
XML Prague 2012
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 10–12, 2012

XML Prague 2012 – Conference Proceedings
Copyright © 2012 Jiří Kosek

ISBN 978-80-260-1572-7

Table of Contents
General Information ... vii

Sponsors ... ix

Preface .. xi

The eX Markup Language? – Eric van der Vlist ... 1

XML and HTML Cross-Pollination: A Bridge Too Far? –
Norman Walsh and Robin Berjon .. 11

XML5's Story – Anne van Kesteren .. 23

XProc: Beyond application/xml – Vojtěch Toman .. 27

The Anatomy of an Open Source XProc/XSLT implementation of NVDL –
George Bina .. 49

JSONiq – Jonathan Robie, Matthias Brantner, Daniela Florescu, Ghislain Fourny, and
Till Westmann .. 63

Corona: Managing and Querying XML and JSON via REST – Jason Hunter 73

Treating JSON as a subset of XML – Steven Pemberton .. 81

RESTful XQuery – Adam Retter .. 91

Compiling XQuery code into Javascript instructions using XSLT –
Alain Couthures ... 125

Implementing an XQuery/XSLT hybrid – Evan Lenz .. 141

Transform.xq – John Snelson .. 171

Building Bridges from Java to XQuery – Charles Foster .. 185

A Wiki-based System for Schema and Data Evolution –
Lorenzo Bossi and Alberto Trombetta ... 201

v

vi

General Information

Date
Friday, February 10th, 2012 (preconference day)
Saturday, February 11th, 2012
Sunday, February 12th, 2012

Location
University of Economics, Prague (UEP) – Vencovského aula
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee
Petr Cimprich, Ubiqway
James Fuller,MarkLogic
Vít Janota
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Pavel Kroh, pavel-kroh.cz & Macness.com
Mohamed Zergaoui, Innovimax

Programm Committee
Robin Berjon, freelance consultant
Petr Cimprich, Ubiqway
Daniela Florescu, Oracle
Jim Fuller,MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Uche Ogbuji, Zepheira LLC
Petr Pajas, Google
Adam Retter, freelance consultant
Felix Sasaki, German Research Center for Artifical Intelligence
John Snelson,MarkLogic
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh,MarkLogic
Mohamed Zergaoui, Innovimax

Produced By
XMLPrague.cz (http://xmlprague.cz)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)
Ubiqway, s.r.o. (http://www.ubiqway.com)

vii

http://xmlprague.cz
http://fis.vse.cz
http://www.ubiqway.com

viii

Sponsors

Gold Sponsors
Mark Logic Corporation (http://www.marklogic.com)
The FLWOR Foundation (http://www.flworfound.org)

Sponsors
oXygen (http://www.oxygenxml.com)
Mercator IT Solutions Ltd (http://www.mercatorit.com)

ix

http://www.marklogic.com
http://www.flworfound.org
http://www.oxygenxml.com
http://www.mercatorit.com

x

Preface

This publication contains papers presented at XML Prague 2012.
XMLPrague is a conference on XML for developers, markup geeks, information

managers, and students. In its seventh year, XML Prague focuses especially on new
advances in XQuery and on integration of XML with new web technologies. The
conference provides an overview of successful XML technologies, with the focus
being more towards real world application versus theoretical exposition.

XML Prague conference takes place 10–12 February 2012 at the campus of Uni-
versity of Economics in Prague. XML Prague 2012 is jointly organized by the XML
Prague Organizing Committee and by the Faculty of Informatics and Statistics.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz) – XML fans from around the world are encouraged to take part
on-line. Remote and local participants are visible to each other and all have got a
chance to interact with speakers.

This is the seventh year we have organized this event. For this year we have
changed location to the larger venue in order to satisfy raising interest in XML
Prague. For the first time we have extended the conference by additional pre-con-
ference day—in three parallel tracks we have provided space for various XML
community meetings.

We hope that all introduced changes are going in the right direction and that
you will enjoy XML Prague 2012.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

The eX Markup Language?
Eric van der Vlist

Dyomedea
<vdv@dyomedea.com>

Abstract

Revisiting the question that was the tag line of XML Prague last year: “XML
as new lingua franca for the Web. Why did it never happen?”, Eric tries to
answer to other questions such as: “where is XML going?” or “is XML declin-
ing, becoming an eX Markup Language?”.

1. XML as new lingua franca for theWeb.Why did it never happen?
This was the tagline of XML Prague 2011, but the question hasn't really been
answered last year and I'll start this talk to give my view on that question.

1.1. Flashback
February 1998 is a looong time ago, a date from another century and for those of
you who were not born or don't remember, here is a small summary of what did
happen in February 1998:

February
• The United States Senate4 passes Resolution 71, urging U.S. President Bill

Clinton5 to "take all necessary and appropriate actions to respond to the threat
posed by Iraq6's refusal to end its weapons of mass destruction programs."

• February 37 – Cavalese cable car disaster8: a United StatesMilitary9 pilot causes
the deaths of 20 people near Trento10, Italy, when his low-flying plane severs the
cable of a cable-car.

4 http://en.wikipedia.org/wiki/United_States_Senate
5 http://en.wikipedia.org/wiki/Bill_Clinton
6 http://en.wikipedia.org/wiki/Iraq
7 http://en.wikipedia.org/wiki/February_3
8 http://en.wikipedia.org/wiki/Cavalese_cable_car_disaster_%281998%29
9 http://en.wikipedia.org/wiki/United_States_Military
10 http://en.wikipedia.org/wiki/Trento

1

http://en.wikipedia.org/wiki/United_States_Senate
http://en.wikipedia.org/wiki/Bill_Clinton
http://en.wikipedia.org/wiki/Bill_Clinton
http://en.wikipedia.org/wiki/Iraq
http://en.wikipedia.org/wiki/February_3
http://en.wikipedia.org/wiki/Cavalese_cable_car_disaster_%281998%29
http://en.wikipedia.org/wiki/United_States_Military
http://en.wikipedia.org/wiki/Trento
http://en.wikipedia.org/wiki/United_States_Senate
http://en.wikipedia.org/wiki/Bill_Clinton
http://en.wikipedia.org/wiki/Iraq
http://en.wikipedia.org/wiki/February_3
http://en.wikipedia.org/wiki/Cavalese_cable_car_disaster_%281998%29
http://en.wikipedia.org/wiki/United_States_Military
http://en.wikipedia.org/wiki/Trento

• February 411 – An earthquake measuring 6.1 on the Richter scale12 in northeast
Afghanistan13 kills more than 5,000 people.

