
ITI Series

Institut Teoretické Informatiky
Institute for Theoretical Computer Science

2009-428

XML Prague 2009

Conference Proceedings

Institute for Theoretical
Computer Science (ITI)
Charles University

Malostranské náměst́ı 25
118 00 Praha 1
Czech Republic

http://iti.mff.cuni.cz/series/

XML Prague 2009 – Conference Proceedings
Copyright © 2009 Jiří Kosek, Vít Janota
Copyright © 2009 MATFYZPRESS, vydavatelství Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze

ISBN 978-80-7378-061-6

XML Prague 2009
Conference Proceedings

Lesser Town Campus
Prague, Czech Republic

March 21–22, 2009

Syntea software group, a.s.
(www.syntea.cz)

System integrator and supplier of IT
solutions of large process-oriented
systems based on the technologies
developed by the company:

Xdefinition validation and processing of XML documents

GAM on-line batch-processes and distributed applications

XBPEL XWSDL workflow solution

AC LDAP user administration and add-on for LDAP

TRS secure WAN transport of large data files.

The company develops and uses these technologies already more then
decade. Customers of the company are financial and insurance
institutions, commercial subjects, public sector and operators of
Internet portals in Czech and Slovak Republics.

To support education of new IT experts Syntea runs two schools: the
college “Informatics Institute" and the "Digital Media Institute".
The professionals of the company also participate in teaching at other
tertiary education institutions (Faculty of Mathematics and Physics of
Charles University and Czech Agriculture University).

The company aspires to contribute in using technologies that simplify
and make more precise the communication between users, analysts,
architects and programmers.

Our goal is to accelerate implementation of IT solutions and increase
the robustness of the applications in routine use.

n Ready to use support for document
frameworks

 DITA, DocBook, TEI, XHTML

n One click publishing to different
formats

 PDF, XHTML, Java Help, etc.

n Content Management Systems access
 WebDAV, custom plugins

<oXygen/> combines visual editing features suited for content authors

with a mature and productive XML development environment.

XML Authoring and Publishing

XML Development

n Support for reusable content
 Xinclude, Entities, DITA conref

n Comprehensive set of actions for
 Tables (HTML/CALS), Lists, Images,

etc.

n Configurable and Customizable for
 any XML vocabulary
 Open Java API, Open source actions

library

n Schema editors
 XML Schema, DTD, RelaxNG,

Schematron, NVDL

n XSLT 1.0/2.0 Basic and Schema Aware
 Debug, Profile, Edit, Transform

n Xquery
 Debug, Profile, XML Databases

(MarkLogic, eXist, etc.)

n Other Supported Standards
 XPath, CSS, SVG, XSL-FO

 <oXygen/> is available in two editions:
n<oXygen/> XML Author, starting from 179 USD.
n<oXygen/> XML Editor, for developers, containing the complete development
environment starting from 48 USD Academic / 299 USD Professional.

 Both editions can run as a standalone application or as an Eclipse IDE plugin, on Windows,
 Mac OS X or Linux.

for the content authors,

www.oxygenxml.com

Table of Contents
General Information ... vii

Preface .. ix

XML Schema Moves Forward – Michael Kay ... 1

Full validation of Atom feeds containing extensions –
村田 真 (MURATA Makoto [FAMILY Given]) .. 17

Introduction to Code Lists in XML – G. Ken Holman .. 37

Testing XSLT – Tony Graham ... 71

Testing XSLT with XSpec – Jeni Tennison .. 93

FunctX – Priscilla Walmsley ... 109

Designing XML/Web Languages: A Review of Common Mistakes –
Robin Berjon ... 117

Practical Reuse in XML – Ari Nordström ... 135

Exploring XProc – Norman Walsh .. 159

Optimizing XML Content Delivery with XProc – Vojtěch Toman 161

A practical introduction to EXSLT 2.0 – Florent Georges ... 175

High-performance XML: theory and practice – Alex Brown and Andrew Sales 177

Imagining, building and using an XSLT virtual machine –
Mark Howe and Tony Graham ... 189

Advanced Automated Authoring with XML – Petr Nálevka 207

Xdefinition 2.1 – Václav Trojan .. 229

Cool mobile apps with SVG and other Web technologies – Robin Berjon 245

Current Support of XML by the "Big Three" –
Irena Mlýnková and Martin Nečaský .. 251

Solving problem of XML data orchestration in large and distributed IS –
Jiří Měska .. 269

v

Institute for Theoretical
Computer Science

Center of research in Computer Science and Discrete Mathematics funded
by the Ministry of Education of the Czech Republic

Established in 2000, current project approved for 2005–2009 with a
view to extension to 2011

Staff of 60+ researchers include both experienced and young scientists

ITI is a joint project of the following institutions:

– Faculty of Mathematics and Physics, Charles University, Prague

– Faculty of Applied Sciences, University of West Bohemia, Pilsen

– Faculty of Informatics, Masaryk University, Brno

– Mathematical Institute, Academy of Sciences of the Czech Repub-
lic

– Institute of Computer Science, Academy of Sciences of the Czech
Republic

For more information, see http://iti.mff.cuni.cz

Publication preprints are available in ITI Series
(http://iti.mff.cuni.cz/series)

General Information

Date
Saturday, March 21st, 2009
Sunday, March 22nd, 2009

Location
Lesser Town Campus of Charles University, Lecture Halls S5 and S6
Malostranské náměstí 25, 110 00 Prague 1, Czech Republic

Organizing Committee
Petr Cimprich, Unity Mobile
Tomáš Kaiser, University of West Bohemia, Pilsen
James Fuller, Webcomposite
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Petr Pajas, Charles University, Prague
Václav Trojan, Syntea software group a.s.
Mohamed Zergaoui, Innovimax
Pavel Kroh
Vít Janota, UTMG Consulting
Martin Žák, UTMG Consulting

Produced By
XMLPrague.cz (http://xmlprague.cz)
Institute for Theoretical Computer Science (http://iti.mff.cuni.cz)
Webcomposite, s.r.o. (http://webcomposite.com)

Gold Sponsor
Syntea software group a.s. (http://syntea.cz)

Sponsors
oXygen (http://www.oxygenxml.com)
Florent Georges (http://fgeorges.org)
Xcruciate (http://www.xcruciate.co.uk)

vii

http://xmlprague.cz
http://iti.mff.cuni.cz
http://webcomposite.com
http://syntea.cz
http://www.oxygenxml.com
http://fgeorges.org
http://www.xcruciate.co.uk

viii

Preface

This publication contains papers presented at XML Prague 2009.
XML Prague is a conference on XML for developers, markup geeks, information

managers, and students. In its 4th year, XML Prague focuses on emerging trends
in core XML technologies and their application in the real world. XML Prague
conference will take place 21–22 March 2009 at Charles University in the beautiful
city of Prague, Czech Republic.

The conference is hosted at the Lesser Town Campus of the Faculty of Mathem-
atics and Physics, Charles University, Prague. XML Prague 2009 is jointly organized
by the Institute for Theoretical Computer Science and XML Prague Committee in
the framework of their cooperation supported by project 1M0545 of the Czech
Ministry of Education.

The conference provides Academic and IT professionals with an overview of
successful XML technologies, with the focus being more towards real world applic-
ation versus theoretical exposition.

This is the fourth year we have organized this event. Information about XML
Prague 2005, 2006 and 2007 was published in ITI Series 2005-254, 2006-294 and 2007-
353 (see http://iti.mff.cuni.cz/series/).

— James Fuller, XML Prague Committee

ix

http://iti.mff.cuni.cz/series/

x

XML Schema Moves Forward
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper gives an overview of the strengths and weaknesses of XML Schema
1.0 as background to the motivation behind the design of the new version, 1.1,
which is now approaching the finish line. It provides an overview of the few
features in the 1.1 version, with particular emphasis on assertions, and the
impact that this particular facility will have on the way that schemas are
written.

1. Introduction
XML Schema 1.0 [1] has been a W3C Recommendation since May 2001, and has
been controversial ever since. It has probably received heavier criticism than any
other specification in the XML family; but it has not suffered the fate of some pro-
posed standards (XLink is an example) of being ignored by the user community.
On the contrary, it is widely used, it has been implemented by all the major vendors
(not to mention Saxonica), and it could be claimed that it has met all its original
design objectives.

The first substantial revision of the specification, XML Schema 1.1 [2], is now
close to completion. It entered its final period of public consultation in January 2009,
and there is sufficient evidence of implementation (pre-release products from IBM
and Saxonica) to meet W3C's criteria for transition to Recommendation status.

In the next section I will attempt an analysis of what XML Schema 1.0 does well
amd what it does badly. Section 3 then gives an overview of what's new in the 1.1
version. Section 4 of the paper concentrates on what I consider to be the most signi-
ficant feature of the new version, Assertions, and analyses the impact this facility
is likely to have on the way schemas are used. Finally, the paper concludes with an
assessment of the future.

2. XML Schema 1.0: Strengths and Weaknesses
The development of XML Schema 1.0 (or XSD 1.0 as I will refer to it) was motivated
by a large number of requirements, and many of the strengths and weaknesses of
the specification can be traced to the diversity of goals that it was trying to accom-
plish.

1

When XML was launched in 1998, it brought with it the DTD syntax inherited
from SGML, despite widespread misgivings about its fitness for purpose. Tim Bray's
Annotated XML Specification [3], for example, observes of its parameter entities:

Parameter entities (PEs) are things that show up in the DTD as references beginning
with % and ending with ;. They are kind of hideous and hard to use, and especially,
they are hard to read when you're looking at someone else's DTD. But for the moment,
they are really the only way we have to build DTDs in a modular and maintainable
way.

DTDs made it into XML because its developers wanted to get something out quickly,
and their policy for achieving this was to subset what was already available in
SGML and avoid inventing anything new. The policy was remarkably successful,
but it had the effect of perpetrating some pretty archaic syntax. Compatibility, as I
was taught as a student by David Wheeler, means deliberately repeating other
people's mistakes.

A replacement for DTDs was always on the agenda, which is probably the main
reason that when namespaces were grafted on to XML in 1999, no-one worried too
much that they were completely incompatible with DTDs.

Between 1998 and 2000 there were various experimental schema languages
proposed: Eric van der Vlist [4] mentions XML-Data, XDR, DCD, SOX, and DDML.
XML Schema 1.0 set out to supersede all of these efforts, and in order to succeed in
this it had to offer the union of the capabilities of each of these proposals. (The very
name XML Schema was chosen to stake a claim to be the one true schema language
for XML, a claim which many found presumptious. The recognition that the language
was only one schema language among many and therefore needed a proper name
led to the working group officially adopting the designation XSD for the 1.1 revision.)

Specific factors motivating the design of XML Schema included:
1. The basic DTD concept of defining the structure of a document by means of a

BNF grammar for each kind of element was retained
2. Explicit constructs were added to represent the popular ways of exploiting

parameter entities in DTDs: for example, to allow content models or parts of
content models to be shared between different elements, to allow content models
to be extended or restricted, and to allow groups of elements (substitution groups)
to be defined so that the content model need only refer to the group to permit
any of its members to appear.

3. There was explicit retention of some of the more exotic aspects of DTDs, such
as the definition of attributes typed as IDs, entity references, or notation names.
Some of these concepts were also generalized, but many of the quirky restrictions
remained. The ability not only to validate the instance document, but to expand
it by supplying defaults for missing attributes, was also carried forward. This
was done as part of an attempt to ensure that schemas could be a 100% complete

2

XML Schema Moves Forward

replacement for DTDs; however, the secondary function of DTDs in defining
external entities was not carried forward, so in that respect this goal was not
achieved.

4. A data type system was added allowing the content of elements and attributes
to be constrained, for example to integer or date values, or to strings matching
a particular regular expression. The actual collection of primitive types that
ended up in the specification is manifestly the result of a rather undisciplined
commmittee decision-making process. The fact that the specification itself asserts
that the set of data types is "judiciously chosen ... to serve the widest possible
audience" can be seen as a rather lame attempt at self-justification: "we know it
looks completely arbitrary, but we were trying to keep everyone happy."

5. An important principle guiding the development, perhaps the most innovative
aspect of the specification and one that perhaps is the origin of many of its
problems, is the idea that a schema should not only distinguish valid documents
from invalid ones, but should annotate the validated document with type inform-
ation derived from validation. For example, it should not only check that an at-
tribute holds a valid date, but should annotate the attribute as such.

This idea explains why XML Schema can be used to control data binding,
that is the mapping of XML instance documents to data structures in conventional
programming languages, and also why it can be used to underpin the type system
of XML processing languages such as XSLT and XQuery. It also accounts for a
large share of the complexity in the specification, as well as many of the restric-
tions in its capability: for example, the notorious "unique particle attribute"
constraint which limits the grammar of content models to be unambiguous
without lookahead, is there largely to ensure that a type can be unambiguously
assigned to every element in the document.

6. The specification took the approach that namespaces should be used as the
primary mechanism defining the modularity of an XML vocabulary.

There is some evidence that the language designers recognized another
principle, namely that there is never a single schema for a namespace. For ex-
ample, different messages used by an application might use elements from the
same vocabulary, but with different validation rules, or the same instance docu-
ment might be subject to different validation rules at different stages in its life-
cycle. However, the language ended up with little of substance to offer users in
this area, other than a certain vagueness in the definition of the relationship
between namespaces and schema documents that left implementors perplexed
and users facing interoperability problems.

7. The specification attempted to cover the spectrum of XML applications from
narrative document processing through to application data interchange. Since
some XML users sit firmly at one end of this spectrum or the other, it can be ar-

3

XML Schema Moves Forward

gued that no-one was entirely happy with the outcome; it is certainly true that
both groups are burdened with many facilities that they perceive as unnecessary.

As this discussion tends to show, it can be argued that XML Schema's widespread
adoption as well as its reputation for being overburdened with both unnecessary
complexity and unnecessary restrictions share a single root cause: the desire to sat-
isfy the widest possible set of users and requirements.

The criticisms of XML Schema 1.0 are well summed up by James Clark [5] in an
internet posting:
1. The syntax makes schema documents painfully difficult to read and write
2. Lack of orthogonality, for example restrictions on the attributes of a type are

defined completely differently from restrictions on the child elements
3. A specification that lacks both readability and formal rigour
4. Numerous missing features, for example cross-dependencies between attributes

and interleaving of child elements
5. An arbitrary yet fixed set of primitive data types
6. No ability to declare a particular element as the document root
In this posting Clark was arguing against the decision of an IETF group to define
an XML vocabulary using XSD rather than Relax NG. The fact is, however, that al-
though these criticisms of XSD are all valid and are well known, many users and
standards bodies have chosen to use XML Schema despite all its faults. There are
two factors that explain this: firstly, despite all the weaknesses, it generally does
the job; and secondly, it has wide backing in the industry. It's one of those standards
which everyone uses mainly because everyone else does.

3. An Overview of XML Schema 1.1
Standards work is not like software development. Working Groups try to publish
requirements and use them to steer their decision-making; they try to publish plans
(or at any rate, a few milestone dates) and stick to them; but in the end, the agenda
for each meeting is determined by what the members of the working group put on
the table, and the decisions made are determined by how they vote on each proposal.
Moreover, most of the decisions depend on individuals rather than the companies
they represent: the big decisions for most companies are whether to participate,
whom to send, and whether to sign off the finished spec at the end. Everything else
typically depends on the priorities of the individual members.

The XML Schema Working Group (of which I have been a member since 2007)
is well aware of the deficiencies of the 1.0 specification outlined above, but is con-
strained in how to address the problems. The constraints arise from the need to
maintain compatibility, from the limited resources available, and from the need to

4

XML Schema Moves Forward

achieve consensus for any change — the fact that there is a recognized problem is
no guarantee that anyone will propose a solution that everyone else will agree on.

Progress on XSD 1.1 has been painfully slow for a number of reasons. As happens
to some software development teams, fixing the many problems in 1.0 has sometimes
taken priority over new development (no less than 152 errata to the first edition
were published, which were then consolidated in a second edition in 2004; some of
these ran to several pages of new text. No further errata have been published since
2004, because the working group decided to focus its efforts on shipping XSD 1.1;
but there are 108 open bugs awaiting attention.) Many users of XML Schema would
be surprised how small the core team developing the specification is: in 2000/01,
while the original specification was under development, there were generally over
30 people at each meeting, but the typical attendence today is more likely to be six
to eight. Volunteers are welcome!

Nevertheless, the development of XSD 1.1 is now in its endgame phase. There
will still be a few bugs to iron out, and perhaps a few political skirmishes to over-
come, but the shape of the final Recommendation is now fairly clear. The following
sections give an overview of the main areas of change. Most of the facilities are de-
scribed in the form of a brief synopsis, because I want to devote most of my time
and space to a discussion of what I consider the most important feature, the intro-
duction of assertions.

3.1. Relaxations on Content Models
A number of rules on content models have been relaxed, or new facilities introduced,
to allow more flexibility to schema designers, or more accurate descriptions of ex-
isting instance documents.
1. Named element particles can now overlap with wildcards; if an element in an

instance document matches both a specific element particle and a wildcard, the
specific particle is chosen in preference.

2. So called "open content models" define wildcards that are permitted implicitly
as children of any element, either anywhere, or after all other children. The main
reason for this is to allow extensibility.

3. It is also possible to define a default attribute group containing attributes (includ-
ing wildcards) that are applicable to all elements.

4. Wildcards offer more flexibility: as well as defining the permitted namespaces,
they can now specify a list of prohobited namespaces; they can also prohibit a
specific list of element or attribute names.

5. Wildcards are allowed in all groups.

5

XML Schema Moves Forward

6. Arbitrary occurrence limits are allowed in all groups, allowing a content model
for example in which up to four <author> elements can appear, without con-
straints on where they appear.

7. An element may now appear in more than one substitution group. For example,
in the schema for XSLT, the <xsl:variable> and <xsl:param> may appear in
both the substitution group for instructions and that for top-level declarations.

3.2. Derived types
The complex rules in XSD 1.0 that define whether one type is a valid restriction of
another have been replaced by a simple rule that states that R is a valid restriction
of B if the set of sentences legal in R is a subset of the sentences that are legal in B.
This of course leaves the onus on the implementor to invent an algorithm for
checking this rule, but this is an improvement on XSD 1.0 where the specification
provided an algorithm that was incorrect. There is also an escape clause that allows
the implementation to fall back to checking instances against both types, and only
reporting the invalid restriction the first time it finds an instance that is valid against
R but not against B.

It is now possible in a local element declaration to specify a target namespace
different from that of the containing schema document. This makes it possible to
define restrictions of content models whose elements are in multiple namespaces.
It is also possible to give names to identity constraints, allowing them to be copied
into a type derived by restriction.

As we will see below, I expect that many cases where types have traditionally
been derived by restriction will in future be much more easily handled by using
assertions.

3.3. Co-occurrence Constraints
A long-standing complaint about XSD 1.0 has been that it is not possible to define
cross-validation rules between different attributes, or rules whereby the permitted
content of an element depends on the value of one of the attributes (unless of course
the attribute happens to be called xsi:type).

XSD 1.1 addresses this with a feature called conditional type assignment. The idea
is that an element may have a number of alternative types (or content models), and
which of these is chosen is a function of the attributes present on the element. For
example an <address> element might have different content models depending on
the value of its country attribute. The conditional type defines the attributes permit-
ted on the element as well as the content model for its children, so it is possible for
example to define that two attributes are mutually exclusive by defining two altern-
ative types (each permitting one of the attributes) and selecting the type based on
the presence of one of the attributes.

6

XML Schema Moves Forward

The following example illustrates this. The type addressType (which may be
abstract) is the generic type, from which all the other types must be derived; it de-
faults to xs:anyType. The last alternative in this example omits the test attribute,
and thus defines the default type, which in this case is xs:error meaning that all
instances are invalid. If this line were omitted the default type would be addressType.

<xs:element name="address" type="addressType">
<xs:alternative test="@country='us'" type="addressTypeUS"/>
<xs:alternative test="@country='gb'" type="addressTypeUK"/>
<xs:alternative type="xs:error"/>

</xs:element>

There is a deliberate asymmetry here between attributes and child elements; condi-
tional type assignment can only be driven by the attributes of an element, and not
(for example) by the value of its first child element. The reason for this is to preserve
the principle that validation should be streamable, that is, it should be possible to
perform validation in a single pass through the document. In fact it would be possible
to still to do streaming validation without this restriction (by validating against all
the permitted types in parallel and then deciding at the end which of the validity
assessments to ignore), but the working group wanted to keep implementation
simple.

The logic for deciding which of the conditional types to validate against uses a
small subset of XPath. The subset is syntactically constrained, supposedly for ease
of implementation, but more importantly, the XPath expression is provided with a
view of the input document that only contains the relevant element and its attributes,
with no children, siblings, or ancestors. The current Saxon implementation constructs
this limited subset view of the document, but then allows the whole of the XPath
2.0 syntax to be used to query it. This only allows use of handy functions such as
starts-with() which are not present in the subset syntax.

There is a new type xs:error which can be assigned when the conditional type
assignment rules find a combination of attributes that is invalid. This is in effect an
alternative to using assertions.

3.4. Changes to Data Types
There is a new facet available on all the date/time types to control whether the
timezone is mandatory, optional, or prohibited. These could previously be done
using regular expressions, but the new facet is a much better solution as it makes
it possible for applications to determine whether timezones are expected or not,
and for validators to give better error messages when the constraint is violated. One
new built-in derived type has been created to exploit this facet: xs:dateTimeStamp,

7

XML Schema Moves Forward

which is a xs:dateTime with mandatory timezone. Other similar types, for example
an xs:date with no timezone, can be defined by users.

The types xs:dayTimeDuration and xs:yearMonthDuration, previously introduced
in the XSLT/XQuery specifications, have now found their way into the XSD specific-
ation itself.

A new type xs:precisionDecimal is available. This has been a rather controversial
addition, since many people felt there were quite enough numeric types already,
but IBM have been pushing very hard for it, and it's often the case with standards
that if one party is dogged enough, others will eventually give way in the interests
of moving on to other things. The xs:precisionDecimal type differs from
xs:decimal in that the number of digits is significant: 1.00 does not mean the same
as 1. We are all going to have to relearn the basic rules of arithmetic as a result.

An interesting departure is that the specification now allows implementors to
define their own primitive types and facets. This was introduced partly as a way
to prevent the xs:precisionDecimal impasse occurring again in the future; if one
vendor believes strongly enough that a new type is needed, they can add it to their
product and let the market determine whether other vendors feel obliged to follow
suit. It can also be seen as an answer to Clark's criticism, cited earlier, of the arbit-
rariness of the chosen set of primitives.

The specification now makes a distinction between values that are identical and
values that are equal. For example, the durations PT1M and PT60S are equal but not
identical. This means that if PT1M is allowed in an enumeration of durations, the
value PT60S will also be accepted. This is different from the case of the numbers
1e2 and 10e1, which are both equal and identical, meaning that the system does not
retain any distinction between them. It also provides some kind of solution to the
problem of NaN, which is identical but not equal to itself.

Other changes to data types can largely be categorized as tinkering and bug-
fixing. Many previously unresolved questions now have an answer, for example
the meaning of a union type with xs:ID as one of its members, and the question of
whether two empty lists are equal when compared in an identity constraint. Types
derived by restriction from union types now work the way they should, not the
way that XSD 1.0 said they should: which means, for example, that such a type can
be included as a member type of another union. The behaviour of the namespace-
sensitive types xs:QName and xs:NOTATION is now much clearer.

3.5. Schema Modularity
The exact interpretation of the three elements xs:include, xs:import, and xs:re-
define was not very precisely defined in the XSD 1.0 specifications. XSD 1.1 is an
improvement, though not as radical an overhaul as some might have wished. For
example, it's still rather fuzzy about how circular includes or imports should be

8

XML Schema Moves Forward

handled, and this is an area where different implementations are known to interpret
the spec in different ways.

An area that was particularly difficult to sort out was xs:redefine (for example,
what happens if two schema documents A and B both redefine C?). Rather than
clean this up, the working group has chosen to leave the spec largely unchanged,
bugs and all, and to describe the facility as deprecated. It's not clear what practical
effect this will have, since conformant implementations are still obliged to offer the
facility, but at least it warns users that they are sailing close to the rocks. In place
of xs:redefine, a new xs:override declaration is provided. This is specified in
terms of an XSLT transformation that is applied to the schema document being
overridden, so there should be far less room for ambiguity. The other difference
from xs:redefine is there there is no requirement that the new definition should
be in any way compatible with the old. For example, you can override an industry-
standard schema in which a <personName> element has children <firstName>,
<middleName>, and <lastName> with a definition in which <personName> is simply a
string.

Analogously with the use-when attribute in XSLT 2.0, or with conditionally in-
cluded or ignored sections in DTDs, there is a set of attributes that allow a section
of a schema to be ignored depending on particular properties of the implementation:
for example the version of the XSD specification that it supports, or the presence or
absence of particular vendor-defined types.

4. Assertions
I've left what I consider the most important new feature in XSD 1.1 until last: asser-
tions.

The concept of assertions is unashamedly derived from Schematron [6]; though
the idea of course has much older parallels in database technology, where the ability
to define integrity constraints on the data using arbitrary query statements as con-
ditions has been around since the 1970s.

4.1. Defining an Assertion
In XSD 1.1, one or more assertions may be associated with a type. The facility is
available for both complex and simple types, though the syntax and semantics are
slightly different in the two cases. The assertion is an XPath 2.0 expression that is
applied to the instance being validated; if the effective boolean value of the assertion
is false (or if it fails with an error), then the instance is invalid.

An important rule is that the assertion can only see the data that is being validated
against the type. So an assertion applied to an address, for example, can only look
at the contents of the address; it cannot navigate "up the tree" to examine the context
in which the address appears. So it cannot apply different rules depending on

9

XML Schema Moves Forward

whether the parent of the address is a <shippingAddress> or a <billingAddress>.
If you want such rules, you have to apply them at the next level up. One reason for
this rule is to minimize the impact of assertions on streamability; without a
streaming XPath processor, assertions can always be evaluated by building an in-
memory subtree of the part of the document being validated, which will typically
be much smaller than the whole document. Another reason is simply philosophy:
there is a basic assumption that the validity of an element depends only on the
content of the element and not on any extraneous factors. This invariant is essential
to many of the environments in which XSD is used; for example it is fundamental
in XSLT and XQuery that an element (that is, a subtree rooted at an element) can
be copied and attached to a new parent element without affecting its validity or the
type annotations attached to its nodes.

The assertion can be any XPath 2.0 expression. There was much debate about
whether to define yet another subset of XPath for writing assertion, but in the end
this was not done; the full syntax must be supported. However, there is a loophole
in that the set of functions available for use within the expression is implementation-
defined. This means that some implementations might support the matches()
function for regular expression tests, while others omit it.

The specification carefully defines the context in which the XPath expression
will be evaluated. This has the effect of making some XPath constructs fairly useless:
for example even if the expression is allowed to call the doc() function, the call will
always fail because the definition says that available documents in the dynamic
evaluation context is an empty set. This rule is designed to ensure that validation
is largely context-free: two people validating the same instance against the same
schema will generally get the same answer. (There are some exceptions. If the cur-
rent-dateTime() is available, for example, then it is possible to write assertions
such that the validity of an element depends on the phase of the moon.)

An issue which caused many technical problems in defining the specification
was whether the nodes being validated should be seen by the XPath assertion as
typed or untyped. Being typed would imply that they have already been validated
against the schema, which clearly is not the case. Similarly the question arises as to
whether the XPath expression should have access to the schema type definitions.
To provide such access creates a danger of circularity: what happens if the assertion
for a valid part-number consists of the expression $value castable as part-number?
The solution adopted is that the top-level element being validated has the type
xs:anyType, but its children and attributes are fully typed against the schema. The
XPath expression can refer to built-in types (such as xs:dateTime) but not to user-
defined types.

When validating against a complex type, the context item (.) refers to the element
being validated, and if the type has simple content, the variable $value refers to the
textual content of the element. When validating against a simple type, there is no

10

XML Schema Moves Forward

context item, and $value represents the content, as an instance of the nearest built-
in type. (The way this is defined, if the user-defined type containing the assertion
is a restriction of a list of integers, then $value will be a sequence of integers. So you
can assert that the list is in ascending order with the assertion test="every $i in
2 to count($value) satisfies $value[$i] ge $value[$i - 1]. It would be much
more difficult to express this assertion if the value were untyped.)

4.2. Examples of Assertions
Assertions apply either to complex types or simple types.

Suppose a schedule element contains a sequence of event children, and the
events must be in ascending order by date. This constraint can be described like
this:

<xs:element name="schedule">
<xs:complexType>
<xs:sequence>
<xs:element ref="event" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:assert test="empty(event[@date lt preceding-sibling::event[1]/@date])"/>

</xs:complexType>
</xs:element>

A few observations on this example:
• The context node for evaluating the test expression is the element whose validity

is being tested.
• Saxon treats assertions that use the empty() function specially: if the set of nodes

being tested is not empty, the nodes in the set are individually reported in the
error message, with line-number information.

• The assertion has to be defined at the level of the schedule, not at the level of
an individual event, because the validity of an element can only depend on its
content (children and descendants), not on its neighbours or ancestors.

• There is no problem using the preceding-sibling axis within the assertion, so
long as it does not try to navigate outside the bounding subtree.

• The XPath expression relies on the fact that A lt B is false if either operand is
an empty sequence.

• Unlike Schematron, there is no provision for customised error messages. This
may prove to be an area where implementors add value through vendor-specific
extensions.

The next example gives an assertion on a simple type. For simple types, assertions
are facets, and behave in the same way as other facets (pattern, length, maxInclusive,

11

XML Schema Moves Forward

and so on.) This example defines a subtype of xs:date containing all dates that fall
on a weekday (Monday to Friday).

<xs:simpleType name="weekDay">
<xs:restriction base="xs:date">
<xs:assertion test="($value - xs:date('1901-01-06'))

div xs:dayTimeDuration('P1D') mod 7 = (1 to 5)"
</xs:complexType>

</xs:element>

Some notes on this example:
• The value being tested is available as the value of the variable $value. This will

be an instance of the base type, in this case xs:date, allowing date arithmetic as
shown here.

• The example shows why a user-friendly error message would really be quite
useful! However, the same can equally be said of some other facets, notably the
pattern facet.

• The XPath expression does not have any access to any nodes in the instance
document. There is no context item; the variable $value is an atomic value, not
a node. One effect is that validation of values against simple types can be done
in an environment where there is no XML document, for example validation of
fields on an interactive form.

• The reason the value is supplied as a variable, not as the context item, is because
it can be multivalued. Specifically, if the simple type is a list type, $value will
hold a sequence of atomic values.

• The element is called xs:assertion, rather than xs:assert, because there would
otherwise be an ambiguity in the syntax when defining assertions on a complex
type with simple content.

4.3. Grammar versus Predicates
The provision of assertions in XSD 1.1 gives you a choice of two ways to define
constraints on your instance documents: by means of a grammar, or by means of
boolean predicates.

I believe this is analogous to the situation that exists in the database world, where
a distinction is made between structural constraints and integrity constraints. In a
SQL database, for example, structural constraints are imposed by the definitions of
the tables and their columns, while integrity constraints are defined by means of
primary and foreign key definitions and boolean CHECK clauses.

There are some constraints that are much more conveniently expressed using a
grammar for the content model, while others are more convenient to express as

12

XML Schema Moves Forward

boolean predicates. This is not so much a question of the expressive power of the
two formalisms, as of their practical usability.

Arguably, the availability of assertions makes some of the features for defining
content models superfluous. For example, in the case of an interleaved content
model (xs:all) it might in many cases be simpler to define the grammar as an un-
limited repetition of a choice, and then use an assertion to define any cardinality
constraints. This style of definition will be particularly useful for a content model
such as A head element, followed by one or more of each of the following, in any order...
which cannot be easily written as a grammar because of the XSD restrictions on
combining sequence and interleave operators in the same content model.

Many users currently use XSD to define structural constraints, and supplement
this with Schematron to describe integrity constraints. Some have even suggested
that this combination works sufficiently well that adding assertions to XSD is unne-
cessary. I think this point of view is mistaken, and underestimates the power that
comes from having both styles of constraint available in a single integrated environ-
ment.

One area where I suspect integrity constraints (assertions) will completely dis-
place grammatical constraints is in defining restricted content models. This is partly
because the XSD syntax for defining a restricted model is unhappily designed: in-
stead of defining the differences from the base model, you are required to define
the restricted model from scratch, and have the system tell you whether your new
model is a true restriction. This makes the restricted model difficult to write and
difficult to maintain (any changes to the base model need to be reviewed to see
whether they should be reproduced in the restricted model). By contrast, defining
the restriction by means of an assertion avoids this repetitive coding, and only
concerns itself with how the two models differ. As far as I can tell, most practical
restrictions of content models can easily be expressed in an assertion that specifies
the absence, or in a few cases the maximum cardinality, of selected child elements.
There are theoretical cases that don't work this way, for example when the restricted
type allows all the elements appearing in the parent type but constrains their order;
but I doubt such restrictions appear very often in practice.

A particular case in point is what I refer to as a "deep restriction". For example,
suppose a global corporation has a schema for internal purchase orders, and deep
within this is a field for monetary amounts, with an attribute to indicate the currency
in use. One division of the company might want to use a specialization of the internal
purchase order schema that is restricted so that the currency is always USD. There
are several ways of doing this with XSD today: one can define a restriction of the
top-level IPO type, which varies by using a restriction of the types at the next level
down, which themselves vary only in the types of their children, all the way down
to the type defining the currency attribute, which itself is restricted by means of an
enumeration facet. Alternatively, one can use xs:redefine, which has all sorts of
operational problems, not least of which is that the organisation is now using two

13

XML Schema Moves Forward

schemas which use the same names to refer to different things. A third solution is
to create one schema by copy-and-paste, or perhaps by XSLT transformation, from
the other. With assertions, there is a much cleaner option: define a subtype of internal
purchase order with the assertion test="empty(.//@currency[. ne 'USD'])".

4.4. Performance and Interoperability
Some members of the XML Schema Working Group have been very concerned
about the potential impact of assertions on the cost of validation, especially since
an assertion defined on the top-level type of a document might cause the entire
document to be constructed as a tree in memory. Personally, my attitude is to give
users the rope they need and credit them with the ability to decide whether or not
to hang themselves. There is no doubt that the cost of validation can be significant
in many applications, but in my view the only person who can decide whether and
when the cost is justified is the user.

It's also worth pointing out that validating using assertions in a schema, even if
expensive, may turn out to be much more efficient than doing the same validation
in a user-written application.

Many XPath expressions can in fact be evaluated in streaming mode, without
requiring too much intelligence on the part of the XPath compiler. The example in
the previous section, test="empty(.//@currency[. ne 'USD'])", is an obvious case
in point. Generally, my experience is that placing restrictions in a specification in
the hope that it will make it easier to produce performant implementations is usually
misguided. Sometimes it can have completely the opposite effect: for example Saxon's
schema processor goes to great lengths to maintain the particles in an xs:all content
model as a sequence rather than a set, purely in order to enfore an artificial rule
that the XSD 1.0 spec explicitly states is there only to make life easier for implement-
ors!

There's always a great temptation in a standards effort, when two participants
disagree about a decision that has to be made, for the working group to end up
"having it both ways" by leaving the choice implementation-defined. Sometimes
this is the right thing to do, especially when there are genuine differences between
the requirements of different groups of users or different processing use cases. More
often than not, however, leaving things implementation-defined is a compromise
reached because different vendors could not agree on the desirability of a particular
feature. An obvious example is the optionality of the preceding-sibling axis in
XQuery. Such a decision is never in the best interests of the user community: in my
view it's better to make the feature an integral part of the specification, and recognize
the fact that some implementors may not provide it in their early releases.

In the development of assertions in XSD 1.1, there has been a great deal of debate
about how much of XPath to make available. I have argued that most implementors
will use an XPath subsystem off-the-shelf and it's more effort to subset it than to

14

XML Schema Moves Forward

ship the whole thing. That's a somewhat facile argument, because of course I know
full well that in large companies, achieving this kind of software reuse can be re-
markably difficult. However, I do think it is entirely in the users' interests that the
whole of XPath should be supported. With the specification in its current state, you
can use all the XPath syntax, but I'm surprised to discover that the function library
is entirely implementation-defined. I hope that proves to be an oversight and one
that is corrected before the ink finally dries.

5. Conclusions
XML Schema has its problems, but it is widely used and it works. A new version
that addresses some of the limitations is therefore long overdue. While XSD 1.1 will
not solve all the problems, especially those arising from excessive complexity of the
existing specification, it does plug most of the biggest holes where there is missing
functionality, and should greatly help users who rely on it as their primary validation
technology.

Assertions in particular promise, in my view, to change the rules of the game
by enabling a far richer set of constraints to be defined in a schema, and by making
it much easier to define variants of schemas so that different rules can be applied
to the same documents in different processing scenarios.

References
[1] Henry S. Thompson. David Beech. Murray Maloney. Noah Mendelsohn. XML

Schema Part 1: Structures Second Edition. W3C Recommendation. 28 October 2004.
W3C. http://www.w3.org/TR/xmlschema-1/

[2] Shudi (Sandy) Gao. C. M. Sperberg-McQueen. Henry S. Thompson. W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Working Draft. 30
January 2009. W3C. http://www.w3.org/TR/xmlschema11-1/

[3] Tim Bray. The Annotated XML Specification. 1998.
http://www.xml.com/axml/testaxml.htm

[4] Eric van der Vlist. XML Schema Languages. Which one?. 2002. XML 2002.
IDEAlliance.
http://www.idealliance.org/papers/xml02/dx_xml02/papers/04-01-01/04-01-01.pdf

[5] James Clark. RELAX NG and W3C XML Schema. Comments on draft guidelines for
use of XML by IETF at http://www.imc.org/ietf-xml-use/. 4 June 2002.
http://www.imc.org/ietf-xml-use/mail-archive/msg00217.html

[6] Schematron. http://www.schematron.com/

15

XML Schema Moves Forward

16

Full validation of Atom feeds containing
extensions

村田 真 (MURATA Makoto [FAMILY Given])
International University of Japan
<eb2m-mrt@asahi-net.or.jp>

Abstract

The RELAX NG schema in the Atom Syndication Format [4] does not provide
full validation of Atom feeds containing extensions. Rather, this schema skips
extension elements and attributes, even when extension elements further
contain Atom feeds or entries. This document shows that ISO/IEC 19757-4
Namespace-based Validation Dispatching Language [7] allows full validation
of atom feeds containing extensions. NVDL decomposes atom feeds containing
extensions into (1) extension-free atom and (2) extensions so that (1) and (2)
are validated separately. As an example, an NVDL script for Google Calendar
is presented.

Note: All files used in this note are available at http://www.asahi-net.or.jp/
~eb2m-mrt/atomextensions/atomextensions.zip.

Keywords: NVDL, Atom, Extension

1. Introduction
The RELAX NG schema (hereafter atom.rnc) in the Atom Syndication Format [4]
does not provide full validation of atom feeds containing extensions. Rather, the
schema focuses on top-level constructs of atom feeds; it skips extension elements
and attributes, even when extension elements further contain constructs of atom
feeds.

Some specifications (e.g., Atom Threading Extensions [5]) for atom extensions
provide schemas for extension elements and attributes. These extension schemas
focus on extension elements and attributes, and are typically written in RELAX NG.
However, such extension schemas are not referenced from atom.rnc. As a result,
these schemas do not provide full validation of atom feeds containing extensions.
They are useful for documentation, but they are not usable for validating atom
feeds.

One might wonder whether atom.rnc and extension schemas can be combined
to form a single RELAX NG schema against which atom feeds containing extensions
are fully validated. Our earlier work [8] is the first attempt for such combined

17

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atomextensions.zip
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atomextensions.zip

schemas. We combined a variation of atom.rnc and three schemas for atom exten-
sions thereby successfully providing full validation. However, we do not believe
that this all-in-one approach provides a reliable basis for full validation of atom and
its extensions. The all-in-one approach requires that (1) schema authors understand
schema customization techniques (e.g., the combine feature of RELAX NG) very
well, (2) they avoid pitfalls caused by wildcards, and (3) they understand customiz-
ation points of all schemas to be combined.

Recently, as part of Google DATA APIs, Google has started to provide RELAX
NG schemas for their extensions of atoms. These schemas are rewrites of the original
atom.rnc so that Google extensions are validated rather than skipped. For example,
[10] contains events_atom.rnc. It is a rewrite of atom.rncwith elements and attributes
for Google Calendar Data API, Google Data API, and [9] added. Any of the specific
APIs appears to provide such schemas. Although Google's attempt for validating
(rather than skipping) their atom extensions is certainly welcome, it has some
drawbacks. First, rewrites by Google have to be updated whenever the original
schema is updated, since the definitions in the original are duplicated. Second, re-
writes by Google disallow other foreign elements and attributes, thus eliminating
further extensions. Third, validation of XML documents returned by Google Calendar
against events_atom.rnc leads to some validation errors, as of 2009 February.

In this document, we advocate the use of ISO/IEC 19757-4 Namespace-based
Validation Dispatching Language [7] for full validation of atom feeds containing
extensions. Schema authors for atom extensions first create schemas dedicated to
the extensions. They then create NVDL scripts for combining these schemas and
atom.rnc. Controlled by NVDL scripts, the NVDL engine decomposes atom feeds
containing extension elements or attributes into (1) extension-free atom and (2) ex-
tensions so that (1) and (2) are validated separately. As an example, an NVDL script
for Google Calendar is presented.

2. NVDL scripts for Atom
We demonstrate the use of NVDL for Atom extensions step by step. If the reader
is not familiar with NVDL, some tutorials (e.g., [2], [1], and [3]) are available.

2.1. Atom and foreign elements/attributes
We begin with a simple NVDL script. It invokes atom.rng and does not invoke
other schemas. First, we show a list of schema files in thie NVDL script.
• RELAX NG

• atom.rng1 (atom.rnc2)

1 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
2 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc

18

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc

Extracted from [4] and converted to the XML syntax.
• NVDL

• open.nvdl3 (shown below)
• XML

• simpleExample.xml4

Extracted from [4].
• openSearchExample.xml5

Extracted from 7.1.2 of [9].
The point of this NVDL script is the <alow/> action in the anyNamespace element.
This action allows foreign attributes and elements. Before an atom feed is validated
against atom.rng (which is equivalent to atom.rnc), all foreign attributes and elements
are removed by the NVDL engine.

Example 1. open.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

startMode="root">
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng">
<mode>
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

</validate>
</namespace>

</mode>
</rules>

An extension-free feed (simpleExample.xml) and a feed containing OpenSearch ex-
tensions (openSearchExample.xml) are valid against this NVDL script.

3 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/open.nvdl
4 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/simpleExample.xml
5 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml

19

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/open.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/simpleExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/open.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/simpleExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml

Example 2. Validation of simpleExample.xml and openSearchExample.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh open.nvdl simpleExample.xml
Open the NVDL file: open.nvdl
Validate the instance file: simpleExample.xml
simpleExample.xml is a valid XML document.

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh open.nvdl openSearchExample.xml
Open the NVDL file: open.nvdl
Validate the instance file: openSearchExample.xml
openSearchExample.xml is a valid XML document.

2.2. Atom, OpenSearch, and foreign elements/attributes
Our previous NVDL script does not validate [9] elements but merely skips them.
Let us introduce an NVDL script that validates them.
• RELAX NG

• atom.rng6 (atom.rnc7)
Extracted from [4] and converted to the XML syntax.

• openSearch11.rng8 (openSearch11.rnc9)
Created from scratch.

• NVDL
• opensearch1.nvdl10 (shown below)
• opensearch2.nvdl11 (shown below)

A named mode is shared.
• opensearch3.nvdl12 (shown below)

It XIncludes allow-foreign.nvdl13.
• allow-foreign.nvdl14 (shown below)

It is XIncluded by opensearch3.nvdl15.

6 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
7 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
8 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
9 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
10 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch1.nvdl
11 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch2.nvdl
12 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl
13 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
14 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
15 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl

20

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch1.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch2.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch1.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch2.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/allow-foreign.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch3.nvdl

• opensearch4.nvdl16 (shown below)
An internal entity is used, instead.

• XML
• openSearchExample.xml17

Extracted from 7.1.2 of [9].
• openSearchIncorrectExample.xml18

An incorrect example.

Example 3. opensearch1.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

startMode="root">
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng">
<mode>
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>
<context path="feed">
<mode>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng">
<mode>
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

</validate>
</namespace>
<namespace ns="" match="attributes">
<attach/>

</namespace>

16 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch4.nvdl
17 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml
18 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchIncorrectExample.xml

21

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch4.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchIncorrectExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/opensearch4.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchExample.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearchIncorrectExample.xml

<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

</context>
</validate>

</namespace>
</mode>

</rules>

This script is derived from the previous one by adding a context element, which
controls the validation of foreign elements or attributes of atom:feed elements. The
first namespace element within this context element specifies that openSearch11.rng
be used for the validation of foreign elements of the namespace "http://a9.com/
-/spec/opensearch/1.1/".

Given an Atom feed, the NVDL engine first strips foreign elements and attributes.
Foreign elements are validated against openSearch11.rng, if they are of the
OpenSearch namespace and appear as children of atom:feed. Otherwise, foreign
elements and attributes are allowed but removed before validation. Then, the atom
feed without foreign elements and attributes are validated against atom.rng.

This script can be made more compact, since the child mode of <validate
schema="atom.rng"> and that of <validate schema="openSearch11.rng"> are
identical. We only have to create a named mode and reference to it with the attribute
useMode.

Example 4. opensearch2.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

startMode="root">
<mode name="allow-foreign">
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
<namespace ns="" match="attributes">
<attach/>

22

Full validation of Atom feeds containing extensions

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
</validate>

</namespace>
</mode>

</rules>

Note that the namespace and anyNamespace elements in the anonymous mode are
identical to the contents of the mode "allow-foreign". If we use XInclude, we can
make the script even more compact.

Example 5. opensearch3.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

xmlns:xi="http://www.w3.org/2001/XInclude" startMode="root">
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
</validate>

</namespace>
</mode>

</rules>

Example 6. allow-foreign.nvdl

<?xml version="1.0"?>
<mode xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

name="allow-foreign">
<namespace ns="" match="attributes">
<attach/>

23

Full validation of Atom feeds containing extensions

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

If XInclude does not work, we can use internal parsed entities.

Example 7. opensearch4.nvdl

<?xml version="1.0"?>
<!DOCTYPE rules [<!ENTITY allow-foreign-mode
"<mode name='allow-foreign'>

<namespace ns='' match='attributes'>
<attach/>

</namespace>
<anyNamespace match='elements attributes'>
<allow/>

</anyNamespace>
</mode>">

]>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

startMode="root">
&allow-foreign-mode;
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
&allow-foreign-mode;
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
</validate>

</namespace>
</mode>

</rules>

A feed containing OpenSearch extensions (openSearchExample.xml) is again valid
against these NVDL script.

Example 8. Validation of openSearchExample.xml

$ sh c:/nvdl/SnRNV/msvnvdl.sh opensearch4.nvdl openSearchExample.xml
Open the NVDL file: opensearch4.nvdl

24

Full validation of Atom feeds containing extensions

Validate the instance file: openSearchExample.xml
openSearchExample.xml is a valid XML document.

Consider an incorrect example openSearchIncorrectExample.nvdl created from
by replacing

<opensearch:startIndex>21</opensearch:startIndex>
<opensearch:itemsPerPage>10</opensearch:itemsPerPage>

with
<opensearch:startIndex>twenty-one</opensearch:startIndex>
<opensearch:itemsPerPage>ten</opensearch:itemsPerPage>

Then, we have validation errors as below:

Example 9. Validation of openSearchIncorrectExample.xml

$ sh c:/nvdl/SnRNV/msvnvdl.sh opensearch4.nvdl openSearchIncorrectExample.xml
Open the NVDL file: opensearch4.nvdl
Validate the instance file: openSearchIncorrectExample.xml
file:openSearchIncorrectExample.xml Line:12, Col:62, (Validate(openSearch11.rng)
file:opensearch4.nvdl, Line:22, Col:76): "twenty-one" does not satisfy the "int" type
file:openSearchIncorrectExample.xml Line:13, Col:59, (Validate(openSearch11.rng)
file:opensearch4.nvdl, Line:22, Col:76): "ten" does not satisfy the "int" type
2 errors in openSearchIncorrectExample.xml

2.3. Atom, OpenSearch, Threading Extensions, History, and foreign
elements/attributes
Let us add two more extensions: [5] (Atom Threading Extensions), [6] (Feed Paging
and Archiving). We use the XInclude version shown above as a basis.
• RELAX NG

• atom.rng19 (atom.rnc20)
Extracted from [4] and converted to the XML syntax.

• openSearch11.rng21 (openSearch11.rnc22)
Created from scratch.

• threadingElements.rng23 (threadingElements.rnc24)
Extracted from RFC 4685 (Atom Threading Extensions), slightly modified,

and converted to the XML syntax.

19 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
20 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
21 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
22 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
23 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rng
24 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rnc

25

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingElements.rnc

• threadingAttributes.rng25 (threadingAttributes.rnc26)
Extracted from RFC 4685 (Atom Threading Extensions) and converted to

the XML syntax.
• archiveElements.rng27 (archiveElements.rnc28)

Extracted from RFC 5005 (Feed Paging and Archiving) and converted to
the XML syntax.

• NVDL
• threading-and-history.nvdl29 (shown below)

• XML
• link-good.xml30

A correct example.
• inReplyTo-good.xml31

A correct example.
• link-bad.xml32

An incorrect example.
• inReplyTo-bad.xml33

An incorrect example.
Two context elements are added. The first one controls the validation of foreign
elements or attributes of atom:entry elements. The second one, atom:link elements.

Three namespace elements are added. The first one appears within an existing
context element. It handles the namespace "http://purl.org/syndication/history/1.0",
to which fh:archive and fh:complete belong. The second one appears within the
mode for the context atom:entry. It handles the namespace "http://purl.org/syn-
dication/thread/1.0", to which thr:in-reply-to and thr:total belong. The third
one appears within the mode for the context atom:link. Thanks to match="attrib-
utes", this namespace element handles attributes of the namespace "ht-
tp://purl.org/syndication/thread/1.0", specifically such as thr:count and thr:updated.

Example 10. threading-and-history.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

25 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rng
26 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rnc
27 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rng
28 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rnc
29 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threading-and-history.nvdl
30 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-good.xml
31 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-good.xml
32 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-bad.xml
33 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-bad.xml

26

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threading-and-history.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-good.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-good.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-bad.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-bad.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threadingAttributes.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/archiveElements.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/threading-and-history.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-good.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-good.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/link-bad.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/inReplyTo-bad.xml

xmlns:xi="http://www.w3.org/2001/XInclude" startMode="root">
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://purl.org/syndication/history/1.0">
<validate schema="archiveElements.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
<context path="entry">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://purl.org/syndication/thread/1.0">
<validate schema="threadingElements.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>
<context path="link">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace match="attributes" ►

ns="http://purl.org/syndication/thread/1.0">
<validate schema="threadingAttributes.rng" ►

useMode="allow-foreign"/>
</namespace>

</mode>
</context>

</validate>
</namespace>

</mode>
</rules>

Two valid examples (link-good.xml and inReplyTo-good.xml) can be successfully
validated.

Example 11. Validation of link-good.xml and inReplyTo-good.xml

$ sh c:/nvdl/SnRNV/msvnvdl.sh threading-and-history.nvdl link-good.xml
Open the NVDL file: threading-and-history.nvdl
Validate the instance file: link-good.xml

27

Full validation of Atom feeds containing extensions

link-good.xml is a valid XML document.

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh threading-and-history.nvdl inReplyTo-good.xml
Open the NVDL file: threading-and-history.nvdl
Validate the instance file: inReplyTo-good.xml
inReplyTo-good.xml is a valid XML document.

Errors in two invalid examples (link-bad.xml and inReplyTo-bad.xml) can be suc-
cessfully detected.

Example 12. Validation link-bad.xml and inReplyTo-bad.xml

$ sh c:/nvdl/SnRNV/msvnvdl.sh threading-and-history.nvdl link-bad.xml
Open the NVDL file: threading-and-history.nvdl
Validate the instance file: link-bad.xml
file:link-bad.xml Line:16, Col:67, (Validate(threadingAttributes.rng) file:threa
ding-and-history.nvdl, Line:31, Col:83): attribute "thr:count" has a bad value:
"z10" does not satisfy the "nonNegativeInteger" type
1 errors in link-bad.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh threading-and-history.nvdl inReplyTo-bad.xml
Open the NVDL file: threading-and-history.nvdl
Validate the instance file: inReplyTo-bad.xml
file:inReplyTo-bad.xml Line:25, Col:51, (Validate(threadingElements.rng) file:th
reading-and-history.nvdl, Line:23, Col:81): unexpected attribute "ype"
1 errors in inReplyTo-bad.xml

2.4. Atom,OpenSearch,GoogleCalendar, and foreign elements/attributes
Google calendar XML documents are atom feeds containing extensions: OpenSearch,
GData, and Google Calendar.

Permissible structures of Google calendar XML documents depends on the
projection value used for retrieval. When the projection value is "full", gd:feedLink
elements have links to comments; when the projection value is "composite",
gd:feedLink elements contain atom:feed elements, which represent comments.
More about this, see [10].

