
Processing ODF
Lars Oppermann
Software Engineer
Sun Microsystems



Office Productivity Documents
• Traditionally, office documents are confined to 

applications.
• We use office documents to express and share 

important information
• Office documents are an important part of 

collaboration
• Office documents have been hard to process 

without the application in which they were created.



Better: Open File Formats and ODF
• Standardized, free to use for anyone
• Easy to access programmatically
• Based on existing standards
> Zip, XML
> HTML, CSS, SVG, MathML etc...

• Programming platforms support for base 
technologies
• Well known and understood vocabularies



OpenDocument Format (ODF)
• Specification available at http://www.oasis-open.org
• Get “Open Document Essentials” by David 

Eisenberg!
• Look at documents and experiment
> Unzip and use your favorite text editor
> Edit doc in OpenOffice and see what happens



Looking into an ODF file
• Basic anatomy of an ODF file
> Zip container

– Manifest, mimetype and streams
– content.xml
– meta.xml
– styles.xml



Building a search engine
• Adding ODF support to apache Lucene
> Wrapping ODF XML as lucene documents
> Scanning a directory and build an index

• Search for document content and meta data



ODF search engine (cont.)



Direct XML Processing
• Available in most programming environments
• Widely used and understood
• Flexible
• Low level of abstraction



XSLT
• Good for processing content on the XML level
> Conversion
> Extraction
> Merging

• Complicated if more abstraction is needed
> Items that have semantics beyond the XML infoset need 

special attention. E.g. style inheritance.
• Some infrastructure needed to work on packages
> Using “flat” representation of ODF may be an alternative 



Frameworks and Toolkits
• More abstraction
• Hide XML, expose more ODF semantics
> Style inheritance, style management
> Page templates
> Links, references and footnotes

• Bridge ODF and language paradigms
> Use platform specific interface conventions
> Platform specific containers and collections



odftoolkit Project



Odf4j



Odf4j (cont.)
• ODF support for the Java platform
• Supports ODF at various levels of abstraction:
> Package
> XML
> Object Model

• No automatic XML/OO mapping
> Rather implement semantics defined in the ODF 

specification that are not part of the schema
• Try to bridge ODF, XML and platform paradigms



AODL
• ODF for the .NET platform
• Design goals like odf4j
• Implemented in C#
• Offers object model for main ODF document types
• Includes experimental PDF and HTML generators



AODL demo application



Limitations
• Information that is derived by rendition is not 

normally available at the file format level
> Page/line numbers, list numbering
> Computed fields

• Derived information can be persisted by rendering 
application
• Processing chains should not rely on derived values 

if document could have been modified by non-
rendering application



Future Work
• Harmonize toolkits
• Coherent programming experience for ODF on all 

platforms
• Create higher level tools on top of frameworks



Future Work (cont.)
• New metadata mechanism
> TC subcommittee finished proposal
> currently being reviewed

• Enables new ways to extend ODF
> based on semantic web technologies
> RDF, OWL
> integrates content and metadata



Links
• OpenDocument TC
> http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=office
• OpenDocument Essentials
> http://books.evc-cit.info/

• odftoolkit project (odf4j, AODL)
> http://odftoolkit.openoffice.org

• ODF Perl module
> http://search.cpan.org/dist/OpenOffice-OODoc/



Processing ODF
Lars Oppermann
lars.oppermann@sun.com


