SAAONICA:

XSLT AND XQUERY PROCESSING

Streaming in XSLT 2.1
Michael H. Kay

Traditional XSLT processing model

:
@ Stylesheet
Tree
. |

Parsing

Serialization

e

iN
Source Result
Tree (real) Transformation Tree (imaginary)
Process
SAXONICA

XSLT AND XQUERY PROCESSING

The Goal

* Where possible, avoid building the
source tree in memory

* Allow processing of indefinitely large
source documents in constant memory

* Reduce latency: start producing output
before all the input is available

SAAONICA:

XSLT AND XQUERY PROCESSING

Previous attempts at streaming
transformation

Alternative languages to XSLT, for example
STX, XStream

Research on XPath streaming

— often a subset (e.g. no predicates)

— generally single XPath expressions only
Research on XSLT streaming

— always a subset, usually rather small
Press releases

— e.g. Datapower, Intel

— no technical information available
Ad-hoc XSLT language extensions
— Saxon since 8.9

SAAONICA:

XSLT AND XQUERY PROCESSING

The XSL WG approach

Driven by use cases

— describe transformations that “ought” to be streamable
— (order of output events corresponds to order of input events)
Build on existing XSLT language

— new compatible language features

— retain foundations as a functional language

— mix streaming and non-streaming code

Don’t rely too heavily on optimizers

— exploit the fact that users know their data

— users should say when they want streaming

— this constrains them to follow certain rules

— translating from XSLT code to a streamed execution strategy
should involve no magic

SAAONICA:

XSLT AND XQUERY PROCESSING

Some streaming design patterns

Aggregation

— avg(//lemployee/salary)

Event stream isomorphism

— rename all elements

— delete selected elements

— order-retaining grouping
Accumulation

— add current balance to every transaction
Burst-mode or windowing

— output contains N employee records, each
created by transforming the corresponding
Input record

SAAONICA:

XSLT AND XQUERY PROCESSING

Aggregation example

<xsl:stream href="employees.xml”>
<xsl:value-of select="avg(*/employee/salary)’/>

</xsl:stream>

* Body of <xsl:stream> Is analyzed for
streamability

* Analyzes navigation paths starting from
the context node

 Allows only one downward selection path

SAXONICA®

XSLT AND XQUERY PROCESSING

Windowing

* To get around the restriction of one

downward selection, copy subtrees when
necessary

<xsl:stream href="employees.xml">
<xsl:value-of

select="avg(*/employee/copy-of()/(salary + bonus))"/>
</xsl.stream>

* The path analysis recognizes that
child::salary and child::bonus are not on

navigation paths from the original context
node

XSLT AND XQUERY PROCESSING

Streaming Templates

« Example: renaming and selective deletion

u*u

<xsl:template match=
<xsl:element name="{lower-case(name())}">
<xsl:apply-templates/>
</xsl:element>
</xsl:template>

<xsl:template match="note"/>

 Should be streamable because output
events are iIsomorphic with input events

SAVVONIC A:
XSLT AND XQUERY PROCESSING

Streaming modes

* Declare streamabillity as a property of a
mode

<xsl:mode name="M" streamable="yes"/>

* Apply path analysis to every template rule
In the mode (independently)

- If all the templates in the mode are
streamable, then streamed execution Is
feasible

ONICA:

XSLI A‘\ID XQUFRY PROCESSING

Streamability rules in more detail

 Trace all navigation paths from the context node

Including calls to functions and named templates

 The construct is streamable If;

no path has a sideways step (e.g. preceding/following)
no path goes up and then down (../xxxXx)
no path goes to descendants and then down (//xxx/yyy)

no two paths both go down unless they are in mutually
exclusive branches of a conditional

no path jumps into a looping construct such as xsl:for-each
no path contains a reordering construct such as xsl:sort

no path cycles back to the original construct (i.e. the construct
doesn’t return a streamed node as its result)

SAAONICA:

XSLT AND XQUERY PROCESSING

Expression trees and data flow graphs

() Hxa
N
CORORC) A\
G (o2

ancestor:para @ l l descendant-or-zelf node()
Hslapply-templates l ' descendant-or-zelfnode() xslapply-templates
o (o),
e =
child:node() descendant-or-self node() child:-node() descendant-or-self:node()

SAAONICA:

XSLT AND XQUERY PROCESSING

What data is available while streaming?