• February 714–February 2215 – The 1998Winter Olympics16 are held inNagano17,
Japan.

• February 1618 – China Airlines Flight 67619 crashes into a residential area near
Chiang Kai-shek International Airport20, killing 202 people (all 196 on board
and 6 on the ground).

• February 2021 – Iraq disarmament crisis22: Iraqi President Saddam Hussein23

negotiates a deal with U.N. Secretary General Kofi Annan24, allowing weapons
inspectors to return to Baghdad25, preventing military action by the United
States and Britain.

—Wikipedia

While the Iraq disarmament crisis was raging, theWorldWideWebConsortium
waited until the third day of the Winter Olympics held in Nagano to make the fol-
lowing announcement:

Advancing its mission to lead the Web to its full potential, the World Wide Web
Consortium (W3C)27 today announced the release of the XML 1.0 specification28 as
a W3C Recommendation. XML 1.0 is the W3C's first Recommendation for the Ex-
tensibleMarkup Language, a system for defining, validating, and sharing document
formats on the Web

—W3C Press Release (February 1998)

People curious enough to click on the second link of the announcement could
easily double check that beyond themarketing bias XMLwas something to be used
over the Internet:

11 http://en.wikipedia.org/wiki/February_4
12 http://en.wikipedia.org/wiki/Richter_magnitude_scale
13 http://en.wikipedia.org/wiki/Afghanistan
14 http://en.wikipedia.org/wiki/February_7
15 http://en.wikipedia.org/wiki/February_22
16 http://en.wikipedia.org/wiki/1998_Winter_Olympics
17 http://en.wikipedia.org/wiki/Nagano
18 http://en.wikipedia.org/wiki/February_16
19 http://en.wikipedia.org/wiki/China_Airlines_Flight_676
20 http://en.wikipedia.org/wiki/Chiang_Kai-shek_International_Airport
21 http://en.wikipedia.org/wiki/February_20
22 http://en.wikipedia.org/wiki/Iraq_disarmament_crisis
23 http://en.wikipedia.org/wiki/Saddam_Hussein
24 http://en.wikipedia.org/wiki/Kofi_Annan
25 http://en.wikipedia.org/wiki/Baghdad
27 http://www.w3.org/pub/WWW/
28 http://www.w3.org/TR/1998/REC-xml-19980210

2

The eX Markup Language?

http://en.wikipedia.org/wiki/February_4
http://en.wikipedia.org/wiki/Richter_magnitude_scale
http://en.wikipedia.org/wiki/Afghanistan
http://en.wikipedia.org/wiki/February_7
http://en.wikipedia.org/wiki/February_22
http://en.wikipedia.org/wiki/1998_Winter_Olympics
http://en.wikipedia.org/wiki/Nagano
http://en.wikipedia.org/wiki/February_16
http://en.wikipedia.org/wiki/China_Airlines_Flight_676
http://en.wikipedia.org/wiki/Chiang_Kai-shek_International_Airport
http://en.wikipedia.org/wiki/February_20
http://en.wikipedia.org/wiki/Iraq_disarmament_crisis
http://en.wikipedia.org/wiki/Saddam_Hussein
http://en.wikipedia.org/wiki/Kofi_Annan
http://en.wikipedia.org/wiki/Baghdad
http://www.w3.org/pub/WWW/
http://www.w3.org/pub/WWW/
http://www.w3.org/TR/1998/REC-xml-19980210
http://en.wikipedia.org/wiki/February_4
http://en.wikipedia.org/wiki/Richter_magnitude_scale
http://en.wikipedia.org/wiki/Afghanistan
http://en.wikipedia.org/wiki/February_7
http://en.wikipedia.org/wiki/February_22
http://en.wikipedia.org/wiki/1998_Winter_Olympics
http://en.wikipedia.org/wiki/Nagano
http://en.wikipedia.org/wiki/February_16
http://en.wikipedia.org/wiki/China_Airlines_Flight_676
http://en.wikipedia.org/wiki/Chiang_Kai-shek_International_Airport
http://en.wikipedia.org/wiki/February_20
http://en.wikipedia.org/wiki/Iraq_disarmament_crisis
http://en.wikipedia.org/wiki/Saddam_Hussein
http://en.wikipedia.org/wiki/Kofi_Annan
http://en.wikipedia.org/wiki/Baghdad
http://www.w3.org/pub/WWW/
http://www.w3.org/TR/1998/REC-xml-19980210

The design goals for XML are:
1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs which process XML documents.
5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.
6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.
10. Terseness in XML markup is of minimal importance.

—W3C Recommendation (February 1998)

And the pointwas reinforced by themanwho had led the "Web SGML" initiative
and is often referred to as the father of XML:

XML arose from the recognition that key components of the original web infrastruc-
ture -- HTML tagging, simple hypertext linking, and hardcoded presentation --
would not scale up to meet the future needs of the web. This awareness started with
people like me who were involved in industrial-strength electronic publishing before
the web came into existence.

—Jon Bosak

This has often been summarized saying that XML is about "putting SGML on
the Web".

Among the design goals the second one ("XML shall support a wide variety of
applications") has been especially successful and by the end of 98, Liora Alschuler31

reported that the motivations of the different players pushing XML forward were
very diverse:

The big-gun database vendors, IBM and Oracle, see XML as a pathway into and out
of their data management tools. The big-gun browser vendors, Netscape and Mi-
crosoft, see XML as the e-commerce everywhere technology. The big-gun book and
document publishers, for all media, are seeing a new influx of tools, integrators, and
interest but the direction XML publishing will take is less well-defined and more
contingent on linking and style specs still in the hands of the W3C.

—Liora Alschuler for XML.com (December 1998)

31 http://web.archive.org/web/19991011215212/http://www.xml.com/pub/au/Alschuler_Liora

3

The eX Markup Language?

http://web.archive.org/web/19991011215212/http://www.xml.com/pub/au/Alschuler_Liora
http://web.archive.org/web/19991011215212/http://www.xml.com/pub/au/Alschuler_Liora

One thing these "big-gun" players thatwere pushingXML to different directions
did achieve has been to develop an incredible hype that rapidly covered everything
and in 2001 the situation had become hardly bearable:

Stop the XML hype, I want to get off
As editor of XML.com, I welcome the massive success XML has had. But things

prized by the XML community — openness and interoperability — are getting
swallowed up in a blaze of marketing hype. Is this the price of success, or something
we can avoid?

