
Streaming in XSLT 2.1
Michael H. Kay

2

Traditional XSLT processing model

Source
Document

Result
Document

Transformation
Process

Source
Tree (real)

Result
Tree (imaginary)

Stylesheet
Tree

Style
sheet

Parsing
Serialization

3

The Goal

• Where possible, avoid building the
source tree in memory

• Allow processing of indefinitely large
source documents in constant memory

• Reduce latency: start producing output
before all the input is available

4

Previous attempts at streaming

transformation

• Alternative languages to XSLT, for example
STX, XStream

• Research on XPath streaming

– often a subset (e.g. no predicates)

– generally single XPath expressions only

• Research on XSLT streaming

– always a subset, usually rather small

• Press releases

– e.g. Datapower, Intel

– no technical information available

• Ad-hoc XSLT language extensions

– Saxon since 8.9

5

The XSL WG approach

• Driven by use cases

– describe transformations that “ought” to be streamable

– (order of output events corresponds to order of input events)

• Build on existing XSLT language

– new compatible language features

– retain foundations as a functional language

– mix streaming and non-streaming code

• Don‟t rely too heavily on optimizers

– exploit the fact that users know their data

– users should say when they want streaming

– this constrains them to follow certain rules

– translating from XSLT code to a streamed execution strategy

should involve no magic

6

Some streaming design patterns

• Aggregation
– avg(//employee/salary)

• Event stream isomorphism
– rename all elements

– delete selected elements

– order-retaining grouping

• Accumulation
– add current balance to every transaction

• Burst-mode or windowing
– output contains N employee records, each

created by transforming the corresponding
input record

7

Aggregation example

<xsl:stream href=“employees.xml”>

<xsl:value-of select=“avg(*/employee/salary)”/>

</xsl:stream>

• Body of <xsl:stream> is analyzed for
streamability

• Analyzes navigation paths starting from
the context node

• Allows only one downward selection path

8

Windowing

• To get around the restriction of one
downward selection, copy subtrees when
necessary

<xsl:stream href=“employees.xml”>

<xsl:value-of

select=“avg(*/employee/copy-of()/(salary + bonus))”/>

</xsl:stream>

• The path analysis recognizes that
child::salary and child::bonus are not on
navigation paths from the original context
node

9

Streaming Templates

• Example: renaming and selective deletion

<xsl:template match=“*”>

<xsl:element name=“{lower-case(name())}”>

<xsl:apply-templates/>

</xsl:element>

</xsl:template>

<xsl:template match=“note”/>

• Should be streamable because output
events are isomorphic with input events

10

Streaming modes

• Declare streamability as a property of a
mode

<xsl:mode name=“M” streamable=“yes”/>

• Apply path analysis to every template rule
in the mode (independently)

• If all the templates in the mode are
streamable, then streamed execution is
feasible

11

Streamability rules in more detail

• Trace all navigation paths from the context node

– including calls to functions and named templates

• The construct is streamable if:

– no path has a sideways step (e.g. preceding/following)

– no path goes up and then down (../xxxx)

– no path goes to descendants and then down (//xxx/yyy)

– no two paths both go down unless they are in mutually

exclusive branches of a conditional

– no path jumps into a looping construct such as xsl:for-each

– no path contains a reordering construct such as xsl:sort

– no path cycles back to the original construct (i.e. the construct

doesn‟t return a streamed node as its result)

12

Expression trees and data flow graphs

13

What data is available while streaming?

• Immediate properties of the context node

– name, node-kind, type annotation, base URI

• Attributes of the context element

• Ancestors of the context node and their
attributes

• For each ancestor:

– a count of preceding siblings, broken down

by (name, node-kind, type)

– sufficient to evaluate match=“p[N]” and

simple cases of xsl:number

14

xsl:iterate

• Allows applications to “remember what
they have seen” while processing a
stream of nodes

• Similar to xsl:for-each, but:

– explicitly sequential

– allows breaking out of the loop

– parameters can be set during one iteration for

use during the next iteration

• Syntactic sugar for a head-tail recursion
(or a fold-left higher-order function)

15

xsl:iterate example

<account>

<xsl:stream href="transactions.xml">

<xsl:iterate select="transactions/transaction">

<xsl:param name="balance" select="0.00" as="xs:decimal"/>

<xsl:variable name="newBalance"

select="$balance + xs:decimal(@value)"/>

<balance date="{@date}" value="{$newBalance}"/>

<xsl:next-iteration>

<xsl:with-param name="balance" select="$newBalance"/>

</xsl:next-iteration>

</xsl:iterate>

</xsl:stream>

</account>

16

Benefits of xsl:iterate

• For the user:

– many users find implementing such logic

using head-tail recursion is HARD

– many users write O(n2) code because it‟s

simpler than doing recursion

• For the system:

– easier to implement without blowing the stack

– easier to implement with a streaming pass

over the input sequence

17

Merging and splitting

• Example use cases:
– Merge log files from several web servers, all

of which are sorted by date/time

– Given a file of employee data, create one
output file containing the employees in each
location

• Also need to calculate multiple values
during a single pass of the input
– Get the five highest and lowest paid

employees

– Remove all comments and report how many
there were

18

xsl:merge

• Multiple input files

– homogenous or heterogenous

– each pre-sorted using compatible sort keys

– system checks that the files are correctly

sorted (fatal error if not)

• Defines action taken with each group of
items having common merge keys

• Works with both streamed and
unstreamed inputs

– but optimized for streaming

19

xsl:merge example

Merging a collection of log files

<xsl:merge>

<xsl:merge-source select="uri-collection('log-collection')">

<xsl:merge-input>

<xsl:stream href="{.}">

<xsl:copy-of select="events/event"/>

</xsl:stream>

<xsl:merge-key select="@timestamp" order="ascending"/>

</xsl:merge-input>

</xsl:merge-source>

<xsl:merge-action>

<xsl:sequence select="current-group()"/>

</xsl:merge-action>

</xsl:merge>

20

xsl:fork

• Allows two or more “downward”
expressions on the same input stream

• Evaluates multiple results for the same
input in a single pass

• Implementation may use multiple threads
but this is not required

21

xsl:fork example

Multiple output files

<xsl:stream href=“employees.xml”>

<xsl:fork>

<xsl:result-document href=“male.xml”>

<xsl:copy-of select=“*/employee[@gender=„male‟]”

</xsl:result-document>

<xsl:result-document href=“female.xml”>

<xsl:copy-of select=“*/employee[@gender=„female‟]”

</xsl:result-document>

</xsl:fork>

</xsl:stream>

22

xsl:fork example

Streamed input, buffered output

<xsl:stream href=“employees.xml”>

<xsl:fork>

<minSalary value=“min(*/employee/salary)”/>

<maxSalary value=“max(*/employee/salary)”/>

</xsl:fork>

</xsl:stream>

23

Implementation in Saxon

• Saxon 8.9
– burst-mode streaming using saxon:read-once

• Saxon 9.1
– burst mode streaming

• new syntax saxon:stream()

• more flexible path expressions

• Saxon 9.2
– adds streaming templates

• strict rules about what‟s allowed

– non-streaming xsl:iterate implementation

• Saxon 9.+
– much more!

– hope to describe at Balisage 2010

