
ITI Series

Institut Teoretické Informatiky
Institute for Theoretical Computer Science

2011-519

XML Prague 2011

Conference Proceedings

Institute for Theoretical
Computer Science (ITI)
Charles University

Malostranské náměst́ı 25
118 00 Praha 1
Czech Republic

http://iti.mff.cuni.cz/series/

XML Prague 2011 – Conference Proceedings
Copyright © 2011 Jiří Kosek
Copyright © 2011 MATFYZPRESS, vydavatelství Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze

ISBN 978-80-7378-160-6

XML Prague 2011
Conference Proceedings

Lesser Town Campus
Prague, Czech Republic

March 26–27, 2011

XML Editor

Table of Contents
General Information ... ix

Sponsors ... xi

Preface .. xiii

Client-side XML Schema validation –
Aleksejs Goremikins and Henry S. Thompson ... 1

JSON for XForms – Alain Couthures ... 13

A JSON Facade on MarkLogic Server – Jason Hunter and Ryan Grimm 25

CXAN: a case-study for Servlex, an XML web framework – Florent Georges 35

Akara – Spicy Bean Fritters and XML Data Services – Uche Ogbuji 53

Translating SPARQL and SQL to XQuery –
Peter M. Fischer, Dana Florescu, Martin Kaufmann, and Donald Kossmann 81

Configuring Network Devices with NETCONF and YANG –
Ladislav Lhotka ... 99

XSLT in the Browser – Michael Kay .. 125

Efficient XML Processing in Browsers – R. Alexander Milowski 135

EPUB: Chapter and Verse – Tony Graham and Mark Howe 149

DITA NG – A Relax NG implementation of DITA – George Bina 167

XQuery Injection – Eric van der Vlist .. 177

XQuery in the Browser reloaded – Thomas Etter, Peter M. Fischer, Dana Florescu,
Ghislain Fourny, and Donald Kossmann ... 191

Declarative XQuery Rewrites for Profit or Pleasure – John Snelson 211

vii

viii

General Information

Date
Saturday, March 26th, 2011
Sunday, March 27th, 2011

Location
Lesser Town Campus of Charles University, Lecture Halls S5 and S6
Malostranské náměstí 25, 110 00 Prague 1, Czech Republic

Organizing Committee
Petr Cimprich, Ubiqway
James Fuller,MarkLogic
Vít Janota
Tomáš Kaiser, University of West Bohemia, Pilsen
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Pavel Kroh, pavel-kroh.cz
Mohamed Zergaoui, Innovimax

Programm Committee
Robin Berjon, freelance consultant
Petr Cimprich, Ubiqway
Jim Fuller,MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Uche Ogbuji, Zepheira LLC
Petr Pajas, Google
Felix Sasaki, German Research Center for Artifical Intelligence
John Snelson,MarkLogic
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh,MarkLogic
Mohamed Zergaoui, Innovimax

Produced By
XMLPrague.cz (http://xmlprague.cz)
Institute for Theoretical Computer Science (http://iti.mff.cuni.cz)
Ubiqway, s.r.o. (http://www.ubiqway.com)

ix

http://xmlprague.cz
http://iti.mff.cuni.cz
http://www.ubiqway.com

Institute for Theoretical
Computer Science

Center of research in Computer Science and Discrete Mathematics funded
by the Ministry of Education of the Czech Republic

Established in 2000, current project approved for 2010–2011

Staff of 60+ researchers include both experienced and young scientists

ITI is a joint project of the following institutions:

– Faculty of Mathematics and Physics, Charles University, Prague

– Faculty of Applied Sciences, University of West Bohemia, Pilsen

– Faculty of Informatics, Masaryk University, Brno

– Mathematical Institute, Academy of Sciences of the Czech Repub-
lic

– Institute of Computer Science, Academy of Sciences of the Czech
Republic

For more information, see http://iti.mff.cuni.cz

Publication preprints are available in ITI Series
(http://iti.mff.cuni.cz/series)

Sponsors

Gold Sponsors
Mark Logic Corporation (http://www.marklogic.com)
The FLWOR Foundation (http://www.flworfound.org)

Silver Sponsors
oXygen (http://www.oxygenxml.com)
Syntea software group a.s. (http://syntea.cz)

Bronze Sponsors
Mercator IT Solutions Ltd (http://www.mercatorit.com)
Mentea (http://www.mentea.net/)

xi

http://www.marklogic.com
http://www.flworfound.org
http://www.oxygenxml.com
http://syntea.cz
http://www.mercatorit.com
http://www.mentea.net/

xii

Preface

This publication contains papers presented at XML Prague 2011.
XMLPrague is a conference on XML for developers, markup geeks, information

managers, and students. In its sixth year, XML Prague focuses especially on integ-
ration of XMLwith newweb technologies and ever increasing capabilities ofmodern
web browsers. The conference provides an overviewof successful XML technologies,
with the focus being more towards real world application versus theoretical expos-
ition.

XML Prague conference takes place 26–27 March 2011 at the Lesser Town
Campus of the Faculty of Mathematics and Physics, Charles University, Prague.
XML Prague 2011 is jointly organized by the XML Prague Organizing Committee
and by the Institute for Theoretical Computer Science.1

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz) – XML fans from around the world are encouraged to take part
on-line. Remote and local participants are visible to each other and all have got a
chance to interact with speakers.

This is the sixth year we have organized this event. Information about XML
Prague 2005, 2006, 2007, 2009 and 2010 was published in ITI Series 2005-254, 2006-
294, 2007-353, 2009-428 and 2010-488 (see http://iti.mff.cuni.cz/series/).

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

1The Institute for Theoretical Computer Science is supported by project 1M0545 of the Czech Ministry
of Education.

xiii

http://xmlprague.cz
http://xmlprague.cz
http://iti.mff.cuni.cz/series/

xiv

Client-side XML Schema validation
Aleksejs Goremikins

Factonomy Ltd.
<aleksejs.goremikins@factonomy.com>

Henry S. Thompson
The University of EdinburghFactonomy Ltd.

<ht@inf.ed.ac.uk>

Abstract

In this paper we present a prototype Javascript-based client-side W3C XML
Schema validator, together with an API supporting online interrogation of
validated documents. We see this as enabling an important improvement in
XML-based client-side applications, extending as it does the existing datatype-
only validation provided by XForms to structure validation and supporting
the development of generic schema-constrained client-side editors.

Keywords: XML, XML Schema, JavaScript, Continuous Validation

1. Introduction
One key gap in the integration of XML into the global Web infrastructure is valida-
tion. DTDvalidation is supported natively to different extents by different browsers,
and someWeb protocols, notably SOAP, explicitly rule it out. Support for more re-
cent schema languages is virtually non-existent. With the growth of interest in rich
client-based applications in general, and the XRX methodology in particular, with
its emphasis on XML as the cornerstone of the client-server interaction architecture,
this gap has become more significant and its negative impact more troublesome.

Client-side editing and validating of XML documents in browsers using WYSI-
WYG text editors is a growth area of Web 2.0. These systems are typically used to
create collaborativewebsites, in knowledgemanagement systems, for personal note
taking and so on—anywhere consistent, precise and clear document structure and
design are crucial. TheWYSIWYG environment is more accessible to users without
technical knowledge, providing easy tools to create and edit complex yet still valid
XML documents. The development of such such applications requires powerful
editing tools which enforce continuous compliance with XML Schema-based lan-
guage definitions and good performance to ensure high efficiency and usability
rates.

1

Web 2.0 promotes the principle of ”software-as-a-service”, whichmeans that no
installation is needed and auser canworkwith an application fromanyWeb-browser
regardless of deployment platform. These capabilitieswiden the usability of applic-
ations, making it possible to use the program onWindows, Linux, Mac OS, mobile
phones, laptops and any devices with Internet access.

During the past few years, Web 2.0 has become a popular technique that fre-
quently dictates the demands for modern Internet business. However, client-side
XML validators mainly remain out of reach. The principal obstacles are: the com-
plexity of development of effective continuous XML Schema validation and style-
sheet generation algorithms; considerable limitations of client-side platforms; and
complex testing requirements.

There are a number of visual WYSIWYG editors available on the market. Most
of themare stand-alone applications andwork only on specific platforms (e.g. Altova
XMLSpy, Oxygen XML Editor, Syntext Serna). To our knowledge, there is only one
client-side application that is supported and provides comprehensive editing
functionality, called Xopus. However, it is commercial software (with all ensuing
consequences)—no open-source/free systemwith these capabilities exists. Therefore,
our goal has been to develop a system mainly from scratch using the algorithms
and concepts of Web 2.0, WYSIWYG and XML validating.

This paper explores client-side XML validation and editing techniques. The
continuous restrictionvalidation technique is proposed. Based on analysis and research
a client-sideW3CXMLSchema validator and editor for XMLdocuments is designed
and implemented. The system can be used for validation of XMLdocuments accord-
ing toW3CXMLSchema, identification of possible elements/attributes to insert/de-
lete, as well as for physical deletion of elements from an XML tree and text editing.
The application is written on JavaScript using good object-oriented practises and
could be easily improved and integrated in future.

The rest of this paper is organised as follows. After reviewing relatedworks and
preliminaries in Section 2,we introduce the system architecture in Section 3. Section
4 describes XML Schema-compliant editing. In Section 5we discuss implementation
details and make a brief analysis, and in Section 6 we summarise our conclusions
and future work.

2. Background

2.1. Related Works
We have found two similar programs: BXE (Browser Based XML Editor) [4] and
Xopus [6]. BXE is "a browser based XMLWYSIWYGEditor, whichworks on almost
all Mozilla-based editors on any platform". However its development stopped in
2007 and in addition we have been unable to get it to run.

2

Client-side XML Schema validation

Xopus is a client-sideWYSIWYGXML editor. It allowsworkingwith structured
and complex content without need for technical knowledge through a graphical
interface. "The author cannot break the XML structure or write content that does
not conform to the [W3C] XML Schema". Xopus is proprietary software and it has
limited flexibility for embedding within other applications. It does not process
wildcards correctly andworks only in IE and Firefox. In addition, its resource usage
can be substantial.

2.2. Schema Validation Algorithms
H. S. Thompson and R. Tobin [8] proposed a technique "to convert W3C XML
Schema content models to Finite State Automata (FSA), including handling of nu-
meric exponents and wildcards". The authors presented three algorithms:
• Conversion to FSA Converts regular expressions to FSAs. It has two stages:

converting particles and converting terms.
• UniqueParticleAttribution Supplements the first algorithm to check theUnique

Particle Attribution constraint.
• Subsumption Checks two FSAs to confirm that one accepts only a subset of

what the other accepts.
These algorithms enable a full implementation of W3C XML Schema. However,
they are expensive in terms of space when handling nested numerical occurrence
ranges. In [7] H. S. Thompson defines an extended FSA with ranges to cope with
this problem.

H. Thompson and R. Tobin also provided the open source XSV validator. We
have exploited the XSV validator in accordance with WEB 2.0 standards (that is ef-
ficiency, modularity, lightness, security) [5] by converting its core validation code
from Python to JavaScript.

2.3. JavaScript Restrictions
JavaScript is a client-side language and was initially designed to provide dynamic
websites [1].However,modern business requirements expanded the use of JavaScript
for content-management, business application systems etc.We adopted the following
restrictions:
• PlatformLimitations - JavaScript does not support direct access formanipulation

of the user system and files (except for cookie files), it cannot use databases and
access other domain files. It uses a 'sand-box scripting' strategy, when the code
is executed in a certain environment without the risk to damage the system, as
well as the 'same-origin policy', so that a script in one domain has no access to
another domain's information. To overcome these limitations it is necessary to

3

Client-side XML Schema validation

use auxiliary server-side applets (e.g. PHP, Java applets etc.) or ad-hoc techniques
(e.g. iframes, dynamic <script> methods).

• Functional Limitations - A 'pure' JavaScript provides only basic functionality
and most of constructions and methods need to be implemented from scratch.
Many JavaScript development frameworks (e.g. jQuery, Ext JS etc.) expand the
standard functionality, but this is not always sufficient to cover all purposes.

• Interoperability and User Control - While DOM scripting is based on W3C
DOM and ECMAScript standards, different browsers implement the standard
in slightly differentways. In addition, JavaScript code is run on client-sidewhere
user resources can be limited and indeed a user can disable Javascript altogether.

The above restrictions limit and complicate the development of 'full-fledged'
JavaScript applications. In our development we used PHP to overcome platform
limitations, Ext JS framework, and in a few cases designed distinct code for different
Web-browsers.

3. Architecture
The validator operates on anXMLDOM instance in the browser. Schemadocuments
are not handled directly, but rather an XML serialisation of an object model of the
schema components assembled from the relevant schemadocument(s) is downloaded
from a schema compilation server and the component model reconstructed. There
are two main reasons for this approach:
• Schema compilation, that is, the construction of a set of schema components

corresponding to one ormore schema documents, is actually substantiallymore
complex than validation itself. Handling this server-side allowed us to re-use
the compilation phase of XSV, an existing W3C XML Schema processor;

• Our focus is on supporting client-side instance authoring environments, where
schema change is infrequent.

Aswell as loadingXMLdocuments and schemas, client-side applications can initiate
validation and query validation state via an API. In our existing prototype, the ap-
plication is a simple WYSIWYG editor as shown on Figure 1.

Our implementation so far focuses on the validation framework—the editing
tool is essentially a test application. The validation framework starts froma JavaScript
implementation of the validation core of the XSV validator [9]. The JavaScript im-
plementation uses the same validation algorithmand structure. Editing functionality
is described in section 4.

The testbed UI consists of XML and W3C XML Schema URL input fields. The
application requests reflected schema (that is an object model of the corresponding
schema) from the server and the validation engine starts working. If the document
is not valid, the application displays the errors and further editing is not possible.

4

Client-side XML Schema validation

Figure 1. Implemented System Architecture

Otherwise, the system offers the following editing operations: deletion of attributes
and elements; insertion of attributes and elements into the selected element; and
insertion of elements before or after the selected element.

If the XMLdocument is valid, the user can edit the document.We use the restric-
tion methodology, that is, a user can make only (a subset of) the actions allowed by
the schema and so the document always stays schema-valid. When a user selects
an W3C XML component, the API checks the FSM from the compiled schema to
provide prompts for the allowed actions.

Figure 2. Application Programming Interface

4. Editing Functionality
In the XML context, researchers are just beginning to look at update languages and
validation [2], so we explored some new methods to cope with editing issues. We
considered two validation methodologies: incremental and allowed-changes-only
(or restriction).

5

Client-side XML Schema validation

In [2] and [3] authors present incremental validation techniques of XML docu-
ments with respect to an W3C XML Schema definition. When a valid document is
updated, it has to be verified that the new document still confirms to the imposed
constraints. Brute-force validation from scratch is not practical, because it requires
reading and validating the entire document following each update. The core of the
incremental approach consists in checking the XML document for the validity after
the performed transaction. In spite of the inherent flexibility of this approach, in-
cluding the possibility to rename components and to add or remove whole sub-
trees, in practice the method does not conform to our goal, because it exploits the
schema information too late. For our target user population and functionality, we
need an approachwhich preserves validity at all times, by constrainingwhat updates
are possible. This point is crucial for WYSIWYG editing, since the consequences of
restyling an invalid document are unpredictable at best.

We called ourmethod restriction validation,meaning that the user could perform
only allowed actions and the document is always valid. Before editing the document,
the user is offered a selection of possible validity-preserving actions over the selected
component.

4.1. Update Operations
To talk about the algorithm, first we need to define the update language. As we
have already said, each action must conform to the controlling schema. We cover
the following update actions:
• Insert After - where X is a selected element and Y is an element or text, results

in inserting Y immediately after X. This operation is not defined for the root
node.

• Insert Before - where X is a selected element and Y is an element or text, results
in inserting Y immediately before the X. This operation is not defined for the
root node.

• Insert Into - (1) where X is a selected element of complex type and element Y is
an element or text, results in inserting Y into X in a place that conforms to W3C
XML Schema. If X already has Y, then insert immediately after the last Y. (2)
where X is a selected element and Y is an attribute, results in inserting Y into X.

• Delete - where X is a selected element or a selected attribute, results in deleting
X from the XML tree.We assume that X is not a root element (in our development
we cannot delete the root, however technically it is possible).

• Edit - where X is a selected text or attribute value and Y is a pressed key, results
in performing the Y action over X (i.e. changing the text content).

6

Client-side XML Schema validation

In each case, the change is constrained to result in a schema-valid context element,
where X is the context element for Insert Into operations andX's parent is the context
for Insert After, Insert Before and Delete.

4.2. Algorithm Details
Insert After and Insert Before operation are similar and requires access to the FSM.
These actions are not defined for the root element (because it is legal to have only
one root). The Insert After algorithm works in the following way:
• find the parent (P) of the selected element (SE) (parent is always of complex

type). If P is of mixed type, we can always insert text after;
• find FSM of P;
• find the SE in the FSM;
• find element after (EA) the SE;
• comparemaxOccurs field of SE and of all SE edges in FSMwith real occurrences

in P (RO). If RO < maxOccurs, then the SE or edge is a candidate. If the edge is
the wild-edge (for wild-cards), then the candidate is any element that is defined
by W3C XML Schema. If the edge is exit-edge, then continue with next edges;

• if a candidate is equivalent to SE or EA, we can always insert it after. Otherwise,
we check candidate edges (CE). If CE has EA, then the candidate is valid for in-
sertion.

The example of this algorithm is described in the next subsection. For Insert Before
algorithm we perform the same actions, but over the element before the selected.
If the selected element is first, we can add any element that comes before the selected
element in the FSM; or text if the parent element is ofmixed type; or selected element
itself if its occurrence is less then maxOccurs field.

All element insertion operations require a valid XML document. The content
and attributes of inserted elements are determined by the default and fixed fields or
restriction values for simple type or simple content elements, by the required children
for complex content elements and by the attributes of complex type elements. In
addition, required attributes and content must be added to created child elements,
recursively.

The Insert Into (1) action requires checking maxOccurs field of all possible chil-
dren elementswithin the selected element and comparing the fieldwith real children
occurrences (RCO). If the RCO < maxOccurs we add the elements into the array of
insertion candidates. If the selected element is empty, we can insert any element
from the array, otherwise we need to find a place for the candidates: for each child
element we apply Insert After algorithm (see above) and in addition for the first
child Insert Before algorithm; if Insert After allows element from the candidates,
we can insert it immediately after the child (or before for the first child); the accepted

7

Client-side XML Schema validation

elements and positions are saved for further insertions. If there are many insertion
positions, take one which has the lowest (in the tree) insertion position.

The Insert Into (2) action firstly finds all possible attributes for the selected ele-
ment. Secondly, checks whether the attribute already exists in the element. Lastly,
if an allowed attribute does not exist, one can perform the insert action. Since, W3C
XML Schema attribute does not have bounded occurrence ranges (it either exists
or not), we cannot insert any of the existent attributes. If the attribute has default
or fixed fields, then the newly inserted attribute has the value of these fields, other-
wise the value is an empty string or other type-determinedminimal allowed value.

TheDelete action for elements requires the number of occurrences (NoO) of se-
lected element in the document and supposed number of occurrences inW3C XML
Schema (that isminOccurs field). If theNoO > minOccurswe can delete the element.
In case of attributes we need to check, whether the attribute use is optional - can
delete; required - cannot delete.

The Edit action is trivial: we need to get the text type (or simple type) from the
schema and check it during the editing. Ext JS and other frameworks provide
functionality for checking simple types (e.g.Ext.isNumber,Ext.isDate etc.), as of now
we do not implement the W3C XML Schema simple types in detail.

4.3. Updating the Document
When an user selects an action, the application should physically update the docu-
ment. The ”real” updates deserve thorough study and was out of scope for our
work to date, which only updated the DOM. In this subsection we provide basic
ideas and complications that could rise during the development.

In the case of attributes the naive approach is simple: we add or delete the ap-
propriate attribute within the element and then re-style the element with the new
set of attributes. This assumes that the presentational impact of the attribute change
is limited to the sub-tree dominated by the host element, which need not be the
case.

Element insertion and deletion actions are more likely to have wider impact.
Therefore, after the insertion or deletion the parent element should be re-styled.

4.4. Limitations and Assumptions
The algorithms are straightforward and provide necessary editing functionality.
However the proposed method has some shortcomings. It's not possible to edit
several elements or attributes at once, or to rename elements or attributes or to
specify a sequence of actions. It's not possible to edit invalid documents, or even to
"pass through" an invalid state, for example in order to move a required element.
These limitations are not crucial, since they only slow down the editing speed, but
for a full-function tool they would all need to be investigated.

8

Client-side XML Schema validation

Another restriction is the stability of the FSM on which the API is based. In our
case this is not an issue, because we assume the FSM will not change during an
editing session. This does rule out parallel development of schema and document.

Insertion of an element with required content requires the construction of a
valid skeleton sub-tree to preserve overall validity: this has not been implemented
yet.

4.5. Example
In this subsection we provide a simple constructed example of the described al-
gorithms. To illustrate them we consider the following simple W3C XML Schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="address">
<xs:complexType>
<xs:sequence>
<xs:element name="town" type="xs:string" />
<xs:element name="street" type="xs:string" maxOccurs="4" />
<xs:element name="flat" type="xs:decimal" minOccurs="0" />
<xs:element name="room" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

We can see that the element address is of complex type and contains two required
elements: town and street and two optional elements: flat and room. In addition, ele-
ment street can occur 1–4 times. The Figure 3 illustrates the FSM of the provided
example.

The figure shows, that street follows the town. After the streetwe can have another
street (which is limited bymaxOccurs), flat, room or exit edge ($; i.e. no element). room
can follow the street or flat. The following W3C XML document confirms to the
schema:

<?xml version="1.0"?>
<address>
<town>Edinburgh</town>
<street>Parkside Terrace</street>
<room>1</room>

</address>

If we select the street element: Insert After: element-after is room and the candidates
are street and flat. street equals to the selected element, so we can insert it after. flat
edges contain element-after room, so we can insert it after. Insert Before: element
before is town and the only candidate is street, since street equals the selected element

9

Client-side XML Schema validation

Figure 3. FSM of address element

we can insert it before. Insert Into (1): element street is of simple type and does not
admit elements inside. Insert Into (2): element street does not admit attributes inside.
Delete: the minOccurs field is equal to 1 and the real occurrence rate is equal to 1,
since we cannot delete the selected element. Edit: does not apply to elements.

If we select the address element: Insert After, Insert Before, Insert Into (2) and
Edit does not apply. Insert Into (1): the candidates are street and flat. Then we apply
insert-after algorithm for each child. From the previous example, street and flat
candidates could follow the street element.

5. Implementation and Analysis
We verified algorithms by implementing the editing functionality as part of this
project. The implementation follows the theoretical algorithm and is easy under-
standable.We could verify that ourmethodology is complete enough to cover most
of W3C XML Schema structures and provides sufficient performance rates. The
Figure 4 illustrates an example from the previous section.

We ran three sets of experiments: in the first we used the above simple example
to evaluate the validation process; for the second set, we used documents that cover
popular W3C XML Schema constructions to evaluate the editing process. All tests
were run on Gecko 1.9 (Mozilla Firefox 3.6), WebKit 534 (Google Chrome 7) and
Trident VI (Internet Explorer 8) layout engines using an Intel Core 2 Duo 2.0GHz
machine with 4G of RAM and Microsoft Windows 7 OS. The Linux environment
was omitted because the workability depends on engine (Web-browser), but not
on OS. Both the validation and editing tasks for all tests were performed without

10

Client-side XML Schema validation

Figure 4. Implementation Example

noticeable delays. Therefore we consider that in general cases the performance is
satisfactory.

For testing the validation process we used a set of 65 tests. A test case provides
XML, W3C XML Schema and the expected result. The test suite was designed for
the XSV application and while we implemented the same validation engine we ex-
pected the same results. The evaluation of the editing process is challenging, because
it is difficult to define test cases and evaluate the output. We constructed a test suite
consisting of simple and widely used W3C XML Schema structures (mostly taken
from [10]). We performed manual testing by clicking all elements and compare the
result with expected. The tests were performed successfully.

6. Discussion
The provision of client-side schema validation functionality opens up a range of
improved user-friendly XML-based applications. Existing (WYSIWYG or not)
schema-constrained editing tools are either proprietary or limited to a single built-
in schema: our work enables open-source fully general development in this space.
Schema-based database entry toolswhich guarantee integrity are also nowpossible.

We implemented the algorithms for controlling an XML editing process in
compliance with W3C XML Schema. The application provides an opportunity to
detect the possible elements/attributes to insert or delete, as well as physically add
or delete items from an XML DOM tree and edit text. The developed framework
could be easily extended, as we have used modular development methodology,
popular Ext JS libraries and well considered interfaces. We resolved the problem

11

Client-side XML Schema validation

of detection of selected elements within FSM, which implies linking XML DOM,
XML Schema, FSM and graphical tree representation.

In future work, we plan to supplement the validation engine to support allW3C
XML Schema constructions, explore the valid subtree insertion problem and add
support of a wide range XSL and/or CSS transformations.

7. References

[1] Adobe Systems Inc, The Mozilla Foundation, Opera Software, et al: Ecmascript
4th edition – language overview. October 7 2007.

[2] D. Barbosa, A. Mendelzon, L. Libkin, L. Mignet, and M. Arenas: Efficient
incremental validation of xml documents. In Proceedings of the 20th International
Conference onData Engineering (ICDE04), pages 671–683, Boston,Massachusetts,
USA, 2004.

[3] B. Bouchou, M. Halfeld, and F. Alves: Updates and incremental validation of
xml documents. In 9th International Workshop on Database Programming
Languages, pages 216–232, Potsdam,Germany, September 2003. Springer-Verlag
Berlin Heidelberg.

[4] Liip AG: Bxe - the wysiwyg xml editor. https://fosswiki.liip.ch/display/FLX/
Editors+BXE, May 2007. [August 19, 2010].

[5] T. O’Reilly and J. Battelle:Web squared:Web 2.0 five years on. InWeb 2.0 Summit.
O’Reilly Media, Inc. and TechWeb, 2009.

[6] SDL Structured Content : Xopus: The web based wysiwyg xml editor.
http://xopus.com/, March 2010. [Retrieved August 17, 2010]..

[7] H. S. Thompson: Efficient implementation of content models with numerical
occurrence constraints. In XTech 2006, Amsterdam, The Netherland, May 2006.
IDE Alliance.

[8] H. S. Thompson and R. Tobin: Using finite state automata to implement W3C
XML schema content model validation and restriction checking. In Proceedings
of XML Europe, London, 2003. IDE Alliance.

[9] H. S. Thompson and R. Tobin: Xsv: an xml schema validator.
http://www.cogsci.ed.ac.uk/~ht/xsv-status.html, December 2007. [Retrieved
January 10, 2011].

[10] W3Schools: Xml schema tutorial. http://www.w3schools.com/schema/default.
asp, 2010. [Retrieved December 20, 2010].

12

Client-side XML Schema validation

JSON for XForms
Adding JSON support in XForms data instances

Alain Couthures
<alain.couthures@agencexml.com>

Abstract

XForms was originally specified for manipulating XML-only instances of
data but designing forms with XForms can benefit from JSON support, espe-
cially for integration with existing AJAX environments. This is possible when
defining how to map any JSON object into an XML document. The key point
of the proposed conversion is to allow an intuitive use of XPath with a minimal
number of extra attributes and elements. XForms developers shouldmanipulate
JSONdata without having tomentally convert it in XML. This is implemented
in XSLTForms and demonstrated with the integration of an external JSON
API in an XForms page.

Keywords: xml xforms, json xsltforms

1. Introduction
XForms is a condensé of good programming patterns for forms design. XForms
uses concepts also found in entreprise-proofed architectures such as ASP.Net and
J2EE: extra elements are mixed within an host language such as HTML to dramat-
ically reduce the need of programming instructions and improve both productivity
and quality. XForms is indeed a precursor for HTML5 which now includes some
of its good ideas but just at controls level.

XForms was initially specified to be integrated in a full-XML environment at
client-side.Web developers are, in practice, heavily using JSON for exchanging data
between browsers and servers and having to use XML, instead, to benefit from
XForms is certainly a problem for them.

XForms is using XPath expressions for selecting nodes and checking constraints
and XPath cannot be used directly on JSON objects. XPath is a rich query language
itself while JSON doesn't have this possibility natively. So, it is proposed to store
JSONobjectswithin internal XMLdocuments, the conversion beingmade automat-
ically without any loss when serializing back to JSON.

JSON support in XForms is also interesting for cross-domain requests where
security reasons force Javascript developers to use HTML src element instead of
XMLHttpRequest(). AnXForms implementation can hide this so there is no different
way for a Web developer to treat cross-domain requests.

13

2. XForms Context

2.1. MVC Design
XForms is based on elements for defining models, controls, events and actions.
(X)HTML is the favorite host language for XForms but this could also be SVG, for
example.

Within amodel, there are instances of XMLdatawhichwill be used for building
controls and outputs and some of them will be edited. Bindings allow to add rich
constraints to data such as types, calculations, conditional read-only or relevant
status.

Controls are referencing nodes to output values and modify them according to
constraints.

Events are dispatched so actions are locally performed.

2.2. XPath in XForms
XForms Recommendation defines extra specific XPath functions for accessing dif-
ferent instances, for encrypting values, for context retrieving,...

XPath expressions are evaluated according to a current context, as it is done in
XSLT stylesheets for example. The default context for an instance is at the document
element so XPath expressions in XForms usually don't need to start with
"/my_document_element/" and, in most forms, the document element name is, in
fact, never mentioned.

For limiting refreshduration, dependencies betweennodes andXPath expressions
should be maintained and updated, if necessary, when the value of a node is
changed.

As a consequence, any XForms implementation needs an "enhanced" XPath en-
gine.

2.3. Server Exchanges
XForms can directly be used with native XML databases but can also be used with
any other server architecture. Every AJAX-based application is sending data to its
client-software according to requests with parameters. Only XML serialization and
flat GET parameters list submission are specified in XForms 1.1.

2.4. JSON vs. XML for browsers
There are technical facts to consider:

JSON is lighter: no namespace, no distinction between elements and attributes.
JSON is shorter: minimal closing tags (}).

14

JSON for XForms

JSONobjects are evaluated and stored by Javascriptwithout any extra API being
required.

JSON values are not just text strings: numbers, booleans and dates might be
present too.

JSONnatively supports any character in names, supports named and anonymous
arrays.

JSON doesn't natively support queries and external query libraries are not as
rich as XPath (just child:: or descendant:: axes).

XML processing is not standardized in browsers and require specific Javascript
instructions (IE8 is still using MSXML3!).

Even if XSLT is also well supported by browsers, it cannot be used for dynamic
treatments.

There are also human facts to consider:
Web developers just need to learn Javascript and JSON: Javascript is definitely

easier to learn for Web developers, mandatory for programming rich graphical ef-
fects, by the way, and yet good enough to develop anything. Javascript is still
heavily improved and there are plenty of libraries to enrich it.

Many non-Web developers used to consider Web as some kind of underworld
inhabited by unqualified self-taught developers deserving smaller salaries if any.
Nevertheless, AJAX has enabled Web developers to become key actors for new ap-
plications. XML complexity, proned by only a part of the non-Web developers,
sounds useless to themwhilst they are proud of JSON as the notation that extended
their leadership. JSON sounds like a revenge notation!

2.5. Other Data Formats
In fact, any structured data format can be considered for XForms. For example,
vCard, CSV with or without titles, formatted log files,... could be treated the same
way. It means that propositions for JSON support in XForms should be extensible
and the use of 'json' in terms should be avoided.

3. JSON Objects Internal Storage In Browsers

3.1. Constraints

3.1.1. Reversibility

JSONobjects have to be serialized identically to the original oneswhen notmodified
by controls. This does not mean that every XML document can be mapped into the
proposed representation in JSON and back in XML.

15

JSON for XForms

3.1.2. XPath Full Support

XForms developers shouldn't have to learn a new syntax for querying JSONwithin
XForms.

New XPath extension functions should be enough to guaranty a full support.
Whilst XSLTForms has its own XPath engine, other XForms implementations using
an external library as XPath engine should just add functions.

Whenever extra elements are required for internal storage, their number should
be minimal and their names should not be in conflict with ordinary JSON names.

XPath functions name() and local-name() should return the effective JSONnames
when possible.

Javascript notation to retrieve an item in a array ([pos] where pos starts from 0)
should be almost preserved ([pos] where pos starts from 1).

3.1.3. XML Schema conformance

XMLSchemaRecommendation already defines the xsi:type and the xsi:nil attributes
and they are supported in the XFormsRecommendation. The xsd:maxOccurs attrib-
ute enables to specify how many occurences there might be for an element.

3.2. Proposed Representation of JSON Objects With XML 1.0

3.2.1. Elements, Attributes and Namespaces

Elements are used for JSON properties within the empty namespace.
Meta data are stored in attributes within a specific namespace.
Extra elements are only used in anonymous situations and are always in a spe-

cific namespace.

3.2.2. Extra Document Element

XML 1.0 requires a unique document element so such an element is always added.
Example:
{
a: "stringA",
b: {

c: "stringC",
d: "stringD"

}
}

would be serialized as:

16

JSON for XForms

<exml:anonymous xmlns:exml="http://www.agencexml.com/exml" xmlns="">
<a>stringA

<c>stringC</c>
<d>stringD</d>

</exml:anonymous>

and, for default context,
• "a" equals 'stringA'
• "b/c" equals 'stringC'
• "b/d" equals 'stringD'

3.2.3. JSON Names

JSON names which cannot be used as XML names are replaced by '________' in the
empty namespace.

An extra attribute is used to store the JSON name when necessary and the new
XPath functions fullname() and local-fullname() are created to return the same value
as name() and local-name() or the value of this attribute when present.

Example:
{
"a & b": "A+B",
"déjà": "already",
"________": "underscores"

}

are represented as:
<exml:anonymous xmlns:exml="http://www.agencexml.com/exml" xmlns:xsi="http://►
www.w3.org/1999/XMLSchema-instance" xmlns:exsi="http://www.agencexml.com/exi" ►
xmlns="">
<________ exml:fullname="a & b">A+B</________>
<________ exml:fullname="déjà">already</________>
<________ exml:fullname="________">underscores</________>

</exml:anonymous>

and, for default context,
• "*[fullname() = 'a & b']" equals 'A+B'
• "local-fullname(*[1])" equals 'a & b'
• "*[fullname() = 'déjà']" equals 'already'
• "local-fullname(*[2])" equals 'déjà'
• "________[fullname() = '________']" equals 'underscores'

17

JSON for XForms

3.2.4. JSON Datatypes

For each Javascript datatype, themost approaching XSD type is automatically asso-
ciated. XForms bindings have to be used to adjust more precisely the effective
datatype.

Example:
{
a: "string"+"A",
b: 42,
c: new Date(2011,3,26),
d: true

}

would be serialized as:
<exml:anonymous xmlns:exml="http://www.agencexml.com/exml" xmlns:xsi="http://►
www.w3.org/1999/XMLSchema-instance" xmlns="">
<a>stringA
<b xsi:type="xsd:double">42
<c xsi:type="xsd:dateTime">2011-03-26T00:00:00Z</c>
<d xsi:type="xsd:boolean">true</d>

</exml:anonymous>

3.2.5. JSON Named Arrays

Arrays are modeled with an extra attribute. Empty arrays require another attribute
because, if not, there would be an ambiguity for an array with just the empty string
as element.

Extra XPath functions might be helpful:
• is-array(node) which might be defined as "count(node[@exsi:maxOccurs = 'un-

bounded']) != 0"
• is-non-empty-array(node)whichmight bedefinedas "count(node[@exsi:maxOccurs

= 'unbounded' and @xsi:nil != 'true']) != 0"
• array-length(node) which might be defined as "count(node[@exsi:maxOccurs =

'unbounded' and @xsi:nil != 'true'])"
Example:

{
a: ["stringA", 42],
b: [],
c: [""]

}

would be serialized as:

18

JSON for XForms

<exml:anonymous xmlns:exml="http://www.agencexml.com/exml" xmlns:xsi="http://►
www.w3.org/1999/XMLSchema-instance" xmlns:exsi="http://www.agencexml.com/exi" ►
xmlns="">
<a exsi:maxOccurs="unbounded">stringA
<a exsi:maxOccurs="unbounded" xsi:type="xsd:double">42
<b exsi:maxOccurs="unbounded" xsi:nil="true"/>
<c exsi:maxOccurs="unbounded"/>

</exml:anonymous>

and, for default context,
• "is-array(a)" equals true()
• "array-length(a)" equals 2
• "a[1]" equals 'stringA'
• "a[2]" equals '42'
• "is-array(b)" equals true()
• "is-non-empty-array(b)" equals false()
• "array-length(b)" equals 0
• "is-array(c)" equals true()
• "array-length(c)" equals 1
• "c[1]" equals ''

3.2.6. JSON Anonymous Arrays

An element with a reserved name in a specific namespace has to be used.
Example:
[
["stringA", 42],
[],
[[]],
{
c: "stringC1",
d: "stringD1"

},
{
c: "stringC2",
d: "stringD2"

}
]

would be serialized as:
<exml:anonymous xmlns:exml="http://www.agencexml.com/exml" xmlns:xsi="http://►
www.w3.org/1999/XMLSchema-instance" xmlns:exsi="http://www.agencexml.com/exi" ►
xmlns="">

19

JSON for XForms

<exml:anonymous exsi:maxOccurs="unbounded">
<exml:anonymous exsi:maxOccurs="unbounded">stringA
<exml:anonymous exsi:maxOccurs="unbounded" xsi:type="xsd:double">42

</exml:anonymous exsi:maxOccurs="unbounded">
<exml:anonymous exsi:maxOccurs="unbounded">
<exml:anonymous exsi:maxOccurs="unbounded" xsi:nil="true"/>

</exml:anonymous>
<exml:anonymous exsi:maxOccurs="unbounded">
<exml:anonymous exsi:maxOccurs="unbounded">
<exml:anonymous exsi:maxOccurs="unbounded" xsi:nil="true"/>

</exml:anonymous>
</exml:anonymous>
<exml:anonymous exsi:maxOccurs="unbounded">
<c>stringC1</c>
<d>stringD1</d>

</exml:anonymous>
<exml:anonymous exsi:maxOccurs="unbounded">
<c>stringC2</c>
<d>stringD2</d>

</exml:anonymous>
</exml:anonymous>

and, for default context,
• "*[1]/*[1]" equals 'stringA'
• "*[1]/*[2]" equals '42'
• "is-array(*[2])" equals true()
• "is-array(*[3]/*[1])" equals true()
• "*/c[../d = 'stringD1']" equals 'stringC1'
• "*[c = 'stringC2']/d" equals 'stringD2'

3.2.7. XPath Engine Proposed Enhancements

When possible, XPath engine modifications can simplify expressions for JSON ob-
jects:
• as in MySQL, non-XML names in expressions could be quoted with character `

(backquote) to avoid predicates with fullname() calls
• name() and local-name() functions could be extended to include fullname() and

local-fullname() functions support and return '________' just when true
• name() and local-name() functions could be modified to return '' (empty string)

instead of, respectively, 'exml:anonymous' and 'anonymous'
• "/*/" used for "/exml:anonymous/" could be simplified as just "/"'
• "*" used for "exml:anonymous" could be written ``

20

JSON for XForms

• "*" used for "exml:anonymous" before a predicate could even be omitted

4. JSONP Support

4.1. Request Submission
When a script element is programmatically added within an HTML page, it is im-
mediately executed and specifying a src attribute for this script element allows
adding parameters. There is no cross-domain limitation because this is a good way
to load external Javascript libraries.

The name of a callback function has to be sent to the server to allow it to integrate
it in its response.

4.2. Response Processing
The callback function is called by the Javascript source received for the added script
element. The response is the parameter of this function call. So it is up to this function
to convert the received JSON object into its internal XML representation. Once it is
converted, it is treated as if it was received as an XML instance.

5. The Wikipedia Search Demo

5.1. The Wikipedia Search API
TheWikipedia SearchAPI allows retrieving entry names startingwith a given string.

A GET request has to be built such as "http://en.wikipedia.org/w/api.php?ac-
tion=opensearch&search=myvalue&format=json&callback=mycallback"

The returned script is an anonymous arraywith two elements, the first one been
the given string and the second one an array containing up to 10 entries.

For example:
http://en.wikipedia.org/w/►
api.php?action=opensearch&search=prague&format=json&callback=jsoninst

will return
jsoninst(["prague",
["Prague",
"Prague Spring",
"Prague Conservatory",
"Prague Ruzyn\u011b Airport",
"Prague University",
"Prague Castle",
"Prague Metro",

21

JSON for XForms

"Prague-East District",
"Prague-West District",
"Prague Offensive"]])

5.2. The XForms Page
An instance is required for building the request:

<xf:instance id="isearch" mediatype="application/json">
{
action: "opensearch",
format: "json",
search: ""
}
</xf:instance>

Another instance is required for storing the responses:
<xf:instance id="iresults" mediatype="application/json">
[]
</xf:instance>

A constraint is added to check whether the typed value matches an entry:
<xf:bind nodeset="search" constraint="instance('iresults')/*[2]/*[upper-case(.) ►
= upper-case(current())]"/>

A submission is defined (without mentioning the callback function name which
will be automatically added andwithout even indicating that JSONP has to be used
because, in XSLTForms, this is set to be the defaultmode for cross-domain requests).
Submission is performed even if the input control is not validated:

<xf:submission method="get" replace="instance" instance="iresults" ►
separator="&" validate="false"
action="http://en.wikipedia.org/w/api.php"/>

Controls are used to allow input and output:
<xf:input id="search" ref="search" incremental="true" delay="500">
<xf:label>Subject : </xf:label>
<xf:send ev:event="xforms-value-changed"/>
<xf:toggle ev:event="DOMFocusIn" case="show-autocompletion" />
</xf:input>
<xf:switch>
<xf:case id="show-autocompletion">
<xf:repeat id="results" nodeset="instance('iresults')/*[2]/►

*[is-non-empty-array() and . != '̀']">
<xf:trigger appearance="minimal">
<xf:label><xf:output value="."/></xf:label>
<xf:action ev:event="DOMActivate">

22

JSON for XForms

<xf:setvalue ref="instance('isearch')/search" value="current()" />
<xf:toggle case="hide-autocompletion" />
</xf:action>
</xf:trigger>
</xf:repeat>
</xf:case>
<xf:case id="hide-autocompletion" />
</xf:switch>

5.3. How It Works
Each time a character is added in the search field (after a delay), the request is sent
to the server by serializing the leaf nodes of the search instance using aGETmethod.

The response is converted into XML data instance and a refresh is performed.
The returned entries are listed so one of them can be selected (filtering is required

for empty array and for erroneous answer).

5.4. The Full Form
<html
xmlns="http://www.w3.org/1999/xhtml"
xmlns:xf="http://www.w3.org/2002/xforms"
xmlns:ev="http://www.w3.org/2001/xml-events">
<head>
<title>WIKIPEDIA OpenSearch Test Form</title>
<xf:model>
<xf:instance id="isearch" mediatype="application/json">
{
action: "opensearch",
format: "json",
search: ""
}
</xf:instance>
<xf:instance id="iresults" mediatype="application/json">
[]
</xf:instance>
<xf:bind nodeset="search" constraint="instance('iresults')/*[2]/►

*[upper-case(.) = upper-case(current())]"/>
<xf:submission method="get" replace="instance" instance="iresults" ►

separator="&" validate="false" action="http://en.wikipedia.org/w/api.php"/>
<xf:setfocus ev:event="xforms-ready" control="search"/>

</xf:model>
<style type="text/css">
#search label { float: left; width: 4em; }
#results { border:1px solid black; width: 15em; margin-left: 4em;}

23

JSON for XForms

#results .xforms-value:hover { background-color: #418ad5; }
</style>

</head>
<body>
<h1>WIKIPEDIA OpenSearch Test Form</h1>
<p>Please enter a subject in the following field. The value is not case ►

sensitive but it has to exist in the results of the corresponding search.</p>
<xf:input id="search" ref="search" incremental="true" delay="500">
<xf:label>Subject : </xf:label>
<xf:send ev:event="xforms-value-changed"/>
<xf:toggle ev:event="DOMFocusIn" case="show-autocompletion" />

</xf:input>
<xf:switch>
<xf:case id="show-autocompletion">
<xf:repeat id="results" nodeset="instance('iresults')/*[2]/►

*[is-non-empty-array() and . != '̀']">
<xf:trigger appearance="minimal">
<xf:label><xf:output value="."/></xf:label>
<xf:action ev:event="DOMActivate">
<xf:setvalue ref="instance('isearch')/search" value="current()" ►

/>
<xf:toggle case="hide-autocompletion" />

</xf:action>
</xf:trigger>

</xf:repeat>
</xf:case>
<xf:case id="hide-autocompletion" />

</xf:switch>
</body>

</html>

6. Conclusion
There is no technical problem for XForms in supporting JSON. Mapping the JSON
possibilities into an XMLdocument is the key for a full integration allowing intuitive
XPath use.

Other notations can be supported as easily. Implementations just have to allow
developers to provide their own functions to convert to and from XML for each.

Client-side XForms implementations written in Javascript, such as XSLTForms,
can access JSON data on different domains using JSONP with which there is no
cross-domain limitation.

XForms is JSON-compatible and architectures used to JSONdata exchanges can
benefit from XForms implementations.

24

JSON for XForms

A JSON Facade on MarkLogic Server
Jason Hunter

MarkLogic Corporation
<jhunter@marklogic.com>

Ryan Grimm
<grimm@xqdev.com>

Abstract

What would happen if you put a facade around MarkLogic Server to have it
act as a JSON store? This paper explores our experience doing just that.

MLJSON is a new open source project that provides a set of libraries and
REST endpoints to enable theMarkLogic Server to become an advanced JSON
store. Behind the scenes the JSON is represented as XML, and the JSON-
centric queries are resolved using MarkLogic’s XML-centric indexes. In this
paper we present the design of the project, discuss its pros and cons, and talk
about the interesting uses for a fully-queryable, highly-scalable JSON store.

Note
TheMLJSON project is in pre-release and details are subject to change.
Source code is available at https://github.com/isubiker/mljson.

1. JSON and MarkLogic Server
A quick refresher. JSON stands for "JavaScript Object Notation". It’s a lightweight
data-encoding and interchange format that’s native to JavaScript but now widely
utilized across programming languages. It’s commonly used for passing data
betweenweb servers andweb browsers, specifying configuration data, and exchan-
ging data between decoupled environments.

MarkLogic Server is a document-centric, transactional, search-centric, structure-
aware, schema-agnostic, XQuery- and XSLT-driven, high performance, clustered,
database server.MarkLogic uses XML as a native data type,with indexes optimized
to run ad hoc queries against XML documents with ad hoc schemas.

By putting a JSON facade on top of MarkLogic Server, and having MarkLogic
store the JSON internally as an XML representation, it’s possible to have a JSON
store with all the classic MarkLogic benefits: scale and speed, rich full text support,
and enterprise database features.

The JSON format is wonderfully simple. It contains objects (a sequence of
name/value pairs), arrays (a sequence of values), and values (which can be a string,

25

number, object, array, true, false, or null). A precise definition can be found at
http://json.org.

2. Design Considerations
There were two main considerations when designing the MLJSON library:
1. Approach things from a JSONangle. Craft the XML tomatch the JSON, not vice-

versa.
2. Make good use of MarkLogic indexes. Craft the XML so that it works well with

MarkLogic indexes. For example, the names in name-value pairs are represented
as XML element names because that works well with MarkLogic’s indexing of
XML element structure. Similarly, JSON hierarchies are implemented as XML
hierarchies, to match MarkLogic’s native abilities to handle hierarchical XML.