—Edd Dumbill (March 2001)

Marketers behind the hype being who they were, the image of XML that they
promoted was so shiny that the XML gurus didn't recognize their own technology
and tried to fight against the hype:

I've spent years learning XML / I like XML / This is why www.XmlSuck.com is
here

—PaulT (January 2001)

The attraction was high and people rushed to participate to the W3C working
groups:

Working Group size - so many people means it is difficult to gain consensus, or
even know everyone's face. Conference calls are difficult.

—Mark Nottingham, about the SOAP W3C WG (May 2000)

Hugeworking groupswith people pushing to different directions is not the best
recipe to publish high quality standards and even though XML itself was already
baked, the perception of XML depends on the full "stack":

This is a huge responsibility for the Schema Working Group since it means that the
defects of W3C XML Schema will be perceived by most as defects of XML.

—Eric van der Vlist on xml-dev (April 2001)

The hype was so huge that XML geeks rapidly thought that they had won the
war and that XML was everywhere:

XML is now as important for the Web as HTML was to the foundation of the Web.
XML is everywhere.

—connet.us (February 2001)

Why this hype? My guess is that the IT industry had such a desperate need for
a data interchange format that any one of them could have been adopted at that
time and that XML happened to be the one that went through the radar screen at
the right moment:

When the wind is strong enough, even flatirons can fly.
—Anonymous (February 2012)

4

The eX Markup Language?

The W3C had now to maintain:
• XML, a SGML subset
• HTML, a SGML application that did not match the XML subset
Technically speaking, the thing to do was to refactor HTML to meet the XML

requirements. Given the perceived success of XML, it seemed obvious that everyone
would jump into the XML wagon and be eager to adopt XHTML.

Unfortunately from a web developer perspective the benefits of XHTML 1.0
were not that obvious:

The problem with XHTML is :
a) it's different enough from HTML to create new compatibility problems.
b) it's not different enough from HTML to bring significant advantages.

—Eric van der Vlist on XHTML-DEV (May 2000)

It is fair to say that Microsoft had been promoting XML since the beginning:

XML, XML, Everywhere
There's no avoiding XML in the .NET world. XML isn't just used in Web ap-

plications, it's at the heart of the way data is stored, manipulated, and exchanged in
.NET systems.

— Rob Macdonald for MSDN (February 2001)

However, despite their strong commitment to XML, Microsoft had frozen new
developments on Internet Explorer. The browser has never been updated to support
the XHTMLmedia type, meaning that the fewweb sites using XHTMLhad to serve
their pages as HTML!

By 2001, the landscape was set:
• XMLhad become a dominant buzzword giving a false impression that it had
been widely adopted
• Under the hood, many developers were deeply upset by this hype even
among the XML community
• Serving XHTML web pages as such was not an option for most web sites
The landscape was set, but the hype was still high and XML was still gaining

traction as a data interchange format.
In the meantime, another hype was growing...
Wikipedia has tracked the origin of the term Web 2.0 back to 1999:

The Web we know now, which loads into a browser window in essentially static
screenfuls, is only an embryo of the Web to come.

.../...
Ironically, the defining trait of Web 2.0 will be that it won't have ant visible

characteristics at all. The Web will be identified only by its underlying DNA struc-
ture-- TCP/IP (the protocol that controls how files are transported across the Internet);

5

The eX Markup Language?

HTTP (the protocol that rules the communication between computers on the Web),
and URLs (a method for identifying files).

.../...
The Web will be understood not as screenfuls of text and graphics but as a

transport mechanism, the ether through which interactivity happens.
—Darcy DiNucci (1999)

The term became widely known with the first Web 2.0 conferences in 2003 and
2004 and XML was an important piece of the Web 2.0 puzzle through Ajax (Asyn-
chronous JavaScript and XML), coined and defined by Jesse James Garrett in 2005
as:

Ajax isn’t a technology. It’s really several technologies, each flourishing in its own
right, coming together in powerful new ways. Ajax incorporates:

• standards-based presentation42 using XHTML and CSS;
• dynamic display and interaction using the Document Object Model43;
• data interchange and manipulation using XML and XSLT44;
• asynchronous data retrieval using XMLHttpRequest45;
• and JavaScript46 binding everything together.

—Jesse James Garrett (February 2005)

This definition shows how, back in 2005, some of us still thought that XML could
dominate theWeb and be used both to exchange documents (in XHTML) and data.

Unfortunately, this vision defended by the W3C, has been rapidely torpedoed
by Ian Hickson47 and Douglas Crockford48.

Founded in 1985 for that purpose, the W3C had been the place where HTML
had been normalized. Among other things, the W3C had been the place where the
antagonists of the first browser war could meet and discuss in a neutral field.

In 2004, Netscape had disappeared, Microsoft had frozen the development of
their browser and browser innovationmoved into the hand of newplayers:Mozilla,
Apple/Safari and Opera who was starting to gain traction.

Complaining that the W3C did not meet their requirements and that HTML
needed to be updated urgently tomeet the requirementswhatwould be soon known
as Web 2.0, they decided to fork the development of HTML:

42 http://www.adaptivepath.com/publications/essays/archives/000266.php
43 http://www.scottandrew.com/weblog/articles/dom_1
44 http://www-106.ibm.com/developerworks/xml/library/x-xslt/?article=xr
45 http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
46 http://www.crockford.com/javascript/javascript.html
47 http://en.wikipedia.org/wiki/Ian_Hickson
48 http://en.wikipedia.org/wiki/Douglas_Crockford

6

The eX Markup Language?

http://www.adaptivepath.com/publications/essays/archives/000266.php
http://www.scottandrew.com/weblog/articles/dom_1
http://www-106.ibm.com/developerworks/xml/library/x-xslt/?article=xr
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://www.crockford.com/javascript/javascript.html
http://en.wikipedia.org/wiki/Ian_Hickson
http://en.wikipedia.org/wiki/Douglas_Crockford
http://www.adaptivepath.com/publications/essays/archives/000266.php
http://www.scottandrew.com/weblog/articles/dom_1
http://www-106.ibm.com/developerworks/xml/library/x-xslt/?article=xr
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://www.crockford.com/javascript/javascript.html
http://en.wikipedia.org/wiki/Ian_Hickson
http://en.wikipedia.org/wiki/Douglas_Crockford

Software developers are increasingly using the Internet as a software platform, with
Web browsers serving as front ends for server-based services. ExistingW3C techno-
logies — including HTML, CSS and the DOM — are used, together with other
technologies such as JavaScript, to build user interfaces for these Web-based applic-
ations.

