if supported, processing instructions, comments, etc. As such,
these can be considered approximate translations of the Infoset, and abstract

model, to a Python representation. Accordingly I call this species of tree
APIs Python XML Infosets, of which the foremost example is ElementTree.

Amara, on the other hand, is a data binding, a system for viewing XML
documents as databases or programming language or data structures, and

vice versa. There are many aspects of data bindings, including rules for con-
verting XML into specialized Python data structures, and the reverse (mar-
shalling and unmarshalling), using schemata to provide hints and intended

data constructs to marshalling and unmarshalling systems, mapping XML
data patterns to Python functions, and controlling Python data structures

with native XML technologies such as XPath and XSLT patterns. A data
binding essentially serves as a very pythonic API, but in this paper, the main

distinction made in calling a system a data binding lies in the basics of mar-
shalling and unmarshalling. In data bindings, the very object structure of the

resulting Python data structure is set by the XML vocabulary. The object
reference names come from the XML vocabulary as well. Data bindings in
effect hide the XML Infoset in the API, in contrast to Python XML Infosets.

They are based on the model of the XML instance, rather than of the Infoset.
Infosets and data bindings effectively lead to different idioms and conven-

tions in XML processing, but they provide for more expressive and maintain-
able code than SAX and DOM.

54

XLinq

Štěpán Bechynský (Microsoft Corporation)

Abstract

.NET Language Integrated Query for XML Data

There are two major perspectives for thinking about and understanding

XLinq. From one perspective you can think of XLinq as a member of the
LINQ Project family of technologies with XLinq providing an XML Language

Integrated Query capability along with a consistent query experience for ob-
jects, relational database (DLinq), and other data access technologies as they
become LINQ-enabled. From a another perspective you can think of XLinq

as a full feature in-memory XML programming API comparable to a modern-
ized, redesigned Document Object Model (DOM) XML Programming API plus

a few key features from XPath and XSLT.
XLinq represents a new, modernized in-memory XML Programming API.

XLinq was designed to be a cleaner, modernized API, as well as fast and
lightweight. XLinq uses modern language features (e.g., generics and nul-
lable types) and diverges from the DOM programming model with a variety of

innovations to simplify programming against XML. Even without Language
Integrated Query capabilities XLinq represents a significant stride forward for

XML programming.

55

56

Beyond the simple pipeline: manag-

ing processes over time

Geert Bormans (Independent Consultatnt)

Abstract

This paper shows an application that takes XML pipeline processing to a

next level. The paper shows the first results of a project that requires version
management of pipeline components. As will be shown, the approach taken

in this project is generally applicable for building complex XML processing
systems with a lesser risk.

Introducing the Project

A company sends printed statements to customers on a yearly basis1. This

company has a legal obligation to archive an exact copy of each statement
that was sent to customers.

The original application (see Figure 1) has a complex monolithic code-base,
taking care of the following:

• Information is extracted from two relational databases, using complex

SQL queries.

• Based on numbers in the query results, a lookup table and some complex

calculus, some numbers are added.

• Header and footer information is added. This header and footer infor-
mation changes yearly. Because of this change, the code is changed on a

yearly basis.

• All this information is eventually distilled into a PS document, that gets
printed and then sent to the customer.

1For confidentially reasons, some details of the project were changed from reality. Some irrelevant details
have been removed from the total setup. The context remains practically the same though.

57

Figure 1: Schematics of the original application

This company originally planned to commit to their legal obligation, by

printing all the statements to PDF and store the PDF documents in a Content
Management System or an Asset Store (see Figure 2).

Figure 2: Schematics of the application as detailed in the original Request for Proposal

Introducing the Solution

The original Request for Proposal described not much more than an asset

management system to fulfil the legal obligation to maintain a (scanned) copy
of all the statements sent out.

58

Storing the scanned statements or a PDF version of the statements would

require an awful amount of disk space.
Eventually they realised it would be better to archive the XML source doc-

ument of the different statements, as extracted from the databases. Instead
of version managing the resulting PDF documents, it was decided to version

manage the publication and rendering processes with the XML, ready for
execution.

The customer bought into a complete redesign of the monolithic program
that is currently creating the PDF. This program has been broken up into
smaller processing steps in a pipeline (Figure 3).

In this new application, the individual statement information is dumped in
an XML document. This XML document is stored in a Content Management

System (with some pretty simple meta data).

Figure 3: Pipeline replacement of monolithic application

For printing, the following sequence of processing steps (components) is
activated on each XML document

• Comp1: normalization of the XML (XSLT)

• Comp2: merge the header and footer information in (XSLT)

• Comp3: find some values in a lookup table based on numbers in the

document, and do some complex calculus (Python)

• Comp4: transform the resulting XML into XSL-FO (XSLT)

• Comp5: render the XSL-FO into PDF for print (FOP)

The process steps (components) in the pipeline are themselves version man-
aged in some sort of light CMS. The underlying architecture knows how to

59

construct pipelines from the correct version of the components and execute

them.

XML statements have metadata associated for binding them to a specific

version of the PDF generation process (pipeline).

When in a new year some aspects of the PDF must be changed (e.g. the
header, the layout or the structure of the statement) the component involved

will be updated. This will result in a version update of the pipeline (see
Figure 4).

Figure 4: Different versions of the pipeline, sharing components

New statements in the CMS will automatically be tied to this new version
of the pipeline. The execution engine will know which pipeline to execute on a
particular statement. At any time in the future, it will be possible to instantly

reconstruct the PDF that was used for the original printed statements, exactly
as it was at the time of printing, even if that was quite some time ago.

What is it that is so good about Pipelines?

In the context of this paper, a pipeline or content processing pipeline is

a sequence of content processing steps. In a pipeline, a complex content
processing application is broken up into several more simple processes. The

content or data flows from one processing step (also component) to the next.
The output of one component is the input of the next.

This section summarizes some of the commonly understood advantages of

pipelines:

• By breaking up the complexity of the original program into adequately
chosen process steps, the total application becomes a lot simpler to de-

velop and easier to debug and maintain.

• By having a chain of small and simple programs with a well defined
input and output, it is a lot easier to assign responsibilities. Development

60

of components can be assigned to different people with different roles.

Communication between actors can be kept to a minimum. Basically
actors just have to agree how the information they can accept has to look

like and what will be the structure of the information they will create.

• It is possible (depending on the underlying architecture) to develop com-

ponents using the best possible technology to get this particular job done.
Rather than requiring a set of JavaScript extension functions in an XSLT,

one could put the JavaScript work in one component, and the XSLT in
the next.

• Components can be (re)used between different pipelines (or in this case

between different versions of the same pipeline) One could call this “Single
Sourcing” for process components.

Challenges for building Pipeline Solutions

Pipelines for XML processing, or content processing in general, are gaining

popularity. There are a number of frameworks around that help you to set up
XML processing pipelines and execute them. This section summarizes some
of the challenges met when developing the above described system.

• Though almost too obvious to mention, the execution of the pipeline itself

is some sort of a challenge. The underlying infrastructure needs to be able
to fit components together, compile a pipeline and execute it, in a robust

way, with high performance.

• Intermediate serialization / de-serialization of input and output between

components can put an unnecessary burden on performance if done with-
out a reason. Passing the result from one process as the input to the next
process without creating too much of timing overhead is a next interesting

challenge.

• Preferably one has the freedom to develop each and every component in

a technology most adequate for the work to be done. One could imag-
ine developing some components using a scripting language such as Ruby,

Python or JavaScript and other components using XSLT or XQuery. Pro-
viding this functionality, taking into account the first two requirements,
forms another interesting challenge.

• The language used to describe the pipeline should be easy to learn. Ideally
some sort of Graphical User Interface is available for adding or changing

components to a pipeline. Constructing pipelines should be an easy job,
not necessarily performed by developers. Executing the pipeline should

61

be fast. There should be some sort of abstraction layer that separates the

execution from the pipeline “editing”. That is our final challenge.