The overall goal, of course, has been to expose the power and features ofMarkLogic
but against JSON structures instead of XML documents.

3. Conversion
The MLJSON library includes two functions to convert JSON to XML and back
again. A user of the REST endpoints wouldn’t normally call these functions, but
we’ll look at them to understand the MLJSON underpinnings. The jsonToXML()
function accepts a JSON string and returns an XML representation:

declare function json:jsonToXML(
$json as xs:string

) as element(json)

The xmlToJSON() function does the reverse; it accepts an XML element and returns
a JSON string. It does not support the passing of arbitrary XMLdocuments. It accepts
only <json> elementswhose contents follow the (informal) schemaused byMLJSON
internally to represent JSON structures.

declare function json:xmlToJSON(
$element as element(json)

) as xs:string

4. Sample JSON to XML Conversions
To understand these functions, let’s look at their input and output. The following
XQuery script takes a typical JSON data structure, in this case one used by Google
Charts, and converts it from a JSON string to XML:

import module namespace json="http://marklogic.com/json" at
"/mljson/lib/json.xqy";

26

A JSON Facade on MarkLogic Server

json:jsonToXML(
'{
"iconKeySettings":[],
"stateVersion":3,
"time":"notime",
"xAxisOption":"_NOTHING",
"playDuration":15,
"iconType":"BUBBLE",
"sizeOption":"_NOTHING",
"xZoomedDataMin":null,
"xZoomedIn":false,
"duration":{
"multiplier":1,
"timeUnit":"none"

},
"yZoomedDataMin":null,
"xLambda":1,
"colorOption":"_NOTHING",
"nonSelectedAlpha":0.4,
"dimensions":{
"iconDimensions":[]

},
"yZoomedIn":false,
"yAxisOption":"_NOTHING",
"yLambda":1,
"yZoomedDataMax":null,
"showTrails":true,
"xZoomedDataMax":null

}')

It returns:
<json type="object">
<iconKeySettings type="array"/>
<stateVersion type="number">3</stateVersion>
<time type="string">notime</time>
<xAxisOption type="string">_NOTHING</xAxisOption>
<playDuration type="number">15</playDuration>
<iconType type="string">BUBBLE</iconType>
<sizeOption type="string">_NOTHING</sizeOption>
<xZoomedDataMin type="null"/>
<xZoomedIn boolean="false"/>
<duration type="object">
<multiplier type="number">1</multiplier>
<timeUnit type="string">none</timeUnit>

</duration>

27

A JSON Facade on MarkLogic Server

<yZoomedDataMin type="null"/>
<xLambda type="number">1</xLambda>
<colorOption type="string">_NOTHING</colorOption>
<nonSelectedAlpha type="number">0.4</nonSelectedAlpha>
<dimensions type="object">
<iconDimensions type="array"/>

</dimensions>
<yZoomedIn boolean="false"/>
<yAxisOption type="string">_NOTHING</yAxisOption>
<yLambda type="number">1</yLambda>
<yZoomedDataMax type="null"/>
<showTrails boolean="true"/>
<xZoomedDataMax type="null"/>

</json>

Remember, this isn’t a format you’re expected to see or utilize. It’s shown just to
elucidate how MLJSON works internally.

The root element is <json>. That’s always the case. The root type is object, as
specified by the type attribute. Objects in JSON behave like maps with name-value
pairs. The pairs here are represented as XML elements, with a name corresponding
to the map name and a value to the map value. The type is provided as an attribute.
Some elements (i.e. the empty array, the booleans, and the null value) don’t need
child text nodes.

Below is another encoding example, this time using a JSON array instead of
object, and holding just simple values:

import module namespace json="http://marklogic.com/json" at
"/mljson/lib/json.xqy";

json:jsonToXML(
'["hello world", [], {}, null, false, true, 9.99]'

)

The result:
<json type="array">
<item type="string">hello world</item>
<item type="array"/>
<item type="object"/>
<item type="null"/>
<item boolean="false"/>
<item boolean="true"/>
<item type="number">9.99</item>

</json>

In an array there are no names, so the items are represented by <item> elements.

28

A JSON Facade on MarkLogic Server

Name Escaping
Using JSON names as XML element names makes it easier for MarkLogic to
execute efficient XPath and full text queries against this data, as we’ll see later,
but what if the name isn’t a legal XML name?

As of this writing an illegal name character will generate an error. The plan
is for MLJSON to support an escaping technique that enables safe storage of
any string, with reliable round-tripping. An underscore will be used to initiate
an escape sequence. It will be followed by four hexadecimal numbers defining
the character it represents. If an underscore appears in the name before it’s es-
caped, it will be escaped like any other special character. Any characters not
allowed at the start of an element name (such as a digit) will be escaped also
(underscore is allowed at the start of an element name). An empty string will
be handled using a special rule that maps it to a single underscore. Remember,
all escaping and unescaping will happen automatically and transparently.

Table 1. Example Escape Sequences

NotesElement Tag NameString
<a>"a"

Element names can’t start
with a digit

<_0031>"1"

<_>""

<_003A>":"

All underscores need to be
specially escaped

<_005F>"_"

<_0024>"$"

<foo_0024bar>"foo$bar"

<_0031foo_0024bar>"1foo$bar"

<x_003Ahtml>"x:html"

5. Querying JSON
Now thatwe have a technique to store JSONdocuments insideMarkLogic, we need
away to query the documents. UsingXPath andXQuery are certainly viable options,
but they require exposing the internal details of the storage format to the user. It’s
better to define a query syntax that maintains the JSON facade.

The MLJSON query syntax, fittingly, lets you specify query constraints through
a declarative JSON structure. For example, this query syntax finds stored JSON

29

A JSON Facade on MarkLogic Server

documents that have an object at the top of the hierarchy containing a name of "foo"
with a value of "bar":

{key: "foo", value: "bar" }

It matches this JSON structure:
{
abc: "xyz",
foo: "bar"

}

It’s equivalent (and internally gets mapped) to the following XPath:
/json/foo[. = "bar"]

You don’t generally see this XPath, of course. It’s generated as part of the
jsonquery:execute() function:

declare function jsonquery:execute(
$json as xs:string

) as element(json)*

Here’s a sample call:
import module namespace jsonquery="http://marklogic.com/json-query" at
"/mljson/lib/json-query.xqy";

jsonquery:execute(
'{key: "foo", value: "bar" }'

)

The JSON query syntax supports much more advanced expressions. You can, for
example, match a sequence of values:

{key: "foo", value: ["bar","quux"] }

To find a match anywhere, use innerKey:
{innerKey: "foo", value: ["bar","quux"] }

Drop the explicit value: requirement and it means any value is allowed:
{key: "foo"}

Constraints can be hierarchical, where the value contains another object:
{key: "foo", value: { key: "id", value: "0596000405" } }
Same as /json[foo/id = "0596000405"]

You can use or: or and: to enable more complex matches:
{ key: "book", or: [{key: "id", value: "0596000405"},

{key: "other_id", value: "0596000405"}] }

To achieve a comparison other than equality, specify a comparison: value:

30

A JSON Facade on MarkLogic Server

{key: "price", value: 8.99, comparison:"<" }

It’s also possible to specify howmany results will be returned, using the position:
constraint:

{ key: "book", position: "1 to 10" }

To understand how the JSON is evaluated internally, the following table shows the
internal XPath associated with each JSON query.

Internal XPathJSON
/json/foo[. = "bar"]{key:"foo", value:"bar"}

/json/foo[. = ("bar","quux")]{key:"foo", value:["bar","quux"]}

/json//foo[. = ("bar","quux")]{innerKey:"foo", value:["bar","quux"]}

/json[exists(foo)]{key:"foo"}

/json[foo/id = "0596000405"]{key:"foo", value:{key:"id",
value:"0596000405"}}

/json[exists(book)][id = "0596000405"
or other_id = "0596000405"]

{key:"book", or: [{key:"id",
value:"0596000405"}, {key:"other_id",
value:"0596000405"}]}

/json[price < 8.99]{key:"price", value:8.99, comparison:"<"}

(/json[exists(book)])[1 to 10]{key:"book", position:"1 to 10"}

These examples just scratch the surface. There’s also a fulltext: constraint that
exposesMarkLogic’s capabilities regarding full text, range,metadata property value,
and geospatial indexing:

{ fulltext: {
or: [

{ equals: {
key: "greeting",
string: "Hello World",
weight: 2.0,
caseSensitive: false,
diacriticSensitive: true,
punctuationSensitve: false,
whitespaceSensitive: false,
stemmed: false,
wildcarded: true,
minimumOccurances: 1,
maximumOccurances: null

}},

31

A JSON Facade on MarkLogic Server

{not: { contains: {
key: "para",
string: "Hello World",
weight: 1.0

}}},
{andNot: {

positive: { contains:{ key: "para", string: "excel"}},
negative: { contains:{ key: "para", string: "proceed"}}

}},
{property: { contains: {

key: "para",
string: "Hello World"

}}},
{ range: {

key: "price",
value: 15,
operator: "<"

}},
{ geo: {

parent: "location",
latKey: "latitude",
longKey: "longitude",
key: "latlong",
region: [

{point: {longitude: 12, latitude: 53}},
{circle: {longitude: 12, latitude: 53, radius: 10}},
{box: {north: 3, east: 4, south: -5, west: -6}},
{polygon:[

{longitude:12, latitude:53},
{longitude:15, latitude:57},
{longitude:12, latitude:53}

]}
]

}},
{ collection: "recent" }

],
filtered: false,
score: "logtfidf"

},
position: "1 to 10"

}

This evaluates using the following MarkLogic cts:query structure:
cts:or-query((
cts:element-value-query(fn:QName("", "greeting"), "Hello World",
("case-insensitive","diacritic-sensitive","punctuation-insensitive",

32

A JSON Facade on MarkLogic Server

"whitespace-insensitive","unstemmed","wildcarded","lang=en"), 2),
cts:not-query(cts:element-word-query(fn:QName("", "para"), "Hello World",
("lang=en"), 1), 1),

cts:and-not-query(
cts:element-word-query(fn:QName("", "para"), "excel", ("lang=en"), 1),
cts:element-word-query(fn:QName("", "para"), "proceed", ("lang=en"), 1)),

cts:properties-query(cts:element-word-query(fn:QName("", "para"),
"Hello World", ("lang=en"), 1)),

cts:element-range-query(fn:QName("", "price"), "<", 15),
cts:element-pair-geospatial-query(fn:QName("", "location"),
fn:QName("", "latitude"), fn:QName("", "longitude"),
(cts:point("53,12"), cts:circle("@10 53,12"), cts:box("[-5, -6, 3, 4]"),
cts:polygon("53,12 57,15 53,12")), ("coordinate-system=wgs84"), 1),

cts:collection-query("recent")
))

6. REST Interface
We’ve now seen how JSON is mapped to XML, and how the XML is queried using
a JSON query syntax. To glue it all together, MLJSON exposes a REST web service
interface to handle the loading, deleting, modifying, and querying of JSON docu-
ments held in MarkLogic.

The first REST endpoint is jsonstore.xqy. It provides basic insert, fetch, and
delete capabilities:

Table 2. Sample REST URLs

/jsonstore.xqy?uri=http://foo/barInsert a document
(PUT)

/jsonstore.xqy?uri=http://foo/barDelete a document
(DELETE)

/jsonstore.xqy?uri=http://foo/barGet a document (GET)

You can also use the jsonstore.xqy endpoint to set properties (name-value associ-
ations held as document metadata), set collections (a named grouping), assign
permissions (security), and dictate quality (inherent search relevance).

Table 3. Setting Attributes on Documents

/jsonstore.xqy?uri=http://foo/bar
&property=foo:bar

Set property (POST)

/jsonstore.xqy?uri=http://foo/bar
&permission=foo:read&permission=bar:read

Set permissions
(POST)

33

A JSON Facade on MarkLogic Server

/jsonstore.xqy?uri=http://foo/bar
&collection=foo&collection=bar

Set collections (POST)

/jsonstore.xqy?uri=http://foo/bar&quality=10Set document quality
(POST)

If you don’t like the jsonstore.xqy path or don’t want to expose it publicly, you
can add a URL rewriter rule to beautify the HTTP paths.

The other REST endpoint is jsonquery.xqy. It accepts a query constraint as a q
parameterwritten in JSONand returns the resulting JSONdocuments. For example:

Table 4. Query Fetch

/jsonquery.xqy?q={key:"price",value:"15",comparison:"<"}Query by price

It returns a result that’s (of course!) encoded as JSON:
{
"count":1,
"results":[

{"book":"The Great Gatsby","author":"F. Scott Fitzgerald","price":12.99}
]

}

TheMLJSONuser never sees XML. The documents are stored as JSON and queried
using JSON, with results returned as JSON.

7. Discussion
What are the pros and cons of the MLJSON design? We think it provides an easy
and approachable storage model well suited to those starting a new application
from scratch, and a new alternative to those with a pre-existing investment in JSON
as a storage format.

On the other hand, people familiar with MarkLogic and the full expressiveness
of XQuery and XSLT will find the simple "store and retrieve" model of MLJSON
restrictive. Also there are somedata formatswhere XML ismore natural than JSON.

Probably the key advantage of MLJSON is that it works well as a cloud service.
An enterprise system can use MLJSON to store, retrieve, and query JSON and not
need to know anything about the internal details. The MLJSON system would just
appear like a decoupled, scalable, high-performant, text-indexed JSON store.

34

A JSON Facade on MarkLogic Server

CXAN: a case-study for Servlex,
an XML web framework

Florent Georges
H2O Consulting

<fgeorges@fgeorges.org>

Abstract

This article describes the EXPath Webapp Module, a standard framework to
write web applications entirely with XML technologies, namely XQuery,
XSLT and XProc. It introduces one implementation of this module: Servlex.
It uses the CXAN website, the Comprehensive XML Archive Network, as a
case study.

Keywords: EXPath, webapp, XProc, XSLT, XQuery

1. Introduction
The EXPath project defines standard extensions for various XPath languages and
tools. Most of them are extension function libraries, defining sets of extension
functions you can call from within an XPath expression (e.g. in XLST, XProc or
XQuery), like the File Module, the Geo Module, the HTTP Client and the ZIP
Module (resp. functions to read/write the filesystem, functions for geo-localisation,
a function providing HTTP client features and functiond to read/write ZIP files).
EXPath also defines two modules of a different nature: the Packaging System and
the Webapp Module.

The Packaging System is the specification of a package format for XML techno-
logies. It uses the ZIP format to gather in one single file all components and resources
needed by a package (that is, a library or an application). The package contains also
a package descriptor, which associates a public URI to each public component of
the package. ThisURI can by used by user code to import those components exposed
by the package. The Packaging System defines also an on-disk repository structure,
so different processors and different implementations can share the same repository
of packages. When compiling the user stylesheet / pipeline / query, the processors
simply delegate the resolution of imported components to the repository:

35

This package formatmakes it possible to distributeXML libraries and applications
in a standard way, using a format supported by several processors. All the library
author needs to do is to provide such a package, created using standard tools. The
user just downloads the package and gives it to his/her repository manager, or dir-
ectly to his/her processor, in order to install it automaticaly.

1.1. CXAN
The Packaging System makes it possible for a library author to put the package on
his/her website in order for its user to download it and install it automatically. But
still, a user has to find the website, find the package, download it, and invoke the
repository manager with this package file to install it locally. And if the package
depends on another, the user has to find the dependencies, and install them also.
Recursively. All that process could be automated.

CXAN tries to solve that problembyproviding two complementary components.
The first component is the website. The CXAN website is aimed at gathering all
knownXMLpackages, at organizing them in a stable distribution, and atmaintaining
that distribution over the time. Every package in CXAN is given a unique ID, a ab-
breviation string. The second component is the CXAN client. The client is a program
that manages parts of this stable distribution in a local repository. The client can
install packages on the localmachine by downloading themdirectly from theCXAN
website, and resolving automatically the dependencies. There is a command-line
client to maintain a standard on-disk repository, but every processor can define its
own client, or an alternate client (for instance to provide a graphical interface in an
XML IDE).

The website is organized as a large catalog of XML libraries and applications,
that you can navigate through tags, authors and categories, or that you can search

36

CXAN: a case-study for Servlex, an XML web framework

using some keywords or among the descriptions. It is located at http://cxan.org/.
The following screenshot shows the details of the package google-apis, an XSLT
and XQuery library to access Google APIs over HTTP:

The client is invoked from the command-line (although a graphical orweb front-
end could be written). It understands a few commands in order to find a package,
install it, or remove it in the local repository. The following screenshot shows how
to look for packages with the tag google. There is one, the package with the ID
google-apis. We then display the details for that package. We also search for an
HTTP Client implementation, then install it before installing the Google APIs. All
informations and packages are retrieved directly from the CXAN website:

37

CXAN: a case-study for Servlex, an XML web framework

http://cxan.org/

Besides those two tools, the website and the client, the most valuable part of
CXAN is the collection of packages itself. CXAN is not a brand-new idea, and is
similar in spirit to systems like Debian's APT system (and its famous apt-get com-
mand), CTAN for TeX and LaTeX, or CPAN for Perl (also with a website at http://
cpan.org/ and a client to look up and install packages locally).

1.2. Webapp and Servlex
The EXPath Webapp Module defines a web container, using XSLT, XQuery and
XProc to implement web applications. It defines how the HTTP requests are dis-
patched to those components based on amapping between the request URI and the
components. It also defines how the container communicates with the components
(basically by providing themwith an XML representation of theHTTP request, and
by receiving in turn an XML representation of the HTTP response to send back to
the client).

The purpose of this module is to provide the developer with a low-level, yet
powerful way to map HTTP requests to XML components, without need for any
other technology. It is defined independently on any processor, and can actually
be implemented by all kind of processors. Most XML databases provide such a
feature (usually trying to provide an API at a slightely higher level, sacrificing the
power of a full HTTP support). Its place in the XML eco-system is similar to the
place of the Servlet technology in the Java eco-system: quite low-level, but providing
the ability to build more complex systems on top of it, entirely in XML.

Servlex is an open-source implementation of the Webapp Module, based on
Saxon and Calabash as its XSLT, XQuery and XProc processors, and on the Java
Servlet technology for its networking needs. It can be installed in any servlet con-

38

CXAN: a case-study for Servlex, an XML web framework

http://cpan.org/
http://cpan.org/

tainer, like Tomcat, Glassfish, or Jetty. It is available on Google Code at http://
code.google.com/p/servlex/.

2. The Webapp Module
The overall treatment of an in-bound HTTP request is as follows in the Webapp
Module:

That is, the client sends a request. It is received by the webapp container. It is
translated to an XML representation by the HTTP Bridge. This XML representation
is a simple XML vocabulary giving information about the HTTP verb, the request
URI, the URI parameters, the HTTP headers, and the entity content (e.g. in case of
a PUT or a POST). Based on the request URI and on a set of maps, the Dispatcher
finds the component to call in order to handle the request.

Once the correct component is found, it is called with the request as parameter.
For instance, if the component is an XQuery function, the request is passed as a
function parameter; if the component is an XSLT stylesheet, the request is passed
as a stylesheet parameter. The result of the evaluation of the component must be
the XML representation of the HTTP response to send back to the client. The HTTP
request looks like the following:

<web:request servlet="package" path="/pkg/google-apis" method="get">
<web:uri>http://cxan.org/pkg/google-apis?extra=param</web:uri>
<web:authority>http://cxan.org</web:authority>
<web:context-root></web:context-root>
<web:path>

<web:part>/pkg/</web:part>
<web:match name="id">google-apis</web:part>

39

CXAN: a case-study for Servlex, an XML web framework

http://code.google.com/p/servlex/
http://code.google.com/p/servlex/

</web:path>
<web:param name="extra" value="param"/>
<web:header name="host" value="cxan.org"/>
<web:header name="user-agent" value="Opera/9.80 ..."/>
...

</web:request>

Asyou can see, this XMLdocument contains all information about theHTTP request.
TheHTTPmethod of course (GET, POST, etc.) and everything related to the request
URI: the full URI but also its authority part, the port number, the context root and
the path within the web application. The webapp map can identify some parts in
the URI using a regex and give them a name, so they can be easily retrieved from
within the component. In the above example, themap says that everythingmatching
thewildcard in /pkg/*must be given the name id, so it can be accessed in the request
by the XPath /web:request/web:path/web:match[@name eq 'id']. The URI query
parameter and the HTTP request headers are also easily accessible by name.

The entity content (aka the request body), if any, is also passed to the component.
The bodies though are passed a bit differently. Instead of being part of the request
document, the bodies are passed in a separate sequence (I say bodies, because in
case of amulti-part requestwe can have several of them). They are parsed depending
on their content type, so a textual body is passed as a string item, an XML content
is parsed as a document node, an HTML content is tidied up and parsed in a docu-
ment node, and everything else is passed as a base 64 binary item. A description of
each body is inserted in the web:request though, describing its content type and a
few other infos.

The component is called with the request document, andmust provide as result
a response document. The same way the request document represents the HTTP
request the client sent, the response document represents the HTTP response to
send back to the client. It looks like:

<web:response status="200" message="Ok">
<web:header name="Extra-Header" value="..."/>
<web:body content-type="text/html">

<html>
<head>

<title>Hello</title>
</head>
<body>

<p>Hello, world!</p>
</body>

</html>
</web:body>

</web:response>

40

CXAN: a case-study for Servlex, an XML web framework

The response includes a status code and the status message of the HTTP response.
It can also (and usually do) contain an entity content, the body of the response. In
this case this is an HTML page, with the content type text/html. Optionally, the
response document can set some headers on the HTTP response.

Besides components inXSLT, XQuery andXProc, awebapp can contain resources.
They are also identified using a regex, but then the path is resolved in the webapp's
directory and thewebapp container returns them as is from the filesystem. Themap
can set their MIME content type, and can also use a regex rewrite pattern to rewrite
a resource URI path to a path in the filesystem. This is useful to have the webapp
container serving directly paths like /style/*.css and /images/*.png, without ac-
tually calling any component andwithout having to generate the request document.

A web application is thus a set of components, along with a map (mapping re-
quest URIs to components). It is packaged using the Packaging System format, with
the following structure:

expath-pkg.xml
expath-web.xml
the-webapp/

component-one.xsl
two.xproc
tres.xqm
any-dir/

more-components.xproc
images/

logo.png
style/

layout.css

Because this is a standard package (with the addition of the webapp descriptor, aka
the webappmap, expath-web.xml), all public components are associated an import
URI. The webapp map can then use those absolute URIs to reference components,
making it independent on the physical strcuture of the project. The webapp
descriptor looks like the following:

<webapp xmlns="http://expath.org/ns/webapp/descriptor"
xmlns:app="http://example.org/ns/my-website"
name="http://example.org/my-website"
abbrev="myweb"
version="1.3.0">

<title>My example website</title>

<resource pattern="/style/.+\.css" media-type="text/css"/>
<resource pattern="/images/.+\.png" media-type="image/png"/>

<servlet>

41

CXAN: a case-study for Servlex, an XML web framework

<xproc uri="http://example.org/ns/my-home.xproc"/>
<url pattern="/"/>

</servlet>

<servlet>
<xquery function="app:other-page"/>
<url pattern="/other"/>

</servlet>

<servlet>
<xslt uri="http://example.org/ns/servlets.xsl" function="app:yet-page"/>
<url pattern="/yet/(.+)">

<match group="1" name="id"/>
<url>

</servlet>

<servlet>
<xslt uri="http://example.org/ns/catch-all.xsl"/>
<url pattern="/.+"/>

</servlet>

</webapp>

Besides some metadata like the webapp name and its title, the webapp descriptor
is basically a sequence of components, each associated with a URL pattern. A URL
is a regex. When a request is received by the webapp container, the webapp is
identified by the context root (that is, the first level of the URI). Then all the patterns
in the correspondingwebapp descriptor are tried to bematched against the request
path, in order. The request is dispatched to the first one that matches (either a re-
source or a component). The components can be anything among the following
types:

Kind of componentLanguage
StepXProc
Pipeline
FunctionXQuery
Main module
FunctionXSLT
Named template
Stylesheet

Each kind of component defines the exact way it is evaluated, how the request is
passed to the component, and how the component gives back the response. For in-

42

CXAN: a case-study for Servlex, an XML web framework

stance, an XQuery or an XSLT function must have exactly two parameters: the first
one is the web:request element, and the second one is the sequence (possible empty)
of the entity content, aka the request bodies. The result of calling such a function
must in turn give an element web:response, and possibly several subsequent items
representing the response body. An XProc pipeline is evaluated the same way, but
the specification defines instead specific port names for the request and the response.

3. Servlex
Servlex is an implementation of theWebappModule. It is open-source and available
on Google Code at http://code.google.com/p/servlex/. Under the hood, it is written
in Java, it uses the Java Servlet technology for the link to HTTP, and it uses Saxon
and Calabash as its XSLT, XQuery and XProc processors.

To install Servlex, you first need to get a Servlet container. The easiest is to install
a container like Tomcat or Jetty. Then follow the instructions to deploy the Servlex
WAR file in the container: go to your container admin console, select the WAR file
on the disk and press the deploy button. As simple as that. The only option to con-
figure is the location of the webapp repository. For instance in Tomcat, you can add
the following line in conf/catalina.properties: org.expath.servlex.repo.dir=/
usr/share/servlex/repo. This must be a standard EXPath package repository.

At startup, Servlex looks into that repository. Every package with a web
descriptor, aka the file expath-web.xml, is considered a webapp. The descriptor is
read, and the Servlex application list is initialized. Eachwebapp has an abbreviation
used to plug it in the container URI space. For instance, let us assume Servlex has
been deployed on a local Tomcat instance at http://localhost:8080/servlex/. When
Servlex receives a request at http://localhost:8080/servlex/myapp/some/thing, it uses
myapp as an ID of the application. Once it knows the application, it can retrieve its
map. It then uses the path, here /some/thing, to find a component in the map, by
trying to match the path against components URL regex.

An interesting particularity of Servlex is its ability to have a read-only repository
that does not use the filesystem. Thanks to the open-source implementation in Java
of the Packaging System and its repository layout, Servlex can look instead in the
classpath. Instead of using a directory on the filesystem, it uses the name of a Java
package. For instance, let us say we have a JAR file with a Java package
org.example.repo, andwithin this Java package, sub-packages and resources follow
the same structure as an on-disk repository, but instead in the classpath. We can
then use the name of this Java package to configure the repository of Servlex, instead
of using a directory on the disk. This is particularly interesting to deploy Servlex
in disk-less environments like Google Appengine and Amazon Cloud EC2. Of
course, a repository in the classpath is read-only, so you cannot install and remove
webapps on the move, this is fixed at Servlex deployement.

43

CXAN: a case-study for Servlex, an XML web framework

http://code.google.com/p/servlex/
http://localhost:8080/servlex/
http://localhost:8080/servlex/myapp/some/thing

Now that we have a Servlex instance up and running, let us have a look at a real
sample of webapp. Servlex distribution comes with a simple example, called hello-
world. The source and the compiled package are both included in the distribution.
All you need to do in order to install the samplewebapp is to go the ServlexManager
at http://localhost:8080/servlex/manager, select the file hello-world-0.4.0.xaw from
the distribution (this is the webapp package), and press the deploy button. The
package is read by Servlex, and added to the on-disk repository, so it will be available
even after you restart Tomcat. Themanager lists the installed applications, and allows
you to remove them or to install new ones:

After you installed the webapp, you can directly access it at the address http://
localhost:8080/servlex/hello-world/. This is a very simple application. The home
page contains 4 forms. The first form asks for our name, then sends it to a page im-
plemented in XSLT. The second form sends it to a page implemented in XQuery,
and the third one in XProc. The last form sends you to an online tool that dumps
theXML request document (representing theHTTP request inXML), located at http://
h2oconsulting.be/tools/dump. If you fill in the first form with "James Clark" and
press the button, you see a simple pagewith the text "Hello, James Clark! (in XSLT)":

44

CXAN: a case-study for Servlex, an XML web framework

http://localhost:8080/servlex/manager
http://localhost:8080/servlex/hello-world/
http://localhost:8080/servlex/hello-world/
http://h2oconsulting.be/tools/dump
http://h2oconsulting.be/tools/dump

When you press the button "XSLT", the HTML form sends a simple HTTP GET
request to theURI http://localhost:8080/servlex/hello-world/xslt?who=James+Clark.
When Servlex receives this request, it first extracts the context root to determine
which application is responsible for handling this request. The string hello-world
helps it identifying the application, and finding its webapp descriptor. In this
descriptor, it looks for a component matching the path /xslt. It finds the following
match:

<servlet>
<xslt uri="http://expath.org/ns/samples/servlex/hello.xsl"

function="app:hello-xslt"/>
<url pattern="/xslt"/>

</servlet>

This component represents a function app:hello-xslt, which is defined in the
stylesheetwith the public URI http://expath.org/ns/samples/servlex/hello.xsl.
Servlex constructs then the following request document:

<web:request servlet="xslt" path="/xslt" method="get">
<web:uri>http://localhost:8080/servlex/hello-world/xslt?who=James+Clark</►

web:uri>
<web:authority>http://localhost:8080</web:authority>
<web:context-root>/servlex/hello-world</web:context-root>
<web:path>

<web:part>/xslt</web:part>
</web:path>
<web:param name="who" value="James Clark"/>
<web:header name="host" value="localhost"/>
<web:header name="user-agent" value="Opera/9.80 ..."/>
...

</web:request>

Servlex then calls the component with this request document. In this case, this is
the XSLT function app:hello-xslt. An XSLT function used as a servlet must accept
two parameters: the first one is the element web:request, the second one is the se-
quence of bodies (here empty as this is aGET request). In this example, this function

45

CXAN: a case-study for Servlex, an XML web framework

http://localhost:8080/servlex/hello-world/xslt?who=James+Clark

simply has to get the query parameter value from $request/web:param[@name eq
'who']/@value, and to format a simple HTTP response document and a simple
HTML page to return to the client. The function looks like the following:

<xsl:function name="app:hello-xslt">
<!-- the representation of the http request, given by servlex -->
<xsl:param name="request" as="element(web:request)"/>
<xsl:param name="bodies" as="item()*"/>

<!-- compute the message, based on the param 'who' -->
<xsl:variable name="who" select="$request/web:param[@name eq 'who']/@value"/>
<xsl:variable name="greetings" select="concat('Hello, ', $who, '!')"/>

<!-- first return the description of the http response -->
<web:response status="200" message="Ok">

<web:body content-type="application/xml" method="xhtml"/>
</web:response>

<!-- then return the body of the response, an html page -->
<html>

<head>
<title>

<xsl:value-of select="$greetings"/>
</title>

</head>
<body>

<p>
<xsl:value-of select="$greetings"/>
<xsl:text> (in XSLT)</xsl:text>

</p>
</body>

</html>
</xsl:function>

The sequence returned by the function (here an element web:response and aHTML
element) is used by Servlex to send a response back to the client, with the code 200
Ok, the content type application/xml and theHTMLpage as payload. The application
source code is structured as follows, but this is up to the developer:

hello-world/
src/

hello.xproc
hello.xql
hello.xsl
index.html

xproject/

46

CXAN: a case-study for Servlex, an XML web framework

expath-web.xml
project.xml

4. The CXAN website
Now thatwe havemet the basics of the framework, let us have a look at a real-world
example: the CXANwebsite. The purpose of this website, has stated in the introduc-
tion, is double: first to be an online catalog of packages, to be browsed by human,
with a graphical environment, and secondly to be a central server for CXAN clients
to commnicate to, through HTTP and XML, in order to maintain a local install of
CXAN packages, by allowing searching and installing packages.

Both aspects are actually very similar. The website has to respond to HTTP re-
quests sent to structuredURIs. In both cases, the responses carry the same semantics.
The difference is that in one case, the format of the information is a HTML page
aimed at human beings, and in the other case, the format is an XMLmessage aimed
at a computer program. This sectionwill first focus on theHTMLpart of thewebsite,
then will show how both parts are actually implemented in common.

So themain business of thewebsite is tomaintain a set of packages and to provide
a way to navigate and to search them, as well as to display their details and down-
loading them. There must also be a way to upload a new package. So the overall
architecture is pretty straight-forward: a plain directory on the filesystem to save
the package files, an XML database to maintain the metadata about packages (here
eXist, but that could be any one usable fromXProc, likeQizx,MarkLogic, andmany
others), a set of XProc pipelines, each one implementing a particular page of the
website, and a site-wide transform to apply a consistent layout accross all pages:

47

CXAN: a case-study for Servlex, an XML web framework

What happens when the user points his/her browser to the address http://
cxan.org/? The HTTP request hits Servlex, which knows this request is aimed at
the CXANweb application. In the general case, Servlex can host several applications,
each of themwith its own name. In the case of CXAN, the Servlex instance is dedic-
ated to the single CXANapplication. It gets theweb descriptor for CXAN, and looks
for a component matching the URI /. It finds the Home component, based on the
following element in the descriptor:

<servlet name="home">
<xproc uri="http://cxan.org/website/pages/home.xproc"/>
<url pattern="/"/>

</servlet>

Servlex then builds the web:request element, with the relevant information: the
headers, the request URI (the raw URI as well as a parsed version presenting the
domain name, the port number, the parameters, etc.) It uses Calabash to call the
corresponding pipeline, connecting the web:request document to the pipeline port
request. As you can see, the pipeline is identified by an absoluteURI. The packaging
support configured on Calabash with the Servlex own repository takes care of
resolving this URI correctlywithin the repository. The case of theHome component
is very simple: it simply returns the following abstract page description:

<page menu="home">
<title>CXAN</title>
<image src="images/cezanne.jpg" alt="Cezanne"/>

48

CXAN: a case-study for Servlex, an XML web framework

<para>CXAN stands for <italic>Comprehensive XML Archive Network</italic>.
If you know CTAN or CPAN, resp. for (La)TeX and Perl, then you already
understood what this website is all about: providing a central place
to collect and organize existing libraries and applications writen in
XML technologies, like XSLT, XQuery and XProc.</para>

</page>

In the basic case, a component must return a full description of the HTTP request
to return to the user, using an element web:response. But for all webpages, the
HTTP response will always be the same (except the content of the returned body,
that is the page itself): a status code 200 Ok, and a content type header with text/
html. Besides, all pages share the same structure and a consistent layout. So instead
of repeating this information for every pages, in every pipeline, the CXANwebsite
application defines an abstract representation of a page: an element page, with a
title, some para, image, italic text, code snippets, list and some table elements.
Each pipeline has to focus only on building such a simple description of the page
to display to the user. In the web descriptor, the application sets a transformer for
all pages, which is an XSLT stylesheet. This stylesheet generates the web:response
element Servlex is expecting, including theHTML version of the page, transformed
from its abstract respresentation.

Of course, when the browser receives theHTMLpage, it displays it.When doing
so, it finds that the page refers to some images, CSS stylesheets and Javascript files.
So the same cycle starts again: it sends asmuchHTTP request as resources to retrieve.
But because those resources are static files, they are handled differently. When
Servlex receives the request, it looks in theweb descriptor for a componentmatching
the URI. It then founds a specific kind of component: resource components. The
resource components specify also a URL pattern, and set the content type of the
resource (they can also contain a rewriting rule based on the third parameter of
fn:replace()). The resource is then read from within the package, based on its
name, and returned directly to the user:

<resource pattern="/style/.+\.css" media-type="text/css"/>
<resource pattern="/images/.+\.gif" media-type="image/gif"/>
<resource pattern="/images/.+\.jpg" media-type="image/jpg"/>
<resource pattern="/images/.+\.png" media-type="image/png"/>

So far, so good. But what happens when the component encounters en error? For
instance if the user sended wrong parameters, or the database was not reachable.
In that case the component just throw an error (using the standard XPath function
fn:error() or the XProc step p:error). This error is caught by Servlex, which passes
it to an error handler configured in the web descriptor, which formats a nice error
page for the user, aswell as the corresponding web:response (in particular theHTTP
status code of the response, for instance 404 or 500). Thanks to the standard XPath
error mechanism, the error itself can carry all the information needed: the CXAN

49

CXAN: a case-study for Servlex, an XML web framework

application allows the error item to contain the HTTP status code to use, as well as
a user-friendly message.

All the logic is thus implemented by XProc components. They talk to eXist using
its REST-likeAPI and p:http-request. The following is an abstract view of themost
complex pipeline in the website, the Package component:

Aflowchart is very handy to represent anXProc pipeline. The component handles
two different processing: on a GET request, it gets the package information from
eXist, and builds the corresponding abstract page; on a PUT, the request must con-
tain, at least, the package itself (the XAR file). The webapp analyzes it, saves it on
the disk and update the information in eXist. Of course, that means doing some
checks: is the uploaded content a proper EXPath package, does the package already

50

CXAN: a case-study for Servlex, an XML web framework

exist in the database, if yes is the new package consistent with the existing inform-
ation? The advantage of XProc is that the developer can use whatever technolgy
that best suits his/her needs: XProc itself for the flow control, XSLT to transform
documents, and XQuery to query or update a database.

We have seen so far how the website serves HTML pages to a browser. But as
we saw earlier, this is only one of the two goals of the CXAN website. The second
goal is to enable tools to communicate with it in order to search for packages,
download them, display information about them and upload new packages, for
instance from the command line.

Indeed, semantically this is exactly what it already does with webpages. Tech-
nically, instead of servingHTML pages, it just has to serve XML document carrying
the same information. Because the same set of URI is used in both cases, it uses the
REST principle based on the HTTP header Accept to differenciate between both.
Internally, the pipelines use a simple XML format to flowbetween the steps (describ-
ing packages, tags, categories, etc.) The last step in most pipelines checks the value
of the Accept header: if it is application/xml, it sends the XML back to the user as
is, if not it first transforms it to an abstract page.

This way, the webapp provides, almost for free, a REST-like API in addition to
the traditional HTML website. A client XProc application uses this API to provide
a command-line utility to the user, in order tomaintain packages in a local repository,
automatically installed andupgraded from theCXANwebsite (there is a screenshot
of this cxan comand-line utility in the introduction).

5. The development project
How is organized the source code of this web application? The project directory
structure is as follows:

cxan/website/
dist/

cxan-website-1.0.0.xar
cxan-website-1.0.0.zip

src/
images/

...
pages/

home.xproc
...

lib/
tools.xpl
...

page.xsl
xproject/

51

CXAN: a case-study for Servlex, an XML web framework

expath-web.xml
project.xml

The overall structure follows the EXPath project directory layout. The xproject
directory contains information about the project, as well as the web descriptor (in
case of a webapp project), the src directory contains the source of the project, and
dist is the directory were final packages are placed. In addition, components must
contain the public URI to use in the package (e.g. for an XQuery library this is its
namespace URI, for an XSLT stylesheet this is set using the /xsl:stylesheet/
pkg:import-uri element). When the developer invokes the command xproj build
from within the project directory, it uses those informations to build automatically
the package descriptor and the package itself, and put the result in the distdirectory.
The package is then ready to be directly deployed in Servlex.

I will not discuss here the details of the xproj program (written in XProc, of
course), this could be the subject of paper on its own. The idea is to use some kind
of annotations in order to configure the public import URIs within each component
instead of having to maintain an external package descriptor (as needed to build a
proper EXPath package). While that is not supported yet, it is expected to create
the same kind of mechanism for the web descriptor. Using some annotations, it is
easily possible to maintain the URL mapping and the parameters accepted or re-
quired by a component, directly within the source file (the query, stylesheet or
pipeline). By doing so, the developer will not have anymore to maintain the
expath-web.xmldescriptormanually, it will be generated based on those annotations.

6. Conclusion
The main goal of the Webapp Module is to be the glue between XML technolgies
and HTTP on the server-side. The design choice is to provide the full power and
flexibility of HTTP. This choice canmake themodule a bit low-level, but as we have
seen, this is very easy with technologies like XSLT to create an intermediary layer
of abstraction in order to be able to write the web components at a higher level of
abstraction. Because it provides a full, consistentmapping ofHTTPnatively oriented
towards XML, it never locks its users in some restrictions because of some handy
abstraction which does not fit all use cases.

Because it provides the full HTTP protocol information to the XML technologies,
it can be used to easily create websites, REST web services, SOAP/WSDL web ser-
vices, and everything you can do on a HTTP server. And thanks to Servlex, such
applications can be hosted for free on Google Appengine or other cloud services
like Amazon's.

52

CXAN: a case-study for Servlex, an XML web framework

Akara – Spicy Bean Fritters
and XML Data Services

Uche Ogbuji
Zepheira LLC

<uche@ogbuji.net>

Abstract

Akara1 is a platform for developing data services, and especially XML data
services, available on the Web, using REST architecture. It is open source
software (Apache 2 licensed) written in Python and C. An important concept
in Akara is information pipelining, where discrete services can be combined
and chained together, including services hosted remotely. There is strong
support for pipeline stages for XML processing, as Akara includes a port of
the well-known 4Suite and Amara XML processing components for Python.
The version of Amara in Akara provides optimized XML processing using
common XML standards as well as fresh ideas for expressing XML pattern
processing, based on long experience in standards-based XML applications.
Some of these features include XPath and XSLT, a lightweight, dynamic data
binding mechanism, XML modeling and processing constraints by example
(using Examplotron), Schematron assertions, XPath-driven streamable pro-
cessing and overall low-level support for lazy iterator processing, and thus
the map/reduce style. Akara does not enforce a built-in mechanism for persist-
ence of XML, but is designed to complete a low-level persistence engine with
overall characteristics of an XML DBMS.

Akara, despite its deliberately low profile to date, has played a crucial role
in several marquee projects, including The Library of Congress's Recollection
project and The Reference Extract project, a collaboration of The MacArthur
Foundation, OCLC, and Zepheira. In RecollectionAkara runs the data pipeline
for user views, and is used to process XMLMODS files with catalog records.
In RefExtract Akara processes information about topics and relatedWeb pages
to provide measures of page credibility. Other users include Cleveland Clinic,
Elsevier and Sun Microsystems.

This paper introduces Akara in general, but focuses on the innovative
methods for XML processing, in stand-alone code and wrapped as RESTful
services.

1 http://akara.info

53

http://akara.info
http://akara.info

1. Introduction
Akara's developers have been involved in XML, and especially in XML processing
with Python, since the very beginning.We've seen it all, and prettymuch implemen-
ted it all. At first the motivation was that XML seemed the best hope for semi-
structured database technology, but by now XML has become "just plumbing," as
used in countless domains, including formany unsuited uses. There aremanyXML
processing libraries in Python, and even the standard library finally has a respectable
one with ElementTree.

So why a newXML pipeline and processing project, especially one as ambitious
as Akara? The first answer is that it's not just about XML, but even focusing on the
XML processing kit, the fact is most XML processing tools, not just in Python, but
in general, are entirely focused on the dumb plumbing. These treat XML as a tem-
porary inconvenience, rather than as a strategic technology. This is often justified,
because most uses of XML by far are products of poor judgment, where other
technologies would have been far more suited. But for those cases where XML is
well suited, briefly characterized aswhere traditional, granular data combineswith
rich, prosaic expression, the current crop of tools is inadequate.

Akara's developers want to be able to treat with XML above the level of
plumbing, to deal with it at the level of expression. Used correctly XML is not an
inconvenience, and bears fruit when handled as richly and naturally as possible,
because the data in XML is likely to outlive any particular code base a long, long
time. At the same time one desires tools that make it easy to connect stuff suited to
XML with stuff that's best suited to other formats. The ideal architecture supports
pipelining XML processing with HTML, JSON, RDBMS and all that, without too
much coupling to code.

Such requirements add up to tools that encourage working with XML in as de-
clarative a manner as possible, operating at the level of data patterns, pattern dis-
patch and data modeling. It should be very natural to overlay semantic technology
over XML whether in the form of RDF or in other formats at the higher level of se-
mantic annotations. It's also important to start by getting the details right, such as
proper handling of mixed content, and to keep perspective with powerful, generic
modeling techniques such as Schematron Abstract Patterns.

Over a decade of XML processing has demonstrated the difficulty of pleasing
the desperate Perl/Python/Ruby hacker without shredding the rich information
expression benefits of XML. The upshot is the present interest in a “refactoring” of
the XML stack, and especially accommodation of XML to a world in which JSON
is firmly established on grounds previously assumed for XML.Akara aims at détente,
applying traditional XML standards asmuch as reasonable, but judiciously deferring
to more natural Python idioms where needed to avoid frustrating developers.

Akara provides these benefits, butwith a strong preference forWeb-based integ-
ration. The umbrella project is a Web framework, of which a key component is

54

Akara – Spicy Bean Fritters and XML Data Services

Amara 2, a port of the well-known 4Suite and Amara XML processing components
for Python. Amara 2 provides optimized XML processing using common XML
standards as well as fresh ideas for expressing XML pattern processing, based on
long experience in standards-basedXMLapplications. Someof these features include:
• XPath
• XSLT
• lightweight, dynamic data binding
• XML modeling and processing constraints by example (using Examplotron)
• Schematron assertions
• XPath-driven streamable processing
• low-level support for lazy iterator processing, and thus the map/reduce style
Amara 2.x is designed from the ground up for the architectural benefits discussed
above. It treats data as much as possible in the data domain, rather than in the code
domain. In practice one still needs good code interfaces, but the key balance to strike
is in the nature of the resulting code. basic planks of the design principles are:
• syncretism - combining the practical expressiveness of Python with the declar-

ative purity of XML
• (it is very difficult to balancing such divergent technologies)

• less code - support compact code, so there's less to maintain
• grace - making it easy to do the right thing in terms of standards and practices

(encourage sound design and modeling, using “less code” as an incentive)
• declarative transparency - structuring usage for easy translation fromone system

of declarations to others, and to reuse standard declarations systems (such as
XSLT patterns) where appropriate.

The result is an XML processing library that's truly different from anything else out
there. Whether it suits one's tastes or not is a matter of taste.

The Web server system, Akara proper, is designed to be layered upon Amara
2.x in a RESTful context, as a lightweight vehicle for deploying data transforms as
services.

2. The basic tree APIs
Amara 2.0 comes with several tree APIs, and makes it fairly easy to design custom
tree APIs by extension.

55

Akara – Spicy Bean Fritters and XML Data Services

2.1. Parsing XML into simple trees
Themost fundamental treeAPI is just called amara.tree. It's very simple and highly
optimized, but it lacks some of the features of the Bindery API, which is recommen-
ded unless you really need to wring out every ounce of performance.

import amara
from amara import tree

MONTY_XML = """<monty>
<python spam="eggs">What do you mean "bleh"</python>
<python ministry="abuse">But I was looking for argument</python>

</monty>"""

doc = amara.parse(MONTY_XML)

doc is an amara.tree.entity node, the root of nodes representing the elements, at-
tributes, text, etc. in the document.

assert doc.xml_type == tree.entity.xml_type

doc.xml_children is a sequence of the child nodes of the entity, including the top
element.

monty = doc.xml_children[0]

You might be wondering about the common "xml_" prefix for these methods. The
higher-level Bindery (data binding) API builds on amara.tree. It constructs object
attribute names from names in the XML document. In XML, names starting with
"xml_" are reserved so this Amara convention helps avoid name clashes.