However, the aforementioned technologies were not developed with Web Applic-
ations in mind, and these systems often have to rely on poorly documented behaviors.
Furthermore, the next generation of Web Applications will add new requirements
to the development environment— requirements these technologies are not prepared
to fulfill alone. The new technologies being developed by the W3C50 and IETF51 can
contribute to Web Applications, but these are often designed to address other needs
and only consider Web Applications in a peripheral way.

The Web Hypertext Applications Technology working group therefore intends
to address the need for one coherent development environment forWeb Applications.
To this end, the working group will create technical specifications that are intended
for implementation in mass-marketWeb browsers, in particular Safari, Mozilla, and
Opera.

—WHATWG (June 2004)

The W3C was behind a simple choice: either push XHTML recommendations
that would never be implemented in any browsers or ditch XHTML and ask the
WHATWG to come back and continue their work toward HTML5 as a W3C
Working Group. The later option was eventually chosen andHTMLwork resumed
within W3C in 2007.

JSONwas around since 2001. It took a few years of Douglas Crockford's energy
to popularize this JavaScript subset but around 2005, JSON rapidly became a tech-
nology of choice as a “Fat-Free Alternative to XML52” in Ajax applications.

There is no direct link betweenHTML5 and JSON but the reaction against XML,
its hype and its perceived complexity is a strong motivation in both cases.

1.2. Why?
A number of reasons can be found for this failure:
• Bad timing between the XML and HTML specifications (see Adam Retter's

presentation at XML Amsterdam 201153).
• Lack of quality of someXMLrecommendations (XMLNamespaces, XMLSchema,

...).

50 http://www.w3.org/TR/
51 http://www.ietf.org/rfc.html
52 http://www.json.org/fatfree.html
53http://www.adamretter.org.uk/presentations/xml-and-web-technologies_xml-amsterdam_20111026.pdf

7

The eX Markup Language?

http://www.w3.org/TR/
http://www.ietf.org/rfc.html
http://www.json.org/fatfree.html
http://www.adamretter.org.uk/presentations/xml-and-web-technologies_xml-amsterdam_20111026.pdf
http://www.adamretter.org.uk/presentations/xml-and-web-technologies_xml-amsterdam_20111026.pdf
http://www.w3.org/TR/
http://www.ietf.org/rfc.html
http://www.json.org/fatfree.html
http://www.adamretter.org.uk/presentations/xml-and-web-technologies_xml-amsterdam_20111026.pdf

• Lack of pedagogy to explain why XML is the nicer technology on the earth.
• Dumbness of Web developers who not use XML.
• ...

There is some truth in all these explanations, but the main reason is that from
the beginning we (the XML crowd) have been arrogant, over confident and have
made a significant design error.

When we read this quote:

XML arose from the recognition that key components of the original web infrastruc-
ture --HTML tagging, simple hypertext linking, and hardcoded presentation
-- would not scale up to meet the future needs of the web. This awareness
started with people like me who were involved in industrial-strength electronic
publishing before the web came into existence.

—Jon Bosak

We all understand what Jon Bosak meant and we probably all agree that HTML
is limited and that something more extensible makes our lives easier, but we must
also admit that we have been proven wrong and that HTML has been enough to
scale up to the amazing applications we see today.

Of course, the timing was wrong and everything would have been easier if Tim
Berners-Lee had came upwith a first version of HTML that would have been a well
formed XML document but on the other hand, the web had to exist before we could
put SGML on the web and there had to be a prior technology.

In 1998 it was already clear that HTML was widespread and the decision to
create XML as a SGML subset that would be incompatible with HTML has been a
bad one:

• Technically speaking because that meant that millions of existing pages
would be non well formed XML (“the first Google index in 1998 already had 26
million pages55”).
• Tactically speaking because that could be understood as "what you've done
so far was crappy, now you must do what we tell you to do".
To avoid this deadly risk, the first design goal of XML should have been that

existing valid HTML documents were well formed XML documents. The result
might have been a more complex format and specification, but this risk to create a
gap between XML and HTML communities would have been minimized.

Another reason to explain this failure is that XML is about extensibility. This is
both itsmain strength andweakness: extensibility comes at a price and XML ismore
complex than domain specific languages.

Remove the need for extensibility and XML will always loose against DSLs,
we've seen a number of examples in the past:

55 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

8

The eX Markup Language?

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

• RELAX NG compact syntax
• JSON
• HTML
• N3
• CSS
• ...

2. Is it a time to refactor XML? Converge or convert?
Hmmm... It's time to address the questions asked this year by XML Prague!

We've failed to establish XML as the format to use on the web but we've suc-
ceeded in creating a strong toolbox which is very powerful to power websites and
exchange information.

I don't know if it's to compensate the ecosystems that we are destructing on our
planet, but one of the current buzzwords amongdevelopers is "ecosystem": dominant
programming languages such as Java and JavaScript are becoming "ecosystems"
that you can use to run a number of applications that may be written using other
programming languages.

What we've built with XML during the past 14 years is a very strong ecosystem.
The XML ecosystem is based on an (almost) universal data model that can not

only represent well formed XMLdocuments but alsoHTML5 documents and (with
an impedance mismatch that may be reduced in future versions) JSON objects.

Note
Notable exceptions that cannot be represented by the XMLdatamodel include
overlapping structures and graphs.

On top of this data model, we have a unique toolbox that includes:
• transformation and query languages
• schema languages
• processing (pipeline) languages
• databases
• web forms
• APIs for traditional programming languages
• signature and encryption standards
• a text based serialization syntax
• binary serialization syntaxes

We can truly say that what's important in XML is not the syntax but that:

9

The eX Markup Language?

Angle Brackets Are a Way of Life
—Planet XMLHack

Rather than fighting fights that we've already lost we need to develop our eco-
system.

The number one priority is to make sure that our data model embraces the web
that is taking shape (which means HTML5 and JSON) as efficiently as possible.
Rather than converge or convert we must embrace, the actual syntax is not that
important after all!