An NVDL script for the projection value "full" is shown below.
• RELAX NG

• atom.rng34 (atom.rnc35)
Extracted from [4] and converted to the XML syntax.

34 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
35 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc

28

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/atom.rnc

• openSearch11.rng36 (openSearch11.rnc37)
Created from scratch.

• gCal.rng38 (gCal.rnc39)
Extracted from [10], slightly modified, and converted to the XML syntax.

• gacl.rng40 (gacl.rnc41)
Extracted from [10], slightly modified, and converted to the XML syntax.

• gd.rng42 (gd.rnc43)
Extracted from [11], slightly modified, and converted to the XML syntax.

• NVDL
• full.nvdl44 (shown below)
• composite.nvdl45 (shown below)

• XML
• full20090207.xml46

An example document created by Google Calendar. It is available at
h t t p : / / w w w . g o o g l e . c o m / c a l e n d a r / f e e d s /
e1m39bcb04fuc79plrvmgmijho%40group.calendar.google.com/public/full.

• composite.xml47

An example document created by Google Calendar. It is available at
h t t p : / / w w w . g o o g l e . c o m / c a l e n d a r / f e e d s /
e1m39bcb04fuc79plrvmgmijho%40group.calendar.google.com/public/
composite.

• compositeError.xml48

An incorrect example document created from composite.xml by replacing
updated within gd:feedLink by updaed.

Example 13. full.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

36 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
37 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
38 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rng
39 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rnc
40 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rng
41 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rnc
42 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rng
43 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rnc
44 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full.nvdl
45 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.nvdl
46 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full20090207.xml
47 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.xml
48 http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/compositeError.xml

29

Full validation of Atom feeds containing extensions

http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full20090207.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/compositeError.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/openSearch11.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gCal.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gacl.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rng
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/gd.rnc
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.nvdl
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/full20090207.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/composite.xml
http://www.asahi-net.or.jp/~eb2m-mrt/atomextensions/compositeError.xml

xmlns:xi="http://www.w3.org/2001/XInclude" startMode="root">
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://schemas.google.com/g/2005">
<validate schema="gd.rng">
<context path="entryLink">

<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://www.w3.org/2005/Atom">

<validate schema="atomEntry.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>
<context path="feedLink">

<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atomFeed.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>

</validate>
</namespace>
<namespace ns="http://schemas.google.com/gCal/2005">
<validate schema="gCal.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
<context path="entry">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://schemas.google.com/g/2005">
<validate schema="gd.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://schemas.google.com/gCal/2005">
<validate schema="gCal.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://schemas.google.com/acl/2007">

30

Full validation of Atom feeds containing extensions

<validate schema="gacl.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>

</validate>
</namespace>

</mode>
</rules>

Let us validate an example document (full20090207.xml) created by Google Calen-
dar. This document is obtained from http://www.google.com/calendar/feeds/
e1m39bcb04fuc79plrvmgmijho%40group.calendar.google.com/public/full.

This document successfully validates against full.nvdl.

Example 14. Validation of full20090207.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh full.nvdl full20090207.xml
Open the NVDL file: full.nvdl
Validate the instance file: full20090207.xml
full20090207.xml is a valid XML document.

An NVDL script for the projection value "composite" is shown below. Observe that
<atom:feed> elements within <gd:feedLink> elements are validated, while they are
skipped in full.nvdl.

Example 15. composite.nvdl

<?xml version="1.0"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"

xmlns:xi="http://www.w3.org/2001/XInclude" startMode="root">
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<mode name="root">
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng" useMode="allow-foreign">
<context path="feed">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://a9.com/-/spec/opensearch/1.1/">
<validate schema="openSearch11.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://schemas.google.com/g/2005">
<validate schema="gd.rng">
<context path="entryLink">

<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>

31

Full validation of Atom feeds containing extensions

<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atomEntry.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>
<context path="feedLink">

<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atomFeed.rng" useMode="allow-foreign"/>
</namespace>

</mode>
</context>

</validate>
</namespace>
<namespace ns="http://schemas.google.com/gCal/2005">
<validate schema="gCal.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
<context path="entry">
<mode>
<xi:include parser="xml" href="allow-foreign.nvdl"/>
<namespace ns="http://schemas.google.com/g/2005">
<validate schema="gd.rng">
<mode>
<namespace ns="http://www.w3.org/2005/Atom">
<validate schema="atom.rng">
<mode>
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

</validate>
</namespace>
<namespace ns="" match="attributes">
<attach/>

</namespace>
<anyNamespace match="elements attributes">
<allow/>

</anyNamespace>
</mode>

</validate>

32

Full validation of Atom feeds containing extensions

</namespace>
<namespace ns="http://schemas.google.com/gCal/2005">
<validate schema="gCal.rng" useMode="allow-foreign"/>

</namespace>
<namespace ns="http://schemas.google.com/acl/2007">
<validate schema="gacl.rng" useMode="allow-foreign"/>

</namespace>
</mode>

</context>
</validate>

</namespace>
</mode>

</rules>

Again, let us validate an example document (composite.xml) created by Google
Calendar. This document is obtained from http://www.google.com/calendar/feeds/
e1m39bcb04fuc79plrvmgmijho%40group.calendar.google.com/public/composite.
It successfully validates as previously.

Example 16. Validation of composite.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh composite.nvdl composite.xml
Open the NVDL file: composite.nvdl
Validate the instance file: composite.xml
composite.xml is a valid XML document.

Let us replace updated within gd:feedLink by updaed. Then, validation against
composite.nvdl reports errors, while that against full.nvdl does not, since children
of gd:feedLink are skipped.

Example 17. Validation of compositeError.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh composite.nvdl compositeError.xml
Open the NVDL file: composite.nvdl
Validate the instance file: compositeError.xml
file:compositeError.xml Line:194, Col:29, (Validate(atom.rng) file:composite.nvd
l, Line:46, Col:49): tag name "updaed" is not allowed. Possible tag names are: <
author>,<category>,<contributor>,<generator>,<icon>,<link>,<logo>,<rights>,<subt
itle>,<title>,<updated>, and more
1 errors in compositeError.xml

makoto@toraneko ~/atomextensions
$ sh c:/nvdl/SnRNV/msvnvdl.sh full.nvdl compositeError.xml
Open the NVDL file: full.nvdl

33

Full validation of Atom feeds containing extensions

Validate the instance file: compositeError.xml
compositeError.xml is a valid XML document.

Let us compare advantages and disadvantages of our NVDL scripts and
events_atom.rnc, which is provided as part of [10]. The RELAX NG schema
events_atom.rnc is better than our NVDL scripts in several points.
1. Tighter constraints on the original Atom constructs are imposed, when necessary.

For example, div elements of XHTML are disallowed, although they are allowed
in the original atom.rnc. Meanwhile, our NVDL scripts cannot impose such
constraints.

2. Permissible interactions of the original Atom constructs and Google extensions
are specified precisely. For example, atom feeds embedded in gd:feedLink
cannot have atom:subtitle elements, while top-level atom feeds can. Meanwhile,
our NVDL scripts cannot impose such constraints.

Meanwhile, our scripts have some advantages.
1. Since atom.rnc is used as is, we do not have to modify our NVDL scripts, when

atom.rnc is updated. Meanwhile, modifying events_atom.rnc accordingly is a
non-trivial task.

2. Other extensions of Atom can be easily incorporated. Meanwhile, it is very dif-
ficult to extend events_atom.rnc for other extensions from third-parties. Mean-
while, it is prohibitively difficult to introduce further extensions to
events_atom.rnc.

We believe that this comparison demonstrates the trade off between the all-in-one
approach and the NVDL approach. The all-in-one approach is stricter, while the
NVDL approach is more flexible.

3. Conclusions and Future work
We have presented the NVDL approach for validating Atom and its extensions.
The NVDL approach cannot impose tight constraints but is more flexible. Specifically,
an NVDL script for a particular extension can be easily extended to allow other ex-
tensions.

An interesting area for NVDL is validation of OOXML and ODF documents. In
particular, ODF documents containing OOXML fragments, which are expected to
provide round trip conversion, can be validated using NVDL.

One could argue that NVDL scripts are not very readable. Some syntax sugar
can improve the readability. Specifically, James Clark suggested a new attribute
action of namespace and anyNamespace elements, which allows compact represent-
ations such as <namespace ns="" action="attach"/> and <anyNamespace action="al-
low"/> rather than <namespace ns=""> <attach/> </namespace> and <anyNamespace

34

Full validation of Atom feeds containing extensions

action="allow"> <allow/> </anyNamespace>. A drastic approach is to invent a
compact syntax of NVDL, which is analogous to the RELAX NG compact syntax.

Bibliography
[1] David Pawson, An introduction to NVDL, ISO 19757-4, http://

www.dpawson.co.uk/nvdl/
[2] Petr Nálevka and Jirka Kosek, NVDL Tutorial, http://jnvdl.sourceforge.net/

tutorial.html
[3] Roger Costello, Tutorial on NVDL, http://www.dpawson.co.uk/nvdl/
[4] IETF RFC 4287, The Atom Syndication Format, http://tools.ietf.org/html/

rfc4287.html
[5] IETF RFC 4685, Atom Threading Extensions, http://tools.ietf.org/html/

rfc4685.html
[6] IETF RFC 5005, Feed Paging and Archiving, http://tools.ietf.org/html/rfc5005.html
[7] ISO/IEC 19757-4, DSDL -- Namespace-based Validation Dispatching Language,

http://standards.iso.org/ittf/PubliclyAvailableStandards/
c038615_ISO_IEC_19757-4_2006(E).zip

[8] Schema for the combination of Atom and its extensions, http://www.imc.org/
atom-syntax/mail-archive/msg19894.html

[9] OpenSearch 1.1 Draft 3, Specifications/OpenSearch/1.1/Draft 3 - OpenSearch,
http://www.opensearch.org/Specifications/OpenSearch/
1.1#Example_of_OpenSearch_response_elements_in_Atom_1.0

[10] Google Calendar API Reference Guide (v2.0), http://code.google.com/apis/
calendar/docs/2.0/reference.html

[11] Google Core Data API Common Elements: "Kinds", http://code.google.com/
apis/gdata/elements.html

35

Full validation of Atom feeds containing extensions

http://www.dpawson.co.uk/nvdl/
http://www.dpawson.co.uk/nvdl/
http://jnvdl.sourceforge.net/tutorial.html
http://jnvdl.sourceforge.net/tutorial.html
http://www.dpawson.co.uk/nvdl/
http://tools.ietf.org/html/rfc4287.html
http://tools.ietf.org/html/rfc4287.html
http://tools.ietf.org/html/rfc4685.html
http://tools.ietf.org/html/rfc4685.html
http://tools.ietf.org/html/rfc5005.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://www.imc.org/atom-syntax/mail-archive/msg19894.html
http://www.imc.org/atom-syntax/mail-archive/msg19894.html
http://www.opensearch.org/Specifications/OpenSearch/1.1#Example_of_OpenSearch_response_elements_in_Atom_1.0
http://www.opensearch.org/Specifications/OpenSearch/1.1#Example_of_OpenSearch_response_elements_in_Atom_1.0
http://code.google.com/apis/calendar/docs/2.0/reference.html
http://code.google.com/apis/calendar/docs/2.0/reference.html
http://code.google.com/apis/gdata/elements.html
http://code.google.com/apis/gdata/elements.html

36

Introduction to Code Lists in XML
G. Ken Holman

Crane Softwrights Ltd.
<gkholman@CraneSoftwrights.com>

1. Controlled vocabularies

1.1. XML document interchange
An XML document describes a hierarchy of information items
• XML is only responsible for representation of information and not the meaning

of information
• how information is labeled allows it to be identified, not interpreted
• up to applications to interpret the meaning of the labels and information so-

labeled
• each item is labeled using the document's XML vocabulary

• the item's value is expressed in an attribute's specification or an element's
text value

• document constraints describe limitations on the contents of the XML documents
• what is allowed to be used as item labels and where
• what is allowed to be used as item values and where
• a document isn't XML unless it is well-formed

• rules govern the proper labeling of the information in the hierarchy
• labels can be comprised of namespace URI strings to be globally unique

• the metaphor for "labels in a namespace" is "words in a dictionary"
• different document constraint languages provide different validation features

• directives of the language engage validation semantics
Business documents have many information items whose values are controlled
• code lists have been used for hundreds of years

• show up in historical documents, business records, passenger manifests, etc.
• codes, identifiers, any information item with a predetermined value set

• like a label, a code represents the semantic, it doesn't "mean" the semantic
• nothing in the value conveys understanding, only representation
• still up to an application recognizing the code to be pre-programmed to in-

terpret the semantic associated with that code

37

• sender and receiver need to agree on the understanding of the value
• the information's value is limited to one or more of a set of fixed values
• item values do not impact on the structure of the document
Two distinct kinds of "vocabularies" for interchange
• the XML vocabulary of element and attribute labels
• a controlled vocabulary of code or identifier values
• in document interchange, the vocabularies represent the concepts and information

for commonly-understood semantics
• in applications, internal representations of both may be very much richer than

the interchange representation

1.2. Controlled vocabulary semantics
A controlled vocabulary is the set of agreed-upon values for a concept
• e.g. the list of country code abbreviations

• e.g. "CA" for Canada, "US" for United States
• e.g. the list of currency code abbreviations

• e.g. "CAD" for Canadian dollars, "USD" for United States dollars
• e.g. the list of transaction payment means

• e.g. "10" for cash, "20" for cheque
• e.g. the list of units of measure

• e.g. "KGM" for kilogram, "MTQ" for cubic meter
• e.g. identifiers for different kinds of dimensions

• e.g. representing gross weight and net weight
• e.g. a company's private list of product and service identifiers

• e.g. catalogue part numbers
Each value in a controlled vocabulary represents a particular semantic
• for obvious enumerated concepts, no semantic need be published authoritatively

• e.g. the directions of latitude are either "North" or "South" of the equator
• e.g. currency conversion operators are either "Multiply" or "Divide"

• for public vocabularies, the associated semantic is a published concept
• managed by a public authority recognized as the trusted custodian of values
• e.g. the International Organization for Standardization (ISO) list of country

codes, currency codes, container sizes, etc.
• e.g. the United Nations Economic Commission for Europe (UN/ECE) list of

port codes, types of payment means, etc.

38

Introduction to Code Lists in XML

• e.g. the Canadian Post Office list of Canadian province and territory abbre-
viations

• between trading partners, the associated semantic is an agreed-upon concept
• e.g. the list of identifiers representing product and service offerings of a

vendor
• e.g. the document status codes accepted by a particular work flow specifica-

tion
All parties implicitly agree to interpret the concepts in the same way in their inde-
pendent applications
• by constraining the expression of the possible values to an agreed-upon set, both

parties set expectations for interchange
• a formal expression of the constraints can form part of a business contract

agreeing to limit values used to only the agreed-upon set
• traditional approaches to using W3C schema conflate the document constraints

with the value constraints
• new approaches are needed to layer value constraints on document con-

straints
• an important caveat: "obvious" values may not be obvious to all
A controlled value is necessarily unique in a single given list
• if a given string value represented more than one concept it would be ambiguous

and there would be no way to distinguish which concept was desired
• list meta data for a value distinguishes ambiguous values in combined lists

• the values may overlap when meta data is used to identify which list's distinct
value is being used

• the unique value is analogous to a relational database table key
• used as a lookup value

• another use of the "words in a dictionary" metaphor
• the meta data of the list defines which dictionary the words are from
• the meta data may distinguish different versions of the same dictionary

Each controlled value may have many associated values
• value meta data may be simple strings or compound values

• compound information can be expressed in rich markup
• analogous to relational database table columns
• display string(s)
• non-normative synonyms
• language translations

39

Introduction to Code Lists in XML

• supporting detail and nuance
• meta data

• derivation method
• source of information

ISO parlance has been in use a long time for code lists
• "Code" refers to a value's unique key value within its list
• "Name" refers to that value's description with which meaning is intended to be

expressed
• for some concepts, far more information needs to be associated with values
Controlled vocabularies are used in documents, databases, applications, messages
• by controlling the representation of a concept, a specified value can unambigu-

ously identify the associated semantic
• provided all users of the value understand the concept in the same manner
• the burden is on the trusted custodian of the values to maintain the docu-

mentation of the list
• abbreviated values (codes) may provide a savings of effort or space when other-

wise the expression of the concept is long-winded or wordy
• the abbreviation is consistent
• mnemonic values are typically biased to a particular language

• e.g. "USD" mnemonic for "United States Dollars"
• e.g. "ES" mnemonic for "Spain" ("España" is Spanish for "Spain")

• non-mnemonic numeric values are often used as representations of abstract
concepts without language bias
• e.g. "42" non-mnemonic for "Payment to bank account" payment means

• the mnemonic or non-mnemonic abbreviation is typically short
• e.g. "51" non-mnemonic for "norme 6 97-Telereglement CFONB (French

Organisation for Banking Standards) - Option A" payment means
• commonly used for centuries in messages to keep messages succinct
Promotes consistent interpretation of the value
• all applications can follow the published or agreed-upon semantics
• opportunity for misinterpretation through neglect or accident
• if each trading partner came up with their own abbreviations independently, it

would be impossible to know that two different values represent the same
concept

• removes language dependencies when abbreviating the same concept in two
languages

40

Introduction to Code Lists in XML

• though some codes are mnemonically derived from a native language, the
rule governing that prevents the code from being derived differently in an-
other language

• meta data columns can include various translations
• promotes common interpretation

1.3. Facets of controlled vocabularies

1.3.1. Codes and identifiers

As a general rule of thumb (but not definitively), a controlled vocabulary information
item is typically either a code or an identifier
• these are very symmetrically-defined constructs that are distinguished by arbit-

rary decisions of construction and use
• guidelines and distinctions are not black and white
• whether the values are characteristic or lookup can be twisted one way or

the other
• these concepts are not always consistently applied

• e.g. in UBL some identifiers could easily be codes and vice versa
• a code typically represents a unique concept, group or type using a characteristic

value
• e.g. a currency code for an account value - "GBP" (British pounds)
• e.g. a unit of measure for a measurement - " MTR" (meters)
• e.g. a shipping container's dimensions

• this is an example of a set of coded values created by the application of
a scheme on component parts of the value describing the container's
height, width, depth and features

• e.g. a method of transport
• e.g. a document's type

• an identifier typically represents a unique thing or singleton from a group using
a lookup value
• may be synthesized by applying an algorithmic scheme

• the range of identifier values may, however, be enumerated as members
of a list

• e.g. a particular account's identifier - "travel" or "supplies" or "ABC0001"
• e.g. a particular dimension - "gross width" or "net width"
• e.g. a particular aircraft's identifier

41

Introduction to Code Lists in XML

• e.g. a particular catalogue item's identifier
Trading partners may wish to constrain either codes or identifiers or any other in-
formation item as a controlled vocabulary
• codes typically taken from a set representing known semantic concepts
• constraining an identifier would be from a fixed list of identifiers

• e.g. a set of account identifiers
• open-ended identifiers would typically not be constrained

• used to identify things that are being created

1.3.2. Code list registration authorities

The custodians of abstract code lists are typically the authorities with governance
• users of a list have a level of assurance regarding the maintenance of the sets of

values
• stability is implied by the authority's governance of the concepts and expressions

of the list members
The publishing of the list is different from the definition of the list
• the authority selects and defines codes in the abstract based on semantics

(meaning)
• the list of codes is published hopefully with sufficient information to convey the

semantics they represent so that all users interpret the codes as meaning the
same concepts

The authorities can publish their code lists in many possible formats
• prose lists and descriptions

• text files
• word processing files
• web site pages (HTML files)
• algorithmic descriptions (e.g. ISBN checksum)
• value assemblies (e.g. container height, width, depth and feature values)

• W3C schemas with annotations
• Comma Separated Values (CSV) files
• database tables
• colloquial XML expressions

• using a bespoke document model invented by a community of users
• an XML vocabulary not standardized outside of the community or users

• standardized XML expressions

42

Introduction to Code Lists in XML

• using a published document model created by a committee effort
• openness of process and access to results are important in assessing protection

against private interests or encumbrances
Alternative expressions of lists may be made available in the absence of bona fide
expressions
• a stop-gap measure to make up for the authority not having published the in-

formation in a useful form
• e.g. UBL has expressed a number of published abstract code lists using XML

syntax until such time as the official custodians publish their own artefacts for
public use

1.3.3. Identifying controlled vocabularies

Some controlled vocabularies are already officially maintained
• custodians are typically international standards organizations
• e.g. currency codes by ISO (ISO 4217)
• e.g. country codes by ISO (ISO 3166-1)
• e.g. payment means codes by UN/ECE (UN/ECE 4461)
Projects must establish which codes are applicable to their work
• community responsibility

• manage expectations of individuals and trading partners
• guide community in common understanding of concepts and representations

• a subset of codes from established lists
• don't re-invent the wheel

• new codes for use where an established list is deficient
• are extensions needed for the community to use?

• new lists of codes where there are no established lists
• are entire new lists required for a set of community semantics?

Where new codes are needed,
• what do each of them mean?

• what meta data might be associated with each?
• how are they coded?

• mnemonic? numeric? arbitrary?
• which values are unconstrained?
List-level meta data identifies the list being used
• the needed list is an established list

43

Introduction to Code Lists in XML

• the list identification is the official list-level meta data

Figure 1. List-level meta data

Value-level meta data qualifies the code with more detail
• code and name are not always sufficient to identify information
• value-level meta data can be used to distinguish facets of the code

44

Introduction to Code Lists in XML

Figure 2. Value-level meta data

Instance-level meta data qualifies the use of a code
• tells an application the list in which the code is found
• clarifies the meaning

45

Introduction to Code Lists in XML

Figure 3. Instance-level meta data

Community responsibility when defining the XML vocabulary
• which instance-level meta data can the user specify?
• how does the user specify instance-level meta data?
Summary of controlled vocabulary meta data
• list-level meta data

• distinguishes one list of values from another list of values
• responsibility of the controlled vocabulary custodian

• value-level meta data
• distinguishes one value from another value within the same list
• responsibility of the controlled vocabulary custodian

• instance-level meta data
• distinguishes from which list a value is being used
• responsibility of the XML vocabulary designer
• utilized by the XML document writer

1.3.4. Modeling controlled vocabularies

The organization of a set of associated values for all key values is tabular
• one row per semantic concept

46

Introduction to Code Lists in XML

• one or more key value columns uniquely identifying the concept
• zero or more meta data value columns defining the concept
The maintenance of list information necessarily needs to be tabular
• such a need distinguishes the available enumeration technologies as to their

usefulness
• i.e. a technology that does not support a tabular arrangement is not as useful

as a technology that does support a tabular arrangement of list information
Maintaining an independent expression provides for re-use and change isolation
• the maintenance of a list of values will likely have a different life cycle than the

contexts in which the values are used
• revising an external expression of a controlled vocabulary prevents having to

change an expression in which a controlled vocabulary is embedded
Human language translations may help as supplemental information
• may reduce problems interpreting what a value represents

1.3.5. Expressing controlled vocabularies

Non-standard use of spreadsheets, word processing, comma-separated value (CSV)
documents is common
• each custodial organization may have its own way of expressing the represent-

ation values and their associated semantics
• applications incorporating the values into their validation processes would need

to accommodate ad hoc means with ad hoc measures
• the expression may not be well defined for maintenance
The interchange representation is independent of the internal representation
• though some applications may choose to use the interchange representation as

the internal representation
• lookup strategies should be based on application requirements and be independ-

ent of interchange requirements
Artefacts for legal contractual agreements may be ambiguous
• using a standardized representation allows both parties to interpret all lists in

the same fashion
• prose is often improperly used when meta data may be less ambiguous

• especially when human language translation is involved
Standards exist with which one enumerates the defined values of a controlled
vocabulary

47

Introduction to Code Lists in XML

• the choice of expression empowers the use of that expression in different circum-
stances

• some XML designers fervently believe that document values belong in a docu-
ment schema

• some XML designers fervently believe that document values must never be in
a document schema

W3C Schema enumerations
• designed for use only in validation with W3C Schema semantics
• the formalism only captures the key coded values in a standardized structure

• the associated meta data may be expressed in a non-standardized structure
• only one key can ever be used to distinguish the information in the list

• document-wide scope of re-use
• e.g. every use of the code list incorporates every code of the code list
• using only a subset of codes requires declaring a separate code list for those

contexts where the subset is needed
• there is a question of what meta data to use for the lists
• the full list's meta data would be inappropriate for a subset list, yet in-

stances might require the use of the meta data for the full list
• the expressions are intertwined with the expressions of structural constraints

• to change an enumeration one must "touch" the schema files that participate
in structural validation

• risk of inadvertently modifying the structural constraints, or burden of
proving that the structural constraints were not inadvertently modified

OASIS Genericode 1.0 (2007)
• designed for maintenance of the meta data of an enumeration and its members
• the formalism captures all information about values in a standardized structure

• when there are multiple keys, the actual key needed can be chosen by an
application

• specifies standardized list-level meta data
• all controlled vocabularies can be identifies using the same mechanisms

• specifies mechanisms for arbitrary value-level meta data
• each controlled vocabulary can satisfy its own requirements for value

distinction and definition
• context-free scope of use

• the definition of the codes is independent of the specification of where the
codes are used

48

Introduction to Code Lists in XML

• the external XML-based expression is independent of any particular use
• useful for validation or user-interface definition or any use

• still a role for schema specification of available instance-level meta data

1.3.6. Data entry of controlled vocabularies

By formally associating the use of value lists with document contexts, one can direct
valid data entry
• directs a user interface

• can be written to only allow entry of a value from the associated values
• value-level meta data is helpful

• could be presented to the user to help them choose the right value to use in
the data entry

• instance-level meta data records list-level meta data where needed for disambig-
uation
• when one information item can have a value from two lists, and a code is

needed that exists with the same value in each list, the list-level meta data
distinguishes the code and needs to be recorded as instance-level meta data

1.3.7. Application development supporting controlled vocabularies

Controlled vocabularies are declarative while application program code is imperative
• easier (therefore cheaper?) to change an outboard declared list of allowed values

than to change the inboard program logic
• non-programmer resources can be tasked with changing the declared vocabular-

ies
An application can blindly support all values in a controlled vocabulary
• the application can support all possible allowed values and presume that pre-

validation has rejected those instances where a supported value is not allowed
• the flexibility is in the filtering of allowed instances by dynamic application of

value constraints during validation, without changing the programming in the
application

The trading partner relationship constrains which values are allowed in a given
transmission
• message filtering ensures only the messages with the allowed values for a given

trading partner are passed for processing
Reduces application development to support new trading partners
• no need to change the program for every trading partner or new trading partners

49

Introduction to Code Lists in XML

Flexible to changing trading partner relationships
• as a relationship with a partner matures or changes, only the message filtering

need change, not the application code

1.3.8. Validating controlled vocabularies

Having an expression of valid values enables the validation of specified values
• validation can reject an instance before engaging an application to act on the

instance
• off-loads the validation responsibility (and possible error) from applications
• ensures consistent loading of database values
Values outside of the allowed set are considered invalid
• trading partners would not necessarily know what semantic an unexpected

value represents
• legal agreements could not be entered into where the parties have arbitrary

values possibly representing concepts outside of the agreement
Methodologies are published with which one confirms the proper selection of values
in an XML information item
• traditional use of grammar- or type-based document schemas

• e.g. XML DTD - grammar-based schema language
• e.g. ISO/IEC 19757-2 RELAX-NG - grammar-based schema language
• e.g. W3C Schema - type-based schema language

• alternative schema expressions
• e.g. ISO/IEC 19757-3 Schematron - assertion-based schema language

Traditional approaches validate values at the same time as validating structure
• conflates structural validation with value validation
• inflexible to dynamically changing business requirements

• no need to change the structural validation just because business relationships
change

• business agreements impact on values but do not impact on document structures
UBL 2.0 separates UBL conformance from code list conformance
• to which version of UBL schemas do the structures conform?

• e.g. UBL-Invoice-2.0.xsd for an invoice
• to which code lists do the values conform?

• e.g. defaultCodeList.xsl for a suite of typical code lists
Layering value constraints on top of structural and lexical constrains

50

Introduction to Code Lists in XML

• can be used for any XML document structure, not only UBL
• can be applied to any information item with an enumerated set of allowed values
• not restricted to only codes or identifiers
• can be built on top of ISO/IEC 19757-3 Schematron
• separates structural/lexical validation from value validation

Figure 4. Two-step validation

Opportunity to incorporate many kinds of value constraints

Figure 5. Second-pass value-validation artefact creation

51

Introduction to Code Lists in XML

Context/value associations establish which code lists apply where in the document
• gives flexibility to specify different codes for the same conceptual value used in

different document contexts
External value list expressions in genericode
• the XML documents defining the controlled vocabularies
• includes list-level and value-level meta data
Business rules can express co-occurrence and algorithmic constraints
• more powerful than simple declarative approaches
• use Schematron for arbitrary XPath expressions

1.3.9. Semantic representation by fixed values

Assigned semantics
• each unique value represents an associated concept, label or longer value
• community of users agree on the association between specified value and rep-

resented value
• a value has two aspects of context in order to have some meaning

• context of use/location
• where in the document is the information item being used

• context of definition/meaning
• from which set of values is the information item value being obtained

• without explicit context a value may be ambiguous or reliant on informal
agreement

• especially important for non-mnemonic codes: e.g. "42" vs. "USD"
• the meaning of some mnemonic codes might be guessed based on context

of use, e.g. "USD" for a currency
• non-mnemonic codes typically have no basis for guessing the meaning, e.g.

"42" for a payment means
Instance-level meta data disambiguates a code when context is insufficient
• used for identification of values and definition of values
• list meta data identifies the collection from which the value is taken

• information about the collection as a whole
• gives context to the specified values

• value meta data helps define the semantics or details of the value itself
• information about the one particular coded value

Changes in time can affect the interpretation/semantics of values

52

Introduction to Code Lists in XML

• the collection of values evolves creating a new version of an existing code list
• identified by associated meta data

• the meaning of individual values evolves
• described by associated meta data or prose

• migrating data from old to new may require simultaneous support of multiple
versions of the same code list
• requires flexibility not typically associated with traditional schema-based

approaches to using codes
• unused and retired codes might get re-used later for new semantic concepts

• e.g. country code "CS" was Czechoslovakia before 2003 and was reserved in
2006 for Serbia and Montenegro

1.3.10. Trading partners and agreements

Trading partners need to agree on the structure and content of interchanged docu-
ments
• so doing provides interoperability between independent systems acting on the

information
• using XML isn't a magic bullet

• it doesn't make our programs better, it makes our interchange of information
more reliable

• layers interchange constraints on top of implementation foundations
• structuring the information in a standardized fashion ensures the information

is communicated
• where to find information based on how it is labeled and where it is found

hierarchically
• agreeing on the semantics behind values in the communicated information en-

sures the information is understood
• what specified information values mean and represent in the abstract

Relationships between trading partners change, while standards do not
• trading partner requirements can be layered on top of industry standards
• trading partners can also anticipate future changes to standards
Published interchange specifications cannot pretend to know every value that
trading partners need
• there is no standardization of many business concepts, just practical and prag-

matic use for those concepts of import to trading partners

53

Introduction to Code Lists in XML

• therefore that can be no standardization of a set of values representing business
concepts that are particular to trading partners

Industries can state what the semantics are behind values
• trading partners can agree on which values to use
Codes for some established business practices can be supplemented or subset by
trading partners
• e.g. extending document status codes

• a typical workflow will have typical status values for the progress of a docu-
ment

• particular workflow systems used by trading partners may use only some
or maybe more document status values for a given document

• e.g. restricting payment means codes
• payment can only be by certified cheque or credit card

• e.g. restricting and extending transportation status codes
• the suite of status codes includes a subset of a standard suite in combination

with non-standard additional values
Identifiers are especially important as they specify actual business objects and not
business concepts
• e.g. account identifiers

• every business will probably have a different set of accounts than other
businesses

• when engaging in a transaction, a trading partner can publish its accepted
list of account identifiers so that a correspondent knows which values can
be used

• e.g. measurement identifiers
• a catalogue item's characteristics need to be identified unambiguously (e.g.

"gross weight" is distinct from "net weight")
Additional business rules can be layered on top of value constraints
• e.g. validity of non-coded data values based on trading partner relationship

• e.g. a maximum value for an order
• e.g. the nature of a product identified by its identifier may restrict the payment

means by which it is paid for
• e.g. no credit cards for certain products

54

Introduction to Code Lists in XML

2. Defining and using controlled vocabularies

2.1. Controlled value list maintenance and identity
A list of values has an identity in the abstract, regardless of how it is maintained
• e.g. ISO 3166-1 country codes
• e.g. UN/ECE 4461 payment means codes
• e.g. UBL 2.0 document status codes
The complete list may be maintained by hand or by a database or by any means
• the management of the values is important to long-term maintenance
• some lists may have tens of thousands of entries (e.g. vehicle model codes)
• a list may be synthesized by an algorithmic process

• e.g. the 100 ISBN numbers assigned to publisher "978-1-894049"
The concrete expressions of the lists may vary based on purpose or contextual use
• e.g. complete lists
• e.g. restricted subset lists
• each list and list subset expression must necessarily be uniquely identified

• a subset of a list cannot have the same identity as the complete list otherwise
there would be confusion regarding which list is the "true" list

• identity can be expressed as meta data for the list or list subset
• the concrete expression may take any useful form for the user

• e.g. simple text
• e.g. comma-separated values
• e.g. XML files
• having a standardized representation of lists would encourage the develop-

ment of more widely-useful applications
The sender and receiver may have different identities for a list of identical values
• e.g. the sender specifies an ISO country code

• the meta data for the list is that of the complete list
• e.g. the receiver only accepts a subset of ISO country codes as valid

• the meta data for the subset list is necessarily different than that of the com-
plete list

• for validation purposes the subset list must masquerade as the complete list
yet reject specified values outside of the subset list

55

Introduction to Code Lists in XML

2.2. Controlled value specification
A controlled value is, in fact, a multi-faceted value
• the list from which the code value is obtained

• described by meta data for the list
• the list identification itself may be multi-faceted

• the key code value itself
• unique within any given list

• properties (value-level meta data) of the values themselves
• helpful in understanding the semantics of the key code value

When an information item can be populated with a coded value, it should also be
possible to specify the associated value list meta data
• even very stable lists of values will change over time

• one may need to specify a chronologically-distinct interpretation of a given
value

• e.g. the list of provinces in Canada changed in 1999 when the Northwest
Territories was split into two territories: Nunavut and the Northwest Territ-
ories
• the Canadian postal province and territories indication of the Northwest

Territories was and remains "NT" even though the definition of the territory
changed

• if the distinction is important to a trading partner, then provision for
making the distinction must be made available

• e.g. the list of country codes changes frequently
• before 2003 "CS" represented Czechoslovakia and since 2006 "CS" is re-

served for Serbia and Montenegro
• one information item value may be an item selected from one of a number of

lists
• if all of the values are mutually exclusive in separate lists, there is no risk of

confusion other than changes over time for any given list as noted above
• if the values in the lists are not mutually exclusive, meta data is required to

disambiguate an ambiguous specified value
The risk is borne by the party encoding the information that the recipient can
properly decode the intent expressed by the information
• list meta data is often optional and is often ignored when coded values are spe-

cified
• the more specific a specification is, the less opportunity for improper understand-

ing of the intended meaning

56

Introduction to Code Lists in XML

3. Declaring controlled vocabularies

3.1. Declaring controlled vocabularies
Standards are in development for the non-schema-based representation of a list of
coded values
• trading partners may wish to trim or augment the list of coded values acceptable
• trading partners may wish to use different controlled vocabularies for a given

information item found in different document contexts
• the representation of individual coded values includes documentary information

and metadata
• for detailed value description
• for long-term maintenance and understanding

• OASIS genericode 1.0
• http://docs.oasis-open.org/codelist/genericode

• an XML representation standardized by the OASIS Code List Representation
Technical Committee

• http://www.oasis-open.org/committees/codelist/

• "Defining an XML format for interchange, documentation and management
of code lists (a.k.a. controlled vocabularies or coded value enumerations) in
any processing context"
• not obliged to use XML format inside the application
• very common to compile the XML interchange format into an internal

processing format
• e.g. conversion to XSLT
• e.g. implementation in database stored procedures

• XML is designed for interchange and is not always conveniently structured
for real-time processing

One could use schema enumerations but ...
• too inflexible for globally-defined information items

• cannot have different sets of values in different document contexts for a
globally-defined information item

• modifying the schemas means using non-standardized schema expressions
• not bad in and of itself but requires extra assurances for compatibility
• structural and lexical validation is assured if the standardized schema expres-

sions are treated as read-only
Meta-data-only code list are important as placeholders

57

Introduction to Code Lists in XML

http://docs.oasis-open.org/codelist/genericode
http://www.oasis-open.org/committees/codelist/

• effectively an infinite set of all possible codes satisfying the lexical rules
• indicating that a particular information item's value is from a controlled vocab-

ulary but that there is no controlled vocabulary listing a set of codes
• e.g. only 18 of 91 UBL code lists are published with values, 73 uniquely-categor-

ized code lists have only meta data
• users have the option of restricting the infinite list into a finite list

3.2. Rendering controlled vocabularies

3.2.1. Rendering controlled vocabularies

Some audiences do not appreciate having to read raw XML to interpret the contents
• angle brackets are distracting
• the volume of XML markup overwhelms the information content of the instance
Crane Softwrights Ltd. has published free developer resources with which to render
a genericode code expression to HTML
• XSLT 1.0 stylesheet: Crane-genericode2html.xsl
• standalone production of HTML from genericode file
• browser-based viewing of HTML from genericode file

3.2.2. Standalone production of an HTML rendering

Consider the HTML rendering of a simple one-item code list:
• java -jar saxon.jar -o Additional_PaymentMeansCode.html

Additional_PaymentMeansCode.gc Crane-genericode2html.xsl

The resulting HTML file when rendered appears as follows:

58

Introduction to Code Lists in XML

Figure 6. HTML rendering of a genericode file

3.2.3. Browser-based viewing of an HTML rendering

W3C XML stylesheet association standardized xml-stylesheet processing instruc-
tion:
• http://www.w3.org/1999/06/REC-xml-stylesheet-19990629

• href= points to the stylesheet file (modify as required)
• type="text/xsl" used to indicate the interpretation of the stylesheet
• in Windows drag the file from Windows Explorer to the browser canvas to

render
The modified file includes the processing instruction recognized by XML processing
tools:
• examples in the samp/ss directory

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="Crane-genericode2html.xsl"?>
<gc:CodeList
xmlns:gc="http://docs.oasis-open.org/codelist/ns/genericode/1.0/">

<Identification>

59

Introduction to Code Lists in XML

http://www.w3.org/1999/06/REC-xml-stylesheet-19990629

<ShortName>AdditionalPaymentMeansCode</ShortName>
<LongName xml:lang="en">Additional Payment Means</LongName>
<Version>1</Version>
<CanonicalUri>urn:x-company:PaymentMeansCode</CanonicalUri>
<CanonicalVersionUri>urn:x-company:PaymentMeansCode-1.0

</CanonicalVersionUri>
</Identification>
<ColumnSet>

<Column Id="code" Use="required">
<ShortName>Code</ShortName>
<Data Type="normalizedString"/>

</Column>
<Column Id="name" Use="optional">

<ShortName>Name</ShortName>
<Data Type="string"/>

</Column>
<Key Id="codeKey">

<ShortName>CodeKey</ShortName>
<ColumnRef Ref="code"/>

</Key>
</ColumnSet>
<SimpleCodeList>

<Row>
<Value ColumnRef="code">

<SimpleValue>SHP</SimpleValue>
</Value>
<Value ColumnRef="name">

<SimpleValue>Exchange of Sheep</SimpleValue>
</Value>

</Row>
</SimpleCodeList>

</gc:CodeList>

4. Associating controlled vocabularies in XML documents

4.1. Constraining information items using controlled vocabularies
Three kinds of constraints to be validated for an XML document
• structural constraints ensure information items are correctly found
• lexical constrains ensure information items are correctly formed
• value constraints ensure information items are correctly understood
Constraining the document structure and lexical patterns is independent of busi-
ness/value rules

60

Introduction to Code Lists in XML

• a community of users can publish an agreed upon schema to validate information
items are correctly found and formed

Constraining information item use of controlled vocabularies is very dependent on
business/value rules
• business/value rules implied by the nature of the information item

• e.g. points of a compass will never change
• business/value rules imposed by a community of users

• e.g. the document status codes for the condition of a document in a transaction
• business/value rules agreed upon between trading partners

• e.g. identification of account numbers for particular purposes
Typical use of W3C Schema conflates structural and value constraints inflexibly
• one gets more flexibility by separating value constraints from structural con-

straints
• only structural constraints should be imposed across a community of users

• standard should constrain how the information is found and how it is formed,
not how it is valued

• very infrequent changes to the structure of information being interchanged
• changes imply big impacts on applications and processing

• value constraints should be selectively imposed
• changes in trading partners
• changes in business practices over time
• possibly frequent changes to the values allowed by different parties
• once programs accommodate a given set of values, changing the subsets of

values in use doesn't change the applications
• business rules should be selectively added

• private requirements could never be anticipated by standards committees

4.2. Context/value association
Context/value association files
• http://www.oasis-open.org/committees/document.php?document_id=29990

• an XML vocabulary for associating document contexts with specified values
• suitable for constraining document entry in a user interface
• suitable for document validation before application processing
• techniques for specifying, restricting and extending lists for the purposes of

validation

61

Introduction to Code Lists in XML

http://www.oasis-open.org/committees/document.php?document_id=29990

Masquerading meta data when restricting a large list to a subset of values
• the validation needs to match an instance's use of large list meta data to a declar-

ation of a subset list using subset list list-level meta data
• the subset list list-level meta data necessarily is different than the list-level meta

data of the list from which it is derived
• the subset list masquerades as the list from which it is derived so that instance-

level meta data doesn't use the custom subset list list-level meta data
ISO/IEC 19757-3 Schematron deployment
• as supplied, the methodology reports context/value constraint violations in

simple text
• Schematron can alternatively be deployed with different available reporting

techniques
The principles of context/value association are as follows:
• XML documents have information items that need to be validated

• the locations (contexts) of those items can be addressed using XPath addresses
• genericode files have values and list meta data to use for validation

• the locations of those files can be declared with URL addresses
• the identity of each list is uniquely specified in order to be referenced multiple

times
• an association marries a document context with a set of genericode files

• each XPath document context is specified with the identities of the genericode
declarations

• validation checks values found in document contexts against genericode files
linked by the association for the document context
• any present meta data in the document context is checked with the available

genericode meta data

62

Introduction to Code Lists in XML

Figure 7. Context/value association

Appropriate for constraining data entry application user interfaces
• used as a front end to a user preventing the data entry of different values

• drop-down lists
• radio buttons
• check boxes

• the end result of editing an instance is that the values are all from the associated
lists

• the value-level meta data can be presented to the user
• assists the user in choosing which value or values to use

• the options to include instance-level meta data should be offered
• reflects the list-level meta data for the list from where the values are taken

Appropriate for constraining data validation
• used as a front end to an application that implements the logic for all possible

values
• selective association for business scenarios prevents the application from acting

on inappropriate values for a given transaction
• relationships between specific partners may be different
• different profiles of using documents may constrain particular values

Only the CVA vocabulary is standardized by OASIS, not how it is used
• the file format and the semantics represented by the elements and attributes are

being standardized by OASIS

63

Introduction to Code Lists in XML

• any implementation is considered out of scope of the committee work

4.3. Using context/value association for validation
Separates structural/lexical validation from value validation
• an XML document is checked using a two-step process
• the first pass for structural and lexical validation passes
• the second pass reports that a coded value used for a currency is unexpected
• the document structure and lexical content can be constrained by standardization

• e.g. the UBL technical committee publishes normative W3C schemas
• the document controlled-value content is constrained by business requirements

between trading partners
• e.g. the UBL committee publishes default coded value checks

• defaultCodeList.xsl

• trading partners can use this value validation methodology to create their
own value checking second-pass process

Figure 8. Two-step validation

Document arrives at application unchanged
• validation only confirms the use of structure and content, without modifying it
Second pass results meaningless without first pass being successful
• the values must be correctly found and correctly formed before checking the

actual values produces an accurate result
Crane-CVA2sch package from Crane Softwrights Ltd. web site
• historically developed in the OASIS UBL Technical Committee

64

Introduction to Code Lists in XML

• moved into the OASIS Code List Representation Technical Committee
• moved out of the OASIS Code List Representation Technical Committee

• the committee decided to focus on file formats and not methodologies
• intellectual property returned to Crane Softwrights Ltd.

• Crane is donating CVA2sch to an Apache Schematron project
A methodology for code list and value validation based on ISO/IEC 19757-3
Schematron
• an information item is asserted to have one of an allowed set of predetermined

values
• a failed assertion is a value validation error

• assertions are derived from context/value associations
Schematron is usually implemented using the Extensible Stylesheet Language (XSLT)
• the supplied Schematron stylesheet for stylesheets is a copy of the publicly-

available reference XSLT implementation
• http://www.schematron.com

• the methodology supplies a wrapper stylesheet for the reference skeleton
• other non-XSLT implementations of Schematron exist

• e.g. Amara/Scimitar implements ISO Schematron in Python
• http://uche.ogbuji.net/tech/4suite/amara

• same architecture as reference XSLT implementation in that Scimitar is
a Python program that writes a Python program that performs the valid-
ation

The XSLT generated to implement the Schematron assertions is used as the second
pass of validation to test XML instances for having correct controlled-vocabulary
values
• the testing relies on the first-pass structural validation, having already confirmed

the structure and lexical values used in the instance
• without the first pass confirming the accurate presence of information items,

the second pass is meaningless
The methodology supports the incorporation of any number of sets of Schematron
assertions
• ISO Schematron supports the inclusion of multiple schema fragments into a

single schema expression
• business rules related or unrelated to code lists may be expressed as Schematron

assertions
• the trading partner schema can then include business rules in addition to

coded value rules

65

Introduction to Code Lists in XML

http://www.schematron.com
http://uche.ogbuji.net/tech/4suite/amara

Overview of the process to prepare the second pass value validation XSLT stylesheet:

Figure 9. Second-pass value-validation artefact creation

• the circled labels in the diagram are indicated by the parenthesized numbers
• the inputs:

• (3) the specification of contexts uses the context/value association XML
vocabulary defined by the OASIS Code List Representation TC

• (4) the specification of coded values uses the genericode vocabulary defined
by the OASIS Code List Representation TC

• (5) supplemental business rules are specified using ISO/IEC 19757-3
Schematron

• the output:
• (2) an XSLT stylesheet (or some other implementation of Schematron assertion

checking)
Recall Figure 8
• the XSLT created here (2) plugs in to the two-step validation process
Recall Figure 7
• all three documents on that diagram are shown here as instances being validated,

the context value association files and the external value list expressions

66

Introduction to Code Lists in XML

4.4. Rendering context/value association files

4.4.1. Rendering context/value association files

Some audiences do not appreciate having to read raw XML to interpret the contents
• angle brackets are distracting
• the volume of XML markup overwhelms the information content of the instance
Crane Softwrights Ltd. has published free developer resources with which to render
a context/value association file to HTML
• XSLT 1.0 stylesheet: Crane-assoc2html.xsl
• standalone production of HTML from context/value association file
• browser-based viewing of HTML from context/value association file
The rendering of the context/value association file includes the rendering of the
referenced genericode files
• the stylesheet for the context/value association file automatically imports the

stylesheet for a genericode file
See Section 3.2.3 for the technique of embedding a stylesheet association processing
instruction
Instead of embedding simple text for documentation, one can use rich markup
• the Crane stylesheet supports the embedding of HTML
• note in the order-constraints-doc.xml example the declaration of the HTML

namespace and use of the "x:" namespace prefix
<?xml-stylesheet type="text/xsl" href="Crane-assoc2html.xsl"?>
<ValueListConstraints
xmlns="urn:oasis:names:tc:ubl:schema:Value-List-Constraints-0.8"
xmlns:cbc="urn:oasis:...:CommonBasicComponents-2"
xmlns:cac="urn:oasis:...:CommonAggregateComponents-2"
xmlns:x="http://www.w3.org/TR/REC-html40"
xmlns:sch="http://purl.oclc.org/dsdl/schematron"
id="urn:x-illustration"
name="code-list-rules">
<Title>
Illustration of code list constraints -
<x:samp>order-constraints.cva</x:samp>

</Title>
<Identification>
<x:pre>
$Id: order-constraints-doc.cva,v 1.1 2007/02/10 02:24:18
G. Ken Holman Exp $
</x:pre>

</Identification>

67

Introduction to Code Lists in XML

<Description>
<x:p>
This is an illustrative example of all of the features of
specifying the context/value constraints that one can express
for XML documents.

</x:p>
<x:p>
The validation requirements for this contrived scenario are as
follows:
<x:ul>
<x:li>the UN/CEFACT currency code list is restricted to be
only Canadian and US dollars:</x:li>
<x:li>the seller must be in the US</x:li>
<x:li>the buyer may be in either Canada or the US</x:li>
<x:li>the definition for Payment Means is extended to include
both UBL definitions and additional definitions</x:li>

</x:ul>
</x:p>

</Description>
...

4.4.2. Standalone production of an HTML rendering

The rendering of the example of a context/value association file with embedded
HTML on Section 4.4.1:

68

Introduction to Code Lists in XML

Figure 10. HTML rendering of a context/value association file containing HTML

Note how the HTML browser renders the embedded HTML constructs.

69

Introduction to Code Lists in XML

70

Testing XSLT
Tony Graham

Menteith Consulting Ltd
<Tony.Graham@MenteithConsulting.com>

1. Overview
Creating a working stylesheet may seem like an end in itself, but once it’s written
you may want it to run faster or you may not be sure that the output is correct (And
if you are sure, how sure are you?).

Profilers, unit test frameworks, and other tools of conventional programming
are similarly available for XSLT but are not widely used. This presentation surveys
the available tools for ensuring the quality of your XSLT.

There is no one-size-fits-all solution when looking for tools. For example, if you
are using Saxon and Ant, then you are looking for a different set of tools than if you
are using libXSLT and Makefiles.

2. Profilers
Profilers are in wide use for conventional programming, and several XSLT and XSL
profilers are available. However, it is a truism of XSLT programming that different
XSLT processors have their own strengths and weaknesses, so if you are profiling
your stylesheet, it is important to profile it running on the same XSLT processor as
you will use in production.

Some XSLT processors, such as Saxon and libXSLT, have their own profiling
mechanisms, and several XSLT editors or IDEs, such as <oXygen/>, Stylus Studio,
and XML Spy, provide built-in profilers what work with a number of different XSLT
processors.

Profiling XSLT is not an exact science since:
• The execution time for a template includes the execution times of all of the

templates that it calls; the processor and IDE vendors do their best to separate
the two when reporting timing.

• Results depend on the state of the machine; running the stylesheet multiple
times in succession generally means the later runs are faster than the earlier as
the program and its libraries are already in memory.
• Both Saxon and xsltproc provide a command-line switch for running the

transformation time multiple times to counteract irregularities in the timing
of a single run.

71

• The time taken by a particular template may depend as much on the current
node list as on the structure of the template.

The presentation will describe the features and applicability of the different XSLT
and XSL profilers available as well as a few hints and tips about how to get the best
out of your profiler: such as what to do when the profiler reports that your hottest
hotspot is a literal result element instead of the complicated XPath selector that you
expected.

2.1. XML IDEs
XML IDEs such as <oXygen/>, Stylus Studio, and XMLSpy support profiling and
debugging of XSLT. Figure 1 shows <oXygen/> 8 profiling information display.

Figure 1. <oXygen/> 8 XSLT profiling

72

Testing XSLT

2.2. xsltproc

2.2.1. Profiler

The xsltproc XSLT 1.0 processor supports a --profile switch that triggers a dump of
profiling information. The example below shows the first few lines of output from
profiling one of the code-generating stylesheets for the xmlroff XSL formatter:

xsltproc --profile --stringparam dump-info dump-info.xml fo-context-dump.xsl ►
xslspec.xml
number match name mode Calls Tot 100us Avg

0 property-to-context-property-merge
172 426224 2478

1 fo-context-c-file 1 315848 315848
2 property-to-slist-foreach-if

172 143712 835
3 property-to-context-property-copy

172 107006 622
...

2.2.2. Debugger

xsltproc has a command-line debugger.

2.3. Saxon

2.3.1. Profiling

Saxon provides a profile through a two part process:
1. Run Saxon with the -TP switch, writing the error output to a file

java -jar dir/saxon9.jar -TP source stylesheet 2>profile.xml

2. Run the timing-profile.xsl stylesheet from the saxon-resources.zip file (available
from http://www.saxonica.com/) to create a HTML report:

jjava -jar dir/saxon9.jar profile.xml timing-profile.xsl >profile.html

Figure 2 shows a screenshot of the report generated from running the same stylesheet
as in the Section 2.2 example. Notice the first two “hotspots” are the same as for
xsltproc, but after that the result start to diverge.

