
Akara - Spicy Bean Fritters and a
Data Services Platform

Uche Ogbuji

26 March 2011, XML Prague
http://x.ogbuji.net/akara-xmlprague

Saturday, March 26, 2011

http://gonzaga.akara.info/~uogbuji/etc/balisage09/akara-balisage09.pdf
http://gonzaga.akara.info/~uogbuji/etc/balisage09/akara-balisage09.pdf

What is Akara?

Black eyed pea
fritter, very popular
in West Africa

Integration platform
for data services on
the Web

http://akara.info

Saturday, March 26, 2011

http://akara.info
http://akara.info

Akara recipe
INGREDIENTS

✤ 2 cups Black eyed peas drained
✤ 1 Onion finely chopped
✤ 1/2 teaspoon Salt as required
✤ 1 chile pepper chopped
✤ 1/2 teaspoon Ginger roots minced
✤ “Nigerian pepper”, or Cayenne or Sichan pepper as

substitute, to taste
✤ 1 cup Peanut oil as required

PREPARATION

Clean the black-eyed peas in running water. Soak them in
water for at least a few hours or overnight. After soaking
them, rub them together between your hands to remove the
skins. Rinse to wash away the skins and any other debris.
Drain them in a colander.

Crush, grind, or mash the black-eyed peas into a thick paste.
Add enough water to form a smooth, thick paste of a batter
that will cling to a spoon. Add all other ingredients (except
oil). Some people allow the batter to stand for a few hours
(overnight in the refrigerator); doing so improves the flavor.

Heat oil in a deep skillet . Beat the batter with a wire whisk
or wooden spoon for a few minutes. Make fritters by
scooping up a spoon full of batter and using another spoon
to quickly push it into the hot oil. Deep fry the fritters until
they are golden brown. Turn them frequently while frying. (If
the fritters fall apart in the oil, stir in a beaten egg, some
cornmeal or crushed breadcrumbs.)

Serve with an African Hot Sauce or salt, as a snack, an
appetizer, or a side dish.

Variation: Add a half cup of finely chopped leftover cooked
meat to the batter before frying; or add a similar amount
dried shrimp or prawns.

Saturday, March 26, 2011

http://www.bigoven.com/whatis.aspx?id=Drain
http://www.bigoven.com/whatis.aspx?id=Drain
http://www.bigoven.com/whatis.aspx?id=Onion
http://www.bigoven.com/whatis.aspx?id=Onion
http://www.bigoven.com/whatis.aspx?id=Salt
http://www.bigoven.com/whatis.aspx?id=Salt
http://www.bigoven.com/whatis.aspx?id=Pepper
http://www.bigoven.com/whatis.aspx?id=Pepper
http://www.bigoven.com/whatis.aspx?id=Ginger%20root
http://www.bigoven.com/whatis.aspx?id=Ginger%20root
http://www.bigoven.com/whatis.aspx?id=Cayenne
http://www.bigoven.com/whatis.aspx?id=Cayenne

Ancestors

Fourthought: born in 1997
4Suite: born in 1999 (from components
emerging through ’98)
Amara XML Toolkit: born in 2003

Akara: born of all the above in 2008

Saturday, March 26, 2011

Look, developers hate XML

Saturday, March 26, 2011

So why XML Still?

Coz that’s where the data is!

JSON?

YAML?

Protocol
Buffers

?

http://www.flickr.com/photos/littlefishyjes/4338571577/
Saturday, March 26, 2011

http://www.flickr.com/photos/littlefishyjes/4338571577/
http://www.flickr.com/photos/littlefishyjes/4338571577/

Make the data smart, so the code
doesn't have to be

Akara encapsulates 10 years of wisdom in XML
and other data transforms, Web services/SOA

and Semantic technology

Saturday, March 26, 2011

Core concepts
Saturday, March 26, 2011

Driving goals
Combine the practical expressiveness of Python
with XML potential for declarative purity

Very difficult to balance such divergent moments

Make it easy to do the right thing in terms of
standards and practices

Encourage sound design and modeling, using “less code” as
an incentive

Saturday, March 26, 2011

Amara: Sampler from
the core data library

Expat-based core + hooks for dispatch operations
in streaming mode (i.e. SAX without the brainmelt)