To grow our ecosystem, we could also consider embracing more data models,
such as graphs (RDF), name/value pairs (NOSQL), relations (SQL), overlaps (LMNL).

I am more skeptical about refactoring XML at that stage.
It's always interesting to think about what could be done better, but refactoring

a technology as widespread as XML is tough and needs to be either backward
compatible or provide a huge benefit to compensate the incompatibilities.

Will we see a proposal that will prove me wrong during the conference?

10

The eX Markup Language?

XML and HTML Cross-Pollination:
A Bridge Too Far?

Norman Walsh
MarkLogic Corporation

<norman.walsh@marklogic.com>

Robin Berjon
Robineko

<robin@berjon.com>

Abstract

W3C created a small Task Force to look at convergence paths between XML
and HTML. One of the notions that it discussed was that the two technologies
could perhaps not be aligned, but that they could cross-pollinate.

This talk will look at ways for this to happen. Can we use CSS Selectors
in XPointer? Can we build something like XSLT using CSS + JavaScript and
another syntax? Does HTML actually have some interesting approaches to
distributed extensibility? Should SVG be in the HTML namespace and has it
suffered from changing its syntax?

Keywords: XML, HTML, W3C

1. Introduction
Over a year ago, the W3C put together a small XML-HTML Task Force that was
asked to look into the convergence between these two technology families. This
paper is derived from the experience of two of the task force's participants in looking
at the two ecosystems in order to figure out what they could share.

While it appears that complete alignment between theHTML and XML families
may not be achievable (or in fact desirable), there are nevertheless areas in which
cross-pollination between those two stacks could help improve either or both.
Despite the important design differences that exist between HTML and XML, their
goals are not as divided as some of the stormier rhetoric suggests. There are plenty
of areas of common experience despite significant differences in the details.

This paperwill therefore navigate a number of cross-over options. Some of these
work today but may not be in common use, at times because they could in fact be
detrimental, but in a number of cases possibly because they have been overlooked
by those who could benefit from them. Other parts may not work because of a

11

technological gap. Yet others may seem no less than utter madness, but could nev-
ertheless constitute an interesting avenue for exploration.

2. XML in Today's Browser
XML is used on theWeb only inmoderation, but this does not prevent it from being
available as a technology in browsers. In this section we look at what can be done
with XML on theWeb, what's missing and how that could be addressed, and at the
overall worthiness of the notion.

2.1. XML, CSS, Javascript
It is readily possible, using today's browsers, to simply ship XML +CSS on theWeb.
The style sheets that one will have to craft will be more complex than those often
used for HTML since they will have to define the basic properties of every single
element, but that does not constitute amajor undertaking (unless the given language
is huge, naturally).

A good starting point for the above would be one of the many CSS reset style
sheets that can be found at large. The goal of these is to reset the default styles that
browsers apply (which differ) so as to start from a common stylistic baseline. Ad-
apting one of those to work for an XML vocabulary should prove straightforward.
CSS can be applied to an XML document using an xml-stylesheet processing in-
struction.

For example:
<?xml-stylesheet href="xmltest.css"?>
<doc>
<title>Title</title>
<para xml:id="test">Testing.</para>
</doc>

Where xmltest.css contains:
doc {

display: block;
}

title {
display: block;
font-size: 18pt;
font-weight: bold;

}

para {
display:block

12

XML and HTML Cross-Pollination: A Bridge Too Far?

margin-before: 1em;
}

Inlined images are slightly trickier than the rest, but it is at least theoretically possible
to address that issue with a combination of several background properties and the
attr() function which can reuse the value of an attribute inside a CSS property.
(Though this does not appear to be supported today.)

Of course, once you've styled your document there isn't much that you can do
with it beyond read it. In a number of cases thatmay be sufficient, but the interactiv-
ity that one has grown accustomed to on the Web will not be directly possible. For
that, one needs support for forms and Javascript.

XFormsmight spring tomind as a good option for the inclusion of forms in your
XML document, but given that it is not natively supported in browsers a client-side
Javascript implementationwill be required to support it (or to implement form-like
functionality based on another vocabulary), which brings us back to scripting.

There is no equivalent to xml-stylesheet for scripting, but a script element in
the XHTML namespace will do the trick:

<?xml-stylesheet href="xmltest.css"?>
<doc>
<title>Title</title>
<para xml:id="test">Testing.</para>

<script xmlns="http://www.w3.org/1999/xhtml">
//<![CDATA[
var text = document.createTextNode("Script testing");
var para = document.getElementsByTagName("para")[0];
para.removeChild(para.firstChild)
para.appendChild(text);
//]]></script>
</doc>

If using XML documents in this fashion were to becomemore widespread, the idea
of am xml-script processing instruction might become interesting (it should not
prove difficult to specify).

Once this is set up, most of the moving parts ought to be functional. Since the
DOM is properly live, just like anyHTMLDOM,modifications to the tree will have
the effect on the rendering that you would expect. By and large, popular libraries
like jQuery will (mostly) work. One thing worth noting though is that since the
XML DOM has a number of difference with the HTML DOM (if only that the ele-
ments won't be properly specialised to a given interface), a number of tasks may
prove more complex (and common libraries may stumble on some cases).

Support for xml:id attributes in particular would make locating elements in the
XML DOM easier.

13

XML and HTML Cross-Pollination: A Bridge Too Far?

2.2. What, no links?
One thing ismissing from the above picture though: linking. XLink is not supported
in any generally reusablemanner (it is recognised on select SVG elements, but that's
about it). Assuming Javascript and CSS, this can be emulated. For a DocBook docu-
ment for instance, we would have the following CSS:

@namespace "http://docbook.org/ns/docbook";
@namespace xl "http://www.w3.org/1999/xlink";
link[xl|href] {

cursor: hand;
color: #00c;
text-decoration: underline;

}

And navigation would work using Javascript (assuming jQuery and its xmlns plu-
gin):

$.xmlns("http://docbook.org/ns/docbook");
$.xmlns("xl", "http://www.w3.org/1999/xlink");
$("article").on("click", "link[xl|link]", function () {

document.location = $(this)[0].getAttributeNS("http://www.w3.org/1999/►
xlink", "href");
});

While this works, it is hardly the best for all link-based navigation to be handled in
script. There have, in the past, been proposals that endeavoured to decorate docu-
ments in such away that linkswould be recognised (for instance, using a style sheet
that would identify link elements as such) but none ever gained much traction. If
using XML on the Web were to be commonplace, this would likely be one of the
first gaps that would require filling.