73

Testing XSLT

http://www.saxonica.com/

Figure 2. Saxon profile report

3. Test Frameworks
Not all testing frameworks are unit testing frameworks, and not all tests are unit
tests.

Unit tests – tests written from the perspective of the programmer – came to
prominence with the rise in popularity of the Extreme Programming (XP) method-
ology in the late 1990s. Programmers have always recognised that they should write
tests for their code, but that hasn’t always meant that they do. Writing tests before
writing the code is central to XP, so the publicity about XP brought unit testing to
the attention of many programmers, irrespective of whether they adopted all, some,
or none of the XP methodology. The practise can be separated from the rest of the
XP bag of tricks and referred to as Test-Driven Development (TDD).

Unit testing is perhaps most commonly associated with the Java programming
language since XP’s creators also wrote the JUnit unit testing framework and since
Ant, the ubiquitous Java-based build tool, makes it easy to run JUnit tests and gen-
erate HTML reports of the results. Unit testing tools are available for a wide variety
of programming languages, including XSLT, but current awareness of XSL and
XSLT unit testing tools is limited.

Your choice of XSLT unit testing framework depends less on your XSLT processor
than it does on your XSLT version and your testing approach. There are already
several unit testing frameworks specific to XSLT 2.0 (which will limit your choice
of XSLT processor), but otherwise your choice depends on whether you want to

74

Testing XSLT

work purely in XSLT, within Ant, with Ant and JUnit, with just JUnit. Again, your
choice will depend on what other tools you are using.

XSLT unit testing frameworks include:
• XSLTunit – http://xsltunit.org/
• Juxy – http://juxy.tigris.org/
• Unit Testing XSLT – http://www.jenitennison.com/xslt/utilities/unit-testing/
• tennison-tests – http://tennison-tests.sourceforge.net/
• <XmlUnit/> – http://xmlunit.sourceforge.net/
• uft-x – http://utf-x.sourceforge.net/
• XTS – http://www.fgeorges.org/xslt/xslt-unit/
A testing framework of a different kind is the XSLV static validation tool available
from http://www.brics.dk/XSLV/.

XSpec (http://code.google.com/p/xspec/) is a Behavior Driven Development
(BDD) framework for XSLT.

3.1. Effectiveness of Unit Testing
Few people, if any, would claim that unit testing is the silver bullet that will kill all
your software defects. The industry data summarised in Software Estimation: De-
mystifying the Black Art [1] indicates it is most often effective in removing 30% of
the defects in the code being tested.

Table 1. Defect-removal Rates (from [1])

Highest RateModal RateLowest RateRemoval Step
40%35%25%Informal design reviews
65%55%45%Formal design inspections
35%25%20%Informal code reviews
70%60%45%Formal code inspections
80%65%35%Modelling or prototyping
60%40%20%Personal desk checking of code
50%30%15%Unit test
35%30%20%New function (component) test
40%35%25%Integration test
30%25%15%Regression test
55%40%25%System test
40%35%25%Low-volume beta test (<10 sites)

75

Testing XSLT

http://xsltunit.org/
http://juxy.tigris.org/
http://www.jenitennison.com/xslt/utilities/unit-testing/
http://tennison-tests.sourceforge.net/
http://xmlunit.sourceforge.net/
http://utf-x.sourceforge.net/
http://www.fgeorges.org/xslt/xslt-unit/
http://www.brics.dk/XSLV/
http://code.google.com/p/xspec/

Highest RateModal RateLowest RateRemoval Step
85%75%60%High-volume beta test (>1,000 sites)

As with so many things, you mileage may vary, and historical data from your own
organisation will be a better indication of how effective this, or any technique, is
for you.

3.2. Unit Testing Wish-List
My personal wish-list for an XSLT unit testing framework includes:
• Ability to assert that a message was (or was not) output.

If all an xsl:template does is emit a message, the result from the template
will, in XSLT 2.0 terms, be just an empty sequence. There are times when it is
useful to check that the template took the path less travelled and emitted a
message rather than just failed to produce a result.

• Works with keys
When the unit testing framework and test input data are both in a stylesheet

that imports the style sheet being tested, there is no input document for which
to generate key data. Testing with uninitialised keys just leads to frustration.

• Test stylesheet as a whole
A framework should be able to test by running the whole stylesheet as well

as by exercising individual templates.
• Report results from multiple unit test files

Most of the unit test frameworks are designed to run a single file containing
the unit tests. When there are a lot of tests or when the spec for the transform
has multiple parts, it makes sense to split the unit tests into multiple parts, each
in a different file. A framework should be able to run multiple files of unit tests
in one invocation and report on the combined results of all the tests.

• Maintainers respond to bug reports and enhancement requests
• Test data and assertions written in XML

Several of the unit testing frameworks use tests written in Java and/or the
tests are run using Ant. However, I do more than just jobs that use one or both
of Java and Ant (what I do use at any point is often what my clients are currently
using), so I personally prefer that tests can be written in XML and to have the
option of running tests from the command line so that it’s not necessary for users
to know a particular programming language or use a particular build tool to be
able to create and run unit tests.

76

Testing XSLT

3.3. Why use more that XSLT for testing XSLT?
Why should you prefer an XSLT unit testing framework that uses more that just
XSLT? Two reasons: xsl:message and multiple output documents.

Most XSLT unit testing frameworks are written purely in XSLT; that is, the
framework uses an XSLT processor and XSLT stylesheet to run the tests (or a mas-
saged form of the tests) on the stylesheet under test. The test result output is typically
XML that is processed by another stylesheet to produce HTML for viewing.

Using XSLT to test XSLT may be partly explained by XSLT being an XSLT
practitioner’s favourite tool and partly by Eric van der Vlist’s XSLT-based
XSLTunit being the first known framework. Jeni Tennison’s possibly unnamed
framework is also purely XSLT (though XSLT 2.0 instead of the XSLT 1.0 in
XSLTunit), and it inspired the Tennison Tests framework, which automates running
the multiple tests but hasn’t tinkered with the XSLT nature of the tests, and also
XTC.

By comparison, the frameworks that rely on compiling code to run tests are, it
seems, much less well known. They include Juxy, which compiles Java code for
JUnit tests, and XMLUnit, which has versions in Java for use with JUnit and C# for
use with NUnit.

IMO, the extra-XSLT frameworks have the advantage that you can (or should
be able to) make assertions about aspects of the stylesheet to which a pure XSLT
framework is either blind or oblivious.

Inasmuch as you typically use xsl:message to output messages when there’s an
error in the source document or there’s something that the stylesheet can’t handle,
you should want to make assertions about whether or not a message has been
emitted. This is particularly true when you are writing “dirty” tests that you expect
will trigger error handling (as opposed to “clean” tests that you expect to work),
and even more true when you expect to execute a xsl:message that has ‘termin-
ate="yes"‘.

Pure XSLT frameworks don’t provide a way to tell when a message is emitted,
and any <xsl:message terminate="yes"> will terminate the testing framework
along with the stylesheet under test, leaving you with nothing. A good extra-XSLT
framework will let you make assertions about xsl:message and will not evaporate
when the stylesheet terminates itself.

When a stylesheet may create multiple result documents, you probably want to
make assertions about the existence and content of those result documents. That
could be left to a post-process, but if the file names and the content relate to the
content of the source document, it is simpler and more self-contained when you
could make your assertions in the same unit tests as you use to make assertions
about the rest of the operation of the stylesheet. A pure XSLT framework can’t
provide any indication that a result document was or was not created, though it
may be possible to access a secondary result document as part of the unit tests

77

Testing XSLT

(provided the XSLT processor finishes writing the secondary result document while
the transformation-that-is-the-running-of-the-unit-tests is still in progress). An extra-
XSLT framework typically lets you make assertions after the stylesheet-under-test
has finished.

So while there are some aspects of XSLT processing, such as what happens on
a xsl:message, that you as a stylesheet writer don’t need to concern yourself about,
you as a stylesheet tester do want to know about them, so you need more that just
an XSLT processor in the framework for your unit tests.

3.4. XSLTunit
XSLTunit (http://xsltunit.org/) by Eric van der Vlist of Dyomedea is the grandfather
of XSLT unit testing frameworks. When asked, Eric described it as “stable, rustic
and mature”. It has influenced, both positively and negatively, the development of
several other testing projects.

XSLTunit tests are written in a stylesheet. The stylesheet imports both the
stylesheet being tested and the XSLTunit “xsltunit.xsl” stylesheet. The unit tests are
written within a template that matches the document root (so it is the first rule ex-
ecuted when the combined stylesheets are run).

This example from the XSLTunit web site illustrates how elements in the
XSLTunit namespace do the work and an xsl:apply-template invokes the stylesheet
being tested to produce a result that is to be compared against the expected result.

<xsl:template match="/">
<xsltu:tests>
<xsltu:test id="test-title">
<xsl:call-template name="xsltu:assertEqual">

<xsl:with-param name="id" select="'full-value'"/>

<xsl:with-param name="nodes1">
<xsl:apply-templates ►

select="document('library.xml')/library/book[isbn='0836217462']/title"/>
</xsl:with-param>
<xsl:with-param name="nodes2">
<h1>Being a Dog Is a Full-Time Job</h1>

</xsl:with-param>
</xsl:call-template>

</xsltu:test>
…
</xsltu:tests>

</xsl:template>

The result from running XSLTunit is an XML document indicating the success or
failure of each test. When a test asserting equality with an expected result fails, the

78

Testing XSLT

http://xsltunit.org/

output also includes a diff of the expected and actual results. The following is the
result from running the sample files from the XSLTunit web site:

<xsltu:tests xmlns:xsltu="http://xsltunit.org/0/">
<xsltu:test id="test-title">
<xsltu:assert id="full-value" outcome="passed"/>

</xsltu:test>
<xsltu:test id="test-title-reverted">
<xsltu:assert id="non-empty-h1" outcome="passed"/>

</xsltu:test>
<xsltu:test id="XPath-expressions">
<xsltu:assert id="h1" outcome="passed"/>
<xsltu:assert id="value" outcome="passed"/>

</xsltu:test>
</xsltu:tests>

3.5. Juxy
Juxy (http://juxy.tigris.org/), by Pavel Sher, describes itself as “a library for unit
testing XSLT stylesheets from Java”. It states that it is best suited for the projects
where both Java and XSLT are used simultaneously.

In contrast to XSLTunit2 and its descendants, Juxy tests are written in Java. Tests
can be written to run standalone, for use with JUnit, or for use with any other
(probably Java-based) testing framework. Tests for use with JUnit are the most likely
use for Juxy, both because the tests are less verbose and so are easier to both read
and write and because many people are already using JUnit for testing Java code.

The input being tested can be from a file, a Document object or a String, as shown
in the following JUnit-specific example excerpted from the Juxy website:

public class SampleTestCase extends JuxyTestCase {
public void testListTransformation() {

newContext("stylesheet.xsl");
context().setDocument("" +

"<list>" +
" <item>item 1</item>" +
" <item>item 2</item>" +
" <item>item 3</item>" +
"</list>");

Node result = applyTemplates();
xpathAssert("text()", "item 1, item 2, item 3").eval(result);

}
}

2 /trac_consulting/wiki/TestingXSLT/XSLTunit

79

Testing XSLT

http://juxy.tigris.org/
/trac_consulting/wiki/TestingXSLT/XSLTunit
/trac_consulting/wiki/TestingXSLT/XSLTunit

3.5.1. XML Format

At the time of this writing, Juxy CVS contains a stylesheet, by Tony Graham, for
converting tests in XML format into Java, which is then compiled in the same
manner as conventional Juxy tests. The following example has the same effect as
the previous Java example:

<test name="MoreThanOneElementInTheList_ApplyTemplates">
<document select="/list"><list><item>first item</item><item>second ►

item</item><item>third item</item></list></document>

<apply-templates select="/list"/>
<assert-equals>
<expected>first item, second item, third item</expected>

</assert-equals>
</test>

Note that the requirement to translate tests into Java methods for use with JUnit
currently limits test names to strings that (when prepended with 'text') make valid
method names for use with JUnit.

Figure 3 shows the JUnit report from running the test cases generated from the
complete XML file for the above example.

Figure 3. Juxy test report

The advantage of generating tests as Java and running the stylesheet under test
from a non-XSLT framework is that the framework can catch error conditions that
would blow away an all-XSLT framework. For example, the following test asserts
that x2j.xsl will terminate when the source document is the content of the <docu-
ment> element:

80

Testing XSLT

<test name="Stylesheet">
<stylesheet href="xmlTest/x2j.xsl"/>
<document><stylesheet href="href"><root/></stylesheet></document>
<assert-error>
<apply-templates/>

</assert-error>
</test>

It is intended to add the ability to make assertions about the content of xsl:message
output and the names of files that are read and written.

3.6. Unit Testing XSLT
Jeni Tennison’s unit testing framework, available from http://www.jeniten-
nison.com/xslt/utilities/unit-testing/ under the title “Unit Testing XSLT”, is a pure
XSLT 2.0 solution where unit tests may be either in the stylesheet being tested or in
a separate file. The following example from Jeni’s web site shows a simple test of
an XSLT 2.0 function:

<test:tests>
<test:test>
<test:param name="number" select="2" />
<test:expect select="4" />

</test:test>
</test:tests>

<xsl:function name="eg:square" as="xs:double">
<xsl:param name="number" as="xs:double" />
<xsl:sequence select="$number * $number" />

</xsl:function>

A stylesheet containing tests and templates is transformed using a provided
stylesheet to generate a new, standalone stylesheet that contains only the tests and
that imports the original stylesheet. Running this stylesheet (irrespective of what
you use for input) runs the tests and produces an XML result file. This result is then
transformed using another provided stylesheet to produce a HTML report (defaulting
to using Jeni’s distinctive purple and green colour scheme) that summarises the
results.

Figure 4 shows the report generated using the above test plus a second test that
is forced to fail (since "2 * 2" does not equal "5") to show the details that are provided
for failed tests.

81

Testing XSLT

http://www.jenitennison.com/xslt/utilities/unit-testing/
http://www.jenitennison.com/xslt/utilities/unit-testing/

Figure 4. Unit test report

82

Testing XSLT

3.7. tennison-tests
The tennison-tests project on SourceForge marries Jeni Tennison’s unit testing
stylesheets with an Ant task for running one or more unit test files and producing
reports. This framework is most likely to be useful to someone used to using Ant
and already using it for unit testing non-XSLT code. As the tennison-tests web page
puts it:

The Tennison Tests (XSLT Unit Testing) project aims to harvest the best of both
worlds, allowing XSLT Developer's to write their tests in XML and appease the
nUnit camp by providing an easy integration into automated build tools, specifically
Ant.

Using tennison-tests requires adding the task’s definition and then using it in an
Ant target, for example:

<!-- === -->
<!-- Targets for running unit tests -->
<!-- === -->

<!-- Defines the 'tennison-tests' custom Ant task. -->

<taskdef name="xslttest"
classname="com.jenitennison.xslt.unittest.XSLTTest"
classpath="${basedir}/ant-xslttest-1.0.0/ant-xslttest-1.0.0.jar"/>

<!-- Executes all unit tests in 'test'. -->
<target name="test" depends="init">
<xslttest src="${basedir}/ant-xslttest-1.0.0/main/src/xslt"

target="build/test"
generate="true">
<fileset dir="${basedir}/test">
<include name="*.xml" />
</fileset>
<factory name="net.sf.saxon.TransformerFactoryImpl"/>

</xslttest>
</target>

<!-- Executes a single unit test. -->
<!-- Example usage:

ant -Dtest=2-6.xml test.single
-->

<target name="test.single" depends="init">
<xslttest src="${basedir}/ant-xslttest-1.0.0/main/src/xslt"

target="build/test"
generate="true">

83

Testing XSLT

<fileset dir="${basedir}/test">
<include name="${test}" />
</fileset>
<factory name="net.sf.saxon.TransformerFactoryImpl"/>

</xslttest>
</target>

The generated reports appear identical to those produced by Jeni’s original
stylesheets (apart from using a different colour scheme). While the Ant task can run
multiple unit test files on one invocation, as yet it does not produce a summary report
of all the individual unit test file’s results.

3.8. <XmlUnit/>
<XmlUnit/>, from http://xmlunit.sourceforge.net/, is available in two forms: a Java
framework (for use both with and without JUnit) and a less well-developed C#
framework for use with NUnit. The Java framework can test assertions about XML
documents (and even badly-formed HTML), validate documents, and compare two
documents as well as test assertions about the result of XSLT transformations.

Tests are written as methods of Java (or C#) classes. The following abbreviated
example from the <XmlUnit/> documentation shows a test where the result of an
XSLT transformation is compared to the expected output.

public void testXSLTransformation() throws Exception {
String myInputXML = "...";
File myStylesheetFile = new File("...");
Transform myTransform = new Transform(myInputXML, myStylesheetFile);
String myExpectedOutputXML = "...";
Diff myDiff = new Diff(myExpectedOutputXML, myTransform);
assertTrue("XSL transformation worked as expected", myDiff.similar());

}

This example shows input and expected output coming from a String or a File. They
may instead be a DOM node or a SAX InputSource.

3.9. Unit Testing Framework – XSLT (UTF-X)
UTF-X, available from http://utf-x.sourceforge.net/, is a Java-based framework where
tests can be run from the command line, from an Ant build file, or using JUnit. Tests
are written as XML. The following example from from the UTF-X web site asserts
that the result of processing the content of the utfx:source element will match the
content of the utfx:expected element.

<utfx:test>
<utfx:name>sect1 with title only</utfx:name>
<utfx:assert-equal>

84

Testing XSLT

http://xmlunit.sourceforge.net/
http://utf-x.sourceforge.net/

<utfx:source validate="yes">
<section id="section1">
<heading>Section 1</heading>

</section>
</utfx:source>
<utfx:expected validate="yes">

<h1>Section 1</h1>

</utfx:expected>
</utfx:assert-equal>

</utfx:test>

UTF-X includes a test generator that can generate a test definition file for an existing
stylesheet.

3.10. XTS
XTS, by Florent Georges, is available from http://www.fgeorges.org/xslt/xslt-unit/.
XTS is an XSLT 2.0 framework that is capable of testing both XSLT 2.0 and XQuery.
A single test comprises an assertion of the expected result followed by a sequence
constructor, as in the following example from the XTS web site that illustrates testing
a function from the stylesheet under test:

<t:tests>
<t:title>hello-world()</t:title>
<t:test>
<t:expect select="'Hello, world!'"/>
<xsl:sequence select="hw:hello-world()"/>

</t:test>
</t:tests>

The sequence constructor – a single xsl:sequence in this case, though it could be
more complicated – is compared for equality with the expected result. Alternatively,
the expected result could be written as an XPath expression to evaluate or, when
used with Florent’s ‘error-safe’ extension for Saxon, an assertion of an error that
should be thrown when evaluating the sequence constructor.

The XML file containing the tests is transformed into a test stylesheet that imports
the stylesheet being tested. That stylesheet, when run, ignores its XML input and
runs named templates corresponding to the tests in the original test XML file.

The output of the test stylesheet is an XML file that can be transformed into a
HTML report. Figure 5 shows the sample report from the XTS web site.

85

Testing XSLT

http://www.fgeorges.org/xslt/xslt-unit/

Figure 5. XTS report

3.11. XSpec
XSpec (http://code.google.com/p/xspec/), by Jeni Tennison and contributors, is a
Behavior Driven Development (BDD) framework for XSLT. It is based on the Spec
framework of RSpec, which is a BDD framework for Ruby.

XSpec consists of a syntax for describing the behaviour of your XSLT code, and
some code that enables you to test your XSLT code against those descriptions.

Some aspects in which XSpec differs from Jeni's earlier Section 3.6 framework
are:
• Tests are defined as 'scenarios' where you describe what should happen and

define what to expect, whereas in the other framework, tests were identified by
ID only.

However, the ability to label tests and provide strings associated with asser-
tions is not unique to XSpec.

• Scenarios may be nested, so multiple scenarios may inherit a common context
• Scenarios documents may import other scenario documents, promoting reuse
• Scenarios may be marked 'pending' (and a description may be provided): pending

scenarios are not run, but are reported as pending in the test report, so they re-
main visible. This compares favourably to other frameworks where you would
have to comment out any tests that can't be run at that time.

86

Testing XSLT

http://code.google.com/p/xspec/

3.11.1. Example

For this stylesheet:
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml"/>

<xsl:template match="/">
<m>Hello world!</m>

</xsl:template>

<xsl:template match="unused">
<m>You can't see me!</m>

</xsl:template>

</xsl:stylesheet>

This description document describes a single scenario:
<s:description xmlns:s="http://www.jenitennison.com/xslt/xspec"

stylesheet="test.xsl">
<s:scenario label="Processing document root">

<s:context select="/"><anything/></s:context>
<s:expect
label="Should be 'Hello world'."><m>Hello world!</m></s:expect>

</s:scenario>
</s:description>

Figure 6 shows the report from running XSpec on the description document.

87

Testing XSLT

Figure 6. XSpec test result report

3.11.2. Coverage

XSpec also includes a coverage utility which highlights parts of the stylesheet under
test that have not been exercised by the scenarios.

The coverage utility comprises a custom TraceListener for use with Saxon and
a stylesheet for generating a report of the results.

The XSLTCoverageTraceListener produces an XML file recording the line
number and module of each XSLT element in the stylesheet under test, producing
an element each time an XSLT element is executed.

The stylesheet parses the stylesheet under test, and for each element, determines
whether or not the element is listed in the XSLTCoverageTraceListener output.
Those that are not are highlighted in the generated report.

Figure 7 shows the coverage report for the example stylesheet and description
document used in the previous example. The unused template shows as white text
on a red background.

88

Testing XSLT

Figure 7. XSpec coverage report

4. Static Tests

4.1. XSLV Static Validation Tool
The XSLV tool for static validation of XSLT from the University of Aarhus, available
online at http://www.brics.dk/XSLV/, is able to check that all output of a stylesheet
at runtime is valid according to a specified output schema, assuming that the input
is valid according to its specified schema. Schemas can be written as DTD, XML
Schema, or a subset of RELAX NG.

Since XSLT is Turing complete, determining validity for all possible stylesheets
is undecidable, so the tool applies some approximations. However, the designers
wanted to be able to guarantee correctness, so the approximations err on the safe
side: the tool reports some valid output as being invalid, but should never report
invalid output as valid.

I consider that this type of static validation complements rather than replaces
unit testing, firstly since the stylesheet output is likely to be invalid from its inception
up until it is largely complete, and secondly since its all too easy to create output
that’s valid but still incorrect.

4.2. xslqual.xsl
xslqual.xsl (http://gandhimukul.tripod.com/xslt/xslquality.html), by Mukul Gandhi,
runs a number of XSLT code quality rules. Each rule in this file is in a form of an
XML fragment, something like following:

89

Testing XSLT

http://www.brics.dk/XSLV/
http://gandhimukul.tripod.com/xslt/xslquality.html

<rule name="DontUseDoubleSlashOperatorNearRoot">
<message>

Avoid using the operator // near the root of a large tree
</message>
<xpath>

//(@match | @select)[starts-with(., '//')]
</xpath>
<priority>2</priority>
<example>

<!-- VIOLATION -->
<xsl:variable name="x" select="//x/y/z" />

<!-- REPAIR -->
<xsl:variable name="x" select="/a/b/x/y/z" />

</example>
</rule>

4.3. XSLT Metrics
XSLT Metrics (http://code.menteithconsulting.com/wiki/XSLTMetrics), by Tony
Graham, is a stylesheet for some descriptive, rather than prescriptive or proscriptive,
metrics about what's in a stylesheet. The purpose of the metrics is finding out what's
in a stylesheet rather than telling you how to write your stylesheet.

The metrics stylesheet is written in XSLT 1.0 so it usable by the maximum
number of people.

Current sample output from the DocBook XSLT stylesheets:
Stylesheets: 61
With comments: 54
Both preceding and containing comments: 0
Preceding comments only: 0
Containing comments only: 0

Templates: 1833
With comments: 446
Both preceding and containing comments: 56
Preceding comments only: 151
Containing comments only: 239

Named templates: 421
Recursive: 0

Moded templates: 933
Named moded templates: 2

Imports: 3
Includes: 57

90

Testing XSLT

http://code.menteithconsulting.com/wiki/XSLTMetrics

4.4. debugxslt
debugxslt (http://code.google.com/p/debugxslt/), by James Fuller, is an XSLT lint
checker that uses Schematron.

5. Coverage
Testing your XSLT is good. Knowing how much of your XSLT you've tested is even
better. A coverage tool is able to report which portions of a stylesheet have been
exercised and which haven't.

5.1. XSpec
XSpec (http://code.google.com/p/xspec/) has the only coverage utility currently
known.

Bibliography
[1] Steve McConnell, Software Estimation: Demystifying the Black Art, ISBN

0-7356-0535-1, Microsoft Press, Redmond, Washington, 2006.

91

Testing XSLT

http://code.google.com/p/debugxslt/
http://code.google.com/p/xspec/

92

Testing XSLT with XSpec
Jeni Tennison

Jeni Tennison Consulting Ltd
<jeni@jenitennison.com>

Abstract

Test-driven development is one of the corner stones of Agile development,
providing quick feedback about mistakes in code and freeing developers to re-
factor safe in the knowledge that any errors they introduce will be caught by
the tests. There have been several test harnesses developed for XSLT, of which
XSpec is one of the latest. XSpec draws inspiration from the behaviour-driven
development framework for Ruby, called RSpec, and focuses on helping de-
velopers express the desired behaviour of their XSLT code. This paper discusses
the XSpec language, its implementation in XSLT 2.0, and experience with
using XSpec on complex, large-scale projects.

1. Introduction
Not long after a developer starts working with XSLT, they realise that testing is vital
to XSLT development. Even with schema-aware XSLT 2.0, and even if you use type
declarations religiously, it is impossible for an XSLT processor to check that your
stylesheet makes sense. You may have mis-spelled an attribute name, performed a
substring that will always return an empty string, forgotten a mode on a template.
The only way to tell is to check and see.

So even if you don't practice agile development, a testing framework can save
a lot of time and repetitive effort. Unsurprisingly, a number of testing frameworks
have been developed for XSLT, and Tony Graham did a good job of summarising
their different approaches, advantages and disadvantages at XTech 20071.

There are a number of different types and motivations for testing, from testing
individual functions to testing entire applications. In the last few years, linked to
the rise of Ruby on Rails, there has been a growing interest in behaviour-driven
development2. This approach focuses on expressing the behaviour of code using
domain-centric language, as well as (in the vein of test-driven development) describ-
ing the behaviour before writing the code that satisfies that behaviour.

1 http://2007.xtech.org/public/schedule/detail/217
2 http://en.wikipedia.org/wiki/Behavior_Driven_Development

93

http://2007.xtech.org/public/schedule/detail/217
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://2007.xtech.org/public/schedule/detail/217
http://en.wikipedia.org/wiki/Behavior_Driven_Development

XSpec is a framework that seeks to apply BDD principles to XSLT testing. It
particularly follows the example of RSpec3, used in much Ruby on Rails develop-
ment, in the terms that it uses. The rest of this paper will describe how to describe
the behaviour of an XSLT stylesheet using XSpec, the implementation of XSpec in
XSLT, and some experience of using XSpec in large, complex applications.

2. XSpec
The aim of XSpec is to provide a flexible testing framework that supports whatever
level of testing someone wants to do, while encouraging a behaviour-driven ap-
proach in which the tests act as descriptions of the behaviour of an application as
well as runnable code.

A RELAX NG schema and other information about XSpec is available from ht-
tp://code.google.com/p/xspec.

An XSpec document describes some aspect of the behaviour of a stylesheet ap-
plication. It might describe a particular module, or a particular mode, or some other
subset of the application, or it might describe the overall behaviour of the application.
Accordingly, the document element of an XSpec document is a <x:description>
element. (In this paper, the x prefix is used to denote the http://www.jeniten-
nison.com/xslt/xspec namespace, which is used for all XSpec elements.) The
stylesheet attribute holds a relative URI pointing to the stylesheet application whose
behaviour the XSpec document describes.

BDD describes an application by detailing what happens in particular scenarios.
Each scenario is an example of a situation. In XSpec, the <x:description> element
contains a number of <x:scenario> elements, each of which describes a particular
scenario. A crucial part of BDD is that the descriptions are human readable as well
as automatically testable. So each <x:scenario> element has a label attribute that
describes the scenario in natural language. For example:

<x:scenario label="when processing a para element">
...

</x:scenario>

In accordance with the BDD approach, it's a good idea to start scenario labels with
the word "when". The label itself should describe the scenario; these labels will be
used to identify the scenario later, in the test report and in any documentation
generated from the XSpec document, so the labels need to be both descriptive and
distinct from the labels used on other scenarios.

XSpec gives the tester the flexibility to describe scenarios at several levels.
Scenarios fall into three main types:

3 http://rspec.info/

94

Testing XSLT with XSpec

http://rspec.info/
http://code.google.com/p/xspec
http://code.google.com/p/xspec
http://rspec.info/

• matching scenarios describe the result of applying templates to a node in a par-
ticular mode (and with particular parameters)

• function scenarios describe the results of calling a particular function with par-
ticular arguments

• named scenarios describe the results of calling a particular named template with
particular parameters

Of these, matching scenarios provide the best abstraction away from the details of
the code and towards the overall behaviour of the stylesheet. XSLT's rules about
which matching template will be used with a particular element are complex, de-
pendent on the match pattern, the import precedence, the priority of the template
and the mode templates are applied in. So tying testing code to a particular template
is futile.

2.1. Matching Scenarios
Matching scenarios use a <x:context> element that describes a node to apply tem-
plates to. The context can be supplied in two main ways:
• pointing to a node in an existing document by giving the document URI in the

href attribute and, optionally, selecting a particular node by putting a path in
the select attribute

• embedding XML within the <x:context> element; the content becomes the context
node, although you can also select a node within that XML using the select at-
tribute

The first method is useful when there are example XML documents that can be used
as the basis of the testing. For example:

<x:scenario label="when processing a para element">
<x:context href="source/test.xml" select="/doc/body/p[1]" />
...

</x:scenario>

Using this method without specifying a select attribute gives the ability to test the
stylesheet as a whole, with a few caveats about the values of global variables which
will be discussed later in the paper.

The second method is related to the concept of a mock object, which is commonly
used in BDD: it is an example of some XML which is created simply for testing
purposes. The XML might not be legal; it only needs to have the attributes, content
or ancestry necessary for the particular behaviour that needs to be tested. For ex-
ample:

<x:scenario label="when processing a para element">
<x:context>

95

Testing XSLT with XSpec

<para>...</para>
</x:context>
...

</x:scenario>

The <x:context> element can also have a mode attribute that supplies the mode to
apply templates in.

2.2. Function Scenarios
Function scenarios hold a <x:call> element with a function attribute whose content
is a qualified name that is the same as the qualified name of the function you want
to call. The <x:call> element should hold a number of <x:param> elements, one for
each of the arguments to the function.

The <x:param> elements can specify node values in the same way as the
<x:context> element gets set (described above), or simply by giving a select attribute
which holds an XPath that specifies the value. A name or position attribute can be
used on each of the <x:param> elements; without these attributes, the order in which
the parameters are specified will determine the order in which they're passed when
the function is called. For example:

<x:scenario label="when capitalising a string">
<x:call function="eg:capital-case">
<x:param select="'an example string'" />
<x:param select="true()" />

</x:call>
...

</x:scenario>

will result in the call eg:capital-case('an example string', false()) as will:

<x:scenario label="when capitalising a string">
<x:call function="eg:capital-case">
<x:param select="true()" position="2" />
<x:param select="'an example string'" position="1" />

</x:call>
...

</x:scenario>

2.3. Named Scenarios
Named template scenarios are similar to function scenarios except that the <x:call>
element takes a template attribute rather than a function attribute, and the <x:param>
elements within it must have a name attribute that supplies the name of the para-

96

Testing XSLT with XSpec

meter. These parameters can also have a tunnel attribute to indicate a tunnel para-
meter. For example:

<x:scenario label="when creating a table with two columns containing three ►
values">
<x:call template="createTable">
<x:param name="nodes">
<value>A</value>
<value>B</value>
<value>C</value>

</x:param>
<x:param name="cols" select="2" />

</x:call>
...

</x:scenario>

In fact, you can use <x:param> in the same way within the <x:context> element in
matching scenarios.

2.4. Expectations
Each scenario can have one or more "expectations": things that should be true of
the result of the function or template invocation described by the scenario. Each
expectation is specified with an <x:expect> element.

The label attribute on the <x:expect> element gives a human-readable description
of the expectation, just as the label attribute on the <x:scenario> element gives a
human-readable description of the scenario. In keeping with BDD practice, the label
should usually start with "it should".

There are two main kinds of expectations:
• a value that the result should match, which may be

an atomic value
an XML snippet

• an arbitrary XPath test that should be true of the result
The select attribute is used to specify an atomic value. For example:

<x:scenario label="when capitalising a string">
<x:call function="eg:capital-case">
<x:param select="'an example string'" />
<x:param select="true()" />

</x:call>
<x:expect label="it should capitalise every word in the string"
select="'An Example String'" />

</x:scenario>

97

Testing XSLT with XSpec

The content of the <x:expect> element can be used to specify some XML. For example:

<x:scenario label="when processing a para element">
<x:context>
<para>...</para>

</x:context>
<x:expect label="it should produce a p element">
<p>...</p>

</x:expect>
</x:scenario>

When comparing the actual result with the expected result, three dots in an element
or attribute value within the expected XML means that the values aren't compared.
If the actual result is:

<p>A sample para</p>

and the expected result is given as:

<p>...</p>

then these match. If the expected result is:

<p>Some other para</p>

then they don't.
The test attribute can be used to specify an arbitrary XPath test. For example:

<x:scenario label="when creating a table with two columns containing three ►
values">
<x:call template="createTable">
<x:param name="nodes">
<value>A</value>
<value>B</value>
<value>C</value>

</x:param>
<x:param name="cols" select="2" />

</x:call>
<x:expect label="it should have two columns"
test="count(/table/colspec/col) = 2" />

</x:scenario>

The test attribute and the content of the <x:expect> element can be combined to test
a portion of the result. For example:

98

Testing XSLT with XSpec

<x:scenario label="when creating a table with two columns containing three ►
values">
<x:call template="createTable">
<x:param name="nodes">
<value>A</value>
<value>B</value>
<value>C</value>

</x:param>
<x:param name="cols" select="2" />

</x:call>
<x:expect label="it should have two columns"
test="count(/table/colspec/col) = 2" />

<x:expect label="the first row should contain the first two values"
test="/table/tbody/tr[1]">
<tr>
<td>A</td><td>B</td>

</tr>
</x:expect>

</x:scenario>

2.5. Nesting Scenarios
Scenarios can be nested within each other to group together similar scenarios.
Descendant scenarios inherit the context or call from their ancestor scenarios. All
the scenarios in a particular tree have to be of the same type (matching, function or
named). Usually only the lowest level of the scenarios will contain any expectations.
Here's an example:

<x:scenario label="when creating a table">
<x:call template="createTable" />

<x:scenario label="holding three values">
<x:call>
<x:param name="nodes">
<value>A</value>
<value>B</value>
<value>C</value>

</x:param>
</x:call>

<x:scenario label="in two columns">
<x:call>
<x:param name="cols" select="2" />

</x:call>
<x:expect label="the resulting table should have two columns"
test="count(/table/colspec/col) = 2" />

99

Testing XSLT with XSpec

<x:expect label="the first row should contain the first two values"
test="/table/tbody/tr[1]">
<tr>
<td>A</td><td>B</td>

</tr>
</x:expect>

</x:scenario>

... other scenarios around creating tables with three values
(with different numbers of columns) ...

</x:scenario>

... other scenarios around creating tables ...
</x:scenario>

The labels of the nested scenarios are concatenated to create the label for the inner-
most scenario (for the purposes of documentation and reporting). In the above ex-
ample, the third scenario has the final label "when creating a table holding three
values in two columns".

2.6. Focusing Efforts
XSpec descriptions can get quite large, which can mean that running the tests takes
some time. Although all the tests should be run before code is checked in, while
working on a small part of a stylesheet application it can be helpful to focus on just
the tests that relate to that part. There are three ways of dealing with this.

First, XSpec description documents can be imported into each other using
<x:import>. The href attribute holds the location of the imported document. All the
scenarios from the referenced document are imported into this one, and will be run
when executed. For example:

<x:import xlink:href"other_xspec.xml" />

It helps if the imported XSpec description documents can stand alone; this enables
you to perform a subset of the tests. To work effectively, the imported XSpec de-
scription documents should (through the stylesheet attribute on <x:description>)
describe the same stylesheet as the main one, or a stylesheet module that's included
or imported into that stylesheet.

Second, any scenario or expectation can be marked as "pending" by wrapping
them within a <x:pending> element or adding a pending attribute to the <x:scenario>
element. When the tests are run, any pending scenarios or expectations aren't tested
(though they still appear, greyed out, in the test report). The <x:pending> element
can have a label attribute to describe why the particular description is pending; for

100

Testing XSLT with XSpec

example it might hold "TODO". If you use the pending attribute, its value should
give the reason the tests are pending. For example:

<x:pending label="no support for block elements yet">
<x:scenario label="when processing a para element">
<x:context>
<para>...</para>

</x:context>
<x:expect label="it should produce a p element">
<p>...</p>

</x:expect>
</x:scenario>

</x:pending>

or:

<x:scenario pending="no support for block elements yet"
label="when processing a para element">
<x:context>
<para>...</para>

</x:context>
<x:expect label="it should produce a p element">
<p>...</p>

</x:expect>
</x:scenario>

Third, you can mark any scenario as having the current "focus" by adding a focus
attribute to a <x:scenario> element. Effectively, this marks every other scenario as
"pending", with the label given as the value of the focus attribute. For example:

<x:scenario focus="getting capitalisation working"
label="when capitalising a string">
<x:call function="eg:capital-case">
<x:param select="'an example string'" />
<x:param select="true()" />

</x:call>
<x:expect label="it should capitalise every word in the string"
select="'An Example String'" />

</x:scenario>

2.7. Global Parameters
Any <x:param> elements at the top level of the XSpec description document (as a
child of the <x:description> element) can be used to override any global parameters

101

Testing XSLT with XSpec

or variables that have declared in your stylesheet. They are set in just the same way
as setting parameters when testing named templates or functions.

3. Implementation
XSpec testing has been implemented using a pipeline of two XSLT 2.0 stylesheets
that are provided at http://code.google.com/p/xspec.

The first stylesheet, generate-xspec-tests.xsl, creates another stylesheet by
translating an XSpec description document into runnable XSLT 2.0 code. When this
automatically generated stylesheet is run, it creates an XML document that contains
the results of the testing. The XML report can be transformed into an HTML test
report using format-xspec-report.xsl.

Figure 1 shows an example test report with three failures. This example only
contains one top-level scenario (listed in the 'Contents') and one leaf scenario with
multiple expectations.

Figure 1. A XSpec Test Report

Clicking on an unsatisfied expection jumps to a side-by-side rendering of the actual
and expected result. This is shown in Figure 2. Elements, attributes and text that
doesn't match is highlighted in green.

102

Testing XSLT with XSpec

http://code.google.com/p/xspec

Figure 2. Detail of a Failed Expectation

The process of creating a test report is supported by a batch script for Windows and
a shell script for other environments. The transformation steps could also be auto-
mated through an ant script or an XProc pipeline.

As well as producing a test report, the batch and shell scripts can be used to
create a coverage report, which shows the parts of the code that are (and are not)
run during the testing process. An example is shown in Figure 3, in which one
template isn't executed during the running of the tests and is therefore highlighted
in red. Stylesheet code that cannot be exercised by tests (such as the <xsl:stylesheet>
element) is shown in grey, and italicised.

103

Testing XSLT with XSpec

Figure 3. An XSpec Coverage Report

The coverage report is generated by creating an XML version of a trace report (using
Saxon9) while the tests are run, and then tying this trace report together with both
the tree of nodes within the stylesheet and its textual representation (so that it is
rendered accurately within the HTML page). As with all coverage reports, it has to
be read with caution: just because an instruction is executed during the tests does
not mean that it is, itself, tested. Nevertheless, if a piece of code appears as read,
the tests are lacking in that area (or the code itself is superfluous).

There are several disadvantages with any XSLT-based testing framework.
The first disadvantage is that it isn't possible to have different scenarios use

different values for global parameters. Indeed, stylesheets that rely on global vari-
ables that depend on the source document are generally impossible to test, because
during the testing itself there is no source document.

However, my experience is that the quality of the code, as well as its testability,
increases if global parameters are avoided in favour of local (possibly tunnelling)
parameters on any templates or functions that otherwise use global parameters.
These can default to the value of the global parameter, but be set explicitly when
testing. For example, if $tableClass is a global parameter, a testable template is:

<xsl:template name="createTable">
<xsl:param name="nodes" as="node()+" required="yes" />

104

Testing XSLT with XSpec

<xsl:param name="cols" as="xs:integer" required="yes" />
<xsl:param name="tableClass" as="xs:string" select="$tableClass" />
...

</xsl:template>

As well as making the code more testable, using local parameters like this highlights
the use of the parameter within the template and allows it to be called in other ways,
improving its generality. Avoiding global parameters that rely on the source docu-
ment also enables a stylesheet to be later used in an application that works over
several such source documents.

The second disadvantage with using an XSLT implementation is that it prevents
the testing of code that generates messages, and in particular that terminates the
running of the stylesheet. XSpec does not yet have the facility to describe expected
messages or terminations, but that does not mean that it would not be useful.

The third disadvantage is that it is not possible to test the generation of multiple
result documents. Although the code for creating the content of such documents
can be tested (if it is not nested inside the <xsl:result-document> element itself),
there's no way to test that particular result documents are generated. As with mes-
sages, there is no facility for testing such documents within XSpec as a language
anyway, but that does not mean it wouldn't be useful.

4. Experience
XSpec has been used successfully within at least two large-scale and complex pro-
jects.

One project was the conversion of WordML into a highly structured, semantic,
XML document. This transformation involved multiple phases of tidying and
grouping. Separate XSpec description documents covered different modes, reflecting
the different phases of the transformation.

The other involved changing existing code that generated XHTML to add new
functionality to include RDFa within the results. In this case, the existing code and
some sample documents were used to automatically generate a set of XSpec regres-
sion tests. These tests were then expanded during the development of the new
functionality. Separate XSpec description documents covered different kinds of
source documents and enabled different developers to work on different aspects
of the code concurrently.

Developing XSLT using XSpec seems to have three distinct phases.
During the first phase, the emphasis is on generating the basic structure of the

result of the transformation. The tests are simple, high-level, and easy to satisfy.
During the second phase, the emphasis is on creating enough scenarios to cover

all the elements that may have to be processed by the stylesheet. It is helpful, in this
phase, to collect a set of example documents, to analyse the way that elements appear

105

Testing XSLT with XSpec

within those documents (with which content, ancestry, and combination of attrib-
utes), and to decide how they should be transformed into some output. Scenarios
created during this phase provide exemplars for simple mapping rules that are then
naturally coded into templates. These kinds of scenarios naturally encourage
matching templates.

During the third phase, a more exploratory testing cycle takes place, and it is
during this phase that the hard work of the previous two phases pays dividends.
During this phase, documents are tested against the stylesheet and examined to
locate any problems with the output. When a bug is found, the developer writes a
scenario that describes the circumstances that caused the bug, and the desired beha-
viour of the stylesheet. The stylesheet is then coded to operate correctly in those
circumstances, with the existing tests providing an effective barrier against changes
that introduce new bugs. This phase continues, even after the deployment of the
stylesheet.

The biggest problems with using XSpec are keeping the descriptions current as
the desired result of the code, and the design of the stylesheet, changes. The best
tests don't repeat other tests, and they keep their expectations focused and simple.
Using XML snippets within expectations, while convenient, often works against
this; even though ... can be used to elide the values of elements or attributes, it
can't be used as a general wildcard to stand in place of a number of elements in
element content, or a number of attributes. So expectations that use XML snippets
often test more than they need to, and sometimes have to be updated en masse.

Another problem that we encountered, and one that XSpec was improved to
handle, was the difficulty in judging whether it mattered when there were differences
in whitespace between the expected and actual result. For example, whereas normally
whitespace in element content doesn't matter, in the test:

<x:scenario label="when processing a person's name">
<x:context>
<eg:Name><eg:Fn>Jeni</eg:Fn> <eg:Sn>Tennison</eg:Sn></eg:Name>

</x:context>
<x:expect label="it should generate some HTML with appropriate classes">
Jeni <span ►

class="sn">Tennison
</x:expect>

</x:scenario>

it does matter that the space between the <eg:Fn> and <eg:Sn> elements is translated
into a space between the two elements in the expected result.

This experience led to the introduction of a preserve-space attribute in the
<x:description> element, in which can be listed the names of elements within which
whitespace-only-text-nodes should be preserved.

106

Testing XSLT with XSpec

5. Future Work
While XSpec has proved its utility in existing projects, there are some specific gaps,
mentioned above, which need to be filled. These are:
• The ability to have different values for global variables or parameters for different

scenarios.
• Support for testing the messages generated by a stylesheet, even if they terminate

the stylesheet.
• Support for testing the generation of multiple result documents by a stylesheet.
Each of these gaps can only be filled by an implementation that is written, at least
partly, in something other than XSLT.

One promising possibility is to generate an XProc5 pipeline based on the scen-
arios specified in the XSpec description document. Running the pipeline would
generate a report document in the same way as the result of the current generate-
xspec-tests.xsl stylesheet. As it runs the transformation, an XProc processor is
able to set parameters, and to capture the messages and result documents that are
generated, opening up the possibility of them being tested.

Now that XProc is nearing Recommendation, the next stage in the development
of XSpec, then, is its implementation using XProc, and the addition of constructs
that test messages and multiple result documents.

5 http://www.w3.org/TR/xproc/

107

Testing XSLT with XSpec

http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xproc/

108

FunctX
A case study in end-to-end processing of XML

Priscilla Walmsley
Datypic

<pwalmsley@datypic.com>

Abstract

The FunctX function library is a set of reusable functions for XQuery 1.0 and
XSLT 2.0. This includes commonly needed functions such as substring-
after-last, or index-of-node. Users can use the functions as is, or use
them as examples to build on for their specific use cases.

Behind the FunctX library is the FunctX application, open source software
that can be used to manage, test and generate documentation for a function
library. This talk will provide a tour of the FunctX application, showing how
to use the application to create, test and document a custom library of reusable
functions. It will also describe some lessons learned, and types and techniques
gathered while writing an end-to-end XML processing application.

Keywords: XML, XSLT, XQuery

1. The FunctX Library
The FunctX XQuery/XSLT 2.0 function library is a set of reusable functions for
XQuery 1.0 and XSLT 2.0. This includes commonly needed functions such as sub-
string-after-last, or index-of-node. These functions are not generic or universal
enough to be part of the XQuery 1.0/XPath 2.0 built-in functions, but are useful to
a wide audience nonetheless.

A user can import the entire FunctX library into their XQuery 1.0 module or
XSLT 2.0 stylesheet, or cut and paste individual function definitions as needed. The
library also serves an instructive purpose, providing examples of XQuery and XSLT
syntax that users can build on to create their own functions.

The library, available at http://www.functx.com, is currently in version 1.0 and
consists of 154 functions in a variety of categories. In addition, the 130 functions
built into XQuery 1.0/XPath 2.0 and XSLT 2.0 are documented on the site.

2. The FunctX Application
Behind the FunctX function library is the software used to manage, test and generate
documentation for the library. FunctX provides an open source application and

109

http://www.functx.com

framework for developers to easily create additional function libraries. It consists
of the following components, depicted in the diagram below:
• an XML vocabulary for specifying XSLT and XQuery functions, along with their

associated documentation and test cases
• a test harness for testing the outcome of XQuery and XSLT functions using

various processors and reporting on results
• a documentation tool that generates human-readable, hyperlinked documentation

for the functions in both HTML and PDF format

Figure 1. FunctX Process Flow

The FunctX application makes use of a variety of current XML standards. The core
functionality of FunctX is implemented in XSLT 2.0, making heavy use of the new
2.0 features. In addition, W3C XML Schema and Schematron are used for validation,
and XSL-FO is used to generate PDF documentation. The processing is controlled
using Ant tasks to validate the function documents, run Saxon to generate tests and
documentation, integrate various XQuery and XSLT processors to run the tests, and
call FOP to generate PDFs.

110

FunctX

2.1. The FunctX XML Vocabulary
An XML vocabulary was developed for FunctX to represent the function definitions.
There is one XML document to describe each function. An example, for the sub-
string-after-last function, is shown below.

Example 1. Function document, functx-substring-after-last.xml

<function xmlns:html="http://www.w3.org/1999/xhtml"
xmlns:functx="http://www.functx.com"
xmlns="http://www.datypic.com/xmlf" ►

xmlns:dxmlf="http://www.datypic.com/xmlf" >
<functionName>functx:substring-after-last</functionName>
<tracking>

<libraryVersion>1.0</libraryVersion>
<status>Tested</status>
<published>2006-06-27</published>
<lastUpdated>2007-02-26</lastUpdated>

</tracking>
<source>
<personName>Priscilla Walmsley</personName>
<organization>Datypic</organization>
<eMail>pwalmsley@datypic.com</eMail>
<url>http://www.datypic.com</url>

</source>
<briefDesc>The substring after the last occurrence of a ►

delimiter</briefDesc>
<inputLanguage>any</inputLanguage>
<outputLanguage>any</outputLanguage>
<relevantSyntax>xquery1 xpath1 xpath2 xslt1 xslt2</relevantSyntax>
<keywords/>
<arguments>
<argument>
<name>$arg</name>
<type>xs:string?</type>
<description>the string to substring</description>

</argument>
<argument>
<name>$delim</name>
<type>xs:string</type>
<description>the delimiter</description>

</argument>
<return>
<type>xs:string?</type>

</return>
</arguments>
<longDesc>

111

FunctX

<html:p>The <html:code>functx:substring-after-last</html:code> function ►
returns the part of <html:code>$arg</html:code> that appears after the last ►
occurrence of <html:code>$delim</html:code>. If <html:code>$arg</html:code> ►
does not contain <html:code>$delim</html:code>, the entire ►
<html:code>$arg</html:code> is returned. If <html:code>$arg</html:code> is the ►
empty sequence, a zero-length string is returned.</html:p>

</longDesc>
<sampleCases>
<sampleCase>
<input>functx:substring-after-last('abc-def-ghi', '-')</input>
<dxmlf:output xmlns="">ghi</dxmlf:output>

</sampleCase>
<sampleCase>
<input>functx:substring-after-last('abcd-abcd', 'ab')</input>
<dxmlf:output xmlns="">cd</dxmlf:output>

</sampleCase>
<sampleCase>
<input>functx:substring-after-last('abcd-abcd', 'x')</input>
<dxmlf:output xmlns="">abcd-abcd</dxmlf:output>

</sampleCase>
</sampleCases>
<definition syntax="xpath2">
fn:replace ($arg,fn:concat('^.*',functx:escape-for-regex($delim)),'')

</definition>
<dependsOn refs="functx:escape-for-regex"/>
<seeAlso refs="fn:substring-after functx:substring-before-last ►

functx:substring-after-last-match"/>
</function>

As shown in the example, the XML document for each function stores the following
information:
• audit information, such as the history and source of the definition, in tracking

and source

• a short and long description of the function, in briefDesc and longDesc

• a list of the arguments and return type of the function, in arguments

• test and example cases, in sampleCases

• the function body itself, in definition

• information on dependencies, in dependsOn and seeAlso

The general philosophy of the library is to try to support both XQuery 1.0 and XSLT
2.0 in the same definition, by defining the body of the function in XPath 2.0. In the
example, the syntax attribute of the definition element indicates that the body is
written in XPath 2.0. When this is not possible, more than one definition element
can be included to support both XQuery and XSLT 2.0.

112

FunctX

The FunctX application validates the function documents using XML Schema,
Schematron and some XSLT 2.0 scripts.

2.2. The Test Harness
The FunctX application allows the function definitions to be tested with a variety
of XQuery and XSLT processors. The first step in this process is to generate two
documents:
1. functx.xq or functx.xsl: a single XQuery or XSLT document that contains all

of the function definitions (it can also be scoped to a subset of the functions.)
2. test.xq or test.xsl: a test-case document that imports the function library and

calls all of the functions with each of the test cases.
These documents are generated using XSLT 2.0 from the original function documents.
A portion of the test-case document (for XQuery) is shown below.

Example 2. Snippet of the test.xq document

<function name="functx:substring-after-last">
<test1>{local:formatResults(functx:substring-after-last('abc-def-ghi', ►

'-'))}</test1>
<test2>{local:formatResults(functx:substring-after-last('abcd-abcd', 'ab') ►

)}</test2>
<test3>{local:formatResults(functx:substring-after-last('abcd-abcd', 'x') ►

)}</test3>
</function>

The test-case document is then run through the processor of choice using a provided
Ant task, creating a file called testoutput.xml, an example of which is shown below.

Example 3. Snippet of the testoutput.xml document

<function name="functx:substring-after-last-match">
<test1>ef-ghi</test1>
<test2>d</test2>
<test3>abcd-abcd</test3>

</function>

The final step in the testing process is to compare the results with what was expected
for each test case. This is done using an XSLT 2.0 stylesheet that compares
testoutput.xml with the original function documents. The result is a test report in
HTML (testreport.html) that shows the tests that failed, an example of which is
shown below.