Pipeline Management

In a way, one could see pipelines as normalization or structuring of content

processing. This is, in a way, very similar as to how XML has been normaliz-
ing or structuring this content itself. Much in the same way as people started

maintaining their XML documents in Content Management Systems for ver-
sioning, collaboration, etc. it seems very natural to see a need for managing
these pipelines in some sort of Pipeline Management System.

One of the factors that add complexity to any software system is its varia-

tion in time. This dimension of time, gave the design of the pipeline solution
for this project yet another interesting challenge.

The Solutions Architecture

At the heart of the solution sits a Pipeline Component Management System
(PCMS) and a Pipeline Execution Engine (Figure 5).

The processing steps in the pipelines are all defined as URI2-addressable
resources. The PCMS pulls all these resources together at run time, con-
structs a pipeline and presents that to the Execution Engine for execution as

requested.

Figure 5: Schematic of the core of the projects solution

2Uniform Resource Identifier

62

The data-model of the management system allows version management

on the pipeline component level. Components can be used across multiple
pipelines, or versions of pipelines.

Pipelines are dynamically constructed from pulling components together
at runtime.

Here is how the application deals with the different challenges as mentioned

above.

• The Pipeline Execution Engine is a thin layer on top of NetKernel3 (see
below). The pipeline execution is taken care of by NetKernel. NetKernel

has a smart caching mechanism, which keeps the performance up.

• NetKernel has a notion of aspects and transreptors. The result of a
process is kept in the form it was created in (for XML, this could be a
DOM-aspect, a SAX-aspect, a serialized string or even proprietary ones

such as Saxon4 trees). Only if the next step requires a different input
aspect, the aspect will be transformed (transrepted). This helps keeping

performance up between processes.

• Process components in NetKernel can be developed in various dynamic
languages (including Ruby, Python, Groovy, JavaScript or dynamically

compiled Java) or domain specific languages (XSLT, XQuery,...). The
underlying kernel takes care of a smooth execution.

• The PCMS serves as an abstraction between pipeline development and
execution.

• The PCMS also takes care of the pipeline management.

A word about NetKernel
5

NetKernel forms an important part of the actual Pipeline Execution En-

gine.

NetKernel is a resource-oriented computing platform. NetKernel enables
a resource-oriented approach to the construction of software systems. In a

resource-oriented system, the main focus is on resources. Resources are infor-
mation that a computer locates, computes, transforms, formats, and delivers.

Resources are what computer users want out of their system. They are a
higher level concept than code and objects as found in code-oriented and

3http://www.1060research.com/netkernel/index.html
4hhttp://www.saxonica.com/products.html
5Some parts are adapted from the documentation
(http://www.1060.org/community/documentation.html)

63

object-oriented environments. In a resource-oriented system, code and ob-

jects are still critically important, but a NetKernel developer will spend most
of his time at the resource level, leveraging objects and code that are located

behind services. This way, systems could change without breaking, just like
for example the World Wide Web.

Some of the following features have proven tremendously important for an
efficient design of the Pipeline Execution Engine:

• NetKernel’s foundation is a robust microkernel that efficiently schedules
every resource request.

• NetKernel provides scripted (dynamic) languages as well as compiled lan-
guages such as Java. Each language is dynamically compiled to native

byte-code and cached so that the flexibility of using a dynamic language
has negligible performance impact.

• XML is an important resource type and numerous XML languages are
provided with NetKernel.

Wider applicability of the solution

In general a number of factors play a part in the complexity of an XML
processing pipeline:

• The complexity of the different processes

• Number of documents, document types and schemata

• Complexity of the content and the schemata involved

• Variability of processes, schemata, style sheets,...

A very important factor for complexity is the evolution of all of the above
over time. Even simple XML processing applications tend to become very

complex to manage if they are subject to frequent changes over time.
The architecture used in this project provides functionality for version man-

agement of pipeline components and as such for management of pipelines as
a whole.

It makes sense to layer a complex XML processing application on top of an
architecture as presented above. By doing that, it would be possible to make
necessary changes to processes, without having to worry about breaking parts

of the operational system. The pipelines of the application would be properly
managed, providing a clearly maintainable system.

This can be extremely helpful when the application later requires changes
to the schema, the meta-data-model, the link resolution mechanisms, etc.

64

Future plans

This section describes some of the future changes to the core functionality

of the proposed application, in order to make it useful in a broader spectrum
of content processing systems:

• Better support for non linear pipelines that include iterating, forking and

conditional processing.

• A dashboard for monitoring the behaviour of the pipelines execution,

including execution timings and breakpoints. This dashboard would also
allow checking out intermediate results, which would be very helpful for

debugging purposes.

• Import filters for XProc6 expressed pipelines or Stylus Studio7 designed
pipelines.

Summary

This paper showed some of the first results of a project that required version
management of pipeline components. The author hopes that he could also

demonstrate that the approach taken in this project is generally applicable
for building complex XML processing systems with a lesser risk.

6http://xproc.org/
7http://www.stylusstudio.com/videos/pipeline2/pipeline2.html

65

66

DocBook: Case Studies and Anec-

dotes

Norman Walsh (Sun Microsystems, Inc.)

Abstract

DocBook provides a rich markup vocabulary. Too rich for some and not
rich enough for others, of course. The transition to RELAX NG for DocBook
V5 has made it easier to address both these concerns.

This presentation examines some case studies and explores how schema

design changes percolate through the tool chain. We’ll look at a few real-world
examples, exploring the markup design changes and their rationale as well as
the impact on the stylesheets necessary to turn DocBook into a presentation

format.

Introduction

DocBook provides a rich markup vocabulary suitable for describing many
classes of technical documentation. Of course, any attempt to build a global

standard is invariably an exercise in compromise.

To many users, DocBook is too rich. Any technical domain is likely to find
that there are elements in DocBook that are only relavent to other domains
and are therefore a distraction.

Conversely, some specialized domains find that the markup is too coarse;

they need additional elements to provide the fine granularity of markup nec-
essary for their particular requirements. This is especially true for domains
that are on the fringes of, or plainly outside, DocBook’s scope.

Customizing DocBook V5 is considerably easier than customizing any of its

SGML or XML DTD predecessors. To the extent that your entire toolchain
can be built around RELAX NG validation, customization is fairly straight-

forward. Users that still need other schema formats may find that there are
additional challenges in converting RELAX NG customizations, but hopefully,
over time that will become both easier and less often necessary.

For most users, customizing the schema is only the first step. After the

67

markup design is complete, some mechanism for transforming the markup

into a format suitable for presentation must be found. Increasingly, this is the
work of XSLT, transforming DocBook into either HTML or XSL-FO. (There

are other options too, conversions to TeX and a variety of other backends are
common.) Here we’ll consider transformation from DocBook to HTML as

illustratory of the process.

Case Studies

We’ll look at six specific examples adding:

1. A new hierarchy root

2. HTML markup

3. Geographic metadata

4. “Database generated” trip itineraries

5. Inline markup for metadata

6. Inline markup for personal names

In each case, we’ll consider the schema design changes and the rationale
for making them; we’ll examine the schema customizations; and we’ll explore

the stylesheet changes necessary to support them.
These examples are all drawn from the markup used to generate the web-

log at http://norman.walsh.name/. This entire site is generated from a
(growing) collection of DocBook essays, some RDF metadata extracted from

several sources, and a set of XSLT 2.0 stylesheets.

68

Open XML Overview

Štěpán Bechynský (Microsoft Corporation)

Abstract

Office Open XML File Formats

Office XML Formats for the 2007 Office system introduce or improve many

types of solutions involving documents that developers can build. You can
access the contents of an Office document in Office XML Formats by using any

tool or technology capable of working with ZIP archives. The document content
can then be manipulated using any standard XML processing techniques, or
for parts that exist as embedded native formats, such as images, processed

using any appropriate tool for that object type.
You will see basic concepts of Open Packaging Conventions (OPC), Word-

processingML and SpreadsheetML. OPC is fundamental for all documents
types, WordprocessingML is used for text documents and SpreadsheetML is

used for spread sheets. There are more “MLs” but you will see them just
briefly.