You can navigate from an node to its parent.
assert m.xml_parent == doc

Access all the components of the node's name, including namespace information.
assert m.xml_local == u'monty' #local name, i.e. without any prefix
assert m.xml_qname == u'monty' #qualified name, e.g. includes prefix
assert m.xml_prefix == None
assert m.xml_qname == u'monty' #qualified name, e.g. includes prefix
assert m.xml_namespace == None
assert m.xml_name == (None, u'monty') #The "universal name" or "expanded name"

A regular Python print tries to do the useful thing with with each node type
p1 = m.xml_children[0]
print p1.xml_children[0]
#<amara.tree.element at 0x5e68b0: name u'python', 0 namespaces, 1 attributes, ►
1 children>
print p1.xml_attributes[(None, u'spam')]
#eggs

56

Akara – Spicy Bean Fritters and XML Data Services

Notice the difference between the treatment of elements and attributes.
To deserialize a node to XML use the xml_write or xml_encodemethod. The former
writes to an output stream (stdout by default). The latter returns a string.

p1.xml_write()
#<python spam="eggs">What do you mean "bleh"</python>

You can manipulate the information content of XML nodes as well.
#Some manipulation
p1.xml_attributes[(None, u'spam')] = u"greeneggs"
p1.xml_children[0].xml_value = u"Close to the edit"
p1.xml_write()

2.1.1. Writing XML (and HTML) from nodes

As demonstrated above the xml_write()methods can be used to re-serialize a node
to XML to as stream (sys.stdout by default). Use the xml_encode() method to re-
serialize to XML, returning string. Theseworkwith entity as well as element nodes.

node.xml_write() #Write an XML document to stdout
node.xml_encode() #Return a UTF-8 XML string

There are special methods to look up a writer class from strings such as "xml" and
"html"

from amara.writers import lookup
XML_W = lookup("xml")
HTML_W = lookup("html")

node.xml_write(XML_W) #Write out an XML document
node.xml_encode(HTML_W) #Return an HTML string

The default writer is the XML writer (i.e. amara.writers.lookup("xml"))
The pretty-printing or indenting writers are also useful.
node.xml_write(lookup("xml-indent")) #Write to stdout a pretty-printed XML ►
document
node.xml_encode(lookup("html-indent")) #Return a pretty-printed HTML string

Note: you can also use the lookup strings directly:
node.xml_write("xml") #Write out an XML document
node.xml_encode("html") #Return an HTML string

2.1.2. Creating a document from scratch

The various node classes can be used as factories for creating entities/documents,
and other nodes.

57

Akara – Spicy Bean Fritters and XML Data Services

from amara import tree
doc = tree.entity()
doc.xml_append(tree.element(None, u'spam'))
doc.xml_write() #<?xml version="1.0" encoding="UTF-8"?>\n<spam/>

2.2. The XML bindery
Some of that xml_children[N] stuff is a bit awkward, and Amara includes a
friendlier API called the XML bindery. It is like XML "data bindings" you might
have heard of, but a more dynamic system that generates object attributes from the
names and construct in the XML document.

from amara import bindery

MONTY_XML = """<monty>
<python spam="eggs">What do you mean "bleh"</python>
<python ministry="abuse">But I was looking for argument</python>

</monty>"""

doc = bindery.parse(MONTY_XML)

m = doc.monty
p1 = doc.monty.python #or m.python; p1 is just the first python element
print
print p1.xml_attributes[(None, u'spam')]
print p1.spam

for p in doc.monty.python: #The loop will pick up both python elements
p.xml_write()

Importantly, bindery nodes are subclasses of amara.tree nodes, so everything in
the amara.tree section applies to amara.bindery nodes, including the methods for
re-serializing to XML or HTML.

Amara bindery uses iterators to provide access to multiple child elements with
the same name:

from amara import bindery

MONTY_XML = """<quotes>
<quote skit="1">This parrot is dead</quote>
<quote skit="2">What do you mean "bleh"</quote>
<quote skit="2">I don't like spam</quote>
<quote skit="3">But I was looking for argument</quote>

</quotes>"""

doc = bindery.parse(MONTY_XML)
q1 = doc.quotes.quote # or doc.quotes.quote[0]

58

Akara – Spicy Bean Fritters and XML Data Services

print q1.skit
print q1.xml_attributes[(None, u'skit')] # XPath works too: ►
q1.xml_select(u'@skit')

for q in doc.quotes.quote: # The loop will pick up both q elements
print unicode(q) # Just the child char data

from itertools import groupby
from operator import attrgetter

skit_key = attrgetter('skit')
for skit, quotegroup in groupby(doc.quotes.quote, skit_key):

print skit, [unicode(q) for q in quotegroup]

2.2.1. Creating a bindery document from scratch

WHen creating a document from scratch the special nature of bindery specializes
the process a bit, involving the bindery entity base class:

from amara import bindery
doc = bindery.nodes.entity_base()
doc.xml_append(doc.xml_element_factory(None, u'spam'))
doc.xml_write() #<?xml version="1.0" encoding="UTF-8"?>\n<spam/>

The xml_append_fragmentmethod is useful for accelerating the process a bit:
from amara import bindery
doc = bindery.nodes.entity_base()
doc.xml_append_fragment('<a>')
doc.xml_write() #<?xml version="1.0" encoding="UTF-8"?>\n<a>

2.3. Using XPath
XPath is also available for navigation. amara.tree (as well as Bindery and other
derived node systems) fully supports XPath, whichmeans all the other implement-
ations do, as well. Use the xml_selectmethod for nodes.

from amara import bindery

MONTY_XML = """<monty>
<python spam="eggs">What do you mean "bleh"</python>
<python ministry="abuse">But I was looking for argument</python>

</monty>"""

doc = bindery.parse(MONTY_XML)
m = doc.monty
p1 = doc.monty.python
print p1.xml_select(u'string(@spam)')

59

Akara – Spicy Bean Fritters and XML Data Services

for p in doc.xml_select(u'//python'):
p.xml_write()

2.4. Parsing HTML
Amara integrates html5lib for building a bindery from non-well-formed HTML,
and even non-well-formed XML (though the latter is always an abomination).

from amara.bindery import html

H = '''<html>
<head>
<title>Amara</title>

<body>
<p class=DESC>XML processing toolkit
<p>Python meets
 XML

</html>
'''

doc = html.parse(H)

#Use bindery operations
print unicode(doc.html.head.title)

#Use XPath
print doc.xml_select(u"string(/html/head/title)")

#Re-serialize (to well-formed output)
doc.xml_write()

The last line in effect tidies up themessymarkup, producing something like XHTML,
but without the namespace.

3. Generating XML (and HTML)
Amara supports the traditional, well-known, SAX-like approach to generating XML.

output.startElement()
output.text()
output.endElement()

But this is generally awkward and unfriendly (e.g. the code block structure does
not reflect the XML output structure, so it can be really hard to debug when you
trip up the order of output constructs), so in this tutorial, we'll focus on structwriter,
a rathermore natural approach. The "struct" in this case is a specialized data structure

60

Akara – Spicy Bean Fritters and XML Data Services

that translates readily to XML. For now just the one example, which does cover
most of the key bits:

import sys, datetime
from amara.writers.struct import *
from amara.namespaces import *

tags = [u"xml", u"python", u"atom"]

w = structwriter(indent=u"yes")
w.feed(
ROOT(

E((ATOM_NAMESPACE, u'feed'), {(XML_NAMESPACE, u'xml:lang'): u'en'},
E(u'id', u'urn:bogus:myfeed'),
E(u'title', u'MyFeed'),
E(u'updated', datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ')),
E(u'author',

E(u'name', u'Uche Ogbuji'),
E(u'uri', u'http://uche.ogbuji.net'),
E(u'email', u'uche@ogbuji.net'),

),
E(u'link', {u'href': u'/blog'}),
E(u'link', {u'href': u'/blog/atom1.0', u'rel': u'self'}),
E(u'entry',

E(u'id', u'urn:bogus:myfeed:entry1'),
E(u'title', u'Hello world'),
E(u'updated', ►

datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ')),
(E(u'category', {u'term': t}) for t in tags),
E(u'content', {u'type': u'xhtml'},
E((XHTML_NAMESPACE, u'div'),
E(u'p', u'Happy to be here')
))

)
)

)
)

This generates an Atom feed, and Atom is a pretty good torture test for any XML
generator library. The output:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en">
<id>urn:bogus:myfeed</id>
<title>MyFeed</title>
<updated>2008-09-12T15:09:16.321630</updated>
<name>
<title>Uche Ogbuji</title>

61

Akara – Spicy Bean Fritters and XML Data Services

<uri>http://uche.ogbuji.net</uri>
<email>uche@ogbuji.net</email>

</name>
<link href="/blog"/>
<link rel="self" href="/blog/atom1.0"/>
<entry>
<id>urn:bogus:myfeed:entry1</id>
<title>Hello world</title>
<updated>2008-09-12T15:09:16.322755</updated>
<category term="xml"/>
<category term="python"/>
<category term="atom"/>

</entry>
<content type="xhtml">
<div xmlns="http://www.w3.org/1999/xhtml">
<p>Happy to be here</p>

</div>
</content>

</feed>

A few interesting points:
• Structwriter tries to help the lazy hand a bit. If you create an element with a

namespace, any child element without a namespace will inherit the mapping.
This is why I only had to declare the Atom namespace on the top feed element.
All the children picked up the default namespace until it got to the div element,
which redefined the default as XHTML, which was then passed on to its p child.
• You can create namespace declarationsmanually using the special NS(prefix,

ns) construct. Justmake sure it comes beyond any other type of child specified
for that element. This is useful when you have QNames in content, e.g. gen-
erating XSLT or schema or SOAP or some other horror.

• This courtesy does not apply to attributes. If you don't declare an namespace
attribute for an attribute it will have none.

• Structwriter also tries to be smart with strings versus unicode. I still recommend
using Unicode smartly when working with XML, but if you get lazy and just
specify something as a string, Structwriter will just convert it for you.

• Notice the use of a generator expression (line 25) to generate the multiple
category elements.

3.1. Generating XML (and HTML) gradually
The above works well if you have are generating an XML document all at a go, but
that's not always the case. Perhaps you are generating a huge document little by
little. Perhaps you are generating a document in bits based on processing of asyn-

62

Akara – Spicy Bean Fritters and XML Data Services

chronous events. In such cases, you might find useful the coroutine (or pseudo-
coroutine, if you insist) form of the structwriter. You set up an envelope of the XML
structure, and amarker to which you can send inner elements as you prepare them.
The following simple example

from amara.writers.struct import structwriter, E, NS, ROOT, RAW, E_CURSOR

class event_handler(object):
def __init__(self, feed):

self.feed = feed

def execute(self, n):
self.feed.send(E(u'event', unicode(n)))

output = structwriter(indent=u"yes")
feed = output.cofeed(ROOT(E(u'log', E_CURSOR(u'events', {u'type': ►
u'numberfeed'}))))
h = event_handler(feed)

for n in xrange(10):
h.execute(n)

feed.close()

Generates the following XML:
<?xml version="1.0" encoding="utf-8"?>
<log>
<events type="numberfeed">
<event>0</event>
<event>1</event>
<event>2</event>
<event>3</event>
<event>4</event>
<event>5</event>
<event>6</event>
<event>7</event>
<event>8</event>
<event>9</event>

</events>
</log>

4. Modeling XML
XML is eminently flexible, but this flexibility can be a bit of a pain for developers.
Amara is all about making XML less of a pain for developers, and in Amara 2.0 you
have a powerful new tool. You can control the content model of parsed XML docu-

63

Akara – Spicy Bean Fritters and XML Data Services

ments, and you can use such information to simplify things, with just a little up-
front work. You can do this in several ways but I'll focus on the "modeling by ex-
ample" approach.

Examplotron (see "Introducing Examplotron"2) is an XML schema language
where an example document is basically your schema. The following listing is a
regular XML document, and is also an Examplotron schema.

LABEL_MODEL = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
<label>
<name>[Addressee name]</name>
<address>
<street>[Address street info]</street>
<city>[City]</city>
<state>[State abbreviation]</state>

</address>
</label>

</labels>
'''

It establishes a model that there is a labels element at the top, containing a label
element child, and so on. In this case the intention is that there are multiple label
element children and Examplotron allows you to clarify this point using an inline
annotation:

LABEL_MODEL = '''<?xml version="1.0" encoding="utf-8"?>
<labels xmlns:eg="http://examplotron.org/0/">
<label eg:occurs="*">
<name>[Addressee name]</name>
<address>
<street>[Address street info]</street>
<city>[City]</city>
<state>[State abbreviation]</state>

</address>
</label>

</labels>
'''

Specifically, eg:occurs="*" indicates 0 or more occurrences.
The following is an XML document that conforms to the schema.
VALID_LABEL_XML = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
<label>
<name>Thomas Eliot</name>
<address>

2 http://www.ibm.com/developerworks/xml/library/x-xmptron/

64

Akara – Spicy Bean Fritters and XML Data Services

http://www.ibm.com/developerworks/xml/library/x-xmptron/
http://www.ibm.com/developerworks/xml/library/x-xmptron/

<street>3 Prufrock Lane</street>
<city>Stamford</city>
<state>CT</state>

</address>
</label>

</labels>
'''

The following is an XML document that does not conform to the schema.
INVALID_LABEL_XML = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
<label>
<quote>What thou lovest well remains, the rest is dross</quote>
<name>Ezra Pound</name>
<address>
<street>45 Usura Place</street>
<city>Hailey</city>
<state>ID</state>

</address>
</label>

</labels>
'''

The quote element is not in the model.
One specifies the XML model to use when parsing to Bindery.
from amara.bindery.model import *
label_model = examplotron_model(LABEL_MODEL)
doc = bindery.parse(VALID_LABEL_XML, model=label_model)
doc.xml_validate()

doc = bindery.parse(INVALID_LABEL_XML, model=label_model)
try:

doc.xml_validate()
except bindery.BinderyError, e:

print e

doc.xml_write()

Parse INVALID_LABEL_XML succeeds but the xml_validate()method fails and raises
an exception because of the unexpected quote element. Note: it's no problem to
validate just an element's subtree rather than the entire document. This validation
is also available aftermutationwith theAmaraAPI. Validation can be a bit expensive
(though not noticeably unless you're dealing with huge docs), so it should be used
judiciously. The penalty is only paid upon actual validation. Mutation, document
access and other operations proceed at regular speed.

65

Akara – Spicy Bean Fritters and XML Data Services

With a somewhat irregular XMLdocument, it can be tricky to use bindery object
traversal (e.g. doc.labels.label) without risking AttributeError3. A model used in
parsing a documentmakes the binding smarter, setting a default value to be returned
in cases where a known element happens to be missing somewhere in the instance
document.

LABEL_MODEL = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
<label>
<quote>What thou lovest well remains, the rest is dross</quote>
<name>Ezra Pound</name>
<address>
<street>45 Usura Place</street>
<city>Hailey</city>
<state>ID</state>

</address>
</label>

</labels>
'''

TEST_LABEL_XML = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
<label>
<name>Thomas Eliot</name>
<address>
<street>3 Prufrock Lane</street>
<city>Stamford</city>
<state>CT</state>

</address>
</label>

</labels>
'''

from amara.bindery.model import *
label_model = examplotron_model(LABEL_MODEL)
doc = bindery.parse(TEST_LABEL_XML, model=label_model)
print doc.labels.label.quote #None, rather than raising AttributeError

So even though the instance document doesn't have a quote element, Amara knows
from themodel that this is an optional element. If you try to access the quote element
you get back the default value of None, which can of course be overriden.

3 http://xml3k.org//AttributeError#

66

Akara – Spicy Bean Fritters and XML Data Services

http://xml3k.org//AttributeError#
http://xml3k.org//AttributeError#

4.1. Extracting metadata from models
If themodel uses inline declaration of particularly interesting parts of the document,
Amara provides a mechanism to extract those interesting bits as an iterators of
simple tuples, so one can in effect skip XML "API" altogether. In the following ex-
ample themetadata extraction annotations are in the namespace given the ak prefix.

from amara.xpath import datatypes
from amara.bindery.model import examplotron_model, generate_metadata
from amara import bindery
from amara.lib import U

MODEL_A = '''<labels
xmlns:eg="http://examplotron.org/0/"
xmlns:ak="http://purl.org/xml3k/akara/xmlmodel">
<label id="tse" added="2003-06-10" eg:occurs="*" ak:resource="@id">
<!- - use ak:resource="" for an anonymous resource - ->
<quote eg:occurs="?">
<emph>Midwinter</emph> Spring is its own season...

</quote>
<name ak:rel="name()">Thomas Eliot</name>
<address ak:rel="'place'" ak:value="concat(city, ',', province)">
<street>3 Prufrock Lane</street>
<city>Stamford</city>
<province>CT</province>

</address>
<opus year="1932" ak:rel="name()" ak:resource="">
<title ak:rel="name()">The Wasteland</title>

</opus>
<tag eg:occurs="*" ak:rel="name()">old possum</tag>

</label>
</labels>
'''
labelmodel = examplotron_model(MODEL_A)

INSTANCE_A_1 = '''<labels>
<label id="co" added="2004-11-15">
<name>Christopher Okigbo</name>
<address>
<street>7 Heaven's Gate</street>
<city>Idoto</city>
<province>Anambra</province>

</address>
<opus>
<title>Heaven's Gate</title>

</opus>
<tag>biafra</tag>

67

Akara – Spicy Bean Fritters and XML Data Services

<tag>poet</tag>
</label>

</labels>
'''

doc = bindery.parse(INSTANCE_A_1, model=labelmodel)

for triple in generate_metadata(doc): #Triples, but only RDF if you want it ►
to be

print (triple[0], triple[1], U(triple[2]))

The output is:
(u'co', u'name', u'Christopher Okigbo')
(u'co', u'place', u'Idoto,Anambra')
(u'co', u'opus', u'r2e0e1e5')
(u'r2e0e1e5', u'title', u"Heaven's Gate")
(u'co', u'tag', u'biafra')
(u'co', u'tag', u'poet')

Each triple is (current-resource-id, relationship-string, result-xpath-expression).
Notice the U convenience function, which takes an object and figures out a way to
get you back a Unicode object.

Python's iterator goodnessmakes it easy to organize this data in any convenient
way, for example:

from itertools import groupby
from operator import itemgetter
from amara.lib import U

for rid, triples in groupby(generate_metadata(doc), itemgetter(0)):
print 'Resource:', rid
for row in triples:

print '\t', (row[0], row[1], U(row[2]))

The output is:
Resource: co

(u'co', u'name', u'Christopher Okigbo')
(u'co', u'place', u'Idoto,Anambra')
(u'co', u'opus', u'r2e0e1e5')

Resource: r2e0e1e5
(u'r2e0e1e5', u'title', u"Heaven's Gate")

Resource: co
(u'co', u'tag', u'biafra')
(u'co', u'tag', u'poet')

68

Akara – Spicy Bean Fritters and XML Data Services

5. Incremental parsing
Imagine a 10MB XML file with a very long sequence of small records. If one tries
to use a convenient tree API you will end up trying to load into memory several
times the full XML document, but very often when processing such files, all that
matters in processing is one record at a time. One could switch to SAX but then lose
the convenience of the tree API.

Amaraprovides a system for incremental parsingwhich yields subtrees according
to a declared pattern, provided as the function amara.pushtree, which requires a
callback function, which gets sent the subtrees as they are ready. The function re-
quires the full XML source and a pattern for the subtrees, as in the following example.
The patterns are a subset of XPath.

from amara.pushtree import pushtree
from amara.lib import U

def receive_nodes(node):
print U(node) #Will print 0 then 1 then 10 then 11 with input below
return

XML="""<doc>
<one><a>0<a>1</one>
<two><a>10<a>11</two>

</doc>
"""

pushtree(XML, u'a', receive_nodes)

Which should put out:
0
1
10
11

You can also specialize the nodes sent to the callback. The most common use for
this feature is to deal with more friendly Bindery nodes rather than raw tree nodes.

from amara.pushtree import pushtree
from amara.lib import U
from amara.bindery.nodes import entity_base

def receive_nodes(node):
print U(node.b) #Will print 0 then 1 then 10 then 11 with input below
return

XML="""<doc>
<one></one>

69

Akara – Spicy Bean Fritters and XML Data Services

<two></two>
</doc>
"""

pushtree(XML, u'a', receive_nodes, entity_factory=entity_base)

Which should put out same as the earlier example.
One can use a coroutine if you need easier state management in the push target.
from amara.pushtree import pushtree
from amara.lib.util import coroutine

@coroutine
def receive_nodes(text_list):

while True:
node = yield
text_list.append(node.xml_encode())

return

XML="""<doc>
<one><a>0<a>1</one>
<two><a>10<a>11</two>

</doc>
"""

text_list = []
target = receive_nodes(text_list)
pushtree(XML, u'a', target.send)
target.close()
print text_list

6. And much more
Amara provides many facilities beyond those covered above, such as XSLT.

7. Akara Web Framework
A system for writing REST-friendly data services.

Functions can be written using the core library features, perhaps as unit trans-
forms Apply simple wrappers to turn functions into RESTful services Akara runs
as a repository of services, and allows you to discover these using a simple GET
Service classes have IDs, independent from locations of individual service end-
points Built-in facilities for Web triggers, AKAWeb hooks AKA “Web hooks” (like
DBMS triggers: declaration that one event actuates another, in this case HTTP re-
quests) Modern multi-process Web server dispatch engine for services

70

Akara – Spicy Bean Fritters and XML Data Services

7.1. A simple, complete Akara module
For the basic set-up of an Akara module, one can start with echo.py4 and then cus-
tomize accordingly. The following is a complete module for which you can indicate
a URL of an XML document and get from the HTTP response a count of elements
therein. The simple case working involves with a Python function that takes a few
parameters and returns a result, wrapping this whole thing as a Web service. For
this case you can use the @simple_service decorator.

import amara
from akara.services import simple_service, response

ECOUNTER_SERVICE_ID = 'http://purl.org/akara/services/demo/element_counter'

@simple_service('GET', ECOUNTER_SERVICE_ID, 'ecounter', 'text/plain')
def ecounter(uri):

'Respond with the count of the number of elements in the specified XML ►
document'

#e.g.: curl http://localhost:8880/ecounter?uri=http://hg.akara.info/►
testdoc.xml"

doc = amara.parse(uri[0])
ecount = doc.xml_select(u'count(//*)')
return str(ecount)

All Akara services have an ID, a URI (ECOUNTER_SERVICE_ID in the above), which
represents the essence of that service, i.e. its inputs, outputs and behavior. You and
I might take the same Akara code, and you host it on your server and I host it on
mine. The service ID will be the same in both cases, but the access endpoint, i.e.
what URL users invoke to use the services, will be different.

Use the @simple_service decorator to indicate that a function is a service, and
specifywhatHTTPmethods it handles, the ID for the service, and the defaultmount
point, which is the trailing bit of the access endpoint URL. If youmount this service
on an Akara instance running at http://localhost:8880, then its access endpoint
will be http://localhost:8880. The user can HTTP POST some data to this URL,
and the decorated function will be invoked.

akara_echo_body(body, ctype): }}}
ecounter is the decorated function. Simple service implementation functions

wrapped as HTTP POST methods receive the HTTP POST body and the HTTP
Content Type header as parameters. The latter is a convenience. All the other HTTP
headers are also available usingWSGI (more on this later).

The following version demonstrates some basic security features:
import amara
from akara.services import simple_service, response

4 http://github.com/zepheira/akara/tree/master/lib/demo/echo.py

71

Akara – Spicy Bean Fritters and XML Data Services

http://github.com/zepheira/akara/tree/master/lib/demo/echo.py
http://github.com/zepheira/akara/tree/master/lib/demo/echo.py

ECOUNTER_SERVICE_ID = 'http://purl.org/akara/services/demo/element_counter'

#Config info is pulled in at global scope as AKARA_MODULE_CONFIG

#Security demo: create a URI jail outside of which XML operations won't leak
URI_JAIL = AKARA_MODULE_CONFIG.get('uri_jail')

#Create the assertion rule for the URI jail
ALLOWED = [(lambda uri, base=baseuri: uri.startswith(URI_JAIL), True)]

#Create a URI resolver instance that enforces the jail
restricted_resolver = irihelpers.resolver(authorizations=ALLOWED)

@simple_service('GET', ECOUNTER_SERVICE_ID, 'ecounter', 'text/plain')
def ecounter(uri):

#e.g.: curl http://localhost:8880/ecounter?uri=http://hg.akara.info/►
testdoc.xml"

uri = inputsource(uri[0], resolver=restricted_resolver)
doc = amara.parse(uri)
ecount = doc.xml_select(u'count(//*)')
return str(ecount)

7.2. Hello World
The following Akara module implements a simple Hello world service.

from akara.services import simple_service

HELLO_SERVICE_ID = 'http://example.org/my-services/hello'

@simple_service('GET', HELLO_SERVICE_ID, 'hello')
def helloworld(friend=None):

return u'Hello, ' + friend.decode('utf-8') #Returns a Unicode object

Save this as hello.py and make it available in `PYTHONPATH`5, and update the
akara.conf of an Akara instance to load the module. If the instance is at
localhost:8880, you can invoke the new module as follows:

$ curl http://localhost:8880/hello?friend=Uche
Hello, Uche

Or, if you prefer, put http://localhost:8880/hello?friend=Uche into your browser
to get the nice greeting. Go ahead and play around with URL basics, e.g.:

5 http://docs.python.org/tutorial/modules.html#the-module-search-path

72

Akara – Spicy Bean Fritters and XML Data Services

http://docs.python.org/tutorial/modules.html#the-module-search-path
http://docs.python.org/tutorial/modules.html#the-module-search-path

$ curl http://localhost:8880/hello?friend=Uche+Ogbuji
Hello, Uche Ogbuji

Which in this case behaves just like http://localhost:8880/
hello?friend=Uche%20Ogbuji

8. Introducing WSGI, and working with URL path hierarchy
The above approach works fine if you are creating very simple, dynamic query
services, but it gets very tempting to do too much of that, and to squander much of
the benefit of REST.

In many Web applications, rather than calculating a greeting on the fly, we're
instead gathering information and evenmodifying somewell-known, referenceable
resource. In such cases, the common convention is to use hierarchical URLs to rep-
resent the different resources. As an example, say we're developing a database of
poets and their works. Each poet would be a distinct resource, e.g. at http://
localhost:8880/poetdb/poet/ep.

To get this somewhat more sophisticated behavior, we take advantage of the
common WSGI convention of Python. The following complete Akara module im-
plements the poet database.

from wsgiref.util import shift_path_info

from akara.services import simple_service
from akara import request

POETDB_SERVICE_ID = 'http://example.org/my-services/poetdb'

#Cheap DBMS
POETDB = {
u'poet':
{
u'ep': (u'Ezra Pound', u'45 Usura Place, Hailey, ID'),
u'co': (u'Christopher Okigbo', u'7 Heaven\'s Gate, Idoto, Anambra, Nigeria')

},
u'work':
{
u'cantos': (u'The Cantos', u'../poet/ep'),
u'mauberley': (u'Hugh Selwyn Mauberley', u'../poet/ep'),
u'thunderpaths': (u'Paths of Thunder', u'../poet/co')

},
}

@simple_service('GET', POETDB_SERVICE_ID, 'poetdb', 'text/html')
def poetdb():

entitytype = shift_path_info(request.environ)

73

Akara – Spicy Bean Fritters and XML Data Services

eid = shift_path_info(request.environ)
info = POETDB[entitytype][eid]
if entitytype == u'poet':

#name, address = info
return u'<p>Poet: %s, of %s</p>'%info

elif entitytype == u'work':
#name, poet = info
return u'<p>Work: %s, click for poet info</p>'%info

Focusing in on some key lines:
from akara import request
...

entitytype = shift_path_info(request.environ)

The request object, which becomes available to your module through the import,
is the main way to access information from the HTTP request, usingWSGI conven-
tions, such as the environ mapping. The Python stdlib function
wsgiref.shift_path_info allows you to extract one hierarchical path component
from the URL used to access the service.

So going back to the sample URL for a poet, http://localhost:8880/poetdb/
poet/ep, Akara itself ismounted at http://localhost:8880/ and the service defined
above is mounted at http://localhost:8880/poetdb/. The first
wsgiref.shift_path_info extracts the poet component. There is a second one that
extracts the ep component.

@simple_service('GET', POETDB_SERVICE_ID, 'poetdb', 'text/html')

Notice the additional argument, which declares the return content type. The output
of this service is HTML.

return u'<p>Poet: %s, of %s</p>'%info

The return value is a Unicode object. You can return from an Akara service handler
string or Unicode, or even parsed Amara XML objects.

Deploy this module and restart Akara and now if you go to e.g. http://
localhost:8880/poetdb/work/cantos in a browser youwill get a page saying "Work:
The Cantos, click for poet info," and if you click the link it will take you to a page
with the representation of the poet resource http://localhost:8880/poetdb/poet/
ep, based on the relative link set up in the POETRYDB data structure.

Now you're really getting into the Web application space, and rubbing up a bit
against REST in that resources such as poet andwork are clearly identified by URL,
and clearly referenced within the content via hypermedia (i.e. good oldWeb links).

9. Error handling, and making things more robust
Try out the following URL on the above service:

74

Akara – Spicy Bean Fritters and XML Data Services

http://localhost:8880/poetdb/poet/noep
You get the dreaded 500 error. The Web is a wild place, and you never know

what input or conditions you're going to be dealing with, so anticipating and
gracefully handling errors is important. Let's set it up so that the server returns a
404 "Not Found" error in case the URL path doesn't match anything in the database.
Let's also set up some basic link index pages to help the user. In general the following
is a much more complete and functional example.

from wsgiref.util import shift_path_info, request_uri

from amara.lib.iri import join

from akara.services import simple_service
from akara import request, response

POETDB_SERVICE_ID = 'http://example.org/my-services/poetdb'

#Cheap DBMS
POETDB = {
u'poet':
{
u'ep': (u'Ezra Pound', u'45 Usura Place, Hailey, ID'),
u'co': (u'Christopher Okigbo', u'7 Heaven\'s Gate, Idoto, Anambra, Nigeria')

},
u'work':
{
u'cantos': (u'The Cantos', u'../poet/ep'),
u'mauberley': (u'Hugh Selwyn Mauberley', u'../poet/ep'),
u'thunder': (u'Paths of Thunder', u'../poet/co')

},
}

def not_found(baseuri):
ruri = request_uri(request.environ)
response.code = "404 Not Found"
return u'<p>Unable to find: %s, try the index of works</►

p>'%(ruri, baseuri)

@simple_service('GET', POETDB_SERVICE_ID, 'poetdb', 'text/html')
def poetdb():

baseuri = request.environ['SCRIPT_NAME'] + '/'
def get_work(wid):

uri = join(baseuri, 'work', wid)
name, poet = POETDB[u'work'][wid]
puri = join(baseuri, 'poet', poet)
return '<p>Poetic work: %s, by linked ►

75

Akara – Spicy Bean Fritters and XML Data Services

poet</p>'%(uri, name, puri)
def get_poet(pid):

uri = join(baseuri, 'poet', pid)
name, address = POETDB[u'poet'][pid]
return '<p>Poet: %s</p>'%(uri, name)

getters = { u'work': get_work, u'poet': get_poet }
entitytype = shift_path_info(request.environ)
if not entitytype:

entitytype = u'work'
if entitytype not in POETDB:

return not_found(baseuri)
eid = shift_path_info(request.environ)
if not eid:

#Return an index of works or poets
works = []
for work_id, (name, poet) in POETDB[u'work'].iteritems():

works.append(getters[entitytype](work_id))
return '\n'.join(works)

try:
return getters[entitytype](eid)

except KeyError:
return not_found(baseuri)

Again, focusing on the key new bits:
from amara.lib.iri import join

Amara comes with a lot of URI, and more generally IRI (internationalized URI)
functions which are more RFC-compliant than the urllib equivalents, including the
join function which constructs URI references from hierarchical path components.

from akara import request, response

The response object allows you tomanageHTTP request status, headers, and such..
def not_found(baseuri):

ruri = request_uri(request.environ)
response.code = "404 Not Found"
return u'<p>Unable to find: %s, try the index of works</►

p>'%(ruri, baseuri)

Just a little utility function to provide a 404 response, with some information useful
to the end user. request_uri is a Python stdlib function to reconstruct the request
URI from a WSGI environment.

baseuri = request.environ['SCRIPT_NAME'] + '/'

Here you construct the URL to access this service.
def get_work(wid):

uri = join(baseuri, 'work', wid)

76

Akara – Spicy Bean Fritters and XML Data Services

name, poet = POETDB[u'work'][wid]
puri = join(baseuri, 'poet', poet)
return '<p>Poetic work: %s, by linked ►

poet</p>'%(uri, name, puri)

A routine to generate HTML of the information for a single work. Notice how
amara.lib.iri.join is used to construct links.

getters = { u'work': get_work, u'poet': get_poet }

Just a way to package up the reusable routines for generating poet and work info.
#Return an index of works or poets
works = []
for work_id, (name, poet) in POETDB[u'work'].iteritems():

works.append(getters[entitytype](work_id))
return '\n'.join(works)

Go through the index of works and return an aggregate HTML from the fragments.

10. Handling HTTP POST
The above example handles HTTP GET, and of course POST is a big part of the
Web. It's best known forWeb forms, though Akara is not specialized for such usage
in the way more mainstream Web frameworks are (CherryPy6, Django, etc.) You
can use Akara to handle Web forms, but more often Akara users will be dealing
with data services, often using requests directly POSTed to the endpoint. This is a
common pattern for open Web APIs such as those of social networks.

Since POST on the Web is generally used in cases where state of Web resources
are changing, this is usually the area where you need to deal with some sort of
persistence in your application. You'll see an example of that in this section, moving
from the in-memorydata structure of the previous section to somethingmore serious.
You'll also see an example of how to read configuration information.

The following listing is an Akara module for accepting reservations of business
resources such as conference rooms and the like.

Note
This example is designed to illustrate the mechanics of POST handling, but
is not a good example of REST style, presented as it is for simplicity. Akara
does support strong REST principles, including hypermedia and proper use
of HTTP verbs.

import shelve

from amara import bindery

6 http://xml3k.org//CherryPy#

77

Akara – Spicy Bean Fritters and XML Data Services

http://xml3k.org//CherryPy#
http://xml3k.org//CherryPy#

from amara.lib import U

import akara
from akara.services import simple_service

DBFNAME = akara.module_config()['dbfile']

NEWPOET_SERVICE_ID = 'http://example.org/my-services/new-poet'

@simple_service('POST', NEWPOET_SERVICE_ID, 'newpoet', 'plain/text')
def newpoet(body, ctype):

'''
Add a poet to the database.

Sample POST body:
<newpoet id="co">
<name>Christopher Okigbo</name><address>Christopher Okigbo</address>

</newpoet>
'''
dbfile = shelve.open(DBFNAME)
#Warning: no validation of incoming XML
doc = bindery.parse(body)
dbfile[U(doc.newpoet.id)] = (U(doc.newpoet.name), U(doc.newpoet.address))
dbfile.close()
return 'Poet added OK'

This module requires a configuration variable, dbfile, which you can provide by
adding the following (or similar) to akara.conf:

class tutorial_post:
dbfile = '/tmp/poet'

Once the service is running, you can use something like the following command
line to add a poet:

curl - -request POST - -data-binary "@-" "http://localhost:8880/newpoet" << END
<newpoet id="co">
<name>Christopher Okigbo</name><address>Christopher Okigbo</address>

</newpoet>
END

You can verify the result easily enough by querying the low level database file.
>>> import shelve
>>> d=shelve.open('/tmp/poet')
>>> print d.keys()
['co']

78

Akara – Spicy Bean Fritters and XML Data Services

>>> print d['co']
(u'Christopher Okigbo', u'Christopher Okigbo')

Note
This tutorial uses shelve for simplicity, but for real world applications, you
almost certainly want to use another persistence back end, such as sqlite7.
Also, these examples are not safe for concurrent access frommultiplemodule
instances, which is just about guaranteed for a real-world application.

11. Conclusion
Akara's designmakes it easy to integrate with other persistence facilities, from rela-
tional to state of the art DBMS, and certainly modern cloud-style storage services.
It has seen a wide variety of use with mixed and matched components, whether
incorporating Web-based transform and validation services or attaching modern
visualization systems.Oneway to fulfill sophisticatedXML-driven database require-
ments is to use monolithic software, but another important approach is to stitch
together loosely coupled components from remote and local software. Akara offers
a solid backbone for assembly of such heterogenous systems.

12. Appendix A: More background on 4Suite
In order to better understand the spirit behind Akara it's useful to have historical
perspective of its predecessor 4Suite which enjoyed very active development for
the decade starting 1998. 4Suite also spawned additional work and influence in
numerous other areas, for example serving as the core XML processing toolkit for
Red Hat and Fedora Core distributions in the mid 2000s, contributing components
to the Python language, serving as a reference implementation for development of
RFC 3986, and thus influencing several other packages.

4Suite and Akara have over the years provided several important innovations,
including:
• XML/RDF triggered transforms (helped inspire GRDDL)
• Path-based RDF query mounted across an XML/RDF repository (Versa, which

inspired many others, and was an input to W3C's SPARQL work)
• Rules-based (rather than type-systems-based) data binding for XML and RDF
• RDF query within XSLT
• Push-style data-driven multiple dispatch to code
• Pioneering implementations of DOM, XPath, XSLT, XLink, XPointer, RELAX

NG, Schematron and more

7 http://docs.python.org/library/sqlite3.html

79

Akara – Spicy Bean Fritters and XML Data Services

http://docs.python.org/library/sqlite3.html
http://docs.python.org/library/sqlite3.html

80

Translating SPARQL and SQL to XQuery
Peter M. Fischer
ETH Zurich

<peter.fischer@inf.ethz.ch>

Dana Florescu
Oracle Corporation

<dana.florescu@oracle.com>

Martin Kaufmann
ETH Zurich

<martin.kaufmann@inf.ethz.ch>

Donald Kossmann
ETH Zurich

<donald.kossmann@inf.ethz.ch>

Abstract

In our community there are three main models for representing and processing
data: Relations, XML and RDF. Each of these models has its "sweet spot" for
applications and its own query language; very few implementations cater for
more than one of these. We describe a uniform platform which provides inter-
faces for different query languages to retrieve andmodify the same information
or combine it with other data sources. This paper presents methods for com-
pletely and correctly translating SQL and SPARQL into XQuery since
XQuery provides the most expressive foundation. Early results with our cur-
rent prototype show that the translation from SPARQL to XQuery already
achieves very competitive performance, whereas there is still a significant
performance gap compared to SQL.

Keywords: SQL, SPARQL, XQuery, Common Runtime

1. Introduction

1.1. Background
Today, three common approaches of representing data in structured and formal
form are being used: Relational (tables), XML (trees) and RDF (graphs). While rela-
tional and XML data have already been applied widely for a long period, RDF is

81

now gaining popularity, among others in the contexts of semantic web or social
networks. These three approaches not only differ in terms of their data models but
also at the level of data representation, use cases, query languages. As a consequence,
implementations rarely cover more than one model [13]. Yet, there is a need to
overcome this separation and to integrate data and operations. One possible solution
would be a common runtime for all of these formats where each language can be
exploited where it is suited best.

1.2. Problem Statement
In order to overcome the differences between themodels, we investigate if and how
one language can be translated into another. In this paper, we focus on a translation
fromboth SPARQL and SQL to XQuerywhich has seen little attention so far. XQuery
is an interesting target since it is the most expressive language and its implementa-
tions are now reachingmaturity. The translation is required to express the semantics
correctly, to cover all expressions and to create code that can be executed efficiently.

1.3. Contributions
In this paper, we present the following results:
• a complete and correct translation of SPARQL toXQuerywhich does not require

any assumptions on the schema of the data or the particular workload
• a sketch of a translation of SQL92 to XQuery, again, with no assumption on

schema or workload
• a working cross compiler which takes any SPARQL or SQL92 query and turns

it into an XQuery expression
• initial performance results which show that, even with limited optimizations,

XQuery is typically as fast as native SPARQL and often faster. In contrast, it still
trails SQL implementations due to the simpler and more mature relational
storage.

1.4. Outline
This paper is organized as follows: Section 2 gives a short introduction to SPARQL,
XQuery and SQL, establishes a running example and outlines the challenges of the
translation. A detailed description of the translation from SPARQL to XQuery is
shown in Section 3, a summary of the translation of SQL to XQuery in Section 4.
Section 5 describes the implementation of the translator and presents some initial
correctness and performance results. Section 6 presents related work. The paper is
concluded in Section 7 by a summary and directions for future work.

82

Translating SPARQL and SQL to XQuery

2. Fundamentals

2.1. RDF
The Resource Description Framework (RDF) is W3C Recommendation [12] for the
specification ofmetadatamodels for the SemanticWeb.AnRDFdocument expresses
information about a resource on the web by a list of subject-predicate-object triples
which correspond to a directed graph. There are different formats for the serialization
of RDF data. Themost common format is RDF/XML [3] which stores RDF datawith
anXML syntax. Other formats likeNotation 3,N-Triples andTurtle aremore suitable
for human readability. All formats are equivalent semantically and can be converted
into one another easily. Example 1 shows a simple RDF document:

Example 1. RDF/XML Example: Periodic table and composite elements

<rdf:RDF>
<Element rdf:ID="H"><name>hydrogen</name><number>1</number>
</Element> ...
<Gas rdf:ID="H2"><element rdf:resource="#H"/><weight>2</weight>
</Gas> ...

</rdf:RDF>

2.2. The SPARQL Query Language
SPARQL [16] is often referred to as the query language for RDF. The basic operation
is graph pattern matching, in particular triple patterns in which subject, predicate
and/or objectmay be variables. These patterns can be combined using the operators
AND, UNION, OPT and FILTER yielding "solution sequences" (actually unordered bags)
which then can be changed by solution modifiers such as DISTINCT, ORDER BY,
REDUCED, LIMIT, and OFFSET. SPARQL defines four query forms: SELECT, ASK,
CONSTRUCT and DESCRIBE. Example 2 shows a SELECT querywhich retrieves the color
of all elements ending in "ium" and returns the 4th to 14th color after ordering.

Example 2. SPARQL example query

PREFIX chemistry: <http://www.xql2xquery.org/chemistry#>
SELECT ?col
WHERE
{
?element chemistry:name ?name.
?element chemistry:color ?col.

}
FILTER (REGEX(?name, “ium”)
ORDER BY ?col

83

Translating SPARQL and SQL to XQuery

LIMIT 10
OFFSET 4

2.3. XQuery
XQuery is a declarative and Turing complete programming language which was
originally designed to extract information and perform transformations on XML
data. It uses XDM as its data model which expresses sequences of atomic values or
XML nodes. Support for graph structures is limited as there is no standard way to
define links across the tree hierarchy and no expressive operations on these links
exist.

2.4. SQL
SQL is the most popular language as an interface to a relational database manage-
ment system (DBMS) and has been extended to suit many additional purposes. It
provides expressions for data definition (DDL), data manipulation (DML), access
privileges (DCL) and transaction control (TCL). Given the complexity of the lan-
guage, we only consider the SQL92 DML subset in this work.

2.5. Challenges and Opportunities
At the level of the data model, the differences between the relational, tree/sequence
and graph models are already attenuated by the serializations, in particular the
RDF/XML mapping. Similarly, type system differences are resolved by SQL/XML
mapping which is described in [18] and the shared XML Schema/XPath 2.0 type
system (SPARQL/XQuery). Both SQL and SPARQL use three-valued Boolean logic,
explicitly addressing null values and errors, respectively. In contrast to this, XQuery
uses two-valued Boolean logic, does not represent null values andwill only provide
error handling in the next version (3.0). The process of graph pattern matching in
SPARQL is quite different from the path navigation-style interaction. For this reason,
emulation is required which is less concise and possibly less efficient.

3. Mapping and Translating SPARQL to XQuery
In his section, we provide a description of the translation of SPARQL to XQuery.
For space reasons, we only show the general idea and themost relevant parts of the
translation. The full set of rules is available at [10]. We define a function
sparql2xquery() which takes a SPARQL query as an argument and returns the
corresponding XQuery representation as a result. The following translation tables
show the SPARQL code INSPA in the left column and the corresponding XQuery

84

Translating SPARQL and SQL to XQuery

code OUTXQu in the right column. The concepts shown in this section are demonstrated
by means of the sample shown in Example 2.

3.1. Basic Graph Pattern Matching
Matching triple patterns is the core operation of SPARQLout ofwhichmore complex
graph combinations can be built. These patterns, in turn, can be filtered andmodified.
Triple patterns such as (element chemistry:name ?name) contain specifications for
subject, predicate and object of an RDF triple. These specifications can be either
constants (to match) or variables (which are bound). Our translation maps these
variables to XQuery variables and generates a sequence of bindings for all variables.
In the result, every element contains a single value for each of the variables without
eliminating duplicates (see Example 3). While this is very similar to the "tuple"
stream in anXQuery 3.0 FLWORexpression,we explicitlymaterialize these bindings
which enables this intermediate result to be used as an argument to general functions.

Example 3. Variable Binding Sequence

<result>
<var name=”color”>silvery</var>
<var name=”name”>aluminium</var>

</result>
<result>
<var name=”color”>metallic white</var>
<var name=”name”>uranium</var>

</result>

A basic graph pattern contains a set of triple patterns which all need to hold and
can be joined/correlated by using the same variable. In our translation, one triple
can yield up to three nested for iterations since one loop is generated for each dif-
ferent variable. Given the subject-predicate-object nesting in RDF/XML, we start by
retrieving subjects using a path expression and bind the variables specified on
subjects. Nested into an iteration over all subjects, we retrieve the predicates below
them, bind the variables and again iterate over these variables, if necessary. Objects
are handled in a similar nested fashion. In general, constants, correlations and other
direct filter conditions are expressed as part of the where clause since all possible
combinations are generated by the loops.Whenever possible,we push these predic-
ates "down" in order to minimize the size of the intermediate result. Wherever ne-
cessary, access to named graphs (as external resources) is mapped to doc() or
collection() calls.

85

Translating SPARQL and SQL to XQuery

Table 1. Translation of basic pattern from SPARQL to XQuery

patternXQu :=patternSPA :=
foreach subjName (subjVars(patternSPA))
for $subjName in xqllib:getSubj()

foreach predName (predVars(patternSPA))
for $predName in xqllib:getPred($subjName)

foreach objName (objVars(patternSPA))
for $objName in xqllib:getObj($predName)

(where
foreach constant (constants(patternSPA,

subjName, predName, objName))
$subjName = constant

| $predName = constant
| $objName = constant
foreach filterCondition (filterXqu)
(and)? filterCondition

)?
return
<result>

foreach varName (vars(patternSPA))
<varName>{data($varName)}</varName>

</result>

triplePatternSPA
...
triplePatternSPA
(filterSPA)*

3.2. Graph Pattern Combination

3.2.1. Optional Patterns

The purpose of an optional pattern is to supplement the solution with additional
information. If the patternwithin an OPTIONAL clausematches, the variables defined
by that pattern are bound to one or many solutions. If the pattern does not match,
the solution remains unchanged. The optional pattern is implemented in XQuery
by a binary function which implements a "left outer join" over the intermediate
graph representations. Since the OPTIONAL keyword is left-associative, the rule can
be applied repeatedly to handle multiple consecutive optional patterns

3.2.2. Alternative Graph Pattern

In an alternative graph pattern two possible patterns are evaluated and the union
of both is taken as a result. The alternative pattern can be expressed in XQuery by
a sequence of the results of both patterns since UNION does not specify duplicate
elimination.

86

Translating SPARQL and SQL to XQuery

3.2.3. Group Graph Pattern

All graphs associated in a group graph pattern must match. The pattern is imple-
mented by an XQuery function that correlates the groups on shared variables using
a join and the other function capturing equality in SPARQL.