113

FunctX

Figure 2. Example Test Report

2.3. Generating Documentation
The FunctX application can also be used to generate documentation of the functions,
in both HTML and PDF. For HTML, it will generate a single page per function, that
is fully hyperlinked to other related functions. An example is shown below.

Figure 3. HTML Documentation: Function Page

114

FunctX

Functions can be categorized within the library using a separate XML document,
resulting in HTML that allows a user to choose a function by category, as shown
below.

Figure 4. HTML Documentation: Category Page

In addition to HTML, a fully hyperlinked PDF can be generated from the function
library, as shown below.

115

FunctX

Figure 5. PDF Documentation

3. Conclusion
XQuery and XSLT functions are ideally organized into libraries to maximize their
reuse and usefulness. Managing, testing and fully documenting these libraries can
save an enormous amount of development and maintenance time. The FunctX ap-
plication described in this paper provides a framework for developing and managing
such a library.

116

FunctX

DesigningXML/WebLanguages:AReview
of Common Mistakes

Robin Berjon
Robineko

<robin@berjon.com>

Abstract

The tremendous uptake that XML benefited from a decade ago led to a great
many XML vocabularies being defined, notably in the area of Web technology.
But unfortunately there was not enough markup experience around to help
so many projects avoid pitfalls.

This talk will look at a number of examples of vocabulary design failures
in the area of Web languages, and discuss why they are problematic and how
to avoid them.

Keywords: XML, markup, design, error, SVG, XAML, Web, XLink

1. Introduction
XML is now over ten years old and can euphemistically be dubbed a success. That
being said, I don't believe I need convince readers that not all of its uses have been
successful. Over time, many bright minds have attempted to describe how to best
make use of it when designing vocabularies, but I believe it is safe to say that those
efforts, no matter how excellent, have not been sufficient in ensuring that all applic-
ations of XML are produced in an entirely sane manner.

Part of the reason for that is education and outreach: people will often just grab
XML and run, without digging around for best practices. But a larger problem is
that XML combines simplicity and flexibility in such a way that a set of best practices
only gets one so far in avoiding pitfalls. This does not mean that we are doomed to
repeat mistakes over and over again, simply that we need to learn from our experi-
ence.

That is why this paper does not try to define a nice and simple manual as an
amulet against poor vocabulary design, but rather intends to show some mistakes
so that we may learn from them. As such, its organisation is more that of a shopping
list rather than a treatise on XML.

Much of the errors outlined here use SVG as their source. This does not mean
that SVG is the only language to make those mistakes, neither does it mean that

117

SVG is a bad XML vocabulary — in fact, SVG rocks. While not at all SVG-specific,
there are several reasons for me to pick it as a common example:
• Knowledge of SVG is quite widespread, the specifications are openly accessible

to all, hundreds of thousands of examples are available on the Web, which makes
verification easy.

• SVG is a rather successful language. This shows that there is a distinction between
poor vocabulary design at the syntax level and at the application level. It is of
course ideal to get both right and I look forward to SVG addressing some of its
issues, but good vocabulary design is no substitute for getting everything else
wrong.

• Being one of the earlier major Web languages to be created after XML came into
existence, it stumbled upon many of the issues that should be avoided. Being
such a "seasoned" language means it has also seen many of the potential errors.

• All of its specifications were done by a group of smart people, and reviewed not
only by a large community but also by other W3C groups (in fact by many non-
W3C standards groups too) including the XML working groups. This shows
that there is no shame in making some of these mistakes, only shame in not
learning from them.

• Finally, while I can certainly not take credit for all of SVG — far from it! — I was
nevertheless deeply involved in its creation. I also use it on a very regular basis.
This means that not only do I know it well, but also when I point fingers and
laugh, I know that I have my share of responsibility in some of those decisions.

As a final note before we delve into these mistakes, I would like to make it clear
that this domain does not deal in absolutes. There are cases in which one may con-
sider these mistakes to be good solutions; and a few cases may even be controversial
and considered by some as the right option in all cases. I do not see that as an issue:
as a community we can discuss and disagree. What matters is that when choosing
one way of designing a language over another, one be informed of the discussion
so as to make one's own decision.

2. Namespace Issues
XML namespaces are one of the most hated aspects of the XML family. Not even
XML Schema has received as much contempt, and it needed a lot more work and
far longer specifications in order to get there. Maybe there will be a second version
of the XML stack some day, and when that day comes we can hopefully address
namespaces in a way that will cause less acrimony. In the meantime, whether you
like or dislike them they are what we have.

118

Designing XML/Web Languages: A Review of Common Mistakes

2.1. Not using a namespace
One of the biggest mistakes one can make when dealing with namespaces is to not
use them. Namespaces are the tool one uses to identify an element (and in some
rarer cases other things) as being part of a language. Not using namespaces means
that documents in a given vocabulary cannot easily be composed into another as it
will then become impossible to distinguish between the inclusion of an another
language, an error in the current language, or a future version of that same language.

The absence of namespaces also makes querying a mixed document difficult.
For instance if XHTML and SVG were to not have namespaces, they could still be
rendered: SVG is always inside an svg element when it appears inside XHTML, and
XHTML inside SVG is always inside a foreignObject element. But since the com-
position of the two languages can be done to any depth, if you have SVG inside
XHTML inside SVG inside XHTML and so on, it is going to be difficult to find all
the title elements or all the font elements. And since they have different meanings
in each vocabulary, getting one for the other is very likely to cause bugs.

Admittedly, there are cases in which you can forget about namespaces. The
parallel is similar to the throwaway script that one writes to perform a single, simple
task now and then and never plans to reuse. And if that script does become an im-
portant part of a system, starts getting some serious usage, and needs maintenance,
it's usually not overly difficult to emulate the old poorly designed interfaces while
nicer ones are being shifted in. Remember however that data which is being used
is a lot harder to refactor than code. The cost of adding a namespace declaration
and writing namespace-aware code is tiny, especially compared to the pain of using
a poorly designed data format. So unless it really is for a throwaway document, not
using namespaces is a mistake.

2.2. Using too many namespaces
Of course, there can be too much of a good thing. I wouldn't say that using too many
namespaces is a mistake in and of itself, but there is a point at which it does make
processing a document — not to mention authoring one — a fair bit difficult.

The first item that typically springs to mind when people think of an excess in
namespaces is RDF, but that is not the best of examples. It is arguable that RDF
could have made things simpler, perhaps notably by making sure that the RDF
Schema namespace would never need appear in RDF instances, but overall it was
designed to be a very open system which would freely mix properties from a large
variety of independent sources — it is to be expected that it would use many
namespaces.

A better example is one that, thankfully, did not come to pass. At some point in
SVG's history, one participant argued that SVG should push the toolbox approach
as far as possible. Since SVG is defined by multiple modules that cover different

119

Designing XML/Web Languages: A Review of Common Mistakes

features (structure, geometric elements, gradients, filters, animation, etc.) and since
those modules can be reused independently, they should all be split up into separate
languages — each of them with different namespaces. A quick count shows that
that would define around 17 namespaces instead of one, and that even the simplest
documents would require at least seven or eight. A less radical but similarly painful
idea is that each new version of a language should put its new features in a different
namespace.

From a processing point of view that would cause no problem, but it would
make the language impossible to author. There is no value to placing language
modules in different namespaces, and there are far better solutions to versioning.
To paraphrase, one should use as few namespaces as possible, but no fewer.

One mistake that SVG did make however is not taking the notion of a host lan-
guage far enough. Some languages are designed to be reused in other languages,
and have little reason to exist on their own. Two good examples are SMIL Animation,
and XML Events. There is little point in identifying these languages as separate
when they are embedded in another: indeed, what is the point in a generic animation
processor understanding that an animation is being applied to a circle element if
it does not understand what a circle element is? In such cases there is no point in
placing those elements in their own namespace and they can simply be "hosted",
which is to say that basically their semantics and processing are defined in another
language, but they are absorbed into the host. SVG did the right thing with SMIL
Animation by hosting it thus, but the wrong thing by not doing the same with XML
Events. As a results, in SVG 1.2 one needs to declare an extra namespace just for
events, even though there is no way in which a listener element will have any in-
dependent meaning.

2.3. Non-HTTP namespaces
One cause of confusion around namespaces is that many of them use a URI with
the http scheme. People expect there to be something at the end of that URI. The
fact is: there should be.

While there is no generally accepted way of defining namespace documents that
live at the location pointed to by the namespace URI, the good practice is to place
an HTML document there with links to documentation about the language, to
schemata describing it, perhaps even style sheets or tools to go with it.

Not only is that the friendly thing to do so that humans can easily find the in-
formation they need, but it is also forward-looking: if at some point there is enough
momentum behind reaching agreement on a way of embedding information in such
documents then programs could automatically retrieve information for various
purposes (e.g. an authoring tool could see a namespace it doesn't know and go fetch
a default style sheet and schema for it).

120

Designing XML/Web Languages: A Review of Common Mistakes

That is something that can't be done with URNs, and even less with made-up
schemes such as antlib: or clr-runtime:. A sadly common subset of this mistake
is to have the namespace point directly to a DTD or XML Schema (e.g. ht-
tp://www.abisource.com/awml.dtd): the day you decide to switch to another schema
language, or to update the language version without changing the namespace the
tight integration is going to be an issue.

A particularly nasty variant on this mistake is to use namespaces to point directly
to an implementation of the language they describe. The canonical example here is
from Microsoft Silverlight (which uses XAML). In XAML, custom components
reside in a namespace which points to the DLL assembly that is to be used to render
them.

Example 1. A "custom" namespace in XAML

xmlns:custom="clr-namespace:SDKSample;assembly=SDKSampleLibrary"

This nullifies the whole point of shipping XML rather than code in the first place,
and is basically as close as one can get to implementing a locked system in XML.
The only way in which the tight coupling that this supposes could be worsened
would be by specifying a path to it.

Example 2. Worse than XAML: trying hard

xmlns:custom="my-namespace:Foo;implementation=/usr/bin/my-cool-code.pl"

2.4. Processing namespaces differently
Once in a while someone decides that they dislike namespaces enough that their
program should implement them differently. Technically, that's not entirely wrong:
since the Namespaces in XML specification was built separately from the XML
specification, some exegesis could declare it correct. But being technically right
never prevented anyone from being daft, and this is one case in which the two co-
incide.

The more frequent such inventive processing is to declare that all attributes of
an element that have no prefix shall be considered to be in that element's namespace.
There is no good reason to make it so, and people who opt for that approach often
do so because they short-sightedly believe that it should have been that way from
day one. An example is enough to show where this starts being problematic:

Example 3. What happens when prefix-less attributes inherit the element's
namespace

<doc xmlns='http://example.com/ns/ook#' xmlns:ns='http://example.com/ns/ook#'>
<elem attr='foo' ns:attr='bar'>

121

Designing XML/Web Languages: A Review of Common Mistakes

...
</elem>

</doc>

The XML parser will report no error here, but we now have two attributes with the
same fully qualified name, and different values. Which one takes precedence? XML
parsers aren't required to return attributes in their original order, so it's hard to
specify. Of course, the Namespaces specification has the same issue with two attrib-
utes with different prefixes resolving to the same namespace URI, but it defines
that as an error and processors implement it. This means that with this new rule,
one needs to re-implement lower-level processing that is usually taken care of inside
the XML parser. If one is not reusing the XML infrastructure, one might just as well
not use XML at all.

There are even more creative deviations from namespaces. I will not go into the
details of this since the same conclusions apply, but the rules for namespace pro-
cessing in the Ant build tool at some point reached a rare degree of confusion. Not
only was a default namespace applied without being declared, but elements from
the default namespace sometimes had to be put in another namespace to be recog-
nised when they were the child of an element from outside of the default namespace.
If anything, this probably shows that one should be very careful before "simplifying"
namespaces — many such simplifications have unpleasant side-effects.

2.5. Not allowing foreign namespaces
It can be at times rather ironic to see language authors go to the trouble of properly
using namespaces throughout their design, only to forbid that elements or attributes
from other namespaces appear within their own (or sometimes, making it so they
can only appear at designated places, much like smokers in airports).

Whenever such limitations are imposed, the value of XML is decreased as the
extensibility it promised is taken away. There are two primary reasons for this un-
fortunate situation. One is bad validation technology: there is a good case to be
made for saying that since XML Schema does not consider arbitrary namespaces
valid by default (and makes it quite difficult to specify a language in which they
are accepted), it should really be called ML Schema. NVDL addresses this, but it
isn't used widely enough yet.

Another is bad processing rules: it is not overly difficult to specify how foreign
namespaces should be handled (skip over them for processing, but include them
at the XML level if it is expose, e.g. in the DOM), but it is often overlooked. These
rules are generally worth specifying as they are often the same rules that make
versioning possible: ignoring what is not understood a processor can still handle
future versions of its own language.

122

Designing XML/Web Languages: A Review of Common Mistakes

3. XML is for Humans
XML was intended to be human-readable. While that idea may make some people
chortle, it is still a worthy goal to design with human readability — and writability
— in mind. After all, if all one needs is a way to dump data that is only to be readable
by machines in a format available anywhere other options will be faster and simpler,
e.g. JSON or YAML.

Many of the mistakes in this section are by no means limited to XML, and tend
to apply to other contexts — notably programming — as well, but they are never-
theless worth recalling.

3.1. Unreadable names
There are two primary ways in which one can make element and attribute names
hard to read.

The first is to make them too short when they are not common elements. It is a
good idea for instance to use p for paragraphs as it is an extremely common element,
but it is more dubious to use s. Is that going to be for strike-through or sup text?
Should it have been kept for span?

The other is compound names. Those can be difficult to read for native speakers
of the language from which the names come from (often English) even though they
have a natural feel for word boundaries, they often become hell for people who do
not know the language well. The most common offender in this category is DocBook
(I believe largely for historical reasons, and then for consistency). To wit: person-
blurb, personname, audioobject, imageobjectco, inlinemediaobject, qandadiv,
classsynopsisinfo, citebiblioid, simplemsgentry... the itemizedlist goes on.

3.2. Hard to memorise names
Good language design should make it harder for people to make mistakes. One of
the most basic part of that is using regular, easy to remember identifiers so as to
avoid typos.

With that in mind, something in the following non-exhaustive list should strike
one as wrong:
• http://www.w3.org/1999/xlink
• http://www.w3.org/2000/svg
• http://www.w3.org/1999/xhtml
• http://www.w3.org/2002/xforms
• http://www.w3.org/2001/xml-events
• http://www.w3.org/1999/02/22-rdf-syntax-ns#
• http://www.w3.org/2000/01/rdf-schema#

123

Designing XML/Web Languages: A Review of Common Mistakes

• http://www.w3.org/2002/07/owl#
• http://www.w3.org/2001/XMLSchema
• http://www.w3.org/2001/XMLSchema-instance
• http://www.w3.org/1998/Math/MathML
• http://www.w3.org/1999/XSL/Transform
• http://www.w3.org/1999/XSL/Format
• http://www.w3.org/2003/05/soap-encoding
• http://www.w3.org/2003/05/soap-envelope
• http://www.w3.org/2003/06/wsdl
W3C is an easy target in this area, but they are by no means alone:
• http://schemas.microsoft.com/winfx/2006/xaml/presentation
• http://schemas.microsoft.com/client/2007
• http://schemas.microsoft.com/office/word/2003/wordml
• and many more
There are arguments in favour of impossible to remember namespace URIs, but as
anyone who's had to produce an XSLT style sheet outputting XHTML, SVG, XLink,
XML Events, and MathML can attest these arguments are not grounded in pragmatic
reality. They are too easy to get wrong, and — in part due to broken tools — lead
to bugs that are sometimes difficult for users to uncover. Thankfully, the W3C is
now on a more mnemonic namespace assignment policy.

3.3. Naming without respect to context
One of the great things about trees is that they provide natural context for content.
And when people edit content inside a tree, they are aware of that context. That is
the reason why an author will know that a title element inside a circle element
will be the title for that circle, and not for the entire document.

Failing to use context in naming elements or attributes entails a loss in language
fluidity. Some vocabularies that have strong roots in SGML have an excuse for this
approach since DTDs named elements globally. This is visible in DocBook for in-
stance: it feels daft to call every item in a list a listitem since it appears as the child
of one of DocBook's many list elements, but that was necessary in the early days.

More recent languages have no such excuse. For instance SVG has a long list of
elements beginning with "fe": feDistantLight, feSpotLight, feColorMatrix, feCon-
volveMatrix, feGaussianBlur, feTurbulence... That "fe" is meant to signify "filter
effect". But the fact is that these elements can only appear as children of the filter
element — they are always going to be in a filter effect defining context. The prefix
just makes them more clumsy, as if all SVG elements began with "svg".

124

Designing XML/Web Languages: A Review of Common Mistakes

3.4. Human-readable text in attributes
It is often tempting to place text intended for humans inside an attribute, perhaps
so as to "attach" it more directly to the element, or to make authoring more terse.
The archetypal example of this being:

Example 4. Text in an attribute

The issue here is that this approach breaks down as soon as one starts requiring
structure inside the string. For instance, if instead of using a title element to specify
the titles of sections DocBook had chosen a title attribute on the section element, it
would be impossible to have the title be "The Foo interface".

That might seem like an acceptable limitation, but it gets worse: if the text is
expected to be potentially in any language, there will be cases in which it will require
structure. For instance, some Chinese or Japanese text requires what are known as
ruby annotations (basically text that is rendered on top or to the right of the primary
text to indicate the pronunciation). Similarly, it can be useful to specify the writing
direction when mixing languages that go in different directions (e.g. Arabic and
French). Also, due to limitations in Unicode, some characters will not render correctly
(i.e. will be rendered with the wrong glyphs) unless you specify which language
the text is in — that is notably the case of the CJK set in which Unicode gave some
Chinese, Japanese, and Korean text the same code-point even though they are de-
picted differently in each language. For this case one could place a lang attribute
on the element to get the right effect on the text inside the attribute, but that would
set the language of the entire element, not just of the text. It's an extreme case, but
if one had an img element pointing to an image of a wine label from France, with
an alt attribute in Korean, and set the lang to kr so that the alt renders right, then
the language of the label would be said to be Korean too.

Given the technicalities involved in getting I18N right, and given the greater
extensibility of the element approach, it should be inferred that text intended for
human consumption should only occur in element content. That being said, the
original argument — terseness — has some merit for authors. In the case in which
it is desired, it is therefore possible to define a two-tiered approach in which such
text can occur in either an attribute or a child (with the child taking precedence).
That approach however has drawbacks, and needs to be used with caution.

3.5. XML for cyborgs
Some XML languages are clearly designed to match a processing approach or a data
model, and are unfortunately later pitched as intended for human consumption.
There are many such examples, and they tend to exhibit several of the errors ex-

125

Designing XML/Web Languages: A Review of Common Mistakes

amined in this document. XAML is a very clear example of this, but unfortunately
it is such a verbose language that there would be no room here for an example of
just how mind-boggling it can be. A quick display of one of its bizarre traits should
suffice.

Example 5. Simple XAML

<Canvas x:Name='Foo' Height='300' Width='500' Background='White'
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Rectangle Width="200" Height="100" Canvas.Top='20' Canvas.Left='100' ►
Stroke="Black" StrokeThickness="3">

<Rectangle.Fill>
<ImageBrush BitmapSource="C:\dahut.jpg" />

</Rectangle.Fill>
</Rectangle>

</Canvas>

The above shows two things: compound properties (the Rectangle.Fill that is a
child element acting as if it were an attribute of its parent but with extra structure),
and attached properties (attributes on an element that actually "talk" to its parent,
in this case Canvas.Top and Canvas.Left). There is no doubt that there is a logical
model behind this approach, but it belongs to the implementation that supports it,
and makes things complex for the user. Indeed, how am I to know that the position
of a rectangle is a property of its container, and not something intrinsic to it? Like-
wise, why is the fill of a rectangle a property with the name Rectangle.Fill even
though it contains a complete image, should the rectangle itself be a property of the
canvas and be called Canvas.Rectangle?

That is the sort of issue that arises when the underlying model is made too ex-
plicit in the language.

4. Language Issues
Language design sits above the previous considerations yet is hard to set entirely
apart from them. Some of the examples here mesh into other previous ones, and
some apply outside of XML.

4.1. Inconsistent naming
This is one of the simplest to get right and yet is often wrong as the result of things
being specified on the fly and not revisited later. The typical example is SVG having
circle, path, ellipse, etc. but rect instead of rectangle. It rarely has a serious im-
pact, but it does make a language harder to learn.

126

Designing XML/Web Languages: A Review of Common Mistakes

4.2. Incoherent features
One thing that is difficult when introducing a new feature inside a language is to
make sure that it works coherently with all the rest of the language's features. Such
errors are often difficult to detect without extensive testing.

A good example is the different treatment applied to shapes and animations in
SVG. The following will work and display a second rectangle inside the g.

<svg ...>
<defs>
<rect ... xml:id='dahut'/>

</defs>
<g>
<rect x='10' y='42' .../>
<use xlink:href='#dahut'/>

</g>
</svg>

But the following, while valid, will not cause the g element to be animated:
<svg ...>
<defs>
<animateTransform ... xml:id='dahut-anim'/>

</defs>
<g>
<rect x='10' y='42' .../>
<use xlink:href='#dahut-anim'/>

</g>
</svg>

Instead the defs will be animated, which will do nothing. This sort of discrepancy
confuses authors, many of whom will try the latter at some point. While extensive
testing is often too costly to put into effect, one low-tech approach that can help is
to have a matrix tabulating all the features against all the others, and for each one
that is added to look at how they interact. This would have made it apparent that
animations applied to use work (they can animate it), but use applied to animations
doesn't. How to address this, if only by clearly documenting it, is then a matter that
will depend on the situation.

4.3. No lacunae values
A lacuna value is the value of an attribute or element that is used when that attribute
or element is not specified, or when it is specified but its content is not understood
by the language. This is different from a default value, which is what is used simply
when an attribute or element is absent. For instance, if the x attribute on rect has
a lacuna value of "0", then the value of x will be "0" for both <rect/> and <rect

127

Designing XML/Web Languages: A Review of Common Mistakes

x="babe, like, you know!"/> whereas the default value would only apply in the
first case.

Not specifying lacunae values will hurt error processing (and its cousin version-
ing), and lead to interoperability issues.

Imagine for instance that an author specifies the fill of a rectangle to be #99 in-
stead of the intended #999 because of a typo. The processor can interpret that in
several ways:
• Decide it's too big an error, and melt the motherboard.
• Realise it's wrong, and pick a default colour of its choosing (often black, but

could be fuchsia).
• Pad with the last character, making it #999, with 0 (#990), or with something else

that could make sense.
• Throw it away, and apply a colour inherited from a fill attribute higher in the

tree.
• Throw it away, and consider it null (transparent).
• Take the inherited colour, and only change the red and green components.
Most of the above will produce different colours. And since they'll produce different
results in different implementations, there will be no interoperability. (The throwing
up approach might sound appealing to XML heads, but as we will see later what
is good at the syntax level is not necessarily as good at the language level).

The only solution is for each value to specify the behaviour when it is missing
or in error. Not doing so is a great part of what created the HTML mess that we
have today.

4.4. XML error handling
Just because the XML parser does its own error checking doesn't mean that you can
ignore it entirely. Unless your language's processing model is defined to apply only
on a complete document (which is unrealistic in many cases, but was adopted by
SOAP for instance), it is conceivable that a processor will have processed a lot of
an XML document before the parser realises there is an error.

It is usually agreed that trying to recover from an XML parsing error is, in the
general case, a bad idea. In fact, it nullifies a lot of the value that XML brings to the
table. That being said, given that a processor is likely to process XML in a streaming
manner for performance reasons, the question remains of what to do when an error
happens midway, or even if the error is simply the closing element missing.

One approach is to be transactional and throw away everything that was done
based on the erroneous document — that is often the only option in systems that
require some form of integrity. Another is the best effort approach, which is more
suited for rendering systems: display everything that you understood up to the error,

128

Designing XML/Web Languages: A Review of Common Mistakes

then stop. Neither of these options is always right or wrong, the one to choose de-
pends on context but it is important to specify which one applies, and in the best
effort case one also needs to be clear about what precisely happens: if we render up
to the error is an error message shown? Is a partial DOM created that script can act
on? Is a load event dispatched?

4.5. Language error handling
In some cases lacunae values will not be enough to recover from errors, for instance
because an element appears in the language's namespace that the processor does
not know about, or because an element that it knows about appears at the wrong
place in the tree.

Again this is a case in which if the rules for processing such errors are not defined,
implementations are guaranteed to differ. There are multiple approaches here: flag
an error and give up, ignore the element and process what is inside it as if it hadn't
been there at all (or process some of it), or ignore the entire subtree contained inside
that element.

Being thoroughly strict and throwing up upon a language-level error is the right
thing to do in some cases, notably when one wants to be sure that the entire docu-
ment is understood. SOAP has a mustUnderstand attribute that smartly flags such
cases, and likewise SVG has a switch element that can provide alternatives to content
that isn't understood. But as a rule of thumb, it is usually better to ignore the element
for language-specific matters, but make it accessible in the DOM if there is scripting
or in downstream versions of the document if it is being passed on. The reason for
that is versioning, as we will see next. But everything else aside, what is key here
is that behaviour in the face of the unknown be fully specified lest interoperability
issues crop up.

4.6. No versioning strategy
Versioning languages is hard, and there are many ways of getting it wrong. There
is not room enough here to go into a full discussion of versioning, but suffice it to
say that not thinking about it in version 1 will be the cause of many headaches in
version 2. And there always is a version 2.

It is, of course, difficult to predict the many directions in which a language may
evolve, and there are cases in which a given evolution of a language will require
changes so radical that making it compatible with older content will be a bad idea.
It is not those cases that one needs to worry about as they will be easy enough to
address by creating something entirely new. What language designers need to focus
on is the next dot release.

When a language is being created it often starts with a big brainstorm of all the
features that it could support, which are then trimmed down to the smallest number

129

Designing XML/Web Languages: A Review of Common Mistakes

of features that will make it useful (the second phase is, sadly, too often overlooked).
A good exercise to try out to see if a language one is designing is ready for evolution
is to start with a typical v1 document, and then start adding made up markup cor-
responding to what it would look like if it made use of all the features that were
pushed off for version 2. The question then is: will that document still be processed
exactly the same way as the unadorned document in a version 1 processor? If not,
and if the intent is not to throw up unless everything is understood, then you have
effectively painted the language into a corner.

If the intent is that x.n+1 should roughly work with a little loss in x.n implement-
ations, then at the very least one should make sure that lacunae values are defined,
and that unknowns are ignored (as a side note, not putting the version number in
the namespace will also be less confusing since it cannot be changed without losing
all previous implementations). Providing a way to fall back to alternate content
when a feature is missing is a plus as it allows users to handle some cases, but it
cannot be relied on as the sole mechanism as it has a very high cost in terms of
content production.

5. Wishful Thinking and Doe-Eyed Beliefs
The heart of language designers is often in the right place; the problem has more
to do with what their hands are doing.

5.1. Overcomplexity
Overcomplexity is a really general issue that applies equally to software architecture,
and arguably to life in general. There is however something specific to be said about
vocabulary design here: adding an element to a specification is simple.

This is not a force to be ignored. XML being by nature extensible, it is tantalisingly
easy to believe that functionality can be added to a language simply by adding an
element. When working on a specification, one will often hear: "Well, it's simple.
Look. Just add in a <feature param1='this' param2='that'/> element and wow!
BAM! It rocks!"

That it is not the case is obvious when looking at the work of others, but all of
a sudden becomes less so when it's the feature one wants. As a rule of thumb, before
proposing any new feature, one should thumb through old drafts of SVG Full 1.2
and meditate a little on the purpose of life.

5.2. Reusing the useless
At times it feels like the XML family of technologies is just that: one big family. And
you wouldn't want to forget anyone when your baby language is born.

130

Designing XML/Web Languages: A Review of Common Mistakes

That feeling (and a general sense that reuse is good) leads people to want to reuse
as many parts of the XML stack as possible when creating a new language. That is
a good feeling, and certainly one that should be listened to carefully — there are
indeed many good and useful technologies to reuse.

However not all of them fall in that basket. One such example is XLink. For
certain, it sounds like a good idea that the links in any XML document should be
understandable so that generic processors could spider the whole XML Web. But
that only works if everyone plays, and furthermore the cost of using XLink has to
be taken into account. First, a whole new namespace is needed. Second, the distinc-
tion between href and src requires a second attribute. And then there are issues
with parts of XLink being useless for (or detrimental to) one's needs, which entails
specifying that parts of it should be used but not others, or that on such and such
element when one XLink attribute isn't present it defaults to something specific not
in the XLink specification, etc.

Originally I have nothing against XLink, but SVG used it and experience shows
that it was a bad idea. It confused users, it pushed SVG into defaulting attributes
in ways that aren't entirely kosher, and it brought a cost that no one needed. As it
turns out, very few people use XLink. Core XML specification produced by the W3C
such as XSLT or XML Schema don't use it even though they have linking elements.

Reuse of other languages should be done where needed, and when the cost does
not exceed that of reinvention. The good feeling one gets from reusing another
technology should not be part of the balance.

5.3. Naïve versioning
Versioning, as explained above, is important enough that it deserves to be done
right. Yet some languages have taken a rather naïve approach to it typically consist-
ing in a version attribute on the root element. That is fine if the purpose is to die
immediately when a given version is not supported (in which case simply changing
the namespace would be less verbose and just as effective), but will not produce
any useful effect if the intent is to allow processors to work across versions.

Indeed, what is such a processor to do if it see a version attribute with a value
greater than the version it supports? Nothing useful comes to mind, short of warning
the user that there may be rendering issues, a message which said user will either
ignore, or will cause him to panic, but will not yield any useful result. Conversely,
if the version attribute points to an earlier version, should features from later versions
be ignored? That would make implementations unduly complex.

Versioning through the inclusion of version metadata is largely useless, if only
because most documents in the wild tend to have the wrong version.

131

Designing XML/Web Languages: A Review of Common Mistakes

5.4. Relying on the external subset
It can be tempting to provide default values through the external subset rather than,
or in addition to, through the specification. After all, even if the specification defines
lacunae values, it would be nice if generic XML processors could also benefit from
that information. This is generally useless, and occasionally harmful. It is useless
because as explained above a lacuna value is different from, and more powerful
than, a default value. Therefore, specifying default values for generic processors
will lead to a mix up where the values are sometimes right but not always.

It can be harmful if, as was done at one point in SVG, the external subset is used
to default namespace declarations. That will lead to elements that are in a different
namespace depending on whether the external subset was processed, which is not
only optional but, in the case of Web technologies, rare.

Another such reliance on the external subset that will cause no end of trouble
is to expect it to define entities. The typical example here is XHTML, which will
regularly trip parsers that do not fetch the external subset and subsequently complain
about undefined "nbsp" entities.

6. Miscellaneous
As inelegant as a "Miscellaneous" section may be, reality is such that not all sets of
items can be grouped in an n-point plan. This section lists issues common enough
that they deserve mention, but that nevertheless could only be made to fit elsewhere
with contrived acrobatics.

6.1. Markup in CDATA sections
This problem is simple and requires very little explanation. It occurs altogether too
often, and the following example should be familiar to most.

Example 6. XML embedded inside a CDATA section

<doc xmlns='...'>
...
<other-document>
<![CDATA[
<some-other-document>
...

</some-other-document>
]]>

</other-document>
...

</doc>

132

Designing XML/Web Languages: A Review of Common Mistakes

There are cases in which this can be needed, oftentimes it is used to embed poorly
formed HTML, and on some cases, because XML is not entirely composable (the
XML declaration and DTD prevent that), it is justified even for XML. But generally
speaking, it is a bad idea: if the content is XML, then it should be part of the tree
and not require some indirect further level of parsing.

6.2. Excessive microparsing
Microparsing is a term covering the use of an extra non-XML syntax inside of XML,
usually in attribute values. It has been the subject of heated debate in the earlier
days of the XML community. The idea here is not to flag microparsing as always
bad since in fact there are numerous cases in which it is a good idea. Rather, there
should be a rule of thumb separating the good uses of it from those in which it is
simply hiding away structure that should be in the tree as in the CDATA example
above.

Microparsing is generally good when it is designed with the author in mind.
For instance, XPath is much better as it is than if one had to turn book[/book-
store/@specialty=@style]|//author[alias[2]] into an XML tree. This is essentially
the same argument that goes in favour of supporting a regular expression language
within a larger language rather than having to express the same concept with a long
series of method calls.

There are however cases in which microparsing does not help the author much.
For instance:

Example 7. A extract from an SVG path

M363.73 85.73 C359.27 86.29 355.23 86.73 354.23 81.23 C353.23 75.73 355.73 ►
73.73 363.23 75.73
C370.73 77.73 375.73 84.23 363.73 85.73 zM327.23 89.23 C327.23 89.23 308.51 ►
93.65 325.73 80.73
C333.73 74.73 334.23 79.73 334.73 82.73 C335.48 87.2 327.23 89.23 327.23 89.23 ►
zM384.23 48.73
C375.88 47.06 376.23 42.23 385.23 40.23 C386.7 39.91 389.23 49.73 384.23 48.73 ►
zM389.23 48.73
C391.73 48.23 395.73 49.23 396.23 52.73 C396.73 56.23 392.73 58.23 390.23 56.23
C387.73 54.23 386.73 49.23 389.23 48.73 zM383.23 59.73 C385.73 58.73 393.23 ►
60.23 392.73 63.23
C392.23 66.23 386.23 66.73 383.73 65.23 C381.23 63.73 380.73 60.73 383.23 59.73 ►
zM384.23 77.23
C387.23 74.73 390.73 77.23 391.73 78.73 C392.73 80.23 387.73 82.23 386.23 82.73
C384.73 83.23 381.23 79.73 384.23 77.23 zM395.73 40.23 C395.73 40.23 399.73 ►
40.23 398.73 41.73
C397.73 43.23 394.73 43.23 394.73 43.23 zM401.73 49.23 C401.73 49.23 405.73 ►
49.23 404.73 50.73

133

Designing XML/Web Languages: A Review of Common Mistakes

C403.73 52.23 400.73 52.23 400.73 52.23 zM369.23 97.23 C369.23 97.23 374.23 ►
99.23 373.23 100.73
C372.23 102.23 370.73 104.73 367.23 101.23 C363.73 97.73 369.23 97.23 369.23 ►
97.23 zM355.73 116.73
C358.73 114.23 362.23 116.73 363.23 118.23 C364.23 119.73 359.23 121.73 357.73 ►
122.23
...

Some people, including yours truly, can read and even write the above. But they
should be discarded as bad guinea pigs. The reason for using such a syntax for paths
in SVG was two-fold (and is the same reason used in other similar situations): file
size, and DOM size (whereby if an element had been used for each path command,
the DOM would have been supposedly much larger). Where file size is concerned,
the structure of such path data is so repetitive that a good compression algorithm
(such as gzip, or of course EXI) will produce similar compressed sizes whether the
microsyntax or elements are used — and since SVG path data is usually big anyway,
one wants to use compression (support for which is mandated). And where the
DOM size is concerned, one has to keep in mind that it is merely an API. A generic
DOM will be larger, but the DOM inside an SVG implementation should be able to
have a very similar footprint since whether path data is in an attribute or in elements
should have no effect on internal storage.

So the rule of thumb in this situation is that microparsing is for authors, not for
implementations.

134

Designing XML/Web Languages: A Review of Common Mistakes

Practical Reuse in XML
Ari Nordström

Condesign Operations Support AB
<ari.nordstrom@condesign.se>

Abstract

Reuse is often the key selling point for XML authoring systems. This
presentation examines reuse from various points of view, from the author's
to the developer's, offering practical strategies for reuse of content. Markup
design is discussed, as are necessary prerequisites for making such a system
work. What should be reused, and when? How do you uniquely identify a re-
source, and what, exactly, is a resource anyway? How do you design a user
interface that helps the author instead of hindering her? From a practical point
of view, how do you design a publishing process that works?

A demonstration of such a system illustrates the points made.

Keywords: applic, authoring, cross-reference reuse, cross-references,
fragment identifiers, hyperlinks, ID attributes, inclusion links, inset
links, linking, naming schemes, profiling, publishing, reuse, unique
identifiers, URN, XLink, xlink:actuate, xlink:href, xlink:role, xlink:show

This paper is about being lazy. You see, that's what reuse is about for me, being
lazy without appearing to be so, reusing instead of rewriting, linking instead of
copying and pasting. In fact, this is how I often present XML to my clients: it's about
allowing me to be as lazy as possible, without ever having to be sloppy.

1. Constructing Reusable Components
What can be reused? How do we identify a resource for reuse? How can we reliably
point at it? What kind of markup should we use? What if what we wish to reuse is
mostly OK, but there's that little, tiny piece that is specific to one single product...?

This chapter discusses the prerequisites and basic mechanisms for reuse.

1.1. What Can Be Reused?
Anything that can be linked to. There are three distinct types of links, namely the fol-
lowing:
• Images

135

• Cross-references
• Inclusions of document fragments
Depending on context, the above three types will blur into each other or split into
subtypes, but my basic point is that anything we can link to can be reused, and these
three types are what we usually reuse.

1.2. Naming and Uniqueness
If you want to find a book in a library, you need the book's exact location: “room
five, left wall, top shelf, third book from the left”. Books are frequently misplaced,
however, so you might end up needing the book's title and the author's name in
order to locate it.

But if the book you're looking for is the Yellow Pages, if it is in a room full of
Yellow Pages books (one copy for each area code), and if that room contains a copy
for yeach year the books have been published, the problem is more serious. In that
case, to locate the telephone number of a company that was active twenty years
ago, you need to not only know the exact area code but also the right year.

A further complication occurs if the books have been translated to a dozen lan-
guages. Would any translated version for the right area code and year do, or would
you need the original language?

Finally, let's say that you're looking for a piece of paper taped to a page of a
specific book. You'd need to know the right area code, the right year, the right lan-
guage, and preferably the page number, or spend a very long time looking. If this
was a Document Management System (DMS) and that piece of paper was the frag-
ment you wanted to reuse, you'd probably never find it, and certainly never find it
twice.

We can conclude that in order to find (and reuse) anything, there are prerequis-
ites:
• We need names rather than locations.
• The names need to be unique.
• We need to handle any versions there might be..
• We need to handle any languages we expect to encounter.
• If the target is something inside the resource rather than the resource itself, we

the target's location within the resource.
• And we still need the current location of the resource we're looking for.
• We need a controlled environment to keep track of everything we wish to store.

For a book, it's a library; for an XML fragement, it's a DMS.

136

Practical Reuse in XML

1.3. What's in a Name?
Since names created by human authors will most likely not be unique, the names
must be generated automatically to ensure uniqueness. Databases generate IDs for
each object they handle, but do very little to help identifying different versions or
languages of a stored object (we need to use meta-data and relational data for that),
however, so we need a more intelligent naming scheme, an abstraction layer that
uniquely identifies the basic document, and adds versioning and language inform-
ation to it. Since we are in the standards business, I suggest a URN scheme.

“URN” (“Uniform Resource Name”) is an IETF specification designed to define
a naming scheme that guarantees uniqueness within a well-defined namespace. A
basic URN looks like this:

<URN> ::= "urn:" <NID> ":" <NSS>

The URN identifier consists of at least three fields separated by colons. The first is
a fixed value, urn, that tells us that what we see is a URN. The second, <NID>, stands
for a namespace identifier for this particular namespace, and the third, <NSS>, is a
string constructed using rules valid only in the <NID> namespace.

In practical terms, you register a namespace with IETF and then define rules for
naming resources in that namespace. IETF guarantees that there will only be exactly
one namespace with the <NID> name, ever, and the namespace owner guarantees
that the naming scheme provides uniqueness for the <NSS> string.

A local URN scheme that includes version and language identifiers might look
like this:

<NSS> ::= <DID> ":" <LANG> ":" <VERSION>

In this example, <DID> is a document-specific identifier, <LANG> a language (and
possibly a country) code, and <VERSION> a version counter.

In this naming scheme, <DID>, the document identifier, identifies the semantic
document. The language (and country) codes identify different renditions of that
same semantic document, and the <VERSION> string is used to indicate the progress
made when editing (and publishing) the document1.

1.3.1. A Word About ID Attributes

Remember the paper taped to that Yellow Pages page in my example? To find that
piece of paper, we'd need the page number in addition to the right area code and
year. In XML, the equivalent is an ID attribute. The combined reference (URN#ID)
helps us find the exact location within a resource.

1Compare this to different renditions of an image. A JPEG version of an image different from a PNG or
SVG version? I'd say no. Similarly, what separates a translation from the original is simply the language
used; the information is the same.

137

Practical Reuse in XML

The URN part is described above, and ID attributes are a well-known concept
in XML. A few pointers about IDs, however:
• As with document names, you should not rely on humans to create ID values.
• An ID generation application is not difficult to write. However, it is useful to

add a string that includes the element type and date, first in the ID, because
while the IDs shouldn't be created by humans, being able to recognise an ID
value is useful when writing.

• The Copy-Paste operation in the editor needs to be rewritten to generate new
IDs in place of old ones when pasting or a non-valid XML document will result.

1.4. Markup (HowWe Link)
I've always been partial to XLink. It's my favourite spec, actually, because it's all
I've ever needed in terms of XML linking. A Simple XLink covers about 99% of my
needs. A cross-reference, for example, is easy:

<ref xlink:href="some-doc.xml#some-id"/>

Now, the process model isn't defined in the spec but basically, this variant of the
above can be interpreted as an inclusion:

<ref xlink:href="some-doc.xml#some-id"
xlink:show="embed"/>

Of course, it could also be used for an image; adding xlink:actuate is usually ex-
pected, however:

<ref xlink:href="my-picture.svg"
xlink:show="embed"
xlink:actuate="onLoad"/>

As I mentioned, XLink does not define the processing model for the show or actuate
attributes. I do consider this approach to be a bit of a cheat, however, and suggest
different element types for different links instead. This greatly simplifies processing
while making the author's job easier. For our basic needs, the following three declar-
ations cover a majority of the cases:

<!ELEMENT ref EMPTY>
<!ATTLIST ref %xlink.basic.atts;>

<!ELEMENT inset EMPTY>
<!ATTLIST inset %xlink.basic.atts;

xlink:show #FIXED "embed">

<!ELEMENT image EMPTY>
<!ATTLIST image %xlink.basic.atts;

138

Practical Reuse in XML

xlink:show #FIXED "embed"
xlink:actuate #FIXED "onLoad">

Since the processing occurs either in an XML editor where you will normally need
to declare things like an image element and its attributes as such, or in the publishing
process when you will handle the links very differently depending on what type
of links they are (targeting different XSL-FO structures), these declarations not only
work but make both authoring and developing easier.

1.4.1. What About Target Markup?

The target, when an XML fragment, should be well-formed. When pointing to a
place within a resource, the target element type should have an ID attribute, some-
thing that can uniquely identify it.2

Basically, anything that works as a wrapper is reusable; therefore, just about
any element will do. It is often wise to declare block-level and inline wrappers
specifically for use as containers for reusable content. A block element type that
allows any block-level components in its content model, for example, is very useful
when grouping reusable content.

Also, it is sometimes useful to include a section-level wrapper that groups sec-
tions to reusable components but does not add a section level:

<!ELEMENT section-group (section|section-group)+>
<!ELEMENT section (title, (%block.content;)*,(section|section-group)*)>

The section-group element, above, while grouping section elements, does not add
a numbered level if included in content. It is merely a convenient container.

1.4.2. Multi-level Links

An inclusion link will often point at a fragment that contains another inclusion link.
That fragment might in turn have an inclusion link to another fragment, and so on.

This is not really a problem unless there is a loop reference (in other words, a
link that wants to include the document it is placed in, or if another document links
“backwards”, either directly or after a few levels), or if the multi-level inclusions
result in a normalised document that isn't valid. Some processing will take care of
both these cases.

Loop references should be checked for when normalising the document before
publishing. See Section 3.1.

For the normalised, non-valid, document, parsing that document before publish-
ing it is probably enough, if the error message that results is clear to the author. He

2With an ID value generation mechanism, it shouldn't be too hard to ensure uniqueness throughout the
system.

139

Practical Reuse in XML

or she would then be required to correct the problem before attempting to publish
again.

1.4.3. Special Considerations

There are some special considerations when including XML. Most importantly, the
element type of the included fragment should be valid where the linking element
is valid. Consider the following:

<!ELEMENT book (chapter+)>
<!ELEMENT chapter (p|list|inset)*>
<!ELEMENT inset EMPTY>
<!ATTLIST inset %xlink.atts;>

The resulting instances are assumed to be processed by XSL stylesheets that norm-
alise any links, replacing the links with their target structures, and then use XSL-
FO for PDF output, assuming a straight-forward chapter structure that matches the
above. Consider this little instance:

<chapter>
<inset xlink:href="inset.xml"/>

</chapter>

A valid inset.xml would look like this:
<p>Some text.</p>

This inset.xml, on the other hand, would crash the publishing process:
<chapter>
<p>Some other text.</p>

</chapter>

And yes, DITA, XInclude, and similar systems have all solved this because of a
parse option. On the other hand, it's not a difficult problem; when creating the link,
the linking software should check the target element type and see if it is allowed in
the context.3

A final consideration involves reusable phrases (as discussed in Section 1.6.1).
It is often desirable to use the latest version of a phrase, instead of creating a link
that will point at a specific version. However, in a mixed system, where some re-
usable components are phrases while others are block- or section-level structures,
always using the latest version is not a good idea. Not only will it be impossible to
keep and publish old manuals of old product variants, but the legal ramifications
of not being able to do so is frightening enough for any product owner.

Using URNs, wildcards can be an option:

3This assumes that the target structure follows the same DTD or schema as the main document. In my
experience, this is practically always the case.

140

Practical Reuse in XML

<inset xlink:href="urn:x-paper:r1:doc123456:en-GB:*"/>

The system assumes, in this case, that the asterisk (“*”) implies that the latest version
is to be used.

A URN parser that can handle wildcards in this manner is harder to construct,
however, and can be misused. A better alternative is to use a separate element for
phrase reuse, leaving the choice to the processing application:

<phrase xlink:href="urn:x-paper:r1:doc123456:en-GB:0.58"/>

The phrase element is used when linking to phrases, while the inset element is
used when linking to larger structures.

1.4.4. Reusing Cross-References

A special case of reuse, somewhat out of scope in this paper but nevertheless worthy
of discussion, is the reuse (or rather, presentation) of cross-reference online. Have
a look at this little example:

<p>Discussing rabbits is outside the scope of
this document. For more info, see
<locator xlink:href="#target-id"/>.</p>

On paper, this should translate to something like:
Discussing rabbits is outside the scope of this document. For more info, see

Section 3, "More Info", Page 31.
Online, however, the results would be a bit awkward at best (let's pretend that

the empasised words below are a hyperlink):
Discussing rabbits is outside the scope of this document. For more info, see More

Info.
It gets worse: What if the link wasn't valid in online context and we had to do

away with the link? A script could remove the link:
Discussing rabbits is outside the scope of this document. For more info, see.
There are solutions, however. Let us introduce a wrapper element:
<p>Discussing rabbits is outside the scope of
this document.<xref> For more info, see
<locator xlink:href="#target-id"/>.</xref></p>

On paper, the result is identical to the above, and if the link wasn't valid online, we
could simply instruct a script to remove all xref elements, resulting in:

Discussing rabbits is outside the scope of this document.
Online (assuming for a moment that the link is valid online), the result would

still be awkward, as shown above.
If we added a hyperlink element, we could use that instead for any hyperlinks

we needed to create, and always remove the xref element online, making it into a
construction applicable for paper publication only. The source XML would become:

141

Practical Reuse in XML

<p>Discussing <hlink xlink:href="#target-id2">rabbits
</hlink> is outside the scope of this document.
<xref>For more info, see
<locator xlink:href="#target-id"/>.</xref></p>

The online output would then look like this:
Discussing rabbits is outside the scope of this document.
Which pretty much solves our problem.

1.4.5. What About Other Linking Systems?

There are other linking mechanisms out there, of course. A common technique for
inclusion links is XInclude. It does pretty much what my inset element with its
XLink attributes does, above. Earlier drafts even accepted the fragment identifier
construct:

href="my-document.xml#my-id"

In the final recommendation, the fragment ID is no longer allowed, and in its place
is an XPointer attribute that includes the ID. The xpointer attribute can also a relative
pointer, however, and we've already established that in the context of reuse, ad-
dresses are less than ideal.

My biggest gripe about using XInclude, however, is that it is specifically about
including XML in XML. It does not cover other options so if I were to use it for in-
clusions, I'd have to define other linking mechanisms for the other types of links.
I'm not saying that it's wrong to have two (or more) linking systems but it creates
more work and more code. In my view, every type of link should use the same basic
mechanism and XLink fits the bill.4

1.5. Profiling and Filtering
When writing a reusable section, it is necessary to be as generic as possible. Any
information specific to a product or product variant (or target market, or any other
criteria) will limit its reuse.

A practical way to include model-specific information while keeping the section
reusable is to profile the model-specific parts. Consider the following:

<doc>
<p>Information common to products A and B.</p>
<p>Information about product A.</p>
<p>Information about product B.</p>

</doc>

4I'm the first to admit the advantages of DITA's conref processing, just as I readily admit the benefits of
the XInclude parse model. Yes, it is sometimes an advantage; my point, however, is that I want to make
do with just one linking mechanism.

142

Practical Reuse in XML

The above XML fragment includes information about two products, A and B. One
paragraph is about both products but the other two concern only one at a time. This
fragment is only usable if published in a context that includes both products.5

Let's introduce logic to the fragment, and make it reusable for any of the three
products:

<doc>
<p>Information common to products A and B.</p>
<p applic="A">Information about product A.</p>
<p applic="B">Information about product B.</p>

</doc>

The applic (“applicability”) attribute helps the publishing process determine what
the fragment's various structures are about. The attribute identifies the profile of the
node and its descendants. A profiled node is only applicable if the applic value(s)
set for the root element match those of the node's. No applic attribute means that
the node and its descendants are applicable in all contexts.

This approach is very useful. When publishing the fragment in context “A”,
we'd mark up the fragment like this:

<doc applic="A">
<p>Information common to products A and B.</p>
<p applic="A">Information about product A.</p>
<p applic="B">Information about product B.</p>

</doc>

The result would be:
Information common to products A and B..
Information about product A.
Similarly, context “B” would only include the common paragraph and the “B”

paragraph.
This model also handles several profiles at once:
<doc applic="A B">
<p>Information common to products A and B.</p>
<p applic="A">Information about product A.</p>
<p applic="B">Information about product B.</p>

</doc>

Here, the context is “A or B”, meaning that every node with applic values matching
either “A” or “B” (or both) are included. The values are separated with spaces,
making them easy to process.

A paragraph such as the following would also be included in the output since
“B” is included in the list of profiles:

5That is, if you want to avoid the all-too-typical situation with a manual that includes every possible
accessory available to the product. Consider driver's manuals for cars.

143

Practical Reuse in XML

<p applic="B C D">Information about B, C, and D.</p>

While some profiles could easily be declared as an ennumerated list in the DTD, it
is wiser to declare the attribute as NMTOKENS or CDATA. Product lines change, variants
are included and excluded, and it is pointless having to change the DTD every time.
Instead, the DMS should provide the author with the allowed applic values when
authoring.

1.5.1. Variables

It is often desirable to use the name of a product in an otherwise generic section to
“personalise” it, for example in a sentence like “thank you for buying product X”.
The profiling discussed earlier can help. Consider a product-name element:

<!ELEMENT product-name EMPTY>
<!ATTLIST product-name applic NMTOKENS #IMPLIED>

The welcome sentence would in context A look like this:
<p>Thank you for buying <product-name applic="A"/>.</p>

The applic attribute could either be set by the author when writing, or by the ap-
plication when publishing the document. It is preferable to have the applic values
supplied by the DMS. But what about the case when the profile of the published
document includes more than one product?

<doc applic="A B C">
<p>Thank you for buying <product-name applic="A B C"/>.</p>

</doc>

When publishing the welcome sentence, it is trivial to write an XSLT template that
presents the product-name values as a list, with the word “and” separating the last
items in the list:

Thank you for buying A, B, and C.
However, this also illustrates the danger with the approach. It is possible to

produce grammatically incorrect combinations:
<p>The <product-name applic="A B C"/> is a high-powered
vehicle for cross-country driving.

The A, B, and C is a high-powered vehicle for cross-country driving.

1.5.2. Profiling Markup Considerations

What types of structures should one be allowed to profile? In most of my DTDs I've
elected to include just about everything on block level, and everything on section
and chapter level, and above.

Inline profiling, however, is trickier. For example, it is dangerous to include
profiling on an emphasis element:

144

Practical Reuse in XML

<p applic="B">Click <emphasis applic="C">twice</emphasis> to
abort the self-destruct sequence.</p>

Oops. I hope they didn't read the manual too carefully...
Instead, I'd suggest a more generic inline element for inline profiling inline. A

simple wrapper element that always includes a complete sentence is usually enough.
It's important to avoid having incomplete grammatical constructs result from the
careless use of profiling.

A special case inline is the profiling of link elements for cross-referencing. Cross-
referencing a text on product “B” when publishing in context “A”, for example,
would create content that cannot be reused. Therefore, when profiling cross-refer-
ences, one should either always include a link for every conceivable profile, or always
profile a cross-reference wrapper element (as discussed in Section 1.4.4) instead,
ensuring that only complete sentences are profiled.

