COM

SAXONICAS

XSLT AND XQUERY PROCESSING

XML Schema
Moves Forward

Michael Kay, Saxonica

So what’s the problem?

« XML Schema 1.0 is a success

 But

— it doesn’t have all the functionality
people need

— it has more functionality than many
people want

— it’s hideously complex
— it’'s not as interoperable as it could be
— it's very hard to read and write

SAXONICA:

XSLT AND XQUERY PROCESSING

How did this happen?

Working group tried to unify
— DTD, XML-Data, XDR, DCD, SOX, DDML...

Full spectrum from documents to data
Rag-bag of popular data types
Validation and data binding

Net result:
Everyone uses it
No-one loves it

SAXONICA:

XSLT AND XQUERY PROCESSING

XML Schema 1.1
fixes some of these problems

It doesn’t remove any functionality

It does reduce the complexity a little

— by means of improved drafting and
simplifying some rules

It might improve interoperability a

little

— by making some of the rules clearer

It does provide many of the features
that users are asking for

SAXONICA:

XSLT AND XQUERY PROCESSING

Key new features

* Relaxations on Content Models
* Changed rules for derived types

» Co-occurrence Constraints
— “Conditional Type Assignment”

« Changes to data types
» Schema modularity: xs:override

 Assertions

SAXONICA:

XSLT AND XQUERY PROCESSING

Assertions

Borrowed from Schematron

— but without the user-defined error
messages

Allow arbitrary boolean conditions to
be defined for any simple or
complex type

Written using XPath 2.0 syntax

Defined for any subtree of the
document, evaluated within that
subtree

SACONICA

AND XQUE

Example: assertion on complex type

<xs:.complexType name="article”>
<xs:assert test=
“Iif (exists(affiliation))
then exists(author)
else true()"/>

SAAONICA:

XSLT AND XQUERY PRO CESSING

Example: assertion on simple type

<xs:simpleType name="futureDate™>
<xs:.restriction base="xs:date”>
<xs.assert test=". ge current-date()’/>
</xs:restriction>
</xs:simpleType>

SAXONICA:

XSLT AND XQUERY PROCESSING

Assertions: limitations

 The latest draft

— requires processors to support the
whole of XPath 2.0,

— but with restrictions on the context
* no external documents
* N0 access outside subtree
* NOT schema-aware

* No user-defined messages
— Scope for vendor extensions

SAXONICA:

XSLT AND XQUERY PROCESSING

Validation by grammar
VS
Validation by predicates

Both approaches have value
Grammar is more suited to narrative XML
Predicates mirror integrity constraints in SQL

Overlapping functionality

— some constraints are more easily expressed in
grammatical terms, some in terms of predicates

SAXONICA:

XSLT AND XQUERY PROCESSING

Assertions: impact

Likely to be very widely used

May sometimes be used in
preference to complex grammars

Competes with Schematron

Cost of validation becomes very
open-ended

Saxon implementation allows
escaping to Java code

SAXONICA:

XSLT AND XQUERY PROCESSING

Restriction using assertions

* Restriction by grammar
— requires repeating the content model
— maintenance nightmare

» Restriction by assertion

— just say what'’s different

— can do “deep restriction”
* test="empty(.//@currency|. ne ‘USD’])’

SAXONICA:

XSLT AND XQUERY PROCESSING

Context-dependent assertions

» Spec disallows calls to doc()
— considered “a bridge too far”

» Spec allows current-dateTime()

o Saxon allows calls out to Java
— enables cross-document validation
— validation against DB content

— validation relative to processing
context, e.g document lifecycle

SAXONICA:

XSLT AND XQUERY PROCESSING

Assertions and Performance

» Cost is open-ended (rope to hang
yourself)

* This worries some people

 However, people are currently
checking the same constraints using
non-XSD technology.

SAXONICA:

XSLT AND XQUERY PROCESSING

Conditional Type Assignment

Defined on an element declaration

Allows alternative types, depending on
the values of the attributes of the element

Designed so the content model can be
decided by examining the start tag alone

Generalizes xsi:type
— any attribute name
— any XPath condition (with caveats as before)

Allows assignment of the error type
— S0 It overlaps assertions

SAXONICA:

XSLT AND XQUERY PROCESSING

CTA Example

<xs:.element name="CreditCard” type="CreditCard">
<xs:alternative test="@issuer="Visa™

type="VisaCreditCard’/>
<xs:alternative test="@issuer="MasterCard

type="MasterCardCreditCard’/>
<xs:alternative test="@issuer="Amex”

type="AmexCreditCard”/>
<xs:alternative type="OtherCreditCard”/>
</xs.element>

bR H]

\(:; / /‘{»ﬁ\;_‘ \ > 3 / ‘ ;
oA IN J Qﬁ_
XSLT AND XQUERY PROCESSING

CTA vs Assertions

Many constraints can be expressed
either way

CTA is guaranteed streamable so
may be more efficient

CTA may give better diagnostics

But Assertions are more powerful
and perhaps easier to understand

SACONICA

AND XQUE

Other facilities in XML Schema 1.1

Generalized <xs:all> groups

— allows cardinality constraints without
ordering constraints

Elements may belong to several

substitution groups

Define attributes that are allowed on
any element

Open content models: allows every
element to contain wildcard children
anywhere

SAXONICA:

XSLT AND XQUERY PROCESSING

Other facilities (cont’d)

“Not-in-schema” wildcard
Multiple xs:ID attributes
Revised rules for valid type restriction

Target Namespace can be defined on
local element declarations

xs:precisionDecimal data type

SACONICA

AND XQUE

Conclusions

« XSD 1.0 is very widely used despite
the known drawbacks

« XSD 1.1 adds most of the high-
priority new features that users need

* It only makes slight improvements to
the other problems:

— over-complexity
— poor interoperability

SACONICA

AND XQUE

Finally

 The XML Schema WG needs help

— new members
— reviews and comments
* Try out some of the new features
with Saxon
— 75% implemented in 9.1
—90% implemented in 9.2

SAXONICA:

XSLT AND XQUERY PROCESSING