69

70

Processing the OpenDocument For-

mat

Lars Oppermann (Sun Microsystems Inc.)

Abstract

The OpenDocument Format (ODF) is a an open XML based file format
for office productivity applications. The specification of which is maintained

by the OASIS OpenDocument Technical Committee. The OASIS membership
has recently ratified revision 1.1 of the specification [1] and revision 1.0 is also

available as an ISO/IEC standard [2].

The open nature of the OpenDocument specification has spurred adoption

of the format by multiple applications. Furthermore, OpenDocument is well
suited for being processed outside of end-user applications. This paper explains

the basic structure of OpenDocument and how standard XML processing tools
can be used to create applications beyond the scope of traditional office pro-

ductivity applications. The benefits and limits of processing documents based
on an open file format rather than based on an application specific API are
explained.

Introduction

Office productivity documents play a vital role in todays business world.
Documents are created by humans for humans. Information is mostly struc-
tured visually with paragraphs, font styles, tables and bullet lists. One impor-

tant aspect of open storage formats for office productivity documents is the
preservation of the information, so documents can be read in the future [3].

However, it is also important, that the information contained in documents
can be used in automated processes and thus computer systems should be

able to process documents.

Large office application packages provide automation or scripting APIs,

which allow to programmatically open, access and modify documents. How-
ever, this has a number of drawbacks:

Office productivity suites are large and complex software packages. Au-

71

tomatic document processing is not necessarily their primary design goal.

Moreover, using such application on a server is not always feasible and in
some cases might not even be possible at all. Furthermore, such desktop

applications are not designed with parallel processing of large quantities of
documents in mind − something that is very much thought after in settings,

where a high volume of information stored in documents is to be dealt with.

Additionally, using a specific application API for document processing lim-
its application choice. It is unlikely, that the programs written for a particular

applications API will be easily translated to the API of another applications.
On the other hand, directly processing documents of a standardized open for-

mat widens choice, because the standardized format ensures a level of inter-
operability in how information is represented. Thus, OASIS OpenDocument

Format enables such an alternative approach of standalone direct document
processing. Because the format specification is publicly available, documents
can be processed independently of the application that is used to display or

edit the documents.

ODF structure

In order to process OpenDocument Format files, the general principles and
structures of the format should be understood. It is not necessary to know

every aspect of the specification. Knowing the general principles and then
focusing on the area that is of particular interest to solve the specific problem

will suffice in most cases.

Package structure

OpenDocument Format files are composed of a hierarchical collection of

XML files and other resources. These are stored in a directory structure in
a zip-file [4]. The individual XML files in the collection are called streams.
Streams are identified by their hierarchical name in the zip-file structure. An

OpenDocument Format file may include any number of streams and resources.
The following names are reserved for specific streams:

• mimetype, must be stored uncompressed as the first entry in the zip file
structure. It contains the mime-type of the document. This allows for

convenient file type detection, without actually having to open and parse
the whole document.

• META-INF/manifest.xml, contains information about all the streams and

resources that make up the document. Declares type of embedded objects.
Information about signatures and encryption.

72

• content.xml, contains the actual document content and automatic styles

• styles.xml, style information. Styles are referenced from the content.

• meta.xml, metadata about the document, such as title, author and key-
words.

Document Types

The main document types represented by the OpenDocument Format are

text documents, spreadsheet documents, drawing documents and presentation
documents. Furthermore, formula/equation documents and, charts can be

represented as stand-alone documents although they are normally used as
embedded objects inside the main document types. ODF further supports

master/global documents and templates.

Text Documents

Text documents are the most common office productivity documents. They
are among the most universal containers for ideas, knowledge and information.

The use of text documents has a long tradition and is deeply rooted within
our culture.

On a general abstract level, text documents can be modeled as an “ordered

hierarchy of content objects (OHCO)” [5]. There are many possibilities as
to the granularity and semantics of the objects in this hierarchy. When a

model for a text document is designed, the choice of what will be represented
is influenced by how users will interact with the documents and the types of

documents that will be represented. For XML based document representa-
tions, this translates into the choice of elements and the semantics that are
associated with them. The imaginable spectrum reaches from very generic

concepts such as a text-portion, run or paragraph up to more abstract text
objects such as headings, lists, citations or cross-references. Even domain

specific concepts like a verse, or a figure-of-speech might be desirable.
In physical text documents, abstract concepts are represented with vi-

sual conventions: bold means important, vertical spacing denotes paragraph
boundaries etc. Thus, when looking at the rendition of a document, appear-

ance of individual elements becomes part of the content and meaning of the
document [6]. Consequently, users that work with a text processing applica-
tion want to use this visual vocabulary.

On the other hand, when a document is processed with software a more ex-
plicit and unambiguous representation of abstract concepts is desirable. The

human brain is very good at extracting meaning from context and convention.
Computers are generally not.

73

The OpenDocument Formats text document model tries to strike a balance

between the above scenarios. The model uses a mix of lower and higher
level abstractions that is based on the content model of HTML. This has the

convenient side effect of making ODF text documents easy to understand for
anyone that knows HTML and also eases conversion between OpenDocument

Format and HTML.

In general, text document content consists of a body, which may contain

block-level structural elements such as headings paragraphs and tables, sec-
tions and lists. These structural elements contain inline content such as text,
images, drawings or fields.

Style is applied to individual elements through referencing named styles
from a collection of styles that is part of the document. Thus, by interpreting

the style referenced by an element a program may gain knowledge about the
higher level semantics of an element without actually processing the style

collection.

Styles

Styles describe the visual properties of the elements that reference them.
A specific style is identified by its name. Styles in ODF support inheritance,
in the sense that one style may be based upon another style. That style will

inherit all properties set by the base style unless it specifies an own value for
that property. The properties are based on the visual properties in CSS and

XSL. This makes it easy to convert back and forth between ODF and formats
that use CSS or XSL stylesheets. It also eases the task of programming with

the OpenDocument Format for developers that are already familiar with those
technologies.

Styles can specify a follow-on style, which is mostly relevant for editing

applications. For instance, if A specifies B to be the next style, when the user
edits a paragraph with style A and creates a new paragraph, that paragraph

should use style B.

Furthermore, styles are separated into style families. A style family denotes

the properties that can be specified in a style that belongs to a certain family.
Specific content elements may only reference styles of an appropriate family.

For instance, it would not make sense for a paragraph object to reference a
style of the table-cell family.

Styles should not be seen as only having relevance with regards to the visual

representation of a document. Semantic styles can be used to enhance the
structure of a document and increase the possibilities for automatic processing

significantly. Formatting in documents is used to express semantics: “this is
important” or “this is example code”. If styles are used consistently to express

74

these semantics, programs are able to process documents more effectively.

The OpenDocument Format specification itself is an example for the use
of semantic styles. The specification includes RELAX-NG fragments. When

combined, these fragments form the OpenDocument Format schema. When
XML elements or attributes are mentioned in the specification text, these are

marked by styles. This enables a process, where it can be ensured that the
element names mentioned in the text are consistent with the elements and

attributes defined in the schema. Furthermore, it allows for another process,
that extracts the normative schema from the specification document, where
it is maintained along with the descriptive text.

Spreadsheets

Spreadsheets have been touted the “Swiss army knife of the office worker”.

Spreadsheet applications provide a convenient interface by which users can
interact with relatively large amounts of data. They empower users to filter,

sort and analyze information in an ad-hoc and intuitive fashion.
An OpenDocument Format spreadsheet document consists of a number of

spreadsheets. Each spreadsheet is a grid of rows and columns − a table. Con-
sequently, text documents and spreadsheet documents use the same content
model for the representation of tables.

ODF, being an XML file format uses XML to represent the spreadsheet
data model. Today, XML has become the lingua franca in which to express

business information. Consequently, it is quite practical to transform back
and forth between domain specific XML representations and spreadsheets in

order to use a spreadsheet application to interact with the data from those
domain objects. Such translations can happen independent from the actual

implementation that will be used to open the resulting spreadsheet. Actually,
this provides a much more general approach than using the scripting features
of a specific application, which will not be compatible with those offered by

any other application.
An example for using such a format based translation of data representa-

tions in order to use a spreadsheet application to handle domain specific data
is VOFilter [7]. VOFilter is an XML based filter developed by the Chinese

Virtual Observatory project to transform tabular data files from VOTable
format into OpenDocument Format.