On block level, profiles usually break very little. There are a few important ex-
ceptions, however. Here's a CALS table row that will cause problems if published
outside context “B”:

<row>
<entry><p>Some text.</p></entry>
<entry applic="B"><p>Some text.</p></entry>
<entry><p>Some text.</p></entry>

</row>

Publishing the table outside context “B” results in the row in the example having
two columns instead of three, breaking the publishing process. Therefore, when
writing table customisations, allowing profiles on entry elements is not a good idea.

Generally speaking, any profile that can break a structure is probably a bad idea.
Not every such occurrence will crash a publishing process but they sometimes create
awkward situations.

One of my pet peeves when writing list structures is to only construct lists that
include at least two list items:

<!ELEMENT list (p?, list-item, list-item+)>

A profile on list-item can in this case produce a document that is not valid.
Of course, declarations such as these are also dangerous:
<!ELEMENT figure (graphic, caption)>
<!ELEMENT graphic EMPTY>
<!ATTLIST graphic applic NMTOKENS #IMPLIED

%graphic.atts;>

The sloppy use of a profile will result in a figure element without the graphic ele-
ment, again resulting in a document that is not valid.

145

Practical Reuse in XML

Any markup designed for profiling should therefore be relatively “loose”. Any
construct using the “required” form should probably be made “optional” if one
were to allow profiling.

1.6. Size Matters... Or Does It?
Now that we know what to link to, and how to do it, what should we link to? Is there
a limit to size? How large (or small) should the smallest reusable component be?

1.6.1. Phrase-Based Reuse

Many authoring systems today provide reuse of “phrases”, small chunks of inform-
ation no larger than a sentence. Typically, phrase-based reuse is common in special-
ised structures of limited complexity, for example, vehicle diagnostic procedures
and installation instructions. The advantages include standardised language and
low translation costs. They also find use in systems where the author is not a tech-
nical writer but instead someone with little experience in writing documentation.

Phrase-based reuse becomes more difficult when a document grows in complex-
ity. For example, if several reusable phrases are required to form one “block” of
information, some combinations of phrases will inevitably result in awkward lan-
guage and translations.6

A partial solution to the problem of combining phrases is to use a style guide to
ensure the style used in the original language. A more extreme solution is to use a
controlled language such as Simplified English.

Another (serious) problem is that the smaller the phrase size, the harder a phrase
is to locate. With enough phrases, how do you present them to the user so she can
browse and locate the required phrase? With a couple of hundred phrases, searching
for the right one becomes time-consuming. The time saved by not having to write
or translate the phrase is lost because it takes time to locate it.7

The duplication of phrases is also a problem and usually results from not being
able to find an exisitng phrase. In time, duplicates become common, further reducing
the usefulness of phrase-based reuse.

1.6.2. Reusable Sections

On the other end of the scale, the reuse of large pieces of information, for example,
chapters and sections, is common. For example, when authoring a manual for a car,
sections on safety, changing tyres, etc, can easily be reused if they are profiled in

6Some translations resulting from phrase-based systems with automated translation can produce un-
wanted hilarity; witness the many Japanese VCR instruction leaflets out there.
7A modern translation tool with phrase recognition functionality can automatically translate any phrase
already stored in its phrase memory, thus reducing the need to reuse phrases to save translation costs.

146

Practical Reuse in XML

the way outlined above (see Section 1.5). However, the larger a section is, the more
likely it is that some information specific to the model or product at hand will be
included. Engine specs or tyre pressures are typical examples. They are specific to
the model, and extensive profiling is required. With a complex enough section, it
becomes very difficult to keep track of all the special cases and all the necessary
profiling.

We can conclude that a large enough section is not easily reusable because there
will be parts specific to a certain model or variant, regardless of any profiling done.

1.6.3. Block-level Reuse

In the systems I've been part of designing, block-level reuse is by far the most
common, usually coupled with reused sections that include a basic (and fairly
generic) text body, adding links to the blocks specific to product variants when re-
quired.8

Warnings and other types of admonitions comprise a typical example of block-
level reuse. These admonitions are frequently written by a legal department rather
than technical authors; linking to them ensures that the admonitions are used ver-
batim.

Block-level reuse in itself is pretty straight-forward. You can easily reuse anything
from paragraphs to admonitions, figures, etc. The DTD will obviously decide what
can be reused, but there is seldom any need to limit block-level reuse.

Problems sometimes arise when trying to find the the right “block”, however,
because there are too many of them. A very simple solution is implied by the linking
mechanism itself: the fragment identifier in URN#ID allows us to create documents
that serve as containers for, say, every warning that can be reused.9

The following is a simple container document for warnings:
<doc>
<warning id="warning-1"><p>...</p></warning>
<warning id="warning-2"><p>...</p></warning>
<warning id="warning-3"><p>...</p></warning>
...

</doc>

The references to the warnings take the form URN#warning-1, URN#warning-2, and
so on.

In some cases the use of a containing structure for reusable fragments becomes
a disadvantage since the container document is version handled as a unit, instead
of version handling the fragments separately. This is a problem if the fragments are

8Sometimes the sections are little more than skeleton documents with links.
9This approach makes it easier for a legal department to handle the admonitions as one editable unit
rather than dozens, maybe hundreds, of separately stored fragments.

147

Practical Reuse in XML

updated often; the links made will more often than not point to old versions of the
document. A practical problem also arises if many persons are involved in updating
the fragments; in most DMSs documents are checked out exclusively by one person
at a time.10

2. Working with Reusable Material
Working with reusable components can be very easy or impossibly challenging,
depending on the help provided. This chapter discusses the editing side of things.

2.1. Editing
Authoring documents that reuse other documents should be made as easy as pos-
sible. Making a link, whether it's a cross-reference or an inclusion, should not require
the author to do more than absolutely necessary.

Here's what I'd regard as necessary when including a fragment or making a
cross-reference:
• A link dialog with functions supporting every aspect of creating the link.
• Search functionality to locate the target fragment, from within the link dialog.
• Help to point out an element inside the included target fragment, if required.
• Creating the necessary element and its attributes.
Anything beyond the above serves only to complicate the author's task. Since the
above applies equally to inclusions and cross-references, it also demonstrates the
need for one linking system instead of several, in my opinion.11

Figure 1 shows such a linking dialog. A warning, located in a separate document
and identified with a URN, is included in the main document. The target document
can be located by clicking the Target Document button.

10Some systems solve this by using “optimistic checkout” where the document is not locked when
checked out. Other authors can check out and work on the same document at the same time. The system
informs the second and subsequent authors of the document's checked-out status, forcing the authors
to talk to each other.
11The amount of coding required when aspiring for identical interfaces while using different linking
systems is not trivial. Programmers may quite reasonably ask why different systems are used; often,
they will have solved a problem for one linking system only to have to solve a similar problem for a
different system later.

148

Practical Reuse in XML

Figure 1. Making a Fragment Inclusion

The application allows including parts of the target document, which allows storing
all warnings in a single collection document (as described in Section 1.6.3), making
it easy to find them.

Note the Title field in the dialog. It contains the text node(s) of the warning that
has been linked to. This information is placed in the xlink:title attribute when
the link is created and provides a very useful visualisation of the inclusion in the
editor. Figure 2 shows how the xlink:title contents may appear in an editor.

149

Practical Reuse in XML

Figure 2. Included Content in an Editor

The included contents can be accessed by double-clicking the inset link (the block-
inset element in the picture, above). The target document will open if it is checked
out from the database.

Cross-references are created using that same dialog because what happens behind
the scenes is identical to the inclusion case. The dialog is invoked by choosing an
element and only creates and edits the XLink attributes, leaving the process of creating
the linking element and attaching the XLink attributes to the element insert function.

Note the Element Type drop-down list in the dialog (see Figure 2). This list reads
the elements present in the target document and lists the instances in the ID List
list box for an element type.

Creating images is a bit different even though XLink is used here as well (see
Figure 3). Inclusions and cross-references both process XML fragments while image
links do not, but a user-friendly image dialog should also show a preview of a se-
lected image file.

150

Practical Reuse in XML

Figure 3. Inserting an Image

The mechanism behind the scenes is identical to the handling of other types of links.
There is one addition, however: to be able to show the image in the XML editor, the
current image URL is placed in the xlink:role attribute.12

A final linking case involves the reuse of phrases. While the link dialog described
above would do the job, an interface requiring fewer steps for link creation is
preferable. A dialog that lists the available phrases and allows drag & drop from it
to the editor is a possibility.13

2.2. Profiling Information
Being able to easily profile a reusable fragment is essential. Thus, while an approach
that involves manually editing an applic attribute is feasible, it is not practical.
What if the profiling values had two levels: “if A, then B and C are possible; if D,
A and B are forbidden, but E, F, and G are possible”. This is quite common but almost
impossible for authors to keep track of.

Figure 4 shows an interface that handles profiling.

12The XLink specification describes the xlink:role attribute as a URI that gives the link a role desribed
by the URI but leaves out the processing model. Here, we've interpreted the xlink:role attribute as a
pointer to a rendition of the semantic resource.
13The mechanism that creates the actual link is the same as the one behind the link dialog above.

151

Practical Reuse in XML

Figure 4. A Profiling Dialog

The Set Applics dialog keeps track of two levels of profiles, one level depending on
the other. The values are fetched from the database through a web service chosen
with drop-down lists. The dialog also shows which node the profiles are applied
on. If the profile(s) should be set on an ancestor element instead, the dialog also al-
lows moving up in the XML structure, picking the nearest allowed ancestor.

A final consideration is to visualise the profiles made. The profiled nodes should
be clearly formatted and identified as such. Figure 5 illustrates the visualisation of
profiled nodes.

152

Practical Reuse in XML

Figure 5. Profiled Nodes Visualised in an Editor

The formatting is achieved using CSS styling. The presence of an applic attribute
sets the background colour of the section element to a pale yellow, and the applic
attribute's value is displayed right after the start tag.

2.3. Keeping Track of It All
When reusing, a good search mechanism is essential. A DMS should include enough
meta-data for each object to facilitate a search based on that meta-data. A search
within each object might be more difficult, however; an XML-based database should
then be considered.

In addition to a search function, a visualisation of the links is useful. The normal-
isation process (described in Section 3.1) used when publishing can also be used to
list any and all links, in every participating resource. These links can be visualised
in a tree-like structure, using, for example, mind mapping software such as the
open-source FreeMind14.

14Adding language, version, and workflow status information to each node is also useful. The link tree
allows authors, translators, project managers, and many other groups to easily visualise an existing
document or plan a new one.

153

Practical Reuse in XML

Figure 6. A Mind Map

Of course, even without mind-mapping software, link maps that show the relation-
ships between documents are very easy to present in, say, HTML tables.

3. The Publishing Process
The basic publishing process can be split into these main parts:
• Normalising the linked fragments into one file
• Filtering the contents according to the profiles chosen
• Publishing the combined file

3.1. Normalisation
When publishing a document that contains inclusions, you should first normalise
every included fragment into a single file. In this way, it is far easier to write a
stylesheet that produces formatted output.

The normalisation process is not complex but does require some processing. If
every resource is identified with a URN, one needs to point out the main document,
open it in a temporary folder, parse it for any inclusions, locate and open those re-
sources in the same folder, parse these for any inclusions, process them, and so on,
until there are no further inclusions to process. The URNs in the xlink:href attributes
should obviously be replaced with the file names.

Cross-references are easier. A typical cross-reference takes the form URN#ID but
will in principle only need the #ID part because the ID is unique and situated in the
same physical file.

It is a trivial matter to use an XSLT stylesheet to include all of these documents
in a single normalised file.

3.1.1. ID Clashes

ID clashes occur when normalising a document that has linked to the same resource
twice. It results in a normalised instance that is not valid. There are several ways to
handle this:

154

Practical Reuse in XML

First of all, it's not as common a problem as would seem to be the case at first
glance. The same content does not often have to be included more than once, in a
majority of cases.

However, if the same content is indeed included more than once, it only becomes
a problem if the ID values are copied into the normalised document. This is required only
very rarely because the only reason you'd want to copy an ID value to the normalised
document is if you'd made a cross-reference to that node. An included resource that
is the target of a cross-reference twice (or more times) creates ambiguity and means
that an error was made earlier, during authoring.

It is quite possible to unwittingly create such a situation. Extensive profiling,
for example, can be the cause of many strange structures, but nevertheless, it should
be regarded as an error that needs to be handled before the document can be pub-
lished.

3.2. Processing Profiled Documents
The profile(s) of a document can be processed either during the normalisation process
or when feeding the normalised document to the publishing engine. The former is
usually the better idea, for several reasons.

For one thing, the publishing process takes less time if the document has already
been filtered. It is smaller and quite possibly, many time-consuming processes (for
example, large image files) will have been filtered out at this stage. More importantly,
however, the publishing process should only have to deal with publishing.

If the publishing process is XSL-FO and the stylesheets are large enough or split
into several modules, the profiling instructions will be spread throughout the
stylesheets, making them more complicated to maintain. Here's a typical example
of profile processing:

<xsl:template match="p">
<xsl:if test="not(@applic) or contains(@applic,$applic)">

...
</xsl:if>

</xsl:template>

The xsl:if instruction handles the profile processing. This sort of instruction would
have to be included in every element template that needs to handle an applic attrib-
ute.

Better is to include the profile processing in the normalisation stylesheet. That
stylesheet is small enough to be just one file, which makes maintaining the mechan-
ism a lot easier. Note that the normalisation stylesheet is small mostly because all
it does (well, more or less) is to copy XML structures into one large file. The basic
copy mechanism looks like this, and only occurs in a select few templates:

155

Practical Reuse in XML

<xsl:template match="*">
...
<xsl:if test="not(@applic) or $print='yes'">

<xsl:element name="{name(.)}">
<xsl:call-template name="attribute-copy"/>
<xsl:apply-templates/>

</xsl:element>
</xsl:if>

</xsl:template>

The profile processing sets the $print to the value “yes” if the profile matches, and
results in the node being copied.

3.3. Publishing in Other Languages
Let's say that we have a document with the URN urn:x-paper:r1:doc0001:en-
GB:1.0 that links to chapters urn:x-paper:r1:doc0002:en-GB:1.0 and urn:x-pa-
per:r1:doc0003:en-GB:1.0:

<doc>
<inset xlink:href="urn:x-paper:r1:doc0002:en-GB:1.0"/>
<inset xlink:href="urn:x-paper:r1:doc0003:en-GB:1.0"/>

</doc>

How do we publish this document in other languages, say, Swedish? When following
the principles outlined in this paper, locating the Swedish versions in the database
would consist of nothing more than replacing the en-GB language-country codes in
the URNs with the Swedish ones and asking the database for them. The Swedish
version of the document would be this:

<doc>
<inset xlink:href="urn:x-paper:r1:doc0002:sv-SE:1.0"/>
<inset xlink:href="urn:x-paper:r1:doc0003:sv-SE:1.0"/>

</doc>

The point here is that since we regard the different language versions of a document
as different renditions of the same semantic document, finding the documents and
processing the links are very straight-forward tasks. This skeleton document could
be generated on the fly, if need be; with a DMS geared for URNs, finding the
translated chapters could be performed when normalising the skeleton.

If the included chapters do not exist in Swedish versions, the normalisation
process stops because the links cannot be processed. A clever enough process will
instead offer to create a package of the missing documents, ready to be translated.

But what about country- or market-specific profiling? Doesn't this URN scheme
make such customisations difficult? It could be argued that a translated version is
a rendition by our definition so if country- or market-specific customisations are
made during translation, we could simply define the customised and translated

156

Practical Reuse in XML

version as a rendition of the original. Who would know the difference? The problem
with this is that, as I've indicated earlier (see Section 3.3), the translations are not
version handled separately; they always have the same version as the original.
Therefore, any customising for a specific market or country would have to be handled
using either no version handling at all, or a version handled kept separate from the
main system.

An easier, and more true to form, approach is to handle market- and country-
specific customisations as profiles like any other. A customisation for a specific
market is profiling and should be treated as such. Anything using a language/country
code (including an xml:lang attribute, if used, and certainly the language/ country
code used in the URNs) is, in fact, meant to handle content that will appear in a
document after filtering and customisation has already been performed.15

4. Shouldn't Everything Be URNs?
Early on in a project, a programmer asked me if URNs should be used for images,
too. My first effort at implementing URNs for resources did not include images. I
saw the image links as URLs to the image database and little more, and he quite
rightly pointed out that I was violating my own principles. I only had to think for
the briefest of moments: of course the images should be handled using URNs. They
are version handled, and they sometimes require translation. Why shouldn't they
be handled as resources in the exact same way as everything else?

The programmer went one step further, however. He proposed that profiles
should also be handled using URNs. The idea is that there should be an abstraction
layer between a profile consisting of several separate values for different products,
markets, and so on, allowing the easy update of those separate values without ever
touching the actual profile string. An additional bonus would be to be able to define
a boolean condition as a single profile (“A and B and C”); this combination would
equal exactly one URN.16

I'm not entirely clear about how a profiling URN scheme would look like but I
do like the idea. It would be an advantage to use profiles as “meta-resources”, and
the code used to resolve URNs in other places would come in handy here as well.

5. Conclusions
In conclusion, here's what I would list among best practices when developing an
XML system that allows reuse:

15If market-specific customisations are common, a better approach might be to allow for two separate
sets of profiling markup: one attribute would handle product-specific profiles while another might focus
on market-specific customisations.
16The profiles “A”, “B”, and “C” would also merit URNs of their own.

157

Practical Reuse in XML

• Use names rather than addresses, and if at all possible, use URNs rather than
your own schemes.

• Have the DMS generate URNs and ID values.
• Consider defining your translations as renditions of the original document.
• Use one linking system instead of many.
• Use profiling to increase reuse.
• Have your DMS handle the profiles.
• Avoid phrase-level reuse in more complex structures.
• Always avoid any profiling or linking mechanisms that might break a resulting

normalised file.
• Don't assume your authors are familiar with URNs, profiling details, or various

XML constructs; offer user interfaces that ease their tasks instead.

158

Practical Reuse in XML

Exploring XProc
Norman Walsh

MarkLogic
<norman.walsh@marklogic.com>

Abstract

This presentation will explore the current state of XProc: An XML Pipeline
Language through a combination of slides and live demos. Particular attention
will be paid to demonstrating pipelines that are, or could be, useful to solve
real world problems.

159

160

Optimizing XML Content Delivery with
XProc

Vojtěch Toman
EMC Corporation

<toman_vojtech@emc.com>

Abstract

As XProc implementations are becoming more mature, the standard is attract-
ing growing interest in the XML community. We will discuss the benefits of
using XProc from an application developer point of view, and how it can make
XML applications more robust and reliable. We will then briefly introduce
the EMC's XProc processor implementation, which has been successfully de-
ployed in an XML content delivery platform. Using a number of use cases
from the content delivery domain, we will illustrate how XProc pipelines can
be used for implementing the relevant functionality.

1. Introduction
XProc, or the XML Pipeline Language [6], has every potential to become one of the
most useful new XML technologies around. The language has recently become a
W3C Candidate Recommendation and is attracting growing interest in the XML
community, both from users and implementers.

Following the progress of the specification, and the evolution of the language
to its present form, an XProc processor implementation has been developed at EMC.
The processor has been successfully deployed in a dynamic content delivery plat-
form, where XProc has quickly proved its strengths and established itself as the
primary technology for XML data manipulations.

The benefits of using a declarative XML processing model over traditional ap-
proaches are many. XProc streamlines the development of XML applications and
makes their architecture cleaner and more robust. XProc bridges the gaps between
different XML technologies — and, in turn, bridges the gap between XML and ap-
plication developers. But perhaps most importantly, XProc can make XML processing
fun again.

2. Application Development with XProc
Manual XML programming has always been a mundane and an error-prone task,
with quite a steep learning curve as well: the beginning developer has to get famil-

161

iar with the available processing data models (and pick the most appropriate one
for his needs), learn the programming APIs, and then, after some experimentation,
rely on the help of “pro's” when things don't work as expected (“How do I move a
DOM node from one document to another?”).

Additional problems may arise when an application needs to integrate multiple
technologies or tools for different kinds of XML processing. In order to make these
tools work together, the developer often needs to write code that converts the output
of one tool to structures that can by accepted by another. The need for this conversion
is obvious in cases when heterogeneous data models are used (such as a combined
relational and XML-based storage), but a translation of some kind is often unavoid-
able also in pure XML environments: the different tools may be based on different
paradigms or processing models, or their APIs are just not directly compatible.

Integrating different XML processing tools can be a non-trivial task, and there
is also a great danger of mistakes that can lead to unnecessary performance bottle-
necks — or worse, to fatal error conditions in the application.

Another problem is that one-to-one mapping between different models is not
always possible. Some information may get changed — or lost — during the con-
version, because there is no natural representation for it in the target domain. This
phenomenon is often referred to as impedance mismatch and has always been a source
of problems when developing more complex XML applications.

With XProc, many of the issues described above can be reduced significantly.
Emphasizing a declarative approach to XML data manipulations, XProc shields the
developer from the complicated (and from the XML perspective often unimportant
and distracting) details of the underlying XML frameworks and tools. In XProc,
you specify what actions (and in what order) should be performed on XML data,
but the actual implementation of how this is done is left to the XProc processor.

This is a very important aspect of XProc, since it can make the XML applications
much easier, and therefore cheaper, to develop. Looking from a different perspective,
XProc-based applications will also likely be more stable and reliable, simply because
the amount of actual XML programming is reduced, and therefore the risk of bugs
in the application code is lower. To put it bluntly, XProc can protect the applications
from poor XML programming practices.

Using a declarative XML processing model has also a positive effect on the
maintainability of the applications — it is usually easier to detect and fix problems
in an XProc pipeline than in the application code, which is often hard to understand
or entangled with other pieces of the application.

Another interesting benefit of using XProc is that it can make the applications
much easier to customize and extend. Very often, new functionality can be intro-
duced by simply adding new pipelines to the application (or by modifying the ex-
isting ones), with no or very little changes to the application itself. In the traditional
model, especially with larger applications or application frameworks, customizations

162

Optimizing XML Content Delivery with XProc

are often quite costly (if possible at all), simply because the internal model is not
flexible enough.

3. Enabling other XML Standards
XProc can play an important role as an enabling technology for other XML standards
that require a certain level of XML processing capabilities.

A nice example of this is the XForms specification [5]. The standard has been
around for some time, but has never quite taken off on a larger scale, even though
there are a number or XForms implementations available these days.

From the ground up, XForms is entirely based on the XML model. While this
clearly is an advantage from the design perspective, it can also be seen as one of the
main reasons of the low adoption of the standard. The XForms model and the
XForms submission data are XML documents, and to manipulate them, the ability
to process XML data is necessary.

With the increasing proliferation of native XML offerings, and growing adoption
of the XQuery language [8] in these tools, things are slowly getting in motion for
XForms — as demonstrated, for instance, by the recent buzz around the XRX
(XForms/REST/XQuery) web application architecture [9]. In short, XRX makes it
possible to deploy XForms in end-to-end XML environments, eliminating the need
for using non-XML models, such as middle-tier objects or (often costly) conversions
of the submission data to relational structures.

XProc is a natural fit for the XRX architecture. By substituting XQuery by XProc,
the resulting XForms/REST/XProc scheme is as powerful (XQuery is supported in
XProc), while adding all the benefits of the declarative XProc processing model.

4. Calumet: The XML Peace-Pipe
Bathe now in the stream before you,
Wash the war-paint from your faces,
Wash the blood-stains from your fingers,
Bury your war-clubs and your weapons,
Break the red stone from this quarry,
Mould it and make it into Peace-Pipes,
Take the reeds that grow beside you,
Deck them with your brightest feathers,
Smoke the calumet together,
And as brothers live henceforward!

— Henry Wadsworth Longfellow, The Song
of Hiawatha, Book I: The Peace-Pipe

163

Optimizing XML Content Delivery with XProc

Calumet is the codename of the XProc processor being developed at EMC. The
processor implements most of the required features demanded by the XProc spe-
cification, as well as a number of optional features. You can follow the progress of
the implementation at the XProc Test Suite page [7].

The processor, together with a suite of other XML tools, will be made available
through the EMC Developer Network [3], free for developer use.

The processor is written in Java, using a number of open-source XML compon-
ents. Figure 1 shows the architecture and the individual components of the system.

Figure 1. Overall Architecture

Conceptually, the processor consists of two main modules: the pipeline compiler and
the pipeline runner. The pipeline compiler parses XProc pipelines and “compiles”
them into a Java object representation that can be then executed by the pipeline
runner. A compiled pipeline is a self-contained, reusable structure that can be run
multiple times with different input data and parameters — an idea borrowed from
the Java XML Transformation API [4], where similar functionality is supported
through the Templates interface.

Resource resolution in Calumet is URI-based. The processor uses a pluggable
system of so called resolver and writer modules, one for each supported URI scheme.
By default, resources can be resolved from the file system, from the Java classpath,
and over HTTP.

The step registry manages the implementations of all atomic XProc steps that are
available to the processor. Using the registry API, application developers can provide
implementations of custom atomic steps.

The processor is based on the DOM processing model; most of the XML manip-
ulations are implemented using DOM operations. The processor supports XPath
1.0 as the expression language and XSLT 1.0 for transformations.

The architecture is open in the sense that application developers can register
plug-ins with the processor, which makes it possible to customize the default beha-
vior of the system or add new functionality. Besides providing implementations of
additional XProc steps, plug-ins can also be used for extending the processor's I/O
capabilities (by registering custom resolver and writer modules) or, for instance,
for registering a custom DOM implementation.

164

Optimizing XML Content Delivery with XProc

The ability to use a custom DOM implementation is a useful feature of the pro-
cessor. By default, the processor uses Apache Xerces as the underlying DOM imple-
mentation, but nothing prevents the application developers from switching to an-
other, possibly more efficient, DOM implementation. It is possible, for instance, to
deploy the processor on top of a native XML database that provides a DOM interface.
Doing so may not only boost the performance, but it may also bring additional
functionality, such as XQuery support, XML data indexes, or transaction control to
the processor.

5. XML Content Delivery Use Cases
Modern XML content delivery systems allow for dynamic publishing of highly
personalized content. Often leveraging the power of native XML databases, XQuery
and other XML-related standards, they provide such functionality as support for
constructing dynamic content assemblies from existing (or generated) content, or
advanced content profiling driven by the preferences of the end-user (or by the
content itself).

From the XML processing perspective, it is only natural to incorporate the XProc
pipeline model in the content delivery context. In this section, we present a number
of simple use cases and illustrate how XProc can be used for implementing the rel-
evant functionality. For each use case, we start by formulating an introductory
scenario (usually with a very simple solution) to describe the problem — and to
show that even basic XProc pipelines often provide sufficient functionality. After
that, we move on to a more challenging scenario, which will require using more
complex XProc pipelines.

5.1. Content Publishing: Scenario I
The first example shows a likely candidate for the most frequently used XProc
pipeline of all — a pipeline that will probably be present, in one form or another,
in most XProc-based XML applications.

The pipeline takes an XML document and an XSLT stylesheet on its input and
returns the result of applying the stylesheet to the document. The pipeline also
supports passing parameters to the stylesheet through an (implicit) parameter input
port.

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc"
name="main">

<p:input port="stylesheet"/>

<p:xslt>
<p:input port="stylesheet">

165

Optimizing XML Content Delivery with XProc

<p:pipe step="main" port="stylesheet"/>
</p:input>

</p:xslt>

</p:pipeline>

5.2. Content Publishing: Scenario II
The pipeline in this section demonstrates the use of the p:xquery XProc step for
publishing dynamically generated content.

The example assumes a model where application users can add comments to
the XML content, by inserting comment elements in the documents:

<section>
<comment user="jnovak123">
<text>The text needs updating.</text>

</comment>

<para>...</para>
</section>

The pipeline runs a simple XQuery on a collection of input documents to find all
comments by a particular user. The user name is a parameter to the XQuery, and
is expected to appear on the parameters parameter input port of the pipeline.

The XQuery results are transformed into an XSL-FO document which is then
passed to an XSL formatter. The resulting PDF report is written to the location
specified by the output-uri option of the pipeline.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
name="main">

<p:input port="source" sequence="true"/>
<p:input port="parameters" kind="parameter"/>
<p:option name="output-uri" required="true"/>

<p:xquery>
<p:input port="query">
<p:inline>
<c:query>
declare variable $user as xs:string external;
<comments user="{$user}">
{
for $doc in collection()
let $comments := $doc//comment[@user=$user]
return (
for $comment in $comments

166

Optimizing XML Content Delivery with XProc

return <comment doc="{base-uri($doc)}">
{$comment/text}
</comment>

)
}
</comments>

</c:query>
</p:inline>

</p:input>
</p:xquery>

<p:xslt>
<p:input port="stylesheet">
<p:document href="comments2fo.xsl"/>

</p:input>
<p:input port="parameters">
<p:empty/>

</p:input>
</p:xslt>

<p:xsl-formatter>
<p:with-option name="href" select="$output-uri">
<p:empty/>

</p:with-option>
</p:xsl-formatter>

</p:declare-step>

5.3. Content Assembly: Scenario I
One of the great advantages of the XML storage model is that it allows for a natural
reuse of content, both on document and node level. Componentizing the content
into independent, reusable units not only reduces the duplication of information,
but it also increases the flexibility of applications in terms of delivering highly per-
sonalized dynamic content.

In this example, we assume a componentized content model where individual
components can be reused using XInclude references:

<chapter xmlns:xi="http://www.w3.org/2001/XInclude">
<title>Chapter XXXVII. - In which it is Shown that Phileas Fogg Gained

Nothing By His Tour Around the World, Unless It Were Happiness</title>

<xi:include href="sect1.xml"/>
<xi:include href="sect2.xml"/>
<xi:include href="sect3.xml"/>

</chapter>

167

Optimizing XML Content Delivery with XProc

XInclude is supported out-of-the box in XProc. The pipeline below takes the input
XML document, applies XInclude processing, and returns the resulting XML docu-
ment.

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc">
<p:xinclude/>

</p:pipeline>

5.4. Content Assembly: Scenario II
DITA [2], or the Darwin Information Typing Architecture, is an XML standard for
creating technical documentation. DITA is based on a componentized model: content
is organized into topics, self-contained units of information from which structured
documentation is constructed. This is done using so-called DITA maps, “table of
contents”-like documents with references to individual topics.

Topic references are a form of reuse on the document level. In addition to that,
DITA supports also reuse of parts of topics such as, for instance, common warning
statements or notes. Each element in DITA documents can contain a conref attribute
that points to the content unit that should be reused. The behavior of a conref is
that the referenced content appears in place in the topic as if it was copied there,
replacing the element that contained the reference.

There are rules as to what content can be referenced and when (for instance, the
new content must be allowed in the target context), and also how the attributes of
the source and target element are processed.

To be able to address individual elements in the documents, each element can
be given a unique identifier. Identifiers in DITA are scoped: topic elements must
be given an identifier (and this identifier must be unique among all topics) and the
contained elements must use identifiers that are unique within the topic. DITA uses
the following syntax for conrefs:

filename.xml#topic-id/element-id

In the case of local references (within a topic), the file name component can be
omitted — as can be seen in the following example DITA topic:

<concept id="telephone">
<title>Telephone</title>
<conbody>
...
<p>
<note id="hangupphone">You must hang up your phone before

you can make another call.</note>
</p>
...
<p>

168

Optimizing XML Content Delivery with XProc

<note conref="#telephone/hangupphone"/>
</p>
...

</conbody>
</concept>

The example below presents a simple pipeline that resolves local conrefs. The
pipeline is recursive (because conrefs can be nested) and makes use of p:viewport,
a powerful construct in the core XProc language. (The pipeline does not address all
issues that can arise when resolving conrefs, such as proper handling of element
attributes or detection of loops. It also does not test whether resolving a conref results
in valid DITA content.)

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:ex="http://xmlprague.cz/ns/xproc-examples"
type="ex:resolve-local-conrefs" name="main">

<p:viewport match="*[@conref]">
<p:variable name="conref" select="/*/@conref"/>
<p:variable name="topic-id" select="substring-before(concat($conref, '/'), ►

'/')"/>
<p:variable name="element-id" select="substring-after($conref, '/')"/>

<p:try>
<p:group>
<p:output port="result"/>
<p:identity>
<p:input port="source" select="/*[@id=substring-after($topic-id, ►

'#')]">
<p:pipe step="main" port="source"/>

</p:input>
</p:identity>

<p:identity>
<p:input port="source" select="//*[@id=$element-id]"/>

</p:identity>

<p:delete match="/*/@id"/>
</p:group>

<p:catch>
<p:error code="ex:CONREF-ERROR">
<p:input port="source">
<p:inline>
<message>Unresolvable conref</message>

</p:inline>

169

Optimizing XML Content Delivery with XProc

</p:input>
</p:error>
<p:identity>
<p:input port="source">
<p:empty/>

</p:input>
</p:identity>

</p:catch>
</p:try>

</p:viewport>

<p:choose>
<p:when test="//*[@conref]">
<ex:resolve-local-conrefs/>

</p:when>
<p:otherwise>
<p:identity/>

</p:otherwise>
</p:choose>

</p:pipeline>

5.5. Content Profiling: Scenario I
In DocBook [1], elements can use the condition attribute for specifying the effectivity
information for individual pieces of content. The semantics of the condition attribute
is application-specific.

Suppose the DocBook documents can be profiled for internal and external use.
In his example, this is achieved by defining two possible values for the condition
attribute: internal and external.

The pipeline below declares an option named effectivity. The option is not required
and is set to external by default. The pipeline processes the input document and
deletes all elements with an condition attribute whose value is different from the
specified effectivity.

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc">
<p:option name="effectivity" select="external">
<p:empty/>

</p:option>

<p:delete match="*[@condition != $effectivity]"/>

</p:pipeline>

170

Optimizing XML Content Delivery with XProc

5.6. Content Profiling: Scenario II
In real-life applications, effectivity filtering rules are typically much more complex.
For instance, in an application for delivery of product documentation, the end-result
of the publishing process may depend on a whole range of criteria — the configur-
ation of the product, the target audience (product user, maintenance personnel),
etc.

This example uses an assertion-based effectivity model. Each element in the input
document can contain an effectivity child element that specifies a list of assertions:

<section>
<effectivity>
<assert name="product-name" value="Tatra T600"/>
<assert name="audience" value="collector"/>

</effectivity>

<title>Tatra T600</title>

<para>The T600 had a monocoque streamlined six-seater saloon body
with a drag coefficient of just 0.32. It was powered by an air-cooled
flat 4 cylinder 1,952 cc rear engine. 6,342 were made, 2,100 of them
in Mladá Boleslav.</para>

</section>

The assert elements specify the names of the effectivity attributes and the values
required in order to consider a content item effective.

When processing a document with effectivity information, the values for effectiv-
ity attributes must be provided by the application (or the end-user). In this example,
this information is represented using a simple configuration document:

<configuration>
<attr name="product-name" value="Škoda 1000 MB"/>
<attr name="audience" value="mechanic"/>

</configuration>

The pipeline below takes a document with effectivity information and a separate
configuration document, and performs effectivity filtering on the content.

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:ex="http://xmlprague.cz/ns/xproc-examples"
type="ex:process-effectivity" name="main">

<p:input port="configuration"/>

<p:import href="eval-effectivity.xpl"/>

<p:viewport name="viewport" match="*[effectivity]">

171

Optimizing XML Content Delivery with XProc

<ex:eval-effectivity>
<p:input port="effectivity" select="/*/effectivity"/>
<p:input port="configuration">

`< <p:pipe step="main" port="configuration"/>
</p:input>

</ex:eval-effectivity>

<p:choose>
<p:when test="/c:result='true'">
<p:delete match="/*/effectivity">
<p:input port="source">
<p:pipe step="viewport" port="current"/>

</p:input>
</p:delete>

<ex:process-effectivity>
<p:input port="configuration">
<p:pipe step="main" port="configuration"/>

</p:input>
</ex:process-effectivity>

</p:when>

<p:otherwise>
<p:identity>
<p:input port="source">
<p:empty/>

</p:input>
</p:identity>

</p:otherwise>
</p:choose>

</p:viewport>

</p:pipeline>

To keep the source code readable, the actual effectivity evaluation is implemented
in an external pipeline (ex:eval-effectivity in eval-effectivity.xpl). This pipeline
matches the effectivity information of a content item with given configuration and
decides whether the content item is effective. The boolean result is wrapped in a
c:result document.

A possible implementation is presented below. For each assert element in the
effectivity document, the pipeline tries to find a corresponding attr element in the
configuration document. If no such element can be found, the content item is not
effective and the pipeline returns false.

<p:pipeline xmlns:p="http://www.w3.org/ns/xproc"

172

Optimizing XML Content Delivery with XProc

xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:ex="http://xmlprague.cz/ns/xproc-examples"
type="ex:eval-effectivity" name="eval-effectivity">

<p:input port="configuration"/>

<p:for-each>
<p:iteration-source select="/*/assert"/>

<p:variable name="aname" select="/*/@name"/>
<p:variable name="avalue" select="/*/@value"/>

<p:choose>
<p:xpath-context>
<p:pipe step="eval-effectivity" port="configuration"/>

</p:xpath-context>

<p:when test="/*/attr[@name=$aname and @value=$avalue]">
<p:identity>
<p:input port="source">
<p:empty/>

</p:input>
</p:identity>

</p:when>
<p:otherwise>
<p:identity>
<p:input port="source">
<p:inline><no-match/></p:inline>

</p:input>
</p:identity>

</p:otherwise>
</p:choose>

</p:for-each>

<p:count/>

<p:string-replace match="c:result/text()" replace=". = '0'"/>

</p:pipeline>

6. Conclusion
XProc provides a powerful declarative model for XML processing. With the emer-
gence of first XProc implementations, and with their increasing maturity, we can
expect a growing adoption of XProc as a tool for XML data manipulations in XML
applications.

173

Optimizing XML Content Delivery with XProc

We discussed some of the benefits of using XProc in XML application develop-
ment. We briefly introduced the EMC's XProc implementation, and presented a
number of simple use cases that demonstrated how XProc can be leveraged in XML
content delivery environments.

References
[1] DocBook.org. http://www.docbook.org.
[2] Don Day, Michael Priestley, and JoAnn Hackos. Darwin Information Typing

Architecture (DITA) Architectural Specification v1.0. OASIS Standard. 9 May
November 2005. http://docs.oasis-open.org/dita/v1.0/archspec/ditaspec.toc.html.

[3] EMC Developer Network. http://developer.emc.com.
[4] Java API for XML Processing. https://jaxp.dev.java.net.
[5] John M. Boyer. XForms 1.1. W3C Candidate Recommendation. 29 November

2007. http://www.w3.org/TR/xforms11/.
[6] Norman Walsh, Alex Milowski, and Henry S. Thompson. XProc: An XML Pipeline

Language. W3C Candidate Recommendation. 26 November 2008. http://
www.w3.org/TR/xproc/.

[7] XProc Test Suite. http://tests.xproc.org.
[8] Scott Boagg, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan

Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language. W3C
Recommendation. 23 January 2007. http://www.w3.org/TR/xquery/.

[9] Web Development with XRX. http://en.wikibooks.org/wiki/XRX.

174

Optimizing XML Content Delivery with XProc

http://www.docbook.org
http://docs.oasis-open.org/dita/v1.0/archspec/ditaspec.toc.html
http://developer.emc.com
https://jaxp.dev.java.net
http://www.w3.org/TR/xforms11/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xproc/
http://tests.xproc.org
http://www.w3.org/TR/xquery/
http://en.wikibooks.org/wiki/XRX

A practical introduction to EXSLT 2.0
Florent Georges

fgeorges.org
<fgeorges@fgeorges.org>

EXSLT is a library of extension functions and instructions for XSLT 1.0. It defines
several modules, providing features like regular expressions, dates & times manip-
ulation functions, or dynamic evaluation of XPath expressions provided as strings.
The most popular of them was without any doubt the node-set() function, allowing
one to use a result tree fragment as a node-set.

With the new version of XSLT, some of the extensions provided by EXSLT are
not needed anymore. Regular expressions for instance have been included in XPath
2.0 and XSLT 2.0, and node-set() does not make sense anymore because result tree
fragments do not exist in XSLT 2.0. Other extensions are still usefull as trigonometric
functions. Or the dyn:evaluate() function. But the later should be redefined and
adapted to the new data model, and the new definitions of context in XSLT 2.0.

And besides those adaptations, the new features in XPath and XSLT 2.0 brought
their own needs for new extensions. For instance sequences, that are the core of the
new data model. They cannot be nested, and that is consistent with the need for
compatibility with XSLT 1.0. But that limitation also prevent us to define more
complex data structures that do not require copies and losing information.

Eventually, new abilities broaden the scope of possible applications. Because
we can do more complex treatments more easily, we just want to be able to do more
complex stuff yet. This kind of extensions encompasses the ability to parse HTML
or XML fragments from strings, to send HTTP requests, to get information from a
file system, or to handle ZIP files. And much more.

This introduction will show some live examples with two new proposed exten-
sions. The first one is an HTTP Client to send HTTP requests and use their responses.
This allows one to get resources from the Internet, to ask web services (SOAP and
REST, like Google APIs,) and even to build a wsdl2xslt stylesheet. The second one
is an extension to deal with ZIP files, to be able to handle ODF and Open XML
documents.

175

176

High-performance XML:
theory and practice

Alex Brown
Griffin Brown Digital Publishing Ltd.

<alexb@griffinbrown.co.uk>

Andrew Sales
Griffin Brown Digital Publishing Ltd.
<andrews@griffinbrown.co.uk>

Abstract

At the 2006 Extreme Markup conference in Montreal Alex Brown presented
a paper [2] outlining a method of XML processing based around “frozen
streams” which seemed to promise better memory usage and execution time
for common XML processing operations. This paper briefly revisits the theory,
presents the results of implementing it, enumerates the lessons learned and
suggests new ways forward.

1. Introduction
As XML becomes an increasingly pervasive technology for data storage and pro-
cessing, many adopters of the technology face a practical problem caused by the
perceived slow performance of many XML processing operations, particularly in
comparison to tried and trusted RDBMS-based and native bespoke solutions that
are being replaced.

This paper will consider whether indeed XML processing operations are “slow”
and if so what the fundamental causes of this slowness are. In particular it will
consider the case of parsing larger (i.e., more than a few megabyte) documents when
using XML system programmed with Java.

The paper will then outline a method, termed a “frozen stream” of in memory-
storage of XML that differs from the common tree based approach and instead relies
on a view build on stream-based XML parsing methods The approach is described,
and it features and options set out. A benchmark is shown for comparison with
other methods of in-memory XML representation The Paper goes on to demonstrate
how this approach may be integrated with existing XML processing systems, reports
on real-world implemention experience, and considers further enhancements that
may be made in future.

177

2. Technical Background
This paper considers some of the problems of XML performance in general, but in
particular is concerned with performance considerations when processing XML
into an in-memory representation for the purpose of performing operations on it;
principally read operations. The “real-world” problem that led the authors to invest-
igate this problem area was the need for high-performance implementations of the
Schematron (ISO/IEC 19757-3:2003) schema language.

The language and platform used in all the examples in this paper is Java™/ Java
is a popular choice of programming language for developing applications which
process XML. While there are alternatives, it is usually Java that has the most depth
and breadth of implementation for the various XML technologies, and anybody
working with XML in commercial development will usually find the requirement
to implement solutions in Java occurs fairly frequently, not least because of JVMs'
reasonable cross-platform abilities. While the use of Java imposes its own particular
flavour to this study; the questions raised are applicable to other languages and
platforms too.

3. The Current Situation
To arrive at some idea of the kind of memory footprint and speeds XML users might
experience, here are some benchmarks for carrying out some common XML tasks.
The document is the main content (document.xml) of the Ecma 376 standard,
available for download from http://www.ecma-international.org/publications/stand-
ards/Ecma-376.htm, a document of approximately 60 MB.

Table 1. Memory use and time taken for common XML tasks

Memory neededTime TakenTask
231 MB14.1sBuild DOM tree
237 MB40.7sSaxon identity transform
< 2 MB5.7sSAX Parse

The table above shows the time and memory use for some common XML operations
performed by applications running within a Java virtual machine. Rather than use
diagnostic tools to measure memory use, the “memory required” figure was determ-
ined by finding the smallest amount of memory in which the operation could be
performed, using trial and error on the command line by manually setting the
maxium heap size for the JVM. This “transient usage” figure is a meaningful one
when considering users’ experiences of XML efficiency – as it represents a firm re-
quirement. If there are not (for example) 237 MB of memory that can be allocated
to this XSLT process, it simply cannot be complete

178

High-performance XML: theory and practice

http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm

4. Why in-memory models?
The primary motiviation for developing an efficient in-memory model was for use
with implementations of the Schematron language. In our experience Schematron
was becoming a more and more used validation technology, often deployed at nu-
merous points throughout XML-based digital workflow to ensure the quality of the
documents flowing through them. The continual need to build memory inefficient
in-memory models for executing the XPath-based queries described by Schematron
was putting a heavy load on the infrastructure used in such workflows.

Of course, for some subset of Schematron queries and for some subset of other
kinds of activity (notably, XML transformations, it is be possible to implement a
streaming approach, and much research in the area is ongoing.[14]. However, it
currently appears that for a fully conforming XPath implementation, a fully-
streaming approach is not achievable.

5. Memory and Execution Time
It is often held in computing that there is a trade-off between memory used and
speed of execution. However, [1] challenges this general assertion (“It has been my
experience more frequently […] that reducing a program’s space requirements also
reduces its run time”) and proposes that rather than accepting any trade-off that a
path of “mutual improvement” should be pursued (p. 7).

Could this hold for XML document processing too?

5.1. The Object overhead
XML models, DOM in particular, are such that they tend to impose or imply certain
things about implementation. The lynchpin of the DOM model is the org.w3c.Node
Interface, and implementing classes using its method signatures are steered towards
an Object-rich representation in Java simply because they return and expect as
parameters Object-subclassed objects. Indeed a naïve implementation of this interface
would have a Node with many String properties, for its name, Namespace URI, etc.

As we shall see below, there are good reasons for resisting this when it comes
to implementing XML in-memory schemes using Java, and indeed for bypassing
what might be seen as a central Java tenet, the central role that Object and its sub-
classes play.

5.1.1. Java bloat

The major contributory factor to the bloatiness of Java DOMs is an underlying bloat
associated with the creation of Java objects. Consider the following simple Java
program:

179

High-performance XML: theory and practice

class Objs
{
public static void main(String[] args)
{
// create one million empty Strings
String[] objs = new String[1000000];
for(int i = 0; i < 1000000; i++)
{
objs[i] = ("" + i);

}
}

}

The heap space necessary for this program to execute to completion is 50 MB, to
create strings which collectively contain only 5.89 million characters.

Note
All timings/memory usages in this paper are taken running from the command
line on a 2.4GHz Pentium desktop machine using a Sun JVM (1.6.0_11-b03)
running Microsoft® Windows™ XP

So even allowing, in this example, for the memory taken by the array's references
themselves, we can still as a rule of thumb reckon that every Java String costs ap-
proximately 40 bytes of memory in addition to its native charactee content. Clearly,
any memory-efficient XML storage implementation needs to work around this inef-
ficiency.

6. The Frozen Stream
Given the XML document:

<root a='value'>
<e>foo</e>
<e>bar</e>
<e>zxc</e>
</root>

Then the usual programmatic representations of this document are as a tree (when
using, for example, a DOM parser), or as a series of events (when using a SAX based
parser).

As we have seen, the disadvantage of the tree-based models as implemented in
Java is their profligacy with memory; the disadvantage of stream-based models is
that they are intractable — we need to represent the entire document in memory
for it to be efficiently queried.

180

High-performance XML: theory and practice

We have also seen that an approach which implements XML document as a
large number of Java Objects is doomed to use several times as much memory as
the serialised document.

Thus a key component of a more memory approach must be to minimise the
number of Java Objects used. More primitive types must instead be used.

Figure 1. XML document as stream

Notice that the events recorded here are more finely-grained than the events gener-
ated by SAX parsing. Where in SAX the start of an element is a composite of all that
element's namespace and attribute information, in the model above the start element
event is separated out so that (for example) each attribute and attribute value is an
event also. This is necessary so that every phenomenon in the XML document being
parsed can have a corresponding event generated so that the entire infoset can be
represented in a granular form without information loss.

Note
The view of an XML document as a fine-grained event sequence is taken even
further by Simon St.Laurent's “Ripper” parser [10].

181

High-performance XML: theory and practice

Notice also that many events have some additional text information associated
with them, which are represented in the diagram by a box to their right.

6.1. Fine-grained Events
In order to avoid the Object overhead discussed above the stream representation
must be held in memory using primitives. A natural choice is to use one byte per
event, with certain values corresponding to certain events.

So a “start document” event might be represented by the byte 0x80, a “start
element” by the byte 0x81, etc. Bytes in the range 0x80 - 0xFF are reserved for rep-
resenting events. The purpose of bytes in the range 0x00 - 0x7F is discussed below.

6.2. Pooled String Storage
A large proportion of most XML documents is the textual data of various names
(e.g. element and attribute names) and character data content (e.g. element text and
attribute values). By representing these as indexes into some dictionary it is possible
to reduce the amount of storage space required, particularly if the XML document
has many re-used strings. Such an approach is taken by the Fast Infoset initiative
[4] in which many string values are replaced by indexes into a number of string
tables.

An extension of this method, and one that is particularly suitable for the frozen
stream model, is to replace all strings with indexes into a table of all the distinct
strings encountered during parsing.

182

High-performance XML: theory and practice

Figure 2. XML document as stream, with pooled string storage

As can be seen, the stream becomes one in which certain events have a string asso-
ciated with them. In memory these are stored immediately following the event with
which they are implicitly associated: so, the start of a element named “root” is rep-
resented by the byte value for an element start (0x81 say) and then a index into the
string table for the string “root” – 1 in the example above. The model is similar to
that of instructions and operands in assembly language programming, whereby
certain instructions affect the interpretation of subsequent bytes.

When the number of an index value is greater than can be held in a single byte,
some form of encoding is required. Because the values 0x80 - 0xFF are reserved for
bytes indicating events, 7 bit values (i.e. bytes in the range 0x00 - 0x7F can be used
to encode index values. Two advantages of this mechanism are that an iterator over
the bytes can clearly identify the extent of bytes in an encoded value (any values
with an eighth bit set acts a delimiter), and that only as many bytes as are necessary
to efficiently encode the index value, are used.

7. Implementation Experience
An implementation of the frozen stream in Java shows its memory usage and speed
compares favourably to DOM:

183

High-performance XML: theory and practice

Table 2. Memory use and time taken for common XML tasks

Memory neededTime TakenTask
117 MB10.9sBuild Frozen Stream

7.1. Scanning
However, performance when performing real-world operations was disappointing
slow. The poor performance was a consequence of the large amount of time taken
scanning bytes. This performance issue can be addressed through the introduction
of "signpost" pseudo-nodes into the stream.

7.2. Signpost pseudo-events
These pseudo-nodes are items in the stream which use reserved values (i.e. with
the high bit of each byte set) to indicate that they should be interpreted as events,
not as data, but they do not correspond to anything in the XML infoset. Instead,
their purpose is to route iterators more efficiently through the stream. So, for ex-
ample, a signpost pseudo-event might express "next following sibling - 5000 bytes
forward". An iterator searching for such a following sibling would thus be able to
move straight to that position without any intervening scanning.

Again, these signposts take an instruction-followed-by-operand like form as
bytes in the stream representation of the XML, with the data being an encoded form
of an integer indicating a byte offset.

This approach does trade-off memory use and performance. Introducing such
signpost events obviously increases the size of the stored stream. It also increases
the computation necessary when building the stream. The payoff however, is a
dramatic decrease in the amount of memory scanning required when iterating an
in-memory stream.

Currently, experimentation has led us to introduce the following events, including
psudo-events marked with an asterisk (the inclusion of theseis reflected in the above
timing and memory use report):
• start element
• end element
• attribute name
• attribute value
• *following sibling
• *no following sibling
• *preceding sibling
• *no preceding sibling

184

High-performance XML: theory and practice

• *parent
• namespace uri
• processing instruction name
• processing instruction value
• comment value
• CDATA section
(Optionally, we also introduce items for line and column numbers, but this is for
niche use and not considered here.)

7.3. Making it useful
An efficient in-memory representation of XML is all very well, but is of little use if
all it does in get built and occupy memory. Clearly, to be useful there should be
some means of making it usable with other XML processing software.

For example, the popular Jaxen XPath engine [7] provides mechanisms whereby
it can be used to query any in-memory XML document representation irrespective
of how it is implemented. Unfortunately Jaxen is heavily predicated on the use of
objects, so major surgery on the code base has been necessary to adapt it for use
with frozen streams. The result of this activity is presented in the slides which ac-
company this paper.

8. Future Directions

8.1. Hardware assistance
If byte-by-byte scanning is too slow, one approach is simply to increase the amount
of stream examined for each iteration during scanning. So, if say we were examining
64 bits at a time, rather than 8 (i.e. 8 bytes rather than one), then our scanning time
would be reduced if the underlying system was capable of performing such multi-
byte operations efficiently - as modern computer systems are.