Base tree API (Uses Python conventions, then XPath, then
InfoSet, and almost never anything from DOM)

XPath (& also a dynamic object binding inspired by XPath)

XSLT (& also a node dispatch mechanism to Python functions)

Schematron-based assertions, including
validation on a manipulated tree (& also a mechanism
for expressing model rules in Python)

Saturday, March 26, 2011

Akara: RESTful data
service framework

Functions can be written using the core library
features, perhaps as unit transforms
Apply simple wrappers to turn functions into
RESTful services
Akara runs as a repository of services, and
allows you to discover these using a simple GET
Service classes have IDs, independent from
locations of individual service end-points

Saturday, March 26, 2011

e.g. REST wrappers
Take any utility function, remote Web
service, or data scraper, and add a
couple of lines to turn it into a RESTful
end-point

Wikis
Google search
Geocoders
Calais

RDF

Feeds (all RSS/Atom flavors)

Arbitrary Web pages & XML

SPSS

Saturday, March 26, 2011

Web triggers
AKA “Web hooks”
Like DBMS triggers: declaration that
one event actuates another
In this case the events are RESTful HTTP
messages
Allows assembly of transform pipelines
with minimal effort (i.e. less time and
code)

Saturday, March 26, 2011

Pipes

Sorta like Yahoo “Pipes”, without the UI
Freemix is an example of a GUI front-end, and Akara works
purely at the level of data

Results can be refined using declared patterns
Very easy to reuse and rearrange pipe components

In general you only need to solve a problem once

Saturday, March 26, 2011

Very modern server

Server framework largely ported from the very
mature/stable 4Suite server core

We’ve been writing network server frameworks for a long
time, and we’re very good at it

Designed for sensible cross-platform deployment,
stability and scalability (yes multi-core too!)

Saturday, March 26, 2011

Threads
SUCK!

Akara was born
knowing that much

(and more)

Transforms run ➚
rather like those

tabs

Saturday, March 26, 2011

Developer notes

Implemented in C and Python
Primary support for transforms in
Python
Supports other RESTful transforms and
services (regardless of location,
platform, language, etc.)
Apache-style license

Saturday, March 26, 2011

Saturday, March 26, 2011

Core tree API
import amara
from amara import tree

MONTY_XML = """<monty>
 <python spam="eggs">What do you mean "bleh"</python>
 <python ministry="abuse">But I was looking for argument</python>
</monty>"""

doc = amara.parse(MONTY_XML)
assert doc.xml_type == tree.entity.xml_type
m = doc.xml_children[0] #xml_children is a sequence of child nodes
assert m.xml_local == u'monty' #local name, i.e. without any prefix
assert m.xml_qname == u'monty' #qualified name, e.g. includes prefix
assert m.xml_prefix == None
assert m.xml_namespace == None
assert m.xml_name == (None, u'monty') #"universal" or "expanded” name
assert m.xml_parent == doc

p1 = m.xml_children[1]
p1.xml_attributes[(None, u'spam')] = u"greeneggs"
p1.xml_children[0].xml_value = u"Close to the edit"

Saturday, March 26, 2011

“Bindery” API
from amara import bindery
MONTY_XML = """<quotes>
 <quote skit="1">This parrot is dead</quote>
 <quote skit="2">What do you mean "bleh"</quote>
 <quote skit="2">I don't like spam</quote>
 <quote skit="3">But I was looking for argument</quote>
</quotes>"""

doc = bindery.parse(MONTY_XML)
q1 = doc.quotes.quote # or doc.quotes.quote[0]
print q1.skit
print q1.xml_attributes[(None, u'skit')] # XPath works too:
q1.xml_select(u'@skit')

for q in doc.quotes.quote: # The loop will pick up both q elements
 print unicode(q) # Just the child char data

from itertools import groupby #Python stdlib
from operator import attrgetter #Python stdlib
skit_key = attrgetter('skit')
for skit, quotegroup in groupby(doc.quotes.quote, skit_key):
 print skit, [unicode(q) for q in quotegroup]