75

Processing Documents

XML Processing

For processing tasks, that perform manipulations of existing documents or
that perform translations between ODF and other XML languages, tools from

the XML technology stack play an important role.

XSL-Transformations can be used to process the XML streams that make

up the content of an ODF file. Applications include conversion to and from
other formats, extraction and import of information from other data sources as

well as reformatting of existing documents. The Sun Microsystems OpenOf-
fice.org team has used XSLT to implement a number of file format filters,

including ODF to XHTML conversion and conversion to and from docbook.

XSLT is particularly useful when creating renditions of more abstract XML

documents, that can then be used in an OpenDocument Format supporting
office productivity suite. For instance, UBL documents can be made to dis-

play in a word processor or spreadsheet application, making the information
accessible for users that lack the specialized tooling required to work directly

with such documents. Spreadsheet applications and documents are a very
practical way in which structured information can be authored which is then
translated into specific XML dialects with XSLT.

XQuery is another attractive technology which can be used to construct

OpenDocument Format content from XML repositories.

Programmatic processing

While XML tools can be used to implement many interesting and practical

processing scenarios with ODF, more sophisticated and complex scenarios
require a more flexible approach. In such cases it is desirable to interact with

ODF in a general purpose programming language. With zip file handling
and XML processing capability being a functionality offered by all major

programming platforms, the foundations are readily available.

Thus, on the most elementary level, we can use the zip-file and XML func-

tionality of our programming platform to access the individual XML streams
in a document and perform specific manipulations on those XML documents.

However, in that case, the level of abstraction through which we interact with
the document is the XML view provided by the XML implementation of our

programming platform (e.g. SAX or DOM). Thus, like with the XML tools
described above, we would be interacting with the document on the XML
information set level.

This type of processing is very useful, when ODF content is to be integrated

76

with existing systems and only a light weight wrapper is needed to make

information from ODF files available to the other system. A typical example
is an adapter that integrates OpenDocument Format files with a search engine.

Interactive WYSIWYG-applications like word processors allow the user to
interact with the document on a level that we may call the visual information

set. When writing programs, that are to work with documents, we want
to interact with the structural information set [8]. This structural view is

mapped on top of the XML representation of the document. However, instead
of an automatic XML/OO binding it should take into account the specific

semantics of the individual elements that make up a document as they are
specified in the OpenDocument Format standard.

Such tasks are usually accomplished by frameworks or toolkits. One might
now argue, that the use of an applications scripting facilities is the same as

using a framework for the OpenDocument Format. This today however is not
the case. An application specific API traditionally is tied to a specific applica-
tion and that applications specific functionality. It has no direct relationship

to the standardized OpenDocument Format. Rather does it represent the
application specific view of the document.

A framework based directly on ODF on the other hand has a direct relation-
ship to the standard. While current applications API are centered around the

rendition, a direct ODF framework can emphasize the actual document struc-
ture as defined by the ODF specification. This allows for such frameworks

to be created for different programming platforms in a consistent way. While
adapting to the principles and idioms prevalent in the particular platform,

the ODF specification provides the conceptual and structural integrity. Thus
switching between frameworks and programming platforms is easy. Both for
programmers that know one environment and want to work with an other

and also in terms of porting applications between environments. This can
be extended to include office productivity APIs, when they have made the

transition from the current application specific APIs to those defined by the
framework.

ODF Toolkit and Related Work

The OpenOffice.org community is now addressing the need for such frame-
works in the newly created “odftoolkit” project
(http://odftoolkit.openoffice.org).

This project aims to create tools for programmers which allow them to build
applications that interact with ODF on various platforms, and aims to pro-

vide OpenOffice.org as a framework itself Just like office productivity suites
provide interaction in terms of the visual rendition of documents, components

77

from the odftoolkit project will provide interaction with the abstract structure

of documents consistent with the OpenDocument Format standard.
One particular sub project of the odftoolkit effort is the “odf4j” project,

which aims to bring structured ODF processing to the Java platform in a way
that is both consistent with that particular platform and with the OpenDoc-

ument Format specification.
This particular framework, is based on a set of design principles, which we

view as vital for any ODF processing library on any platform:

1. Access to the document is possible on multiple levels of abstraction: either
direct access to package contents such as the XML streams. This allows

the for easy integration with existing XML processing tools and for the
creation of light-weight adapters that integrate ODF with other systems.

2. Preservation of the XML info-set, such that markup from other names-

paces that was embedded in a document for some specific purpose is re-
tained and may be handled by other participants in a workflow processing
the document.

3. Adherence to patterns and idioms of the platform. In the case of Java,

this includes the use of the Java collections framework and providing
interface suitable to be used with the Java XML infrastructure.

While odf4j is a work-in-progress, there are similar projects that offer Open-
Document Format processing on other platforms:

AODL, which is short for “An OpenDocument Library”. Provides Open-
Document Format processing for the .NET platform. It is also developed
as part of the OpenOffice.org community as a sub project of the odftoolkit

effort. AODL adheres to the same design principles as odf4j. However, as of
this time, AODL offers a much more complete implementation of the Open-

Document Format standard.
OpenOffice-OODoc by Jean-Marie Gouarn

(http://search.cpan.org/dist/OpenOffice-OODoc/)
implements ODF processing for the PERL platform. This project was the

first to offer structured programmatic processing for ODF, the first versions
where created f or the OpenOffice.org XML format, from which the OASIS
OpenDocument Format was created.

[9] gives a detailed account of the direct XML manipulations that can be
applied to the OpenDocument Format.

78

Limitations of format based processing

Programmatic processing based on the standardized OpenDocument For-
mat has many advantages. Most importantly, it separates office productivity

document processing from office productivity applications. However, there
are limitations to this approach that must be considered .

When the documents that are to be processed are created by human users

with office productivity applications, there is always the danger of ambiguity.
Because productivity apps use the visual rendition of the document to provide

a user face to the document, things that look alike might not actually be
the same thing when looking at abstract document structure. The more a

user relies on intangible visual conventions in order to express semantics, the
harder it will be for a program to understand the document. Depending on
the actual problem, this may or may not be a problem. However, it shows

that automatic processing of office productivity documents is not a means to
all ends and that there are situations in which more structured formats and

more restricted content entry methods are required.

Furthermore, if actual renditions of documents are to be created, it is highly
questionable, whether it is feasible to implement this as part of document

processing. Office applications include sophisticated pagination and layout
algorithms, and subtle differences in these algorithms may have a high im-
pact on the rendered result. It is the authors opinion, that rendition related

tasks should be performed by an application that is designed for that task.
In the case of OpenDocument Format processing, this would mean that a

document is either rendered by the layout engine of an Office productivity
application, or that a processed document is translated to formatting objects

and than rendered by an appropriate engine. For ODF processing frameworks
as discussed in this paper, the creation of rendition is considered out of scope.

Future Work

In order to further emphasize the advantages of direct document process-
ing, conceptual convergence of existing solutions is an important goal. It

is not yet clear how such convergence can be governed, but the odftoolkit
project presents a place for interested developers to share their ideas and vi-
sions. The OpenOffice.org development community is actively participating

in the odftoolkit effort in order to also offer conforming API as part of the
OpenOffice.org application.

One of the biggest problem in automatic processing of documents lies in

understanding the semantics of the contents on a level that goes beyond what
is expressed by the explicit markup. This is limited both by design choices

79

made to keep the standardized vocabulary manageable and by the document

interaction paradigms used in office productivity applications. The OASIS
OpenDocument Format TC is addressing this concern in a metadata sub

committee, which is working on integrating semantic web technologies into
the OpenDocument Format.