2.3. The Accessibility of XML
Theoretically, accessibility of XML should be at least as good, perhaps better than
HTML because the opportunity exists for expressing richer semantics in the docu-
ment. In practice, this is utterly wrong. Had XML become widespread on the web,
languages for mapping accessibility onto XML documents could have been de-
veloped. Since it didn't, they weren't and the result is that HTML documents have
much greater accessibility because somuch is known in advance about the semantics
of the elements.

Perhaps ARIA andCSSwould provide a framework for building some accessib-
ility into XML on the web, but it's not likely to be sufficient for the more complex
cases.

14

XML and HTML Cross-Pollination: A Bridge Too Far?

2.4. Why bother?
You probably shouldn't. If you subscribe to the many worlds interpretation of
quantum mechanics, you may be able to imagine worlds where support for XML
on theweb iswidespread and robust. In those universes, deployingXMLdocuments
on theweb, transforming, styling, and scripting them is as easy and straightforward
as deploying HTML documents in our universe. But we don't live there.

In this universe, the benefits from deploying XML on the web are probably
limited to closed environmentswhere it's convenient to think of the documents that
will be deployed on theweb as being equally useful for additional processing inside
the environment. Extracting linked data, performing entity enrichment, etc. using
existing XML technologies on top of the web documents may have real value.

But actual deployment is probably limited to XML documents that happen to
also beHTMLdocuments or that generate theHTMLDOMyou expectwhen parsed
with an HTML parser.

3. Born in XML, Live in HTML
There are a great many technologies developed for XML that could (and do!) apply
equally well to HTML. If you move beyond the question of syntax to the level of
an object model, an XML tree and an HTML tree are even closer together than
documents written in their respective syntaxes.

It would be nice to be able to use themwhen they offer the easiest way forward.

3.1. XPointer and CSS
XPointer and CSS both describe mechanisms for selecting regions of a document.
In fact, XPointer is really a framework for such mechanisms. An XPointer imple-
mentation that understood a “CSS scheme”would allowauthors to reuse expressions
across styling and selection.

See, for example, Using CSS Selectors as Fragment Identifiers1 by Simon St.
Laurent Eric Meyer.

3.2. Can we replace FO?
At least in some environments, CSS hasmade goodprogress in its support for print-
related styles. Unfortunately, we don't yet seem to have reached the point where
formats like PDF can fully be replaced on the Web.

A good source of gaps in the current HTML+CSS ecosystem could therefore be
FO. The pdf.js project has shown that it is possible to parse and render PDF using

1 http://simonstl.com/articles/cssFragID.html

15

XML and HTML Cross-Pollination: A Bridge Too Far?

http://simonstl.com/articles/cssFragID.html
http://simonstl.com/articles/cssFragID.html

only Web technologies. The time therefore seems ripe to try to do the same thing
with FO.

Using such an approach it may be that we will be able to use FO directly in the
browser, which at least could help solve PDF's many issues such as the difficulty
in generating it easily, its various text-selection problems, and at least some of its
more endemic accessibility problems (through judicious application of HTML and
ARIA).

More likely though it could highlight both some priorities in the evolution of
CSS, and the value that there could be for implementers to support them in order
to progressively phase out PDF.

3.3. Compilation to JS
Another approach is simply to bring those tools directly into the browser. We've
seen clear demonstrations of substantial success in these areas in the work of
Saxonica2’s on “Saxon Client Edition” and Vojtěch Toman on XML Pipeline Pro-
cessing in the Browser3.

3.4. How SVGmade the jump
SVGwas born and raised an XML language. It has its own namespace fully defined
with a proper namespace document. It has a RelaxNG as well as an NVDL schema;
in fact at one point or another it has even had a DTD and an XML Schema. It uses
XLink, and version 1.2 even adopted xml:id. Over the years it has routinely been
both consumed and produced using XSLT and XPath; for a while there even was a
project to add “SVG Extensions to XPath” in order to process its geometry better.

This is interesting because it is not all that common for graphics people to care,
or even knowmuch about, XML. A large part of the reason for it to use XML in the
first place was because it was intended to be embedded straight into XHTML, or of
course any other XML language that could use some pretty shapes.

But with XHTML pining for the fjords, the question of what to do with SVG
became rather acute. Browsers already largely supported it, so that there was little
point in dropping it entirely. Besides, there was no proposed replacement and
starting from scratch would have taken too long. The decision was therefore made
to find a way to integrate it with HTML.

By and large, given that several of the important integration factors had already
been figured out for XHTML integration anddid not need to be updated, considering
the size and complexity of SVG this turned out to be a lot easier than onemay expect.
However, thematter of syntax remained a problem.Keeping the XML syntax created

2 http://saxonica.com/
3 http://www.balisage.net/Proceedings/vol5/html/Toman01/BalisageVol5-Toman01.html

16

XML and HTML Cross-Pollination: A Bridge Too Far?

http://saxonica.com/
http://www.balisage.net/Proceedings/vol5/html/Toman01/BalisageVol5-Toman01.html
http://www.balisage.net/Proceedings/vol5/html/Toman01/BalisageVol5-Toman01.html
http://saxonica.com/
http://www.balisage.net/Proceedings/vol5/html/Toman01/BalisageVol5-Toman01.html

trouble at the HTML parsing level since one would have to switch parsers. What's
more, embeddingdifferent syntaxes that aremostly the samebut also subtly different
inside one another is hardly the friendly thing to do to developers. After some intense
debate, the decision was made to accept the transition of SVG to the HTML syntax,
along with other niceties like automatic namespacing.

A number of participants in this discussion predicted trouble from this switch,
notably due to cut and paste errors. In practice, now several years after the switch
took place, very few complaints have been heard. On the contrary, the merged
syntax hasmade it easier to better support SVGon theWeb, and SVG is increasingly
becoming mainstream thanks to that and the common usage of libraries that make
use of this facility such as Raphaël. In fact it is such a success that the SVG WG is
considering dropping SVG's own namespace entirely and automatically coercing
it all into the HTML namespace, one way or another.

An interesting open question here is whether there are other languages that
could be given the same treatment.