Saturday, March 26, 2011

“Bindery” API 2
from amara import bindery

MONTY_XML = """<quotes>
 <quote skit="1">This parrot is dead</quote>
 <quote skit="2">What do you mean "bleh"</quote>
 <quote skit="2">I don't like spam</quote>
 <quote skit="3">But I was looking for argument</quote>
</quotes>"""

from itertools import groupby #Python stdlib
from operator import attrgetter #Python stdlib

skit_key = attrgetter('skit')
for skit, quotegroup in groupby(doc.quotes.quote, skit_key):
 print skit, [unicode(q) for q in quotegroup]

 1 [u'This parrot is dead']
 2 [u'What do you mean "bleh"', u"I don't like spam"]
 3 [u'But I was looking for argument']

Saturday, March 26, 2011

Incremental parsing
from amara.pushtree import pushtree
from amara.lib import U #U() = "Unicode, dammit!"

def receive_nodes(node):
 print U(node)
 return

XML="""<doc>
 <one>
 <a>0 <a>1
 </one>
 <two>
 <a>10 <a>11
 </two>
</doc>
"""

pushtree(XML, u'a', receive_nodes)

 0
 1
 -> 10
 11

Saturday, March 26, 2011

Basic XML modeling
from amara import bindery
from amara.bindery.model import *

MONTY_XML = """<monty>
 <python spam="eggs">What do you mean "bleh"</python>
 <python ministry="abuse">But I was looking for argument</python>
</monty>"""

doc = bindery.parse(MONTY_XML)

#Add constraint that `python` elements must have `ministry` attribute
c = constraint(u'@ministry')
try:
 doc.monty.python.xml_model.add_constraint(c, validate=True)
except bindery.BinderyError, e:
 #Exception raised b/c the doc doesn’t meet the constraint we
added
 pass #ignore and move on

#Update the doc to meet the desired constraint
doc.monty.python.xml_attributes[None, u'ministry'] = u'argument'
doc.monty.python.xml_model.add_constraint(c, validate=True)

Saturday, March 26, 2011

Basic XML modeling
from amara import bindery
from amara.bindery.model import *

MONTY_XML = """<monty>
 <python spam="eggs">What do you mean "bleh"</python>
 <python ministry="abuse">But I was looking for argument</python>
</monty>"""

doc = bindery.parse(MONTY_XML)

#Add a constraint using a specialized model primitive that supports a
default
c = attribute_constraint(None, u'ministry', u'nonesuch')
doc.monty.python.xml_model.add_constraint(c, validate=True)

Saturday, March 26, 2011

Modeling by example
LABEL_MODEL = '''<?xml version="1.0" encoding="utf-8"?>
<labels>
 <label>
 <name>[Addressee name]</name>
 <address>
 <street>[Address street info]</street>
 <city>[City]</city>
 <state>[State abbreviation]</state>
 </address>
 </label>
</labels>
'''

#Construct a set of constraints and other model info from the example
label_model = examplotron_model(LABEL_MODEL)

#Now use this to validate an instant document VALID_LABEL_XML
doc = bindery.parse(VALID_LABEL_XML, model=label_model)
doc.xml_validate()

Saturday, March 26, 2011

Model-driven metadata
MODEL_A = '''<labels xmlns:eg="http://examplotron.org/0/"
xmlns:ak="http://purl.org/dc/org/xml3k/akara">
 <label id="tse" added="2003-06-10" eg:occurs="*" ak:resource="@id">
 <!-- use ak:resource="" for an anonymous resource -->
 <quote eg:occurs="?">
 Midwinter Spring is its own season...
 </quote>
 <name ak:rel="name()">Thomas Eliot</name>
 <address ak:rel="'place'" ak:value="concat(city, ',', province)">
 <street>3 Prufrock Lane</street>
 <city>Stamford</city>
 <province>CT</province>
 </address>
 <opus year="1932" ak:rel="name()" ak:resource="">
 <title ak:rel="name()">The Wasteland</title>
 </opus>
 <tag eg:occurs="*" ak:rel="name()">old possum</tag>
 </label></labels>
'''

labelmodel = examplotron_model(MODEL_A)