The intermediate results generated by SPARQLpatterns are combined bymeans
of custom XQuery functions. The mapping is shown in the following table:

Table 2. Translation of graph pattern combinations from SPARQL to XQuery

patternXQu :=patternSPA :=
xqllib:optional(patternLXQu ,
patternRXQu)

{ patternLSPA }
OPTIONAL
{ patternRSPA }

(patternLXQu , patternRXQu){ patternLSPA }
UNION
{ patternRSPA }

xqllib:and(patternLXQu ,
patternRXQu)

{ patternLSPA }
{ patternRSPA }

3.3. Filter
A SPARQL FILTER function can be added to graph patterns in order to restrict the
result according to a Boolean condition. In the running example, elements whose
name end in "ium" are filtered according to a regular expression. Since comparison
operations, effective Boolean value and several other functions are actually defined
by the related XPath 2.0 functions and operators, we can use XQuery value compar-
ison (eq, neq, …). Yet, we need to consider the differences in Boolean logic and error
handling: SPARQL does not allow empty sequences as parameters and suppresses
errors in certain logical operations (e.g TRUE OR Error becomes TRUE). We use the
empty sequence () (e.g., generated by OPTIONAL expressions) as a placeholder for
error and put additional checking code to capture wrong input values. For AND, OR,
NOT and effective Boolean valuewe create helper functions that interpret () correctly
or catch the error on XQuery 3.0, respectively.

3.4. Modifiers
SPARQL solutionmodifiers either affect the (unordered) result sequence by imposing
an order, projecting variables or limiting the number of results. In any case, there
is a straightforward translation to XQuery. Given the intermediate variable binding
sequence, projection is expressed in the final return clause by only showing refer-
enced variables. The SPARQL ORDER BYmaps directly to the order by in an XQuery

87

Translating SPARQL and SQL to XQuery

FLWOR expression, both working on sequences. Result size LIMIT and OFFSET are
handled by placing positional predicates on the result sequence, e.g. [position()
lt 11] for LIMIT 10. DISTINCT is pushed into the query plan affecting operators on
patterns as well as the (custom) XQuery functions implementing SPARQL identity
semantics. REDUCED is currently translated into a NO-OP since dropping some du-
plicates is only an optimization.

3.5. Query Forms
SPARQL supports four query forms, SELECT, ASK, CONSTRUCT and DESCRIBE.We show
the translation of SELECT here since it is the most common form. The result of the
SELECT form is a list of value combinations which are bound in varListSPA.

Table 3. Translation of SELECT query from SPARQL to XQuery

patternXQu :=resultSPA :=
nsListXQu
let $result := patternXQu
(order by orderListXQu)?
return $result([positionXQu])?

nsListSPA
SELECT varListSPA
WHERE
{ patternSPA }
(ORDER BY orderListSPA)?
(limitOffsetSPA) ?

3.6. Translation of the Running Example
In Example 5we show the result of the automatic translation of the SPARQL example
to XQuery as introduced in Section 2.2.

First, the namespaces required for the query are declared and the data of the
involved collections is assigned to variableswhich are named according to $GRAPH_x

with x ∈ ℕ0 These placeholders represent the different intermediate results.
The first variable $GRAPH_0 contains the result of a basic graph pattern as de-

scribed in Section 3.1. A for loop is generated for each variable because the SPARQL
semantics adds one result for each possible binding of values to variables. We start
with the bindings for the subject parts (?element). In a next step, we look at the
predicate and object steps for each subject. This can be done efficiently because
RDF/XML nests the predicates and objects into the subjects. Since there are two
variables for the objects (?name and ?col), we create two additional loops. For each
possible binding the value of each variable must be non-empty. Therefore, we add
an explicit check fn:exists() to a where clause in XQuery.

The intermediate result represented by $GRAPH_0 is limited by a FILTER expression
as shown in Section 3.3 and the reduced set of possible bindings is assigned to
$GRAPH_1. In the next step, the result is sorted by the attribute "col". Finally, the

88

Translating SPARQL and SQL to XQuery

output is generated by the function formatSparqlXML() which renders the result
according to the SPARQL Query Results XML Format which is defined in [19].

To make the code generated by the cross-compiler more concise, a number of
custom XQuery functions are used. As an example, the source code of the function
getSubj() from the xqllib package is shown in Example 4. This function returns the
identifier of a given node which can be obtained by reading the rdf:ID attribute.
The source code of the remaining functions can be found in [10].

Example 4. Source Code of the Custom Function getSubj()

declare function xqllib:getSubj ($subj as node())
as xs:string

{
return $subj/@rdf:ID

}

Example 5. Translation Result of the SPARQL (Code 2) Example to XQuery

declare namespace chemistry =
"http://www.xql2xquery.org/chemistry";

let $doc_chemistry := fn:collection("chemistry")
let $result :=
let $GRAPH_0 :=
for $element in $doc_chemistry[@rdf:ID]
let $value_element :=
xqllib:getSubj($element)

for $value_col in
xqllib:getData("chemistry",$element/chemistry:color)

for $value_name in
xqllib:getData("chemistry",$element/chemistry:name)

where fn:exists($value_col) and fn:exists($element)
and fn:exists($value_name)

return
<result>
<var name="col">{$value_col}</var>
<var name="element">{$value_element}</var>
<var name="name">{$value_name}</var>

</result>
let $GRAPH_1 :=

$GRAPH_0[fn:matches(var[@name="name"], "ium")]
for $node in $GRAPH_1
order by $node/var[@name="col"]
return $node

return
xqllib:formatSparqlXml(

89

Translating SPARQL and SQL to XQuery

$result[position() = (5 to 14)],("col")
)

4. Mapping and Translating SQL to XQuery
Given that XQuery was designed to also handle relational data (see Use Case R
described in [20]) and that the expressions can be fully nested, the translation of
selection, projection, (inner) joins, ordering, sub queries as well as updates is
straightforward. The translation only requires an adaptation of predicates and path
expressions to the concrete serialization of relational data into XML. For group by
and outer join we consider both explicit nested for loops and the specialized con-
structs for XQuery 3.0. Null values are mapped to an empty sequence in evaluation
and empty elements in the results since the Boolean evaluation rules are a close
match. Yet, many differences in the data model and semantics make a fully correct
translation rather complex. An example for a translation rule is shown in Table 4
by means of an SQL SELECT statement.

Table 4. Translation of SELECT query from SQL to XQuery

nodesXQu :=tableSQL :=
for $source1 := source1XQu
...
for $sourceN := sourceNXQu
(group by groupByXQu)?
(where boolExprXQu)?
(order by orderListXQu)?
return nodesXQu

SELECT exprListSQL
FROM source1SQL, ..., sourceNSQL
(WHERE boolExprSQL)?
(GROUP BY groupBySQL)?
(ORDER BY orderListSQL)?

5. Implementation and Evaluation

5.1. Implementation
We have implemented our formal translation framework as a cross-compiler from
SPARQL and SQL to XQuery which is available as a command-line tool and as a
web service [11]. The code is written in C++ and follows the classical compiler archi-
tecture: Lexer (Flex), Parser (Bison), Semantic Checks andCodeGeneration towards
textual XQuery which can be consumed by any XQuery engine.

The current focus is on complete and correct translation. Thus, only a limited
amount of optimizations are present – mostly pushdown of constants and filter
predicates within basic pattern matches. As the results show, these optimizations
are already useful, but for more complex queries more effort to minimize interme-
diate results is necessary.

90

Translating SPARQL and SQL to XQuery

5.2. Evaluation
We evaluated our translationwith regard to correctness, completeness and perform-
ance. Although at this stage we have no formal verification of our translation, tests
on a range of sample queries covering all language features turned out to be correct.
The translated XQuery tests were run on the XQBench Benchmarking Service [7],
putting native SPARQL execution on ARQ/Jena 2.8.7 [2] and SQL onMySQL 5.1.41
against a number of open-source XQuery processors and databases, capturing exe-
cution results and timings: Saxon HE 9.3.0-2, Qizx Open 4.1, XQilla 2.2.4, Zorba 1.5
pre-release (processors), BaseX 6.5, MonetDB/Pathfinder October 2010, Sedna 3.4,
BerkeleyDB XML 2.5.16 and eXist 1.4.0 (databases). To the best of our knowledge,
this is a fairly complete collection of freely available XQuery implementations. For
an initial performance study, we chose the Berlin SPARQL Benchmark [5] which is
one of the few existing benchmarks suites for SPARQL. It provides queries and a
data generator for both SPARQL and SQL on the same conceptual schema. The tests
have been executed for Berlin scaling factors from 10 (~ 5K triples) to 5000 (~ 1.8M
triples) on an Intel Xeon X3360 quad-core 2.8 ghz with 8 GiB RAM and 2x 750 GB
S-ATAdisks. In ourmeasurementswe excluded start-up/warm-up time by deducing
the time of a dummy query and repeating the measurements until they became
stable. Furthermore, we kept the setup of all engines to the out-of-the-box settings,
and did not any additional optimizations like custom indexes. The translation from
both SPARQL and SQL to XQuery took around 10-25 msec, while the execution
times varied quite significantly for different queries and scale factors as shown in
Figures 1-8.

We are omitting a number of resuls in graphs, which are available on the
XQBench Benchmarking Service [7]:
• Wewere not able to gather any result fromMonetDB. After rewriting the queries

to conform to mandatory static typing, we ran into non-implemented functions
or accessors.While a full rewrite for this functionalitymight have been possible,
the effort would have been significant.

• XQilla performed very similar to Zorba, sometimes slightly worse, we therefore
omitted the results to make the graphs more readable.

• BerkeleyDB and eXistperformed similar or slower than the other XMLdatabases.
We again omitted the graphs to improve readability.

For a simple triple match query (Figure 1), all XQuery engines outperform ARQ
significantly and scale better indicating that the translation of triple and basic graph
pattern matching is quite efficient. For the XQuery processors, the total cost is
completely dominated by XMLparsing, thusmaking Zorba slower than Saxon. The
XQuery databases do not need to pay the price for parsing, and only need to deal
with a bigger data size. As a result, they maintain a lead of 3 orders of magnitude
over ARQ even without the support of manually added indexes. When comparing

91

Translating SPARQL and SQL to XQuery

the semantically same query translated from SQL and comparing the results against
MySQL, the quality of the XQuery execution does not changemuch.MySQL's query
processing and storage engines are well tuned for such simple retrieval queries, but
sees a strong competition from the XML databases, with Sedna catching up at scale
factor 5000.

Figure 1. BERLIN SPARQL Query 1

Figure 2. BERLIN SQL Query 1

For a querywith an OPTIONAL clause (Figure 3) the XQuery translation fromSPARQL
requires a join and duplicate elimination which is currently implemented using
nested loop. We measured a significant difference in the quality of the XQuery op-

92

Translating SPARQL and SQL to XQuery

timizers: Saxon and BaseX seem to exploit more optimization possibilites than the
other XQuery implementation and scale in the same way as ARQ, but maintain a
lead ofmore than one order ofmagnitude. The otherXQuery systems scale somewhat
worse, but still maintain a measureable lead at scale 5000. For the translation from
SQL (Figure 4), the simpler query structure gives all optimizers the chance to detect
the relevant information, leading to almost the same performance as for the simple
retrieval query before.

Figure 3. BERLIN SPARQL Query 3

Figure 4. BERLIN SQL Query 3

93

Translating SPARQL and SQL to XQuery

For a query that uses a simple filter (Figure 6), the results for both the SPARQL and
the SQL translation closely resemble the result for the triple pattern specification
in Q1: All optimizers detect enough relevant informtion to let the XQuery imple-
mentations scale better thanARQ,while parsing becomes the dominant cost.MySQL
leads against the XML databases, but the gap is closing quickly.

Figure 5. BERLIN SPARQL Query 6

Figure 6. BERLIN SQL Query 6

For a query with a join and multiple OPTIONAL statements (Figure 7) our approach
is beginning to show its limitations for the SPARQL translation. Expressing each
OPTIONAL expression as a nested loop with additional helper functions limits the

94

Translating SPARQL and SQL to XQuery

ability of the XQuery optimizers to detect relevant information, so that the XQuery
implementations are now roughly as fast as ARQ. Again, Saxon and QizX scale
best. On the SQL side, the query is expressed in somewhat simpler terms, so that
OPTIONAL is just another selection. The results of the XQuery implementation are
generally better, but also diverge more: Zorba and Sedna do not seem to detect any
join optimizatins and scale fairly bad. Saxon, QizX and BaseX seem to detect the
join and scale well when the document size increases (with the former two mostly
dominated by parsing). MySQL, however, scales even better, not being affected by
the increasing workload. This can be attributed to the very low selectivity of the
query and the presence of predicates which can use the implicitly created primary
key index.

Figure 7. BERLIN SPARQL Query 8

95

Translating SPARQL and SQL to XQuery

Figure 8. BERLIN SQL Query 8

As a conclusion, the results indicate that our translation is working quite well for
most cases, outperforming the SPARQL reference implementation for most of the
queries and scaling similarly or better than the SQL results, albeit at a higher initial
cost. Certain join queries still seem to be problems in both translations, necessitating
further investigation and more translation hints.

6. Related Work
A significant number of translations from SPARQL to SQL have been performed
which achieve both completeness and efficiency as summarized in [15]. Even though
SPARQL and XQuery are significantly closer than SPARQL and SQL, we are only
aware of two works that have tackled such a translation. In [4] the authors aim to
query XML sources from SPARQLwithout having to use XQuery explicitly. In order
to do so, they require the presence of XML schemawhich ismapped to an equivalent
OWL schema for RDF. SPARQL queries written against this OWL schema are then
translated into XQuery expressions on the corresponding XML schema. The trans-
lation is incomplete and, based on the publicly available information, it is not possible
to verify its correctness. [8] embeds SPARQL into XQuery and provides a translation
to XQuery without assuming schema knowledge. Again, this translation is incom-
plete and their evaluation shows significantlyworse performancewithARQ clearly
outperforming the XQuery engines. Although there are several approaches to
translate SQL to XQuery, all of them suffer from quite severe restrictions. One ap-
proach and an overview of the competingmethods are given in [14]. For the opposite
direction, the Pathfinder Relational XQuery Processor [9] has achieved a very high
degree of correctness and performance.

96

Translating SPARQL and SQL to XQuery

7. Conclusion and Future Work
In this work, we tackled the problem of aligning SPARQL, SQL and XQuery se-
mantics and execution by providing a translation fromSPARQL and SQL to XQuery.
The translation is complete, correct and universally usable as it does not need any
schema or specificworkloads. An initial performance evaluation shows that in areas
on which we already performed optimizations the XQuery translation beats the
native SPARQL implementations whereas in other areas it still lags behind. When
comparing to SQL, storage seems to be the relevant difference. For both translations,
current XQuery optimizers seem to exploit many optimizations when queries are
reasonably simple, but fail once a certain level of complexity is exceeded.

We see the following avenues for futurework: Our translation should be further
validated, both by formal verification and testing against the official DAWG
SPARQL test suite.We aim to incorporate additional optimizations in order to reduce
intermediate results for pattern combinations and duplicate elimination; among
them are explicit and implicit join reordering, incorporating XQuery 3.0 features
like native group by, outer joins and error handling as well as index usage. Further-
more, we plan to investigate the upcoming SPARQL 1.1 language which provides
updates, grouping and aggregation. All of these features should be easy to express
in XQuery.

Bibliography
[1] W. Akhtar et al. XSPARQL: Traveling between the XML and RDF worlds. 5th

European Semantic Web Conference, ESWC 2008
[2] ARQ, a SPARQL processor for Jena http://jena.sourceforge.net/ARQ/
[3] D. Beckett et al.RDF/XML Syntax Specification.
[4] N. Bikakis, et al. The SPARQL2XQuery Framework. Technical Report, National

Technical University of Athens, Greece, 2008
[5] C. Bizer, A. Schultz. Benchmarking the Performance of Storage Systems that

expose SPARQL Endpoints SSWS 2008
[6] S. Boag et al. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/
[7] P. Fischer. XQBench – A XQuery Benchmarking Service XML Prague 2010

(poster), http://xqbench.org
[8] S. Groppe et al. Embedding SPARQL into XQuery/XSLT. SAC 2008
[9] T. Grust, J. Rittinger, and J. Teubner Pathfinder: XQuery Off the Relational Shelf

ICDE Bulletin, Special Issue on XQuery. Vol. 31, No. 4, December 2008.

97

Translating SPARQL and SQL to XQuery

[10] Martin Kaufmann. Mapping SPARQL and SQL to XQuery Master’s Thesis,
ETH 2010

[11]MartinKaufmann.Web-interface for the SPARQLand SQL toXQuery translator.
http://www.xql2xquery.org/ Website is protected. Please use “ethz” / “xquery”.

[12] Graham Klyne et al. Resource Description Framework (RDF), Concepts and
Abstract Syntax.

[13] JimMelton. SQL, XQuery, and SPARQL:What’s wrong with this picture XTech
2006.

[14] Matthias Nicola and Tim Kiefer. Generating SQL/XML Query and Update
Statements. CIKM 2009

[15] Eric Prud'hommeaux, Alexandre Bertails. A Mapping of SPARQL Onto
Conventional SQL http://www.w3.org/2008/07/MappingRules/StemMapping

[16] Eric Prud'hommeaux et al. SPARQL Query Language for RDF.
[17] Sausalito, XQuery Application Server, Version 0.9.6, 2009

http://sausalito.28msec.com/
[18] SQL - Part 14: XML-Related Specifications (SQL/XML) ISO/IEC 9075-1:2008,

IDT.
[19] SPARQLQuery Results XML Format. W3C Recommendation 15 January 2008,

http://www.w3.org/TR/rdf-sparql-XMLres/.
[20] XML Query Use Cases. W3C Working Group Note 23 March 2007.

http://www.w3.org/TR/xquery-use-cases/.

98

Translating SPARQL and SQL to XQuery

Configuring Network Devices
with NETCONF and YANG

Ladislav Lhotka
CESNET, z. s. p. o.

<lhotka@cesnet.cz>

Abstract

This paper gives an overview of the open standards for the NETCONF protocol
and associated framework for configuration data modelling. NETCONF is an
XML-based communication protocol that allows for secure management of
network devices from remote manager applications. The YANG language for
configuration data modelling is described and its features compared to those
offered by the existing XML schema languages. Finally, the standardized
mapping of YANG data models to the DSDL schema languages (RELAXNG,
Schematron and DSRL) is discussed in some detail and the procedure for in-
stance document validation is outlined.

Keywords: network configuration, data modelling, NETCONF, NET-
MOD, DSDL, RELAX NG, Schematron, DSRL

1. Introduction
Configuration of network devices, and especially those that are part of the Internet
infrastructure, often requires considerable expertise and effort.Manual configuration
via a web or command-line interface (CLI) may be a good option for a home WiFi
router but large installations of routers in backbone networks call for robust and
automated configuration approaches.

Historically, SNMP (Simple Network Management Protocol) was designed to
cover the entire range of networkmanagement tasks, including remote configuration.
While SNMP has been widely implemented and deployed, nowadays it is almost
exclusively used for monitoring purposes such as gathering statistics from devices,
but rarely for configuration.Anumber of reasonswere identified to have contributed
to the failure of SNMP in the configuration area [15]. Perhaps the most important
of them was the mismatch between the high-level human-oriented syntax of com-
mand-line interfaces and the low-level data-oriented paradigmof SNMP.As a result,
most device vendors eventually found it difficult to develop and maintain two
rather different configuration systems and eventually concentrated on their (propri-
etary) CLI as the up-to-date and authoritative configuration vehicle. Consequently,

99

network operators were left with no choice other than to develop various kludges
for sending configuration scripts generated from a database through SSH to the
command-line interfaces of their devices. Such methods, however ingenious they
might be, are necessarily fragile and unable to react properly on various errors that
the scripts may trigger.

The NETCONF working group of the Internet Engineering Task Force (IETF)
was chartered in May 2003 with the aim of standardizing an open and vendor-
neutral protocol for network device configuration.

This paper first describes essential features of the NETCONF protocol using
several examples and then deals with the recent IETF efforts in the data modelling
area, namely the YANG language formodelling configuration and operational state
data manipulated by the NETCONF protocol. Finally, the standardized mapping
of YANG data models to Document Schema Definition Languages (DSDL) is dis-
cussed in somedetail. As a side effect, thiswill allowus to compare themain features
of the YANG language with analogical features of the existing XML schema lan-
guages.

2. NETCONF Configuration Protocol
NETCONF is an XML-based client-server protocol defined in [4]. In NETCONF
terminology, server is themanaged device and client is the (usually remote)manage-
ment application.

NETCONF uses XML for encoding both protocol operations and data contents.
EveryNETCONF session is started by a pair of hellomessages inwhich both parties
advertize supported protocol version(s) and optional capabilities. If the server
supports the YANGdatamodelling language described below, it will also advertize
the data model that it implements. Within a session, the client and server commu-
nicate by using a remote procedure call (RPC) mechanism. For instance, the client
has two RPC methods at its disposal for querying the server's datastore:
• getmethod asks for both configuration and operational state data;
• get-configmethod asks for configuration data only.
The NETCONF message carrying the simplest form of the get method looks as
follows:

<rpc message-id="123"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get/>
</rpc>

An imaginary Internet-enabled coffeemachine could honour this request by sending
the following reply:

100

Configuring Network Devices with NETCONF and YANG

<rpc-reply message-id="123"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<configuration xmlns="http://example.com/coffee">
<ipv4>
<address>192.0.2.1</address>
<subnet-mask-length>24</subnet-mask-length>

</ipv4>
<ipv6>
<address>2001:db8:1::c0ffee</address>
<subnet-mask-length>64</subnet-mask-length>

</ipv6>
</configuration>
<state xmlns="http://example.com/coffee">
<supply-levels>
<water>91</water>
<coffee>73</coffee>
<milk>19</milk>

</supply-levels>
<temperature>67</temperature>

<state>
</data>

</rpc-reply>

The client may also query specific parts of the data tree. One way for doing this are
XPath expressions, which however need not be implemented by all servers. The
mandatory mechanism for narrowing a query which every server has to support
are subtree filters (see [4], sec. 6). For example, the client can ask for just the temperature
parameter by using this request:

<rpc message-id="124"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get>
<filter type="subtree">
<state xmlns="http://example.com/coffee">
<temperature/>

<state>
</filter>

</get>
</rpc>

Another important method is edit-config which enables the client to modify
server's configuration datastores. Apart from the essential running configuration
datastore, which governs the device operation, other configuration datastores may
also be available. A typical example is the candidate datastore where a new config-
urationmay be prepared and then committed to become the new running configur-
ation.

101

Configuring Network Devices with NETCONF and YANG

The NETCONF protocol is extensible, which means that new operations, even
vendor- or device-specific, may be defined and used along with the standard
NETCONF operations. For instance, the following request can be used to instruct
our coffee machine to start preparing a beverage:

<rpc message-id="125"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<put-the-kettle-on xmlns="http://example.com/coffee">
<recipe>cappuccino</recipe>

</put-the-kettle-on>
</rpc>

The server's reply could in this case be just an acknowledgement:
<rpc-reply message-id="125"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

An optional but very useful capability are event notifications [8] that may be used by
the server to send asynchronous reports about various events. Our coffee machine
could implement the following notification:

<notification xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<eventTime>2011-03-26T00:01:00+01:00</eventTime>
<low-level-warning xmlns="http://example.com/coffee">
<ingredient>milk</ingredient>

</low-level-warning>
</notification>

The NETCONF protocol was designed as independent of transport protocols – en-
coding rules and other provisions specific to each transport protocols are standard-
ized separately. So far, four transport protocols have been defined for use with
NETCONF:
• Secure Shell (SSH), which is mandatory for all implementations [5].
• Simple Object Access Protocol (SOAP) [6].
• Blocks Extensible Exchange Protocol (BEEP) [7].
• Transport Layer Security (TLS) [9].
Other features of theNETCONFprotocol such as datastore locking or error handling,
while important, are not relevant for the main topics of this paper.

3. YANG Data Modelling Language
When the NETCONF working group was chartered in the IETF, the priority was
to finish the NETCONF protocol as soon as possible. Therefore, it was deliberately
decided to leave the large and potentially contentious area of datamodelling outside

102

Configuring Network Devices with NETCONF and YANG

the scope of the working group. In the meantime, various approaches to data
modelling were tried. Some used standard XML schema languages such as W3C
XML Schema Definition (XSD) or RELAX NG for this purpose while others de-
veloped new specialized data modelling languages. In April 2008, the NETMOD
(NETCONF Data Modelling) working group was chartered and, at the same time,
one of the specialized data modelling languages – named YANG – was selected as
the base for further development. The standardXMLschema languageswere rejected
for the following main reasons:
• Configuration data modelling has to address not only syntax but also semantics

of the modelled data.
• W3C XSD is very complex and difficult to learn.
• The strength of RELAX NG lies in validation rather than in data modelling.
After 18months of intensive development, YANG version 1 was published in Octo-
ber 2010 [10] together with a collection of essential data types [11].

The primary syntax of YANG is compact and resembles the C programming
language or BSD-style configuration syntax – see the examples below.An alternative
XML syntax named YIN is also defined as a part of the standard.

YANG data models are structured into modules. Every YANG module declares
an XML namespace to which all data nodes defined by the module belong. A par-
ticular data model to be used for a given NETCONF session consists of one or more
modules that are advertized in the hello message. Modules may also be further
subdivided into submoduleswhich share the namespace of their parentmodule. The
names of all modules and submodules that will be published by the IETF are
guaranteed to be unique.

As we will see, YANG is in many respects similar to the existing XML schema
languages. However, there is an important general difference which has to do with
the target of the datamodel:While XML schema languages assume a specific instance
XML document to be validated against a schema, YANG data models and the asso-
ciated rules address several different instance objects:
1. Various configuration datastores such as running, candidate and possibly others.

The semantic rules for the running datastore slightly differ from other datastores.
2. Operational state data that are always read-only.
3. NETCONF messages that are exchanged in both directions between the client

and server.
4. Custom RPC operations.
5. Custom event notifications.
Configuration datastores and operational state data need not be implemented as
XML databases, but conceptually the server presents them to the client using a re-
stricted XML infoset model.

103

Configuring Network Devices with NETCONF and YANG

The building blocks of YANG data hierarchy are similar to RELAX NG:
• A leaf corresponds to a leaf element in XML terms. Every leaf has a type and

may also have a default value.
• A container corresponds to an element which contains leafs, other containers,

lists or leaf-lists. YANG also distinguishes containers that only play an organiz-
ational role from those whose presence has a semantic meaning, such as
switching on a certain function.

• A leaf-list represents a sequence of leafs. Aminimum andmaximumnumber
of elements in the sequence may be specified.

• A list is similar to a leaf-list but represents a sequence of containers. Every list
declares one or more child leafs as the list key that must uniquely identify every
element in the sequence.

• A choice represents multiple alternative content models that are allowed at a
given place. One of the alternatives may be designated as default.

• An anyxml node represents arbitrary XML content including mixed content
which is otherwise not allowed.

Note that while YANG makes an explicit difference between leaf and container
elements, it has nomeans for modelling XML attributes. The scoping rules for node
identifiers also enforce another simplification of the generic XMLmodel: nodeswith
identical names cannot be nested. In particular, this constraint eliminates recursive
structures.

The selection of YANG built-in types is roughly comparable to that of XSD
Datatype Library [16]. However, YANG allows for deriving new named datatypes
from the built-in ones (perhaps in multiple steps) by specifying additional restric-
tions, or facets in the XSD terminology.

A default value may be specified for a non-mandatory leaf node as well as for
a datatype. In the latter case, the default value applies to all leaf nodes of that
datatype, unless they define their own default value.

Semantic constraints may be specified using the must statement. Its argument
is an XPath expression that has to evaluate to true, possibly after the result is con-
verted to a boolean value. The context for the XPath expression is the data tree in
which the must statement appears, i.e. a datastore, RPC operation or notification.
Also, all missing leafs that define a default value have to be (conceptually) added
with the default value before the XPath evaluation takes place.

Some parts of a YANGmodule can be declared as conditional and their presence
or absence depends on either

• static parameters known as features, or
• arbitrary dynamic conditions specified in an XPath expression subject to the
same rules as for the must statement.

104

Configuring Network Devices with NETCONF and YANG

An example of a feature is the availability of permanent storage in the configured
devicewhichmay enable certain functions.Active features are declared inNETCONF
hello as a part of the data model specification.

Reusable collections or subtrees of data nodes may be defined in YANG by
means of groupings. They are used in a similar way as, for instance, named patterns
in RELAX NG, with three notable differences:
1. YANGgroupings can only contain entire data node definitions, not just arbitrary

statements.
2. When a grouping is used, its contents may be modified, for example by adding

newdata nodes at any location inside the data hierarchy defined by the grouping.
3. The names of groupings are qualified with the namespace of the module where

each grouping is defined, and may also be scoped. Moreover, the names of data
nodes defined by a grouping always belong to the namespace of the module in
which the grouping is used, not the one inwhich it is defined. These naming issues
are further discussed in Section 4.2.1.

From the viewpoint of standard XML schema languages, the single most exotic
feature of YANG is the augment statement. Its main purpose is tomodify an existing
module fromoutside by adding newdata nodes at any location inside the hierarchy
of the other module. The location is determined by the argument of the augment
statement. As a matter of fact, it is expected that augment will be one of the main
methods for building more specific YANGmodules from generic components. For
instance, [1] shows the following example in which a module for general network
interfaces is augmented with new nodes specific for Ethernet interfaces:

import interfaces { prefix "if"; }
augment "/if:interfaces/if:interface" {

when "if:type = 'ethernet'";
container ethernet {

leaf duplex {
...

}
}

}

As an example of a complete YANG module, which however demonstrates only a
small subset of YANG features, below is a data model for the imaginary coffee
machine that was used in the examples in Section 2. Note that in order to keep the
example short, we do not follow all the recommendations for structure and contents
of YANG modules stated in [12].

module coffee-machine {
namespace "http://example.com/coffee";
prefix cm;
import ietf-inet-types {

105

Configuring Network Devices with NETCONF and YANG

prefix inet;
}
description
"This is an example YANG module
for an Internet-enabled coffee machine.";

organization "Example Ltd.";
contact "R. A. Bean <bean@example.com>";
revision "2010-03-26" {
description "Initial and final revision.";

}
container configuration {
container ipv4 {
leaf address {
mandatory true;
type inet:ipv4-address;

}
leaf subnet-mask-length {
type uint8 {
range "0..32";

}
}

}
list ipv6 {
description "At least one IPv6 address is required.";
min-elements "1";
key "address";
leaf address {
type inet:ipv6-address;

}
leaf subnet-mask-length {
type uint8 {
range "0..128";

}
default "64";

}
}

}
container state {
config false;
container supply-levels {
typedef percent {
type uint8 {
range "0..100";

}
default "0";

}

106

Configuring Network Devices with NETCONF and YANG

leaf water {
type percent;

}
leaf milk {
type percent;

}
leaf coffee {
type percent;

}
}
leaf temperature {
type uint8;

}
}
rpc put-the-kettle-on {
input {
leaf recipe {
type enumeration {
enum "espresso";
enum "turkish";
enum "cappuccino";

}
default "espresso";

}
}

}
notification low-level-warning {
leaf ingredient {
type enumeration {
enum "water";
enum "milk";
enum "coffee";

}
}

}
}

4. Mapping YANG Data Models to DSDL
The network management community realized the risks associated with creating
and supporting an entirely new datamodelling language. Therefore, theNETMOD
WG charter contained, along with the main YANG deliverable, a standardized
mapping of YANG data models to Document Schema Definition Languages [2].
This mapping work has been published recently as a Standard Track RFC [13].
Resulting DSDL schemas are expected to serve the following purposes:

107

Configuring Network Devices with NETCONF and YANG

• leverage existing XML tools for validating various instance documents,
• facilitate exchange of datamodels and schemaswith other IETFworking groups,
• help XML-savvy developers and users understand the constraints of a YANG

data model.

4.1. Overview of the Mapping Procedure
As was explained in Section 3, a single YANG module specifies grammatical and
semantic constraints for several different objects – datastores with configuration
and operational state data, as well as various NETCONF protocol messages. In ad-
dition, a concrete data model may consist of multiple YANG modules. In order to
cope with this variability, the mapping procedure is divided into two steps (see
Figure 1):
1. In the first step, a collection of input YANGmodules that together define a data

model is transformed to the so-called hybrid schema.
2. In the second step, the hybrid schema thenmay be transformed in differentways

to obtain DSDL schemas for desired object types.

YANG module(s)

hybrid schema

get reply RPC notification . . .

T

Tg Tr Tn

Figure 1. Structure of the mapping

The hybrid schemauses RELAXNGsyntax for specifying grammatical anddatatype
constraints, and also for representingYANGgroupings as namedpattern definitions.
Semantic constraints aremapped to various annotations that are attached to RELAX
NG elements. The annotations are XML attributes and elements belonging to the
namespace with URI urn:ietf:params:xml:ns:netmod:dsdl-annotations:1.

Metadata and documentation strings are considered an important component
of YANG data models, so they are also carried over to the hybrid schema. Dublin

108

Configuring Network Devices with NETCONF and YANG

http://dublincore.org/

Core1 elements are used formetadata and the documentation element of the RELAX
NG DTD Compatibility annotations [14] is used for documentation.

The hybrid schema is an intermediate product of the mapping and cannot be
directly used for any validation. As a matter of fact, it is not even a valid RELAX
NG schema because it contains multiple schemas demarcated by special elements
belonging also to the above namespace. On the other hand, a person familiar with
RELAX NG should be able to get a relatively precise idea about the data model
from reading the hybrid schema.

The second step of the mapping is specific for every target object (datastore or
NETCONF message). Its task is to extract relevant parts from the hybrid schema
and transform them into three DSDL schemas:
• RELAX NG schema is, for the most part, simply assembled from appropriate

fragments of the hybrid schema.
• Schematron schema is generated from semantic annotations.
• DSRL schema is generated from annotations specifying default contents.
Appendix A shows the hybrid schema for our coffee machine data model as well
as the three validation schemas obtained in the second mapping step.

4.2. Mapping Grammatical Constraints and Datatypes
YANG statements defining data nodes – leaf, container, leaf-list, list and
anyxml – as well as the choice statement map to RELAXNG patterns in a relatively
straightforward way. Grammatical constraints that are not supported by RELAX
NG, for example the minimum and maximum number of list entries, end up as se-
mantic annotations in the hybrid schema and then are transformed to Schematron
rules.

However, YANG and RELAX NG differ in several important aspects. In the
following subsections, we will mention two of them that presented the most inter-
esting challenges to the mapping procedure.

4.2.1. Handling of Names

YANG groupings and type definitions are often mapped to RELAX NG named
pattern definitions, but there are a few caveats.

First of all, names of groupings and typedefs imported from another module
keep the namespace of the module in which they are defined. In contrast, names of
RELAX NG named pattern definitions share the same flat namespace, even if they
come from an included grammar. Therefore, the mapping procedure must disam-

1 http://dublincore.org/

109

Configuring Network Devices with NETCONF and YANG

http://dublincore.org/
http://dublincore.org/

biguate the names to avoid clashes: it prepends the originating module name sep-
arated by two underscores.

Further, RELAX NG named pattern definitions are always global inside a
grammar,whereasYANGallows for lexically scopeddefinitions appearing anywhere
in the schema tree. Again, themapping procedure has to disambiguate their names,
this time by prepending the full schema context in the form of a sequence of names
of all ancestor containers.

Several examples of mangled names may be found in Section A.1.
Another feature of YANGgroupings is that their contents adopts the namespace

of the module in which the grouping used. In other words, if module A imports and
uses a grouping frommodule B, all data nodes defined inside the grouping belong
to the namespace ofmoduleA. This is the so-called “chameleon design” [17], which
is also possible in RELAX NG but requires a special arrangement of the including
and included schemas. Consequently, the mapping procedure has to follow this
arrangement when generating the validation RELAX NG schemas:
1. Groupings with the global scope, i.e. those that may be imported by other

modules, must be collected from all input modules, mapped and stored in a
separate RELAX NG schema file.

2. Every input module is mapped to an embedded grammar which has the local
module namespace as the value of its ns attribute. The schema with global
definitions is then included into this embedded grammar and the grouping
contents adopt the namespace declared in the ns attribute.

4.2.2. Augments

In order to simulate the effects of an augment statement, the mapping procedure
must explicitly add the new nodes as element patterns to the RELAX NG schema
at the location pointed to by the argument of the augment statement.

Augments also influence the handling of groupings. For example, if the target
node of an augment happens to come from a grouping, then the grouping must be
expanded at the place where it is used so that the augment may be applied to this
particular use of the grouping but not to other uses of the same grouping elsewhere.

In practice, an implementation of themapping algorithmhas to process augments
from all input modules into a list of “patches” and apply them at the right places
when traversing the schema tree.

4.3. Mapping Semantic Constraints
Schematron rules are constructed from semantic annotations appearing in the hybrid
schema. For example, the hybrid schema for our coffee machine (see Section A.1)
contains the following RELAX NG element pattern in which the nma:key declares
the cm:address child element as the list key:

110

Configuring Network Devices with NETCONF and YANG

<element nma:key="cm:address" name="cm:ipv6">
<element name="cm:address">
<ref name="ietf-inet-types__ipv6-address"/>

</element>
...

</element>

The nma:key annotation is mapped to a Schematron rule which has to check that
each value of the list key is unique. In the Schematron schema for a reply to the
get-config operation in Section A.4, the resulting rule is

<sch:rule context="/nc:rpc-reply/nc:data/cm:configuration/cm:ipv6">
<sch:report
test="preceding-sibling::cm:ipv6[cm:address=current()/cm:address]">

Duplicate key "cm:address"
</sch:report>

</sch:rule>

The context attribute has to be set to the actual context for the rule, which in this
case consists of the root node nc:rpc-reply provided by the NETCONF Messages
layer plus the entire hierarchy of nodes down to cm:ipv6.

In general, the Schematron schema contains one sch:pattern element for every
input YANG module. It may also contain abstract patternswhich are used for map-
ping semantic annotations appearing inside named pattern definitions in the hybrid
schema. Such semantic annotations may be applied in multiple contexts (possibly
also in different namespaces) corresponding to the places in which the containing
named pattern is referenced. Because of this, abstract patterns use two variables:
• pref represents the namespace prefix of the module in which the named pattern

is referenced;
• start represents the initial part of the context path corresponding to the place in

which the named pattern is referenced.
Such an abstract pattern may look like this:

<sch:pattern abstract="true"
id="_example__sorted-leaf-list">

<sch:rule context="$start/$pref:sorted-entry">
<sch:report test=". = preceding-sibling::$pref:sorted-entry">
Duplicate leaf-list entry "<sch:value-of select="."/>".

</sch:report>
<sch:assert test="not(preceding-sibling::$pref:sorted-entry > .)">
Entries must appear in ascending order.

</sch:assert>
</sch:rule>

</sch:pattern>

111

Configuring Network Devices with NETCONF and YANG

Whenever this pattern is applied, the instantiating pattern must provide the values
for prefix and start as its parameters, for example

<sch:pattern id="id2573371" is-a="_example__sorted-leaf-list">
<sch:param name="pref" value="ex"/>
<sch:param name="start" value="/nc:rpc-reply/nc:data"/>

</sch:pattern>

4.4. Mapping Default Contents
TheYANG-to-DSDLmapping uses a subset of DSRL for specifying default contents
as indicated in the hybrid schema. For example, the hybrid schema for the coffee
machine datamodel (SectionA.1) contains the following annotated element pattern:

<element name="cm:recipe" nma:default="espresso">
...

</element>

The nma:default annotation is mapped to the DSRL schema for the
put-the-kettle-on request as the following element:

<dsrl:element-map>
<dsrl:parent>/nc:rpc/cm:put-the-kettle-on</dsrl:parent>
<dsrl:name>cm:recipe</dsrl:name>
<dsrl:default-content>espresso</dsrl:default-content>

</dsrl:element-map>

The mapping procedure for DSRL is slightly complicated by the following two
factors:
1. Adefault valuemay be specified for an element appearing inside a namedpattern

definition. As DSRL offers nothing similar to Schematron abstract patterns, the
only possible solution is to use the corresponding element map repeatedly at all
places where the named pattern is referenced.

2. YANG allowsNETCONF servers to omit empty containers from a reply to a get
or get-config request. If such a container has descendant leaf nodeswith default
values, then the omitted container effectively becomes part of the default content.
Consequently, the DSRL schemamust provide element maps not only for every
leaf with a default value but also for all ancestor containers that may also be
missing.

4.5. Validating instance documents
TheDSDL schemas generated in the secondmapping step can be used for validating
instance documents of the type for which they were created. Standard validators,

112

Configuring Network Devices with NETCONF and YANG

such as xmllint2, Jing3 or the reference implementation of ISO Schematron4 can be
used for this purpose.

We are not aware of any implementation of DSRL, so we wrote an XSLT
stylesheet which transforms a subset of DSRL that is used by the mapping to XSLT.
The stylesheet is included in the pyang5 distribution, see Section 4.6.

Instance document validation proceeds in the following steps, which are also
illustrated in Figure 2:
• The XML instance document is checked for grammatical and datatype validity

using the RELAX NG schema.
• Default values for leaf nodes have to be applied and their ancestor containers

added where necessary. This step modifies the information set of the validated
XML document.

• The semantic constraints are checked using the Schematron schema.

XML

document

XML

document

with

defaults

RELAX NG

schema

DSRL

schema

Schematron

schema

grammar,

data types
filling in

defaults

semantic

constraints

Figure 2. Outline of the validation procedure

It is important to add default contents before Schematron validation because YANG
requires that the data tree against which XPath expressions are evaluated already
have all defaults filled in.

2 http://xmlsoft.org/xmllint.html
3 http://www.thaiopensource.com/relaxng/jing.html
4 http://www.schematron.com/
5 http://code.google.com/p/pyang/

113

Configuring Network Devices with NETCONF and YANG

http://xmlsoft.org/xmllint.html
http://www.thaiopensource.com/relaxng/jing.html
http://www.schematron.com/
http://code.google.com/p/pyang/
http://xmlsoft.org/xmllint.html
http://www.thaiopensource.com/relaxng/jing.html
http://www.schematron.com/
http://code.google.com/p/pyang/

4.6. Implementation
An open source implementation of the YANG-to-DSDL mapping is available as a
part of the pyang6 tool. A tutorial describing practical validation of instance docu-
ments can be found at YANG Central7.

While the first step of the mapping, from input YANG modules to the hybrid
schema, is written in Python, the transformation of the hybrid schema to the final
DSDL schemas is implemented in XSLT. Interestingly, XSLT 1.0 would suffice for
the latter purpose if it were not for the instance-identifier type in YANG. A value
of this datatype is a (simplified) XPath expression that points to a node in the data
tree. In order to be able to check for the presence of this node, Schematron must be
able to dynamically evaluate the XPath expression. This is not possible in standard
XSLT 1.0 but several extensions offer this functionality. We use the EXSLT function
dyn:evaluate8 for this purpose.

5. Conclusions
In this paper we gave an overview of the recent efforts of the IETF working groups
NETCONF andNETMOD, concentrating especially on the issues of datamodelling
using the YANG language. The discussion of the mapping from YANG to DSDL
allows to compare YANG with the existing XML schema languages.

TheNETCONF protocol is now supported by numerous vendors of networking
devices including a few big players. The NETCONF WG9 web page lists about a
dozen independent implementations. Also, the YANG data modelling language
has already been used in several data modelling projects, despite the fact that the
standard [10] was published only few months ago. For instance, YANG has been
used by the IPFIX WG of the IETF for modelling configuration and state data of
various devices producing and processing IP traffic flow data [3].

The success of YANG and, to some extent, the NETCONF protocol will be ulti-
mately determined by the willingness of the IETF community to adopt these tech-
nologies developing new, as well as re-implementing old, configuration and state
data models. To aid this adoption, the NETMOD working group was rechartered
in 2010 with the main aim of creating several basic YANG data models that other
IETF working groups can use to build their specialized models upon. So far, the
first draft of a model for network interfaces was published [1], which should be
soon followed by models for essential system and routing parameters.

6 http://code.google.com/p/pyang/
7 http://www.yang-central.org/twiki/bin/view/Main/DSDLMappingTutorial
8 http://www.exslt.org/dyn/functions/evaluate/
9 http://www.ops.ietf.org/netconf/

114

Configuring Network Devices with NETCONF and YANG

http://code.google.com/p/pyang/
http://www.yang-central.org/twiki/bin/view/Main/DSDLMappingTutorial
http://www.exslt.org/dyn/functions/evaluate/
http://www.ops.ietf.org/netconf/
http://code.google.com/p/pyang/
http://www.yang-central.org/twiki/bin/view/Main/DSDLMappingTutorial
http://www.exslt.org/dyn/functions/evaluate/
http://www.ops.ietf.org/netconf/

Bibliography
[1] Björklund, Martin: A YANG Data Model for Interface Configuration.

Internet-Draft draft-bjorklund-netmod-interfaces-cfg-00, 8 December 2010. IETF,
work in progress. http://tools.ietf.org/html/
draft-bjorklund-netmod-interfaces-cfg-00

[2] Document SchemaDefinition Languages (DSDL) – Part 1: Overview. Preparatory
Draft, 14 November 2004, ISO/IEC. http://www.dsdl.org/0567.pdf

[3] Münz, Gerhard – Claise, Benoit – Aitken, Paul: Configuration Data Model for
IPFIX andPSAMP. Internet-Draft draft-ietf-ipfix-configuration-model-08, 25October
2010. IETF, work in progress. http://tools.ietf.org/html/
draft-ietf-ipfix-configuration-model-08

[4] Enns, Rob (Ed.): NETCONF Configuration Protocol. RFC 4741, December 2006.
IETF. http://tools.ietf.org/html/rfc4741

[5] Wasserman, Margaret – Goddard, Ted: Using the NETCONF Configuration
Protocol over Secure SHell (SSH). RFC 4742, December 2006. IETF. http://
tools.ietf.org/html/rfc4742

[6] Goddard, Ted: UsingNETCONFover the SimpleObject Access Protocol (SOAP).
RFC 4743, December 2006. IETF. http://tools.ietf.org/html/rfc4743

[7] Lear, Eliot – Crozier, Ken: Using the NETCONF Protocol over the Blocks
Extensible Exchange Protocol (BEEP). RFC 4744, December 2006. IETF. http://
tools.ietf.org/html/rfc4744

[8] Chisholm, Sharon – Trevino, Hector: NETCONF Event Notifications. RFC 5277,
July 2008. IETF. http://tools.ietf.org/html/rfc5277

[9] Badra, Mohamad: NETCONF over Transport Layer Security (TLS). RFC 5539,
May 2009. IETF. http://tools.ietf.org/html/rfc5539

[10] Björklund, Martin (Ed.): YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020, October 2010. IETF. http://
tools.ietf.org/html/rfc6020

[11] Schönwälder, Jürgen (Ed.): Common YANG Data Types. RFC 6021, October
2010. IETF. http://tools.ietf.org/html/rfc6021

[12] Bierman, Andy: Guidelines for Authors and Reviewers of YANG Data Model
Document. RFC 6087, January 2011. IETF. http://tools.ietf.org/html/rfc6087

[13] Lhotka, Ladislav (Ed.): Mapping YANG to Document Schema Definition
Languages and Validating NETCONF Content. RFC 6110, February 2011. IETF.
http://tools.ietf.org/html/rfc6110

115

Configuring Network Devices with NETCONF and YANG

http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00
http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00
http://www.dsdl.org/0567.pdf
http://tools.ietf.org/html/draft-ietf-ipfix-configuration-model-08
http://tools.ietf.org/html/draft-ietf-ipfix-configuration-model-08
http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742
http://tools.ietf.org/html/rfc4742
http://tools.ietf.org/html/rfc4743
http://tools.ietf.org/html/rfc4744
http://tools.ietf.org/html/rfc4744
http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc5539
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6021
http://tools.ietf.org/html/rfc6087
http://tools.ietf.org/html/rfc6110

[14] Clark, James – Murata, Makoto (Ed.): RELAX NG DTD Compatibility. OASIS
Committee Specification, 3 December 2001. http://relaxng.org/
compatibility-20011203.html

[15] Schönwälder, Jürgen – Pras, Aiko –Martin-Flatin, Jean-Philippe: On the future
of Internetmanagement technologies. IEEECommunicationsMagazine, October
2003, p. 90–97.