Conclusion

We have shown how for a range of application, direct processing of Open-
Document Format files provides an attractive alternative to the traditional
practice of processing documents through automating the application that is

normally used to work with those documents.
Emerging ODF processing frameworks will provide a consistent program-

ming experience because the OpenDocument Format standard provides a
platform independent specification which frameworks can translate into plat-

form specific concepts while maintaining overall integrity.
The OpenOffice.org community has created the odftoolkit project as a place

for interested developers to work together on frameworks for various plat-
forms, exchange ideas and enhance interoperability of their products based
on the OpenDocument Format standard.

80

References

1. OpenDocument v1.1 Specification.
http://docs.oasis-open.org/office/v1.1/OS/OpenDocument-v1.1.pdf

2. ISO/IEC 26300:2006.
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?

CSNUMBER=43485&scopelist=PROGRAMME

3. H. M. Gladney. Preserving Digital Information. Springer Press, 2007. ISBN 978-3-540-
37887-7. Str. 139-161.

4. Info-ZIP Application Note 970311. 1997.
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

5. S. J. DeRose, D. G. Durand, E. Mylonas, A. H. Renear. What is text, really?. SIGDOC
Asterisk J. Comput. Doc. 3, pages 1-24, Vol. 21, 1997.

6. S. A. Selber. The OHCO model of text: merits and concerns. SIGDOC Asterisk J.
Comput. Doc.. 3, pages 26-31, Vol. 21, 1997.

7. Ch-Z. Cui, M. Dolensky, P. Quinn, Y-H. Zhao, F. Genova. VOFilter: Bridging Virtual
Observatory and Industrial Office Applications. Chinese Journal of Astronomy and
Astrophysics. 2006.

8. J. Ziegler. Structured data and the death of WYSIWYG. 2005.
http://www.conglomerate.org/docs/death of wysiwyg.html

9. J. D. Eisenberg. OASIS OpenDocument Essentials. 2005. ISBN 978-1-4116-6832-4.

81

82

Leapfrogging microformats with

XML, linking, and more

Uche Ogbuji (Zepheira, LLC)

Microformats the XML way

Some microformats are straightforward, useful and unobjectionable. Oth-
ers, including many of the popular ones, abuse HTML, are poorly specified,

and are quite prone to confusion. When designed and applied without care-
ful consideration, microformats can detract from the value of the structured
information they seek to provide. Beyond the simplest class of microformats

it is often better to avoid hackery and embrace the native structure of the
Web. XML and other natural data representaton technologies such as JSON

are just as viable as many of their counterparts in microformats. The main
argument against these is that microformats provide graceful degradation

for unsophisticated Web clients. But such graceful degradation can also be
achieved through the power of linking. A Web page can still be a Web page,

and not a scaffolding for a bunch of ill-fitting and ill-specified records. All it
has to do is link to those records in their native format. More sophisticated
browsers can be dressed up with all the AJAX gear you like, loading sim-

ple, linked XML or JSON into dynamic views while crawlers and legacy Web
clients can access the structured information through user-actuated links.

Microformats work best where they add a very little bit of nuance to com-
mon constructs in a host language such as HTML, XHTML, or Atom. An

example is rel-license, which allows you to express that a link is identifying
the usage license for the source page’s contents. The link

<a href="http://creativecommons.org/licenses/by/2.0/"

rel="license">cc by 2.0

anywhere in the page means that the page’s contents are available under a

Creative Commons 2.0 Attribution Required license. I’ve seen people abuse
this microformat to assert a license for software described by a page, rather

than for the page itself, but one can’t really blame the microformat’s devel-
opers for this. A bigger problem is that it’s possible for such conventions to

83

clash but, for the most part, microformats ignore such problems, hoping that

lightweight agreements will solve them as they arise. A microformat such as
rel-license provides a convention for use of an HTML attribute designed to

carry such conventions. These are what microformats designers call elemental
microformats, constructed entirely within an element.

Some microformats try to tunnel specialized structure into the constructs

of the host language. Microformats designers call these compound micro-
formats. A good example is XOXO, a microformat for expressing outlines.

XOXO is far more inscrutable and harder to process than almost any XML
you might design to replace it. XML was, of course, designed to express com-

plex and specialized structures for content, and it seems a step backward to
use a far less expressive construct just to embed the structure within HTML.

Microformats folks do this because they feel that XML is too complex, not yet
ubiquitous enough and, more importantly, doesn’t allow for graceful degrada-
tion, which means that microformats look like regular HTML to user agents

that do not understand more advanced technologies such as XML. This is a
fairly weak argument, in part because XML is supported by most user agents

these days and also because sometimes a scalable design for the Web is worth
such tradeoffs and inconveniences. Atom was developed as a better Web feed

format despite the ubiquity of other RSS dialects. Cascading Stylesheets
(CSS) is developed as a way to separate content from presentation in Web
pages, despite the fact that it’s easier for the lazy Web publisher to just use

font and center tags, and even regardless of the hurdles browsers have placed
in front of the conscientious Web developers who do try to apply CSS. Despite

the heavy burden of legacy, both technologies are doing well and legacy is cer-
tainly a poor excuse for bad design in microformats. The design problems are

aesthetic and functional. The aesthetic problems are simply the ghastly result
of hijacking one format to serve a tenuously related purpose, as in the case

of XOXO. The functional problems come from the likelihood of term clashes,
and the difficulty of automating processing of microformats, because of the
sloppiness of schema and semantics. Many elemental microformats reuse, for

example the link/@rel attribute with lightweight controlled vocabularies,
and there have already been problems with clashes and term confusion. Even

worse, some microformats abuse such host format constructs completely.

To be fair, microformats developers have recently admitted that microfor-
mats are intended to be a hacky stop-gap in this period where XML tech-

nology on the Web is still not very reliable, and other Web technologies are
in such flux. The most stable parts of the stack are still basic HTTP and

HTML, and Microformats looks to cobble together what they can around
the latter. Regardless of the circumspection of Microformats experts, many

84

users are far less so, and without the needed note of caution some very bad

Web habits are beginning to proliferate under the umbrella of microformats.
Certainly elemental microformats are useful, and build on classic respect for

rough consensus and running code. They are like formal registries for MIME
types, filename extensions, and such, but with less central control. Problems

come about when microformats start to distort host formats rather than just
build on them. It’s almost better to use a more suited format in such cases,

and the Web is full of helpful means that leave you with a healthy choice.

85

86

The Generic Transformation Archi-

tecture

Bryan Rasmussen (Danish OIOXML)

Abstract

This paper describes the implementation of a Generic Transformation Ar-

chitecture, the requirements and difficulties of an XSL-T framework where
it must be considered that the potential amount of inputs and the potential

amount of outputs can be infinite, it is essentially a higher level guide and ref-
erence for the examples that will accompany the talk showing implementation

of DocBook transforms using the architecture, examples of various document
types transformed into various media provided as part of the GTA, cross-

media scripting using Funx, code examples pertinent to generating media in
XSL-FO, HTML, Open Office with Xforms, and how it can be used to for
generation of XSL-T used to implement the GTA, using it in XML Pipelines,

using it for generation of Example XML files from templates.

Introduction

A lot of this talk actually goes back to some work I did in 2002 but could
not release the code for at the time because of various rights to that code,

later when working for the Danish National IT agency (a subsidiary agency
of the Ministry of Technology, Science, and Development), I was able to test

it further through various scenarios involving Data oriented XML, as well as
with such international standards as UBL.

In 2002 I was working on a product the purpose of which was to make a

cross-media management tool. What is cross-media management, it is some-
thing like a content management system, providing just the level of content

management needed for managing the multiple inputs multiple outputs single-
sourcing promised by the XML revolution.

What this meant practically was that I had to build a system that would

take theoretically infinite numbers of XML inputs, and be easily extensible
to generate a theoretically infinite number of media outputs.

87

Before continuing I should ask and answer a question, that being:

What does the word Media mean?