This is where the beauty of using bit masks comes to the fore: because we know
that any byte representing (say) a start element event has a distinctive bit pattern,
it is possible to construct multi-byte masks that may be logically compared with a
multi-byte section of stream in order to ask the question: is there a start element
event in here? The result of such a logical operation will tell us if there is, and if so
which byte(s) are matched.

While this approach is possible with high-level languages, it lends itself most
naturally to an assembly-language (or even hardware) implementation. Parallel
pipelines and dual core chips open up further possibility for a highly optimised
assembly language stream scanner.

185

High-performance XML: theory and practice

Is there also potential for using some of the multimedia-targetted features of
modern computer systems for stream processing, since the XML 'stream' might be
thought of as close to a video or audio stream? Interestingly, for example, copying
a subtree when using streams becomes merely a memory copy (blit) operation.

8.2. In-memory model for mainstream application software
Although XML has become the prevalant serialisation format adopted in many IT
domains, it risks being caught in this very niche. Many progreammers, especially
those unused to XML, view XML as "just" a serialization format, a persistent form
of what they more naturally view as in-memory typed properties. Without getting
into a discussion of the damage this friction has caused to the XML world, I think
it is safe to assert that the poor performance of older XML in-memory models may
be part of the cause of such thinking. Nobody who wanted to write a high-perform-
ance office application would use, for example, a DOM as a backing.

Using a native XML store as the backing for application is not just a question of
dogma, but may bring real benefits. For example the two standardised office docu-
ment formats (ODF and OOXML) do not describe the in-memory representation of
office documents. So we cannot, for example, run an XPath or XQuery expression
against a "live" office document, but need to serialize it before running the query.
Similarly, we cannot update document "in place" using idiomatic XML procedures.
Allowing live processing of standardised XML formats would increase the interop-
erability of office application software, just as this has (nearly) achieved with in-
browser XML.

8.3. An Iterator API?
While it may be argued there are already a good number of APIs for programmatic
treatment of XML, and it is certainly true that designing good ones is hard, the
frozen stream model naturally suggests its own kind of API, very different from
tree-based, pull-based, or SAX-based ones.

The stream representation suggests an iterator (or cursor) based API, since we
only want to reify a single event as a node at any one time. This fits well with some
likely scenarios for usage of this efficient model, particularly for XPath querying of
content which - in theory - requires just such an API for an implementation.

At its simplest such an API needs a single Iterator class (perhaps implementing
the java.util.Iterator Interface), and the ability to specify, in XPath terms, which axis
is being iterated. Further enhancement would see the ability to set a filter on the
iterator (so it iterating only certain events), and to have an "iterate-to" feature,
whereby one could set a condition which when met, stopped iteration.

186

High-performance XML: theory and practice

Certainly such a cursor-based API would be a new and unusual way of approach-
ing XML processing. It remains to be seen whether it would be popular with human
users, though machines, of course, do not care for an API's style!

9. Conclusions
A general conclusion is that in 3 years since first starting on this work, the situation
has improved. Java is more optimized, and DOMs are leaner and faster than they
were with a new Java installation. Informal testing has also shown that among
custom in-memory models, the Saxon XSLT, XQuery, and XML Schema processor
[9], that Rolls-Royce of XML toolkits, consistently sets a benchmark that is hard to
better. However, that is not to say there is not further room for improvement and
study in this space, bearing in mind the following conclusions:
• Many existing in-memory models tend to bloat
• Java implementations have a particular tendencies to bloat when large numbers

of Objects are used
• Much existing XML software implies or required large numbers of Objects
• Efficiency can be required by building a system around known limitations - in

the case of Java by using primitives
• There may be scope for fresh thinking about XML APIs
• There is scope in such an implementation for architecture aware optimisations

that may bring substantial performance benefits
• The frozen stream model is a viable means of achieving better XML performance
• The stream can be tuned to balance memory/speed requirements according to

the usage scenario

Bibliography
[1] Jon Bentley. Programming Pearls. 2nd Ed., Addison-Wesley, 2000.
[2] Alex Brown. Frozen streams: an experimental time- and space-efficient

implementation for in-memory representation of XML documents using Java.
Extreme Markup Languages 2006. http://www.idealliance.org/papers/extreme/
proceedings/xml/2006/Brown01/EML2006Brown01.xml.

[3] W3C DOM Working Group. Document Object Model. http://www.w3.org/DOM/
DOMTR

[4] Paul Sandoz, Alessando Triglia and Santiago Pericas-Geertsen. Fast Infoset. Sun
Developer Network. http://java.sun.com/developer/technicalArticles/xml/
fastinfoset/.

187

High-performance XML: theory and practice

http://www.idealliance.org/papers/extreme/proceedings/xml/2006/Brown01/EML2006Brown01.xml
http://www.idealliance.org/papers/extreme/proceedings/xml/2006/Brown01/EML2006Brown01.xml
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissidies. Design Patterns.
Addison-Wesley, 1995.

[6] Elliotte Rusty Harold. Processing XML with Java. Addison Wesley, 2003.
[7] Jaxen: universal XPath Engine http://jaxen.org/
[8] Bertrand Meyer. Object-oriented Software Construction. 2nd Ed., Prentice Hall

1997.
[9] Michael Kay. Saxon XSLT, XQuery, and XML Schema processor.

http://www.saxonica.com/products.html
[10] Simon St.Laurent. What can you do with half a parser? Extreme Markup

Languages 2003. http://www.mulberrytech.com/Extreme/Proceedings/html/
2003/StLaurent01/EML2003StLaurent01.html

[11] Thread on xml-dev, Subject “XML Performance in a Transacation”. Initiated
by David Carver 22 March 2006.

[12] Wikipedia. http://wikipedia.org/.
[13] The Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/.
[14] Mohamed Zergaoui. State of the art on streaming. Extreme Markup Languages

2008. http://www.balisage.net/Proceedings/html/2008/Zergaoui01/
Balisage2008-Zergaoui01.html.

188

High-performance XML: theory and practice

http://jaxen.org/
http://www.saxonica.com/products.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/StLaurent01/EML2003StLaurent01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/StLaurent01/EML2003StLaurent01.html
http://wikipedia.org/
http://xerces.apache.org/xerces2-j/
http://www.balisage.net/Proceedings/html/2008/Zergaoui01/Balisage2008-Zergaoui01.html
http://www.balisage.net/Proceedings/html/2008/Zergaoui01/Balisage2008-Zergaoui01.html

Imagining, building and using
an XSLT virtual machine

Mark Howe
Jalfrezi Software Limited
<mark@cyberporte.com>

Tony Graham
Menteith Consulting Ltd

<Tony.Graham@MenteithConsulting.com>

1. The allure of all-XML server technology
In recent years XSLT has become the canonical language for XML transformation.
There are good reasons for this. XSLT standards are supported by [9] and respected
by multiple proprietary and open-source vendors4. The technology provides a
higher-level programmer model than DOM and SAX. Because XSLT is itself an XML
vocabulary, representation of XML within XSLT often displays a lisp-like elegance5,
and the transformation of XSLT by XSLT – for example when producing meta-
stylesheets [6] – allows lisp-like program generation.

XSLT has most frequently been used for batch-type processing. The input XML
is produced by hand or by non-XSLT technology. The transformed XML is written
to file or piped to another program. XSLT itself is stateless between transformations,
in the sense that the content of an input document has no effect on the processing
of a subsequent input document. There are many situations in which this behaviour
is exactly what is wanted, for example, when transforming database content into
XSL-FO in order to produce printed output. Cocoon [2] is one example of a frame-
work designed to optimise successive XSLT transformations of XML content.

In 2007 Mark Howe wrote an XSLT-driven website for a French estate agent. It
generates a range of interactive search and display options directly from data expor-
ted in XML format from a proprietary offline database. While almost all the pro-
cessing was handled by XSLT, some bespoke procedural code was still needed to
turn HTTP requests into XML and to dispatch the output document as an HTTP
response. The sending of email also had to be handled using non-XSLT technology.
Nevertheless, this project confirmed that much of what is traditionally achieved
using procedural languages and database back ends can be handled by XSLT.

4Eg LibXSLT, Saxon and Xalan
5See eg [7] p595: “XSLT, although not specifically designed as a generic or functional language [like lisp,
ML or Haskell], has inherent capabilities to enable [higher-order functions].”

189

Another project involved the creation of a content management system for a
social networking site6. The project started off in Perl CGI scripts which produced
XML markup that was transformed into HTML by XSLT. Gradually more algorithmic
functionality such as access control crept into the XSL stylesheet. This led to duplic-
ation of data, since XSLT could not easily make SQL requests and Perl could not
process serialized XML efficiently.

Another part of the social networking site required a rich-media chat room. The
server was written in object-oriented Perl, with I/O in XML over persistent sockets.
The solution worked, but when questions were raised about adding new features
and about potential security issues it became clear that the global semantics of the
server could be obscured by the use of object-oriented programming to represent
virtual world states.7 A language such as XSLT would make transformations explicit,
but there was no off-the-shelf way to use XSLT within a real-time server.

Together, these experiences engendered excitement about the possibilities of
algorithmic processing with XSLT, tempered by the often inelegant reality of trying
to interface XSLT technology to databases, multiple sockets and DOM-based tech-
nology. What would need to happen for XSLT to be able to provide all the function-
ality needed to run server applications?

Dimitre Novatchev's work on FXSL [4] has shown that XSLT “... is in fact a full-
pledged functional programming language.” However, we decided that a practical
real time server solution required a less pure and more pragmatic approach. We
therefore began exploring the viability of building an XSLT virtual server, using
Perl and LibXSLT to test our ideas. That exploration eventually led to the Xcruciate
project [10], based around a virtual machine called Xacerbate.

Our initial architecture consisted of two processes, which we referred to as the
outer and inner loop. The outer loop collected socket input, turned it into XML and
submitted it to inner loop for processing using XSLT. The output of the XSL trans-
formation was piped back to the outer loop, which split up the output document
and dispatched it to sockets as necessary. However, we soon realised that XSLT
needed information not related directly to XML input, from the passage of time,
through socket connections and disconnections to OS signals. We therefore moved
towards an event-based model. Each input document describes an event. Each
output document describes zero or more actions, such as output to one or more
sockets or a request to disconnect one or more sockets.8

The system described above is stateless between transformations, as is usually
the case with XSLT. Statefulness was added via an output option that rewrites XML

6http://www.stpixels.com
7This point is developed by [1] pp327-328: “... The objects of virtual worlds don't correspond well to the
objects of an object-oriented programming language... Designers often think in terms of objects and
methods when they should be thinking of multiple inheritance hierarchies and commands.”
8Not all input results in output, and not all output is generated by socket input. For example, timer
events may be ignored, and may initiate output to sockets.

190

Imagining, building and using an XSLT virtual machine

data files9. Those files can be read by subsequent transformations via xsl:document().
Furthermore, XSL files can be rewritten the same way and used by subsequent
transformations via xsl:include or xsl:import. This provides a mechanism for
preserving stateful data, and also for modifying the transformation itself while the
virtual machine is running.

Around this time our proof of concept implementation began to seg-fault Perl.
The issue seemed to have something to do with conflicts between Perl and LibXML
memory management when performing multiple transformations on the same data
structures, but the precise nature of the problem eluded us. For this and other
reasons we therefore decided to recode in C, and to take advantage of the richness
of the C interface to LibXSLT to optimise and extend the virtual machine in various
ways.

Table 1. Project and subproject names

LanguageRoleName
PerlOverall project, daemon control scriptsXcruciate
CVirtual machine based on LibXSLTXacerbate
PerlHTTP gateway for XacerbateXteriorize
XSLT 1.0Library for handling HTTP requestsXiguous
XSLT 1.0Library for manipulating virtual worldsXcathedra
TCL/TKTest client for XiguousXtravagate

2. Inside Xacerbate, an XSLT virtual machine
Xacerbate is a general purpose server that speaks XML. Exactly what XML the client
should send and exactly how the server will respond depends on the application
the server is running. Inasmuch as the client requests are XML and the server re-
sponses are XML, it follows that an Xacerbate application is an XSLT stylesheet, is
XML markup that compiles to XSLT transforms, or is a combination of both.

2.1. Implementational decisions
Xacerbate, like all Xcruciate projects, is open source and is released under the BSD
licence. Xacerbate is targeted for use on Un*x operating systems. It is being developed
and deployed on various flavours of Ubuntu, CentOS, and Red Hat operating sys-
tems.

9We considered using exsl:document to produce secondary documents but ultimately opted for keeping
all output within one document, which simplifies sandboxing of write operations.

191

Imagining, building and using an XSLT virtual machine

Xacerbate uses LibXSLT, which is a XSLT 1.0 processor, because LibXSLT is
already installed on the operating systems of interest, is fast, documents how to
implement extension functions, and implements the most useful of the EXSLT ex-
tension functions. Xacerbate is implemented in C because LibXSLT is implemented
in C.

Man pages for the executable programs and configuration files are written in
DocBook XML and transformed into 'man' format using xsltproc and the DocBook
'manpage' stylesheet. Additionally, structured comments in the C source code
(similar to Javadoc comments) are processed using the GTK-Doc utilities to produce
DocBook 'refentry' XML, are combined with narrative chapters also written in
DocBook XML, and processed to produce a reference manual in HTML.

2.2. Architecture
Xacerbate can be viewed as a virtual machine that runs one XSL transformation per
cycle. The Xacerbate server is an executable C program, but applications are written
in XSLT, and there may be one or more layer of XSLT libraries between the applic-
ation and the server. The XSL transformation has no access to OS-type functionality
other than via the XML API provided by Xacerbate.

The Xacerbate virtual machine runs on XML. It receives XML from clients and
other Xacerbate servers, passes XML to the application stylesheet, and acts on
commands emitted as the result of the XSL transformation. It also reads its config-
uration files as XML. The functions of the Xacerbate virtual machine include:

• Manage socket connections and disconnections by clients and other servers
• Accept XML documents from clients and other servers
• Send XML documents to clients and other servers
• Pass XML documents to the transformation
• Cache stylesheets and data documents
• Modify data files under control of the transform
• Connect to other servers
• Log connections and other activity
Other than accepting incoming socket connections, receiving documents, and

logging, everything is under the control of the transformation.
Non-XML input and output can be handled via gateways. For example, Xteriorize

accepts HTTP requests, translates them into XML which is passed to Xacerbate, and
the corresponding output from Xacerbate is converted into an HTTP response. From
an architectural point of view, Xacerbate treats a gateway like any other client -
decisions about what end users can do via the gateway are dealt with at the XSLT
level.

192

Imagining, building and using an XSLT virtual machine

2.2.1. Block Diagram

Transform
Document
Cache

File System

Inner Loop

Outer Loop

Clients
Other

Xacerbate
serversSignals

Asynchronous queueWrapped
XML,
status

XML

Wrapped
XML,

commands

XML XML XML

Error
queue

Wrapped
XML

XML

Extension Functions

Main
Thread

XML XML

XML

XML XML

2.2.2. All XML, all the time

2.2.2.1. Client <--> Xacerbate (and Xacerbate <--> Xacerbate)

For the purposes of the Xacerbate engine, the format of the XML received from the
client is immaterial, provided there is a 0x0 character separating the documents.
Xacerbate is in use in chat-rooms, serving XHTML and generating Flash applets:
the specific functionality is provided by the application that is written in a combin-
ation of XSLT and higher-level markup.

The XML text received from the client is parsed both to check that it is well-
formed and to convert it into an in-memory representation as a LibXML2 xmlDoc.

193

Imagining, building and using an XSLT virtual machine

2.2.2.2. Outer loop --> inner loop

XML from the client is wrapped in an element with attributes recording its origin
and then queued for the inner loop without being reserialised as markup. Notifica-
tions of socket connections and disconnections and periodic timer events also gen-
erate XML documents (as xmlDoc) that are also queued for the inner loop.

Example 1. XML from client wrapped by Xacerbate element

<xacw:input xmlns:xacw="http://xacerbate.co.uk/xacw"
source="connection" socket_id="-1">
<gateway_auth>LittlePigLittlePigLetMeComeIn</gateway_auth>

</xacw:input>

2.2.2.3. Inner loop --> transform

XML from the outer loop is placed on the command stack without modification
(and without reserialisation). stack output events also cause documents to be placed
on the stack, and they pre-empt the documents received from the outer loop. For
example, the stack is used when compiling scripts into XSLT.10

2.2.2.4. Transform --> inner loop

The transform result is also an XML document (as a xmlDoc). The children of the
document element are each a command to be acted on by the Xacerbate engine. The
child element's name and attributes specify the action, and the element's content,
if any, serves as data.

2.2.2.5. Inner loop --> outer loop

Five actions in the transform result make the inner loop queue an XML document
for the outer loop:
• Send an XML document to one or more sockets, i.e., to one or more clients or

other servers
• Disconnect a socket
• Open a socket to connect to another server
• Cause the server to shut itself down

10Explicit manipulation of the command stack partially addresses one curious aspect of Xacerbate pro-
gramming, namely that changes to data structures requested during a transformation have no effect on
those data structures within the lifetime of the current transformation. A subsequent command, posted
on the stack, can see those changes, which facilitates certain multi-step modifications. However, doing
as much as possible per transformation maximises efficiency, so this technique should be used with
caution.

194

Imagining, building and using an XSLT virtual machine

• Log errors from the transform

2.2.2.6. Document cache --> transform

Xacerbate overrides LibXSLT's document loader function so the main stylesheet,
stylesheets accessed using xsl:include or xsl:import, and documents accessed
using document() are fetched from the document cache.

When the requested document is not already in the cache, Xacerbate opens the
file on the filesystem and parses it into a xmlDoc in the cache.

2.2.2.7. Inner loop <--> document cache

In response to a command in the transform result to modify a file, the inner loop
fetches the file from the document cache. It both reinserts the modified file into the
document cache (as a xmlDoc) and writes the file to the filesystem (as XML).

Whenever the inner loop reloads the stylesheet, it flushes the document cache
before reloading to avoid problems with stale references in the dictionaries of the
libxslt data structures for the stylesheet modules.

2.3. XSLT extension functions
Xacerbate implements several extension functions that are available to the applica-
tion. The functions are registered in the http://xacerbate.co.uk/xacf namespace
and conventionally use the xacf prefix.

2.3.1. ID functions

These functions provide identifiers that are unique across multiple transformations.
• xacf:declare_id(id) attempts to declare a unique id.
• xacf:generate_id() registers a new identifier.
• xacf:last_id() returns the last id generated using xacf:generate_id().

2.3.2. Error functions

These functions provide a simple flag-based mechanism for detecting if errors have
occurred during the execution of library functions. The application code can use or
ignore information provided via this mechanism. It should be noted in passing that
these functions could be hijacked to implement modifiable variables in XSLT.
• xacf:clear_errors() clears all set error flags and returns true if any flags were

cleared.
• xacf:set_error(name) sets an error flag for (the lowercase form of) name.

195

Imagining, building and using an XSLT virtual machine

• xacf:clear_error(name) clears an error flag for (the lowercase form of) name.
• xacf:check_error(name) checks whether an error flag is set for (the lowercase

form of) name.
• xacf:check_errors() returns true if any flags are set. Returns false if no flags

are set or if an error occurred.
• xacf:errors() returns a space-separated list of the (lowercase form of) names

of flags that are set.

2.3.3. Authentication-related functions

These functions provide functionality for authentication-related tasks that are either
impossible or computationally expensive to implement in XSLT.
• xacf:crypt(key,salt) provides one-way encryption for storing and testing

passwords.
• xacf:hex(number,width?) returns the number as a hexadecimal string. If width

is provided, pads the string to at least that many digits.
• xacf:random_seed(seed1,seed2,seed3) sets the random number seed.
• xacf:random() returns a random number in the range 0.0 to 1.0 (exclusive).
• xacf:nrandom() returns a random integer in the range 0 to integer - 1.

2.3.4. Miscellaneous functions

• xacf:epoch_time() returns the number of seconds since the Epoch (00:00:00
UTC, January 1, 1970), which allows cheap time calculations, eg for authentication
timeouts.

• xacf:test(string,regex,flags?) provides regex testing via the PCRE library.
It is used to implement an application-level type-checking system.

• xacf:parse(string) parses string as XML. This is useful for handling user-
generated XML, eg markup submitted via a web form.

• xacf:version() returns the extension function library version.
• xacf:conf(param) returns the value of a configuration parameter.

2.3.5. Accessing extension functions

It is a quirk of LibXSLT that prefixes for extension functions must be declared as
prefixes of extension elements, even when there are no extension elements defined
in that namespace.

Since it has been the defensive practice to declare all known namespaces in every
stylesheet whether or not they are used in that stylesheet, some of the prefixes also

196

Imagining, building and using an XSLT virtual machine

end up being explictly excluded, so a typical xsl:stylesheet start-tag is as shown
below.

Example 2. xsl:stylesheet start-tag

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:date="http://exslt.org/dates-and-times"
...
xmlns:anon="http://xcruciate.co.uk/anon"
extension-element-prefixes="exsl func xacf xigf xcaf app anon"
exclude-result-prefixes =

"date xsl xac xcr xacw xacf xig exsl str func xigf xtef">

2.3.6. Testing extension functions

Extension functions are tested both at the C level (using CUnit) and at the XSLT
level.

xacdproc, a cut-down xsltproc variant that also loads the extension functions'
C library, runs tests written for Eric van der Vlist's XSLTunit testing framework to
test the extension functions.

XSLTunit is used since it requires only XSLT 1.0, whereas most other frameworks
require XSLT 2.0 or Java (or .Net) or both.

3. Example 1: Handling chat-room and HTTP requests within the
same transformation
For testing purposes we have developed a minimal application that handles both
HTTP requests via Xteriorize and chat-type persistent connections. For your own
non-trivial applications you would use the various XSLT libraries to simplify the
application code, but this minimal application has the merit of showing all the work
required by Xacerbate of the XSLT layer, inline.

Example 3. Minimal Xacerbate XSLT: declarations and default template

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xacw="http://xacerbate.co.uk/xacw">

<xsl:output omit-xml-declaration="yes" method="xml"
encoding="UTF-8" indent="yes"/>

<xsl:template match="/*"/>

197

Imagining, building and using an XSLT virtual machine

The first template makes ignoring events the default. This is particularly useful if
timer events are not used by the application.

Example 4. Minimal Xacerbate XSLT: client connections

<xsl:template ►
match="/xacw:input[@xacw:source='self'][@xacw:event_type='socket']">
<xsl:if test="xacw:event_input[@xacw:event='client_connected']">
<xacw:outputs>
<xsl:call-template name="to_socket">
<xsl:with-param name="socket"

select="xacw:event_input/@xacw:socket_id"/>
<xsl:with-param name="content">
<hello you_are="world"/>

</xsl:with-param>
</xsl:call-template>

</xacw:outputs>
</xsl:if>

</xsl:template>

The second template matches events generated on socket connection and sends a
short welcome message to that socket. Most useful applications would keep track
of open sockets and attempt some form of authentication.

Example 5. Minimal Xacerbate XSLT: socket input

<xsl:template match="/xacw:input[@xacw:source='connection']">
<xacw:outputs>
<xsl:call-template name="to_socket">
<xsl:with-param name="socket" select="@xacw:socket_id"/>
<xsl:with-param name="content">
<xsl:choose>
<xsl:when test="http_request">
<http_outputs

id="{http_request/http_info[@name='xteriorize_request_id']/.}">

<http_output type="response" response_code="200"
response_code_text="OK" ►

http_version="{http_request/http_version/.}">
<http_document document_type="text/html" uuencoded="no"

doctype="xhtml1-strict">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Minimal response to input</title>
</head>
<body>

<h1>Thanks for your HTTP request</h1>

198

Imagining, building and using an XSLT virtual machine

<h2>
You asked for
<xsl:value-of select="http_request/http_url/."/>

</h2>
</body>

</html>
</http_document>

</http_output>
</http_outputs>

</xsl:when>
<xsl:otherwise>
<message>Thanks for your zero-terminated input element called

<xsl:value-of select="local-name(*[1])"/></message>
</xsl:otherwise>

</xsl:choose>
</xsl:with-param>
</xsl:call-template>

</xacw:outputs>
</xsl:template>

The third template tests incoming XML to see if it looks like an HTTP request from
Xteriorize (the next example describes such requests in more detail). If so, it returns
an HTTP response containing a simple HTML web page. For all other socket input
the template sends back a message element that echos the name of the incoming
element.

Example 6. Minimal Xacerbate XSLT: generating socket output

<xsl:template name="to_socket">
<xsl:param name="socket"/>
<xsl:param name="content"/>
<xacw:output xacw:destination="connection" xacw:socket_id="{$socket}">

<xsl:copy-of select="$content"/>
</xacw:output>

</xsl:template>

</xsl:stylesheet>

The final, named template produces an Xacerbate output document, and is used
for both forms of output above.

Many frameworks allow XSLT to produce HTML output, but few can control
chat-room interaction from the same stylesheet, let alone the same template. One
of the aims of the Xcruciate project is to allow tight integration between website
and virtual world media.

199

Imagining, building and using an XSLT virtual machine

4. Example 2: From HTTP request to Shockwave file creation
In this example the HTTP is received by Xteriorize, the Xcruciate project's HTTP
gateway. Xcruciate turns the request into XML, adds some useful information about
the connection itself and leaves Xacerbate to process the request.

Example 7. Input event generatedbyXML-encodedHTTP request for /makeaflash2
from Xteriorize

<xacw:input xmlns:xacw="http://xacerbate.co.uk/xacw"
source="connection" socket_id="-1">

<http_request>
<http_info name="xteriorize_request_id">0</http_info>
<http_info name="xteriorize_serveraddr">127.0.0.1</http_info>
<http_info name="xteriorize_serverport">8080</http_info>
<http_info name="xteriorize_peeraddr">127.0.0.1</http_info>
<http_info name="xteriorize_peerport">50222</http_info>
<http_info name="xteriorize_epoch">1233900564</http_info>
<http_info name="xteriorize_datetime">

2009-02-06T06:09:24+00:00
</http_info>
<http_info name="xteriorize_request_length">431</http_info>
<http_method>GET</http_method>
<http_url>/makeaflash2?screenname=banana</http_url>
<http_version>HTTP/1.1</http_version>
<http_header_line name="accept-charset">

ISO-8859-1,utf-8;q=0.7,*;q=0.7
</http_header_line>

<!-- Potentially long list of browser headers here -->

<http_body/>
</http_request>

</xacw:input>

In this case the code that processes the request has been specifed in a data file using
non-XSLT markup. The script definition consists of various tests on the request,
plus the algorithm to be executed if all the tests are passed. In this case the algorithm
is defined by wrapping basic control structures around XPaths, but Xacerbate can
potentially use any meta-stylesheet that compiles to valid XSLT.

Example 8. Script definition for /makeaflash2

<script id="makeaflash2" secure="0">
<method>get</method>
<post_max>4096</post_max>

200

Imagining, building and using an XSLT virtual machine

<parameter name="screenname" presence_optional="0" value_optional="0">
<valid_type>screenname</valid_type>
<invalid_error>invalid_screen_name</invalid_error>
<missing_error>you_must_supply_a_screenname</missing_error>

</parameter>
<algorithm>

<variable name="fileid">
<value-of>xacf:generate_id()</value-of>

</variable>
<copy-of>

xtef:write_file(
'flash',
concat('hello',$fileid,'.swf'),
'mxmlc',
app:hello_flash(xtef:param($REQUEST,'screenname'))

)
</copy-of>
<copy-of>

xcaf:response_html(
$REQUEST,
xtef:i18n('makeaflash_return_page'),
xcaf:link(concat('/flash/hello',$fileid,'.swf'),'Click here')

)
</copy-of>

</algorithm>
</script>

At startup, scripts are compiled into XSLT which is linked into the transformation
used by Xacerbate, resulting in the following func:function definition. At present,
parameter and other checks are handled by a wrapper, but these could be compiled
into the function inline to increase performance by reducing the run-time search
space.

Example 9. Compiled function definition for /makeaflash2

<func:function name="anon:makeaflash2" xsl:extension-element-prefixes="func">
<xsl:param name="REQUEST"/>
<xsl:param name="SCRIPT"/>
<func:result>

<xsl:variable name="fileid">
<xsl:value-of select="xacf:generate_id()"/>

</xsl:variable>
<xsl:copy-of

select="xtef:write_file(
'flash',
concat('hello',$fileid,'.swf'),

201

Imagining, building and using an XSLT virtual machine

'mxmlc',
app:hello_flash(xtef:param($REQUEST,'screenname'))

)"/>
<xsl:copy-of
select="xcaf:response_html(

$REQUEST,
xtef:i18n('makeaflash_return_page'),
xcaf:link(concat('/flash/hello',$fileid,'.swf'),'Click here')

)"/>
</func:result>

</func:function>

In Xcathedra, the Xcruciate project's XSLT layer for handling HTTP requests, it is
assumed that script definitions are represented as func:functions, because XPath
function calls are easy to build and evaluate dynamically:

Example 10. XSLT snippet that builds and evaluates anXPath expression to process
a script request

<xsl:when test="not(xacf:check_errors())">
<xsl:copy-of select=

"dyn:evaluate(concat('anon:',$script/@id,'($request,$script)'))"/>
</xsl:when>

The result of calling the meta-stylesheet-generated function on the HTTP request
is one Xacerbate output document that will be passed back to Xteriorize. The payload
document contains two HTTP output elements. The first instructs Xteriorize to
compile the enclosed MXML and write the resulting Shockwave file within the
docroot. The second generates an HTTP response containing an HTML document
with a link to the freshly-generated Shockwave file.11

Example 11.Output documentproducedbyXacerbate in response toHTTP request

<xacw:output xmlns:xacw="http://xacerbate.co.uk/xacw"
destination="connection" socket_id="-1">
<http_outputs id="0">
<http_output type="write_doc_to_file" directory="flash"
file="helloa3.xml" url_path="flash"
url_name="helloa3.xml" filter="mxmlc">
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">

11It would be entirely possible to serve the Shockwave file directly, but the MXML compiler is too slow
to form the basis of a scalable on-demand Shockwave production system. A more plausible scenario
involves using the MXML compiler in admin mode to produce resources to be served statically to other
users.)

202

Imagining, building and using an XSLT virtual machine

<mx:Button label="Hello banana"/>
</mx:Application>

</http_output>
<http_output type="response" response_code="200"

response_code_text="OK" http_version="HTTP/1.1">
<http_document document_type="text/html"

uuencoded="no" doctype="xhtml1-strict">
<html xmlns="http://www.w3.org/1999/xhtml">

<!-- Lots of html here -->

<h1>Flash animation published!</h1>
<p>

Click here

</p>

<!-- Lots more html here -->

</html>
</http_document>

</http_output>
</http_outputs>

</xacw:output>

5. Future development
More work needs to be done, and some of it is expected to be done between the
writing of this paper and its presentation at XML Prague 2009.

5.1. Security
Security is crucial for any server technology. Xacerbate has some inherent advantages
in terms of security, by virtue of running application code within a virtual machine
and coercing all I/O into well-formed XML. Nevertheless, some potential issues
have been identified and are being addressed.

5.1.1. Flood control

Configuration file parameters for controlling the volume and frequency of documents
received from a client need to be implemented.

203

Imagining, building and using an XSLT virtual machine

5.1.2. Controls on file reading

The initial strategy was to impose a chroot-like directory for all file reading. How-
ever, this proved to be incompatible with the use of shared XSLT libraries. The
proposed solution is to specify a list of readable directories in the configuration file.

Xacerbate also uses the LibXSLT security framework to stop stylesheets from
reading from the network and to prohibit writing files directly from the stylesheet.

5.1.3. Controls on file writing

From the beginning Xacerbate has restricted file writing to a directory declared in
the configuration file. However, exsl:document provides a potential mechanism
for writing to arbitrary locations. The solution is to disable the exsl:document
functionality since, in any case, Xacerbate provides its own mechanism for multiple
output documents.

5.1.4. Controls on configuration file access

At present, XSLT can access all configuration file entries. There are occasions when
this may not be desirable. The solution is to implement a server-wide blacklist. (The
list will be server-wide as the risks depend largely on the type of applications being
run, the deployment strategy for different Xacerbate units and the trustworthiness
of the users maintaining those units.)

5.2. Data integrity
Server applications should be as robust as possible in the area of data integrity.
Three issues have been identified for future work.

5.2.1. Validation

Relax NG validation is to be implemented for incoming and outgoing XML, as well
as for modifiable data and transform files. The extent of validation will be configur-
able.

5.2.2. Persistent ids across sessions

While the xacerbate-specific id functions described above are a step forward on the
native XSLT ones in terms of persistence, there is still a potentially non-trivial
problem when the server is restarted using data files modified during a previous
session. The solution is for Xacerbate to store id information, and to provide the
option to retreive this information on restart.

204

Imagining, building and using an XSLT virtual machine

5.2.3. File backup strategy

At present modifiable files are modified constantly, which makes taking any form
of backup difficult. The solution is to provide support for writing copies of the files
to an alternative location at a predefined frequency, possibly with log-type rotating
names.

5.3. Development environment
These developments are intended to facilitate the lives of application developers.

5.3.1. JavaScript

To make it even easier for people who are not XSLT experts to write applications,
we intend to implement a script extension element using the Seed library, since
Seed already has introspection information for LibXML2 object types. Once the
implementation matches the definition of EXSLT's func:script, the code will be
submitted for inclusion in LibEXSLT.

5.3.2. Debugger

LibXSLT has its own debugger utility. The same debugging callback mechanism
could be implemented in Xacerbate so that an Xacerbate debugger could debug
both the Xacerbate virtual machine and the transform from the one session.

5.4. Improved and new virtual machines

5.4.1. Increasing throughput

The speed of the Xacerbate virtual machine has yet to be a bottleneck, but there are
several ideas for how to speed it up. This may involve not writing every state change
to disk or adding more threads, e.g., for writing files to disk. It has so far been
prudent to get Xacerbate working properly and to measure its performance before
attempting any speedup.

5.4.2. Proof of concept implementations in other languages

There is nothing that ties Xacerbate to being implemented in C or ties the transforms
to libxslt provided that the Xacerbate implementations behaves correctly or that the
XSLT processor implements the extension functions correctly.

For example, Xacerbate could be implemented in Erlang – the asynchronous
queues in Xacerbate have a strong similarity to messages in Erlang – once there is
an Erlang driver for LibXSLT.

205

Imagining, building and using an XSLT virtual machine

Xacerbate could be implemented in Java once the extension functions were im-
plemented for a Java XSLT processor.

5.4.3. XSLT 2.0?

XSLT 2.0 offers many features that would be of potential interest to Xcruciate applic-
ation writers, including native support for functions and the capacity to manipulate
generated XML without recourse to exsl:node-set(). However, it would still be
necessary to write extension functions and to take control of aspects of the document
cacheing process. Also, garbage collection is not ideal behaviour in a long-running
server application for virtual worlds.

6. Conclusion
Xcruciate is very much work in progress - there is more work to do on the Xacerbate
virtual machine, and experimentation with different programming idioms for the
XSLT layer has hardly begun. Nevertheless, progress to date suggests that the basic
model provides a viable basis from which to develop cross-media applications
within an all-XML environment.

Bibliography
[1] Richard A Bartle. Designing virtual worlds. 2004. New Riders Publishing.
[2] Cocoon. http://cocoon.apache.org.
[3] Community initiative to provide extensions to XSLT. http://www.exslt.org/.
[4] Dimitre Novatchev. The Functional Programming Language XSLT - A proof through

examples. http://fxsl.sourceforge.net/articles/FuncProg/
Functional%20Programming.html.

[5] System for documenting C code. http://library.gnome.org/devel/gtk-doc-manual/
stable/.

[6] Michael Kay. MetaStylesheets: On how, and why, XSLT can be used to transform
XSLT (or XML Schema, or XQuery). http://2006.xmlconference.org/proceedings/
26/slides.pdf.

[7] Sal Mangano. XSLT Cookbook. 2003. O'Reilly Media, Inc.
[8] GObject JavaScriptCore bridge. http://live.gnome.org/Seed.
[9] The Extensible Stylesheet Language Family (XSL). http://www.w3.org/Style/XSL/.
[10] Xcruciate: real-time XSLT for cross-media social networking. http://

www.xcruciate.co.uk/.

206

Imagining, building and using an XSLT virtual machine

http://cocoon.apache.org
http://www.exslt.org/
http://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html
http://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html
http://library.gnome.org/devel/gtk-doc-manual/stable/
http://library.gnome.org/devel/gtk-doc-manual/stable/
http://2006.xmlconference.org/proceedings/26/slides.pdf
http://2006.xmlconference.org/proceedings/26/slides.pdf
http://live.gnome.org/Seed
http://www.w3.org/Style/XSL/
http://www.xcruciate.co.uk/
http://www.xcruciate.co.uk/

Advanced Automated Authoring
with XML

Petr Nálevka
University of Economics, Prague

<petr@nalevka.com>

Abstract

This article proposes a set of powerful XML technologies to automate authoring
of large, detailed and highly visual documentation which would be difficult
and error prone to reproduce manually. The author further proposes best-
practices for XML authoring and introduces a simple yet powerful framework
which supports tasks typically related to document publishing and integration
of information from various sources.

Rather than building a complex theoretical background this article focuses
on being very practical. It demonstrates the use of various technologies on a
case study taken from the networking industry.

Keywords: Authoring, Publishing, XML, DocBook, SVG, Saxon, Ant,
Visio, Excel

1. Introduction
There are many reasons why to use semantic automated authoring tools rather than
using presentational visual word processors. As there are loads of articles on this
topic, there is no reason to go into details. The following text summarizes only the
most important pros and cons.

Why doing automated authoring

Content separated from style this allows pluggable styles; the same document
is produced with a completely different styling
or suited for a different media without doing
any changes to it

Auto-generation many document elements such as table of con-
tents, numbering, contextual headings etc... are
auto-generated for the author

Professional looking outputs follows typesetting standards, uses hyphenation,
advanced kerning etc...

Highly customizable output only the medium is the limit

207

Modularity documents may be split into smaller chunks and
than combined in variable ways, this helps to
avoid any duplicities which are hard to maintain

Why NOT doing automated authoring

Visual editing to the authors knowledge, there are no tools which would al-
low semantic editing of documents with the same level of
visual user experience as presentational word processors

This article demonstrates that publishing automation does not end with auto gen-
erated ToCs or references. There is a far greater potential in specific applications.
It introduces a specific problem domain and shows how DocBook [1] and other
excellent XML technologies has been utilised and extended to automate the authoring
process as much as possible.

Publishing automation is achieved through a framework which is basically a
pure XML (some would say POX) application. Data are described in XML domain
specific language, transformations are defined in XSLT [6] and the procedural aspect
is expressed using ANT [14] build files, again in XML format.

This article is basically a celebration of XML. It shows what immense flexibility
is gained when semantics is attached to data.

The key benefits of what is being proposed in this article

• no redundancy in data
• highly specific domain model perfectly suited and intended for instant changes
• professional looking typesetting
• 100% control over the output
• potential applications beyond publishing

2. The case study
The author of this article works for a company which implements large scale net-
working projects like nation wide backbones or inter-bank networks.

Even the projects differ a lot from each other they share a significant portion of
the domain model.

Common elements of the domain model

• Each project has one or more sites in one or more cities. Each site has a geograph-
ical location, contact information and other properties.

• Sites are usually interconnected using networking protocols with specific con-
figuration.

• There is a set of hardware devices at each site, some of them installed in racks.

208

Advanced Automated Authoring with XML

• Network with certain criteria is modelled. This includes different communication
technologies and protocols at each network layer. For example IP address plan
is modelled at layer 3.

The aim of an automated authoring system is to support the project from the very
beginning — the proposal stage — until the project is hand over to the customer
with detailed documentation. The same domain model is used through different
stages of the project life cycle and different kind of documents are being generated
out of it to support the individual stages.

Documents auto-generated from the samedata during the project life-cycle phases

1. Proposal
• Commercial Proposal
• Technical Proposal

2. Design
• Network design
• Per-site documentation

3. Implementation
• Time and progress planning
• Installation guides
• Compliance testing How-Tos
• Detailed per-site documentation

4. Support
• Inventory registry
• Network status

3. Domain modelling
DocBook [1] is a perfectly suitable grammar for describing documents. But event
the desired output are in fact various documents, it makes a good sense to model
the domain first in a domain specific language and than transform it automatically
into DocBook in the next stage.

Expressing the data in a well designed and highly specific language will always
be beneficial over the use of a generic purpose grammar. Most of all, such data are
easier to express, understand, change, reuse and validate.

Modelling domains in XML has several specific characteristics over object ori-
ented programming or UML modelling. In addition, the grammar designer needs
to find answers to the following design questions:
• Use rather attributes or elements to model a certain aspect of the domain

209

Advanced Automated Authoring with XML

• Use ID references or rather prefer tree structures
• Direction of ID references between entities
Those decisions significantly influence the ease of entering new data, maintaining
them and understanding them. It also determines how difficult it is to work with
such data in terms of expressing transformations or validation rules. In many cases
those two concerns go against each other.

Sites Network

Equipment

Site

City

Location

Net
IP Plan

Address

Connection

Protocol

Bill of Qt.Product

Config

Type

Rack

Device

Component

Serial
Nr.

Role

Figure 1. High level overview of the case study domain model

Obviously it is far more important to design an elegant DSL where expressing data
is straightforward. Complexity in processing may always be reduced by applying
simplification transformations to the data first, before further processing1.

3.1. Schema and validation
Usually the domain model is the most rapidly changing part of any IT application
or system. Therefore it is important to decide how loosely or strictly we like to define

1This approach is commonly used in XML grammars (e. g. Relax NG or NVDL simplification).

210

Advanced Automated Authoring with XML

the model. If every little change needs to be propagated into the processing XSLT
stylesheets and the schema, such change requires a lot of time and resources.

It took several projects until the domain model for networking projects described
in Section 2 settled down in some more stable form. Thinking that you can model
a perfect language from the beginning, create a perfect schema for it and use it un-
changed is a pure fiction.

Having an XML Schema defined for your grammar from the beginning may be
a maintenance overhead. Every time there is a change in the model, not only current
data needs to be migrated, but also the schema and stylesheets need adjustments.

On the other hand, validation of data is important. There has to be some way to
know whether changing a certain aspect of the structure of the input data will cause
some XSLT stylesheets malfunction. Moreover, even a perfectly designed grammar
cannot guarantee data consistency2. In the networking domain, there are many
potential data inconsistencies. For example an IP address is assigned to a network
where it does not belong to because of the very nature of the IP protocol.

This article proposes validating data loosely3 as an alternative to the traditional
strict validation approach. A perfect language to define loose schemas is Schematron.
In Schematron everything is allowed by default, unless a rule exists which says
otherwise. Moreover, using the full power of XPath, Schematron is able to express
even very complicated rules which operate over multiple contexts in the source
document. Probably the biggest advantage of Schematron over grammar-based
schema languages is the ability to output domain specific highly descriptive dia-
gnostics 4. Find more about Schematron and its unique features in [8], [9] and [10].

The loose Schematron schema for the networking domain checks only those as-
pects of the XML structure which are necessary for the underlying stylesheets to
work properly. In addition it contains high level consistency checks with verbose
domain specific diagnostic messages.

Also XSLT stylesheets themselves may be written in a way to make them as
loosely couplet with the domain model as possible. The aim is to minimize the impact
of refactoring in the model to the actual stylesheets.

The loose approach to the domain model helps to keep it open to extensions and
flexible when being changed.

2A perfect example of data inconsistency is the HTML tables model, where it is possible to define over-
lapping cells.
3The aim of this article is not to discourage people from writing schemas. It just proposes an pragmatic
lightweight alternative approach in case flexibility and fast change management is more important than
precise binding.
4For example a diagnostic message may tell us that according to the target rack configuration there is a
missing device in rack X on site Y.

211

Advanced Automated Authoring with XML

3.2. Namespaces and specific accents
Having a common domain specific language shared across multiple projects allows
to reuse XSLT stylesheets for common tasks. Duplicating similar stylesheets in
various projects would be error prone and would cause maintenance difficulties.

On the other hand, projects differ from each other, and we can hardly expect
that in the real word a common language would describe all their specifics. Specific
grammars based in a different namespace (assigned to a particular project) are used
to describe such specific properties of certain projects.

Specific stylesheets may than handle the specific constructs. It is easy to recognize
stylesheets which are specific to a particular project, as they contain the xmlns de-
claration for the particular namespace.

4. The authoring framework
This section introduces an authoring framework which helps to auto-generate
documents out of data described in a domain specific XML grammar. It shows what
is the framework composed of, what tools are involved and the overall architecture
of the system.

4.1. The framework in a nutshell
The framework itself is not tight to the networking domain. It is a generic purpose
set of tools which automates the tasks involved in publishing documents. It consists
of several components, responsible for passing the source domain specific XMLs
through a transformation chain to generate the requested document out of it.

First the DSL data get simplified and than they are transformed by applying a
set of XSLT stylesheets on them (see Figure 2). Common XSLT templates are shared
among all projects which use the same DSL. This allows to write a stylesheet once
and reuse it in several other projects. Specific functionality may be implemented
by importing a common stylesheet and extending it on a per project bases.

212

Advanced Automated Authoring with XML

DocBook
Books or
Articles DBDBDB

Auto-generated
Schemas and
Diagrams

SVG

Static
Diagrams
and Images

SVG
PNG
PDF

Auto-generated
DocBook
fragments

DB

Static
DocBook
fragments

DB

DSL
Data

XML

XML

Common

XSLT

Specific

XSLT

DSL Stylesheets

Figure 2. Document generation — Phase 1

The aim of the framework is to generate a document describing the source data.
The result of the transformations usually are DocBook fragments such as chapters,
sections, tables and figures or diagrams in Scalable Vector Graphics (SVG) format
[4]5.

The generated document fragments are combined together with static fragments
(usually descriptive texts, diagrams and images created directly by content authors)
into chapters using XInclude [11].

For each resulting document there is a DocBook article or book skeleton which
contains meta-data about the document (the DocBook <info> element with authors,
organization, disclaimer, copyright, titles and so on). In addition, it includes a set
of static or generated chapters or sections.

In the next phase, the DocBook sources are transformed into PDF (or eventually
HTML) format (see Figure 3). This is done through a DocBook stylesheet customiz-
ation layer [2]. The layer is composed of several styles one for each corporate identity
involved.

5A typical result of such transformations for the networking project domain is for example: a table listing
all sites, a table with wireless connections between sites, per-site networking schemas etc...

213

Advanced Automated Authoring with XML

DocBook
Customization Layer

Style 1

XSLT

Style 2

XSLT

DocBook
Stylesheets

XSLT

DocBook
Books or
Articles DBDBDB

HTML

PDF

PDF

PDF

Static PDFs for merging
(e.g. appendices)

Figure 3. Document generation — Phase 2

There is a three level hierarchy in customization stylesheets. In the first level, there
are customizations which are shared among all styles. Those declare common
typesetting best practices shared by all produced documents.

Than there are styles which define appearance for each corporate identity in-
volved. For example each subsidiary, product or department may have different
requirements on styling of documents (for example different title pages, logos, colors,
fonts). DocBook is very flexible in the way the output may be customized, even in
a pixel precise manner. Even a very creative corporate identity design may be easily
implemented in the DocBook customization XSLT if it adheres at least to some extend
to general typesetting conventions.

The last layer composes of specific modifications to different styles. For example
the header of the document may slightly differ in case the output is a company of-
ficial letter, a proposal or a detailed design document. For the proposal we like to
highlight the company name or maybe even logo on every page in the header but
for detailed design documents with hundreds of pages this is not desirable. It rather
makes sense to use the header to show the current context (chapter / section) of the
document.

Finally, if required, the resulting PDF document can be automatically split and
merged with static PDF blocks using a PDF manipulation library. In some cases it
makes no sense to convert large presentational appendices into DocBook and

214

Advanced Automated Authoring with XML

maintain them. For example PDF data sheets for equipment involved in a certain
project. Merging such blocks into the resulting document needs to be automated.
Doing manual merges every time the document changes is cumbersome and error-
prone.

4.2. XInclude
XInclude [11] is a perfect tool to make XML data modular and to reduce duplicities.
It helps to keep a single source of information. Changing a certain information in
one place will automatically result in changes wherever the information is included.

XInclude is used in the DSL data to modularize it for easier maintenance, but
duplicate data are avoided already in the DSL design 6.

XInclude plays a more important role when interweaving individual document
fragments to compose the resulting document. In this case XInclude allows to pick
arbitrary sets of elements from a set of XML documents. Moreover, includes may
be embedded inside other includes. For example an included section may have
further figure includes inside. Correct relative URI resolution of hrefs inside the
included fragments is done through xml:base attributes.

One of the common issues which needs to be coped with is the limitation of
XML that each well-formed document needs to have a single root element. Imagine
one of the XSLT stylesheets generates a sibling set of sections. Such sections can't
be stored in a well-formed XML document without having a common root element.
A correct DocBook ancestor for a set of sibling sections is for example a chapter. In
case, the described set of sections needs to be included into another chapter, simple
XInclude would produce a chapter in chapter situation, which is an invalid DocBook.
In this case the xpointer [12] construct has to be used to specify the range of elements
to be included7.

Although it brings flexibility and easier maintenance, the use of XInclude is also
problematic. Even being a W3C recommendation for several years now the tool
support in Java (a mainstream programming platforms) is quite buggy. Several
workarounds need to be done to get correct XInclude behaviour with the latest
Xerces (2.9)8 and Saxon (9.1).

First of all Xerces has to be patched to produce correct xml:base attribute for
embedded includes9. Than still Xerces supports only the XPointer element() scheme

6DSL data can be normalized for example using ID references.
7There are much more use-cases where the use of xpointer is necessary. For example a main table which
has all source data and several other tables which include only certain rows from the main table. Or a
certain figure has to be included into another context from a DocBook chapter and so on.
8Note that Xerces is the default XML parser in the latest Java JVMs
9This is a known bug since 2005. xml:base for embedded includes are not relative to the parent include
base URI. The patch (bug 1102) has been released just recently (middle 2008) and it still did not make it
into the latest release.

215

Advanced Automated Authoring with XML

[13]. This means only individual elements may be referenced. Moreover, only DTD-
determined shorthand IDs are supported10 and addressing element by position is
error-prone.

Unfortunately the only way how to make a reasonable subset of XPointer
working with latest Xerces is to associate a DTD with the DocBook documents using
DOCTYPE. To make offline generation of documents possible and to allow DocBook
fragments on any arbitrary place in the file system an XML Catalog needs to be
configured in the transformer.

Still with all the patches and workarounds listed above, only a very basic XIn-
clude/XPointer subset is supported. Either whole XML files or individual elements
marked with IDs can be included. Advanced constructs as for example ranges or
XPath are not functional.

Even in this crippled form, XInclude is extremely useful and the authoring
framework would suffer significant drawbacks without it.

4.3. Automate with Ant
Ant [14] is a multi-platform Java build tool. The build process is described using
XML. It consists of a hierarchical set of targets dependent on each other. Each target
than consists of a sequence of tasks. Each task is described by a certain XML element
with certain attributes and child elements to define the tasks execution parameters.

In the authoring framework, where all other components are mostly declarative,
Ant plays the procedural role. Its build file specifies the whole document generation
process from the DSL data transformations to the resulting document generation.

There are generic build definitions common to all projects within the framework
and specific (per project) build definitions which may override the generic behavior.
In simple scenario, the generic definition may be used as it is to generate documents
from DSL data. Placing stylesheets and input data into a certain directories within
the project directory structure will result in applying all XSLT automatically to the
source data.

For complex projects with several different target documents the default beha-
viour needs to be overridden. In such case, the specific build definition is basically
a serie of transformation tasks defining inputs, outputs and stylesheets.

The Ant's default XSLT transformation task is not sufficient for the needs of the
authoring framework which requires XInclude (as discussed in Section 4.2) and
XSLT 2.0 and XPath 2.0 support (for more powerful and easier XSLT templates and
Schematron validation). That's why the authoring framework implements it's own
Ant macro for XSLT transformations.

10Without an DTD no attribute is considered to be an ID, even the xml:id attribute.

216

Advanced Automated Authoring with XML

Example 1. The <saxon> task usage

The simplest usage11.
<saxon source="${domain}" output="${out}" stylesheet="${xslt}"/>

Advanced usage with up-to-date checks and stylesheet parameters. Up-to-date
checks allow to regenerate the target only in case the sources did change. The default
source is the file in the source attribute, but in case of XInclude use, all the included
files need to be specified manually using <uptodat-source> element.

<saxon source="${domain}"
output="${out}"
stylesheet="${xslt}">

<uptodate-source><fileset dir="${domain.dir}">
<includes name="**/*"/>
</fileset></uptodate-source>
<parameters><arg value="param1=1"/></parameters>
</saxon>

Example 2. Running Saxon with catalog and XInclude support

This <java> task definition, is the core of the <saxon> macro defined in the generic
Ant build files.