[16] Biron, Paul V. –Malhotra, Ashok: XMLSchemaPart 2: Datatypes SecondEdition.
W3C Recommendation, 28 October 2004. http://www.w3.org/TR/2004/
REC-xmlschema-2-20041028/

[17] Van der Vlist, Eric: RELAX NG. O'Reilly & Associates, 2004. xviii, 486 p. ISBN
978-0-596-00421-7. http://books.xmlschemata.org/relaxng/

A. Schemas for the Coffee Machine Data Model
This appendix contains the schemas mapped from the coffee machine YANG
module. The hybrid schema is listed in Section A.1 and the subsequent sections
then contain the validating schemas (RELAX NG, Schematron and DSRL).

The schemas are complete except for the long regular expressions constraining
IPv4 and IPv6 addresses, which have been trimmed.

A.1. Hybrid Schema
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
xmlns:cm="http://example.com/coffee"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
xmlns:dc="http://purl.org/dc/terms"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<dc:creator>Pyang 1.0, DSDL plugin</dc:creator>
<dc:date>2011-01-27</dc:date>
<start>
<grammar nma:module="coffee-machine" ns="http://example.com/coffee">
<dc:source>
YANG module 'coffee-machine' revision 2010-03-26
</dc:source>
<start>
<nma:data>
<interleave>
<element name="cm:configuration">
<interleave>
<element name="cm:ipv4">

116

Configuring Network Devices with NETCONF and YANG

http://relaxng.org/compatibility-20011203.html
http://relaxng.org/compatibility-20011203.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://books.xmlschemata.org/relaxng/

<interleave>
<element name="cm:address">
<ref name="ietf-inet-types__ipv4-address"/>
</element>
<optional>
<element name="cm:subnet-mask-length">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">32</param>
</data>
</element>
</optional>
</interleave>
</element>
<oneOrMore>
<element nma:key="cm:address" name="cm:ipv6">
<element name="cm:address">
<ref name="ietf-inet-types__ipv6-address"/>
</element>
<a:documentation>
At least one IPv6 address is required.
</a:documentation>
<optional>
<element name="cm:subnet-mask-length" nma:default="64">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">128</param>
</data>
</element>
</optional>
</element>
</oneOrMore>
</interleave>
</element>
<optional>
<element nma:implicit="true" name="cm:state" nma:config="false">
<interleave>
<optional>
<element nma:implicit="true" name="cm:supply-levels">
<interleave>
<optional>
<element nma:implicit="true" name="cm:water">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>
</optional>
<optional>

117

Configuring Network Devices with NETCONF and YANG

<element nma:implicit="true" name="cm:milk">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>
</optional>
<optional>
<element nma:implicit="true" name="cm:coffee">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>
</optional>
</interleave>
</element>
</optional>
<optional>
<element name="cm:temperature">
<data type="unsignedByte"/>
</element>
</optional>
</interleave>
</element>
</optional>
</interleave>
</nma:data>
<nma:rpcs>
<nma:rpc>
<nma:input>
<element name="cm:put-the-kettle-on">
<optional>
<element name="cm:recipe" nma:default="espresso">
<choice>
<value>espresso</value>
<value>turkish</value>
<value>cappuccino</value>
</choice>
</element>
</optional>
</element>
</nma:input>
</nma:rpc>
</nma:rpcs>
<nma:notifications>
<nma:notification>
<element name="cm:low-level-warning">
<optional>
<element name="cm:ingredient">
<choice>
<value>water</value>

118

Configuring Network Devices with NETCONF and YANG

<value>milk</value>
<value>coffee</value>
</choice>
</element>
</optional>
</element>
</nma:notification>
</nma:notifications>
</start>
<define name="coffee-machine__state__supply-levels__percent"

nma:default="0">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">100</param>
</data>
</define>
</grammar>
</start>
<define name="ietf-inet-types__ipv6-address">
<data type="string">
<param name="pattern"> ...trimmed... </param>
</data>
</define>
<define name="ietf-inet-types__ipv4-address">
<data type="string">
<param name="pattern"> ...trimmed... </param>
</data>
</define>
</grammar>

A.2. RELAX NG Schema
<?xml version="1.0" encoding="utf-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:cm="http://example.com/coffee"
xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
ns="urn:ietf:params:xml:ns:netconf:base:1.0">
<include href="/home/lhotka/Development/pyang/schema/relaxng-lib.rng"/>
<start>
<element name="rpc-reply">
<ref name="message-id-attribute"/>
<element name="data">
<interleave>
<grammar ns="http://example.com/coffee">
<include href="coffee-machine-gdefs.rng"/>

119

Configuring Network Devices with NETCONF and YANG

<start>
<interleave>
<element name="cm:configuration">
<interleave>
<element name="cm:ipv4">
<interleave>
<element name="cm:address">
<ref name="ietf-inet-types__ipv4-address"/>
</element>
<optional>
<element name="cm:subnet-mask-length">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">32</param>
</data>
</element>
</optional>
</interleave>
</element>
<oneOrMore>
<element name="cm:ipv6">
<element name="cm:address">
<ref name="ietf-inet-types__ipv6-address"/>
</element>
<optional>
<element name="cm:subnet-mask-length">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">128</param>
</data>
</element>
</optional>
</element>
</oneOrMore>
</interleave>
</element>
<optional>
<element name="cm:state">
<interleave>
<optional>
<element name="cm:supply-levels">
<interleave>
<optional>
<element name="cm:water">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>

120

Configuring Network Devices with NETCONF and YANG

</optional>
<optional>
<element name="cm:milk">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>
</optional>
<optional>
<element name="cm:coffee">
<ref name="coffee-machine__state__supply-levels__percent"/>
</element>
</optional>
</interleave>
</element>
</optional>
<optional>
<element name="cm:temperature">
<data type="unsignedByte"/>
</element>
</optional>
</interleave>
</element>
</optional>
</interleave>
</start>
<define name="coffee-machine__state__supply-levels__percent">
<data type="unsignedByte">
<param name="minInclusive">0</param>
<param name="maxInclusive">100</param>
</data>
</define>
</grammar>
</interleave>
</element>
</element>
</start>
</grammar>

A.3. RELAX NG Schema – Global Definitions
<?xml version="1.0" encoding="utf-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:cm="http://example.com/coffee"
xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<define name="ietf-inet-types__ipv6-address">
<data type="string">

121

Configuring Network Devices with NETCONF and YANG

<param name="pattern"> ...trimmed... </param>
</data>
</define>
<define name="ietf-inet-types__ipv4-address">
<data type="string">
<param name="pattern"> ...trimmed... </param>
</data>
</define>
</grammar>

A.4. Schematron Schema
<?xml version="1.0" encoding="utf-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"

queryBinding="exslt">
<sch:ns uri="http://exslt.org/dynamic" prefix="dyn"/>
<sch:ns uri="http://example.com/coffee" prefix="cm"/>
<sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0" prefix="nc"/>
<sch:pattern id="coffee-machine">
<sch:rule context="/nc:rpc-reply/nc:data/cm:configuration/cm:ipv6">
<sch:report
test="preceding-sibling::cm:ipv6[cm:address=current()/cm:address]">
Duplicate key "cm:address"

</sch:report>
</sch:rule>
</sch:pattern>
</sch:schema>

A.5. DSRL Schema
<?xml version="1.0" encoding="utf-8"?>
<dsrl:maps xmlns:dsrl="http://purl.oclc.org/dsdl/dsrl"

xmlns:cm="http://example.com/coffee"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data/cm:configuration/cm:ipv6</dsrl:parent>
<dsrl:name>cm:subnet-mask-length</dsrl:name>
<dsrl:default-content>64</dsrl:default-content>
</dsrl:element-map>
<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data</dsrl:parent>
<dsrl:name>cm:state</dsrl:name>
<dsrl:default-content>
<cm:supply-levels>
<cm:water>0</cm:water>
<cm:milk>0</cm:milk>

122

Configuring Network Devices with NETCONF and YANG

<cm:coffee>0</cm:coffee>
</cm:supply-levels>
</dsrl:default-content>
</dsrl:element-map>
<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data/cm:state</dsrl:parent>
<dsrl:name>cm:supply-levels</dsrl:name>
<dsrl:default-content>
<cm:water>0</cm:water>
<cm:milk>0</cm:milk>
<cm:coffee>0</cm:coffee>
</dsrl:default-content>
</dsrl:element-map>
<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data/cm:state/cm:supply-levels</dsrl:parent>
<dsrl:name>cm:water</dsrl:name>
<dsrl:default-content>0</dsrl:default-content>
</dsrl:element-map>
<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data/cm:state/cm:supply-levels</dsrl:parent>
<dsrl:name>cm:milk</dsrl:name>
<dsrl:default-content>0</dsrl:default-content>
</dsrl:element-map>
<dsrl:element-map>
<dsrl:parent>/nc:rpc-reply/nc:data/cm:state/cm:supply-levels</dsrl:parent>
<dsrl:name>cm:coffee</dsrl:name>
<dsrl:default-content>0</dsrl:default-content>
</dsrl:element-map>
</dsrl:maps>

123

Configuring Network Devices with NETCONF and YANG

124

XSLT in the Browser
Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

This paper is in three parts: past, present, and future. The first part discusses
why the success of XSLT in the browser has so far been underwhelming. The
second part discusses progress in porting Saxon to the browser. The third and
final part describes a vision for the future potential of client-side XSLT.

1. The Past
XSLT 1.0 [1] was published in November 1999. A year before the spec was finished,
Microsoft shipped an implementation as an add-on to Internet Explorer 4, which
became an integral part of Internet Explorer 5. In their eagerness, they shipped a
language (usually now referred to as WD-xsl) which had many differences from
the W3C specification that emerged the following year, and although they soon
followed it up with a conforming implementation, the WD-xsl dialect is still some-
times encountered to this day. This illustrates nicely the paradox of the browser
world: things can sometimesmove very quickly, but they can alsomove very slowly
indeed.

The speed at which Microsoft moved demonstrates that implementation in the
browser was very much part of the thinking of the designers of the language. The
introduction to the XSLT 1.0 specification states that the languagewas not designed
as a general-purpose transformation language, but as a language whose primary
purpose is converting XML into presentation-oriented formats such as XSL-FO.
And if you're converting XML into HTML for rendition in a browser, it obviously
makes sense to download the XML to the client and do the conversion there. The
language specification, of course, never uses the words "browser" or "client", but
there are many features of the language that were designed with this environment
in mind (for example, the fact that most run-time errors are recoverable, which
mirrors the way that browsers handle HTML syntax errors).

Sowhatwentwrong?Why didn't everyone immediately use the new capability?
The answer is that few web sites are interested in delivering content in a format

that can't be displayed by every browser. That meant that the first few years, web
developers were reluctant to serve XML because XSLT wasn't implemented on
browsers such as IE3 which were still widely deployed. Later, they were reluctant
because XSLT wasn't implemented (or was poorly implemented) on Netscape and

125

Firefox. Today, nearly all modern desktop browsers support XSLT 1.0, and the level
of compatibility is pretty good despite one or two glitches (like the failure of Firefox
to support the namespace axis, and the very tardy support for the document()
function in Opera). But there are still users using ancient browsers (and why
shouldn't they? My TV is twenty years old, and still meets my needs). Meanwhile
the younger generation, who would be horrified by a 20-year old TV set, expect to
do their internet surfing from smartphones, many of which don't yet support XSLT.

So the problem throughout this period has been the same: XSLT penetration on
the browser has not at any stage been ubiquitous enough to encourage a significant
level of adoption by web site developers.

And this of course led to the second problem: because web developers weren't
using XSLT in large numbers, the technology didn't progress. The failure of browser
vendors to implement XSLT 2.0 is widely bemoaned by XSLT aficionados, but who
can blame them? If we paid for our software, things might be different. So long as
it's free, browser vendors have no incentive to cater to minorities. They are driven
by the monthly figures on market share, and as a result, they have to cater to the
masses.

But it's not really the failure to implement XSLT 2.0 that's the biggest issue; it's
the failure to modernize the role of XSLT and its relationship to the rest of the
browser environment, which hasn't exactly stood still since 1999. The browser in
1999 was still largely what its name indicates — a way of displaying static content
on a PC screen, and navigating between pages by following hard-coded hyperlinks.
The way XSLT 1.0 is implemented in the browser reflects that level of maturity in
the evolution of the web. It translates XML to HTML, and hands the HTML over to
the browser to be displayed, period. What's the story on forms, on interaction, on
AJAX? Answer: you generate HTML that contains Javascript. And the Javascript is
the part that does all the interesting stuff. So you'rewriting in two languages instead
of one, and they have an awkward relationship: writing XSLT that generates
Javascript code that responds to user events by invoking another XSLT transforma-
tion that in turn generatesmore Javascript can't realistically be considered an elegant
architecture.

The success of CSS hasn't helped XSLT's cause either. CSS and XSLT aren't in
direct competition: no-one will deny that XSLT's capabilities go far beyond what
CSS can do. Butmany of the original aspirations of XSLT— the separation of content
from presentation — can be achieved to a reasonable extent using CSS alone. So
enhancements to CSS reduce the incentive to learn XSLT, just as enhancements to
HTML forms diminish the attractions of XForms.

At this stage one could write off XSLT on the browser as a failed technology.
But I wouldn't be speaking on the topic if my aimwas to deliver an obituary. Because
the fact is, the state of software development on the browser is far from rosy, and
I'm convinced that far better tools are both needed and feasible, and I'm also con-

126

XSLT in the Browser

vinced that developers would be much better off making more use of declarative
languages if those languages delivered what developers need.

The browser has become a monoculture for software developers. HTML5 plus
Javascript is what we're being offered, and we have very little choice but to accept
it. There's very little scope for those outside the charmed circle of browser vendors
to offer an alternative, and as a result, there's very little questioning of whether
what's on offer is really the best we can do or not. But I think we can do better, and
that's what I hope to demonstrate in the next two sections of this paper.

2. The Present
During XML Prague 2010, a number of speakers made complaints about the limita-
tions of browsers, similar to the complaints in the previous section: not just in relation
to XSLT, but also XQuery, XForms, XProc, and other technologies. A presentation
on XQuery in the browser [2] attracted a lot of interest (though sadly there is only
a skeleton paper in the proceedings). That implementation used the "plug-in"
mechanism offered by many browsers, which in practice has many limitations: it
doesn't offer seamless ability to manipulate the HTML of the page, as well as other
components of the browser space such as the address bar, status bar, history and
cookies.

A common observation made in discussion at last year's conference was that if
you implemented a processor for your favourite language in Javascript, all these
problems would go away. Javascript as a language has matured immensely in the
last few years, and browser vendors fall over each other trying to excel in the per-
formance of the Javascript engines. There appeared to be a consensus forming that
Javascript was becoming capable of being used as a system programming platform
to implement other languages.

In the twelve months since XML Prague 2010, we have seen announcements of
an XProc engine running on the browser[3], and the XQIB XQuery engine running
on the browser has been re-engineered to run as native Javascript[4]; I have also
produced a prototype implementation of XSLT 2.0 on the browser, which I want to
say more about today.

All these productswere produced from existing Java engines, by cross-compiling
the Java to Javascript using theGoogleWeb Toolkit (GWT)[5]. Although no detailed
performance data is available, all deliver a responsiveness which feels perfectly
adequate for production use.

At first sight, the architecture seems improbable. Javascript was hardly designed
as a systemprogramming language— it doesn't even offer integer arithmetic (GWT
translates all integer arithmetic into floating-point arithmetic, and emulates a long
(64-bit) integer using two 64-bit double values). The code generated for common
systemprogrammingoperations such as bit-masking and shifting looks outrageously

127

XSLT in the Browser

inefficient. And yet, there is so much processor power available on today's typical
desktop machine that this really doesn't matter: it turns out to be fast enough.

It's worth observing that one well respected client-side XForms engine (XSLT-
Forms)[6] uses an even more improbable architecture — it is implemented entirely
in XSLT 1.0. Again, despite the obvious intrinsic inefficiencies, its interactive per-
formance is quite sufficient to meet the requirements of most applications.

Let's look at what was needed to implement XSLT 2.0 using Saxon[7] in the
browser (I'm calling it Saxon Client Edition or Saxon-CE) using the GWT cross-
compiler.
1. The first step was to get rid of all unnecessary code. The source code of Saxon-

EE 9.3 is around 400K lines of Java. Although the generated Javascript will be
cached, the time taken to view the first screen on a web site is critical, and I de-
cided to aim to get this down to around 40K. Comments don't matter, and the
first decision was to start with the functionality of Saxon Home Edition, which
immediately brings it down to 143K lines of non-comment code. At the time of
writing, I have reduced it to 60K lines, which produces a little under 900Kb of
highly-compressed Javascript. The target of 40Kb looks quite feasible: Saxon 5.0,
which was the first full implementation of XSLT 1.0 delivered in December 1999
was just 17K lines, and XSLT 2.0 is probably only twice the size of XSLT 1.0 as
a language. Looking at some sample code, the implementation of the substring()
function, it's fairly clear that one can cut it down from 200 lines of code to 20 by
removing a fewoptimizations ofmarginal value, diagnostics, and code for special
situations such as streaming.

Getting the code down to 80K was fairly easy, by cutting out unwanted
functionality such as XQuery, updates, serialization, support for JAXP, Java ex-
tension functions, and unnecessary options like the choice between TinyTree
and Linked Tree, or the choice (never in practice exercised) of different sorting
algorithms.

The next 20K was a little more difficult and required more delicate surgery.
For example, it involved changes to the XPath parser to use a hybrid precedence-
parsing approach in place of the pure recursive-descent parser used previously;
offloading the data tables used by the normalize-unicode() function into an
XMLdata file to be loaded from the server on the rare occasions that this function
is actually used; rewriting the regex handling to use the regex library provided
by GWT (which is merely a wrapper around the Javascript regex library);
sometimes combining two types of expression implemented separately to use
a single generic implementation.

A further reduction from 60K to 40K will be more challenging still, and may
turn out not to be necessary. It may involve removing some optimizations, and
some of the performance-oriented machinery such as the NamePool. A useful
measure may be to implement parts of the standard function library in XSLT

128

XSLT in the Browser

itself, to be compiled on demand. It may involve being a little bit less dogmatic
about conformance in edge cases, such as matching of non-BMP characters in
regular expressions (when there's a minor difference between the requirements
of the XPath specification and the behaviour of the available Javascript library,
such as the exact rules for rounding in double arithmetic, the choice is between
using the library and hoping users don't mind too much, or writing thousands
of lines of code that do things slightly differently; and in practice, users are no
more likely to be affected by such departures from the spec than they are to be
affected by the many areas where the specification leaves matters completely
implementation-defined.)

2. Second, it was of course necessary to make the code compile. GWT doesn't
support every single interface in the JDK. Coverage is good, but not 100%. Some
of the omissions are for obvious reasons, for example there is no file I/O. Java's
standard XML interfaces (such as SAX andDOM) are absent, replaced byDOM-
like APIs that wrap the XML DOM and HTML DOM Javascript APIs. The
standard Java regex handling is absent, replaced by a different API that wraps
the Javascript regex library. Some of the omissions seem to have no particular
rationale: there's no StringTokenizer, no java.net.URI, and no
java.util.BitSet. In all cases it was easy enough to fill the gap by writing new
classes that do what Saxon requires (in some cases, such as BitSet and URI, this
was a tiny fraction of what the JDK class offers).

3. Finally, it is necessary to invoke the XSLT processorwithin the browser environ-
ment, and for the XSLT processor to be able to get input and deliver output
within this environment. In the first place, this means being able to use both the
HTML DOM and the XML DOM as input, which is done using wrappers much
as the Java and ,.NET product support different DOM flavours. Similarly, it
means being write a result tree in a form that can be attached to either an XML
or HTMLDOM. It means providing an invocation API: at the moment, the only
thing I have implemented is invocation using the HTML <script> element, but
some kind of Javascript API is likely to supplement this. And it is necessary to
implement the document() function in terms of XmlHttpRequest calls to the
server. All this is working, and it already provides as much capability as most
of the browser XSLT 1.0 implementations. But I want to go beyond this, and
that's the topic of the next section.

Experience with GWT has been very positive indeed. I have not encountered any
cases where the Javascript it generates produces different results from the native
Java, or where the generated code even needs to be examined. The compilation
process (translating Java to Javascript) is slow, but the time is well spent, because
it results in superbly fast Javascript code.

Unfortunately it's not possible to invoke a transformation by simply sending
the XML document to the browser with an <?xml-stylesheet?> processing instruc-

129

XSLT in the Browser

tion at the start. The interpretation of this is under the control of the browser, not
the user application, and the browser provides no hook that would cause this to
invoke a third-party XSLT engine. Instead, I'm currently using a <script> element
of the form

<script src="stylesheet.xsl" type="application/xml+xslt" input="source.xml">
</script>

Thisworks, but it's not ideal. Firstly, it's not conformantHTML5 (the input attribute
is not permitted, though of course browsers don't reject it). Secondly, it seems that
the browser itself fetches the XSLT code and adds it to the HTMLDOM,which isn't
especially useful since the HTMLDOMdoesn't expose details such as namespaces,
and may do the wrong thing when the stylesheet contains HTML elements such as

. (So Saxon currently ignores the fact that the stylesheet has already been
fetched, and fetches it again using an XmlHttpRequest). I'm considering replacing
this with a mechanism that uses a <script> element such as:

<script id="xslt-transformation" type="application/xml">
<stylesheet href="stylesheet.xsl"/>
<source href="source.xml"/>
<output href="#body"/>
<param name="p" value="3"/>
<initial-mode name="mode-a"/>

</script>

where the contents of the <script> element would not be parsed by the browser,
but retained as text in theHTMLDOM.Thiswill require experimentation to establish
what works across a range of browser platforms. Although the details may change,
I'm keen to have an interface that invokes the transformation through markup of
this kind in a skeletal HTML page, rather than relying on Javascript coding. My
design aim is that it should be possible to use XSLT without using any Javascript.

The principal output of the stylesheet is of course a tree of nodes, and this is in-
serted into the HTML page at a location identified here by an id attribute
(href="#body"). XSLT 2.0 allows a stylesheet to produce multiple result trees, and
each of these can populate a different part of theHTMLpage, using the href attribute
of <xsl:result-document> in the same way. As well as identifying the attachment
point of the result document by means of an ID value, it can also be selected by
means of anXPath expression, for example <xsl:result-document href="?select=//
id('table')/tr[{$n}]"/>, which allows a sequence of result documents to populate
the rows of an HTML table.

In the current implementation the document() function fetches anXMLdocument
using a synchronous XmlHttpRequest. This is of course unsatisfactory, and in a
production release it will be necessary to make the request asynchronous. Initial
experiments suggest that it should be reasonably easy to implement this provided

130

XSLT in the Browser

the function is used in a context such as <xsl:apply-templates
select="document('xyz.xml')"/>; this can translate into an XmlHttpRequest with
a callback function (to be invoked when the document arrives) that runs on a new
stack-frame, without excessive inversion of the Saxon code. After issuing the call,
the calling code can continue as normal, leaving a place-marker element in the result
tree for the result of the apply-templates instruction; when the document arrives
and has been fully processed, the resulting tree fragment can be stitched into the
result tree in place of the place-marker element. The ability to make the transform-
ation asynchronous in this way, seamlessly to the user, demonstrates one of the
benefits of programming in a declarative language. However, the limitations of the
JavaScript threading model are such that it's hard to see how to handle the general
case, for example where the result of processing an external document is used to
form the value of a variable, and this variable is then used by the original processing
"thread".

So far, so good: we can run a stylesheet, create HTML output, add the HTML
output to the treemaintained by the browser, and have it rendered. That's essentially
what today's in-browser XSLT 1.0 implementations do. We've already delivered
some benefits: access to themuch richer functionality of XSLT 2.0, aswell as browser-
independence (the same XSLT engine, and therefore the same XSLT stylesheets,
run in any browser that supports HTML5 and JavaScript). But as I said in the first
section, to make XSLT on the browser a success, I think we have to go further. In
particular, we have to handle interaction. This is the subject of the next section.

3. The Future
I believe that to make the case for using XSLT on the browser compelling, it has to
do everything that can currently be done with JavaScript on the browser, and it has
to do it better.

In the first place, XSLT has to be able to handle user-initiated events.
We have a head start here, because XSLT's natural processing model is event-

driven. Suppose, for example, we want to sort a table when the user clicks on the
column heading. We should be able to write:

<xsl:template match="th" mode="onclick">
<xsl:apply-templates select="ancestor::table[1]" mode="sort">
<xsl:with-param name="colNr" select="count(preceding-sibling::th)+1"/>

</xsl:apply-templates>
</xsl:template>

<xsl:template match="table" mode="sort">
<xsl:param name="colNr" as="xs:integer" required="yes"/>
<xsl:result-document href="?select=." method="replace-content">
<xsl:copy-of select="thead"/>

131

XSLT in the Browser

<tbody>
<xsl:perform-sort select="tbody/tr">
<xsl:sort select="td[$colNr]"/>

</xsl:perform-sort>
</tbody>

</xsl:result-document>
</xsl:template>

Note that like CSS styling rules, this is a generic rule that applies to every element
that matches the match pattern. In the same way as CSS has moved the description
of styles from individual element instances to whole classes of elements, we are
moving the specification of behaviour from the instance level to the class level. The
class of elements to which the behaviour applies can be specialized of course by
using amore specificmatch pattern, but if written in this form, it produces consistent
behaviour for every table in the document. This is already a significant improvement
on the JavaScript way of doing things.

There's some magic, of course, buried in the href and method attributes of the
<xsl:result-document> instruction. My tentative syntax here uses a query URL
that addresses the current document (that is, the contents of the browser window);
"?select=."means the output should be located at the same point in the tree, and
method="replace-content" means that the existing content of the current element
(but not the element itself) should be written to this location.

Is this kind of in-situ update consistent with the XSLT processing model? Is it
safe in a declarative language, where order of execution is not defined? I believe it
should be possible to define the semantics rigorously, but I don't claim to have done
so yet. I think the formal processing model will turn out to be rather like the model
for XQuery Updates: all the result documents generated during a transformation
phase are accumulated in a pending update list; they are not allowed to conflict
with each other; and they are then applied together at the end of this processing
phase (the processing phase being all the actions needed to respond to a user input
event).

This style of processing will, I believe, enable XSLT to be used to programmost
of the interactivity that is currently implemented in JavaScript. It will need some
further extensions (it's not obvious tome yet, for example, how the stylesheet should
update a single attribute of theHTMLDOM, nor how it should issue POST requests
to the server). It will also need the ability to interoperate with JavaScript in both
directions. None of these obstacles appear to be insuperable, and the existing event-
based nature of the XSLT language appears to make it ideally suited to handling
an event-based user interface.

One areawhere JavaScript programming of a user interface gets verymessy and
error-prone is when implementing a structured dialog such as a flight reservation:
a question-and-answer wizard where the system takes the user through a series of

132

XSLT in the Browser

pages, managing the URLs of the successive pages and the effect of the back button
as it does so. This area is currently seeing much exploration and innovation; sites
like Google and Twitter are experimenting with new ways of using fragment iden-
tifiers in URIs to capture state (see for example Jeni Tennison's article[8]). I hope in
a later paper to showhowXSLT can be used to tackle this problem. The key, I believe,
is to think of a dialog as a pair of interleaved documents, one representing the
communication from the system to the user (the output), the other the communica-
tion from the user to the system (the input), where the structure of the dialog can
be represented by the schemata for these two documents, and the processing logic
as a (streamed) transformation of the input document to the output document. This
gives a structured way to think about the states represented by URLs appearing in
the browser window, to which the user can return by hitting the back button.
Hopefully this will pave the way to a more declarative way of programming such
dialogues, in which themaintenance of state across user interactions is the respons-
ibility of the system, not the individual web developer.

I hope also to examine how XForms fits into this picture. Clearly if the aim is to
eliminate low-level JavaScript programming and replace it with a higher-levelmore
declarative style of user interface definition, XForms must play a significant part.

4. Conclusions
In this paper I have outlined why I believe XSLT 1.0 on the browser has failed to
capture the public imagination. I've described themechanics of how the SaxonXSLT
processor has been adapted to run natively in the browser, by cross-compiling it to
Javascript. And I've described some ideas for how we can take advantage of the
declarative, event-driven nature of XSLT to enable the language to be used not just
for rendering XML for display on the screen, but for handling interactions with the
user and providing a much higher-level approach to web applications design than
is customary today with JavaScript.

References
[1] XSL Transformations (XSLT) Version 1.0.W3C Recommendation. 16 November

1999. James Clark. W3C. http://www.w3.org/TR/xslt
[2] XQuery in the Browser: The same as JavaScript, just with less code. 23 January 2007.

Ghislain Fourny et al. XML Prague. March, 2010. Prague, Czech Republic.
http://www.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf

[3] XML Pipeline Processing in the Browser. Toman, Vojtěch. Balisage. Aug 3-10,
2010. Montréal, Canada. 10.4242/BalisageVol5.Toman01. http://
www.balisage.net/Proceedings/vol5/html/Toman01/BalisageVol5-Toman01.html

133

XSLT in the Browser

[4]XQIB: XQuery in the Browser, JavaScript Edition. ETH Zurich Systems Group and
FLWOR Foundation. http://www.xqib.org/?p=15

[5] Google Web Toolkit (GWT). Google. http://code.google.com/webtoolkit/
[6] XSLTForms. Alain Couthures. agenceXML. http://www.agencexml.com/

xsltforms

[7] The Saxon XSLT and XQuery Processor. Michael Kay. Saxonica. http://
www.saxonica.com/

[8] Hash URIs. Jeni Tennison. 6 March 2011. http://www.jenitennison.com/blog/
node/154

134

XSLT in the Browser

Efficient XML Processing in Browsers
R. Alexander Milowski

ILCC, School of Informatics, University of Edinburgh
<alex@milowski.com>

1. Overview of the Problem
The XMLHttpRequest (XHR) [1] interface has been available in various browsers since
1999. While the name is prefixed with "XML", this interface has been widely used
to allow browser-based applications to interact with a variety of web services and
content--many of which are now in other formats which includes JSON [3]. At the
time of origin of this interface, the design pattern of building and unmarshalling
whole XML documents into a DOM [4] probably made sense, but there are now
manyuse caseswhere processing a document to build awholeDOMrepresentation
is undesired if not infeasible.

Experience with XMLHttpRequest in web applications has brought the efficiency
and ease-of-use of using XML to communicate data, responses, or other content to
web applications into question. This is especially truewhen there are simpler formats,
like JSON, that are available and readily usable within a browser's scripting envir-
onment. But even for JSON, the design of the XMLHttpRequest interface leaves a lot
of room for improvement due to the both conflating the original intent of loading
XML with alternate formats and the "whole document" design pattern.

Once a request has beenmade to a web resource using XMLHttpRequest and that
request has successfully returned, the entity body of the response is loaded into
two simultaneous objects:

readonly attribute DOMString responseText;
readonly attribute Document responseXML;

The decoded sequence ofUnicode [5] characters representing the resource is loaded
into the responseText and, if possible, the XML document is parsed from that se-
quence of characters and loaded into an XML DOM that is stored in responseXML.
If the response is not XML, but is in some representation that encodes a sequence
of Unicode characters, the responseText is still usable. This is the case for JSON,
where the responseText can be passed to a JSON parser or evaluated within the
Javascript scripting environment.

There are several deficiencies in thismodel. First, if the response is not XML and
not a sequence of characters, there is little support for handling the response data
(e.g. raw image data). Fortunately, there is a new "Blob" interface that may address
this need by some web applications [2].

135

Second, in the case where the response is not XML, the use of an intermediary
representation as a sequence of charactersmay bewasteful. For example, for formats
like JSON, the syntax could be parsed efficiently within internals of the implement-
ation to return a JSON object directly to the calling application. The character rep-
resentation should be reserved for unrecognized or non-specialized character-based
media types.

Finally, in the case of XML documents, the "whole document" treatment of the
response isn't what is always wanted by the calling application. The response may
be intended to be bound to specific data structures. As such, the intermediaryDOM
data structure is wasteful in both processing time and memory consumption. Even
further, a web application may only need part of the XML data returned and the
current facilities will load all the data into memory unnecessarily.

This last problem of processing XML efficiently is the focus of this paper. An
alternative to the XMLHttpRequest interface is proposed in the following section that
provides the ability to streamXML to a receiving application. This alternate interface
provides a variety of outcomes for the receiving application that include filtering,
subsetting, and binding the XML data as well as better interoperability with JSON
as a programming data structure.

2. Streaming XML Interfaces
There are parts of the XMLHttpRequest interface thatmake sense to retain. Specifically,
the formulation of the request has proven to be quite flexible and less problematic.
While the ability to send large data is still an issue, that is being mitigated by some
new proposals for extensions (see [2]). Meanwhile, the average case is a simple and
small request that can be responded to by a large volume of data in the response.

To address the need to process large incoming XML documents, many systems
resort to using callback (e.g. SAX [6]) or event-oriented interfaces. While a callback
interface is tempting, such interfaces are often very "low level" andmay not fit well
with the typical web developer. In contrast, web developers are used to receiving
and processing "event objects" by writing and registering event handler functions.
As such, the XMLHttpRequest interface has beenmodified by removing all the "whole
document" response attributes and by adding an event handler for XML events.

This new interface is defined as follows:
interface XMLReader {

// event handler attributes
attribute EventListener onreadystatechange;
attribute EventListener onabort;
attribute EventListener onerror;
attribute EventListener ontimeout;
attribute EventListener onxml;

136

Efficient XML Processing in Browsers

// state
const unsigned short UNSENT = 0;
const unsigned short OPENED = 1;
const unsigned short HEADERS_RECEIVED = 2;
const unsigned short LOADING = 3;
const unsigned short DONE = 4;

readonly attribute unsigned short readyState;

void open(in DOMString method, in DOMString url)
raises(DOMException);

void open(in DOMString method, in DOMString url, in boolean async)
raises(DOMException);

void open(in DOMString method, in DOMString url, in boolean async,
in DOMString user)

raises(DOMException);
void open(in DOMString method, in DOMString url, in boolean async,

in DOMString user, in DOMString password)
raises(DOMException);

void setRequestHeader(in DOMString header, in DOMString value)
raises(DOMException);

void send()
raises(DOMException);

void send(in Document data)
raises(DOMException);

void send([AllowAny] DOMString? data);
raises(DOMException);

void abort();

boolean parse(in DOMString str);

// response
DOMString getAllResponseHeaders()

raises(DOMException);
DOMString getResponseHeader(in DOMString header)

raises(DOMException);
readonly attribute unsigned short status

getter raises(DOMException);
readonly attribute DOMString statusText

getter raises(DOMException);

// Extension

137

Efficient XML Processing in Browsers

void overrideMimeType(in DOMString override);

// EventTarget interface
void addEventListener(in DOMString type,

in EventListener listener,
in boolean useCapture);

void removeEventListener(in DOMString type,
in EventListener listener,
in boolean useCapture);

boolean dispatchEvent(in Event evt)
raises(EventException);

};

The semantics of the open, send, abort, getAllResponseHeaders, getResponseHeader,
overrideMimeType, addEventListener, removeEventListener, and dispatchEvent
methods as well as the readyState, status, statusText, and all the "on{event}"
EventListener attributes are exactly the same aswith the XMLHttpRequest interface.
The other methods and attributes from the XMLHttpRequest interface have been re-
moved as they are related to the "whole document" response interpretation.

What has been added is the parse method and the onxml attribute. The parse
method allows processing XML documents already loaded into strings using the
same API and is provided for completeness. The onxml and the subsequent "XML
events" that are subscribed to via the addEventListenermethod are the newmodel
for processing the result.

When an XML response is received by the instance, the XML parser is invoked
in exactly the sameway as for any XMLHttpRequest based request. That is, when the
media type of the response entity is recognized as XML, the XML parser is invoked.
If the media type is not an XML media type, the parser will not be invoked and no
response document is processed.

The difference is that, instead of building an XML DOM, a sequence of events
are produced for each major facet of the XML being parsed. That is, events are
produced for the start/end document, start/end element, characters data, comments,
and processing instructions. These events are encapsulated in a new interface called
XMLItemEvent:

interface XMLItemEvent : Event {
const unsigned short START_DOCUMENT = 1;
const unsigned short END_DOCUMENT = 2;
const unsigned short START_ELEMENT = 3;
const unsigned short END_ELEMENT = 4;
const unsigned short CHARACTERS = 5;
const unsigned short PROCESSING_INSTRUCTION = 6;
const unsigned short COMMENT = 7;

readonly attribute unsigned short itemType;

138

Efficient XML Processing in Browsers

readonly attribute DOMString prefix;
readonly attribute DOMString localName;
readonly attribute DOMString namespaceURI;
readonly attribute DOMString uri;
readonly attribute DOMString value;

// returns the attribute value for a specific localName or localName ►
+ namespaceURI pair

DOMString getAttributeValue(DOMString localName,DOMString namespaceURI);

// Returns an array (possibly empty) of XMLName instances where the ►
prefix + namespaceURI are specified.

readonly attribute Array namespaceDeclarations;

// Returns an array (possibly empty) of XMLName instances, one for ►
each attribute

readonly attribute Array attributeNames;
};

The XMLItemEvent interface extends the Event so that any instance can be processing
and propagated within the browsers event handling system. Each of the attributes
of this event have the following definition:
• itemType -- a code that indicates what kind of XML the event represents (e.g. a

start element),
• prefix -- a prefix used on element name (only available for start/end element),
• localName -- the local name of an element name (only available for start/end

element) or a target of a processing instruction,
• namespaceURI -- the namespace URI of an element name (only available for

start/end element),
• uri -- the URI of the document (only available for start/end document),
• value -- character content or the data of a processing instruction,
• namespaceDeclarations -- any namespace declarations on a start element repres-

ented by an array of XMLName instances. Each XMLName instance will use only the
prefix and namespaceURI attributes,

• attributeNames -- the names of all the attributes (excluding namespace declara-
tions) on a start element represented by an array of XMLName instances.

The event also has a getAttributeValuemethodwhichwill return an attribute value
or undefined depending on whether the start element has the specified attribute.

This XMLItemEvent interface has been purposely flattened rather than creating
a complex interface hierarchy of events. This should promote a simpler view for
scripting languages and lessen the overhead of the interfaceswithin the implement-

139

Efficient XML Processing in Browsers

ation. The consequence is that some attributes or methods may not have meaning
for certain kinds of XML events.When that occurs, the returned value is undefined.

Finally, names in XML documents are represented by the XMLName interface. The
use or construction of instances of XMLName is limited to places where it cannot be
avoided. A user who knows the attribute for which they need a value can just pass
a simple string containing the name of the attribute to the getAttributeValue
method to retrieve the value. Onlywhen you need to enumerate the names of attrib-
utes or enumerate namespace declarations is this interface used.

interface XMLName {
readonly attribute DOMString prefix;
readonly attribute DOMString localName;
readonly attribute DOMString namespaceURI;

};

The attributes of the XMLName interface always return a string value for which the
interpretation of an empty string is possibly context specific:
• An empty string for a prefix means there is no prefix value. This will only

happen for attribute names that do not have a namespace or when representing
a default namespace declaration.

• An empty string for a localName only occurs when the interface is used for
namespace declarations.

• An empty string for a namespaceURI only occurs when the name has no URI as-
sociated with it. This may occur for attributes that do not have a namespace or
for setting the default namespace to the empty string.

3. Usage Examples
The use of the XMLReader interface is much like the usage of XMLHttpRequest. A
script instantiates the object, sets any request properties, and then calls send and
open in sequence. When the response entity body is read, XMLItemEvent instances
are sent to any event handler registered for XML events.

For example, here's a simple request collects all links from anXHTMLdocument
as a filter:

var reader = new XMLReader();
var links = [];

reader.onxml = function(e) {
if (e.itemType==XMLItemEvent.START_ELEMENT && e.localName=="a") {

var href = e.getAttributeValue("href");
if (href) {

links.push(href);
}

140

Efficient XML Processing in Browsers

}
};

reader.open("GET","http://www.milowski.com/");
reader.send();

From a completeness perspective, the events can be serialized to an XMLdocument
using this event handler:

var xml = "";
reader.onxml = function(e) {

switch (e.itemType) {
case XMLItemEvent.START_ELEMENT:

xml += "<"+toName(e);
if (e.namespaceDeclarations.length>0) {

for (var i=0; i<e.namespaceDeclarations.length; i++) {
var name = e.namespaceDeclarations[i];
if (name.prefix.length>0) {

xml += " xmlns:"+name.prefix+'="'+name.namespaceURI+'"';
} else {

xml += ' xmlns="'+name.namespaceURI+'"';
}

}
}
if (e.attributeNames.length>0) {

for (var i=0; i<e.attributeNames.length; i++) {
var name = e.attributeNames[i];

var value = e.getAttributeValue(name.localName,name.namespaceURI);
xml += " ";
xml += toName(name);
xml += '="';
xml += value.replace('"',"&quot;");
xml += '"';

}
}
xml += ">";
break;

case XMLItemEvent.END_ELEMENT:
xml += "</"+toName(e)+">";
break;

case XMLItemEvent.CHARACTERS:
xml += e.value;
break;

case XMLItemEvent.COMMENT:
xml += "<!--"+e.value+"-->";
break;

141

Efficient XML Processing in Browsers

case XMLItemEvent.PROCESSING_INSTRUCTION:
xml += "<?"+e.localName+" "+e.value+">";
break;

}
};

4. Implementation Performance Characteristics
An implementation of these interfaceswas built into theWebKit [7] browser platform
and tested in the Safari browser. A set of test documentswith amaximum tree depth
of three, with numerous repeating elements, were created in sizes of 1MB, 10MB,
and 100MB. These documents were loaded within the implementation for three
different configurations:
• xhr - an XMLHttpRequest based test,
• events - an XMLReader based test with an empty event handler registered for

XML events,
• no handler - an XMLReader based test with no event handler registered.
The tests were run and the VMSize was measured after a run to 10 iterations of
loading the XML document. The measured memory usage is shown in Figure 1.
The memory usage for the XMLReader interface is minimal and grows very little in
comparison to the document size. For the XMLHttpRequest based tests, the memory
usage increases dramatically such that the iteration of 10 document load requests
for the 100MB test failed to complete.

The memory usage of the XMLReader based tests stays very low but slowly in-
creases. This may be due to garbage collection in Javascript environment that has
yet to happen or it may be a small leak within the implementation or browser. In
theory, the memory usage should stay relatively constant regardless of the size of
the document as the testing code does not retain the document information.

The average parsing timewas alsomeasured and is shown in Figure 2. In contrast
to the memory consumption, the constant need to callback to the scripting environ-
ment for event delivery shows a 2.75 times penalty in parsing time. When no event
handler for the XML is registered, the parsing time drops back down to consistent
levels with the XMLHttpRequest implementation.

Amodified version of the XMLReader and XMLItemEvent interface was tested that
allowed "chunking" of events to reduce the number of callbacks by grouping a set
of events into a single event. A numberOfEvents attribute was added to the
XMLItemEvent interface along with a getEvent method that returns an event based
on an index. This avoids the need to create an array data structure.

When the chunking was enabled and the chunk size was set to 32, the parsing
time decreased to a 2 times penalty.While reduced, the delivery of events by invok-

142

Efficient XML Processing in Browsers

Figure 1. Memory Performance in Comparison to XMLHttpRequest

ing Javascript-based event handlers incurs a significant penalty. This penalty cannot
be avoided but may be reduced by improvements to the scripting environment.

For example, the number of events for the 1MB test document is 526306 and so
that translates into the same number of function invocationswithin Javascript.When
the events are chunked into groups of 32, that translates into 16448 function invoc-
ations. The chunking reduces the overall processing time by around 40% but still
leaves parsing at about twice as slow. The sheer number of events to deliver and,
as a result, functions to invoke, limits the speed of parsing.

143

Efficient XML Processing in Browsers

Figure 2. Time Performance in Comparison to XMLHttpRequest

It should be noted thatwhile the overall parsing time is slower due to the delivery
of events to Javascript-based event listeners, the overall application performance
may be faster. Any application that deconstructs an XML document into some
combination of service invocations or mappings to local data structures will not
have to traverse the XML DOM at the end of the parsing. As such, the overall time
may improve for any application action where XML parsing of web resources is
involved. In fact, in the simple example of finding links shown in the previous sec-
tion, the overall processing timewas twice as fast for the XMLReader implementation
over the XMLHttpRequest implementation.

144

Efficient XML Processing in Browsers

5. An Example Application
One example application, amongst many, for event-oriented parsing is the unmar-
shalling of XML into local data structures--specifically JSON. An event handler for
XML that has algorithms for building JSON (and so Javascript) objects from XML
automatically can easily be built using XMLReader that avoids the construction and
memory consumption of a whole document DOM. This kind of binding process
can be used to access XML services while providing JSON directly to the caller.

One interesting aspect of such a tool is that it can be configured to filter, subset,
and use specialized semantics for the XML received. For example, an XMLReader
based application can load an Atom feed, selecting only specific entries, and when
the "atom:content" element is detected, a small XML DOM could be build for the
content. This would allow mixing of Javascript objects and XML data.

In this example, an auto-binding actor wraps the XMLReader interface. For each
XML element it receives, it makes a determination of whether it has local structure
or is just a "slot value". If it is a slot value, a property is set with a coded version of
the name. If the element has children or attributes, the element is converted into a
sub-object with its own properties.

For example, the following XML:
<order count="1">
<item>
<price>12.50</price><quantity>2</quantity>
<description>The best price ...</description>
</item>
</order>

would get automatically translated into:
{
"count": "1",
"item": {
"price": "12.50",
"quantity": "2",
"description": {
"strong": "best price"

}
}

}

By adding hints, the JSON binder can turn certain XML contexts into other data
types. For example, the element "price" is a float, the element "quantity" and attribute
"count" are integers, and the element "description" is mixed content. We'd like the
outcome to be:

{
"count": 1,

145

Efficient XML Processing in Browsers

"item": {
"price": 12.5,
"quantity": 2,
"description": [

"The ",
{
"$name": "strong",
"$content": "best price"

},
" ..."

]
}

}

This was easily implemented as a short Javascript program where the binding was
automatically assessed by an XML event handler. Using streaming events avoided
an intermediateDOMaswell as allowed stated-based interpretation of the document
without knowledge of the overall document structure. An example invocation of
this application is as follows:

var reader = new XSONReader();

reader.binder.elementHints["order"] = { attributes: { count: { isInteger: ►
true } } };
reader.binder.elementHints["price"] = { isFloat: true };
reader.binder.elementHints["quantity"] = { isInteger: true };
reader.binder.elementHints["description"] = { isMixed: true };

reader.ondone = function(data) {
alert(JSON.stringify(data,null," "));

}
reader.parse(xml);

6. Conclusions and Future Work
Exploring and implementing an event-based parsing framework for web browsers
has certainly been an interesting adventure. The space-saving outcomes by using
event-based parsing for large XML documents should prove to be useful but the
parsing time penalty is a direct trade off that must be considered. In some applica-
tions, the ability to load large data streams and subset or filter the data will prove
to be useful despite the parsing time penalty.

The parse-time trade offmay be avoided in the future by providing closer integ-
ration between the consumer of XML events and the XMLReader instance. For ex-
ample, for data binding into JSON, a JSON data binder could be provided directly

146

Efficient XML Processing in Browsers

to the XMLReader. As such, the jump between C++ and Javascript can be avoided
and that should improve the overall processing time.