Well, if I go look it up I get a concise answer from Wordnet: “transmissions

that are disseminated widely to the public”, if I look in Barron’s business dic-
tionary I get “Channels of communication that serve many diverse functions,
such as offering a variety of entertainment with either mass or specialized

appeal, communicating news and information, or displaying advertising mes-
sages.”, which I think is too narrow for most people not intent on how media

relate to a business purpose, and if I use it in the sense of a plural of medium
and then try to find out what a medium is I find that it is something like art,

we all know it when we see it.

Note that of these definitions there seems to be a bias for electronic media,
what with the word transmissions and channels of communication, which can

give the impression that the means of delivery of the medium is an essential
part of the medium.

For the purpose of this paper I will argue that media and medium is de-
pendent on the context of the age, the media of spoken epic poems from
antiquity delivered by an aged poet is in our age the problem of how to make

Grandpa shut up at the dinner table. In an industrial age a medium is that
which the production of can be automated by industrial processes, and in a

computerized it is that which the production of can be automated by com-
puterized processes. Thus media can include television, radio, newspapers,

books, websites, and so forth but not, in this dispensation, garrulous old men
with tales of brave Ulysses.

If a medium is generated from a computer, then it is the result of a compu-

tation, and from the point of view of a computer programmer the difference
between media would be, two media differ when, to efficiently deal with the

generation and automation of the media, there should be two programs.

I could of course generate a printed media and a website from the same
program, but it would not be the most efficient, the two solutions while re-

quiring at a sufficiently high level an input and an output also require widely
different setups and organizations of their display, differences in user input,

and sundry other differences would mean that I would either do one media
particularly well, and skimp on the other, or I would do both media particu-

larly badly. This tension between different media would only increase as more
media were added to the generating program.

Generation of Media with XSL-T − The Tradition

Now this statement as to the generation of a media really follows the design

88

of most XSL-T solutions when drawn in those nice graphs from companies

that tell you they have a wonderful product and the only thing you need to
do to get its XML output to your chosen media is to add a stylesheet. The

following is an example (only not very nicely drawn because we all know it):

Figure 1: Generation of Media with XSL-T

Now in the world that diagram shows us those “XSL” and “MEDIA” boxes

on the bottom just kind of go off into infinity because if there is one thing
people know it is that slotting in a new XSLT to deal with a new media

channel is as easy as falling off a log. And even easier is adding in a new
XML format to your process, and rolling out twenty new stylesheets for all
your media. Also did I mention maintenance would be a breeze? GXE (Grand

XML Engine) made all that stuff so easy it wasn’t even going to bother telling
you how to do it.

Well thinking over these things at the time I pretty quickly came to the
following realizations

1. Basically we were thinking about just handling the little “XSL” and “ME-

DIA” boxes going into infinity, and trying to make it easy for GXE to
work with us.

2. It is a somewhat well-known idea that the solution for any sufficiently

complex problem in the end involves the creation of a programming lan-
guage (whether or not the programmer knows it), thus I have always

89

figured that when confronted with a sufficiently complex problem the

first order of business is to figure out what the programming language
has to be like, and this was a sufficiently complex problem.

3. Users should be able to configure media with a great deal more ease than

they could just by slotting in XSL-Ts into GXE. But they should be able
to keep from loosing the power of slotting in XSL-Ts. If the solution was
significantly less powerful in the configuration of the media output then

the user would be going back to slotting in XSL-Ts, people tell you they
are willing to give up power for configurability but two things cause me to

believe this is not so: 1. nobody has ever been called configurability-mad
and 2. my spell check tells me that configurability is not even a word.

The Theory − On the structure of Media, Static

and Dynamic

If a media is produced by a process of computation this means that a media
is (generally speaking) in some way structured. Furthermore this means that

our media are generated by the interpretation of programming or markup
languages or conglomerations of the two (for various weak meanings of the
word means).

In languages we often have what we can think of as the core structures of
the language, and we have syntactic sugar. Everything that can be done by

syntactic sugar can be done by the core structures, but in some cases it would
be inefficient to do so. In the same way it seems that in a medium there

are elements that are the core elements of that media, and all the various
forms of syntactical sugar of the media’s presentation can be built up by
manipulating those core elements (and how could it be otherwise if the media

itself is the representation of a program). I will give some examples of this
perhaps strange statement during the course of the talk.

The most flexible and generic format for a media should be chosen as the
root default output of that media when transformed. I will give some examples

arguing that the most flexible is the most generic.
There are in our computerized society two main types of media, static −

meaning that they have been processed through a computer in the creation
but they can not respond to user input changing their state, and dynamic
− meaning that they are processed through a computer and interpreted at

the user’s request. To say that they are static and dynamic in this context
of course means in relation to the program doing the processing, if I run an

XSL-T on the command line and it outputs a python script meant to run
at localhost 8080 and interpret requests it may be a dynamically interpreted

90

language but the interaction between it and the XSL-T is static.

Static media are in many ways remnants of the pre-computerized era, and

are generally analogues in some way to a Printed media, as examples PDF is
in structure close to that of a book with some extended capabilities such as
search thrown in and email is meant as analogous to mail, these metaphorical

relations to pre-computerized media is one reason for their acceptance as
static media by the public. Of course in the age of the computer this division

between static and dynamic media is illusory. The thing that actually makes
a media static or dynamic is the decision on how to generate it.

Dynamic media essentially contain a concept above media, which is that of
an application.

The most common dynamic medium familiar to most people as a dynamic
medium is of course the Web but the same aspect of dynamism and the blur-

ring between media, interactivity, and applications can be found in telephony,
although it is likely that the full realization of this will occur when telephony

moves to being VOIP based.

A system for generating dynamic media must also allow for generation of

applications (if it is to be considered at all serious in the target medium and
not some toy), to do so efficiently would mean that the application doing the

generation of the media would in effect be a framework for managing other
applications in the target media.

The Requirements of a Generic Transformation

Architecture

The rules are given in following list:

1. Given a multiplicity of files, there must be a way for the transforming

application to find what XSL-T to apply on an XML input. Unsatisfac-
tory solutions to this include having one XSL-T for inputs, which would

obviously constrain the number of supportable inputs, keeping the infor-
mation as to what stylesheets should be used for what data formats in

memory which will cause scalability problems if we want to keep increas-
ing our formats, passing the information to the application along with

the XML to be transformed, this is often done in dynamic media such
as the web by referencing a stylesheet to use via the querystring, this
is especially unsatisfactory because it is to be expected that one moves

from one type of data to another via linking, in such a situation if the
stylesheet to use is passed along with the link then one will essentially

need to specify in links what the data at the end is drawn from. Tying the
transformation somehow to validation, because by being able to validate

91

something we know what it is thus we know what validation applies to it.

This is a tight coupling of two disparate things and is also unsatisfactory.

2. For dynamic media one should have support for building applications in
the Architecture, making the implementation essentially a framework.

3. The implementation of the various media should abstract enough away

the data formats allowed and the specific rules of the output format that
the media generated by the implementation can be maintained and too

some extent extended by people unfamiliar with the input formats and
the output formats.

4. The media generation should be able to respond to user input at the time

of generation. This should be at a higher level than that required in point
number three.

5. Validation should be turned off. It can be that validation will need to be

handled by other applications, but the validation should not be part of
the transformation step.

The Implementation

Implementation of Rule 1

The implementation of these rules is very simple, for applying stylesheets we
choose the stylesheet for a particular media by taking the namespace URI of

the document element, this is escaped by URI escaping rules and then escaped
further by changing all characters that might cause filesystem confusion into

underscores, all characters will be lower cased. The application then checks
for a stylesheet that matches the following characteristics:

1. A stylesheet with the name of the escaped namespace and the baseName

of the document element (also escaped) followed by an underscore and the
name of the media channel the application is meant for. Thus if we have a

webmedia media and a DocBook document where the document element
is Chapter the first stylesheet that the application would look for would
be named: http%3A docbook org ns docbookchapter webmedia.xsl

however if we had some documents that were older DTD based Doc-
Book files then we may have an XSL-T named chapter webmedia.xsl

to handle it.

