
XML Schema

Moves Forward

Michael Kay, Saxonica

So what’s the problem?

• XML Schema 1.0 is a success

• But

– it doesn‟t have all the functionality

people need

– it has more functionality than many

people want

– it‟s hideously complex

– it‟s not as interoperable as it could be

– it‟s very hard to read and write

How did this happen?

• Working group tried to unify
– DTD, XML-Data, XDR, DCD, SOX, DDML...

• Full spectrum from documents to data

• Rag-bag of popular data types

• Validation and data binding

Net result:

Everyone uses it

No-one loves it

XML Schema 1.1

fixes some of these problems

• It doesn‟t remove any functionality

• It does reduce the complexity a little

– by means of improved drafting and

simplifying some rules

• It might improve interoperability a

little

– by making some of the rules clearer

• It does provide many of the features

that users are asking for

Key new features

• Relaxations on Content Models

• Changed rules for derived types

• Co-occurrence Constraints

– “Conditional Type Assignment”

• Changes to data types

• Schema modularity: xs:override

• Assertions

Assertions

• Borrowed from Schematron

– but without the user-defined error
messages

• Allow arbitrary boolean conditions to
be defined for any simple or
complex type

• Written using XPath 2.0 syntax

• Defined for any subtree of the
document, evaluated within that
subtree

Example: assertion on complex type

<xs:complexType name=“article”>

<xs:assert test=

“if (exists(affiliation))

then exists(author)

else true()”/>

Example: assertion on simple type

<xs:simpleType name=“futureDate”>

<xs:restriction base=“xs:date”>

<xs:assert test=“. ge current-date()”/>

</xs:restriction>

</xs:simpleType>

Assertions: limitations

• The latest draft

– requires processors to support the

whole of XPath 2.0,

– but with restrictions on the context

• no external documents

• no access outside subtree

• NOT schema-aware

• No user-defined messages

– Scope for vendor extensions

Validation by grammar

vs

Validation by predicates

• Both approaches have value

• Grammar is more suited to narrative XML

• Predicates mirror integrity constraints in SQL

• Overlapping functionality

– some constraints are more easily expressed in

grammatical terms, some in terms of predicates

Assertions: impact

• Likely to be very widely used

• May sometimes be used in

preference to complex grammars

• Competes with Schematron

• Cost of validation becomes very

open-ended

• Saxon implementation allows

escaping to Java code

Restriction using assertions

• Restriction by grammar

– requires repeating the content model

– maintenance nightmare

• Restriction by assertion

– just say what‟s different

– can do “deep restriction”

• test=“empty(.//@currency[. ne „USD‟])”

Context-dependent assertions

• Spec disallows calls to doc()

– considered “a bridge too far”

• Spec allows current-dateTime()

• Saxon allows calls out to Java

– enables cross-document validation

– validation against DB content

– validation relative to processing

context, e.g document lifecycle

Assertions and Performance

• Cost is open-ended (rope to hang

yourself)

• This worries some people

• However, people are currently

checking the same constraints using

non-XSD technology.

Conditional Type Assignment

• Defined on an element declaration

• Allows alternative types, depending on

the values of the attributes of the element

• Designed so the content model can be

decided by examining the start tag alone

• Generalizes xsi:type

– any attribute name

– any XPath condition (with caveats as before)

• Allows assignment of the error type

– so it overlaps assertions

CTA Example

<xs:element name=“CreditCard” type=“CreditCard”>

<xs:alternative test=“@issuer=„Visa‟”

type=“VisaCreditCard”/>

<xs:alternative test=“@issuer=„MasterCard‟”

type=“MasterCardCreditCard”/>

<xs:alternative test=“@issuer=„Amex‟”

type=“AmexCreditCard”/>

<xs:alternative type=“OtherCreditCard”/>

</xs:element>

CTA vs Assertions

• Many constraints can be expressed

either way

• CTA is guaranteed streamable so

may be more efficient

• CTA may give better diagnostics

• But Assertions are more powerful

and perhaps easier to understand

Other facilities in XML Schema 1.1

• Generalized <xs:all> groups

– allows cardinality constraints without
ordering constraints

• Elements may belong to several
substitution groups

• Define attributes that are allowed on
any element

• Open content models: allows every
element to contain wildcard children
anywhere

Other facilities (cont’d)

• “Not-in-schema” wildcard

• Multiple xs:ID attributes

• Revised rules for valid type restriction

• Target Namespace can be defined on

local element declarations

• xs:precisionDecimal data type

Conclusions

• XSD 1.0 is very widely used despite

the known drawbacks

• XSD 1.1 adds most of the high-

priority new features that users need

• It only makes slight improvements to

the other problems:

– over-complexity

– poor interoperability

Finally

• The XML Schema WG needs help

– new members

– reviews and comments

• Try out some of the new features

with Saxon

– 75% implemented in 9.1

– 90% implemented in 9.2