3.5. Distributed Extensibility on the Web
Muchdiscussion has surrounded a property of “Distributed Extensibility” that XML
is supposedly endowed with (by virtue of namespaces) when HTML is not. But is
that concern justified?

The first thing to note is that saying that XML supports distributed extensibility
is not a very useful statement to make. XML is just a syntax, and if you couldn't
freely create languages with it it's not clear what it would be useful for. A more
precise characterisation is that, given that namespaces can be used to mix vocabu-
laries, XML languages support distributed extensibility. Anyone can grab an XML
document that uses a given language, slap an extra namespace declaration, and
start injecting attributes and elements from a different language without hurting
the first.

The ability to extend a language independently of the agent that controls it is a
very powerful and seductive one. However, in order for it to be genuinely useful,
you need more than extensibility at the syntactical and semantic level. You also
need the same extensibility to be at the very least harmless through most of the
processing chain that is applied to the original language.

And that's where things start becoming less clear for distributed extensibility in
the XML ecosystem.While building a processing tool chain that supports distributed
extensibility in XML is technically possible, drove after drove of users have voted
with their feet against it. In order to support DE, one would expect a schema lan-
guage to accept by default namespaces that it is not aware of, yet the most popular
choices in this area — XML Schema and RelaxNG — make this difficult. There is
very little in the way of tooling support for manipulating trees that may compose
multiple namespaces together while easily the ones that are not expected to be

17

XML and HTML Cross-Pollination: A Bridge Too Far?

present. And in practice, code is rarely written with that expectation in mind. Try
throwing in additional namespaced elements into aDOM, SAX, XSLT, etc. processing
pipeline and the chances are high that you will see it fail.

A number of best practices were initially worked on (in part in order to support
versioning) that described useful rules for ignoring content fromdistributed extens-
ibility, but there was never sufficient interest to finalise them. A technology like
NVDL could prove helpful in a DE-enabled tool chain but it is hardly ever used —
in fact the vast majority of XML users are likely never to have heard of it. RDDL
(and namespace documents in general) which could make DE additionally useful
by building discoverability into the system barely elicited sufficient interest to foster
a few short-lived proposals.

It is therefore fair to say that while distributed extensibility was part of the initial
XML vision, in practice it failed to see the light of day.

Meanwhile, work has progressed on a promising newHTML-based technology
calledWebComponents4. Geared towards interactive documents, itmakes it possible
to decorate an existing document with any number of “shadow DOMs” that can
hang off its elements, and can themselves contain further shadowDOMs recursively.
The current work is still in its infancy, but it has roots in previous work called XBL
which served a similar purpose in a different fashion.

The great value of shadow DOMs is that they make it possible to process inde-
pendent yet composed document trees without any risk of seeing their processing
chains step on one another's toes. It is too early to know if they could be transposed
to batch operations easily or if that approach would even be workable in an XML
context, but it's a spaceworthwatching. Itmight just happen that the XMLecosystem
could import concepts fromWeb Components in order to develop its own support
for distributed extensibility.

3.6. Web Transformations
The Javascript community is presently seeing a small cottage industry in the pro-
duction of templating languages. In fact, there are days on which one may get the
impression that you can't be a proper Javascript developer if you haven't released
your own templating language to GitHub.

String-interpolation templating languages are great when you need to generate
HTML from a rather straightforward data structure, but they start to become cum-
bersomewhen your input increases in complexity, especially if it's a document itself.

For that, XSLT is currently king. But try as you might, getting your typical web
hacker to even think about perhaps using it is nigh impossible. Back in 1998, a
submission called STTS5 was made to the W3C. It used a CSS based declarative

4 http://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/shadow/index.html
5 http://www.w3.org/TR/NOTE-STTS3

18

XML and HTML Cross-Pollination: A Bridge Too Far?

http://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/shadow/index.html
http://www.w3.org/TR/NOTE-STTS3
http://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/shadow/index.html
http://www.w3.org/TR/NOTE-STTS3

language to transform documents (primarily HTML back then), but nevermet with
strong support. Re-evaluating it in today's context, it is interesting to note that it
bears some similarities with the now popular HAML6 templating language. That
being said, its highly declarative nature is likely to make it only slightly more pop-
ular than XSLT with this crowd.

Would it be possible to implement a language or library built on the principles
that make XSLT a great language but using an approach that would be familiar to
Web developers? Reimplementing the full feature-set of an XSLT processor is not
aminor undertaking, but a decent amount of it can be handled if we have JavaScript
handy. Besides, since this is just a thought experiment at this point, we can probably
stick to only porting XSLT's core processing model and see how far that gets us.
That is amuch smaller endeavour, in fact the XSLT processingmodel is so elegantly
short that we can simply reproduce it here from the specification in its unabridged
entirety:

A list of source nodes is processed to create a result tree fragment. The result tree is
constructed by processing a list containing just the root node. A list of source nodes
is processed by appending the result tree structure created by processing each of the
members of the list in order. A node is processed by finding all the template rules
with patterns that match the node, and choosing the best amongst them; the chosen
rule's template is then instantiated with the node as the current node and with the
list of source nodes as the current node list. A template typically contains instructions
that select an additional list of source nodes for processing. The process of matching,
instantiation and selection is continued recursively until no new source nodes are
selected for processing.

Implementations are free to process the source document in anyway that produces
the same result as if it were processed using this processing model.

—XSLT 1.0, James Clark

That doesn't solve all of our problems of course, but it's a start. Based on this we
could imagine some form of JSLT code that might look like the following if we
wanted to transform a simple DocBook document to HTML.

var sheet = require("jaspilite").sheet()
, $ = require("jquery")
, XL = "http://www.w3.org/1999/xlink"
;
sheet.xmlns({

"": "http://docbook.org/ns/docbook"
, "xl": XL
});
sheet.template(":root > article", function () {

6 http://haml-lang.com/

19

XML and HTML Cross-Pollination: A Bridge Too Far?

http://haml-lang.com/
http://haml-lang.com/

var title = $(this).find("info > title").text();
return $("<html><head><title></title></head><body><h1></h1><content/></►

body></html>")
.find("title").text(title).end()
.find("h1").text(title).end()
.find("content").replaceWith($(this).apply());