2. If the application cannot find a stylesheet matching the document element
and namespace concatenated in the method outlined it should look for a

92

stylesheet named after the namespace followed by an underscore and the

media channel, as in http%3A docbook org ns docbook webmedia.xsl

3. If it cannot find a stylesheet with one of these two names it should look

inside the XML document for a namespace qualified attribute on the
document element, gta:type (where the namespace gta is bound to is

http://rep.oio.dk/gta) where the name gives a specific document type
name that will be used to determine the stylesheet by concatenating the

escaped name with an underscore and the name of the media channel.

4. If it cannot find this it will look for an xml processing-instruction

named gta-type, with the same process to determine the stylesheet to
use.

5. If it cannot find this it will use a stylesheet with a name matching the
concatenation of the media channel and generic.xsl, this must be pro-

vided for each media channel. For example for a media channel named
pdf the name would be pdfgeneric.xsl. This stylesheet will attempt
to determine from examining the XML design patterns used in the docu-

ment what the proper layout of the document is. This stylesheet can be
imported into others and via the setting of a parameter be set to output a

particular presentation, for example if the natural presentation of an XML
structure is that of a table the XML could use the gta:type attribute on

the document element to assert that is a document of type gta:table.
Structures that are well suited to tables are ones where the children of
the document element all are of the same type and these elements each

have a sequence of elements with the same names.

In dynamic media there can be additional functionality to override the
stylesheet choosing algorithm of the application by explicitly stating what

stylesheet should be used at transformation time, such as was discussed in
the example of passing the name of a stylesheet in the querystring.

This method may seem theoretically unsound to some, the argument may

arise that we do not really know what the purpose of the following document
is, and thus to process it for display can be problematic. The answer is that the

problems of display are problems of the media and human interaction with it,
the processing for such purposes does not present any inherent security risks
and can be undertaken without concern. But aside from this, despite it not

being specified there has arisen a common habit in XML that the purpose
of a document is really its namespace and document element. The passing

around of XML fragments is, outside of the specialized XML community, not
done that often. Of course there are exceptions to this, thus the various

93

possibilities of overriding the standard practice discussed. I will also discuss

some other aspects of exceptions later.

Implementation of Rule 2

Obviously in such a framework it is most useful if semantically rich data

is the source of presentation, However in a framework of multiple formats it
will be necessary to be able to move outside of the semantically rich data in

order to do programmatic things not inherently related to the data one finds
oneself in but rather related to the framework as a whole.

This may also be used to do arbitrary presentation, as opposed to the

structured presentation that is generated from the semantically rich data.

The way this is done in the Generic Transformation Architecture is through
four related methods:

1. The GTA allows a double configuration layer, there is a global configu-
ration for the media and a configuration for the document type input.

Generic documents have a generic configuration at the document type
level.Each media configuration has similar concept put some things may

be configurable in some media while not in others. Presentational objects
that have a similar nature across media will have the same names. As
an example most media solutions will need a way to output content be-

fore and after the content of the input document. This applies equally
to an audio document of some sort, a printed document, a webpage and

so forth. This can of course be done via the XSL-T, and in cases where
doing so is a complicated affair it should be, but it can also be done via

the configurations. There are defined the following configurable areas in
almost every possible configuration file: universal-before, universal-after,

before, after. The universal-before and after are set at the global config-
uration level. The before and after at the document. In some formats
however we could expect further areas for configuration, for example a

PDF media may need for maintainers to configure the output of the such
areas as the left outer margin of an even page. This possible configura-

tion is provided in the XSL-FO implementation but it will obviously not
translate to very many other media because the concept of the left outer

margin of the page being especially meaningful for all media. This nor-
malization of the configuration method means that the current structure
of large transformations such as DocBook can be improved and made

more reusable.

2. The implementation of an inline templating language, such as one sees
in web based templating languages like ASP, PHP and so forth. This

94

language can basically be executed in the input XML documents or the

configurations for the media and the document types. As an example
the configuration file can define functions callable across the global media

solution, for example the following function definition is for an xforms in
Open Office media:

<function name="linetotalprice">

<fnx:if boolean="True">

<fnx:eval>

<fnx:greater>

<arg><att:linenumber/></arg>

<arg>0</arg>

</fnx:greater>

</fnx:eval>

<fnx:then>

<fnx:m-tag type="fnc:linetotalprice">

<fnx:attribute name="linenumber">

<fnx:subtract>

<arg><att:linenumber/></arg>

<arg>1</arg>

</fnx:subtract>

</fnx:attribute>

</fnx:m-tag>

<fnx:m-tag type="xe:linetotalprice"

fnx:namespace="http://rep.oio.dk/tools/

xformsExtension">

<fnx:attribute name="count">

<att:linenumber/>

</fnx:attribute>

</fnx:m-tag>

</fnx:then>

</fnx:if>

</function>

It could be called with the following function call: <fnc:linetotalprice
linenumber="10"/>, the fnc namespace http://rep.oio.dk/funx/fnc

holds user defined functions in the funx language. What it will
do in this instance is write out an element <xe:linetotalprice

xmlns:xe="http://rep.oio.dk/tools/xformsExtension"

count="{the current value of the recursion}"/>

95

3. A simple presentation language consisting of a subset of html, and some

extra capabilities for composable linking. In media that support CSS
as the presentational layer of the media CSS will be used, in static me-

dia where CSS is not supported the styling of the markup elements is
provided by an implementation of an XML-based version of CSS. The

benefits of this however is that the Funx language can be used in the
CSS XML format as well, and evaluated so that includes, parameters,

and mathematical operations can be carried out at the time that styling,
and provides the kind of seperation of style and content touted as the
benefit of XML. This XML version of CSS can also be used to store CSS

data and to generate the actual CSS for the media through a batch pro-
cess, but this is not a requirement for dynamic media. This usage of the

XML format to generate the CSS format is beneficial from an application
perspective because in building tools to generate and work with GTA

implementations the more an application becomes just a bunch of pro-
cesses for manipulating and passing around XML the easier it is to make
generic.

4. The passing in of a parameters nodeset to the XSL-T, this method is
of course used by a number of tools on the market, making it easier to

implement GTA on top of those tools. These parameters are callable
by the funx language via the param element and the param-exists ele-
ment. All parameters to the application should be sent in the parameters

nodeset, in a dynamic media it should be possible for the user to add or
subtract from the nodeset by their interaction with the media, however

some parameters are not changeable by the user. These following param-
eters are defined as being set by the application and cannot be overridden

in anyway by the user: year, month, day, random, time, uniqueid, and
securitylevel − for applications that need to branch logic dependent

on security level − note that the actual security identifier should be han-
dled by the application, the application should just pass in what security
level the user of the application has.

Implementation of Rule 3

The factors discussed in implementation of rule 2 apply here as well. By
using an interpretable language that can be applied in the global configuration

or document specific configuration of the media it will be possible to maintain
and extend the solution for media output of multiple input formats.

This also applies to maintaining connections across media. The funx lan-
guage does not fail when encountering unknown functions, thus it is possible

96

for one media to have a definition of a function and another to not, this is

one of the useful ways of branching between the media.

Implementation of Rule 4

Response to user input is a factor achieved via the aforementioned param-

eters passing.

The basic diagram, for those who like these things, of an individual GTA
transformation is as follows:

Figure 2: GTA Transformation

Variant and Dynamic Outputs

For this section I will discuss mainly XSL-FO, one of the common points
of wisdom regarding transformation of data to XSL-FO is that it is suited to

highly structured outputs, such as Textbooks and similar document formats.
However in the GTA XSL-FO usage the output can be both structured and

97

unstructured, by unstructured meaning that the output of particular pages

can be in the sequence of an otherwise structured document can be escaped
to draw input as needed.

The examples here will be generation of PDF with XSL-FO.

Any individual PDF can be constructed of a number of documents that do
not necessarily have a relation to each other. The styling of these documents

is set by the user at generation time by choosing a specific CSS XML file to
use for styling the specific XML input.