The simple ability to load and parse large data sets allows the browser environ-
ment to extend into application scenarios where it might not have gone before. For
example, a "worker" for a RDF search engine could load, process, and extract triples
from XHTML documents by streaming them through a local RDFa processor. Such
a client application can take advantage of all kinds of new local services provided
by the advanced browser environment as well as take advantage of the security
constraints and protection provided by that same environment.

The implementation work described in this paper will be provided as a patch
to WebKit that can be easily used run WebKit directly within the Safari browser.
For the more adventurous, the patch can be built into other browsers like Chrome.
Further research on uses, ancillary processors, and improvements are intended.
Whether these proposed interfaces or their descendants are just a local enhancement
or something to be standardized is up to the web community to decide.

Bibliography
[1] Kesteren, A. XMLHttpRequest, August 2010,

http://www.w3.org/TR/XMLHttpRequest/
[2] Kesteren, A. XMLHttpRequest Level 2, August 2010,

http://www.w3.org/TR/XMLHttpRequest2/
[3] Crockford, D. The application/json Media Type for JavaScript Object Notation

(JSON), July 2006, http://www.ietf.org/rfc/rfc4627.txt
[4] Le Hors, A. et al, Document Object Model (DOM) Level 2 Core Specification,

November 2000, http://www.w3.org/TR/DOM-Level-2-Core/
[5] The Unicode Standard, Version 6.0.0, 2011, ISBN 978-1-936213-01-6,

http://www.unicode.org/versions/Unicode6.0.0/
[6] Simple API for XML, http://www.saxproject.org/
[7] WebKit, http://www.webkit.org/

147

Efficient XML Processing in Browsers

148

EPUB: Chapter and Verse
Electronic origination of the Bible

Tony Graham
Mentea

<tgraham@mentea.net>

Mark Howe
Jalfrezi Software

<mark@cyberporte.com>

Abstract

The link between the Bible and publishing technology is at least as old as
Gutenberg’s press. Four hundred years after the publication of the King James
Bible, we were asked to convert five modern French Bible translations from
SFM (a widely-used ad hoc TROFF-like markup scheme used to produce
printed Bibles) to EPUB. We used XSLT 2.0 and Ant to perform all stages of
the conversion process. Along the way we discovered previously unimagined
creativity in the original markup, even within a single translation. We cursed
the medieval scholars and the modern editors who have colluded to produce
several mutually incompatible document hierarchies. We struggled to map
various typesetting features to EPUB. E-Reader compatibility made us nostal-
gic for browser wars of the 90s. The result is osisbyxsl, a soon-to-be open source
solution for Bible EPUB origination.

1. Introduction

1.1. Typesetting, ancient and modern
The 42-line Gutenberg Bible was printed in 1455 [9]. The King James Bible was
published in 1611. Four hundred years later, the Bible is still a publishing phenomen-
on worth an estimated half a billion dollars per year in the United States alone in
2006, when Bible sales were double the sales of the latest Harry Potter book [12].
Bible societies and independent publishers produce new translations at an ever
faster rate, and there is considerable demand for modern translations in formats
amenable to NewMedia. Amazon reported in January 2011 [2] both that it is “now
sellingmoreKindle books than paperback books” and “the third-generationKindle
eclipsed "Harry Potter and the Deathly Hallows" as the bestselling product in
Amazon's history.”

149

In 2010, we were asked by the Alliance Biblique Française1 to convert five of their
French Bible translations into EPUB, and also to make these translations available
via an online XML feed. The text was provided in SFM – a TROFF-like ad hoc
standard in the Bible publishing world. After considering various alternatives, we
decided to first convert the SFM into OSIS – an XML vocabulary developed by the
American Bible Society – before generating EPUB and other delivery formats. Pro-
cessing from SFM to OSIS and from OSIS to XHTML for inclusion in the EPUB is
entirely by XSLT 2.0. Additional steps such as copying graphic files and zipping up
the EPUB are done using Ant.

We stuck with just XSLT 2.0 so the eventual users of the open-source project
only need to know one technology, and if they're to be generating OSIS XML, they
should be developing some familiarity with working with XML markup. Every so
often we consider doing parts of it in Perl, but that decreases the pool of people
who can work on the whole project: Bible experts who know XSLT 2.0 are going to
be rare, but Bible experts who know both XSLT 2.0 and Perl are going to be even
rarer.

We used Ant to run the processing because it is widely available, it can be con-
figured using text files, and it's useful for non-XML actions such as copying graphics
files and zipping directories.

Ant enables us to choosewhich parts of the processing need to be run.A complete
build and test sequence can be invoked using

ant clean process validate epubs epubs.check

This sequence takes a couple of minutes to produce and verify up to four variants
of a single set of SFM files.

1.2. The source files
SFM stands for “Standard FormatMarkers”, amisnomer if ever therewas one. SFM
codes and their usage has become so fragmented that there’s now "Unified Standard
Format Markers" [16] to standardise SFM and encourage interoperability. Our
translations didn’t use USFM.

SFM codes appear at the beginning of lines, preceded by a “\”. They only occur
at the start of lines – except for some translations where they don’t. Here’s some
example SFM markup from the start of Genesis:

\id GEN SER01.SB4 Genèse, ES 21.06.2010
\h GEN#ESE
\mt Genèse
\s Dieu crée l'univers et l'humanité
\c 1

1http://www.la-bible.net/

150

EPUB: Chapter and Verse

\p
\v 1 Au commencement Dieu créa le ciel et la terre.

We were provided with “Balises”2 indicating which markup codes were used in a
particular translation, but these lists were soon shown to be incomplete. Evenwhen
the codes on the "Balises" were used, they were used in different combinations –
one translator even found three different ways within one Bible to markup tables.

SFM books include markup for the major and minor parts of the book’s title –
except even the most common version of those codes can be used in either order.
SFM books may also include an optional introduction, where the end of the intro-
duction is indicated by a “\ine” code – except some translations have introductions
without an “\ine”.

The translations also included inlinemarkup for indicating bold or italic emphasis
or superscript text. The inline markup was usually “|” followed by a single-letter
code – except when it wasn’t – and a single end code, usually “|x”, closed all open
highlights – except when it didn’t. Inline markup didn’t cross the “\” SFM codes
at the start of lines – exceptwhen it did, butwe didn’t find those few cases (including
5½ chapters in a row of italic text in one translation) until late in the process.

Other inlinemarkup includedmarkers for glossary terms and for footnote refer-
ences. Glossarymarkers are codes, usually “*g**” (except when it’s not), at the start
of the word from the glossary – except glossary terms can be multiple words, the
multiple words can have a line break between them, the glossary marker can be at
the end of the term instead of the beginning, or the glossary term can have markup
at both its start and end. Footnote references have their footnote text on a following
line, usually after the end of the scope of the current “\” SFM code – except when
it’s not.

Footnotes conceptually aren’t part of the flow of the text, so they don’t take part
in grouping lines into paragraphs or line groups, and some of the SFM even had
inline highlighting markup that started in one “\q” line before a footnote text and
closed in another “\q” line after the footnote text. An early stage in the processing
of SFM into OSIS is the moving of footnotes into the place of their footnote marker,
where they still interfere with the processing of inline highlighting markup.

In otherwords, SFMas practised by the Bible translating community is a textbook
demonstration of why Schema are a good idea. However, Bible translators are not
early adopters of new technology, and, in any case, SFM for printed Bibles only has
towork for one origination process. Tools to convert fromSFM toXMLare therefore
likely to be useful for the foreseeable future.

2Definitions of the SFM codes

151

EPUB: Chapter and Verse

2. From SFM to OSIS

2.1. The OSIS schema
Open Scriptural Information Standard [14] is anXML format for describing Scripture
and related text. The OSIS effort has good theological, linguistic, and XML creden-
tials. Its authors include Steve DeRose (XML, XPath 1.0, etc.) and Patrick Durasau
(OpenDocument format, Topic Maps) [3]. The OSIS 2.1.1 documentation [15],
however, is still labelled “draft” despite being published in 2006, and it shows signs
ofmultiple editors and last-minute changes aswell as having references to elements
that don’t exist and some hyperlinks that don’t work.

The commonsense advice from the experts about converting SFM to OSIS [5] is:

The first task in preparing to convert SFM files to OSIS is to clean the text. The
more regular your source files are, the more likely the conversion process will operate
correctly.

Maybe we could have picked one SFM format and modified (currently) four other
translations to match. But our SFM is sacred text in more ways than one, since the
client wants to continue to use the SFM as SFM for some purposes.We haveworked
around the inconsistencies as much as we can and have kept the SFM changes to a
minimum, pending our own day of reckoning with the client where we see if our
changes have broken SFM print origination.

2.2. With much wisdom comes much sorrow3

Our initial appraisal of the task, based on reviewing one book from each of four
translations, was that:
• Bibles contain books in a well-known order
• Books contain numbered chapters
• Chapters contain paragraphs, line groups, and sections
• Sections contain paragraphs, line groups, and sections
• Paragraphs and lines contain verses
• Individual verses are numbered consecutively
• Verses contain inline markup such as highlighting and footnote references
The reality, after five translations, is:
• Bibles contain introductions, testaments, glossaries, and other notes. External

notes can be applicable to a chapter, a verse, or to part of the hierarchical structure

3Ecclesiastes 1:18

152

EPUB: Chapter and Verse

of the Bible that OSIS doesn’t address, such as “The Pentateuch” (first five books
of the Bible) or "The minor prophets".

• Bibles differ in which books they contain and the hierarchy of the books. The
biggest difference is betweenCatholic and Protestant Bibles, but there are differ-
ences within those types, plus an ecumenical Bible that is equally far from both
Protestant and Catholic hierarchy.

• Chapters can start in themiddle of a section and/or in themiddle of a paragraph,
can havemore than one number, and can be numbered alphabetically or numer-
ically within the same book. Alphabetically numbered chapters can stop and
resume again after one or more numerically numbered chapters.

• Some books don’t have chapters, only numbered verses. Unnumbered verses
can appear outside any chapter, and alphabetically numbered verses can follow
numerically numbered. Verses can bemerged such that one sentence ismultiple
verses, or split into ‘a’ and ‘b’ parts. Verse parts can be non-consecutive. Content
can also appear in verse form and be repeated in tabular form, as if Moses really
wanted to put a table there but didn’t have the technology at the time.

• One translation helpfully sprinkles “//” throughout as markup to indicate pos-
sible line breaks; another translation uses “//” as meaningful text in footnotes.

• Although SFMdoesn’t include away to indicate editions, Catholic and Protestant
versions of a translation may have been printed from one SFM, but a reference
in a footnote in a shared book to a verse in a Catholic-only book may have dif-
ferent text in the printed Protestant Bible or the reference, and the punctuation
(e.g., “[” and “]”) around the reference may be elided in the Protestant Bible.

2.3. One step at a time
Processing is performed in stages by a chain of stylesheets that each do a single task
to one book at a time. This allows us to swap or insert stages to handle the non-
standard parts of each translation’s SFM. The initial expectation was for ten-or-so
stylesheets. There are currently around fifty, although some are used only for a
single translation.

The build.properties file for a translation, which is just a text file, specifies the
stages and their order. We cannot pretend to have handled every possible SFM
variant, but it is possible to go a long way by mixing and matching the stages that
we have so far defined.

Example 1. Sample build.properties file

Project code
project=NBS
Source suffix
suffix=.NS2

153

EPUB: Chapter and Verse

Major language
lang=fr
Identifier
identifier=Bible.fr.NBS.2002
Glossary file
glossary=extras/indx.xml
OSIS stages to process
stages=accents, lang-fr, structure, section-title, chapter, chapter-single,
verse-start, notes-no-fm, note-xref, verse-join, line-group, table, psalm-title,
other-line, line-break, paragraph, inline, glossary-after, verse-end,
split-at-verse, note-into-verse, cleanup
EPUB volumes to produce
epubs=NBSNoDeutNoNotes, NBSNoDeutNotes

epub.include.notes=yes
Contents XML file
contents=${basedir.converted}/prot-contents.xml

build.properties also defines any parameters to be passed to the stage stylesheets.
We’ve yet to find a convenient way to dynamically pass arbitrary parameters to
Ant’s <xslt> task4, so to avoid hardcoding or limiting the parameters that can be
passed to a stage, when youmodify build.properties, you then run ant to remake
the build.xml file that controls Ant so that it uses the current property values. All
properties are passed as parameters to all stage stylesheets, and properties that are’t
used in a particular stylesheet are simply ignored by the XSLT processor.

There is an initial lines stage that is always included (and is ignored if redund-
antly included in the stages specified in build.properties) that splits the text of
the source SFM before each “\” and wraps each resulting segment in a <t:line> ele-
ment so the SFM can be further processed as XML in all other stages. Since the lines
stage runs an initial named template, it is specified in the build.xml file by using
the <java> task to run the command-line XSLT processor rather than using the
<xslt> task as for the other stages.5

The general sequence of the stages is:
• Convert SFM to XML
• Fix up accented characters and language-specific features, such as inserting
a no-break space (&#A0;) after « and before », etc.
• Add structure from the outside in:

• Introduction and body

4It could be done with by Ant generating a new build.xml on-the-fly and then Ant running Ant with
the new build file.
5Feature keys for initial template andmode (and other features) were recently added to Saxon in version
9.3, but that was after the project started and the operating systems of interest install an older version
by default.

154

EPUB: Chapter and Verse

• Sections
• Chapter milestones
• Verse start milestones
• Footnotes
• Poetry, Psalm titles, lists, paragraphs, tables, etc.

• Add inline markup:
• Highlights, glossary terms
• Verse end milestones

• Cleanup
The “structural” stages are consecutive since they all operate on <t:line> elements,

and as successive stages run, there are fewer and fewer <t:line> elements remaining
(and one of the important functions of the “cleanup” phase is producing error
messages for any that remain). Footnotes are moved to the point of their footnote
reference (or just into the preceding <t:line> in translations that don't use footnote
references) before adding paragraphs, etc., since the footnotes are ignored when
merging lines.

Adding inline markup was interesting since:
• Highlighted (bold, italic, etc.) text can contain notes (which are XML at that

point) and glossary terms
• Both notes and glossary terms can contain highlighted text.
• Highlights can nest, but all use the same |x SFM markup to end any sort of

highlighted region
The stage for adding <hi> elements, therefore, finds the first highlight start code
(|i, |b, etc.) in a text-node child of an element and then processes the remainder of
that text node and any following sibling nodes to find the end code. When found,
the text-node fragments (and any intervening elements) are wrapped in a <hi> ele-
ment with the appropriate “type” attribute value. Along the way, the intervening
elements were themselves recursively processed to turn highlight codes into XML.

Verse end milestones are added at a late stage since:
• SFM contains only verse start codes, since you don't print anything at the end

of a verse
• OSIS best practice limits where you should put the milestones in ways that can't

be enforced by the OSIS schema
• Inline OSIS elements such as <hi> and <w> (for glossary terms) can't contain

<verse> elements 6

6No reason is given in the OSIS documentation, but it's possibly because those inline elements are also
allowed in <note>, etc., where a <verse> would be out of place.

155

EPUB: Chapter and Verse

2.3.1. Example

The following SFM and OSIS fragments are from La Nouvelle Bible Segond (NBS),
Psalm 3–4.

Example 2. SFM

\q❶

\v 9❷ C'est au S|cEIGNEUR|x qu'appartient le salut!
\fr 3.9❸

\f |i|bau S|cEIGNEUR|x❹ |i|bqu'appartient le salut|x 37.39+;
Jon 2.10; Pr 21.31. -- Voir |i|bbénédiction*g**❺.|x
\q Que ta bénédiction soit sur ton peuple!
\n Pause.❻
\s Exaucé au milieu de l'hostilité
\c 4❼

\d❽

\v 1 Du chef de cho!e❾ur. Avec instruments à cordes. Psaume. De David.

Example 3. OSIS

<l level="1">①

<verse osisID="Ps.3.9" sID="Ps.3.9" n="9"/>②

<note>③<reference type="source" osisRef="Ps.3.9">3.9</reference>
<hi type="italic"><hi type="bold">au S<hi type="small-caps">EIGNEUR</hi>④
</hi></hi> <hi type="italic"><hi type="bold">qu’appartient le salut</hi></hi>
37.39+ ; Jon 2.10 ; Pr 21.31. – Voir
<hi type="italic"><hi type="bold"><w gloss="benediction">bénédiction</w>⑤.</►
hi></hi></note>
C’est au S<hi type="small-caps">EIGNEUR</hi> qu’appartient le salut !</l>
<l level="1">Que ta bénédiction soit sur ton peuple !</l>
<l type="selah">Pause.<verse eID="Ps.3.9"/></l>⑥</lg>
</div><chapter eID="Ps.3"/>
<chapter osisID="Ps.4" sID="Ps.4" n="4"/>⑦
<div type="section"><title>Exaucé au milieu de l’hostilité</title>

156

EPUB: Chapter and Verse

<title type="psalm" canonical="true">⑧

<verse osisID="Ps.4.1" sID="Ps.4.1" n="1"/>Du chef de chœ⑨ur. Avec instruments ►
à cordes. Psaume. De David.
<verse eID="Ps.4.1"/></title>

Key

❶① Each \q makes a separate <l> Line groups are implicit in the SFM, but are
grouped (using xsl:for-each-group) into <lg> in the OSIS

❷② For each verse start milestone: @osisID identifies the verse (or range of verses);
@sID matches @eID in the corresponding end milestone; and @n preserves the
original number (or letter, or number range, or…) because there's too much
variation in the SFM to be able to reliably reconstruct the number from @osisID
for presentation in the EPUB.

❸③ SFM codes beginning with f are grouped into a <note>. Since NBS does not
use footnote references in its verses, the note is moved to the start of the verse
where, in the EPUB, it is replaced by a † that is a link to the footnote text.

❹④ Usually, SFM codes beginning with | denote the start or end of a highlight. In
most translations seen so far, a |x closes all open highlights: the translation
that has separate closing delimiters for nested highlights simply uses a different
stylesheet at this stage.

❺⑤ *g** before (or, in NBS, after) a word indicates a glossary term. Since some
glossary terms are multiple words (and since some translations have glossary
markers for words not in the glossary), the glossary stage also reads the
glossary XML andmatches on thewords or phrases that appear in the glossary.

❻⑥ Verse ends are not marked in SFM. OSIS best practice recommends that mile-
stones should not cross unnecessary boundaries, so the verse end milestone is
inserted at the end of the text rather than, say, after the </l> or even after the
</lg> or </div>.

❼⑦ Chapter ends are not marked in SFM. In the printed Bible, \c codes just print
chapter numbers, but the XMLmarkup represents containment (and the EPUB
presents one chapter at a time), so the title (\s Exaucé...) is moved inside the
chapter.

❽⑧ Psalm titles are part of the text of the Bible, unlike other titles, which are
modern day conveniences and as such are not “canonical”. The Psalm title can
and does contain verse milestones, whereas the XSLT would not insert a
milestone into a non-canonical title.

❾⑨ Most translations use SFM markup to represent some accented characters.

157

EPUB: Chapter and Verse

2.3.2. Testing

Initially testing used XSpec run against test files. However, we discontinued with
XSpec at a timewhen the stages were beingmoved around a lot: the rearrangement
meant the table stage, in particular, could not correctly process its current input,
yet the XSpec tests, which ran against test data, were still all passing. Running the
XSpec tests against the “live” data wasn't that much of an option since we were
working on different translations at different times, and a test that ran against a
different translation could be just as irrelevant as a test that ran against test data
had been.

The primary test for the OSIS has been taking snapshots of the OSIS and, after
a change in the stylesheets or (more rarely) the SFM, comparing the snapshot against
the current OSIS using a difference-checking stylesheet that would, for example,
ignore differences in the date stamps in the two files.

We are also moving into using Schematron tests to make assertions about the
OSIS XML.

There is a similar snapshot-and-compare mechanism for the EPUBs, but that is
used less often.

2.3.3. Pros and cons of using XSLT 2.0

• Using XPaths made some hard logic easy, e.g., determining whether a text node
is the correct place to insert a verse end milestone:

<!-- true() only if $text is child of the right kind of element and
within a chapter. -->

<xsl:function name="t:versable" as="xs:boolean">
<xsl:param name="text" as="text()" />

<xsl:sequence
select="exists($text/preceding::o:chapter[1]) and

empty($text/ancestor::o:title[not(@canonical = 'true')]) and
empty($text/ancestor::o:note) and
empty($text/ancestor::o:speaker) and
empty($text/ancestor::o:w) and
exists(for $element in $text/ancestor::*

return if (namespace-uri($element) eq
namespace-uri($o:ns) and
local-name($element) =
$versable-elements)

then $element else ())" />
</xsl:function>

• Stylesheets are simpler and more concise than if XSLT 1.0 was used.

158

EPUB: Chapter and Verse

• Because XSLT works by matching patterns, “moving” a node from one part of
the document to another is really amatter of: firstlymatching to the new location
for the node then selecting from that node to find the node to copy to the new
location; and secondly all but repeating the same logic to match the node in its
original location so it is explicitly not processed:

<xsl:template
match="o:div[exists(t:opening-chapter-start(.))]"
mode="move-up">

<xsl:copy-of
select="t:opening-chapter-start(.)" />

<xsl:copy>
<xsl:apply-templates select="@*|node()" mode="#current" />

</xsl:copy>
</xsl:template>

<xsl:template
match="o:chapter[t:is-opening-chapter-start(.)]"
mode="move-up" />

• XSLT was not a good fit for processing SFM highlight markup when the text
also contained XML elements.

3. From OSIS to EPUB

3.1. Anatomy of an EPUB
To a first approximation, an EPUB [7] is a Zip-encoded archive containing some
XHTML and CSS and a bit of metadata. EPUBs typically have a .epub suffix. An
EPUB has a fairly contrived “signature” achieved by requiring that the first file in
the Zip archive is named mimetype, contains only the text application/epub+zip
and is included in the archive uncompressed. The operating system can then check
that a file is an EPUB by examining up to the first 58 bytes of the file. In practice,
all EPUB Reading Systems that we have used can cope if the signature isn't exactly
right.

EPUB text is usually a profile of XHTML 1.1, but it can be DTBook (DAISY
TalkingBookPreferredVocabulary) andmay include generic XMLas “XML islands”.
Text may be styled using a defined subset of CSS2.

The metadata is also XML. The two most significant, and variable, metadata
files are the Open Packaging Format (OPF) file [13] – which contains Dublin Core
metadata, the manifest of files in the EPUB, and the “spine” that lists their reading
order if you page through the document – and the Navigation Control File (NCX)
file [11] – which functions as the table of contents for the EPUB.

159

EPUB: Chapter and Verse

Converting OSIS to EPUB is dazzlingly simple by comparison to producing
OSIS: there are only three stylesheets for convertingOSIS to XHTMLplus a handful
of other stylesheets for generating the OPF and NCX files (whereas the other
metadata files are static files). We have provided links in osisbyxsl to use epubcheck
[8], an open-source EPUB validator.

Current translations result in one to four EPUBs each (typically Protestant/Cath-
olic canon, with/without notes). The resulting, zipped EPUB weighs in at between
3.5Mb and 6Mb, depending on the variant. Because of the length of some biblical
books, we opted for one XHTML file per chapter and one for each chapter’s notes,
as well as a cover, copyright page, contents pages and a glossary. In total there are
831 XHTML files in the Catholic version of the Bible en Français Courant. Skeleton
NCX and OPF files for an EPUB are populated based on the specific hierarchy of
books for that edition and the set of notes and graphics that are to be included.

Translationsmay also include introductions and backmatter aswell as diagrams,
photos, maps, and explanatory notes that are interspersed in the text of the Bible.
We are calling all of these “external notes” since: we have themmarked up in OSIS
(with graphic files for diagrams andmaps); they do not go through the same stages
as do the books of the Bible; and they are transformed to XHTML for the EPUB as
a separate step from generating XHTML from the OSIS for the books.

The challenges in generating the EPUB files were:
• Making handling the hierarchy of books sufficiently flexible: we knewProtestant

and Catholic versions included different books, but we also found different
books, different book groups, and different titles in use in the translations.

• Getting all ancillary files, such as graphics and external notes, both into the
manifest (since some EPUB reading systems and recent versions of epubcheck
complain about mismatches) and into the spine in the right order (since people
don't want to see footnotes pages when scrolling between chapters but do want
to see notes that are introductions to major groups of books).

3.1.1. OPF

Each EPUB has its own template Content.opf file that contains the Dublin Core
metadata (which we could not get from the OSIS for the books) and a minimal
manifest and spine containing entries for items such as the title page, copyright
page, and glossary. The template is processed to add all the books, chapters, and
note files twice (once in themanifest and once in the spine) and the figures are added
once (in the manifest only). As a result, the 57-line template Content.opf for NBS
expands to over 5,000 lines.

160

EPUB: Chapter and Verse

3.1.2. NCX

Each EPUB similarly has its own template epb.ncx that contains the placeholder
<navMap> for the table of contents. The specific hierarchy of books for the EPUB is
transformed into <navPoint> elements, with additional <navPoint> for external
notes that attach to the hierarchy or to specific books. Titles in the hierarchy, when
transformed into theNCXfile, point to the first book that they contain: for example,
in the table of contents, the labels for “Ancien Testament”, “La Pentateuque”, and
“Genèse” all point to Gen.xml.

Every <navPoint> may have a "playOrder" attribute indicating its place in the
“normal playback sequence of the book”. Since multiple <navPoint> point to the
same file, the stylesheet processes the generated <navMap> in another mode to add
the correct "playOrder" values:

<xsl:template match="ncx:navPoint" mode="hierarchy">
<xsl:variable

name="number"
select="count(preceding::ncx:navPoint[empty(ncx:navPoint)]) +

1"
as="xs:integer" />

<xsl:variable
name="next-book-number"
select="count(descendant::ncx:navPoint[@class = 'book'][1]/

preceding::ncx:navPoint[empty(ncx:navPoint)]) +
1"

as="xs:integer" />

<xsl:copy>
<xsl:copy-of select="@*" />
<xsl:attribute

name="id"
select="concat('navpoint-',

$number)" />
<xsl:attribute

name="playOrder"
select="if (@class eq 'category')

then $next-book-number
else $number" />

<xsl:apply-templates select="*" mode="#current" />
</xsl:copy>
<xsl:text>
</xsl:text>

</xsl:template>

161

EPUB: Chapter and Verse

3.1.3. Auxiliary files

The processing to produce the OPF and NCX files depends on several auxiliary
files:
• booklist.xml – For every book in the OSIS, the book’s identifier, title, and file-

name, and for each chapter in the book, the chapter’s identifier, number, and
whether or not it contains footnotes. Generated from the OSIS files themselves
using collection():

<!-- All the XML files in $osis-dir. -->
<xsl:variable

name="osis-docs"
select="collection(concat('file://', $osis-dir, '?select=*.xml'))" />

• notelist.xml – For every external note, the note’s identifier, title, filename, and
location in the Bible, plus the filename of each figure in the note. Generated from
the OSIS for the notes.

• EPUB-hierarchy.xml – Expanded hierarchy of the specific books for the EPUB
with the correct titles for the divisions within the hierarchy

• EPUB-notelist.xml – Information from notelist.xml for just the notes in the
particular EPUB.

• EPUB-figurelist.txt, EPUB-files.txt, EPUB-notelist.txt – Lists of filenames,
one file per line, for Ant to insert into the particular EPUB.

3.2. The millstone of milestones
As mentioned previously, ancient and modern hierarchies within Bible documents
create particular challenges for XML markup:

OSIS allows for two potentially overlapping structures: Document structure (BSP)
and verse structure (BCV). Document structure is dominated by book, sections and
paragraphs (BSP), additionally with titles, quotes and poetic material. While verse
structure is indicated by book, chapter and verse numbers (BCV). […] Because these
two systems can overlap and because XML does not allow for overlapping elements,
OSIS defines a milestonemechanism for both document and verse structure elements.
[10]

The milestone approach involves using empty elements to make the start and end
of each structural item, rather than themore intuitive approach of enclosing content
within an element, e.g.:

<chapter sID="Gen.1.1"/> [content] <chapter eID="Gen.1.1"/>

rather than
<chapter sID="Gen.1.1"> [content] </chapter>

162

EPUB: Chapter and Verse

Milestones do solve the ‘overlapping structures’ problem, but they are much less
convenient toworkwith than nested, enclosed content. The semantics ofmilestones
are hard to represent in Schema:

An XML validator cannot validate whether OSIS milestones are used properly. It
cannot validate:
• that an element is consistently either milestoned or not.
• that for each element with an sID that there is a paired element with an eID.
• that each paired sID/eID have the same attribute value.
[10]

Processing milestones is relatively straightforward when the whole document is to
be converted in one go, as in a traditional typesetting scenario where text flows
between pages. Selecting particular sections of content on the basis of milestones is
much harder, because milestones can be separated by arbitrary amounts of content
and may not be siblings (which is the whole reason for using milestones in the first
place). For example, from the Bible en Français Courant:

<verse osisID="Gen.12.5" sID="Gen.12.5" n="5"/>
Abram prit donc avec lui sa femme Saraï et son
neveu Loth ; ils emportaient toutes leurs
richesses et emmenaient les esclaves achetés
à Haran. Ils se dirigèrent vers le pays de
Canaan.

</p>
<title type="x-section">

Abram au pays de Canaan, puis en Égypte
</title>
<p>Lorsqu’ils arrivèrent au pays de Canaan,

<verse eID="Gen.12.5"/>

where a verse begins in themiddle of a paragraph and ends in themiddle of another
paragraph separated from the first by a title.

osisbyxsl needs to split books into discrete chapters, because users expect per-
chapter EPUB navigation, and because several biblical books are too large for a
single EPUB manifest item. The first approach used a complex XPath to select on a
combination of node order and sibling relationship. However, the search space was
huge, because no assumptions could be made about the location of the milestones.
When we found that splitting Psalms in one translation took two hours we were
forced to look for an alternative strategy. The current approach uses six interlocking,
recursive functions to tree walk between the start and end milestones, building a
new document as it goes. This has consequences for other aspects of the processing
because, for example, generate-id() can no longer be used to link between chapters.

163

EPUB: Chapter and Verse

However, the performance benefit outweighs all other considerations – in one case
the time required to produce an epub has been reduced from 5 hours to 18 seconds.

3.3. E-Reader rendering
For testing purposes we used
• Calibre [4], a popular open-source e-reader for desktop machines
• Adobe Digital Editions [1] for desktop machines
• Sony Reader PRS350
• Apple iPhone 4
Those are some of the more capable e-readers we tried – some Android e-readers
did little more than split on paragraphs. We expected some e-readers to offer more
functionality than others. But we didn’t expect e-readers which excelled in some
areas to fail in others, and we did expect the general quality of XHTML rendering
to approach that of a modern browser.

For example, percentage values for vertical-align worked perfectly in Calibre,
but seemed to be interpreted upside down by the Adobe reader, which also failed
to render drop caps that worked in the other two e-readers. But Calibre proved
quirky at splitting lines of text, and with spacing in general. We failed to find a way
to use superscript without disrupting line spacing, butwere consoled by the discov-
ery that other Bible EPUBs suffer from the same problem.

As soon as we moved from desktop EPUB software to embedded readers, we
discovered that the manufacturer’s interface makes a significant difference to the
user experience. For example, desktop software tends to display the contents list in
a separate pane, which makes moving around our translations quite easy. By com-
parison, the Sony Reader requires one button press plus two screen taps just to get
to the closed contents pagewhichmust then be opened and scrolled. This discovery
prompted us to provide a system of links to enable Sony Reader users to get from
verse to chapter to book to contents page as easily as possible. Also, the Sony
Reader "back" function is hidden off a submenu, which makes visiting a glossary
something of a one-way trip.

The iPhone screen is small enough to make hitting links on superscript verse
numbers a challenge. We also tried the Archos eReader 70, which appears to have
no mechanism for selecting links in a document (despite displaying them), which
made our Bible EPUBs of limited use to anyone wishing to get beyond the first half
of the book of Genesis.

On the basis of our experience, it seems to us that E-book publishers should
either use quite basic XHTML and CSS or produce one EPUB version per device.
For the moment we have opted for the first option.

164

EPUB: Chapter and Verse

4. Conclusion
Comparing Gutenberg’s Bible with the "Monk Bibles" that preceded it, Cory Doc-
torow writes:

Luther Bibles lacked the manufacturing quality of the illuminated Bibles. They were
comparatively cheap and lacked the typographical expressiveness that a really talented
monk could bring to bear when writing out the Word of God. [...] none of the things
that made the Gutenberg press a success were the things that made monk-Bibles a
success. By the same token, the reasons to love ebooks have precious little to do with
the reasons to love paper books. [6]

Given our experiences with current e-readers, it is just as well there are reasons
beside typesetting elegance to love ebooks. However, the pioneers of the printing
revolution also struggled to get the best out of young, temperamental technology.
Despite the frustrations and the constraints of this fledglingmedium,we have found
standardXML tools such as XSLT 2.0 to be flexible and productive in this application
domain. We hope that our work can form the basis of an open source project which
can enable the Pixel Bible to do things that were never possible with the Luther
Bible and Monk Bible.

Bibliography
[1] Adobe Digital Editions. http://www.adobe.com/products/digitaleditions/.
[2] Amazon.com Announces Fourth Quarter Sales up 36% to $12.95 Billion. http://

phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1521089.
[3] About Bible Tech Group. http://bibletechnologies.net/AboutBTG.dsp.
[4] calibre - E-book management. http://calibre-ebook.com/.
[5] Converting SFM Bibles to OSIS. http://www.crosswire.org/wiki/

Converting_SFM_Bibles_to_OSIS.
[6] Cory Doctorow, "Content; Selected essays on Technology, Creativity, Copyright

and the Future of the Future" (San Francisco: Tachyon 2008), pp124-125.
[7] EPUB specifications. http://www.idpf.org/specs.htm.
[8] EpubCheck. http://code.google.com/p/epubcheck/.
[9] Johannes Gutenberg. http://en.wikipedia.org/wiki/

Johannes_Gutenberg#Printed_books.
[10]OSISMilestones. http://www.crosswire.org/wiki/OSIS_Bibles#OSIS_Milestones.
[11] Navigation Control File (NCX). http://www.niso.org/workrooms/daisy/

Z39-86-2005.html#NCX.

165

EPUB: Chapter and Verse

http://www.adobe.com/products/digitaleditions/
http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1521089
http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1521089
http://bibletechnologies.net/AboutBTG.dsp
http://calibre-ebook.com
http://www.crosswire.org/wiki/Converting_SFM_Bibles_to_OSIS
http://www.crosswire.org/wiki/Converting_SFM_Bibles_to_OSIS
http://www.idpf.org/specs.htm
http://code.google.com/p/epubcheck
http://en.wikipedia.org/wiki/Johannes_Gutenberg#Printed_books
http://en.wikipedia.org/wiki/Johannes_Gutenberg#Printed_books
http://www.crosswire.org/wiki/OSIS_Bibles#OSIS_Milestones
http://www.niso.org/workrooms/daisy/Z39-86-2005.html#NCX
http://www.niso.org/workrooms/daisy/Z39-86-2005.html#NCX

[12] The Good Book Business: why publishers love the Bible. http://www.newyorker.com/
archive/2006/12/18/061218fa_fact1.

[13]Open Packaging Format (OPF) 2.0.1 v1.0.1. http://www.idpf.org/doc_library/epub/
OPF_2.0.1_draft.htm.

[14] The OSIS Website. http://bibletechnologies.net/.
[15] OSIS 2.1.1 User Manual 06March2006. http://bibletechnologies.net/utilities/

fmtdocview.cfm?id=28871A67-D5F5-4381-B22EC4947601628B&method=title.
[16]Unified Standard FormatMarkers. http://paratext.ubs-translations.org/about/usfm.

166

EPUB: Chapter and Verse

http://www.newyorker.com/archive/2006/12/18/061218fa_fact1
http://www.newyorker.com/archive/2006/12/18/061218fa_fact1
http://www.idpf.org/doc_library/epub/OPF_2.0.1_draft.htm
http://www.idpf.org/doc_library/epub/OPF_2.0.1_draft.htm
http://bibletechnologies.net/
http://bibletechnologies.net/utilities/fmtdocview.cfm?id=28871A67-D5F5-4381-B22EC4947601628B&method=title
http://bibletechnologies.net/utilities/fmtdocview.cfm?id=28871A67-D5F5-4381-B22EC4947601628B&method=title
http://paratext.ubs-translations.org/about/usfm

DITA NG – A Relax NG implementation
of DITA
George Bina

Syncro Soft / oXygen XML Editor
<george@oxygenxml.com>

Abstract

DITA, DocBook and TEI are among the most important frameworks for XML
documents. While the latest versions of DocBook and TEI use Relax NG as
the schema language DITA is still using DTDs. There were some fragile at-
tempts to get DITA working with Relax NG but it takes more than writing
a Relax NG schema to have this working. DITA NG is an open source project
that aims to provide a fully functional framework for a Relax NG based imple-
mentation of DITA.

DITA NG provides the Relax NG schemas for DITA 1.2 and also support
for default attribute values based on Relax NG a:defaultValue annotations -
this is the critical part that makes DITA work.

The presentation covers an overview of the Relax NG schemas, how DITA
specializations can be done using Relax NG (a lot simpler than with DTDs),
the support for default attribute values for Relax NG and includes a demo of
the complete workflow of working with DITA based on Relax NG.

Keywords: DITA, XML, authoring, editing, schema, Relax NG

1. Introduction
The XML documents can be roughly divided in data oriented and content oriented.
The content oriented documents contain a lot ofmixed content, basically they contain
text annotated with markup that is used to identify different roles for that text.
While XML Schema is very useful for the data oriented XML documents it is not
the same case with content oriented documents. There are a few characteristics that
makes it not suitable for these documents like for instance the extensionmechanism
that can add new elements only at the end of an existing content model or the re-
strictions on redefinitions. Thus, for content oriented documents the choices are
either RelaxNGor to staywith good-oldDTDs. The latest version of content oriented
vocabularies like DocBook and TEI made the move to Relax NG. This however did
not happened forDITAwhich stayswithDTDs.DITAprovides also anXMLSchema
implementation but only fewpeople use that,most probably because of the extension

167

limitations, the majority use DTDs. Now, an evident questions is "Why does not
DITA use Relax NG, like all the others?".

To understand the issues that prevented the use of Relax NG for DITA we need
to see what stays at the core of DITA functionality. The main promise of DITA is
that it facilitates easy interchange of information between not necessarily related
entities. That is, I can havemy ownDITA specializations, my own specific elements
and if I pass this to someone else that also uses DITA then although they do not
have a specific support for my elements that are still able to process my documents.
That is possible because the processing is not done at element name level but by
looking at a hierarchical value specified in a class attribute that is present on any
element and specifies how that element is derived from the standard DITA classes.
The value is hierarchical, as it contains values starting from the most generic type
to the actual type. This is similar as conceptwith theObject Oriented Programming,
when you can have a derived class but an application can still handle that if it knows
how to process a base class from the derivation hierarchy. The class value contains
exactly the whole derivation hierarchy and the processing tools work with those
values to determine how an element should be processed.

There is nothing that prevents the use of Relax NG up to here. You start to un-
derstand the problem when you look at a DITA document and you see no class at-
tribute. All the class attributes are defaulted in the corresponding DTD or XML
Schema. It is not feasible to request from all the authors to enter consistent class
values for all elements so having them defaulted in the DTD or Schema that the
document refers tomakes this totally painless and also does not leave any possibility
for error.

As Relax NG does not have a mechanism for default values then in order to use
DITA with Relax NG one has to specify all the class attributes and values explicitly
in the XML documents. Asmentioned earlier that is not a feasible approach, people
will quickly give it up and return to DTDs instead. The good news is that there is
a RelaxNGDTDcompatibility specification that solves the problemof default values
by specifying an annotation mechanism that can be used to specify a default value
for an attribute. However, there is was no implementation for this.

The DITA specification mentions the DTD and XML Schema implementations
but it does not place a requirement on the schema language that can be used to
workwithDITA.As long as the class values get in the XMLdocuments on processing
then it does not case how that happened and what schema language is used.

So, in order to have anything working the pre-requisite was to have support for
default values based on aRelaxNG schema. Then this support needs to be integrated
in the XML parser processing workflow so we can get the default values when
parsing an XML document. On a separate thread the DITA DTDs needed to be
converted to Relax NG schemas that use the annotation mechanism to specify the
default values for all the class attributes.Having the RelaxNGdefault values support
integrated at the XML Parser level made possible any processing to quickly work

168

DITA NG – A Relax NG implementation of DITA

and for example the DITA OT processor that converts DITA to a number of output
formats works out of the box by just specifying a property on the XML parser.

2. Default attribute values in Relax NG
As mentioned in the introduction above the support for default attribute values
based on RelaxNG schema is essential in order to be able to use RelaxNG for DITA.
The Relax NG DTD compatibility specification defines an attribute annotation
a:defaultValue that can be used to specify the default value where the prefix a is
bound to the http://relaxng.org/ns/compatibility/annotations/1.0 namespace.
For example a schema like below defines a lang attribute with the default value
"en".

Example 1. Relax NG schema specifying a default attribute

<?xml version="1.0" encoding="UTF-8"?>
<grammar
xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<start>
<element name="test">
<attribute name="lang" a:defaultValue="en"/>
<empty/>

</element>
</start>

</grammar>

Adding this support had 3 parts
1. Add support in Jing to store default values in the Attribute patterns
2. Create a class that given a RelaxNG schemaprovides easy access to the attribute

default values
3. Create a parser component that integrates the default values support in Xerces

so that all the processing is done automatically on any parsing
These steps are detailed in the following sections below.

2.1. Support for storing default values
Therewas an alternate approach here - Trang already creates an internal model that
contains all the annotations so one possibility was to work on that level. However
that complicates the next step of providing access to the default values and the
change in Jing is minimal.

169

DITA NG – A Relax NG implementation of DITA

Jing does not store any annotation when it parses a schema so that needed to be
changed to retain the default value and set it on the attribute pattern.

2.2. Access to default values
This was done by implementing a visitor that walks over the schema patterns and
collects the default values in a map. It is possible to have this map because this is a
feature from the DTD compatibility specification and the same attribute from the
same element cannot have different default values. This gives an easy and quick
access to the default values.

2.3. Integrate with an XML Parser (Xerces)
Xerces has an internal API called Xerces Native Interface (XNI). All the parser
components work at this level. This mainly specifies a pipeline where the different
components are placed, startingwith the scanner and then containingDTD or XML
Schema validators, XInclude handler, etc. There parser processing pipelines are
created by a parser configuration class. We create such a parser configuration that
injects in the XNI pipeline a component that adds the default values similar with
how these default values are added by the DTD or XML Schema validators. Thus
all the further processing will see no difference no matter if the values were added
by the standard Xerces DTD or XML Schema validator components or by our Relax
NG default values processor component.

The component looks for a processing instruction that should appear before the
root element and that should specify the associated Relax NG schema. Right now
it supports the oXygen PI used to associate Relax NG schemas with documents. If
a schema is detected then the support for accessing default values is initiated and
then on each start element callback if there is a default attribute for that element
that is not present then it is added to the attributes list with the specified property
set to false to identify it as a default attribute.

3. DITA implementation in Relax NG

3.1. Schema development
The first step in creating the Relax NG schemas for DITA 1.2 was to start with the
DITA 1.2 DTDs and apply Trang to get equivalent schemas. However, there are
many DTDs and Trang will generate the same DTD multiple times and sometimes
with slightly different content depending on how the entities in the DTD get expan-
ded. Thus, after a first step of applying Trang on eachmain DTD (the .ent and .mod
modules get automatically converted) it is needed a second step that requires mer-

170

DITA NG – A Relax NG implementation of DITA

ging the multiple instances of the same schema and putting the schemas in a folder
structure similar with the one that is used for the DITA DTDs.

The rough schemas obtained after the conversion and merging need to be
changed to properly use Relax NG constructs for extensions and redefinitions.

Having the schemas in XML format (in the case of the Relax NG with XML
syntax) it is possible to develop Schematron rules that can check that the definitions
in the schemas are consistent.

3.2. Automatic conversion to Relax NG compact
Trang can convert without loss from Relax NG XML syntax to Relax NG compact
syntax.However, it does notmaintain the same folder structure. So converting from
Relax NG XML to Relax NG compact needs to be done though a script that invokes
the conversion on each main schema then moves all the files in the correct folder
structure (removing duplicates) and then updates all the schema references tomatch
the folder structure. This was implemented in an Ant build script.

3.3. Sample schemas / comparison with DTDs.
The DITA specification defines a base module and then a few standard specializa-
tions. The standard specializations however are in no way different from user spe-
cific specializations. Thus if we look at a standard specialization we can see also
how a user specific specializationwill look like andwe can compare the DTD based
specialization with the Relax NG one.

Let's look at some of the parts that define the Relax NG schemas and compare
them with how the same things are defined in the DTDs.

3.3.1. The domains attribute

This is again a default attribute that appears on the root element and specifies what
domains are included in that schema, In the case of DTDs it is defined like this

<!ENTITY included-domains
"&concept-att;
&hi-d-att;
&ut-d-att;
&indexing-d-att;
&hazard-d-att;
&abbrev-d-att;
&pr-d-att;
&sw-d-att;
&ui-d-att;

"

171

DITA NG – A Relax NG implementation of DITA

with careful definitions for each of these entities. There is no automated check to
test that is a domain is included the corresponding domain value also appears.

The domains attribute in Relax NG is defined like this
<define name="domains-atts" combine="interleave">
<optional>
<attribute name="domains"
a:defaultValue="(topic concept) (topic hi-d) (topic ut-d)
(topic indexing-d) (topic hazard-d) (topic abbrev-d)
(topic ui-d) (topic pr-d) (topic sw-d)"/>

</optional>
</define>

and each module contains a marker domain pattern like
<define name="domains-atts-value" combine="choice">
<value>(topic concept)</value>

</define>

which allows to automatically check with a Schematron schema that if a module is
included then the corresponding value is added to the domains attribute.

3.3.2. Automatic domain extensions

InDTDeach shell needs to specifywhat elements extend for example the pre element
<!ENTITY % pre "pre |

%pr-d-pre; |
%sw-d-pre;|
%ui-d-pre;

while in the case of Relax NG each domain adds automatically the pre element to
the corresponding pattern and themain RelaxNG schema only includes the domain

<include href="programmingDomain.mod.rng"/>

and the included schema contains:
<define name="pr-d-pre">
<ref name="codeblock.element"/>

</define>

<define name="pre" combine="choice">
<ref name="pr-d-pre"/>

</define>

Similarly the other included schemas define their contributions to the pre pattern.

172

DITA NG – A Relax NG implementation of DITA

3.3.3. Simpler schema construction

The order in which entities are declare in DTDs is very important as some need to
redefine others and thus each module is split between an .ent and an .mod file the
shell DTD needs to carefully include each module for a specific order. The Relax
NG schema only needs to include a single .mod file for a domain.

4. Processing Relax NG based DITA documents

4.1. Getting deliverables through DITA OT
What is needed to get the DITAOT to process DITA documents based on Relax NG
is to set a system property to specify the parser configuration that it should use for
Xerces. That needs to be set to a parser configuration that adds the RelaxNGdefault
values. For example on the command line that starts the DITA processing one can
just add:

-Dorg.apache.xerces.xni.parser.XMLParserConfiguration =
com.oxygenxml.relaxng.defaults.RelaxDefaultsParserConfiguration

In addition to this you need also to set the validate ant property to false (it defaults
to true) as otherwise DITAOTwill complain about a missing DTD or XML Schema
- this is something that DITA OT should fix, all they need is to set also the dynamic
validation feature for Xerces, that means it will force validation only if a DTD or
schema is specified.