<java classname="net.sf.saxon.Transform" fork="true" ►
failonerror="@{failonerror}">
<arg value="-xi"/>
<arg value="-x"/><arg value=" ...ResolvingXMLReader"/>
<arg value="-y"/><arg value=" ...ResolvingXMLReader"/>
<arg value="-r"/><arg value=" ...CatalogResolver"/>
<arg value="@{source}"/><arg value="@{stylesheet}"/>
<parameters/><classpath>
<path refid="transform.classpath"/>
<pathelement location="... resolver${os-env}.jar"/>
</classpath>
<jvmarg value="-client"/>
<jvmarg value="-D... DocumentBuilderFactory= ...DocumentBuilderFactoryImpl"/>
<jvmarg value="-D... SAXParserFactory= ...SAXParserFactoryImpl"/>
</java>

In addition to the <saxon> tasks the authoring framework common build definition
contains several other useful XML manipulation tasks. All of them are defined with
the use of common Ant tasks as Ant Macros. No Java programming was required
to define them. They are pure XML.

11output and stylesheet attributes are optional. If output gets omitted standard output is used, if
stylesheet is missing the xml-stylesheet processing instruction is used to determine the stylesheet.

217

Advanced Automated Authoring with XML

Further custom Ant tasks

schematron Schematron validation task, uses the <saxon> task.
xmlconcat Concatenates several XML files into one big XML file with an artifi-

cial root element. This is useful in case the a stylesheet needs to
operate over several such XML files at once and the use of XInclude
is not possible because it is no known in advance what files shall
be concatenated12.

csv2xml Converts a comma separated values file into XML tabular format
which later may be processed using an XSLT stylesheet and thus
turning the CSV file into the DSL format. This is a way how to turn
for example purely presentational data in Excel into a semantic XML
by adhering to some agreed structure of the input Excel document.

5. SVG
Modern documents need to get visual in order to succeed in competition. Visual
data are significantly more understandable to humans than paragraphs of texts.
Having a more human understandable proposal may help win a tender. Having a
better understandable documentation may help to sell a product or decrease require-
ments on stuff knowledge.

This trend leads to an increasing ratio of visual data in documents but it may
also increase maintenance requirements. Textual data are usually easier to maintain
especially when doing frequent changes. This section introduces several techniques
how to increase maintainability of visual data through the use of XML technologies.

Scalable Vector Graphics [4] is the technology which can help to maintain visual
data in output documents. The language is XML-based which allows to utilize the
very same XML-based techniques described in the previous sections. Today's FO
processors as well as browsers are very well able to handle SVG data which means
SVG may be used directly without any conversions to produce visual PDF or HTML
outputs.

5.1. Image callouts
The DocBook documentation [1] describes callouts as — “ a visual device for asso-
ciating annotations with an image, program listing, or similar figure. Each location
is identified with a mark, and the annotation is identified with the same mark.”

Keeping annotations separate from the actual annotated content makes it much
easier to apply changes to that content. This is especially true for image callouts.
Visually annotating images (diagrams, photographs...) is a frequent use-case but

12Alternatively collection() may be used.

218

Advanced Automated Authoring with XML

creating and maintaining them manually is a nightmare. Even DocBook stylesheets
do not implement image callouts by default, the common DocBook customization
layer of the authoring framework described in this article does.

The authoring framework uses purely XML technologies (XSLT and SVG) to
create annotation regions and marks within annotated images.

First the DocBook sources are being preprocessed by XSLT and for each annotated
<mediaobject> with an image reference an SVG file is created using the XSLT
<result-document>. The generated SVG size is based on the size of the original image,
and the image gets included in the background using <svg:image>. Than the
stylesheet reads coordinates of the individual annotated regions and generates SVG
rectangles including numbering for each annotation. The fileref of <imagedata>
is altered to point to the newly generated SVG file. Figure 4 shows the generated
image — an annotated back of a router device with ports and buttons explained.
The DocBook example source fragment follows.

Figure 4. Image callouts result

Example 3. DocBook source for the annotated image

<imageobjectco>
<areaspec>
<area xml:id="p1"
coords="45,20 111,36"
units="px"/> ...

</areaspec>
<imageobject>
<imagedata
width="383" height="140"

219

Advanced Automated Authoring with XML

fileref="images/cisco1750.png"/>
</imageobject>
<calloutlist>
<callout arearefs="p1">
<para>WIC/VIC Slot 1</para>
</callout>...

Rather than pre-processing the DocBook document, an alternative option for image
callouts is to place the SVG generation directly into the DocBook customization
stylesheet where it naturally belongs. But in this case we need to use an XSLT 2.0
construct (<result-document>) within an XSLT 1.0 DocBook stylesheets13 or we
could use processor specific extensions for that.

5.2. Graphs
Another frequently used visual element in documents are graph-like diagrams.
Although it would be possible to enable automatic graph layouting within the au-
thoring framework, this is out of scope of this article which rather demonstrates a
different approach.

Auto-generated graphs may safe a lot of time and resources especially when
considering a huge amount of diagrams to maintain. But even advanced layouting
algorithms are involved, the result can never compete in terms of beauty or human
readability with manually layouted diagrams.

A typical example of graphs in the networking domain are network diagrams.
Those are usually undirected graphs, where nodes represent some kind of a network
device (router, switch...) and edges are labeled with interfaces, IP addresses and
protocols.

Networking experts love to use Microsoft Visio for drawing network diagrams
as it has nice layouting features and a huge clipart gallery of various networking
devices. From the XML tool chain perspective Vision has quite good SVG export
which makes it possible to post-process the diagrams automatically.

The networking projects domain model groups individual sites into sets of a
certain type. Those sets share same hardware configuration and same networking
schema. Only the individual IP addresses, interfaces and device names differ accord-
ing to the IP plan for each site. This means the diagram authors only draws a schema
per site type rather than maintaining schemas for each individual site. Correct per-
site IP addresses, interface and device names are obtained by the authoring frame-
work stylesheets from the DSL data when automatically generating detailed per-
site diagrams.

Mapping between Visio entities (usually labels) and the domain specific data is
achieved through Visio custom properties. Visio features special property sets which

13XSLT 2.0 stylesheets for DocBook is currently work in progress

220

Advanced Automated Authoring with XML

may be assigned to the diagram as a whole or to individual entities or groups of
entities. When exporting to SVG, elements in the SVG namespace are wrapped in
Visio-specific elements which preserve many (although not all) Visio-specific in-
formation14.

During generation of the resulting document, each Visio diagram is processed
by an XSLT stylesheet. Each label with a certain set of custom properties is mapped
to an XPath expression in the stylesheet which is than evaluated against the DSL
data and the text of the label is replaced with the retrieved text nodes.

VSD SVG

DSML
Data

XML

XML

XSLT

SVG

Custom Props

Query

Param 1

Param 2

Xpath

Figure 5. Processing Visio diagrams

When exporting SVG, Visio makes several mistakes which needs to be corrected by
the processing stylesheet.

Some auto-corrected Visio SVG mistakes

• styles need to be adjusted to display arrow ending correctly
• only align left works out of the box for labels, right and center needs to imple-

mented in the stylesheet by adjusting the SVG output according to Visio-specific
align information

14This means that the SVG diagram may still be opened in Visio and edited. This helps the content authors
to edit the resulting appearance of the diagrams using Visio directly. Changing the position of some
diagram entity in Visio will result in a changed position also in the generated PDF output. Unfortunately
the exported SVG does not equal to the original native Visio file and some information may be lost
during export. Therefore it is anyway a good idea to keep original Visio sources along with the exported
SVG.

221

Advanced Automated Authoring with XML

5.3. Fully auto-generated SVG diagrams
Layouting graphs automatically is a complex tasks, but some simpler diagrams can
be fully auto-generated easily. For example for the networking documentation it is
important to visualize rack layouts with devices on a per-site bases.

Fully visual rack layouts may help the maintenance personnel recognize the in-
dividual devices at a particular site, see how many interfaces they have or what is
their position within racks.

Domain specific stylesheets in the authoring framework are able to generate
rack layout diagrams automatically by composing different SVG fragments into
one resulting SVG diagram. Rack configurations for individual site types are de-
scribed in the DSL data. Each rack has a number of slots defined which may be oc-
cupied by devices. Each device may occupy one or more slots. An SVG clipart may
be associated with a certain group of devices and thus defining their appearance.
A shared SVG clipart gallery is used to maintain them. If a certain device group
does not have a clipart in the gallery a default device appearance is used.

XSLT stylesheets are used to generate SVG representation of each rack, gather
the different SVG fragments for each device in the rack from the gallery, scale the
graphics to occupy the right amount of slots in the rack and filter everything redund-
ant to obtain a single valid SVG output15.

Device cliparts are set in place using SVG matrix() transformation which
translates the embedded SVG to the appropriate position and scales it up or down
to fill the requires space. This requires to do some mathematical calculations within
the stylesheet including unit conversions.

The aim is to simplify creation of device cliparts in the shared clipart library as
much as possible. All manipulations to the SVG clipart are done automatically by
the stylesheet. Creating a new clipart may be as easy as opening Visio, choosing a
certain device from the palette and exporting it into SVG16.

15Such filtering includes for example merging <style> element contents from various SVG fragments
into a single <style>. Or filtering any embedded <svg:svg>.
16Some FO processors support only a subset of SVG, e. g. XEP does not support gradients. Automatic
processing needs to be done in this case in the stylesheet. For example for gradients, the background
color may be set to a color in the middle of the first and last stop.

222

Advanced Automated Authoring with XML

Figure 6. Auto-generated rack layout

5.4. Other generated graphics
Expressing information in a visual form is very powerful. Why sticking to figures?
DocBook can be enriched by graphics in a more fine grained manner. SVG may be
embedded for example directly into DocBook table cells.

Let's again demonstrate this on the networking domain example which we use
across the whole article. Consider some sites in the project needs to be connected
wirelessly with each other. From their geographical location we can calculate their
distance and azimuth17.

An azimuth is typically expressed in degrees. A nice visual representation of
the azimuth is a circle with a pointer. Such visual documentation may help engineers
installing the wireless directional antennas to point them in the right direction to
gain signal strength. Figure 7 shows visual data being mixed with traditional textual
data in a table. The screenshot is taken from the resulting PDF file. The small SVG
clips are generated directly in the DocBook customization layer and injected into
FO using <instream-foreign-object>.

17This is no issue as XSLT is well equipped for mathematics. For example there are stylesheets in the
authoring framework for the networking domain which do distance and bearing calculations from
geographical coordinates for individual sites. This involves calculations with trigonometric functions
and requires high precision.

223

Advanced Automated Authoring with XML

Figure 7. SVG inside table cells

6. When semantics is missing
Sooner or later any XML authoring framework will need to address the issue how
to gather data from different non-semantic sources. Section 5.2 describes how to
automatically process Visio diagrams. In Section 4.3 there is a little note on how to
export data from Excel/CSV and convert them first into tabular XML and later into
domain specific XML.

There are basically two options how to cope with this issue. Either force users
(even non-technical) to output semantic XML directly or leave the users use the
tools their are used to and attach semantics to data later automatically or at least
semi-automatically.

6.1. Produce semantic XML visually
The stumbling block of wider adoption of XML for authoring is the lack and limit-
ations of visual editing tools. Non-technical people are afraid of XML, they consider
it some sort of black magic.

Developing a good visual tool for XML editing resembles a quadrature of the
circle. Tools are trying to shield the user from all kinds of complexities of the XML
tree and thus getting the users into a position where they are not aware of what
they are actually doing. Such users are unable to solve issues which the editor cannot
solve for them when the scenario gets just a little more complicated.

From the experience of evaluating visual XML editors such as Epic, XMetaL,
Oxygen and XML Mind, it is obvious that those tools are still after years of develop-
ment very far from being perfect18.

Of course the quality of the editors differs very much and each editor is more
or less suitable for a certain set of tasks, but the author of this article has so far best
experiences with the XML Mind editor for it's flexible extensibility, very good level

18A simple test will reveal the immaturity of the tools. Open a DocBook document in Oxygen Author,
click to a paragraph level and insert a new section. No problem, the editor inserts the section right inside
the paragraph and thus producing an invalid DocBook document. As the next step the editor will under-
wave it's own mistake with red.

224

Advanced Automated Authoring with XML

of visual user experience and also for the licensing policy. Anyway, it is still very
difficult to get non-technical users use such tools.

6.2. Non-XML tools
Traditional presentational tools are getting more and more XML enabled recently.
Not only Microsoft Visio has SVG export. MS Word is able to present XML docu-
ments visually and even allow very primitive editing of such documents. MS Excel
has a limited capability to bind tabular data to simple XML schemas and thus pro-
ducing semantic XML out of spreadsheets.

There are also semi-automatic approaches to convert purely presentational
documents from MS Word into DocBook. In theory, Open XML could be transformed
to some form of DocBook which may be later enhanced with additional semantics
manually. Another approach is to open an MS Word document in Open Office and
use it's DocBook export feature. This produces a very ugly DocBook source which
may be partially automatically enhanced (XSLT).

7. Beyond authoring
Authoring is a relatively narrow domain which can be very well handled with XML
tools. But the potential is far greater. There is no need to limit the output to a tradi-
tional document.

Structuring data correctly and assigning semantics to them brings immense
flexibility. With XSLT we are free to transform the data into all sorts of very different
formats to make the best use of them for specific applications. To demonstrate the
potential applications lets show few interesting use-cases specific to the networking
project domain.

7.1. Google Earth
Google Earth uses the Keyhole Markup Language (KML), an XML-based language
for expressing geographic annotation. Having longitude and latitude specified for
each site in the domain model allows to mark and annotate the sites on the Google
Earth surface. Lines connecting individual sites may represent wireless or other
connections, different icons may represent different site types. Clicking on a site
will reveal further information about a particular site.

Having projects visualized in Google Earth is not only imposing, but it also helps
to very well visualize certain aspects of the project for effective project planning,
resource management etc...

225

Advanced Automated Authoring with XML

7.2. Network monitoring
Network monitoring is very important during the support phases of every network-
ing project.

There are already all necessary information in the DSL data to setup a monitoring
system. There are all devices, their IP addresses and interfaces and how are they
connected with each other. Such data may be transformed to create configuration
files for a monitoring system such as HP Open View or Nagios/Nagvis.

With help of the monitoring tools the static domain data may be turned into a
dynamic view of the current network displaying current status of all devices and
connections with flashy green/red colours.

7.3. Device configuration files
The DSL data may be used to automatically generate configuration files for different
type of devices in the network. Specific XSLT stylesheets can be used to configure
routers, switches, firewalls and other device.

Automatic generation will guarantee consistency and may avoid errors when
configuring devices manually.

8. Conclusion
This articles has shown how to automate authoring for detailed and visual docu-
mentation to support all phases of networking projects using purely XML-based
tools. But the networking field was more or less used only as an example use-case.
The principles, approaches and best-practices described in this article are widely
applicable for many different domains.

Moreover the reader witnessed how XML was utilized with advantage to model
a domain specific language, validate data consistency, describe modularity of data,
define data transformations and transformation chains, describe document structures,
style documents and visualize data.

Bibliography
[1] Walsh, N.: DocBook 5.0: The Definitive Guide. 2008. URL: http://

www.docbook.org/tdg5/en/html/docbook.html
[2] Stayton, B.: DocBook XSL: The Complete Guide. Sagehill Enterprises, 2008.

URL: http://www.sagehill.net/docbookxsl/index.html
[3] Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML 1.0 (Second

Edition). W3C, 2006. URL: http://www.w3.org/TR/2006/REC-xml-names-20060816

226

Advanced Automated Authoring with XML

http://www.docbook.org/tdg5/en/html/docbook.html
http://www.docbook.org/tdg5/en/html/docbook.html
http://www.sagehill.net/docbookxsl/index.html
http://www.w3.org/TR/2006/REC-xml-names-20060816

[4] Ferraiolo, J., Fujisawa, S., Jackson, J.: Scalable Vector Graphics (SVG) 1.1
Specification. W3C, 2003. URL: http://www.w3.org/TR/2003/REC-SVG11-20030114

[5] Berglund, A.: Extensible Stylesheet Language (XSL) Version 1.1. W3C, 2006.
URL: http://www.w3.org/TR/2006/REC-xsl11-20061205

[6] Clark, J.: XSL Transformations (XSLT) Version 2.0. W3C, 2007. URL: http://
www.w3.org/TR/2007/REC-xslt20-20070123

[7] Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J., Siméon,
J.: XML Path Language (XPath) 2.0. W3C, 2007. URL: http://www.w3.org/TR/
2007/REC-xpath20-20070123

[8] Nálevka, P., Kosek, J.: Advanced approaches to XML document validation.
University of Economics, Prague, 2007. URL: http://www.idealliance.org/papers/
extreme/proceedings/html/2007/Nalevka01/EML2007Nalevka01.html

[9] Nálevka, P.: Grammar vs. rules. University of Economics, Prague, 2007.
URL: http://nalevka.com/content/Home/regular_grammar-all.en.html

[10] Information technology — Document Schema Definition Languages (DSDL)
— Part 3: Rule-based validation — Schematron. ISO/IEC 19757-3, 2006.
URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/
c040833_ISO_IEC_19757-3_2006(E).zip

[11] Marsh, J., Orchard, D., Veillard, D.: XML Inclusions (XInclude) Version 1.0
(Second Edition). W3C, 2006. URL: http://www.w3.org/TR/2006/
REC-xinclude-20061115

[12] Grosso, P., Maler, E., Marsh, J., Walsh, N.: XPointer Framework. W3C, 2003.
URL: http://www.w3.org/TR/2003/REC-xptr-framework-20030325

[13] Grosso, P., Maler, E., Marsh, J., Walsh, N.: XPointer element() Scheme. W3C,
2003. URL: http://www.w3.org/TR/2003/REC-xptr-element-20030325

[14] Loughran, S., Hatcher, E.: Ant in Action. Manning, 2007. ISBN: 1-932394-80-X
[15] Walsh, N.: Image Callouts. 2006. URL: http://norman.walsh.name/2006/06/10/

imageobjectco

227

Advanced Automated Authoring with XML

http://www.w3.org/TR/2003/REC-SVG11-20030114
http://www.w3.org/TR/2006/REC-xsl11-20061205
http://www.w3.org/TR/2007/REC-xslt20-20070123
http://www.w3.org/TR/2007/REC-xslt20-20070123
http://www.w3.org/TR/2007/REC-xpath20-20070123
http://www.w3.org/TR/2007/REC-xpath20-20070123
http://www.idealliance.org/papers/extreme/proceedings/html/2007/Nalevka01/EML2007Nalevka01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2007/Nalevka01/EML2007Nalevka01.html
http://nalevka.com/content/Home/regular_grammar-all.en.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://www.w3.org/TR/2006/REC-xinclude-20061115
http://www.w3.org/TR/2006/REC-xinclude-20061115
http://www.w3.org/TR/2003/REC-xptr-framework-20030325
http://www.w3.org/TR/2003/REC-xptr-element-20030325
http://norman.walsh.name/2006/06/10/imageobjectco
http://norman.walsh.name/2006/06/10/imageobjectco

228

Xdefinition 2.1
Václav Trojan

Syntea software group a.s.
<vaclav.trojan@xmlprague.cz>

Abstract

The paper describes Xdefinition 2.1 as an integral instrument for the design
and implementation of projects with XML objects. In our concept of Xdefini-
tions we respected as much as possible the requirement of application of XML
documents in the whole process throughout the life cycle of the information
system development. The principal requirements were comprehensibility for
all participants of the individual stages of IS formation as well as the binding
character of the description and its modularity. By comprehensibility we un-
derstand that the description must be short and clear not only for the IT spe-
cialists but also for the wider range of other experts participating in the project,
particularly in the analytical stages. By the binding character we understand
exactness of the description and applicability of the description for the machine
processing: description of data may include also the directives for data pro-
cessing or data generation. The modularity allows decomposition of objects
descriptions and configuration of the versions of their structure in the complic-
ated and permanently changing environment of the distributed system.
Xdefinitions 2.1 also allow defining bindings of the objects to different situ-
ations in the course of their processing.

Xdefinitions itself are XML objects that may be used also as a meta-lan-
guage to describe generally languages above XML.

Keywords: XML, validation, data modeling

Παντα ρει. Everything is in a state of flux
— Herakleitos of Ephesos 535–475 B.C.

1. Why Xdefinitions 2.1?
XML data may be validated with DTD, RELAX NG or XML schema or Schematron.
XML objects can be generated by using for example XSLT transformation. Moreover,
in the data processing we cannot then avoid working with XML objects also with
a universal programming language. In communication with analysts and external
participants we must describe the objects structures in a language they understand.
Thus the project inevitably involves several different forms of the description of

229

identical objects. The problem is that such a system is difficult to maintain and its
integrity might be at risk. It is not easy to make sure that the changes in one form
of description are reflected in relevant sites and in different languages. That is why
in the version 2.1 of Xdefinitions we emphasised maximum comprehensibility of
the description, simple maintenance of objects and possibility of automatic trans-
formation of data to the language of Xdefinitions. We respected also easiness of
implementation.

In the continuously changing world of real projects which involves work with
a large number of XML objects and their generation, processing and modification
or transformation at many often very different sites and in various situations it is
useful to minimise the number of the forms of description. Such tool should be in-
tuitively comprehensible and able to:
1. Describe the valid structure as much as simple and exactly
2. Describe commands for processing of objects in various sites (to minimize de-

pendence of program code on the data structure)
3. Describe generation of objects and guarantee validity of a generated objects
4. Decompose the object description into more simple segments which then may

be used to compose and newly configure more complicated objects
5. Ensure easy implementation to different platforms and environments.
To illustrate the philosophy of Xdefinitions concept we will now try to describe the
work with a simple XML object. Let us take a simple XML object containing inform-
ation about a book:

<book category="children">
<title>Harry Potter</title>
<author>J K. Rowling</author>
<IBSN>9780439887458</IBSN>
<price>39.99</price>

</book>

First we will try to design a formula for generating such an object. Let us imagine
we have a method which for example retrieves from the database a value according
to the name of a column in the line of a table. The name of the column will be the
parameter of this method. For example invoking the method getItem(“cover”) will
return the string “children”. We can simply create the formula for the generation
of our object by describing how the values should be filled in the XML object. So
instead of values in our object we shall simply specify the methods with relevant
parameters that will return the relevant values:

<book category="create getItem('category')" >
<title> create getItem('title') </title>
<author> create getItem('author') </author>
<IBSN> create getItem('IBSN') </IBSN>

230

Xdefinition 2.1

<price> create getItem('price') </price>
</book>

The processor of this description will process the above formula and compose the
subsequent XML objects by creating relevant elements and filling in the values ob-
tained by invoking the functions specified after the key word “create”. The result
of the invocation will then be XML object composed in accordance with the formula
above. The advantage of such description will be independence of the program
code on the structure of the data. Note that the method may be an XPath function
or an external method (however, it can be a built-in method of the processor of
Xdefinitions). The external program doesn't know anything about the structure of
data.

And now let us imagine a different situation when we have an XML object we
want to validate. Let us presume we have methods parsing data in the validated
object and returning a boolean value “true” if the result is correct or value “false”
if the result is incorrect. The formula for validation may then look like:

<book category="optional enumeration('children','adult','unknown')">
<title> required string() </title>
<author> required string() </author>
<IBSN> optional numeric(8,15) </IBSN>
<price> required decimal(4,2) </price>

</book>

As we can see instead of values in this case we have described specification
whether the value is compulsory or optional and we have described the validation
of values by methods verifying the formal correctness of values. The verification of
the type of values may thus be understood again as a specification of a method that
will return a boolean value depending on whether the value is valid. In this case
the processor will proceed in the reverse manner than in our first example. It will
process (parse) the input data and it will check up the format of values by invoking
relevant methods according to the above description. In case the compulsory value
is missing or if the validation method returns false value, the processor will report
an error and the object will not be recognised as valid.

Both above mentioned formulas can be merged into one:
<book category="optional enumeration('children','adult','unknown');

create getItem('category')" >
<title> required string(); create getItem('title') </title>
<author> optional string(); create getItem('author') </author>
<IBSN> optional numeric(8,15); create getItem('IBSN') </IBSN>
<price> required decimal(4,2); create getItem('price') </price>

</book>

In the validation regime we shall ignore the part describing the generation of XML
object.

231

Xdefinition 2.1

When processing XML objects, it may be useful to define instructions determining
what should happen in various situations that could occur in the course of processing
and insert them in the description. In such a case we may for example require certain
actions such as e.g. error notification, deposition of values to the database, etc. So
let us now insert in our description instructions for actions to be executed in certain
situations. For example:

<book category="optional enumeration('children','adult','unknown');
default setValue('unknown')">

<title> required string(); onAbsence error('Missing title') </title>
<author> optional string() </author>
<IBSN> optional numeric(8,15); onError error('Incorrect IBSN');

onAbsence error('Missing IBSN')
</IBSN>
<price> required decimal(4,2); onError error('Incorrect price');

onAbsence error('Unknown price')
</price>

</book>

And bellow we have the formula containing all the above information:
<book category="optional enumeration('children','adult','unknown');

default setValue('unknown');
create getItem('category')">

<title> required string();
onAbsence error('Missing title');
create getItem('title')

</title>
<author> optional string();

create getItem('author')
</author>
<IBSN> optional numeric(8,15);

onError error('Incorrect IBSN');
create getItem('category')

</IBSN>
<price> required decimal(4,2);

onError error('Incorrect price');
onAbsence error('Unknown price');
create getItem('category')

</price>
</book>

It is clear this formula may be used in the mode for XML object generation (create)
or the mode for its processing (and/or validation). In the processing mode we shall
ignore the formula parts related to “create” and in the “create” mode we shall ignore
the instructions concerning processing.

232

Xdefinition 2.1

Such a formula describing methods to be executed in different situations enables
us to describe not only the structure but also the processing of XML data and this
way to minimize number of forms of description. Note that it also minimizes the
dependence of programming code on the structure of data.

2. Models of elements
As we have demonstrated, the description of an element in Xdefinition contains in
the sites of data values the data about their occurrence, generation instructions and
potentially also directions for data processing. The complete element description
in Xdefinitions is called model of element. For the description we use a special
language: script of Xdefinitions. In an element model the script describes values or
text nodes in sites where they may occur. Element model is thus intuitively compre-
hensible because it has a similar structure as the data it describes.

The validation of the types of values in Xdefinitions is performed by so called
validation methods the result of which is a boolean value containing information
about the validity of the parsed or created object. Since these methods may have
parameters which enable further specification of the required features of values,
these parameters can be understood as restrictions for a certain type. For example
formula “numeric(8, 15)” means sequence of minimum 8 and maximum 15 digits.
The whole part of the script describing request for object occurrence and validation
method is called validation section of the script.

It is not sufficient for the description of element features to describe attribute
values and text nodes and that is why Xdefinitions include a special attribute “script”
(from Xdefinitions’ namespace). The script enables us to describe element features
e.g. its occurrence, invocation of methods in various situations, etc. It also describes
occurrences of child elements in the element model. The following example illustrates
the application of the script in case we want to describe that a certain child element
can be omitted or that it can occur more than once:

<author xd:script="occurs +"> required string </author>
<IBSN xd:script="occurs ?"> optional decimal(8,15) </IBSN>

The occurrence description may explicitly state the minimum and maximum number
(unbound limit we can specify as “*”):

<author xd:script="occurs 1,*"> required string </author>
<IBSN xd:script="occurs 0,1"> optional numeric(8,15) </IBSN>
<price xd:script="occurs 1"> required decimal(4, 2) </price>

Default occurrence if the specification is omitted is equal to "occurs: 1" for elements
or “required for attributes”.

To minimize the specification we can omit keywords "occurs", "required" and
"optional". Specification of the occurrence may be reduced to characters ‘?’, ‘+” and

233

Xdefinition 2.1

‘*’. Also, if a method has the empty parameter list it is possible to omit brackets.
The example or reduced form will be:

<book category="? enumeration('children','adult','unknown')" >
<title> string </title>
<author xd:script="+"> string </author>
<IBSN xd:script="?"> ? numeric(8,15) </IBSN>
<price> decimal(4,2) </price>

</book>

3. Groups of objects
Description of more complicated structures requires description of the groups of
objects and potentially their variations. For this purpose we use auxiliary elements
from Xdefinitions’ namespace into which we insert the group items that is being
described. The elements inside the group form description of the nodes that belong
to the group (e.g. elements, text values, processing instructions, comments or groups
again). Xdefinitions enable us to describe the following types of groups:
1. “xd:sequence” groups describes the set of items the occurrence of which corres-

ponds with the sequence in the group description.
2. “xd:choice” group describes the set of elements from which a certain variation

has been selected.
3. “xd:mixed” group are useful if we do not care about the sequence of nodes inside

the group – all node permutations are valid (an analogy to “interleave” in RELAX
NG)

Script can be also used to describe occurrence inside a group:
<foo>

<xd:choice>
<a/>
<b xd:script="occurs 3"/>
optional string()

</xd:choice>
</foo>

The following versions of element “foo” correspond to the above description:
<foo><a/></root>
<foo></foo>
<foo>text</foo>
<foo/>

Similarly as in case of elements, the attribute “script” may be specified also in the
description of groups. For example:

234

Xdefinition 2.1

<root>
<xd:sequence script="occurs *">

<a/>

</xd:sequence>
</root>

To the above description corresponds to any number of element sequences of "foo"
a "bar".

4. Events and actions
As we have demonstrated, in Xdefinitions we can specify invocation of methods to
be executed in various situations or events in course of object processing. For example
in course of data processing it may be important to report detail errors (not only
formal validity of an object). It may be important also to describe object processing
(storing to the database, etc.). Thus in Xdefinitions we enter the names of events
and specification of the method to be executed. This method is called action. The
relevant actions are specified after the name of the event.

Xdefinitions recognise a number of different events. In some cases an action
connected to an event must return a value of a certain type, in other cases no value
needs to be returned. (In the Xdefinition 2.1 the user may also define aliases for the
predefined events to be able to specify which actions are executed or ignored on
different sites.)

Various events may occur in the course of XML objects processing. Bellow we
have listed the principal ones.

4.1. Events defined for all the objects
init – occurs at the start of further processing of an object; the action does not return
a value

create – occurs only in the “create” mode, action for attributes and text nodes
returns value string; for elements it is the iterator and we shall discuss “create”
mode later in greater detail

finally – occurs only after the whole object has been processed (allows to execute
the action following the prior processing of an object, when the whole object, the
errors that occurred etc. are already known; the action does not return a value

onAbsence – object in data is missing; the action does not return a value

4.2. Events defined only for elements
match – invoked prior to the model application (before "init" event). The action
must return boolean value and if the value is “true”, the model is applied, otherwise

235

Xdefinition 2.1

the model is not applied to the given element (we shall return to this situation in
the discussion)

onStart – occurs when processing of element starts (after "init" and after the at-
tributes were validated, before processing of child nodes starts); the action does not
return value

onExcess – occurs when the number of objects exceeds permitted number of
occurrences; the action does not return value

forget – invoked after all events, even after finally. Specification of the event
does not expect any other action. It just releases all data of the processed element
from RAM of the computer. Specification of this event enables to process very large
XML objects.

4.3. Events defined only for text values (attributes and text nodes)
passed – the action is executed only if the validation method returns value “true”
; the action does not return a value

onError – the action is executed only if the validation method returns value
“false”; the action does not return a value

default – occurs when the value is optional and it is missing; the action must
return value of the string type

4.4. Event "match"
Xdefinitions allow - in the element or group script - to describe a situation when
the application of an element model depends on yet another condition. This situation
can be described by the means of "match" event. In this case the result of the action
must be a boolean value. This action is executed prior to the other actions (even
prior to "init" action). It is in fact a filter determining whether the relevant model
will be applied. If the result of the action is "false", the application of relevant
model is skipped (to the given object) and if the result is "true", the model is accepted.
The event "match" allow us to describe different variants of models. The following
example describes various structures of elements that have the same name but
whose structure differs depending on the value of the "type" attribute:

<xd:choice>
<Shape type="string" xd:script="match xpath(@type='circle')">

<r> float </r>
</Shape>
<Shape type="string" xd:script="match xpath(@type='rectangle')">

<a> float
 float

</Shape>
</xd:choice>

236

Xdefinition 2.1

4.5. Event "create"
In the opening section we have mentioned the “create” event. As we have already
said, all actions connected to “create” events are invoked only when we are gener-
ating new XML documents (this mode is called createmode). Otherwise those actions
are ignored. And on the contrary the other actions are ignored in the create mode
(except for the validation section the execution of which can be set by a parameter).
The actions for create event are used to describe how to generate an XML object.
An action for create must return a value which allows creation of the relevant object.
In the case of attributes or text values the result of the action must be convertible
to a character data. In the case of element or groups the result of the action may be
an object convertible to the iterator type which is able to return one or more then
one items – child nodes (or none item). This iterator has two methods: hasNext()
and getNext() and it is from some types of objects generated automatically:

- element, text node (iterator returns just one item)
- nodeList (iterator returns items from the list)
In the case no “create” action is described, a default action depends on the context

in which it is invoked (e.g. the element of a relevant name is automatically created).
Context is generally a part of the XML object tree. Two situations may occur: no
context is available or a context from the previous action is available.

One possible variant of “create” mode execution is when we add as the input
parameter a XML object according to which the result is generated. In such case
“create” mode may be perceived as a transformation of the input XML object (sim-
ilarly as XSLT). In this case create actions can work with a context which may be
set by invoking XPath on the current context. For this purpose we use implemented
method “from” which executes XPath on the current input context.

Unlike XSLT the Xdefinitions guarantee that the generated object is valid XML
(it corresponds to the relevant Xdefinition). To understand following example we
should know that if the result of the operation in action create” is a NodeList, the
create action creates the iterator, which gradually applies the items of this list to the
element description. Bellow we can see the “create” action with XML object on the
input. Let us have an input XML object:

<monarchs>
<monarch>

<name>George I</name>
<reigned>

<start>1714</from>
<end>1727</to>

</reigned>
</monarch>
<monarch>

<name>George II</name>
<reigned>

237

Xdefinition 2.1

<start>1727</from>
<end>1760</to>

</reigned>
</monarch>

</monarchs>

Xdefinition:
<governors>

<king xd:script="*; create from('//monarchs/monarch')"
name="string; create from('name/text()')"
from="int; create from('reigned/start/text()')"
to ="? int(); create from('reigned/end/text()')" />

</governors>

The result of create action will then be:
<governors>

<king name="George I" from="1714" to="1727"/>
<king name="George II" from="1727" to="1760"/>

</governors>

4.6. Alias events
Users may define for the events in Xdefinitions their own alias names. These user
defined events then mean that actions attached to them can be under certain condi-
tions invoked and under different conditions ignored. These conditions can be
specified with the activation of Xdefinitions processor. In this way we can modify
Xdefinitions behaviour in various situations or at various sites.

5. Declaration of the types of values
In Xdefinitions types of values can be also declared separately from the model. For
this purpose we use an auxiliary element “type” from the namespace of Xdefinitions:

<xd:type name = "currency">
<validate> enumeration('GBP','USD','EUR') </validate>
<onError> error('Incorrect currency')</onError>

</xd:type>

The reference to the declared type is formally similar to the specification of validation
method:

<price> currency <price>

238

Xdefinition 2.1

6. Namespaces in Xdefinitions
Xdefinitions – similarly as RELAX NG – treat namespaces in the intentions of
namespace specification in XML 1.0 as with strings to distinguish them from local
names. In Xdefinitions it is possible to define an arbitrary number of namespaces.
The following example shows an Xdefinition describing a model with two different
namespaces (prefixes “a” and “b”):

<xd:def xmlns:xd="http://www.syntea.cz/xdef/2.1"
xmlns:a ="http://www.a.com"
xmlns:b ="http://www.b.com">

<a:foo>
<b:bar a:id="string" />

<a:foo>
</xd:def>

7. References
Within an Xdefinition mutual references to models can be made using “ref” con-
struction. This case is illustrated by the following example:

<xd:def xmlns:xd = "http://cz.syntea.xdef/2.1">
<person>

<firstName> string </firstName>
<lastName> string </lastName>

</person>

<family>
<mother xd:script="ref person"/>
<father xd:script="?; ref person"/>
<xd:mixed>

<daughter xd:script="*; ref person"/>
<son xd:script="*; ref person"/>

</xd:mixed>
</family>

</xd:def>

If we want to enable also references to groups, it is necessary to perceive such groups
similarly as the element models, i.e. to record them as direct child nodes of Xdefin-
itions root and to give them a name. We call such kind of groups the groupmodels.
Therefore an attribute “name” which serves for a reference must be specified in the
group model. Specification to the referred group is written in the script attribute
on the site of reference:

<xd:def xmlns:xd="http://cz.syntea.xdef/2.1">
<xd:choice name="foobar">

<foo/>

239

Xdefinition 2.1

<bar/>
</xd:choice>

<root>
<xd:choice script="ref foobar"/>

</root>
</xd:def>

Xdefinitions also enable making references to the description of attributes:
<xd:def xmlns:xd="http://cz.syntea.xdef/2.1">

<xd:attr name="myAttr"
script="? int(1, 999)" />

<root attr1="ref myAttr" />
</xd:def>

8. Model extension and model modification
You can add to the referred model the attributes and/or we can to add to it the child
nodes simply by declaring them:

<shape>
<x> float </x>
<y> float </y>

</shape>

<rectangle xd:script="ref shape" a="float" b="float" />

<circle xd:script="ref shape">
<diameter> float </diameter>

</circle>

The element „rectangle“ is extended by the attributes „a“ and „b“ and the element
„circle“ is extended by the child element „diameter“.

The properties of referred model can be also redefined (including actions).
Sometimes it we need to skip or omit some object. For this purpose we can redefine
the specification of the occurrence by the keyword „ignore“ (the occurrence of the
object is ignored) or illegal“ (the occurrence of the object is forbidden):

<square xd:script="ref rectangle" b="illegal" />

Attribute „b“ declared in model „rectangle“ is illegal in model „square“.

9. Element "any", otherElement, otherAttribute
To enable description of a situation when any element can occur at any site,
Xdefinitions introduce a special element “any” from the namespace of Xdefinitions.

240

Xdefinition 2.1

We can describe in the script of this element what should happen. Description of a
case when we want to say that also other than specified elements or attributes may
occur in the element model will be described in attributes “otherElement” and
“otherAttribute” from the Xdefinitions namespace.

10. Processing instructions and XML document
In Xdefinitions it is possible also to describe occurrence of the processing instructions
on specified position:

<xd:processingInstruction script="onAbsence genProcessingInstruction('myInstr', ►
'myValue')"

name="checkName"
value="checkValue"/>

When processing XML objects the Xdefinitions processor must be instructed which
model is a document root. The document is described in Xdefinitions by means of
an auxiliary element from the Xdefinitions namespace.

<xd:document>
<root>
...

</root>
</xd:document>

A choice group enables specification of more variants of root elements in the docu-
ment:

<xd:document>
<xd:choice>
<foo/>
<bar/>

</xd:choice>
</xd:document>

11. Recursion in Xdefinitions
References in Xdefinitions can be recursive and we can thus describe complex lan-
guages generally above XML. Simple example of recursion in the model:

<foo>
<bar>

<foo xd:script="?; ref foo" />
</bar>

</foo>

Note that the inner „foo“ element has occurrence „?“, otherwise recursion would
be infinite! Valid structures are:

241

Xdefinition 2.1

<foo><bar/></foo>
<foo><bar><foo><bar/></foo></bar></foo>
<foo><bar><foo><bar><foo><bar/></foo></bar></foo></bar></foo>
...

The recursive references we can specify also in the groups:
<xd:choice name="command">

<if>
<condition xd:script="ref expr"/>
<xd:choice script="ref command"/>
<else xd:script="?">

<xd:choice script="ref command"/>
</else>

</if>

<assign ...>
...

</xd:choice>

12. Collections of Xdefinitions and mutual references
An Xdefinition can contain more element models and/or groups. However, it is also
possible to compose a pool of Xdefinitions, in which in the individual Xdefinitions
mutual references can be made to objects they contain. The mutual references are
composed from the names of Xdefinitions and it is separated from the names of
referred objects with the character “#”. Such a set of Xdefinitions may be perceived
as a collection. In this way it is possible to describe projects working with a large
number of XML objects. The collection item can be an Xdefinition or another collec-
tion.

For example:
<xd:collection xmlns:xd="http://cz.syntea.xdef/2.1">

<xd:def name="site1">
<foo xd:script="ref site2#bar" />

</xd:def>

<xd:def name="site2">
<bar> string </bar>

</xd:def>
</xd:collection>

In Xdefinition situated in „site1“ is a reference to the model in Xdefinition in „site2“.
Xdefinitions may be stored in different files in different sites and from these building
stones the collection can be composed. The parts can be specified by attribute “in-
clude” in the collection.

242

Xdefinition 2.1

Let us have two Xdefinitions with the description of an object “Person” stored
in different files: in the first case describes data with the name and address and the
second version contains only the numerical identifier to the database:

1) file at site “http://site1.com/person.xd“:
<xd:def xmlns:xd="http://cz.syntea.xdef/2.1" name="person">
<Person name="string" address="string" />

</xd:def>

2) file at site „http://site2.com/person.xd“:
<xd:def xmlns:xd="http://cz.syntea.xdef/2.1" name="person">
<Person id="integer" />

</xd:def>

At local file let us have an Xdefinition describing an object “Family” in a file „/my-
folder/family.xd“:

<xd:def xmlns:xd="http://cz.syntea.xdef/2.1" name="family">
<family>

<mother xd:script="ref person#Person" />
<father xd:script="?; person#Person" />
<xd:mixed>

<daughter xd:script="*; ref person#Person" />
<son xd:script="*; ref person#Person" />

</xd:mixed>
</family>

</xd:def>

The structure of the individual family members will depend on whether we compose
the collection from Xdefinitions from file described in paragraphs 1) or 2). We can
specify collection composed with:

<xd:collection xmlns:xd="http://cz.syntea.xdef/2.1"
include="file://folder/family.xd, http://site1.com/person.xd" />

or with:
<xd:collection xmlns:xd = "http://cz.syntea.xdef/2.1"

include="file://folder/family.xd, http://site2.com/person.xd" />

The fact that the Xdefinitions collection may be composed from different parts
makes it possible to describe in detail the variations of objects and their behaviour
at different sites of the project.

13. Macros
The flexibility of description is further extended by the possibility of macro declar-
ations and macro specifications. The expansion of macros is performed in a pre-
processor prior to further compiling and processing of Xdefinitions. Macro reference

243

Xdefinition 2.1

can be anywhere in the script. Macros may have parameters and they can be nested.
The possibility of placing macros in a separate Xdefinition further extends the pos-
sibility of object modification.

14. Finally...
In this presentation we have managed to describe only some of the basic features
of Xdefinitions. We did not go into details of types descriptions, for example the
possibilities of working with values as with keys, of descriptions of canonical forms,
declarations of script variables and their applications, etc. We have introduced
Xdefinitions as an example of an integrated tool for the work with XML objects in
real projects which can be easily implemented into various environments and plat-
forms. The important feature of Xdefinitions for the purpose of specification of the
interface with XML objects is their comprehensibility and ease of design. Xdefinitions
enable not only the description of the structure of objects and their validation but
also programming of these objects including detailed control of error situations.
The possibility to describe behaviour of the process on the place where the values
occurs enables a special way of programming. The code of such programs is highly
independent on the structure of data. These features allow using Xdefinitions as
the powerful tool for data validation. Xdefinifions are proved to be able to describe
complex processing of XML data in distributed IT systems.

For more information see www.syntea.cz/xdef/2.1/info

Bibliography
[1] Clark, James: Do we need new kind of schema language, 2007,

http://blog.jclark.com/2007/04/do-we-need-new-kind-of-schema-language.html
[2] Clark, James - Murata, Makoko: RELAX NG Specification, 2001,

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
[3] Fallside, David C. - Walmsley Priscilla: XML schema, 2004, W3C Recomendation
[4] Kamenicky, Jiří - Měska, Jiří - Trojan Václav: Why All of Humanity Does Not

Speak Esperanto, 2007,
http://xdef.syntea.cz/xdweb/userdoc/XMLPrague2007en.pdf

[5] W3C recomendation: Extensible Markup Language (XML) 1.0, 2008,
http://www.w3.org/TR/REC-xml

244

Xdefinition 2.1

Cool mobile apps with SVG
and other Web technologies

Robin Berjon
Robineko

<robin@berjon.com>

Abstract

The capabilities of mobile devices increase ceaselessly, and on occasion they
are even useful. That is the case of Web technologies that have been becoming
mature and gradually more important in mobile devices.

This talk will look at the state of current implementations, at where mobile
Web technology stands today notably concerning the recent release of SVG
Tiny 1.2 and the improvement in support for WICD documents, and will
show demos to give an idea of what can be done.

Keywords: SVG, XHTML, WICD, Mobile, Web, applications

1. Introduction
A few months ago SVG's new mobile version made it to its final release, which
makes it a good time to sum up where open Web technologies stand in the mobile
area today, and where they can be expected to go next.

That having been said, the best way to give a feel for what can be done is by
showing it. Therefore, the talk that is associated with this paper is intended to be
heavy in demos — which doesn't map well to proceedings. I will nevertheless do
my best to outline the bigger improvements in this paper.

2. Open Web Standards Now
The situation that we have today is far from ideal, but not truly dire either. After
several confusing years in mobile markup that have seen several different versions
of mobile HTML, not to mention WML, the situation is clearing up. The fights that
took place when a small group of people working in MPEG tried to take control of
this segment are over and productive work can resume. On feature phones, users
are happy with Opera Mini, whereas in more advanced phones browsers are increas-
ingly interoperable, and can process much of the Web at large.

SVG is also growing healthily, even if it always seems to take more time than
one would want. Hard numbers are difficult to come by but simple maths based

245

on reliable sales numbers show that at least one billion SVG-capable phone terminals
were sold last year. When added to the fact that 30% of Web browsers being used
support SVG natively, it is clear that progress is being made.

There are however limitations to be seen in this picture. First, it is often very
difficult to know if a given handset supports SVG. And even when it does, it is often
used for the on-device portal, the user interface, and things such as themes, but not
always available to the user.

More importantly, the vast majority of the deployed SVG players conform to
SVG Tiny 1.1, occasionally with a few extra features. And 1.1 is pretty limited,
bringing nowhere near the interactive power and rich multimedia support that SVG
Mobile 1.2 supports.

That being said, even if this state of affairs is imperfect, it does have the advantage
that it provides a large existing and well-tested install base from which to grow,
and existing usage on which to build a better system. Furthermore, interoperability
between mobile SVG implementations is generally good, with issues mostly appear-
ing when some of the more advanced non-graphical features are used in conjunction
— issues that 1.2 also helps with.

3. What's New Today
Compared to SVG Tiny 1.1, 1.2 brings a number of new features that constitute a
major jump forward. Since many of these features are self-descriptive and far more
impressive as demos, I will only discuss them briefly here.
• Better graphics. New graphical features appear in this version, most notably the

ability to use gradients and non-group opacity (which is to say that it is possible
to specify the opacity of a fill, stroke, or gradient stop, but not to apply it to an
entire group of shapes). In practice these features were already available in the
unofficial SVG profile known as "SVG Tiny 1.1+" but having them standardised
means they are to become available across the board. To be honest, I don't fully
understand how we managed to live without gradients so long, as they can truly
make an interface stand out.

• Improved multimedia support. SVG was always designed to work in conjunction
with rich multimedia features, but so long as such features were not mandated
by the specification their usage was not reliable. This version adds audio and
video elements that can be embedded seamlessly into the content. Where the
video element is concerned, there are some limitations with lower-end devices
whereby it may not be possible to scale, rotate, or overlay the video; but despite
those unavoidable issues, embedding video directly is still a major improvement.
These features have notably been put to use to create music and TV players for
mobile phones.

246

Cool mobile apps with SVG and other Web technologies

• Scripting. There simply was no way to script an SVG document until now. In
practice, a lot of the implementations that shipped were able to support it (which
is how phone some phone application user interfaces have been built) but there
was no agreed-upon subset of the DOM that was known to be usable everywhere.
This now changes with the introduction of the MicroDOM (or µDOM) which
defines a subset that works well on the mobile, and adds a few features specific
to SVG. Amongst other things, it notably supports the recently released Element-
Traversal API which makes handling a DOM tree much simpler than it is with
the regular DOM (it is expected that desktop browsers will release that too, in
fact some already have).

• General smaller improvements. There were a number of issues with some parts of
the 1.1 specification being poorly defined that are now thoroughly cleaned up
— in fact it is this part that has taken the greatest effort, and while it is not neces-
sarily the most impressive it provides a much stronger foundation on which to
grow SVG further. A number of smaller features have also been added, such as
better integration of events, more powerful 2D transformations, some level of
network access akin to XMLHttpRequest, the ability to react to events in an audio
or video stream in order to provide a user interface to control it, and more.

But SVG is not on its own, and belongs to an ecosystem of other open standards.
One standard that is being deployed today but has largely flown under the radar
is WICD Mobile. From the point of view of end-users, it does not add much. But
for content developers, it finally resolves the many issues that appear when using
HTML and SVG together. It is a boring specification to read as it concerns mostly
small details that browsers need to get right, but having it available means that
content can now mix HTML and SVG, and get interoperable results.

4. Sexy Stuff — Not Just For Mobile
It is all fine and well to discuss the mobile Web, but in an ideal world content should
only be authored once and work everywhere. While there are problematic constraints
to make that a reality, at the very least we can hope that new features in SVG, and
in the integration of SVG with HTML, would make it to the desktop as well.

One of the first benefits of this convergence is the ability to develop mobile
content on a desktop without needing to use a tedious emulator and ceaseless
copying of content over to the phone. Of course, one will always need to test on the
eventual device, but any progress that can be made without going to the terminal
or to some specific (and often ghastly) emulation program is a boon to a developer's
productivity. A good example of this unfolding is Opera. One can develop WICD
content using Opera on the desktop and be reasonably confident that it will work
the same on the device. Certainly, some of the more intensive features will not be

247

Cool mobile apps with SVG and other Web technologies

possible, and one has to be cautious not to become overly optimistic with perform-
ance, but it globally works.

Another benefit is more powerful graphics coming to the browsers. Both Firefox
and Opera have recently shown that the latest or upcoming versions of their browsers
support a host of truly exciting features.

One of the most exciting aspects is simply the ability to use SVG in many places
in which images can be used, and to apply SVG features to non-SVG content. It
starts with simple things such as using SVG for CSS backgrounds, in such a way
that the SVG can be stretched to fill the box while still having (for instance) rounded
corners; or using SVG gradients in CSS so that one can avoid having to create an
image every time a little bit of spice is needed.

But it gets better as some of the more impressive advances involve applying
SVG to HTML content. For instance, one can use an arbitrary SVG shape to crop
HTML content. Better, SVG filters such as blurring, edge finding, or displacement
maps can be applied to any HTML content — in fact there are several demos
showing SVG filters being applied in real time to video. The examples are often
somewhat useless even if cool, but experience shows that when such features fall
in the hands of Web developers, after a little while spent tinkering they invent brand
new ways of providing a better experience.

Of course, until Internet Explorer catches up with the rest of the browsers it is
going to be difficult to make use of these features, but at least the way forward is
being shown and innovation is happening.

Another related segment in which the conjunction of HTML and SVG is helping
is widgets. There is currently a lot of momentum behind specifying widgets that
interoperate across platforms, and a large part of the interest there is mobile-driven
since there is little difference between a widget and most mobile applications.

Work in that area isn't finished but the basics are within reach, and already some
parts of the industry are getting ready to ship widget support. This will enable
people to create small mobile applications that work equally on a large number of
mobile devices — something that has been extremely difficult up to now. And of
course these make use of the usual suspects: HTML, SVG, CSS, the DOM (all
wrapped in a zip archive with some metadata).

5. Things Needed & Things to Come
With all these nice things happening, one has to also point out the bad parts. The
biggest issue remains that authoring tools are still very much lacking for SVG on
its own, and it is naturally even worse for mixed content. There have been some
improvements from some companies, including Adobe which surprisingly still
improves its SVG export with new versions of its Creative Suite, and Ikivo for in-
stance has made very interesting progress with their Animator and IDE tools, but
there is no equivalent to Flash, Flex, or the Silverlight tools for WICD and SVG at

248

Cool mobile apps with SVG and other Web technologies

this time. Hopefully the market will evolve enough that someone will address this
issue, or developers won't care much (as they don't seem to when it comes to "Web
2.0" content).

And of course, while all this unfolds there is still work to be done on preparing
for the next version in this ceaseless kludge of technologies that we have come to
love as the Web.

249

Cool mobile apps with SVG and other Web technologies

250

Current Support ofXMLby the "BigThree"
Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
<mlynkova@ksi.mff.cuni.cz>

Martin Nečaský
Department of Software Engineering, Charles University in Prague, Czech Republic

<necasky@ksi.mff.cuni.cz>

Abstract

XML technologies have undoubtedly become a standard for data representation
and manipulation. Thus it is inevitable to propose and implement efficient
techniques for managing and processing XML data. A natural alternative is
to exploit tools and functions offered by relational database systems. Even
though the native XML databases are undoubtedly more efficient, relational
databases are still more popular among XML users due to their long history,
maturity and reliability.

In this paper we provide an overview of XML-processing functions that
are currently supported by the so-called "Big Three", i.e. Oracle 11g, IBM
DB2 9, and Microsoft SQL Server 2008. We firstly show what are the key
aspects a user may require from an XML-enabled database. Then, we provide
an overview of their support in the respective systems. And, finally, we compare
and contrast the findings so that advantages and disadvantages of the partic-
ular systems are apparent.