Immediate properties of the context node
— name, node-kind, type annotation, base URI
Attributes of the context element

Ancestors of the context node and their
attributes

For each ancestor:

— a count of preceding siblings, broken down
by (name, node-kind, type)

— sufficient to evaluate match="p[N]” and
simple cases of xsl:number

SAAONICA:

XSLT AND XQUERY PROCESSING

xsl:iterate

* Allows applications to “remember what
they have seen” while processing a
stream of nodes

» Similar to xsl:for-each, but:
— explicitly sequential
— allows breaking out of the loop

— parameters can be set during one iteration for
use during the next iteration

« Syntactic sugar for a head-tall recursion
(or a fold-left higher-order function)

SAAONICA:

XSLT AND XQUERY PROCESSING

Xxsl:iterate example

<account>
<xsl:stream href="transactions.xml">
<xsl:iterate select="transactions/transaction">
<xsl:param name="balance" select="0.00" as="xs:decimal"/>
<xsl:variable name="newBalance"
select="$balance + xs:decimal(@value)"/>
<balance date="{@date}" value="{$newBalance}"/>
<xsl:next-iteration>
<xsl:with-param name="balance" select="$newBalance"/>
</xsl:next-iteration>
</xsl.iterate>
</xsl.stream>
</account>

,\:"-: /,r 7 ‘/—\‘;’ fv/_,_\‘ - %
Y e VAN J\\J J s AAS
XSLT AND XQUERY PROCESSING

Benefits of xsl:iterate

 For the user:

— many users find implementing such logic
using head-tall recursion is HARD

— many users write O(n?) code because it’s
simpler than doing recursion

* For the system:
— easler to implement without blowing the stack

— easler to implement with a streaming pass
over the input sequence

SAAONICAS

XSLT AND XQUERY PROCESSING

Merging and splitting

 Example use cases:

— Merge log files from several web servers, all
of which are sorted by date/time

— Given a file of employee data, create one
output file containing the employees in each
location

» Also need to calculate multiple values
during a single pass of the input

— Get the five highest and lowest paid
employees

— Remove all comments and report how many
there were

SAAONICA:

XSLT AND XQUERY PROCESSING

Xsl:merge

Multiple input files
— homogenous or heterogenous
— each pre-sorted using compatible sort keys

— system checks that the files are correctly
sorted (fatal error if not)

Defines action taken with each group of
items having common merge keys

Works with both streamed and
unstreamed Inputs

— but optimized for streaming

SAAONICA:

XSLT AND XQUERY PROCESSING

Xsl:merge example
Merging a collection of log files

<xsl:merge>
<xsl:merge-source select="uri-collection('log-collection’)">
<xsl:merge-input>
<xsl:stream href="{.}">
<xsl:copy-of select="events/event"/>
</xsl:stream>
<xsl:merge-key select="@timestamp" order="ascending"/>
</xsl:merge-input>
</xsl:merge-source>
<xsl:merge-action>
<xsl:sequence select="current-group()"/>
</xsl:merge-action>
</xsl:merge>

/

ND XQU

[o 2 I\
4 7 1\
ERY PROCESSING

XSLT

4

D

—

xsl:fork

* Allows two or more “downward”
expressions on the same input stream

» Evaluates multiple results for the same
Input in a single pass

* Implementation may use multiple threads
but this is not required

SAAONICA:

XSLT AND XQUERY PROCESSING

xsl:fork example
Multiple output files

<xsl:stream href="employees.xml">
<xsl:fork>
<xsl:result-document href="male.xml|">
<xsl:copy-of select=""/employee[@gender='male’]’
</xsl:result-document>
<xsl:result-document href="female.xml”>
<xsl:copy-of select=""/employee[@gender=‘female’]”’
</xsl:result-document>
</xsl:fork>
</xsl:stream>

,\:"-: /,r 7 ‘/—\‘;’ fv/_,_\‘ - %
Y o VAN W J\\J J S /%L 2
XSLT AND XQUERY PROCESSING

xsl:fork example
Streamed input, buffered output

<xsl:stream href="employees.xml">
<xsl:fork>
<minSalary value="min(*/employee/salary)’/>
<maxSalary value="max(*/employee/salary)’/>
</xsl.fork>
</xsl.stream>

Implementation in Saxon

Saxon 8.9
— burst-mode streaming using saxon:read-once
Saxon 9.1
— burst mode streaming
* new syntax saxon:stream()
« more flexible path expressions
Saxon 9.2
— adds streaming templates
» strict rules about what's allowed
— non-streaming xsl:iterate implementation
Saxon 9.+
— much more!
— hope to describe at Balisage 2010

SAAONICA:

XSLT AND XQUERY PROCESSING