4.2. Editing in oXygen
I experimentally integrated the Jing compiled with support for default attribute
values and switched all the parsers to use the Xerces component that adds default
attribute values and tried to edit a DITA based on Relax NG document in oXygen.
As expected everything works, the same level of support that is available for DITA
based on DTD or XML Schema is present with nothing missing, including being
able to correctly render the documents though CSS in the Author editing mode.

173

DITA NG – A Relax NG implementation of DITA

5. Conclusions and further work
The current state of development permits the complete workflow for working with
DITA based on Relax NG. The advantages are mainly on the clarity of the schemas
and on the ease of developing DITA specializations without going through the
parameter entities hell - it is very difficult to correct errors when the DTDs use
parameter entities.

Support for xml-model PI for schema association
Right nowonly the oxygen processing instruction is supported for RelaxNG schema
association. As the W3C has a recommendation that specifies how an xml-model
processing instruction can be used to specify this association the parser component
that adds default attribute values should use also that to find the associated Relax
NG schema.

Support for specifying the Relax NG schema from outside as a parser
property
Right now the RelaxNG schema is detected from aPI. It should be possible to specify
the schema also as a parser property so that the document does not need to have
an explicit reference to a schema. A similar support is available for XML Schema
for example.

174

DITA NG – A Relax NG implementation of DITA

Automatic conversion to DTDs
Right now theDITANGprovides automatic conversion fromRelaxNGXML syntax
to Relax NG compact syntax. A useful automatic conversion will be from Relax NG
to DTDs. This will enable authoring DITA specializations in Relax NG and then
still be able to use tools that do not provide support for Relax NG. This is a main
processing problem because that can be easily solved with a pre-processing step
that adds in the default attributes and then the documentswith all the defaults added
can be normally processed by any processing flow.

Some more work on the schemas
Define URIs and an XML Catalog to map those URIs to the actual schemas and use
the URIs when importing or referring to the schemas. Identify more cases when
Relax NG constructs can improve the design of the schemas.

Integration in DITA-OT
Ideally the RelaxNG implementationwill became part of theDITAOTdistribution.

6. References
The DITA NG is an open source project hosted on Google code with an Apache 2.0
license. The license was chosen to be the same to the DITA OT license to facilitate
an eventual merge with that project. The project main page is https://
code.google.com/p/dita-ng/

Jing is available also fromGoogle code http://code.google.com/p/jing-trang/.
The Xerces project is available from Apache Software Foundation http://

xerces.apache.org/xerces2-j/.
The Relax NG DTD compatibility specification is available from http://

www.oasis-open.org/committees/relax-ng/compatibility.html.

175

DITA NG – A Relax NG implementation of DITA

176

XQuery Injection
Easy to exploit, easy to prevent...

Eric van der Vlist
Dyomedea

<vdv@dyomedea.com>

Abstract

We all know (and worry) about SQL injection, should we also worry about
XQuery injection?

With the power of extension functions and the implementation of XQuery
update features, the answer is clearly yes and we will see how an attacker can
send information to an external site or erase a collection through XQuery in-
jection on a naive and unprotected application using the eXist REST API.

This was the bad news.
The good news is that it's quite easy to protect your application to XQuery

injection and after this word of warning, We'll discuss a number of simple
techniques (literal string escaping, wrapping values into elements or moving
them out of queries in HTTP parameters) to do so and see how to implement
them in different environments covering traditional programming languages,
XSLT, XForms and pipeline languages.

Keywords: XQuery, XQuery injection, security

Note
I am not a security expert and, as far as I know, the domain covered by this
paper is very new. The list of attacks and counter attacksmentioned hereafter
is nothingmore than the list of attacks and counter attacks I can think of. This
list is certainly not exhaustive and following its advises is by now mean a
guarantee that you'll be safe! If you see (or think of) other attacks or solutions,
drop me an email3 so that I can improve the next versions of this document.

Many thanks to Alessandro Vernet (Orbeon) for the time he has spent discussing
these issues with me and for suggesting to rely on query string parameters!

1. Code Injection
Wikipedia defines code injection as:

3 mailto:vdv@dyomedea.com

177

mailto:vdv@dyomedea.com
mailto:vdv@dyomedea.com

[Code injection is the exploitation of a computer bug that is caused by processing
invalid data. Code injection can be used by an attacker to introduce (or "inject")
code into a computer program to change the course of execution. The results of a
code injection attack can be disastrous. For instance, code injection is used by some
computer worms to propagate.4]

SQL injection5 is arguably the most common example of code injection since it
can potentially affect any web application or website accessing a SQL database in-
cluding all the widespread AMP6 systems.

The secondwell known example of code injection is Cross Site Scripting7which
could be called "HTML and JavaScript injection".

According to theWebHaccking IncidentDatabase8, SQL injection is the number
one attack method, involved in 20% of the web attacks and Cross Site Scripting is
number two with 13% suggesting that code injection techniques are involved in
more than 1 out of 3 attacks on the web.

If it's difficult to find any mention of XQuery injection on the web, it's probably
because so few websites are powered by XML databases but also because of the
false assumption that XQuery is a read only language and that its expression power
if limited and that the consequences of XQuery injection attacks would remain
limited.

This assumption must be revised now that XML databases start implementing
XQuery Update Facilities9 and have extensive extension function libraries which
let them communicate with the external world!

2. Example of XQuery Injection

2.1. Scenario
If you develop an application that requires user interaction, youwill probably need
sooner or later some kind of user authentication and if your application is powered
by an XML database, you may want to store user information in this database.

In the Java world, Tomcat comes with a number of so called authentication
"realms10" for plain files, SQL databases or LDAP but there is no realm to use an
XML database to store authentication information.

That's not really an issue since the realm interface is easy to implement. This
interface has been designed so that you can store the passwords either as plain text

4 http://en.wikipedia.org/wiki/Code_injection
5 http://en.wikipedia.org/wiki/SQL_injection
6 http://en.wikipedia.org/wiki/AMP_%28solution_stack%29
7 http://en.wikipedia.org/wiki/Cross-site_scripting
8 http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
9 http://www.w3.org/TR/xquery-update-10/
10 http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

178

XQuery Injection

http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/AMP_%28solution_stack%29
http://en.wikipedia.org/wiki/Cross-site_scripting
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://www.w3.org/TR/xquery-update-10/
http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/AMP_%28solution_stack%29
http://en.wikipedia.org/wiki/Cross-site_scripting
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://www.w3.org/TR/xquery-update-10/
http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

or encrypted. Of course, it's safer (and recommanded) to store encrypted passwords,
but for the sake of this example, let's say you are lazy and store them as plain text.
I'll spare you the details, but the real meat in you XML database realm will then be
to return the password and roles for a user with a given login name.

If you are using an XML database such as eXist with its REST API, you will end
up opening an URL with a Java statement such as:

Example 1. Naive REST URL construction

new URL("http://localhost:8080/orbeon/exist/rest/db/app/users/?_query=//►
user[mail=%27" + username + "%27]")

2.2. Attack
Let's put a black hat and try to attack a site powered by an XML database that gives
us a login screen such as this one:

Figure 1. Login Screen

We don't know the precise statement used by the realm to retrieve information nor
the database structure, but we assume that the authentication injects the content of
HTML form somewhere into an XQuery as a literal string and hope the injection is
done without proper sanitization.

We don't know either if the programmer has used a single or a double quote to
isolate the content of the input form, but since that makes only two possibilities, we
will just try both.

The trick is:
1. to close the literal string with a single or double quote
2. to add whatever is needed to avoid to raise an XQuery parsing error
3. to add the XQuery statement that will carry the attack
4. to add again whatever is needed to avoid to raise a parsing error
5. to open again a literal string using the same quote
Let's take care of the syntactic sugar first.

We'll assume that the XQuery expression is following this generic pattern:
<URL>?_query=<PATH>[<SUBPATH> = ' <entry value> ']

179

XQuery Injection

Our entry value can follow this other pattern:
' or <ATTACK> or .='

After injection, the XQuery expression will look like:
<URL>?_query=<PATH>[<SUBPATH> = '' or <ATTACK> or .='']

The inner or expression has 3 alternatives. The first one will likely return false (the
<SUBPATH> ismeant to be the relative path to the user name andmost applications
won't tolerate empty user names in their databases. The XQuery processorwill thus
pull the trigger and evaluate the attack statement.

The attack must be an XQuery "Expr11" production. That includes FLOWR ex-
pressions, but excludes declarations that belong to the prologue. In practice, that
means that we can't use declare namespace declarations and that we need to embed
extension functions call into elements that declare their namespaces.

What kind of attack can we inject?
The first kind of attacks we can try won't break anything but export information

from the database to the external world.
With eXist, this is possible using standard extension modules such as the HTTP

client module or the mail module. These modules can be activated or desactivated
in the eXist configuration file and we can't be sure that the attack will work but if
one of them is activated we'll be able to export the user collection...

An attack based on the mail module looks like the following:
<foo xmlns:mail='http://exist-db.org/xquery/mail'>
{

let $message :=
<mail xmlns:util='http://exist-db.org/xquery/util'>

<from>vdv@dyomedea.com</from>
<to>vdv@dyomedea.com</to>
<subject>eXist collection</subject>
<message>

<text>The collection is :
{util:serialize(/*, ())}

</text>
</message>

</mail>

return mail:send-email($message, 'localhost', ())
}
</foo>

A similar attack could send the content of the collection on pastebin.com using the
HTTP client module.

11 http://www.w3.org/TR/xquery/#prod-xquery-Expr

180

XQuery Injection

http://www.w3.org/TR/xquery/#prod-xquery-Expr
http://www.w3.org/TR/xquery/#prod-xquery-Expr

To inject the attack, we concatenate the start container string (' or), the attack
itself and the end container string (or .='), normalize the spaces and paste the
result into the login entry field.

The login screenwill return a login error, but if we've been luckywewill receive
a mail with the full content of the collection on which the query has been run.

If nothing happen, we might have used the wrong quote and we can try again
replacing the single quotes from our container string by double quotes.

If nothing happen once again, which is the case with the naive REST URL con-
struction used in this example, thismight be because the application does not encode
the query for URI. In that case, wemust do it ourselves and encode the string before
copying it into the entry field like the XPath 2.0 encode-for-uri() would do.

And then, bingo:

Figure 2. New message!

We have a new message with all the information we need to login:

Figure 3. The mail

181

XQuery Injection

The second kind of attack we can try using the same technique deletes information
from the database. A very simple and extreme one just erases anything from the
collection and leave empty document elements:

for $u in //user return update delete $u/(@*|node()

Note that in both cases, we have not assumed anything about the database structure!
SQL injection attacks often try to generate errors messages that are displayed

within the resulting HTML pages by careless sites and expose information about
the database structure but that hasn't been necessary so far.

On this authentication form, generating errors would have been hopeless since
Tomcat handles this safely and only exposes a "yes/no" answer to user entries and
sends errormessages to the server log but on other forms this could also be an option,
leading to a third kind of attacks.

If we know the database structure for any reason (this could be because we've
successfully leaked information in error messages, because the application's code
is open sourced or because you've managed to introspect the database using func-
tions such as xmldb;get-child-collections()12), we can also update user information
with forged authentication data:

let $u := //user[role='orbeon-admin'][1]
return (

update value $u/mail with 'eric@example.com',
update value $u/password with 'foobar'

)

This can be done by pasting the URL encoded value of the following string:

3. Protection
Now that we've seen the harm that these attacks can do, what can we do to prevent
them?

A first set of recommendations is to limit the consequences of these attacks:
1. Do not store non encrypted passwords.
2. Use a user with read only permissions to perform read only queries.
3. Do not enable extensions modules unless you really need them.
If the authentication realm of our example had followed these basic recommenda-
tions, our attacks would have had limited consequences and they are always worth
to follow but they do not block the possibility to perform attacks.

To block the attacks themselves, we need a way to avoid that the values that are
copied into the XQuery expressions can leak out of the literal strings where they
are supposed to be located.

12 http://demo.exist-db.org/exist/functions/xmldb/get-child-collections

182

XQuery Injection

http://demo.exist-db.org/exist/functions/xmldb/get-child-collections
http://demo.exist-db.org/exist/functions/xmldb/get-child-collections

3.1. Generic How To
The most common way to block this kind of attacks is to "escape" the dangerous
characters or "sanitize" user inputs before sending them to the XQuery engine.

In an XQuery string literal, the "dangerous" characters are:
1. The & that can be used to make references to predefined or digital entities and

needs to be replaced by the &
2. The quote (either simple or double) that you use to delimit the literal that needs

to be replaced by ' or "
And that's all! These two replacements are enough to block code injections through
string literals.

Of course, you also need to use a function such as encode-for-uri() so that the
URL remains valid and to block injections through URL encoding.

The second way to block these attacks is to keep the values that are entered
through web forms out of the query itself.

When using eXist, this can be done by encoding these values and sending them
as URL query parameters. These parameters can then be retrieved using the re-
quest:get-parameter()13 extension function.

Which of these methods should we use?
There is no general rules and it's also a matter of taste. That being said...
Sanitizing is more portable: request:get-parameter is an eXist specific function

that cannot be used with other databases.
Parameters may (arguably) be considered cleaner since they separate the inputs

from the request. They can also be used to call stored queries.

3.2. Java
Assuming that we use single quotes to delimit XQuery string literals, inputs can be
sanitized in Java using this function:

Example 2. Java Sanitize Function

static String sanitize(String text) {
return text.replace("&", "&").replace("'", "'");

}

Each user input must be sanitized separately and the whole query must then be
encoded using the URLEncoder.encode()method. Depending on the context, it may
also be a good idea to call additional method such as trim() to remove leading and
trailing space or toLowerCase() to normalize the value to lower case. In the authen-
tication realm, the Java snippet could be:

13 http://demo.exist-db.org/exist/functions/request/get-parameter

183

XQuery Injection

http://demo.exist-db.org/exist/functions/request/get-parameter
http://demo.exist-db.org/exist/functions/request/get-parameter
http://demo.exist-db.org/exist/functions/request/get-parameter

Example 3. Authentication Realm Sanitized

String query = URLEncoder.encode("//user[mail='" + ►
sanitize(username.trim().toLowerCase()) + "']", "UTF-8");
reader.parse(new InputSource(
new URL("http://localhost:8080/orbeon/exist/rest/db/app/users/?_query=" + ►

query).openStream()));

To use request parameters the query and each of the parameters need to be encoded
separately:

Example 4. Authentication Realm Using Query Parameters

String query = URLEncoder.encode(
"declare namespace request='http://exist-db.org/xquery/request';//►

user[mail=request:get-parameter('mail', 0)]",
"UTF-8");

String usernameNormalized = URLEncoder.encode(username.trim().toLowerCase(), ►
"UTF-8");
reader.parse(new InputSource(
new URL("http://localhost:8080/orbeon/exist/rest/db/app/users/?mail="+ ►

usernameNormalized + "&_query=" + query).openStream()));

To query is now a fixed string that could be stored in the eXist database or encoded
in a static variable.

3.3. XPath 2.0 Environments
In environments that relies on XPath 2.0 such as XSLT 2.0, XProc, XPL,... the same
patterns can be used if we replace the Java methods by their XPath 2.0 equivalents.
In XSLT 2.0 it is possible to define a sanitize function similar to the onewe've created
in Java but this isn't the case for other host languages and we'll skip this step.

To sanitize user inputs in an XPath 2.0 host language, we need to add a level of
escaping because the & character is not available directly but through the & entity
reference. The XQuery query combines simple and double quotes that are not very
easy to handle in a select attribute (even if the escaping rules of XPath 2.0 help a
lot) and the query pieces can be put into variables for convenience. That being said,
the user inpu can be sanitized using statements such as:

Example 5. XQuery Sanitized in XSLT

<xsl:variable name="usernameSanitized"
select="lower-case(normalize-space(replace(replace($username, '&', ►

'&amp;'), '''', '&apos;')))"/>
<xsl:variable name="queryStart">//user[mail='</xsl:variable>
<xsl:variable name="queryEnd">']</xsl:variable>

184

XQuery Injection

<xsl:variable name="query" select="encode-for-uri(concat($queryStart, ►
$usernameSanitized, $queryEnd))"/>
<xsl:variable name="userInformation"

select="doc(concat('http://localhost:8080/orbeon/exist/rest/db/app/users/►
?_query=', $query))"/>

To use request parameters, simply write something such as:

Example 6. XQuery Using Query Parameters in XSLT

<xsl:variable name="usernameNormalized" ►
select="lower-case(normalize-space($username))"/>
<xsl:variable name="query">

declare namespace request='http://exist-db.org/xquery/request';
//user[mail=request:get-parameter('mail',0)]</xsl:variable>

<xsl:variable name="userInformation"
select="doc(concat('http://localhost:8080/orbeon/exist/rest/db/app/users/►

?mail=',
encode-for-uri($usernameNormalized) , '&_query=', ►

encode-for-uri($query)))"/>

Here again; the choice to normalize spaces and convert to lower case depends on
the context.

3.4. XForms
The problem is very similar in XForms with the difference that XForms is meant to
deal with user input and that the chances that you'll hit the problem are significantly
bigger!

The rule of thumb here again is: never inject a user input in an XQuery without
sanitizing it or moving it out of the query using request parameters.

When using an implementation such as Orbeon Forms that supports attribute
value templates in resource attributes, it may be tempting to write submissions
such as:

Example 7. Unsafe XForms Submission

<xforms:submission id="doSearch" method="get"
resource="http://localhost:8080/orbeon/exist/rest/db/app/users/?_query=//►

user[mail='{instance('search')}']"
instance="result" replace="instance"/>

Unfortunately, this would be exactly similar to the unsafe Java realm that we've
used as our first example!

185

XQuery Injection

To secure this submission, we can just adapt one of the two methods used to
secure XSLT accesses. This is especially straightforwardwith theOrbeon implement-
ation that implements an xxforms:variable extension very similar to XSLT variables.
You can also gowith FLOWRexpressions or use xforms:bind/@calculatedefinitions
to store intermediate results and make them more readable but it is also possible
to write a mega XPath 2.0 expression such as this one:

Example 8. XForms Submission Sanitized

<xforms:submission id="doSearch" method="get"
resource="http://localhost:8080/orbeon/exist/rest/db/app/users/►

?_query={encode-for-uri(concat(
'//user[mail=''',
lower-case(normalize-space(replace(replace(instance('search'), ►

'&', '&amp;'), '''', '&apos;'))),
''']'))}"

instance="result" replace="instance"/>

The same methods can be applied using query parameters:

Example 9. XForms Submission Using Query Parameters in XSLT (verbose way)

<xforms:submission id="doSearch" method="get"
resource="http://localhost:8080/orbeon/exist/rest/db/app/users/?mail={

encode-for-uri(lower-case(instance('search')))
}&_query={
encode-for-uri('declare namespace request=''http://exist-db.org/►

xquery/request'';
//user[mail=request:get-parameter(''mail'',0)]')}"

instance="result" replace="instance"/>

This is working, but we can domuch simpler relying on XForms to do the encoding
all by itself!. The complete XForms model would then be:

Example 10. XForms Submission Using Query Parameters in XSLT (XForms
friendly)

<xforms:model>
<xforms:instance id="search">

<search xmlns="">
<mail/>
<_query>declare namespace request='http://exist-db.org/►

xquery/request';
//user[mail=request:get-parameter('mail',0)]</_query>

</search>
</xforms:instance>

186

XQuery Injection

<xforms:instance id="result">
<empty xmlns=""/>

</xforms:instance>
<xforms:submission id="doSearch" method="get" ►

ref="instance('search')"
resource="http://localhost:8080/orbeon/exist/rest/db/app/users/"

instance="result" replace="instance"/>
</xforms:model>

3.5. Related Attacks
Wehave explored in depth injections targeted on XQuery string literals.What about
other injections on XML based applications?

3.5.1. XQuery Numeric Literal Injection

It may be tempting to copy numeric input fields directly into XQuery expressions
that's safe if and only if these fields are validated. If not, the techniques that we've
seenwith string literals can easily be adapted (in fact, it's even easier for your attack-
ers since they do not need to bother with quotes!).

That's safe if you pass these values within request parameters but you will
generate XQuery parsing errors if the input doesn't belong to the expected data
type. Also note that request:get-parameter()14 returns string values and may need
to be casted in your XQuery query.

In both cases, it is a good idea to validate numeric input fields before sending
your query!

When using XForms, this can be done by binding these inputs to numeric data-
types. Otherwise, use whatever language you are programmingwith to do the test.

If you use literals and don't want (or can't) do that test outside the XQuery query
itself, you can also copy the value in a string literal and explicitly cast it into the
numeric data type you are using XQuery functions and operators. The string literal
then needs to be sanitized like we've already seen.

3.5.2. XQuery Direct Element Injection

Literals are the location where user input is more likely copied in XQuery based
applications (they cover all the cases where the database is queried according to
parameters entered by our users) but there are cases where you may want to copy
user input within XQuery direct element constructors.

14 http://demo.exist-db.org/exist/functions/request/get-parameter

187

XQuery Injection

http://demo.exist-db.org/exist/functions/request/get-parameter
http://demo.exist-db.org/exist/functions/request/get-parameter

One of the use cases for this is XQuery Update Facility which update primitives
may contain direct element constructors in which it is tempting to include input
fields values.

Here again you're safe if you use request parameters but you need to sanitize
your input if you're doing direct copy.

The danger here isn't that much delimiters but rather enclosed expressions that
let your attacker include arbitrary XQuery expressions.

The < also needs to be escaped as it would be understood as a tag delimiter as
well, of course as the &..

That makes 4 characters to escape:
1. &must be replaced by &

2. <must be replaced by <

3. {must be replaced by {{

4. }must be replaced by }}

3.5.3. XUpdate injection

XUpdate is safer than XQuery Update Facility since it has no support for enclosed
expressions. That doesn't mean that & and < do not mean to be escaped but since
XUpdate documents are well formed XML document, the tool or API that you'll be
using to create this document will take care of that if it's an XML tool

Unfortunately XUpdate uses XPath expressions to qualify the targets where
updates should be applied and if you use a database like eXist which supports
XPath 2.0 (or XQuery 1.0) in these expressions this opens a door for attacks that are
similar to XQuery literal injections.

Again, if you use request parameters you'll be safe.
If not, the sanitization to apply is the same than for XQuery injection except that

the XML tool or API that you'll be using should take care of the XML entities.

3.5.4. *:evaluate() injection

Extension functions such as saxon:evaluate (or eXist's util:eval()) are also prone
to attacks similar to XQuery injection if user input is not properly sanitized.

The consequences of these injections may be amplified by extension functions
that provide read of write access to system resources but even vanilla XPath can be
harmful with its document() function that provides read access to the file system as
well as network resources that may be behind the firewall protecting the server.

These function calls need to be secured using similar techniques adapted to the
context where the function is used.

188

XQuery Injection

Bibliography
[1] Wikipedia: Code injection.http://en.wikipedia.org/wiki/Code_injection
[2] The Web Application Security Consortium: Web-Hacking-Incident-Database.

http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

189

XQuery Injection

http://en.wikipedia.org/wiki/Code_injection
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

190

XQuery in the Browser reloaded
Riding on the coat-tails of JavaScript

Thomas Etter
ETH Zurich

<etterth@student.ethz.ch>

Peter M. Fischer
ETH Zurich

<peter.fischer@inf.ethz.ch>

Dana Florescu
Oracle

<dana.florescu@oracle.com>

Ghislain Fourny
ETH Zurich

<gfourny@inf.ethz.ch>

Donald Kossmann
ETH Zurich

<donaldk@inf.ethz.ch>

Abstract

Over the years, the HTML-based Web has become a platform for providing
applications and dynamic pages that have little resemblance to the collection
of static documents it had been in the beginning. This was made possible by
the introduction of client-side programmable browsers. Because XML and
HTML are cousins, XML technologies can be almost readily adapted for client-
side programming. In the past, we suggested to do so with XQuery and imple-
mented it as a plugin. However, using a plugin was seen as an insurmountable
obstacle to a wider adoption of client-side XQuery.

In this paper, we present a version of XQuery in the Browser without any
plugin, needing only JavaScript to interpret XQuery code. This enables use
even on mobile devices, where plugins are not available. Even though our
current version is still considered to be at an alpha stage, we were able to deploy
it successfully on most major desktop and mobile browsers. The size of the JS
code is about 700KB. By activating compression on the web server (reducing
the transfered data to less than 200 KB) as well caching on the client using
the XQuery engine does not cause noticable overhead after the initial loading.

191

In addition, we are already reaching a large level of completeness and
compliance, more than 98.6 percent correct tests at the 1.0.2 XQuery Test
Suite. We have not yet done formal testing on Update and Full text, but plan
to do so in the near future.

Keywords: XML, XQuery, Browser

1. Motivation
Currently, there is a growing perception that the Web and XML communities are
drifting apart. One general concern is that up-to-date XML technologies (such as
XSLT 2.0 or XQuery 1.0) are not seeing any support in the browsers, thus negating
much of their potential.

Web pages are based on HTML. XML and HTML are both derived from SGML,
and therefore havemany similarities. This iswhy programming languages for XML
can also be used for HTML with some adjustments. We have proposed the use of
XQuery as a client-side programming language. XQuery seamlessly supportsHTML
navigation and updates, and as it is already used on the server (business logic,
database querying), moving code between the layers is almost straightforward.

Last year, at XML Prague 2010 [8], the XQuery in the Browser plugin [7] was
presented as a possible solution. It provides full XQuery support on the client side
by embedding theZorbaXQuery engine [6] into a number of contemporary browsers.
While the applications and usability were convincing, using a (binary) plugin was
seen as insurmountable obstacle to a wider adoption, since even well-established
plugins like Flash or Java are no longer available on major platforms, e.g. on the
growing number of mobile devices.

Instead, browser vendors have been investing significantly into the quality of
their JavaScript implementations [1] [3] [9], achieving orders of magnitude better
performance. As a result, JavaScript has become a viable platform for implementing
XQuery. Since writing an XQuery engine from scratch is a major effort, we opted
for translating MXQuery [4], an existing Java-based engine, using Google's Web
Toolkit [2].

A similar, albeit independent approach has been taken byMichael Kay [10]. The
target language is XSLT 2.0 instead of XQuery, yet the overall approach, design and
results are very similar to ours.

2. Current approaches for client-side programming

2.1. Container-based approaches: Java, Flash, Silverlight
For a long time, the most popular approach of programming complex applications
in the browser has been to use a self-contained runtime environment like Java, Flash

192

XQuery in the Browser reloaded

or Silverlight. While such an approach provides high performance and effective
developer support, it does not integrate well with HTML.

To make matters worse, the runtimes have to be downloaded, installed and
updated separately onmost platforms.Onmostmobile devices they are not available
at all, on desktop system privileged user rights are often required for installation.

2.2. Javascript: DOM, Events, Frameworks
JavaScript is nowadays by far themost commonly used programming language for
client-side website programming. Its greatest advantage is that it is available in all
modern browsers. Because of the popularity of JavaScript, a lot of resources in
browser development go into optimizing its execution speed [1] [3] [9] and in the
last few years impressive performance improvements have been achieved.

Another advantage is being able to manipulate the homepage directly. Unlike
in XSLT, where the transformation operates outside the current page, JavaScript
allows editing the Web site directly through the DOM (Document Object Model).

Example 1. Javascript embedded in HTML page

<html>
<head>
<script type="text/javascript">
window.onload = function(){
var a = document.createElement('div');
a.textContent = 'some text';
document.body.appendChild(a);

}
</script>

</head>
<body>
</body>
</html>

This Web site will display "some text". The user interaction with the browser is
made accessible by the so-called "DOMevents", e.g. a button press,mousemovement
or keyboard input. JavaScript can listen to these events and trigger actions based
on them.

Example 2. Listening for an event

var button = document.getElementById('button1');
button.onclick = function (){

window.alert('button 1 was pressed');
}

193

XQuery in the Browser reloaded

Furthermore, data can be downloaded, as long as it comes from the samedomain.

Example 3. Retrieving a document using XMLHttpRequest

var req = new XMLHttpRequest();
//the last argument determines wheter the request asynchronously
req.open('GET', 'http://www.example.org/file.txt', false);
req.send(null);
if(req.status == 200)//HTTP OK

window.alert(req.responseText);

While the combination of DOMmanipulation, event handling and (background)
downloads provides a powerful basis for rich Web applications, these APIs are at
a quite low level of abstraction and not fully standardized across browsers. Therefore
libraries which hidemany of the compatibility issues and provide higher-level APIs
as well as UI components have gained popularity, examples are jQuery or Dojo.

2.3. Cross-Compilation: Google Web Toolkit
The Google Web Toolkit (GWT) provides a full framework for creating web applic-
ations which allows a developer to write most of the code in Java. It offers widgets
and RPC mechanisms, but the main innovation is a Java to JavaScript Compiler.
GWT implements a subset of the Java standard library in JavaScript, thus allowing
reuse of code on both the client and server side. Means for dealing with multiple
browser versions are also integrated in GWT.

As our approach makes use of GWT to compile our code to JavaScript, we will
describe GWT in more details in Section 4.1.2.

2.4. XML-based approaches: XSLT and XQuery in the Browser

2.4.1. XSLT

XSLT (eXtensible Stylesheet Language Transformations) is a declarative language
to transform XML documents. While there is support for XSLT in many browsers,
it suffers from several drawbacks, making it unsuitable as a general, complete
solution for Web client developement. The main problem is that current browsers
only support XSLT 1.0, often even in incompatible dialects. Since XSLT 1.0 is more
than 10 years old, a lot of important functionality available in XSLT 2.0 is missing.
In addition, XSLT in the browser runs completely independently from theWeb site
it belongs to. An XSL Transformation just receives an XML node and outputs an
HTML/XML document or text, depending on the output type set, but does not in-
teract with the Web site.

194

XQuery in the Browser reloaded

Example 4. An XSL transformation

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">

<xsl:copy-of select="//b/text()"/>
</xsl:template>

</xsl:stylesheet>

In the browser, an XMLTransformation can be launched from a JavaScript program.

Example 5. A JavaScript sample which will execute an XSL transformation

//xsl holds a stylesheet document
//xml holds the XML document
xsltProcessor=new XSLTProcessor();
xsltProcessor.importStylesheet(xsl);
resultDocument = xsltProcessor.transformToDocument(xml);

Another variant to use XSLT in the browser is by including
<?xml-stylesheet href="stylesheet.xsl" type="text/xsl" ?>

at the beginning of the page, then the page itself is being used as the input for the
transformation and it will take the output as the new page. This variant only runs
the transformation once when the page is loaded and therefore offers no means for
changing the page after it has loaded.

2.4.2. XQuery in the Browser plugin

Last year, we presented the latest release of our XQIB browser plugin [8]. It offers
the functionality of XQuery inside the browser. Unlike the plugins presented before,
it is not just a box inside a browser, but integrates seamlessly into the HTMLDOM.
It is possible tomanipulate thewebsite using all updating XQuery operations (insert,
replace, remove, rename). It also allows subscribing event handlers to DOMevents.

While XQIB combines XML technologies, declarative programming and
browser/DOM interaction, it suffers from being a plugin: it needs to be manually
installed and will only have limited availability.

3. XQuery in the Browser, JavaScript Edition: API and Functions
This section presents the API we suggest for programming browser applications.
In general, most functions of XQuery 3.0, XQuery Update Facility and XQuery
Scripting Extension are supported.

195

XQuery in the Browser reloaded

3.1. An example
Here is an example of a page containing XQuery code.

Example 6. Simple XQIB example

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript"

src="mxqueryjs/mxqueryjs.nocache.js"></script>
<script type="application/xquery">
module namespace mod = "http://www.example.com/module";

declare sequential function module:messagebox($evt, $loc) {
b:alert(//div[1])

};
</script>
<script type="application/xquery">
import module namespace my = "http://www.example.com/module";

b:addEventListener(b:dom()//input, "onclick", xs:QName("my:messagebox"))
</script>

</head>
<body>
<div>some text</div>
<input type="button" value="Button"/>

</body>
</html>

This will display a page containing a button. When pressing the button, it will
display a message box with "some text".

3.2. Program structure
XQuery code can be included in HTML script tags with aMIME type application/
xquery. A page may contain several of these tags, and each of these may contain
either a main module or a library module. The previous example is a page with a
main module and a library module. The main module imports the library module.

The semantics of a librarymodule is that it is made available in the context. Any
other module on the page may import it. We also allow importing modules from
an external location instead of declaring in a script tag. In this case, a location hint
needs to be specified, and the same-origin policy will be obeyed:

import module namespace m = "http://www.xqib.org/module" at "module.xquery";

The semantics of a main module is that it will be evaluated as soon as the page
has finished loading. The XDM returned by the query body is then inserted in the

196

XQuery in the Browser reloaded

page after the script tag. Of course a main module may define functions (local
namespace), but their scope will only be this module itself, and they cannot be im-
ported by other module.

For eachmodule, the XHTMLnamespace is set as the default element namespace.
A built-in module with browser-specific functionality, the browser module, is also
imported.

3.3. Browser-specific functions
We have defined the following browser specific functions in the namespace
http://xqib.org/browserapiwith the prefix b:

Table 1. Functions in the browser namespace

SemanticsSide-ef-
fecting?

Signature

returns the currently displayed docu-
ment

nob:dom() as document()

returns the value of the stylewith the
name $stylename of element $what

yesb:getStyle($what as
element(),$stylename as
xs:string) as xs:string

sets the style with the name
$stylename of element $what to
$newvalue

yesb:setStyle($what as element(),
$stylename as xs:string,
$newvalue as xs:string)

Adds an Eventhandler to the ele-
ment(s) $where, which listens for the
event with the name $eventname.
When the event is fired, it will call
the function with the QName
$listener and arity 2

yesb:addEventListener($where as
element()+, $eventname as
xs:string, $listener as
xs:QName)

Removes an event listener previously
added through b:addEventListener
from the element(s) $where

yesb:removeEventListener($where as
element()+, $eventname as
xs:string, $listener as
xs:QName)

Displays a message box with the
content $message

yesb:alert($message as xs:string)

Additionally, we also support the EXPath HTTP library for data retrieval. It has the
same limitations as fn:docwhich are described in the next paragraph.

197

XQuery in the Browser reloaded

3.4. Functionality with different semantics
As there is no file system in the browser, the semantics of module import with a
file location hint and of fn:doc($uri as xs:string) are defined as follows. If a rel-
ative URI is provided, the library will download the file automatically using an
XMLHttpRequest.

If an absolute URI is given, the library will also try to retrieve it. This may fail
due to security constraints, namely the same-origin policy, which only allows re-
quests coming from one page to access the same host at the same port using the
same protocol as was used on that page. This policy may be circumvented with
HTTP headers.

As we use the JavaScript classes for regular expressions, not all options are
supported. The option for dot-all matching is currently not available because it is
not supported by the JavaScript RegEx classes, but an emulation will probably be
provided in the future.

3.5. Not implemented functionality
We have chosen not to implement schema support to keep the code smaller, and
because we were not aware of any client-side schema validator when the project
was started.

Also missing is the function fn:normalize-unicode, because neither GWT nor
any third-party libraries provide support for it with reasonable code footprint.

At the time where this paper is written, the newer main/library module API is
not yet implemented, but we are working on it. Samples are available at [5].

4. Implementation

4.1. Background

4.1.1. MXQuery

MXQuery is an XQuery enginewritten in Javawith the goal of good portability and
a small footprint, targeting also mobile and embedded devices. It supports a broad
range of XQuery-related standards, including XQuery 1.0, the Update Facility,
Fulltext and parts of XQuery 3.0 and Scripting. It is implemented in Java and
available as open source with an Apache 2.0 License.

The design ofMXQuery is inspired by query processing/database architectures,
using an iterator-style query plan generated by a parser/optimizer frontend.
Therefore, it is well suited for streaming execution, keeping the runtime memory
needs low unless blocking or nested operations require materialization.

198

XQuery in the Browser reloaded

4.1.1.1. Tokenstream-based Data Model

MXQuery uses a Tokenmodel for its XDMrepresentation, similar to the BEA/XQRL
XQuery engine. Tokens are conceptually very similar to parse events (SAX, StAX),
but are objects which directly carry all relevant information instead of a parse type
identifier.

4.1.1.2. Iterators

All functions, XPath selectors and other operators in MXQuery are implemented
through iterators. An iterator takes as input zero (an iterator can return a constant
value) or more iterators and outputs a token stream. Iterators are then combined
into a tree/DAG to represent the query.

4.1.1.3. Stores

WhileMXQuery tries to stream tokens asmuch as possible, inmany cases additional
functionality is needed, such updates, full text or stream storage. A store provides
an interface for getting an iterator for an XDM instance and for additional operations
like indexed path access, applying updates or fulltext retrieval. XDM tokens in
MXQuery carry a link to their store in their node IDs (see also Section 4.2.3).

4.1.1.4. Customizability and Platform Abstractions

In order to easily adapt MXQuery for environments with restricted processing re-
sources, several components can be detached: Most of the functions and extension
modules are loadeddynamically. Stores for particular functionality (streams, fulltext,
updates) are instantiated on demand and can be omitted when this functionality is
not needed. Furthermore, even the parser/compiler frontend can be removed if not
interactive compilation is needed. Within the scope of this prototype, we have not
exercised these options. If an additional code/functionality reduction is required,
some of these options will become useful.

Since the Java language space has become fragemented over various version of
the Micro Edition (J2ME), the Standard Edition and newer Google proposals such
as Android/Dalvik, Google App Engine and GWT, MXQuery aims to use a subset
of language expressions and library classes that is broadly available. At the beginning
of the XQIB-JS project, MXQuery had an abstraction layer that hid the differences
between J2ME, J2SE 1.4 and J2SE 1.5/1.6. As it turned out, Google has chosen to
make GWT a different Java subset than J2ME, so several of the abstractions were
not sufficient.

199

XQuery in the Browser reloaded

4.1.2. Google Web Toolkit (GWT) Fundamentals

GWT provides a Java API (as a subset of J2SE) which exposes several browser fea-
tures, most prominently DOM access to the browser. The application and the re-
quired libraries need to be available as Java source code. This Java code is then
translated into Javascript, creating by default a monolithic code file. Since the
available functionality varies from browser to browser, several different versions
of the code are generated.At runtime, a small Javascript file projectname.nocache.js
has to be included in theWeb site whichwill detect the browser type and download
the actual application Javascript code file, encapsulated in an HTML file. This file
is loaded into an IFrame using an XMLHttpRequest and inserted into the current
page using the JavaScript function document.write. Therefore the same-origin policy
applies, preventing central hosting of an GWT-based library. Furthermore, this
function is only available inHTML and thereforeGWT and our library can currently
not be used on XHTML pages.

4.2. Selected Implementation Aspects
When translatingMXQuery using, we initially encountered various compiler errors
(see Section 4.2.6) due to the library differences to either J2ME or J2SE. We solved
them by removing functionality and gradually reintroducing it until we could run
some basic queries. Once we had a version that compiled, we added the integration
with the browser rewrite/added code to re-enable the remaining missing features.

4.2.1. Solution architecture

Similar to the original XQIB plugin, we use the Store abstraction as a means to en-
capsulate browser-specific aspects, as shown in Figure 1. From an MXQuery point
of view, theDOM is yet another store that supports full path navigation and updates.
This store is created when the b:dom()function is present in the code. If other XDM
instances are needed, normal MXQuery stores are generated.

4.2.2. Mapping the DOM to MXQuery-tokens

The DOM (Document Object Model) is the fastest way of accessing the data in a
browser. A website is mapped into a DOM tree when it is loaded, which can then
be accessed through JavaScript.

The XHTML DOM and the HTML DOM have some small differences. XHTML
is naturally namespace-aware because it is derived from XML, whereas HTML is
not. To make the DOM implementations compatible again, the W3C has specified
that all nodes in a HTML document should be in the XHTML namespace
http://www.w3.org/1999/xhtml/. While node names in XHTML are defined to be
lowercase, the standard implementation in HTML for node.nodeName has always

200

XQuery in the Browser reloaded

Runtime

XML/XDM Store DOM5 HTML Store

D
is
pa

tc
he

r

DOM EventDOM5 HTMLXML XML

Figure 1. XQIB Architecture Overview

been to return an uppercase value. To avoid breaking existing code, this is how the
attributes are defined in HTML5.

Table 2. DOM5 HTML attributes and their use for traversal

Used forSemanticsFunction
retrieving the namespace of
an attribute/element

hardcoded to http://
www.w3.org/1999/xhtml/

String node.namespaceURI

retrieving the name of an
attribute/element

node's name without
namespace in lowercase

String node.localName

not usedreturns node.localName in
uppercase

String node.nodeName,
Stringelement.tagName

retrieving the attributes of
a Node

NamedNodeMap
node.attributes

axis navigationNode node.firstChildNode
node.nextSiblingNode
node.parentNode

Therefore, we can just use node.localName and node.namespaceURI to get the same
behavior without difference between an XHTML and an HTML document.

An important decision in the design of XQIB was the linking between the DOM
as amaterialized, updateable tree and and the stream of immutable tokens. Instead
of building a "shadow" structure of tokens that are generated when traversing the
DOM, but is no longer connected, each token links explicitly back to its orginating
DOM node, and also draws as much information as possible from there instead of
copying it, as shown in Section 4.1.1.1. By doing so, the tokens stay in sync with the

201

XQuery in the Browser reloaded

DOM, and we only create them when there is a specific access to the DOM, e.g. by
navigating a specific axis. We changed to Token implementation of MXQuery to
support this new kind of Token alongside to the existing, "eager"/"standalone"
tokens.

body

Hello, World

div

start body start div text Hello, World end div ...

DOM Token Stream

...

Figure 2. Mapping HTML DOM to a lazy Token Stream

4.2.3. Node IDs

XDMmandates that every node has a unique identifier, whichmay also encode the
document order or provide structural informations, e.g. parent-child relationships.
Node IDsmay not change during the execution of a query. In the standalone applic-
ation, MXQuery generates IDs for the nodes while generating XDM from input or
constructing new elements, typically using ORDPath Dewey IDs.

We also considered this approach for the DOM5 HTML wrapping , but then
decided to utilize existing means from the DOM in order to avoid the overhead of
generating new identifiers and the effort of keeping the DOM and the XDM identi-
fiers synchronized

DOM nodes in JavaScript are uniquely identifiable using the Node interface. We
therefore can compare two nodes for equality using the Java == operator. It will
correctly tell us whether they are referencing the same node no matter how we re-
trieved the references. To compare by document order, the DOM nodes can also be
used. The DOM Level 3 Core offers the function compareDocumentPosition which
allows to compare two nodes directly. Where this interface is not available we can
fall back to an alternative method, based on the Lowest Common Ancestor (LCA).
The LCA can be found bywalking through the tree up to the root while memoizing
intermediate nodes. From the root node, we then compare the intermediate node
lists of the two nodes. The LCA is the last node which we can find in both lists. If
one of the nodes is the LCA, we know the document order. Otherwise we can look
at the children of the LCA and determine which path comes first.

Using the nodes themselves as IDs, we can reduce runtime overhead and when
compareDocumentPosition is available, we also have a very efficientway of ordering
nodes.

202

XQuery in the Browser reloaded

4.2.4. Applying Updates

When we have an updating query, we get as result of the query a PUL (Pending
Update List), containing all updates that need to be applied. Performing these up-
dates on DOM5 HTML in a correct and efficient way needs some special consider-
ations: Deletion is the most straightforward primitive, since we can just call the
node's removeFromParent() function. For insertion, the token stream needs to be
converted into DOM nodes. It is very important not to insert an element into the
DOM before all its children have been generated, since changes to the DOM cause
a browser to trigger a time-consuming and possibly user-visible repaint. Replaces
are done by inserting the source before the target, followed by removing the target.
This way, the implementation for replace is very short and we avoid code duplica-
tion. Renaming of elements is a feature which is not natively supported by the
browser's DOM, so we use a workaround: We first create a new node with the de-
sired name. Second, we set all attributes from the old node on the new node. Third,
we set the parent of all children of the old node to the new node. Finally, we replace
the old node with the new node.

4.2.5. Handling Events

In order to be able to use XQuery in the Browser to implement interesting web ap-
plications,we need access to theDOMevents. These include keypresses,mouseclicks
and similar functionality. For this, we provide functions to add and remove event
handlers in our browser namespace b: (more about that in Section 3.3). To add a
function to handle certain events on an element, we need three arguments: the ele-
ments on which the event should be observed, the event name and the identifi-
er/name of a function which will be called when the event is triggered. Since
MXQuery does not support Function Items yet, we have opted to take QNames as
function identifers.

For a complete sample see Section 3.2. We will now take a look at what happens
when we register an event handler.

b:addEventListener(b:dom()//input, "onclick", xs:QName("local:somehandler"))

Inside XQuery in the Browser, there is one DOM event handler function which
handles all incoming DOM events and dispatches them to the relevant XQuery
functions. It also aggregates the subscriptions from the XQuery code and pushes
the relevant subscriptions into theDOM, so that only the necessary events are being
generated. To keep track of which event handlers are currently registered, there is
a Hashmap, which has the following declaration:

static HashMap<NodeAndEventName, List<String/*a QName*/>> handlers;

NodeAndEventName is a helper class to provide means to use a node reference
and an event name as a key. Sowhenwe get an event in our universal event handler,

203

XQuery in the Browser reloaded

we get the target node and the event name from the DOM event object. Then all
functions in the list are invoked.

An advantage of having only one function is that it is easy to unsubscribe events.
When e.g.

b:removeEventListener(b:dom()//input,"onclick","local:somehandler")

is called, the universal event handler gets the list of handlers for the pair (element,
"onclick"). It removes "local:somehandler" from the list. If the list is empty now, we
can remove the event handler in the browser using the JavaScript function
element.removeEventListener.

To resolve the function name and to call a function, we utilize the the runtime
function callmechanismofMXQuery, treating the pre-compiled query like amodule.

4.2.6. Compatibility issues

4.2.6.1. Missing functionality in GWT

For many browser functions, GWT only supports the functionality available on all
browsers. This reduces many functions for DOM access to the level of Internet Ex-
plorer 6. This forced us to rewrite or extendDOMclasses likeNode or Elementwith
functionality such as element.setAttributeNS or element.localName.

4.2.6.1.1. Missing Java Functions

In GWT, we do not have a Java VM (Virtual Machine), thus the class-loading ability
is missing. The mainline MXQuery relies heavily on on-demand loading of classes
for functions and operators, in particular for extensibility. We needed to hardcode
all functions as a big Java file, transformed from the XML metadata files used in
MXQuery.

Another missing area are I/O classes. There is no implementation of
OutputStream, PrintStream,etc. available, sowe had to include these classses from
the Apache Harmony project.

Furthermore, noCalendar class is included in GWT.This class backs most date
and time operations in MXQuery. The Calendar classes from the Apache Harmony
project depend on IBM's internationalization library (ICU)which is nearly impossible
to port to GWT. Therefore we first used a third party Calendar emulation,
gwt-calendar-class, which uses the GWT internationalization features to provide
the full functionality provided by Java's Calendar. This class fixed a lot of tests, but
included information for all time zones, which increased the file size by 300 KB and
increased the loading time by more than a second.

Fortunately, the XPath Data Model (XDM) does not require daylight savings
time awareness. So the exact time zone does notmatter to an XQuery program, only

204

XQuery in the Browser reloaded

the time offset to the UTC. We therefore kept the API of gwt-calendar-class, but
re-implemented the relevant functionality, significantly reducing the code footprint
and the initialization delay.The current implementation is very close to the XDM
specification and has good test conformance (see Section 5.1.2).

This will need to be further improved to support conversion to the end user's
time zone. Also, the implementation is leap second-unaware andwill therefore have
small errors when computing durations.