Keywords: XML support, Oracle, IBM DB2, Microsoft SQL Server

1. Introduction
Without any doubt the eXtensible Markup Language (XML) [1] is currently one of
the most popular formats for data representation. The wide popularity naturally
invoked an enormous endeavor to propose faster and more efficient methods and
tools for managing and processing XML data. Soon it was possible to distinguish
several different directions based on various storage strategies. The four most
popular ones are methods which store XML data in a file system, methods which
store and process XML data using an (object-)relational database management
system ((O)RDBMSs), methods which exploit a pure object-oriented approach, and
native methods that use special indices, numbering schemas, and/or structures
suitable particularly for tree structure of XML data.

251

Naturally, each of these approaches has both keen advocates and objectors who
emphasize its particular advantages or disadvantages. The situation is not good
especially for file system-based and pure object-oriented methods. The former ones
suffer from inability of querying without any additional preprocessing of the data,
whereas the latter approach fails especially in finding a corresponding efficient and
comprehensive tool. Expectably, the highest-performance techniques are the native
ones, since they are proposed particularly for XML processing and do not need to
artificially adapt existing structures to a new purpose. Nevertheless, the most
practically used ones are undoubtedly methods which exploit features of (O)RD-
BMSs. We speak about so-called XML-enabled databases. The reason for their popular-
ity is that (O)RDBMSs are still regarded as universal and powerful data processing
tools which can guarantee a reasonable level of reliability and efficiency.

The key aim of this paper is to provide an analysis of XML support that is offered
by the three leading database vendors and their systems, i.e. Oracle 11g, IBM DB2
9, and Microsoft SQL Server 2008, sometimes denoted as the "Big Three". We firstly
show what are the key aspects a user may require from an XML-enabled database
management system. Then, we provide an overview of their support in the respective
systems including examples that depict their functionality. And, finally, we compare
the key findings so that advantages and disadvantages of the particular systems
are more apparent.

The paper is structured as follows: Section 2 introduces the problems and issues
related to XML processing in general. Section 3 describes how these issues are faced
in the Oracle 11g database, Section 4 does the same for IBM DB2 9 database and
Section 5 for Microsoft SQL Server 2008. Section 6 overviews the key findings and
provides the general comparison of the three systems. And, finally, Section 7 provides
conclusions.

2. General Requirements for XML Processing
In general the basic idea of XML processing based on an (O)RDBMS is relatively
simple. The XML data are firstly stored into relations - we speak about so-called
XML-to-relational mapping or shredding XML data into tables. Then, each XML query
posed over the data stored in the database is translated to a set of SQL queries (which
is usually a singleton). And, finally, the resulting set of tuples is transformed to an
XML document. We speak about reconstruction of XML fragments.

Consequently, the primary concern of the database-based XML techniques is
the choice of the way XML data are stored into relations. On the basis of exploitation
or omitting information from XML schema we can distinguish so-called generic
[2],[3] and schema-driven [4],[5] methods. From the point of view of the input data
we can distinguish so-called fixed methods [2],[3],[4],[5] which store the data purely
on the basis of their model and adaptive methods [6],[7],[8],[9], where also sample
XML documents and XML queries are taken into account to find more efficient

252

Current Support of XML by the "Big Three"

storage strategy. And there are also techniques based on user involvement which
can be divided to user-defined [10] and user-driven [11],[12],[13], where in the former
case a user is expected to define both the relational schema and the required map-
ping, whereas in the latter case a user specifies just local mapping changes of a de-
fault storage strategy.

Approaching the aim from another point of view, the SQL standard has been
extended by a new part SQL/XML [14] which introduces new XML data type and
operations for both XML and relational data manipulation within SQL queries. It
involves functions such as, e.g. XMLELEMENT for creating elements from relational
data, XMLATTRIBUTES for creating attributes, XMLDOCUMENT or XMLFOREST for creating
more complex structures, XMLNAMESPACES, XMLCOMMENT or XMLPI for creating more
advanced parts of XML data, XMLQUERY, XMLTABLE or XMLEXISTS for querying over
XML data using XPath [15],[16] or XQuery [17], etc.

As we have mentioned in the introduction, the native XML databases differ from
the XML-enabled ones in the fact that they do not adapt an existing technology to
XML, but exploit techniques suitable for XML tree structure. Most of them use a
kind of numbering schema, i.e. an index that captures the XML structure. Examples
of such schemas are Dietz's encoding [18], interval encoding [21], prefix encoding [22],
ORDPATHS [19] or APEX [20]. And, naturally, such indices can be also exploited
in relational databases to optimize query processing.

Last but not least, not only storing, querying and indexing are the key operations
with XML data. A natural requirement is also the ability to check data validity or
to apply XSL [24] transformations. However, such features do not need to be incor-
porated within the database, but they can be ensured using a kind of middleware.
On the other hand, one of the key problems of each application is that it is usually
dynamic, i.e. the data change. From a short-time period it means that we need to
be able to update the data (in XML technologies it is currently covered by the XQuery
Update Facility [25]). On the other hand, from a long-time period also the problem
of XML data evolution occurs [23], i.e. the situation when the modifications of the
data are more significant, they usually violate validity and new storage techniques
need to be established.

In the following sections we show how these issues are faced in Oracle, IBM
DB2 and Microsoft SQL Server.

3. Oracle 11g
The Oracle corporation1calls its ORDBMS Oracle as well. Recently, Oracle 11g Release
1 (11.1) [26],[27] has been released.

1http://www.oracle.com

253

Current Support of XML by the "Big Three"

3.1. Storing XML Data
Oracle supports two types of storage strategies - XML data type and a user-defined
XML-to-relational mapping. The XML data type is called XMLType and its basic usage
is very similar to classical atomic SQL data types such as INTEGER or VARCHAR as de-
picted by the following example.

Example 1. Oracle: Basic usage of XMLType

CREATE TABLE person (id NUMBER, desc XMLTYPE);

INSERT INTO person (id, desc) VALUES (1, XMLTYPE(
'<record>

<name>Irena Mlynkova</name>
<date>13/1/2003</date>
<email>irena.mlynkova@mff.cuni.cz</email>

</record>'));

INSERT INTO person VALUES (2,
XMLTYPE(bfilename('mydirectory', 'person.xml'),

nls_charset_id('AL32UTF8')));

SELECT p.desc.getCLOBVal() FROM person p;

The XMLType can be stored in three possible ways. If we choose the structured storage,
the XML data are stored as a set of objects in a set of respective relations. Apparently,
this strategy is suitable for data-centric, highly structured XML documents. In case
of binary storage the data are stored in a binary format optimized for XML. This
approach is suitable for semi-structured XML data which cannot be fully shredded
into tables. And, finally, in case of the non-structured storage the XML data are stored
in the form of CLOB. This approach ensures the highest level of round-tripping, how-
ever at the cost of low efficiency of more complex operations than retrieval of a
whole document.

The storage strategy is specified in the CREATE TABLE command using STORE AS
clause. With regard to the three strategies we have three options - nothing, CLOB or
BINARY XML. In addition, we can add characteristics determining the (un)necessity
of data validity, e.g. XMLSCHEMA schema_name, ALLOW ANYSCHEMA or ALLOW NONSCHEMA,
and the root element using ELEMENT element_name clause.

254

Current Support of XML by the "Big Three"

Example 2. Oracle: Determining storage strategies

CREATE TABLE person (id NUMBER, desc XMLTYPE)
XMLTYPE desc STORE AS CLOB

XMLSCHEMA "http://www.example.com/personschema.xsd" ELEMENT "record";

If we do not specify anything, the default storage strategy is structured. In this case
Oracle supports two options - each XML collection, i.e. an element with maxOccurs
> 1 can be stored either into a VARRAY or into LOB. By default all XML collections are
stored into LOBs, however the user-required modifications can be specified within
the CREATE TABLE command using clauses VARRAY and LOB. In addition, in both the
cases we can also specify respective storage characteristics.

Example 3. Oracle: User-defined mapping in CREATE TABLE

CREATE TABLE person (id NUMBER, desc XMLTYPE)
XMLTYPE desc

XMLSCHEMA "http://www.example.com/personschema.xsd" ELEMENT "record"
VARRAY desc."XMLDATA"."email"

STORE AS TABLE tableOfEmails (
(PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))

LOB (desc."XMLDATA"."date")
STORE AS (TABLESPACE USERS ENABLE STORAGE IN ROW

STORAGE(INITIAL 4K NEXT 32K));

Apparently, this approach can be used only in case of simple XML data, since in
more complex cases it is quite user-unfriendly. Hence, Oracle supports also another
option - annotating the XML schema of the XML data. The XML schema must be
first associated with two namespaces http://xmlns.oracle.com/xdb and http://xm-
lns.oracle.com/2004/CSX. Then, the elements, attributes or complex types can be
annotated using attributes such as SQLName, i.e. the name of respective SQL attribute
for an element or an attribute stored into a single column, SQLType, i.e. name of object
type for complex types or SQL type for simple types, storeVarrayAsTable, i.e. re-
quirement for storing all collections into VARRAY type, etc.

3.2. Indexing XML Data
Similarly to indexing of relational data, also indexing of XML data is denoted for
the purpose of higher efficiency of respective operations. The indexing approaches
in Oracle naturally depend on the selected storage strategy. In case of structural
storage, we can exploit classical relational indices. In case of binary or non-structured
storage we can exploit XML indices similar to numbering schemas used in native
XML databases - so-called XMLIndex.

255

Current Support of XML by the "Big Three"

Example 4. Oracle: Indexing an XMLType

CREATE INDEX myXMLindex ON person.desc INDEXTYPE IS XDB.XMLIndex;

The XMLIndex consists of three parts - path index that indexes all paths of the XML
tree, order index that indexes relations parent-child, ancestor-descendant and sibling
and value index that indexes all values. The position of each node is preserved using
a variant of the ORDPATHS numbering schema.

3.3. Querying XML Data
For the purpose of XML querying Oracle supports two options - XQuery and
SQL/XML. Evaluation of the queries can be optimized by the indices as described
before.

Example 5. Oracle: SQL/XML and XQuery querying

SELECT id, EXTRACTVALUE(desc, '/record/name') "person_name"
FROM person
WHERE id > 10;

SELECT id, XMLQUERY('for $i in /record
where $i/name != "Irena Mlynkova"
order by $i/name
return $i/name'
PASSING BY VALUE desc RETURNING CONTENT) XMLData

FROM person;

3.4. Other Operations
Apart from storing and querying XML data, Oracle supports also other XML-related
operations, in particular validity checking and XSL transformations. Validity can
be checked in two ways - either within the CHECK clause of CREATE TABLE command
or using a built-in function of XMLType.

Example 6. Oracle: Validity checking

CREATE TABLE person (id NUMBER, desc XMLTYPE)
CHECK (XMLIsValid(desc) = 1))
XMLTYPE desc

XMLSCHEMA "http://www.example.com/personschema.xsd" ELEMENT "record";

SELECT p.desc.isSchemaValid(
'http://www.example.com/personschema.xsd','record')

FROM person p;

256

Current Support of XML by the "Big Three"

XSL transformations can be applied using the XMLTRANSFORM function on any XMLType
column. It returns the result as XMLType as well.

Example 7. Oracle: XSL transformations

CREATE TABLE tableXSL (xsl XMLTYPE);

SELECT XMLTRANSFORM(p.desc, x.xsl).GetClobVal()
FROM person p, tableXSL x
WHERE p.id = 2;

3.5. Updating XML Data
If we apply the classical UPDATE operation on an XMLType column of a relation, it
causes replacement of the whole XML document stored in it. Naturally, this kind
of update operation is required only in very special cases. On the other hand, neither
XQuery nor SQL/XML involves update operations, whereas the XQuery Update
Facility is not supported in Oracle so far. Nevertheless, Oracle supports own set of
SQL functions that enable to replace, insert and delete various XML nodes of XML
data. Examples of these functions are updateXML, insertXMLbefore, insertXMLafter,
appendChildXML or deleteXML.

Example 8. Oracle: Update operations

UPDATE person
SET desc = APPENDCHILDXML(desc, 'record/name', XMLType('<dg>PhD</dg>'))
WHERE id = 1;

3.6. XML Schema Evolution
Oracle is able to cope with the problem of XML schema evolution, i.e. a situation
when XML schema of the stored data is modified which can cause violation of
validity or changes in the storage strategy.

Oracle supports two kinds of schema evolution. In copy-based schema evolution
all instance documents that conform to an old schema are copied to a temporary
location in the database, the old schema is deleted, the evolved schema is registered,
and the instance documents are inserted into their new locations from the temporary
area. Procedure DBMS_XMLSCHEMA.copyEvolve is defined for this purpose and its main
parameters involve the old and the evolved schema and an XSL script that re-valid-
ates the old XML data if necessary.

On the other hand, the in-place evolution does not require copying, deleting, and
inserting existing data and thus it is much faster. However, it can be applied only
when the backward compatibility is ensured, i.e. if no changes to the storage strategy

257

Current Support of XML by the "Big Three"

are required and the evolution does not invalidate existing documents. DBMS_XMLS-
CHEMA.inPlaceEvolve is the procedure defined for this purpose.

4. IBM DB2 Version 9
DB2 version 9 [28],[29] is the latest release of database system provided by the IBM
corporation2.

4.1. Storing XML Data
DB2 supports similar storage strategies as Oracle, i.e. XML data type called XML and
shredding into tables. XML is stored in a native structure optimized for XML which
is similar to binary storage in Oracle. An XML document inserted into an XML column
is stored separately from the base table and the column itself contains only a docu-
ment ID. The shredding strategy exploits a user-defined strategy, where the required
mapping is specified using XML schema annotations from namespace ht-
tp://www.ibm.com/xmlns/prod/db2/xdb1. They involve elements/attributes such as
rowSet for specifying target table name, column for specifying column name, condi-
tion that determines if decomposition inserts a row into a table, defaultSQLSchema
that specifies the default SQL schema, expression that specifies a customized ex-
pression whose result is inserted into the respective table, etc.

4.2. Indexing XML Data
DB2 supports three XML indices. The XML region index stores the locations of each
XML document stored in the database. An XML document is stored in one or more
regions and the XML region index provides a logical mapping of these regions to
retrieve document data. DB2 creates an XML region index for each table with XML
column automatically. The XML column path index is also created automatically for
each XML column and provides mappings of unique XML paths to their IDs. The
last XML index called XML index allows enhancing the query performance by index-
ing XPath expressions. It is not created automatically but must be specified explicitly
for each particular XPath expression. A sample XML index is depicted in the follow-
ing example.

2http://www.ibm.com

258

Current Support of XML by the "Big Three"

Example 9. DB2: XML index

CREATE INDEX person_name_idx ON person(desc) GENERATE KEY USING
XMLPATTERN '/record/name' AS SQL VARCHAR;

4.3. Querying XML Data
Similarly to Oracle, DB2 supports XQuery for querying XML data and SQL/XML
for exporting relational data to XML and embedding XQuery to SQL queries. In
addition, it supports a special non-standard feature - embedding SQL queries in
XQuery.

Example 10. DB2: Embedding SQL in XQuery

XQUERY
for $person in db2-fn:sqlquery('SELECT desc

FROM person WHERE id > 1000')/record
return $person/name;

4.4. Other Operations
Naturally, DB2 allows validating XML documents against XML schemas. In partic-
ular, XMLVALIDATE function returns a copy of the input XML value augmented with
information obtained from XML schema validation, including default values and
type annotations.

Example 11. DB2: XML schema validity checking

INSERT INTO person (id, desc)
VALUES (3, XMLVALIDATE('<record>...</record>'

ACCORDING TO XMLSCHEMA URI 'http://www.example.com/personschema.xsd'
LOCATION '/mydirectory/person.xml'));

On the other hand, XSLT transformations are supported by a built-in engine in DB2
version 9.5 and higher. For transformations, DB2 introduces the XSLTRANSFORM SQL
function similar to the Oracle one.

4.5. Updating XML Data
DB2 allows updating whole XML documents in XML columns using standard UPDATE
SQL command. Moreover, since version 9.5, DB2 supports the XQuery Update Fa-
cility as well. It allows changing values of specific XML nodes, replacing nodes as
well as inserting, deleting and renaming particular nodes.

259

Current Support of XML by the "Big Three"

Example 12. DB2: XQuery Update Facility

UPDATE person
SET desc = xmlquery('

copy $new := $desc
modify do replace value of $new/record/email
with "mlynkova@ksi.mff.cuni.cz"
return $new')

WHERE id = 1;

4.6. XML Data Evolution
Lat but not least, DB2 also considers evolution of XML schemas. However, only the
case when a new version of an XML schema is backwardly compatible with an old
version is considered. Then, a stored procedure XSR_UPDATE replaces an existing
schema with a new one.

5. Microsoft SQL Server
The last but not least database vendor is naturally the Microsoft corporation3. It
produces an object-relational database system whose latest version is called SQL
Server 2008 [30],[31],[32].

5.1. Storing XML Data
XML data can be stored in SQL Server in LOB data type, native XML data type called
XML or shredded into tables. The LOB option is directed for applications that require
the exact copy of the stored XML data including insignificant white-spaces, order
of attributes, etc. In case of XML data type the XML data are stored in a native XML
repository which preserves all the XML-relevant items. And in the last case a clas-
sical user-defined storage strategy is supported, where an annotated XSD determines
the particular schema.

Both the LOB and XML types are used in the same way as in the previous cases,
i.e. as classical atomic SQL data types. The set of mapping annotations is defined
in namespace urn:schemas-microsoft-com:mapping-schema and involves attributes
such as relation for specifying the relation to store the XML node into, field for
specification of a particular column, key-fields for specifying the columns that
uniquely identify the relation, relationship for specifying key-foreign key relation-
ship between relations, etc.

3http://www.microsoft.com

260

Current Support of XML by the "Big Three"

5.2. Indexing XML Data
An XML index can be created on XML data type columns. The so-called primary
XML index indexes all tags, values and paths over the XML instances in the column
(exploiting the ORDPATHS schema). Having a primary index, we can create any
of the allowed secondary indices - PATH, PROPERTY or VALUE. The PATH index builds a
B+ tree on (path, value) pair of each XML node in document order over all XML
instances. The PROPERTY index creates a B+ tree clustered on the (PK, path, value)
tuple within each XML instance, where PK is the primary key of the base table. And,
finally, the VALUE index creates a B+ tree on (value, path) pair of each node in docu-
ment order across all XML instances.

Example 13. SQL Server: Indices

CREATE TABLE person (id INT PRIMARY KEY, desc XML)

CREATE PRIMARY XML INDEX idx_desc on person (desc)

CREATE XML INDEX idx_desc_path on person (desc)
USING XML INDEX idx_desc FOR PATH

CREATE XML INDEX idx_desc_property on person (desc)
USING XML INDEX idx_desc FOR PROPERTY

In addition, SQL Server enables to create a full-text index (that can be used also for
other SQL data types) over the XML data type column. Then, the SQL function
CONTAINS enables to check whether the XML instance contains the given string
anywhere in the document.

Example 14. SQL Server: Full-text indices

CREATE FULLTEXT CATALOG ft AS DEFAULT

CREATE FULLTEXT INDEX ON person (desc) KEY INDEX PK_docs_023D5A04

SELECT * FROM person
WHERE CONTAINS (desc, 'mff.cuni.cz')

5.3. Querying XML Data
Firstly, the XML data type can be queried using XQuery. For this purpose SQL
Server supports various built-in functions having the XQuery query as a parameter,
such as exist checking existence of nodes, value returning an SQL value and query
returning XML data type result. In case of shredded XML data, function nodes returns
one row for each node that matches the query.

261

Current Support of XML by the "Big Three"

To ease usage of both SQL and XML data in queries, SQL Server exploits the
idea of data binding, i.e. mapping SQL values to XML values. For this purpose it
provides two functions - sql:variable to use the value of an SQL variable and
sql:column to use values from a relation column in XML query.

Example 15. SQL Server: Data binding in SQL queries

DECLARE @date varchar(20)
SET @date = '13/1/2003'
SELECT desc
FROM person
WHERE desc.exist ('/reord[date = sql:variable("@date")]') = 1

Contrary to the previous two cases the SQL Server's SQLXML has nothing in common
with the SQL/XML standard. The idea is similar - to bridge the gap between SQL
and XML data - however the syntax and usage is different. The OPENXML construct
provides an SQL view of XML data using the user specified mapping, that can be
specified either explicitly (as in the following example) or using a parameter that
denotes a general mapping strategy.

Example 16. SQL Server: OPENXML

SELECT *
FROM OPENXML (@docHandle, '/record')
WITH (PersonName varchar(10) 'name',

PersonID int '@id',
PersonEmail varchar(10) 'email')

Conversely, the FOR XML construct enables to create an XML view of SQL relations.
The way the data are mapped can be influenced using four modes. The RAW mode
generates a single <row> element per each row in the rowset that is returned by the
SELECT statement; its columns are mapped either to attributes or subelements de-
pending on other parameters. The AUTO mode generates nesting in the resulting
XML using heuristics based on the way the SELECT statement is specified. The EXPLI-
CIT mode allows more control over the shape of the XML view using a set of special
directives. And, finally, the PATH mode together with the nested FOR XML query
capability provides the flexibility of the EXPLICIT mode in a simpler manner - using
paths and nested queries.

Example 17. SQL Server: FOR XML query and result

SELECT ProductModelID as "@id", Name
FROM Production.ProductModel
WHERE ProductModelID=122 or ProductModelID=119
FOR XML PATH ('ProductModelData')

262

Current Support of XML by the "Big Three"

<ProductModelData id="122">
<Name>All-Purpose Bike Stand</Name>

</ProductModelData>
<ProductModelData id="119">
<Name>Bike Wash</Name>

</ProductModelData>

5.4. Other Operations
Similarly to the previous cases, validity checking is supported in SQL Server. For
this purpose it introduces a so-called SCHEMA COLLECTION which enables to store one
or more XML schemas. An XML column or variable can be then associated with such
collection and, hence, validity checking is ensured.

Example 18. SQL Server: SCHEMA COLLECTION and its usage

CREATE XML SCHEMA COLLECTION MyColl AS '
<schema
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.com/personschema.xsd">
<!- ... ->

</schema>'

CREATE TABLE person (id INT PRIMARY KEY, desc XML (MyColl))

On the other hand, the XSL processing is not a direct part of SQL Server, e.g., in the
form of a built-in function. However, it can be easily extended with such function-
ality using a stored procedure implemented using an external tool.

5.5. Updating XML Data
The XML data type supports a built-in function modify, that enables to update the
respective XML data. As a parameter it gets the required operation. In particular,
subtrees can be inserted before or after a specified node, or as the leftmost or right-
most child. Attribute, element, and text node insertions are all supported as well.
Deletion of subtrees is supported and scalar values can be replaced with new scalar
values.

Example 19. SQL Server: Updating XML data

UPDATE person SET desc.modify('
insert <dg>PhD</dg>
after (/record/name[.="Irena Mlynkova"])')

263

Current Support of XML by the "Big Three"

5.6. XML Data Evolution
SQL Server also deals with evolution of XML schemas, even though only in a very
special way and only for XML columns. In fact, it is easily ensured using SCHEMA
COLLECTIONs and their ability to be extended with new schemas.

Example 20. SQL Server: Adding a schema to SCHEMA COLLECTION

ALTER XML SCHEMA COLLECTION MyColl ADD '
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/personschema2.xsd">
<!- ... ->

</schema>'

Consequently, the respective XML column or variable can contain data valid against
both old and new XML schemas in the collection.

6. Overview and Comparison
For better lucidity the following table provides and overview of the XML-related
functions that are (not) supported in the three systems and their key characteristics.

Table 1. Overview and comparison of key XML features

SQL ServerDB2OracleFeature
XMLXMLXMLTypeXML data type
LOB, native, struc-
tured

Binary, structuredStructured, binary,
non-structured

User-definedUser-definedUser-definedMapping
Relations, columns,
keys, relationships

Relations, columns,
conditions, expres-
sions

Names, data types
a n d s t o r a g e
strategies (VARRAY
vs. LOB)

Primary, secondary
(PATH, PROPERTY,

Region index,
column path index,
XML index

XMLIndexIndexing

VALUE), full-text in-
dex
ORDPATHSIndexing particular

XPath expressions
ORDPATHS, path
index, axes index

XQuery, SQLXML
(OPENXML, FOR XML)

XQuery, SQL/XML,
SQL embedded to
XQuery

XQuery, SQL/XMLQuerying

264

Current Support of XML by the "Big Three"

SQL ServerDB2OracleFeature
Validity checking,
XSL transformations

Validity checking,
XSL transformations

Validity checking,
XSL transformations

Other operations

only via an external
tool
Own function with
parameter for insert-

XML Update Facil-
ity

Own functions for
inserting, replacing,
deleting nodes

Updating

ing, replacing, delet-
ing nodes
Only for XML
columns using
SCHEMA COLLECTIONs

Backward compatib-
ility must be en-
sured

With/without back-
ward compatibility

Evolution

As we can see, in general, all the three vendors follow the same pattern and try to
support as much XML functionality as possible. The most advanced and, at the
same time, standard-conforming support has Oracle, whereas the SQL Server tradi-
tionally ignores the proposed standards the most.

Under a closer investigation we can see that there are some significant differences
in respective areas of XML support. Firstly, while all three systems support a kind
of XML data type as well as shredding into relations, the storage strategies do not
follow any kind of common standards. In addition, in case of user-defined mapping,
all the systems require quite a highly skilled user, i.e. user-driven strategies are not
supported.

As for the query capabilities, all the three systems support several kinds of indices
that enable to speed up XML query evaluation. Naturally, they are highly related
to the selected storage strategy. All the systems support the XQuery language and
its embedding in SQL to enable working with both XML and SQL data at the same
time. To further increase this ability, both Oracle and DB2 support the SQL/XML
standard, while SQL Server provides own set of functions called SQLXML. Surpris-
ingly, DB2 also supports a new feature - embedding SQL queries into XQuery.

Considering other operations with XML data, all systems naturally support
validity checking and XSL transformations. On the other hand, considering the
update operations, each of them has its own approach. Oracle provides a set of
update functions, SQL Server provides a single function with multiple parameters
and only DB2 already supports the XQuery Update Facility, i.e. a standard approach.

Last but not least, the important aspect of XML data evolution is being considered
by all the systems, but only Oracle enables to deal with significant structural changes
using XSL transformations. However, in this case the user responsibility for data
correction is full, there are no automatic options.

265

Current Support of XML by the "Big Three"

7. Conclusion
The aim of this paper was to provide an overview of XML support in the currently
most popular (object-)relational database management systems - Oracle 11g, IBM
DB2 9, and Microsoft SQL Server 2008 - the so-called "Big Three". Firstly, we dis-
cussed the main topics related to XML processing. Then, we described how these
issues are faced in particular systems. And, finally, we provided their mutual
comparison. Our aim was to show which of the solutions already proposed in the
scientific world are being exploited in the industry and to what extent. This text
should serve as a good source of information for developers who search for a system
supporting particular functions, as well as for researchers looking for an up-to-date
topic with practical exploitation.

8. Acknowledgement
This work was supported in part by the Czech Science Foundation (GAČR), grant
number 201/09/P364.

Bibliography
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau: Extensible

Markup Language (XML) 1.0 (Fourth Edition). W3C, 2008.
[2] D. Florescu and D. Kossmann: Storing and Querying XML Data Using an RDMBS.

IEEE Data Eng. Bull., 22(3):27–34, 1999.
[3] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura: XRel: A Path-Based

Approach to Storage and Retrieval of XML Documents Using Relational
Databases. ACM Trans. Inter. Tech., 1(1):110–141, 2001.

[4] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99, pages 302–314, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[5] K. Runapongsa and J. M. Patel. Storing and Querying XML Data in Object-
Relational DBMSs. In EDBT’02, pages 266–285, London, UK, 2002. Springer.

[6] M. Klettke and H. Meyer. XML and Object-Relational Database Systems –
Enhancing Structural Mappings Based on Statistics. In Selected papers from the
3rd Int. Workshop WebDB’00 on The World Wide Web and Databases, pages
151–170, London, UK, 2001. Springer.

[7] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In ICDE’02, pages 64–75, Washington,
DC, USA, 2002. IEEE.

266

Current Support of XML by the "Big Three"

[8] W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adaptable and Adjustable Mapping
from XML Data to Tables in RDB. In VLDB’02 Workshop EEXTT and CAiSE’02
Workshop DTWeb, pages 117–130, London, UK, 2003. Springer.

[9] S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage Schema Selection for XML. In
DASFAA’03, pages 337–344, Kyoto, Japan, 2003. IEEE.

[10] S. Amer-Yahia. Storage Techniques and Mapping Schemas for XML. Technical
Report TD-5P4L7B, AT&T Labs-Research, 2003.

[11] A. Balmin and Y. Papakonstantinou. Storing and Querying XML Data Using
Denormalized Relational Databases. The VLDB Journal, 14(1):30–49, 2005.

[12] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive Solution to the XML-to-
Relational Mapping Problem. In WIDM’04, pages 31–38, New York, NY, USA,
2004. ACM.

[13] I. Mlynkova. A Journey towards More Efficient Processing of XML Data in
(O)RDBMS. In CIT’07, pages 23–28, Los Alamitos, CA, USA, 2007. IEEE.

[14] ISO/IEC 9075-14:2003. Part 14: XML-Related Specifications (SQL/XML). Int.
Organization for Standardization, 2006.

[15] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C,
November 1999. http://www.w3.org/TR/xpath.

[16] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J. Robie, and J.
Simeon. XML Path Language (XPath) 2.0. W3C, January 2007. http://www.
w3.org/TR/xpath20/.

[17] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C, January 2007. http://www.w3.
org/TR/xquery/.

[18] P. F. Dietz. Maintaining Order in a Linked List. In STOC’82, pages 122–127,
New York, NY, USA, 1982. ACM.

[19] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In SIGMOD’04, pages 903–908, New York,
NY, USA, 2004. ACM.

[20] C.-W. Chung, J.-K. Min, and K. Shim. APEX: an Adaptive Path Index for XML
Data. In SIGMOD’02, pages 121–132, New York, NY, USA, 2002. ACM.

[21] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path
Expressions. In VLDB’01, pages 361–370, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers, Inc.

[22] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In PODS’02,
pages 271–281, New York, NY, USA, 2002. ACM.

267

Current Support of XML by the "Big Three"

[23] M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In EDBT’06, LNCS, pages
1143–1146. Springer, 2006.

[24] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, November 1999. http:
//www.w3.org/TR/xslt.

[25] D. Chamberlin, D. Florescu, J. Melton, J. Robie, and J. Simon. XQuery Update
Facility 1.0. W3C, srpen 2007. http://www.w3.org/TR/xquery-update-10/.

[26] Oracle Database 11g. Oracle Corporation. http://www.oracle.com/technology/
products/database/oracle11g/.

[27] Oracle XML DB Developer’s Guide 11g Release 1 (11.1). Oracle Corporation.
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/ toc.htm.

[28] DB2 Product Family. IBM. http://www-01.ibm.com/software/data/db2/.
[29] IBM DB2 for Linux, UNIX, and Windows: Managing XML Data - Best Practices.

IBM. http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/
db2/bestpractices/DB2BP_XML_0508I.pdf.

[30] Microsoft SQL Server 2008. Microsoft Corporation. http://www.microsoft.com/
sqlserver/2008/.

[31] XML Best Practices for Microsoft SQL Server 2005. Microsoft Corporation. http:
//msdn.microsoft.com/en-us/library/ms345115.aspx.

[32] White Paper: What’s New for XML in SQL Server 2008. Microsoft Corporation.
http://www.microsoft.com/sqlserver/2008/en/us/
wp-sql-2008-whats-new-xml.aspx.

268

Current Support of XML by the "Big Three"

SolvingproblemofXMLdata orchestration
in large and distributed information

systems
Jiří Měska

Syntea software group a.s.
<jiri.meska@syntea.cz>

Abstract

This paper is an attempt to orchestrate definitions of XML data objects and
their processing in a large and distributed information system. In developing
and managing IT systems the main challenge is to maintain the analytical
and processing consistency of data object descriptions in the context of the
system implementation as well as in the context of the permanently changing
world and its impact on the business individual features of the information
system.

To achieve the goal we introduce the concept of Data Orchestration
Project which is an analogy to the role of BPEL in solving problem of the or-
chestration of the web services. Through Data Control Points we can inter-
connect the management or control activities of some particular program with
the data definitions.

The objective of this paper is to present a possibility of creating IS Data
Project of fictitious IS - Traffic Accidents Register (IS TAR). Implementation
of the Data Control Points is based on Xdefinition technology.

Keywords: XML, validation, data modeling

1. Problems of consistency of data descriptions in large information
systems
For the purpose of this paper the Information system means a set of hardware and
software modules and applications that serve business intent. Such information
systems are on one hand distributed in space and heterogeneous, on the other hand
from business point of view strictly interlinked by data flows that link the individual
components and applications. These data flows are represented by data objects that
are shared across the IS.

As an example we have decided to use a fictitious IS TAR - Traffic accidents re-
gister. This system includes applications for the online/offline composition and

269

editing of traffic accidents, central register of traffic accidents, the register interface
to other public administration registers, an interface to insurance companies, stat-
istical applications, etc.

Figure 1. The following picture is simplification of the described task

2. Data Orchestration Project
In developing and managing large and distributed IT systems the main challenge
is to maintain the analytical and processing consistency of data objects in the context
of the system implementation as well as in the context of the permanently changing
world and its impact on the business individual features of the information system.

270

Solving problem of XML data orchestration in large and distributed IS

TheDataOrchestrationProjectmeans a set of mutually interlinked and mutually
referring data descriptions which analytically and program-wise render the data
descriptions in data control points of the whole information system and which are
at the same time embedded in the business intent that guarantees they are meaning-
ful and justified.

The Data Control Point with regard to the data model means a specific place in
the IS, in which we can interconnect the management or control activities of the
program with the data descriptions. By data control point we mean e.g. definitions
of data validation conditions, interfaces, database model, data object creation etc.

Figure 2. Trafic Accident Register

271

Solving problem of XML data orchestration in large and distributed IS

If we are able to create a data model comprehensible on the analytical level, the
Data Orchestration Project enables us to understand - on analytical level - the beha-
vior of the system in the Data Control Points and at the same time to guarantee this
behavior in these points. For example through the logging on analytical level we
can even manifest the required behavior. On the other hand, if all data definitions
are mutually interlinked and if they run under single administration, any modific-
ation in any data definition must comply with the data administration of the whole
system.
1. XML structure and its validation at a data control point
2. XML structure and its creation at a data control point
3. In both above cases the description of activities or dynamic invocation of external

functions related to the processing of XML data in a context of Data Control
Point

Data Orchestration Project is set of Xdefinitions that describes XML data objects
and their behavior on different Data Control Points.

Table 1. Overview of the IS - TARDataOrchestration Project used in our example

PurposeFile
XML model definitionsTAR.xd

Simplified description of input data form
validation

FormPerson.xd

Check of external code list references (al-
ternative keys)

CheckCodeList.xd

Statistical export - creationStatistic.xc

Purpose: XML model definitions
File: TAR.xd

<xd:documentation>Traffic accident general description</xd:documentation>
<TrafficAccident

ReferenceNumber ="optional string(0,26)"
DateDnFrom ="required datetime('d.M.y H:mm')"
DateDnTo ="optional datetime('d.M.y H:mm')"
CodeDistrict ="required string()"
CodeRoad ="required string()"
CodeCrossRoad ="required string()"

>
<xd:mixed>

<Vehicle xd:script= "occurs 0..; ref Vehicle"/>
<Person xd:script= "occurs 0..; ref Persen"/>
<Inspection xd:script= "occurs 0..; ref Inspection"/>

272

Solving problem of XML data orchestration in large and distributed IS

<Survey xd:script= "occurs 0..; ref Survey"/>
</xd:mixed>

</TrafficAccident>
<xd:documentation>

Description of vehicle taking part on traffic accident
</xd:documentation>
<Vehicle

VehicleSequenceNumber ="required int()"
CodeTypeVehicle ="required string()"
Damage ="required int(0,99999999)"
DamageDescription ="required string()"
DamageCargo ="required int(0,99999999)"
DamageCargoDescription ="required string() "
VIN ="optional string(0,26) "
CodeInsuranceCompany ="required string()"
InsuranceNumber ="required string()"

>
<Position xd:script= "occurs 0..;"/>

</Vehicle>
<xd:documentation>

Person/subject taking part on traffic accident
</xd:documentation>
<Person

RefVehicleSequenceNumber ="optional int() "
Title ="optional string(1,24)"
Name ="required string(1,24)"
Surname ="required string(1,26)"
Birthday ="optional datetime('d.M.y')"
InsurenceNumber ="optional string()"
CodeSex ="required string()"
CodeInjury ="required string()"
InjuryDescription ="optional string(1,4000)"
Behavior ="optional string(1,4000)"
CodeDriverLicence ="required string()"
Alcohol =" required boolean()"

/>
<Address xd:script= "occurs 0..;"/>

</Person>
<xd:documentation>

Inspection of the place of traffic accident </xd:documentation>
<Inspection

CodeVisibility ="required string()"
CodeWeather ="required string()"

/>
<xd:documentation> Survey of the traffic accident </xd:documentation>
<Survey

273

Solving problem of XML data orchestration in large and distributed IS

Sanction ="optional int() "
CodeCause ="required string()"

/>

Purpose: Simplified description of input data form validation
Comment: Input form for inserting data about traffic accident participant
File: FormPerson.xd
Data Control Point: Offline Client/Person form

<PersonForm
xd:ref = "Person"
xd:reftype = "implements"
xd:controlpoint = "OfflineClient/FormPerson"
xd:processing = "Validation"

RefVehicleSequenceNumber =""
Title ="onError error('Title must not exceed 24 character')"
Name ="onAbsence error('Name is obligatory');

onError error('Title must not exceed 24 character')"
Surname ="onAbsence error('Name is obligatory');

onError error('Title must not exceed 26 character')"
Birthday ="onError error('Birthday is of the form d.M.y')"
InsurenceNumber ="onAbsence error('insurance number is obligatory')"
CodeSex =""
CodeInjury =""
InjuryDescription =""
Behavior =""
CodeDriverLicence =""
Alcohol =""

/>

Explanation: xd:reftype= "implements"
This condition express that this definiton must be one to one to the ref model.

Purpose: Check of external code list references (alternative keys)
Comment: Check of data integrity
File: CheckCodeList.xd
Data Control Point: ApplicationTier/CheckCodeListReferences

<TrafficAccident
xd:ref="TrafficAccident"
xd:reftype= "implements"
xd:controlpoint="ApplicationTier/CheckCodeListReferences"
xd:processing="Validation"

ReferenceNumber =""

274

Solving problem of XML data orchestration in large and distributed IS

DateDnFrom =""
DateDnTo =""
CodeDistrict="required CheckCodeList(@CodeDistrict, 'CC_ListDistrict')"
CodeRoad ="required CheckCodeList(@CodeRoad, 'CC_ListRoad')"
CodeCrossRoad="required CheckCodeList(@CodeCrossRoad,

'CC_ListCrossRoad')"
>

<xd:mixed>
<Vehicle xd:script= "occurs 0..; ref Vehicle"/>
<Person xd:script= "occurs 0..; ref Persen"/>
<Inspection xd:script= "occurs 0..; ref Inspection"/>
<Survey xd:script= "occurs 0..; ref Survey"/>

</xd:mixed>
</TrafficAccident>
…
<PersonForm

RefVehicleSequenceNumber=""
Title =""
Name =""
Surname =""
Birthday =""
InsurenceNumber=""
CodeSex =" required CheckCodeList(@CodeSex, 'CC_ListSex')"
CodeInjury=" required CheckCodeList(@CodeInjury, 'CC_ListInjury')"
InjuryDescription =""
Behavior =""
CodeDriverLicence="required CheckCodeList(@CodeDriveLicence,

'CC_ListCrossRoad')"
Alcohol =""

/>

Purpose: Statistical export for year 2008 - creation
File: Statistic.xd
Data Control Point: StatisticalTier/ListAccidents

<xd:DataPointInterface>
<xd:function xd:definiton="prepare('string', 'string')"/>
<xd:function xd:definiton=" getCollumn('string', 'string')"/>

</xd:DataPointInterface>
<TrafficAccident

xd:ref="TrafficAccident"
xd:reftype= "reduction"
xd:controlpoint="StatisticalTier/ListAccidents"
xd:processing="Create"
xd:oninit="prepare('select* from TrafficAccident

where DateDnTo in interval(?, ?)',
'1.1.2008','31.12.2008')"

275

Solving problem of XML data orchestration in large and distributed IS

ReferenceNumber ="create getCollumn('ReferenceNumber')"
DateDnFrom ="create getCollumn('DateDnFrom')"
DateDnTo ="create getCollumn('DateDnTo')"
CodeDistrict ="create getCollumn('CodeDistrict')"
CodeRoad ="create getCollumn('CodeRoad')"
CodeCrossRoad ="create getCollumn('CodeCrossRoad')"

>
</TrafficAccident>

Explanation: xd:reftype= "reduction"
This condition express that that original data model is reduced to elements ►
and atributes described here

3. Conclusion
If we follow IS architecture on SOA principles we need tools for orchestration of
web services. To achieve this goal we can use WS-BPEL.

In this presentation we have tried to postulate requirements on comprehensible
orchestration of data object descriptions. We have achieved this goal on an example
of IS - TAR through the Data Project Orchestration based on technology of Xdefini-
tion.

276

Solving problem of XML data orchestration in large and distributed IS

Jiří Kosek a Vít Janota (ed.)

XML Prague 2009
Conference Proceedings

Vydal
MATFYZPRESS

vydavatelství Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze

Sokolovská 83, 186 75 Praha 8
jako svou 255. publikaci

Obálku navrhl prof. Nešetřil

Z předloh připravených v systému DocBook
a vysázených pomocí XSL-FO a programu XEP

vytisklo Reprostředisko UK MFF
Sokolovská 83, 186 75 Praha 8

1. vydání

Praha 2009

ISBN 978-80-7378-061-6

	XML Prague 2009
	Table of Contents
	General Information
	Preface
	XML Schema Moves Forward
	1. Introduction
	2. XML Schema 1.0: Strengths and Weaknesses
	3. An Overview of XML Schema 1.1
	3.1. Relaxations on Content Models
	3.2. Derived types
	3.3. Co-occurrence Constraints
	3.4. Changes to Data Types
	3.5. Schema Modularity

	4. Assertions
	4.1. Defining an Assertion
	4.2. Examples of Assertions
	4.3. Grammar versus Predicates
	4.4. Performance and Interoperability

	5. Conclusions
	References

	Full validation of Atom feeds containing extensions
	1. Introduction
	2. NVDL scripts for Atom
	2.1. Atom and foreign elements/attributes
	2.2. Atom, OpenSearch, and foreign elements/attributes
	2.3. Atom, OpenSearch, Threading Extensions, History, and foreign elements/attributes
	2.4. Atom, OpenSearch, Google Calendar, and foreign elements/attributes

	3. Conclusions and Future work
	Bibliography

	Introduction to Code Lists in XML
	1. Controlled vocabularies
	1.1. XML document interchange
	1.2. Controlled vocabulary semantics
	1.3. Facets of controlled vocabularies
	1.3.1. Codes and identifiers
	1.3.2. Code list registration authorities
	1.3.3. Identifying controlled vocabularies
	1.3.4. Modeling controlled vocabularies
	1.3.5. Expressing controlled vocabularies
	1.3.6. Data entry of controlled vocabularies
	1.3.7. Application development supporting controlled vocabularies
	1.3.8. Validating controlled vocabularies
	1.3.9. Semantic representation by fixed values
	1.3.10. Trading partners and agreements

	2. Defining and using controlled vocabularies
	2.1. Controlled value list maintenance and identity
	2.2. Controlled value specification

	3. Declaring controlled vocabularies
	3.1. Declaring controlled vocabularies
	3.2. Rendering controlled vocabularies
	3.2.1. Rendering controlled vocabularies
	3.2.2. Standalone production of an HTML rendering
	3.2.3. Browser-based viewing of an HTML rendering

	4. Associating controlled vocabularies in XML documents
	4.1. Constraining information items using controlled vocabularies
	4.2. Context/value association
	4.3. Using context/value association for validation
	4.4. Rendering context/value association files
	4.4.1. Rendering context/value association files
	4.4.2. Standalone production of an HTML rendering

	Testing XSLT
	1. Overview
	2. Profilers
	2.1. XML IDEs
	2.2. xsltproc
	2.2.1. Profiler
	2.2.2. Debugger

	2.3. Saxon
	2.3.1. Profiling

	3. Test Frameworks
	3.1. Effectiveness of Unit Testing
	3.2. Unit Testing Wish-List
	3.3. Why use more that XSLT for testing XSLT?
	3.4. XSLTunit
	3.5. Juxy
	3.5.1. XML Format

	3.6. Unit Testing XSLT
	3.7. tennison-tests
	3.8. <XmlUnit/>
	3.9. Unit Testing Framework – XSLT (UTF-X)
	3.10. XTS
	3.11. XSpec
	3.11.1. Example
	3.11.2. Coverage

	4. Static Tests
	4.1. XSLV Static Validation Tool
	4.2. xslqual.xsl
	4.3. XSLT Metrics
	4.4. debugxslt

	5. Coverage
	5.1. XSpec

	Bibliography

	Testing XSLT with XSpec
	1. Introduction
	2. XSpec
	2.1. Matching Scenarios
	2.2. Function Scenarios
	2.3. Named Scenarios
	2.4. Expectations
	2.5. Nesting Scenarios
	2.6. Focusing Efforts
	2.7. Global Parameters

	3. Implementation
	4. Experience
	5. Future Work

	FunctX
	1. The FunctX Library
	2. The FunctX Application
	2.1. The FunctX XML Vocabulary
	2.2. The Test Harness
	2.3. Generating Documentation

	3. Conclusion

	Designing XML/Web Languages: A Review of Common Mistakes
	1. Introduction
	2. Namespace Issues
	2.1. Not using a namespace
	2.2. Using too many namespaces
	2.3. Non-HTTP namespaces
	2.4. Processing namespaces differently
	2.5. Not allowing foreign namespaces

	3. XML is for Humans
	3.1. Unreadable names
	3.2. Hard to memorise names
	3.3. Naming without respect to context
	3.4. Human-readable text in attributes
	3.5. XML for cyborgs

	4. Language Issues
	4.1. Inconsistent naming
	4.2. Incoherent features
	4.3. No lacunae values
	4.4. XML error handling
	4.5. Language error handling
	4.6. No versioning strategy

	5. Wishful Thinking and Doe-Eyed Beliefs
	5.1. Overcomplexity
	5.2. Reusing the useless
	5.3. Naïve versioning
	5.4. Relying on the external subset

	6. Miscellaneous
	6.1. Markup in CDATA sections
	6.2. Excessive microparsing

	Practical Reuse in XML
	1. Constructing Reusable Components
	1.1. What Can Be Reused?
	1.2. Naming and Uniqueness
	1.3. What's in a Name?
	1.3.1. A Word About ID Attributes

	1.4. Markup (How We Link)
	1.4.1. What About Target Markup?
	1.4.2. Multi-level Links
	1.4.3. Special Considerations
	1.4.4. Reusing Cross-References
	1.4.5. What About Other Linking Systems?

	1.5. Profiling and Filtering
	1.5.1. Variables
	1.5.2. Profiling Markup Considerations

	1.6. Size Matters... Or Does It?
	1.6.1. Phrase-Based Reuse
	1.6.2. Reusable Sections
	1.6.3. Block-level Reuse

	2. Working with Reusable Material
	2.1. Editing
	2.2. Profiling Information
	2.3. Keeping Track of It All

	3. The Publishing Process
	3.1. Normalisation
	3.1.1. ID Clashes

	3.2. Processing Profiled Documents
	3.3. Publishing in Other Languages

	4. Shouldn't Everything Be URNs?
	5. Conclusions

	Exploring XProc
	Optimizing XML Content Delivery with XProc
	1. Introduction
	2. Application Development with XProc
	3. Enabling other XML Standards
	4. Calumet: The XML Peace-Pipe
	5. XML Content Delivery Use Cases
	5.1. Content Publishing: Scenario I
	5.2. Content Publishing: Scenario II
	5.3. Content Assembly: Scenario I
	5.4. Content Assembly: Scenario II
	5.5. Content Profiling: Scenario I
	5.6. Content Profiling: Scenario II

	6. Conclusion
	References

	A practical introduction to EXSLT 2.0
	High-performance XML: theory and practice
	1. Introduction
	2. Technical Background
	3. The Current Situation
	4. Why in-memory models?
	5. Memory and Execution Time
	5.1. The Object overhead
	5.1.1. Java bloat

	6. The Frozen Stream
	6.1. Fine-grained Events
	6.2. Pooled String Storage

	7. Implementation Experience
	7.1. Scanning
	7.2. Signpost pseudo-events
	7.3. Making it useful

	8. Future Directions
	8.1. Hardware assistance
	8.2. In-memory model for mainstream application software
	8.3. An Iterator API?

	9. Conclusions
	Bibliography

	Imagining, building and using an XSLT virtual machine
	1. The allure of all-XML server technology
	2. Inside Xacerbate, an XSLT virtual machine
	2.1. Implementational decisions
	2.2. Architecture
	2.2.1. Block Diagram
	2.2.2. All XML, all the time
	2.2.2.1. Client <--> Xacerbate (and Xacerbate <--> Xacerbate)
	2.2.2.2. Outer loop --> inner loop
	2.2.2.3. Inner loop --> transform
	2.2.2.4. Transform --> inner loop
	2.2.2.5. Inner loop --> outer loop
	2.2.2.6. Document cache --> transform
	2.2.2.7. Inner loop <--> document cache

	2.3. XSLT extension functions
	2.3.1. ID functions
	2.3.2. Error functions
	2.3.3. Authentication-related functions
	2.3.4. Miscellaneous functions
	2.3.5. Accessing extension functions
	2.3.6. Testing extension functions

	3. Example 1: Handling chat-room and HTTP requests within the same transformation
	4. Example 2: From HTTP request to Shockwave file creation
	5. Future development
	5.1. Security
	5.1.1. Flood control
	5.1.2. Controls on file reading
	5.1.3. Controls on file writing
	5.1.4. Controls on configuration file access

	5.2. Data integrity
	5.2.1. Validation
	5.2.2. Persistent ids across sessions
	5.2.3. File backup strategy

	5.3. Development environment
	5.3.1. JavaScript
	5.3.2. Debugger

	5.4. Improved and new virtual machines
	5.4.1. Increasing throughput
	5.4.2. Proof of concept implementations in other languages
	5.4.3. XSLT 2.0?

	6. Conclusion
	Bibliography

	Advanced Automated Authoring with XML
	1. Introduction
	2. The case study
	3. Domain modelling
	3.1. Schema and validation
	3.2. Namespaces and specific accents

	4. The authoring framework
	4.1. The framework in a nutshell
	4.2. XInclude
	4.3. Automate with Ant

	5. SVG
	5.1. Image callouts
	5.2. Graphs
	5.3. Fully auto-generated SVG diagrams
	5.4. Other generated graphics

	6. When semantics is missing
	6.1. Produce semantic XML visually
	6.2. Non-XML tools

	7. Beyond authoring
	7.1. Google Earth
	7.2. Network monitoring
	7.3. Device configuration files

	8. Conclusion
	Bibliography

	Xdefinition 2.1
	1. Why Xdefinitions 2.1?
	2. Models of elements
	3. Groups of objects
	4. Events and actions
	4.1. Events defined for all the objects
	4.2. Events defined only for elements
	4.3. Events defined only for text values (attributes and text nodes)
	4.4. Event "match"
	4.5. Event "create"
	4.6. Alias events

	5. Declaration of the types of values
	6. Namespaces in Xdefinitions
	7. References
	8. Model extension and model modification
	9. Element "any", otherElement, otherAttribute
	10. Processing instructions and XML document
	11. Recursion in Xdefinitions
	12. Collections of Xdefinitions and mutual references
	13. Macros
	14. Finally...
	Bibliography

	Cool mobile apps with SVG and other Web technologies
	1. Introduction
	2. Open Web Standards Now
	3. What's New Today
	4. Sexy Stuff — Not Just For Mobile
	5. Things Needed & Things to Come

	Current Support of XML by the "Big Three"
	1. Introduction
	2. General Requirements for XML Processing
	3. Oracle 11g
	3.1. Storing XML Data
	3.2. Indexing XML Data
	3.3. Querying XML Data
	3.4. Other Operations
	3.5. Updating XML Data
	3.6. XML Schema Evolution

	4. IBM DB2 Version 9
	4.1. Storing XML Data
	4.2. Indexing XML Data
	4.3. Querying XML Data
	4.4. Other Operations
	4.5. Updating XML Data
	4.6. XML Data Evolution

	5. Microsoft SQL Server
	5.1. Storing XML Data
	5.2. Indexing XML Data
	5.3. Querying XML Data
	5.4. Other Operations
	5.5. Updating XML Data
	5.6. XML Data Evolution

	6. Overview and Comparison
	7. Conclusion
	8. Acknowledgement
	Bibliography

	Solving problem of XML data orchestration in large and distributed information systems
	1. Problems of consistency of data descriptions in large information systems
	2. Data Orchestration Project
	3. Conclusion