Saturday, March 26, 2011

http://examplotron.org/0/
http://examplotron.org/0/
http://purl.org/dc/org/xml3k/akara
http://purl.org/dc/org/xml3k/akara

Model-driven metadata
INSTANCE_A_1 = '''<labels>
 <label id="co" added="2004-11-15">
 <name>Christopher Okigbo</name>
 <address>
 <street>7 Heaven's Gate</street>
 <city>Idoto</city>
 <province>Anambra</province>
 </address>
 <opus>
 <title>Heaven's Gate</title>
 </opus>
 <tag>biafra</tag>
 <tag>poet</tag>
 </label>
</labels>
'''

from amara.bindery.model import generate_metadata
doc = bindery.parse(INSTANCE_A_1, model=labelmodel)

for triple in generate_metadata(doc): #Triples but not RDF ;)
 print triple

Saturday, March 26, 2011

Model-driven metadata
INSTANCE_A_1 = '''<labels>
 <label id="co" added="2004-11-15">
 <name>Christopher Okigbo</name>
 <address>
 <street>7 Heaven's Gate</street>
 <city>Idoto</city>
 <province>Anambra</province>
 </address>
 <opus>
 <title>Heaven's Gate</title>
 </opus>
 <tag>biafra</tag>
 <tag>poet</tag>
 </label>
</labels>
'''

from amara.bindery.model import generate_metadata
doc = bindery.parse(INSTANCE_A_1, model=labelmodel)

for triple in generate_metadata(doc):
 print triple

(u'co', u'name', u'Christopher Okigbo')
(u'co', u'place', u'Idoto,Anambra')
(u'co', u'opus', u'r3e0e1e5')
(u'r3e0e1e5', u'title', u"Heaven's Gate")
(u'co', u'tag', u'biafra')
(u'co', u'tag', u'poet')

Saturday, March 26, 2011

“Hello Prague”
from akara.services import simple_service

HELLO_SERVICE_ID = 'http://example.org/my-services/hello'

@simple_service('GET', HELLO_SERVICE_ID, 'hello')
def helloworld(friend=None):
 return u'Ahoj, ' + friend.decode('utf-8') #Returns Unicode object

curl http://localhost:8880/hello?friend=Jirka

-> “Ahoj, Jirka”

Saturday, March 26, 2011

http://example.org/my-services/hello'
http://example.org/my-services/hello'
http://localhost:8880/hello?friend=Uche
http://localhost:8880/hello?friend=Uche

Another Akara module
import amara
from akara.services import simple_service, response

ECOUNTER_SERVICE_ID = 'http://purl.org/akara/services/demo/
element_counter'

@simple_service('GET', ECOUNTER_SERVICE_ID, 'ecounter', 'text/plain')
def ecounter(uri):
 doc = amara.parse(uri[0])
 ecount = doc.xml_select(u'count(//*)')
 return str(ecount)

curl http://localhost:8880/ecounter?uri=http://example.org/test.xml

Saturday, March 26, 2011

http://purl.org/akara/services/demo/element_counter'
http://purl.org/akara/services/demo/element_counter'
http://purl.org/akara/services/demo/element_counter'
http://purl.org/akara/services/demo/element_counter'
http://localhost:8880/akara.xslt?http://hg.akara.info/testdoc.xml
http://localhost:8880/akara.xslt?http://hg.akara.info/testdoc.xml

e.g. Session auth->HTTP auth
Wrapping moin wiki for read/write Web service

Saturday, March 26, 2011

Saturday, March 26, 2011

Saturday, March 26, 2011

To do...

Generic query framework across pipeline results
Support for policy controls (e.g. API keys/
metering and such)
Support for local transforms implemented in
languages other than Python
XProc, NVDL, Full Schematron (porting Scimitar)

Saturday, March 26, 2011

Questions?

http://akara.info

uche@zepheira.com

Saturday, March 26, 2011

mailto:uche@zepheira.com
mailto:uche@zepheira.com