4.2.6.2. Deviating from the standard

In some cases, fully conforming to the standard would increase the download size
a lot and the performancewould decrease drastically. One of these cases are regular
expressions. GWTdoes not provide the java.util.regex package because it would
be difficult to implement it correctly. As JavaScript already provides regular expres-
sion functionality, we just used that one. It may not offer all functions (e.g. the dot-
all option is missing), but its performance is much faster than an implementation
in JavaScript because it can be optimized by the browser supplier.

The syntax of a conforming regular expression implementation could also be
simulated. If we take themissing dot-all option, this could be emulated by replacing
all dots in the search string with [\s\S].

5. Evaluation

5.1. XQuery Standard Compliance
For testing an XQuery implementation, the W3C provides the XQTS (XQuery
TestSuite), an extensive testing framework. We used the version 1.0.2 for our tests,
because it was the newest one available when we started the project.

5.1.1. Testing with the XQTS

TheXQTS 1.0.2 consists of 15133 tests, covering bymandatory and optional features
of XQuery 1.0 Each test is in its own file and there is one or more valid outputs for
each test. There are three main categories of tests: standard, parse-errors, runtime-
errors. Standard tests have to return a result, which can then be compared to the
expected result. The error tests expect a certain error code which indicates what
triggered the error.

These tests are described in an XMLfile. Becausewewanted continuous testing,
we had to find a way to automate it. GWT supports JUnit tests and our build server
(Hudson) also offers good JUnit support. For these reasons we converted the XML
file to JUnit test cases using an XSLT stylesheet.

205

XQuery in the Browser reloaded

Another problem remained: GWT runs tests in a windowless browser environ-
ment. It is not possible to load any data from outside due to the same origin policy
which should prevent cross-site scripting. Therefore we had to integrate all data
into the the tests and could not load anything from outside.

5.1.1.1. Test performance optimizations

For each test, the whole browser was restarted, what took several seconds per test
class. So to optimize it, instead of running a lot of test classes, we combined them
using the TestSuite class provided by JUnit. This way, we were able to run the
whole XQTS in under an hour.

Because we wanted to have it still faster, we saw that parsing the XML from
strings was a bottleneck. Therefore we cached the token stream. This reduced the
combined build/test time to under 20minutes. This is a good result considering that
also the "native" Java version of MXQuery uses 3 to 4 minutes for the test suite.

5.1.2. Testing results

Our goal was of course to be 100% compatible. In this section, wewill evaluate how
far we came to achieving this goal and the limitations of the platform or our design
choices.

Among the minimal compliance test of XQTS 1.0.2, we currently pass 14433,
giving us 98.6 percent conformance. In addition, we pass all Use Case and Full Axis
tests.

Of the 468 total cases which we do not pass, we skip the following:
• The unicode character assemble and disassemble tests (89) do not compile
because the GWT compiler has trouble finding the correct encoding
• We have implemented fn:doc() to load documents from the url given using
XMLHttpRequest, but while testing, we cannot load anything due to the same
origin policy as mentioned in Section 3.4.
• Similarly, we cannot test module import as it also depends on file access.
• We do not support normalize-unicode(), which accounts for 34 tests. Simil-
arly, we do not support 197 test cases are schema related and 46 on static typing.
The tests cases that are actually failing are distributed across diverse test groups.

Some problems arise from the fact that the catalog XML file is over 10 megabytes
in size, giving us an XML parser error when executed in the browser. There are
some remaining problems with date arithmetics and time zones.

206

XQuery in the Browser reloaded

5.2. Supported Platforms
XQuery in the Browser runs on all modern and standards-compliant browsers.
These are namely (later versions should alwayswork): Firefox 3.6 and 4 (alsoMobile),
Google Chrome 7, Internet Explorer 9, Safari 5, Opera 11 (alsomobile), the Android
browser (mobile Chrome), the iPhone browser (mobile Safari)

We do not yet support Internet Explorer 8 or lower because it has a much lower
compliance to W3C standards.

Due to the limitations of GWT (using document.write), XQIB currently handles
onlyHTML andHTML5DOMs but not XHTMLDOMs -which is somewhat ironic,
given that XHTML is conceptually conceptually much closer to the XML world.

5.3. Performance

5.3.1. Runtime

Please note that these numbers are all approximated as there are extreme variations
when testing. The dominant numbers for a certain browser have been chosen. They
where taken on a system with average performance for the year 2010 (Phenom II
X6 2.8 GHz,Windows 7 x64). In order to eliminate network overhead, the page was
served on localhost using Apache.

First, some performance numbers from a simple test page:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XQIB: Sample page</title>
<meta charset="UTF-8"/>
<link href="style.css" rel="stylesheet" type="text/css">
<script type="text/javascript">

var time_start = Number(new Date());
</script>
<script type="text/javascript"

src="mxqueryjs/mxqueryjs.nocache.js"></script>
<script type="application/xquery">

insert node
<div>{let $x := b:dom()//h1 return xs:string($x)}</div>

as last into b:dom()//body
</script>

</head>
<body>
</body>

</html>

207

XQuery in the Browser reloaded

The time is measured from the first script tag to the end of the query execution.
Therefore some final rendering might not be measured.

Table 3. Load times

Internet Ex-
plorer 9

Chrome 8Firefox 4Firefox 3.6Browser:

140120200230Time (ms):

These values seem very high, but when considering that there are many optimiza-
tions which can be done, they are quite good. We have to take into consideration
thatwe are analysing load times, which are usually dominated by bandwith/latency
constraints.While the script is running, a browser can continue to download images
included on the page.

To test events and dynamic pages, we have also tested amodified versionwhich
does about the same as the first one, but triggered by a mouse click.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XQIB: Sample page</title>
<meta charset="UTF-8"/>
<link href="style.css" rel="stylesheet" type="text/css">
<script type="text/javascript"

src="mxqueryjs/mxqueryjs.nocache.js"></script>
<script type="application/xquery">
declare updating function local:handler($evt, $loc) {
insert node
<div>{let $x := b:dom()//h1 return xs:string($x)}</div>

as last into b:dom()//body
};
b:addEventListener(b:dom()//input,"onclick",xs:QName("local:handler"))

</script>
</head>
<body>
<input type='button' value='Button'/>

</body>
</html>

The time is measured from the beginning of the event handler until the event
handler returns.

208

XQuery in the Browser reloaded

Table 4. Script execution times

Internet Ex-
plorer 9

Chrome 8Firefox 4Firefox 3.6Browser:

30301515Time for first
run(ms):

1051515Time for sub-
sequent
runs(ms):

When executing the same script as triggered by an event, we get different results.
The execution is now much faster on all browsers. This demonstrates that the per-
formance, even at this early stage, is already sufficient for dynamic websites.

5.3.2. Download Size

For loading a page, two files have to be loaded: First the dispatcher file
"mxqueryjs.nocache.js" which is under 6 kB in size. Thiswill then select the filewith
the actual code depending on the browser version. This file is about 700 kB in size.
By enabling gzip compression on the server, the transferred data can be reduced to
200 kB. In addition, this code can be cached, making subsequent access (almost)
instantaneous.

6. Conclusion
We have shown that it is possible to build an XQuery engine on top of JavaScript
without major performance or functionality penalties. This allows to use XQuery
for browser programming. XQuery already has a large user base which comes
mainly from the database and XML communities. This enables them to write web
applications in a language which is familiar to them.

7. Future work
We consider the following directions for future work
• Integration of the Javascript branch back to MXQuery mainline for better long-

term maintenance.
• Improved browser support, investigating if Internet Explorer 8might be a feasible

target given its high market share.
• Performance optimizations, in particular fully using indexed access to theDOM.
• Integration of JSON (e.g. like the upcoming parse-json() function in XSLT 3.0

and the ability to call Javascript and be called by Javascript.

209

XQuery in the Browser reloaded

• Truly asynchronous HTTP and the ability to access more browser state such as
headers, cookies or indexed storage.

• Further streamlining,modularization and dynamic loading aswell as the ability
to centrally host the library.

Bibliography
[1] Google Chrome's Need For Speed http://blog.chromium.org/2008/09/

google-chromes-need-for-speed_02.html
[2] Google Web Toolkit http://code.google.com/webtoolkit/
[3] The New JavaScript Engine in Internet Explorer 9 http://blogs.msdn.com/b/ie/

archive/2010/03/18/ the-new-javascript-engine-in-internet-explorer-9.aspx
[4] MXQuery XQuery Engine http://www.mxquery.org
[5] XQuery in the BrowserWeb site, JavaScript Edition samples http://www.xqib.org/

js
[6] Zorba XQuery Processor https://www.zorba-xquery.com/
[7] G. Fourny,M. Pilman, D. Florescu, D. Kossmann, T. Kraska, D.McBeath: XQuery

in the Browser, Proceedings of the 18th International Conference onWorldWide
Web, WWW 2009, Madrid, Spain, April 20-24, 2009 2009.

[8] G. Fourny,M. Pilman, D. Florescu, D. Kossmann, T. Kraska, D.McBeath: XQuery
in the Browser (talk), XML Prague 2010, March 12-13, 2010, Czech Republic.

[9] A. Gal, M. Franz, Incremental Dynamic Code Generation with Trace Trees,
Technical Report No. 06-16, Donald Bren School of Information and Computer
Science, University of California, Irvine; November 2006.

[10] M. Kay, Compiling Saxon using GWT http://saxonica.blogharbor.com/blog/
archives/2010/11/16/4681337.html

210

XQuery in the Browser reloaded

http://blog.chromium.org/2008/09/google-chromes-need-for-speed_02.html
http://blog.chromium.org/2008/09/google-chromes-need-for-speed_02.html
http://code.google.com/webtoolkit/
http://blogs.msdn.com/b/ie/archive/2010/03/18/ the-new-javascript-engine-in-internet-explorer-9.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/18/ the-new-javascript-engine-in-internet-explorer-9.aspx
http://www.mxquery.org
http://www.xqib.org/js
http://www.xqib.org/js
https://www.zorba-xquery.com/
http://saxonica.blogharbor.com/blog/archives/2010/11/16/4681337.html
http://saxonica.blogharbor.com/blog/archives/2010/11/16/4681337.html

Declarative XQuery Rewrites
for Profit or Pleasure

An optimizationmeta language for implementers and users alike
John Snelson

MarkLogic Corporation
<john.snelson@marklogic.com>

Abstract
One of the big challenges for any emerging database product is the maturity of its
query optimizer. This is even more of a problem with XQuery [1], which unlike
SQL hasn't yet had the benefit of forty years of optimization research. Any efforts
to advance the state of the art in optimizingXQuery are therefore important as steps
towards fulfilling its promise as a new database paradigm.

This paper introduces a novel meta language for efficiently specifying rewrites
to the expression tree of an XQuery program. The applications of this language are
wide ranging, including: use by XQuery implementers to efficiently communicate
and execute optimizations, use by XQuery librarywriters to extend the optimization
semantics of the host implementation with a deep understanding of the library
functionality, and use by XQuery end-users to provide optimization hints and
greater insight into the program written or data operated on.

This paper also discusses the use of this language to replace and extend the op-
timization layer in XQilla, an open source implementation of XQuery.

1. Introduction

1.1. The Optimization Problem
XQuery blends a database query language, transformation/presentation language,
and general purpose functional language. As such, it stands to inherit richly from
the bodies of research done in both database optimization and functional program-
ming language optimization, as well as new avenues of research in XML and XPath
based indexes and optimizations.

With somuch optimization heritage, the reality of the situation inmany XQuery
databases and stand-alone implementations has the potential to disappoint. Many
and varying optimizations remain unimplemented in different products - for lack
of experience, time, and breadth of implementation approach. In reality it can take
significant maturity of product in order to have researched and applied knowledge
from all potential resources.

211

XQuery users, on the other side of this equation, often knowwhat optimizations
they want to be applied to their programs but lack a means of influencing the im-
plementation. Optimization hints are common in SQL implementations [4], and
rewrite rules have existed in functional languages for some time [5] - but no such
mechanism exists for XQuery.

Part of the solution, it seems,might be found in a small domain specific language
to describe XQuery rewrites, so that optimizations can easily be written, shared,
and discussed. This paper describes such a domain specific language, its potential
uses, and short-comings.

1.2. Related Work
The XQuery Formal Semantics document itself [2] defines normalization mapping
rules which use a graphical notation to describe query rewrites. This is thorough
but impractical from an authoring and execution perspective.

Many academic papers on the subject of XQuery optimization use an ad-hoc
notation for expressing both the query algebra and the rewrites performed on it (ie:
[7]), meaning that every paper presents not only its original concepts, but also an
entirely new notation to become familiar with.

Michael Kay has previously proposed a solution using XSLT directly to perform
rewrites [6], by manipulating an XML representation of the program's expression
tree.Whilst effective, this approach is not as natural or readable as an approach that
uses the expression syntax directly in its patterns and transformations.

The Glasgow Haskell Compiler allows rewrite rules in pragmas [5]. Their rule
syntax has a simplicity that derives from the regular nature of the Haskell syntax,
but is not powerful enough to take into account further information available through
query analysis.

2. Rewrite Rules

2.1. Examining the Problem
After parsing and static analysis, an XQuery program is turned into an expression
tree representing the operations in the program and how they should be executed.
The process of applying rewrites to this tree is one of identifying relevant subtrees
that satisfy the conditions for the rewrite and replacing that subtree with one in
part derived from the original.

This problem description should be familiar to many XML practitioners - XSLT
[3] already solves a similar problem using recursively applied templates triggered
bymatch patterns. Similarly a good solution for XQuery rewrites startswith recurs-
ively applying pattern matching on expressions.

212

Declarative XQuery Rewrites for Profit or Pleasure

2.2. A Simple Rewrite Rule
The simplest rewrite rules identify an expression and unconditionally transform it
into another expression:

fn:CountEqZero: count(~e) eq 0 -> empty(~e)

The rewrite rule above consists of three components:
1. Its name, "fn:CountEqZero", (aQName) followed by a colon. The name is purely

descriptive, and can be useful when debugging the rewrite process.
2. An expression pattern, "count(~e) eq 0". This looks like an XQuery expression,

but allows the use of the tilde character ("~") followed by a QName to represent
a named wildcard expression.

3. The rewrite operator ("->"), followed by a result expression, "empty(~e)". The
result expression references the expression matched by the named wildcard in
the expression pattern.

Wildcard expressions in expression patternsmatch anyXQuery expression subtree,
and in the process assign them a name and make them available for use in other
parts of the rewrite rule. The expression pattern given abovematches an expression
equivalent to an equality comparison of zero and the fn:count() function applied to
an arbitrary expression. The rewrite engine automatically handles simple expression
equivalence matters like commutative operators with inverted operands.

Having found an expression subtree that matches the pattern the rule replaces
it with a copy of the result expression. Named wildcard expressions in the result
expression are called expression references, and are replacedwith those of the same
name matched by the pattern. In this way expressions that do not take part in the
rewrite can be preserved. The special expression reference ~this is replaced by the
entire matched expression.

The net effect of this example is to replace all occurrences of a fn:count() com-
pared to zero with a more efficient function call to fn:empty().

2.3. Rule Predicates
It is often necessary to check conditions beyond a simple expression pattern before
deciding that a particular rewrite is valid. For this reason rewrite rules allow an
arbitrary predicate after the pattern, denoted by the "where" keyword:

rw:BooleanIfElseTrue:
if(~condition) then ~then else true()
where rw:subtype(~then, 'xs:boolean?')

-> (not(~condition) or ~then)

213

Declarative XQuery Rewrites for Profit or Pleasure

This example finds simple conditional expressions and reduces them to boolean
logic. A check is made on the inferred type of the ~then expression to ensure that
it produces a boolean result, and is therefore eligible to be converted into boolean
logic.

XQuery itself is used as the predicate language for maximum familiarity, and
in order to avoid designing an additional predicate language. The matched expres-
sions are exposed to XQuery as a new atomic type named rw:expression 1 , returned
using the expression reference syntax already seen. Expression items can be queried
by a library of built in functions, including the rw:subtype() and rw:never-subtype()
functions used tomatch the inferred type of the expression against a SequenceType,
the rw:is-constant() function used to check that the expression does not depend
in anyway on the dynamic context, and the rw:uses-focus() functionwhich checks
if the expression depends on the focus (context item, position, or size).

2.4. Multiple Cases and Case Predicates
It's also possible to includemultiple result cases in rewrite rules. Each case can have
its own predicate, and cases are examined in order until an applicable case is found.

fn:FnEmptyFold: empty(~e)
-> false() where rw:subtype(~e, 'item()+')
-> true() where rw:subtype(~e, 'empty-sequence()')

This example uses the inferred type of the argument to the empty() function to
avoid execution of the expression where possible.

A complete grammar for the rewrite rule notation is available in Appendix A.

2.5. Rewriting phase
Rewrite rules are applied to a query or expression during the rewriting phase. This
typically happens between static analysis and query execution, although it could
also happen on demand during query execution if the implementation wants to
support just-in-time optimization.

Rewrite rules continue to be applied to the query or expression until no rewrite
rule matches. Importantly, rewrite rules are applied to the results of other rewrite
rules - utilizing co-dependent rules often allows simpler and more generic rewrite
rules to be written. This power also implies the possibility of unterminated rewrite
loops, so care must be taken to avoid this situation when creating the rewrite rules.

During the query rewriting phase function and variable inlining are handled
automatically. Similarly if a sub-expression is determined not to depend in anyway
the dynamic context for execution, that sub-expression is replaced with its result

1 Where the "rw" prefix is bound to the namespace URI "http://xqilla.sourceforge.net/rewrite".

214

Declarative XQuery Rewrites for Profit or Pleasure

as a literal, or constant folded. These optimizations are interleavedwith rewrite rule
application,meaning that rule authors can realistically rely on thembeing performed
on the result of their rule application. Any other optimizations that the implement-
ation performs could also be performed during the query rewriting phase, although
there might be good reasons for not doing so.

2.6. Using Rewrite Rules in XQilla
As a test of the power of the rewrite rules language, it has been implemented in
XQilla2, an open source C++ implementation of XQuery, and themajority of XQilla's
optimizations have been rewritten using rewrite rules.

As an example, XQilla contained this code to optimize the effective boolean
value operation (fn:boolean()):

ASTNode *PartialEvaluator::
optimizeEffectiveBooleanValue(XQEffectiveBooleanValue *item)
{
item->setExpression(optimize(item->getExpression()));

const StaticAnalysis &sa =
item->getExpression()->getStaticAnalysis();

if(sa.getStaticType().getMax() == 0) {
// If there are no items, EBV returns false
ASTNode *result =
XQLiteral::create(false, context_->getMemoryManager(), item)
->staticResolution(context_);

item->release();
return result;

}

if(sa.getStaticType().getMin() >= 1 &&
sa.getStaticType().isType(TypeFlags::NODE)) {
// If there is one or more nodes, EBV returns true
ASTNode *result =
XQLiteral::create(true, context_->getMemoryManager(), item)
->staticResolution(context_);

item->release();
return result;

}

if(sa.getStaticType().getMin() == 1 &&
sa.getStaticType().getMax() == 1 &&

2 http://xqilla.sourceforge.net/HomePage

215

Declarative XQuery Rewrites for Profit or Pleasure

http://xqilla.sourceforge.net/HomePage
http://xqilla.sourceforge.net/HomePage

sa.getStaticType().isType(TypeFlags::BOOLEAN)) {
// If there is a single boolean, EBV isn't needed
ASTNode *result = item->getExpression();
item->setExpression(0);
item->release();
return result;

}

return item;
}

This code uses the static type of the argument expression to perform early evaluation
in some cases, and to remove the unneeded effective boolean value operation in
other cases. Whilst with a little context it is possible to decode what is going on in
this function, it is far from succinct or easily understandable.

Using the rewrite rule notation, this method can be replaced with the following
single rule:

fn:EBVFold: boolean(~e)
-> false() where rw:subtype(~e, 'empty-sequence()')
-> exists(~e) where rw:subtype(~e, 'node()*')
-> ~e where rw:subtype(~e, 'xs:boolean');

This rule is far easier to understand, and easily shows the optimization behaviour
when the argument expression has been inferred to be one of three different types.
In short, when the argument is empty, the effective boolean value is false. When
the argument is a single xs:boolean value the effective boolean value returns it, and
is therefore unnecessary.When the argument consists only of nodes, then the effect-
ive boolean value gives the same result as the exists() function - which itself has
rewrite rules which will be applied to it.

In total the lines of code attributed to these optimizations was reduced from 676
lines to 165, a 75% reduction. As a crude measurement of understandability and
maintainability, this figure shows some of the benefits of using rewrite rule notation.
In addition, this should make it much easier to extend the range of optimizations
supported by XQilla in the future.

An example module of rewrite rules from XQilla is included in Appendix B.

3. Types of Rewrite
Clearly, not all potential rewrites of XQuery expressions are correct - that is, produce
the same results after the rewrite as before. Of those that are correct, even fewer are
beneficial by any metric.

The rewrite rule language itself provides no checks on correctness or benefit.
Indeed, correctness proofs are still the subject of much research, with no general

216

Declarative XQuery Rewrites for Profit or Pleasure

solution. In practice, the rule author will need to be responsible for the correctness
of their rules.

Even so, rewrite rules that change semantics and "correctness" can be useful
under certain circumstances. Similar to the use of operator overloading in C++, re-
write rules have potential uses in creating domain specific languages operating
outside the bounds of specified XQuery semantics. Consider the following rewrite:

AddComplex: ~a + ~b
where rw:subtype(~a, 'element(my:complexNumber)') and
rw:subtype(~b, 'element(my:complexNumber)')

-> element my:complexNumber {
element my:real { ~a/my:real + ~b/my:real },
element my:imaginary { ~a/my:imaginary + ~b/my:imaginary }

}

This rewrite rule allows two elements representing complex numbers to be added
together using the regular "+" operator, an operation that should almost certainly
result in an error according to the XQuery specification.

3.1. Normalizing Rewrites
When considering correct rewrite rules, there are appear to be two broad categories
that beneficial rules fall into - normalizing rewrites and optimizing rewrites. XQuery
is a broad, declarative language, and there is often more than one way to write any
given operation. Given that, there is often a need to normalize the types of expres-
sions used into a smaller set of expressions, so that the surface area of the language
is smaller and it is easier to find more generally applicable optimizing rewrites.

The XQuery Formal Semantics [2] defines one set of normalizing rewrites, al-
though it should by no means be considered to be the only set possible. The choice
of post-normalization language often makes a difference to how easy it is to
identify different optimizations.

Consider, for instance, the rewrite rule discussed in Section 2.2 which optimizes
the expression "count(~e) eq 0". In XQuery there are two types of comparison oper-
ator, "eq" and "=". The former is a straightforward transitive equality operator oper-
ating on singleton items,whereas the latter is existentially quantified and can operate
over sequence operands. This means that the rule matching the "eq" operator will
not automatically match an expression using the "=" operator.

However, a normalizing rewrite can solve this problem:

NormalizeToEQ: ~a = ~b
where rw:subtype(~a, 'item()') and rw:subtype(~b, 'item()')
-> ~a eq ~b

217

Declarative XQuery Rewrites for Profit or Pleasure

This turns an expression using the existentially quantified "=" operator into one
using the "eq" operator if its arguments are singletons. The result of this normaliza-
tion rewrite can then be considered for possible rewriting using the aforementioned
optimizing rewrite.

Along similar lines, there are certain expressions that cannot be constant folded
as they do not meet the criteria of having a constant sub-expression. However they
may still have a number of constant operandswhich could be folded if the expression
were rewritten using mathematical transitivity rules.

rw:AddAddTransFold: ((~A + ~B) + ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A + ~C) + ~B) where rw:is-constant(~A)
-> (~A + (~C + ~B)) where rw:is-constant(~B)

This rewrite rule finds nested addition operators where either ~B and ~C or ~A and
~C are constant, and uses mathematical transitivity rules to move the constant ex-
pressions together so that they will be constant folded.

3.2. Optimizing Rewrites
Optimizing rewrites will usually operate on the result of normalizing rewrites, and
aim to replace slower expressionswith faster alternatives. Sometimes this judgement
can be based on heuristics, whilst at other times some cost analysis might be per-
formed.

A good example of an optimizing rewrite is one which eliminates intermediate
results from an expression by unnesting a nested FLWOR expression:

UnnestInnerFor:
for $a in (for $b in ~e return ~g) return ~f
where not(rw:uses-variable(~f, xs:QName("b")))

-> for $b in ~e for $a in ~g return ~f

The matched expresion in this example first creates a sequence by executing ~g for
each of the items returned by ~e, then iterates that intermediate sequence executing
~f. Rather than create this intermediate sequence, this rewrite rule unnests the inner
FLWOR into a single FLWOR, thus saving memory and execution time.

In this rewrite rule, the variable names are place holders, and will match any
variable name - their actual names are carried forward and used in the replacement
expression where the place holder names are written.

The where clause in this rule ensures that ~f is not affected by bringing a new
variable, $b, into scope for it. This could probably be ensured by the rewrite rule
framework itself, if correct analysis and variable renaming was applied.

218

Declarative XQuery Rewrites for Profit or Pleasure

3.3. Rewrite Rules in XQuery Modules
Rewrite rules can be included in XQuerymodules by using anXQuery prolog option
whose value is the rule. Such rules are also imported along with the functions and
global variables in a module. Using this mechanism, a library writer can not only
write new XQuery functions, but can also extend the XQuery implementations op-
timization to understand the new functions.

An example XQuery module of rewrite rules can be found in Appendix B.
Consider the following XQuery 3.0 higher order function:

declare function map($f as function(item()) as item()*, $seq as item()*)
as item()*

{
if(empty($seq)) then ()
else ($f(head($seq)), map($f, tail($seq)))

};

The map() function provides an abstraction for performing some action on every
member of a given sequence. It is a very common function in popular functional
languages likeHaskell, where it is frequently used. This often leads (through function
inlining or programmer inefficiencies) to nested invocations of the map function,
which it can be important to eliminate to remove intermediate results.

As a library writer implementing a function like map(), I might want to provide
rules to handle unnesting of my function [5]:

declare option rw:rule "fn:MapMapFusion:
map(~f, map(~g, ~e)) -> map(function($a) { map(~f,~g($a)) }, ~e)";

The rewrite rule identifies a nested call to the map() function, and uses an anonymous
function to compose the two functions ~f and ~g.

Even though the above rewrite removes the large intermediate result, the map()
function is still called on the result of the ~g function. If that function only returns
a singleton item, the inner map can be completely eliminated with another rewrite
rule:

declare option rw:rule "fn:MapSingleton:
map(~f, ~e) where rw:subtype(~e, 'item()') -> ~f(~e)";

Aswell as being useful for XQuery librarywriters, rewrite rules in query options
can be useful to XQuery power userswhowish to give hints, force the use of indexes,
or fill in for caseswhere the implementations optimization behaviour is inadequate.
For instance, a power user with knowledge of their XML data might know that the
"bibioentry" element only ever occurs at a path of "/article/bibliography/biblioentry",
in which case they might choose to use the following rewrite:

219

Declarative XQuery Rewrites for Profit or Pleasure

biblioentryRewrite:
//biblioentry -> /article/bibliography/biblioentry

Or maybe they know that an index is available for "biblioentry" elements, in which
case they might use:

biblioentryIndex:
/article/bibliography/biblioentry[@id = ~e] -> key("biblioentry",~e)

4. Complications
Simple as rewrite rules seem, there are many complications with their design that
need work. Its my hope that several XQuery implementations will find it useful to
implement this kind of rewrite notation, but if they were to do so there would be
additional standardization issues that go beyond what the XQuery specifications
already control.

One such issue is that currently XQilla inserts type checks in its expression tree
before the rewrite rule phase occurs. This simplifies rewrite rules, because the im-
plicit type casts and checks are treated as part of the argument expression for a
function, for instance - and do not need to be considered during the rewrite.

Another issue is how to express generic rewrites on parts of FLWOR expressions.
Important rewrites like where predicate push back 3 and loop lifting need to be
made against FLWOR expressions, but the clauses of a FLWOR expression are not
themselves expressions in the XQuery grammar. This means that rewrite rules as
currently described must match an entire FLWOR expression, which reduces their
applicability.

Further complications lie in other XQuery language irregularities, like reverse
axis predicates and a lack of literal xs:boolean values. The rewrite rules in XQilla
currently rely on predicates to detect such "reverse semantics" predicates, and treat
the pattern true() as matching the literal xs:boolean value rather than a function
call.

If a rewrite wanted to match against an implicit operation like effective boolean
value or xs:untypedAtomic type promotion, portability suffers. XQilla allows a
pattern of boolean() to match its effective boolean value operation, but no such
standard XQuery function exists for xs:untypedAtomic type promotion. A likely
solution is to create a rewrite rule specific pseudo-function to match against that
operation if desired.

3 Moving the execution of a predicate to earlier in the query, to reduce the amount of data that gets
processed.

220

Declarative XQuery Rewrites for Profit or Pleasure

5. Conclusion
There are still a great many improvements that could be made to the rewrite rule
notation presented. In the future it seems likely that theymight benefit frommultiple
distinct rewriting phases [5], and from a mechanism for describing free variable
substitutions [7]. They are yet to touch on cost-based query optimization, which
relies on a cost analysis phase and the ability to speculatively applymultiple altern-
ative rewrites of any given expression.

The rewrite rule notation presented in this paper has shown its potential effect-
iveness both for XQuery implementers and XQuery library writers or power users.
Hopefully it has also been useful for communicating a number of interesting optim-
izations that are often applied by XQuery implementations. This is just the start of
a conversation on effective writing and communication of XQuery optimizations,
which I hope will continue and result in better language tools for everyone.

A. EBNF for XQuery Rewrite Rules
This appendix uses the same notation as the XQuery specification [1]. Non-terminals
not explicitly defined by this paper are references to non-terminals in the XQuery
grammar. The XQuery non-terminal "PrimaryExpr" is extended by this paper for
the purposes of rewrite rules.

RWRule ::= RWName ":" RWPattern RWCondition? RWCase+
RWName ::= QName
RWPattern ::= ExprSingle

RWCase ::= "->" RWResult RWCondition?
RWResult ::= ExprSingle

RWCondition ::= "where" ExprSingle

PrimaryExpr ::= ... | RWExprWildcard
RWExprWildcard ::= "~" QName

B. Arithmetic Rewrite Module from XQilla
An examplemodule of rewrite rules - in this case the actual arithmetic folding rules
used by XQilla to perform advanced constant folding on arithmetic expressions.
This module was developed by translating the existing C++ optimization rules to
use the XQuery rewrite rule syntax.

xquery version "3.0";

(:

221

Declarative XQuery Rewrites for Profit or Pleasure

: Copyright (c) 2010
: John Snelson. All rights reserved.
:
: Licensed under the Apache License, Version 2.0 (the "License");
: you may not use this file except in compliance with the License.
: You may obtain a copy of the License at
:
: http://www.apache.org/licenses/LICENSE-2.0
:
: Unless required by applicable law or agreed to in writing, software
: distributed under the License is distributed on an "AS IS" BASIS,
: WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
: See the License for the specific language governing permissions and
: limitations under the License.
:)

module namespace rw = "http://xqilla.sourceforge.net/rewrite";

(:--------------------------:)
(: Arithmetic folding rules :)
(:--------------------------:)

declare option rw:rule "rw:MulMulTransFold: ((~A * ~B) * ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A * ~C) * ~B) where rw:is-constant(~A)
-> (~A * (~C * ~B)) where rw:is-constant(~B)";
declare option rw:rule "rw:MulDivTransFold: ((~A div ~B) * ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A * ~C) div ~B) where rw:is-constant(~A)
-> (~A * (~C div ~B)) where rw:is-constant(~B)";

(: duration div duration = decimal :)
declare option rw:rule "rw:DivMulTransFold: ((~A * ~B) div ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double')) and
not(rw:subtype(~A, 'xs:duration')) and not(rw:subtype(~B, 'xs:duration')) and
not(rw:subtype(~C, 'xs:duration'))

-> ((~A div ~C) * ~B) where rw:is-constant(~A)
-> (~A * (~B div ~C)) where rw:is-constant(~B)";
declare option rw:rule "rw:DivDivTransFold: ((~A div ~B) div ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double')) and
not(rw:subtype(~A, 'xs:duration')) and not(rw:subtype(~B, 'xs:duration')) and
not(rw:subtype(~C, 'xs:duration'))

222

Declarative XQuery Rewrites for Profit or Pleasure

-> ((~A div ~C) div ~B) where rw:is-constant(~A)
-> (~A div (~B * ~C)) where rw:is-constant(~B)";

declare option rw:rule "rw:AddAddTransFold: ((~A + ~B) + ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A + ~C) + ~B) where rw:is-constant(~A)
-> (~A + (~C + ~B)) where rw:is-constant(~B)";
declare option rw:rule "rw:AddSubTransFold: ((~A - ~B) + ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A + ~C) - ~B) where rw:is-constant(~A)
-> (~A + (~C - ~B)) where rw:is-constant(~B)";

declare option rw:rule "rw:SubAddTransFold: ((~A + ~B) - ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A - ~C) + ~B) where rw:is-constant(~A)
-> (~A + (~B - ~C)) where rw:is-constant(~B)";
declare option rw:rule "rw:SubSubTransFold: ((~A - ~B) - ~C)
where rw:is-constant(~C) and (rw:subtype(~this, 'xs:decimal') or
rw:subtype(~this, 'xs:float') or rw:subtype(~this, 'xs:double'))

-> ((~A - ~C) - ~B) where rw:is-constant(~A)
-> (~A - (~B + ~C)) where rw:is-constant(~B)";

(: Only for xs:decimal, since otherwise "-0" messes things up :)
declare option rw:rule "rw:MulZeroFold: ~e * 0 -> 0
where rw:subtype(~e, 'xs:decimal')";

declare option rw:rule "rw:MulOneFold: ~e * 1 -> ~e
where rw:subtype(~this, 'xs:decimal') or rw:subtype(~this, 'xs:float') or
rw:subtype(~this, 'xs:double')";

declare option rw:rule "rw:DivOneFold: ~e div 1 -> ~e
where rw:subtype(~e, 'xs:decimal') or rw:subtype(~this, 'xs:float') or
rw:subtype(~this, 'xs:double')";

declare option rw:rule "rw:AddZeroFold: ~e + 0 -> ~e
where rw:subtype(~e, 'xs:decimal') or rw:subtype(~this, 'xs:float') or
rw:subtype(~this, 'xs:double')";

declare option rw:rule "rw:SubZeroFold: ~e - 0 -> ~e
where rw:subtype(~e, 'xs:decimal') or rw:subtype(~this, 'xs:float') or
rw:subtype(~this, 'xs:double')";

declare option rw:rule "rw:ZeroSubFold: 0 - ~e -> - ~e
where rw:subtype(~e, 'xs:decimal') or rw:subtype(~this, 'xs:float') or
rw:subtype(~this, 'xs:double')";

declare option rw:rule "rw:AddEmptyFold: ~e + () -> ()";
declare option rw:rule "rw:SubEmptyFold1: ~e - () -> ()";

223

Declarative XQuery Rewrites for Profit or Pleasure

declare option rw:rule "rw:SubEmptyFold2: () - ~e -> ()";
declare option rw:rule "rw:MulEmptyFold: ~e * () -> ()";
declare option rw:rule "rw:DivEmptyFold1: ~e div () -> ()";
declare option rw:rule "rw:DivEmptyFold2: () div ~e -> ()";
declare option rw:rule "rw:IDivEmptyFold1: ~e idiv () -> ()";
declare option rw:rule "rw:IDivEmptyFold2: () idiv ~e -> ()";
declare option rw:rule "rw:ModEmptyFold1: ~e mod () -> ()";
declare option rw:rule "rw:ModEmptyFold2: () mod ~e -> ()";
declare option rw:rule "rw:UnaryMinusEmptyFold: -() -> ()";

(:--------------------------:)
(: Conditions folding rules :)
(:--------------------------:)

declare option rw:rule "rw:IfTrueFold: if(true()) then ~then else ~else -> ►
~then";
declare option rw:rule "rw:IfFalseFold: if(false()) then ~then else ~else -> ►
~else";
declare option rw:rule "rw:BooleanIfElseTrue: if(~condition) then ~then else ►
true()
-> (not(~condition) or ~then) where rw:subtype(~then, 'xs:boolean?')";
declare option rw:rule "rw:BooleanIfThenTrue: if(~condition) then true() else ►
~else
-> (~condition or ~else) where rw:subtype(~else, 'xs:boolean?')";

Bibliography
[1] XQuery 1.0: An XML Query Language (Second Edition)1.
[2] XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition)2.
[3] XSL Transformations (XSLT) Version 2.03.
[4] Oracle® Database Performance Tuning Guide, 10g Release 2 (10.2). Using Optimizer

Hints4.
[5] The Glorious Glasgow Haskell Compilation System User's Guide, Version 6.12.2.

Rewrite rules5.
[6] Writing an XSLT Optimizer in XSLT6. Michael Kay.

1 http://www.w3.org/TR/2010/REC-xquery-20101214/
2 http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
3 http://www.w3.org/TR/2007/REC-xslt20-20070123/
4 http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/hintsref.htm
5 http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/rewrite-rules.html
6 http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

224

Declarative XQuery Rewrites for Profit or Pleasure

http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/hintsref.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/hintsref.htm
http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/rewrite-rules.html
http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/rewrite-rules.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://download.oracle.com/docs/cd/B19306_01/server.102/b14211/hintsref.htm
http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/rewrite-rules.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html

[7] Towards an Exhaustive Set of Rewriting Rules for XQuery Optimization: BizQuery
Experience7. Maxim Grinev. Sergey Kuznetsov.

7 http://www.ispras.ru/en/modis/downloads/rewriting-extended.pdf

225

Declarative XQuery Rewrites for Profit or Pleasure

http://www.ispras.ru/en/modis/downloads/rewriting-extended.pdf
http://www.ispras.ru/en/modis/downloads/rewriting-extended.pdf
http://www.ispras.ru/en/modis/downloads/rewriting-extended.pdf

226

Jiří Kosek (ed.)

XML Prague 2011
Conference Proceedings

Vydal
MATFYZPRESS

vydavatelství Matematicko-fyzikální fakulty
Univerzity Karlovy v Praze
Sokolovská 83, 186 75 Praha 8

jako svou 354. publikaci

Obálku navrhl prof. Jaroslav Nešetřil

Z předloh připravených v systému DocBook
a vysázených pomocí XSL-FO a programu XEP

vytisklo Reprostředisko UK MFF
Sokolovská 83, 186 75 Praha 8

1. vydání

Praha 2011

ISBN 978-80-7378-160-6

	XML Prague 2011
	Table of Contents
	General Information
	Sponsors
	Preface
	Client-side XML Schema validation
	1. Introduction
	2. Background
	2.1. Related Works
	2.2. Schema Validation Algorithms
	2.3. JavaScript Restrictions

	3. Architecture
	4. Editing Functionality
	4.1. Update Operations
	4.2. Algorithm Details
	4.3. Updating the Document
	4.4. Limitations and Assumptions
	4.5. Example

	5. Implementation and Analysis
	6. Discussion
	7. References

	JSON for XForms
	1. Introduction
	2. XForms Context
	2.1. MVC Design
	2.2. XPath in XForms
	2.3. Server Exchanges
	2.4. JSON vs. XML for browsers
	2.5. Other Data Formats

	3. JSON Objects Internal Storage In Browsers
	3.1. Constraints
	3.1.1. Reversibility
	3.1.2. XPath Full Support
	3.1.3. XML Schema conformance

	3.2. Proposed Representation of JSON Objects With XML 1.0
	3.2.1. Elements, Attributes and Namespaces
	3.2.2. Extra Document Element
	3.2.3. JSON Names
	3.2.4. JSON Datatypes
	3.2.5. JSON Named Arrays
	3.2.6. JSON Anonymous Arrays
	3.2.7. XPath Engine Proposed Enhancements

	4. JSONP Support
	4.1. Request Submission
	4.2. Response Processing

	5. The Wikipedia Search Demo
	5.1. The Wikipedia Search API
	5.2. The XForms Page
	5.3. How It Works
	5.4. The Full Form

	6. Conclusion

	A JSON Facade on MarkLogic Server
	1. JSON and MarkLogic Server
	2. Design Considerations
	3. Conversion
	4. Sample JSON to XML Conversions
	5. Querying JSON
	6. REST Interface
	7. Discussion

	CXAN: a case-study for Servlex, an XML web framework
	1. Introduction
	1.1. CXAN
	1.2. Webapp and Servlex

	2. The Webapp Module
	3. Servlex
	4. The CXAN website
	5. The development project
	6. Conclusion

	Akara – Spicy Bean Fritters and XML Data Services
	1. Introduction
	2. The basic tree APIs
	2.1. Parsing XML into simple trees
	2.1.1. Writing XML (and HTML) from nodes
	2.1.2. Creating a document from scratch

	2.2. The XML bindery
	2.2.1. Creating a bindery document from scratch

	2.3. Using XPath
	2.4. Parsing HTML

	3. Generating XML (and HTML)
	3.1. Generating XML (and HTML) gradually

	4. Modeling XML
	4.1. Extracting metadata from models

	5. Incremental parsing
	6. And much more
	7. Akara Web Framework
	7.1. A simple, complete Akara module
	7.2. Hello World

	8. Introducing WSGI, and working with URL path hierarchy
	9. Error handling, and making things more robust
	10. Handling HTTP POST
	11. Conclusion
	12. Appendix A: More background on 4Suite

	Translating SPARQL and SQL to XQuery
	1. Introduction
	1.1. Background
	1.2. Problem Statement
	1.3. Contributions
	1.4. Outline

	2. Fundamentals
	2.1. RDF
	2.2. The SPARQL Query Language
	2.3. XQuery
	2.4. SQL
	2.5. Challenges and Opportunities

	3. Mapping and Translating SPARQL to XQuery
	3.1. Basic Graph Pattern Matching
	3.2. Graph Pattern Combination
	3.2.1. Optional Patterns
	3.2.2. Alternative Graph Pattern
	3.2.3. Group Graph Pattern

	3.3. Filter
	3.4. Modifiers
	3.5. Query Forms
	3.6. Translation of the Running Example

	4. Mapping and Translating SQL to XQuery
	5. Implementation and Evaluation
	5.1. Implementation
	5.2. Evaluation

	6. Related Work
	7. Conclusion and Future Work
	Bibliography

	Configuring Network Devices with NETCONF and YANG
	1. Introduction
	2. NETCONF Configuration Protocol
	3. YANG Data Modelling Language
	4. Mapping YANG Data Models to DSDL
	4.1. Overview of the Mapping Procedure
	4.2. Mapping Grammatical Constraints and Datatypes
	4.2.1. Handling of Names
	4.2.2. Augments

	4.3. Mapping Semantic Constraints
	4.4. Mapping Default Contents
	4.5. Validating instance documents
	4.6. Implementation

	5. Conclusions
	Bibliography
	A. Schemas for the Coffee Machine Data Model
	A.1. Hybrid Schema
	A.2. RELAX NG Schema
	A.3. RELAX NG Schema – Global Definitions
	A.4. Schematron Schema
	A.5. DSRL Schema

	XSLT in the Browser
	1. The Past
	2. The Present
	3. The Future
	4. Conclusions
	References

	Efficient XML Processing in Browsers
	1. Overview of the Problem
	2. Streaming XML Interfaces
	3. Usage Examples
	4. Implementation Performance Characteristics
	5. An Example Application
	6. Conclusions and Future Work
	Bibliography

	EPUB: Chapter and Verse
	1. Introduction
	1.1. Typesetting, ancient and modern
	1.2. The source files

	2. From SFM to OSIS
	2.1. The OSIS schema
	2.2. With much wisdom comes much sorrow
	2.3. One step at a time
	2.3.1. Example
	2.3.2. Testing
	2.3.3. Pros and cons of using XSLT 2.0

	3. From OSIS to EPUB
	3.1. Anatomy of an EPUB
	3.1.1. OPF
	3.1.2. NCX
	3.1.3. Auxiliary files

	3.2. The millstone of milestones
	3.3. E-Reader rendering

	4. Conclusion
	Bibliography

	DITA NG – A Relax NG implementation of DITA
	1. Introduction
	2. Default attribute values in Relax NG
	2.1. Support for storing default values
	2.2. Access to default values
	2.3. Integrate with an XML Parser (Xerces)

	3. DITA implementation in Relax NG
	3.1. Schema development
	3.2. Automatic conversion to Relax NG compact
	3.3. Sample schemas / comparison with DTDs.
	3.3.1. The domains attribute
	3.3.2. Automatic domain extensions
	3.3.3. Simpler schema construction

	4. Processing Relax NG based DITA documents
	4.1. Getting deliverables through DITA OT
	4.2. Editing in oXygen

	5. Conclusions and further work
	6. References

	XQuery Injection
	1. Code Injection
	2. Example of XQuery Injection
	2.1. Scenario
	2.2. Attack

	3. Protection
	3.1. Generic How To
	3.2. Java
	3.3. XPath 2.0 Environments
	3.4. XForms
	3.5. Related Attacks
	3.5.1. XQuery Numeric Literal Injection
	3.5.2. XQuery Direct Element Injection
	3.5.3. XUpdate injection
	3.5.4. *:evaluate() injection

	Bibliography

	XQuery in the Browser reloaded
	1. Motivation
	2. Current approaches for client-side programming
	2.1. Container-based approaches: Java, Flash, Silverlight
	2.2. Javascript: DOM, Events, Frameworks
	2.3. Cross-Compilation: Google Web Toolkit
	2.4. XML-based approaches: XSLT and XQuery in the Browser
	2.4.1. XSLT
	2.4.2. XQuery in the Browser plugin

	3. XQuery in the Browser, JavaScript Edition: API and Functions
	3.1. An example
	3.2. Program structure
	3.3. Browser-specific functions
	3.4. Functionality with different semantics
	3.5. Not implemented functionality

	4. Implementation
	4.1. Background
	4.1.1. MXQuery
	4.1.1.1. Tokenstream-based Data Model
	4.1.1.2. Iterators
	4.1.1.3. Stores
	4.1.1.4. Customizability and Platform Abstractions

	4.1.2. Google Web Toolkit (GWT) Fundamentals

	4.2. Selected Implementation Aspects
	4.2.1. Solution architecture
	4.2.2. Mapping the DOM to MXQuery-tokens
	4.2.3. Node IDs
	4.2.4. Applying Updates
	4.2.5. Handling Events
	4.2.6. Compatibility issues
	4.2.6.1. Missing functionality in GWT
	4.2.6.1.1. Missing Java Functions

	4.2.6.2. Deviating from the standard

	5. Evaluation
	5.1. XQuery Standard Compliance
	5.1.1. Testing with the XQTS
	5.1.1.1. Test performance optimizations

	5.1.2. Testing results

	5.2. Supported Platforms
	5.3. Performance
	5.3.1. Runtime
	5.3.2. Download Size

	6. Conclusion
	7. Future work
	Bibliography

	Declarative XQuery Rewrites for Profit or Pleasure
	1. Introduction
	1.1. The Optimization Problem
	1.2. Related Work

	2. Rewrite Rules
	2.1. Examining the Problem
	2.2. A Simple Rewrite Rule
	2.3. Rule Predicates
	2.4. Multiple Cases and Case Predicates
	2.5. Rewriting phase
	2.6. Using Rewrite Rules in XQilla

	3. Types of Rewrite
	3.1. Normalizing Rewrites
	3.2. Optimizing Rewrites
	3.3. Rewrite Rules in XQuery Modules

	4. Complications
	5. Conclusion
	A. EBNF for XQuery Rewrite Rules
	B. Arithmetic Rewrite Module from XQilla
	Bibliography