The layout regions of the PDF, such as the document header and footer,
and whether these footers have numbers and where they are located are set
by the configuration file. The generation of XSL-FO can also be escaped by

writing XSL-FO dynamically via Funx, or having formatting object fragments
within the configuration. It is the default behavior of any media to copy

through markup of the sort that is being generated, thus HTML markup will
be copied through in web media, and XSL-FO in pdf media. Finally there is

the possibility of using SVG via the XSL-FO foreign object. Thus if one sends
an SVG page directly to the processor, it will first wrap it in an FO page set

to the styling of documents of type SVG, then wrap the SVG in a foreign
object element, and then copy out all SVG, evaluating Funx expressions in
the SVG.

This level of configurability of the media means that we can effectively
break from the overall structure of documents if we need a particular part of

the document to be structured via graphics.

Examples will involve generation of simple documents, Vcards to business
cards, and use of XSL-FO, SVG, and Funx to generate specific displays.

The Funx Language

The funx language is basically an inversion of XSL-T. In the context of the

framework because I believe it is useful if a framework’s technologies relate
to each other well enough that somebody working with the framework at a

lower level can easier move up to the higher level. As such if a developer or
user has worked with the funx language for a while it should be possible for

them to move relatively simply to doing some xslt based configuration of the
solution, finally moving up to producing straight ahead XSL-T following the

rules of the GTA. I have had some indication that this theory was correct,
but it may just be that coworker that was able to move up was bright and a
quick study.

Thus most language constructs just implement XSL-T functionality in an
XML input, for example the element

98

<fnx:add>

<arg>4</arg>

<arg>6</arg>

</fnx:add>

is just addition of the two arg elements.

Funx code can be contained in the input document, the global configuration
for the media and the configuration for the document type.

For example the following is an xhtml document with Funx statements in
it:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

"http://www.w3.org/TR/xhtml-basic/xhtml-basic10-f.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" xmlns:f=’’http://rep.oio.dk/funx’’>

<head>

<meta http-equiv="Content-Language" content="en" />

<title xml:lang="en">a document</title>

<meta http-equiv="Content-Script-Type"

content="text/javascript" />

<link href="GTA.css" type="text/css" rel="stylesheet" />

</head>

<body>

<h1 id="title" class="title">

<f:meta name=’’title’’/> + <f:param name=’’title’’/>

</h1>

</body>

</html>

Metadata in Funx is read into a metadata object that tries to gen-

eralise the metadata for formats it knows, so that the query <f:meta

name=’’Creator’’/> will, dependent on various inputs, resolve to that for-

mats understanding of the concept Creator.

The parameters are interpreted in the way discussed, given a webmedia
implementation that copies XHTML input to XHTML output and a user

parameter that equals howdy, a parameter for the title power will generate

the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

"http://www.w3.org/TR/xhtml-basic/xhtml-basic10-f.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

99

xml:lang="en" xmlns:f=’’http://rep.oio.dk/funx’’>

<head>

<meta http-equiv="Content-Language" content="en" />

<title xml:lang="en">a document</title>

<meta http-equiv="Content-Script-Type"

content="text/javascript" />

<link href="GTA.css" type="text/css" rel="stylesheet" />

</head>

<body>

<h1 id="title" class="title">a document + howdy</h1>

</body>

</html>

This is actually a very interesting aspect of the GTA, because the transfor-

mation of XHTML in the webmedia does not just copy the XHTML output
but of course adds to it. Examples of this are too verbose and many for this

paper to discuss directly, but will be provided as part of the presentation.

Uses of Funx Beyond the GTA

Of course Funx lends itself to usages beyond that of the GTA, such as the
example of using it to evaluate expressions inside of the CSS XML format.

In this scenario the XML is a tree structure, some of which has been filled
out, some of which is yet to be filled out, and some of which can be filled

out by evaluating the funx expressions inside the XML in the context of the
implementation.

As an example the following tree:

<person xmlns:fx="http://rep.oio.dk/funx"

xmlns:fc="http://rep.oio.dk/funx/fnc"

xmlns:att="http://rep.oio.dk/funx/att" >

<firstName>Bryan</firstName>

<surName>Rasmussen</surName>

<address>

<street>

<fc:g-func name=’’mystreetAddress’’/>

</street>

<postalzone>

<fc:g-func name=’’mypostalzone’’/>

</postalzone>

<city>

<fc:g-func name=’’mycity’’/>

100

</city>

</address>

</person>

could be used to retrieve the values from the users specific Global Configura-

tion file, if the user had these values defined.
This storing of values is I suppose a method we all use, but because Funx

is a language (and a secure language since it does not provide for querying
anything outside the system that we do not give it access to) this could be

made a lot more useful

<person xmlns:fx="http://rep.oio.dk/funx"

xmlns:fc="http://rep.oio.dk/funx/fnc"

xmlns:att="http://rep.oio.dk/funx/att" >

<fx:getPersonDetails/>

<fx:getAddressDetails/>

</person>

which would retrieve the full person details and the full address details, or
the following use of functions:

<person xmlns:fx="http://rep.oio.dk/funx"

xmlns:fc="http://rep.oio.dk/funx/fnc"

xmlns:att="http://rep.oio.dk/funx/att" >

<fc:getPersonDetails requesterId=’’1234’’/>

<fc:getAddressDetails requesterId=’’1234’’/>

</person>

which might be implemented as follows (for getPersonDetails):

<function name=’’getPersonDetails’’>

<fc:if boolean=’’True’’>

<fc:eval>

<fc:m-tag name=’’fc:g-func’’>

<fc:attribute name=’’exists’’>

<att:requesterId/>

</fc:attribute>

<fc:text>TRUE</fc:text>

</fc:m-tag>

</fc:eval>

<fc:then>

<firstName>Bryan</firstName>

<lastName>Rasmussen</lastName>

101

</fc:then>

<fc:else>

<error>

Sorry, you are not allowed to access this information

</error>

</fc:else>

</fc:if>

</function>

This method was used for a Generic Xforms in Open Office implementation

to add functionality not found in the implementation, in the way of a replace-
ment for xforms:repeat. In the implementation it was needed to provide an
expandable number of lines in a blank OIOUBL document (the danish im-

plementation of UBL) http://xml.coverpages.org/Denmark-OIOUBL.html
this will be provided as a fuller case study by the time of the conference

The essential solution is to use the funx:m-tag to dynamically make an
element that is a funx function that writes out UBL InvoiceLine recursively

dependent on an input parameter called linesnumber:

<fnx:m-tag type=’’fnc:invoiceline’’>

<fnx:attribute name=’’linesnumber’’>

<fnx:param name=’’linesnumber’’/>

</fnx:attribute>

</fnx:m-tag>

Funx and Pipelines

This ability of Funx and the security of the language makes it interesting

to run in a Pipeline setup.
This is interesting in the use of the fnx:copy-until function which tells

the processor to copy itself out unless a certain parameter (such as parameters
passed in by the application or defined in the configuration) in the current

context are equal to a value defined by the copy-until.
Thus if we have a three step pipeline where the output of the first trans-

formation is passed to the second and that to the third, and each step hosts

its own funx implementation with its own configuration. Then the following
XML:

<person xmlns:fx="http://rep.oio.dk/funx"

xmlns:fc="http://rep.oio.dk/funx/fnc"

xmlns:att="http://rep.oio.dk/funx/att" >

<fc:copy-until gname=’’personrequesterId’’ value=’’Allowed’’>

102

<fc:getPersonDetails requesterId=’’1234’’/>

</fc:copy-until>

<fc:copy-until gname=’’addressrequesterid’’ value=’’Allowed’’>

<fc:getAddressDetails requesterId=’’1234’’/>

</fc:copy-until>

</person>

then if in our first transformation neither personreqesterId or

addressreqesterid are set in the configuration the tree will be copied and
sent to the next step.

At the next step if it supports personrequesterId and the value re-

turned is Allowed, the function getPersonDetails will be processed. If
addressrequesterid is not supported in this step it will be copied through.

And so forth.
By interspersing this with validation that makes sure no error elements

have come out in our pipeline it becomes possible to build interesting solutions
for automated filling out of XML data.

103

104