});
sheet.template("info", function () {});
sheet.template("section", function () {

return $(this).apply().wrapIn("<section></section>");
});
sheet.template("title", function () {

var depth = $(this).parents("section").length;
if (depth < 1) return;
depth++;
if (depth > 6) depth = 6;
return $(this).apply().wrapIn(sheet.createElement("h" + depth));

});
sheet.template("para", function () {

return $(this).apply().wrapIn("<p></p>");
});
sheet.template("emphasis", function () {

return $(this).apply().wrapIn("");
});
sheet.template("link[xl|href]", function () {

var $link = $(this);
return $link.apply().wrapIn("<a>").attr("href", ►

$link[0].getAttributeNS(XL, "href"));
});
var $out = sheet.run("my-document.dkb");
console.log($out.html());

There are naturally some issues with the above code, but as a transformation sheet
it is usable and ought to seem roughly familiar to JS developers in large part thanks
to its reliance on jQuery. The first problem is namespaces: jQuery (and its underlying
CSS engine, Sizzle) is not natively aware of namespaces. This can beworked around
using a plugin, but it still shows when one tries to access a namespaced attribute.
That being said, one thing that may not be readily obvious when used to XPath is
that all of the CSS Selectors above use theDocBook namespace properly since unlike
XPath CSS Selectors can have a default declaration applied to them.

Another issue is with injecting variables and finding a substitute for
apply-templates in the output tree. As can be seen in the first template, the way in
which that is done is by first creating the output structure, and then addressing
some of its part to inject a value or replace a dummy element. That may seem
cumbersome, but jQuery makes it mercifully short. What's more, as can be seen in

20

XML and HTML Cross-Pollination: A Bridge Too Far?

the other templates, all that's needed if one wishes to merely wrap the
apply-templates in an element is to use the wrapIn()methodwhich will simply do
the right thing.

Finally, the most likely limitation with this approach has to do with just how
limited CSS Selectors are. For a trivial example they'll shine, but try so much as to
find a text node and you'll hit a wall. This could be fixed either by inventing new
selectors (which is not necessarily difficult since jQuery is very extensible in this
area) or by making it possible to use XPath in the same context. The latter might be
a workable option as a more power alternative that one can reach for when needed.

Of course this is just a thought experiment and it is likely to have many more
failings. There is no doubt that the crafty minds of XSLT experts will be able to find
many an XSLT construct that could be difficult to reproduce here. That said, crazier
ideas have become popular.

3.7. CSS Schema
The XML ecosystem is big on validation, so big in fact that drinking games involving
reciting long lists of validation technologies had to be banned after too many xml-
dev subscribers were found suffering of delirium tremens.

On the HTML side however, there is not that much to be found. There are, nat-
urally, a number ofHTMLvalidators out there, but they tend not to be easily extens-
ible for the sort of context-specific rules that one may wish to overlay on HTML.
JSON Schema is being worked on, but it applies only to JSON documents.

Naturally, a lot of the XMLvalidation toolkit can be applied toHTMLdocuments
with some relatively manageable amount of shoe-horning. But most of it at best
uses moving parts that are unfamiliar to mostWeb developers, and at worst is used
as the boogeyman with which young web hackers are kept in check.

In the spirit of reusing good ideas across the cultural gap, one schema language
that lends itself well both to the common validation problems in an HTML context
(which are mostly validation overlaid atop HTML itself) and to concepts that can
be translated with some degree of ease is Schematron.

Taking the basic notions of rules and assertions, we could imagine (again, as a
thought experiment) a CSS Schema language that could look like the following:

@rule head {
title {

assert: "Page does not have a title.";
}
link[rel="stylesheet"][type="text/css"][href="std.css"] {

assert: "Page does not use the standard stylesheet.";
}
style {

report: "Page uses inline style rather than linking.";

21

XML and HTML Cross-Pollination: A Bridge Too Far?

}
}
@rule body {

:scope.std-body {
assert: "Page does not use the standard body class.";

}
:scope > div.std-top {

assert: "Page does not start with the required page top component.";
}

}

The above is syntactically valid CSS that merely adds an @rule block and new
properties called assert and report that all correspond to the same constructs in
Schematron. Selectors are used in the same manner that XPath is. Of note is the
:scope selector which can be used to select the current scope, matching the default
context that XPath can use.

This can be used equally well offline or in a browser. One addition that could
be interesting would be simply to specify regular style properties (e.g. background:
red;) to the assertions so thatwhen running in the browser the failure of an assertion
would cause the style to be applied, making for nice visual feedback.

And since CSS can be applied interactively, this could notably be used in order
to provide visual feedback inside browser-based document-editing systems.

4. Conclusion
Characterizing the relationship between the XMLandHTML communities is largely
a matter of perspective. At a high enough level, everyone is using technologies of
one sort or another to manipulate trees in various ways. From this distance, there's
almost no means to distinguish them. At the very closest level, there are persistent
and irksome disagreements over the nature of error handling, mechanisms for dis-
tributed extensibility, even the virtue (or lack thereof) of extensible vocabularies.
From this distance, the common ground is hard to see.

Surely, the reality is somewhere in between and there are opportunities to learn,
share, harmonize, and diverge and join, for everyone.

22

XML and HTML Cross-Pollination: A Bridge Too Far?

XML5's Story
Anne van Kesteren

Opera
<annevankesteren@gmail.com>

1. Background
The short story is that XML is hard. There have been a lot of web developers that
have tried to output XML to the browser and only a fewhave successfully succeeded
in doing so. This is probably mostly because outputting XML is a vastly different
exorcise from outputting HTML and given how similar they appear, this is not im-
mediately obvious. With HTML it is okay to make a mistake, forgetting to escape
an ampersand in "Black & White". With XML it is not. To output XML you need to
build an internal XML structure forwhich anXML serializerwill not yield any errors.
And herein lies the problem, most HTML is simply generated by string concatena-
tion. String concatenation is an easy concept to grasp for developers, working on a
tree on the other hand and serializing said tree is at least an order of magnitude
more difficult to grasp. In an article titledHOWTOAvoid BeingCalled a BozoWhen
Producing XML3Henri Sivonen lays out carefully all the steps that need to be taken
to produce XML and not have it fall over. Although a lot of it is good advice for
HTML too, none of it is required to publish some HTML on the web.

The trickier errors that have plagued developers trying to use XML for their site
are errors at the encoding level, which are fatal in XML. Back in the blogging days
there was a Trackback concept and quite often octets encoded in one way would
end up on a page encoded in another way (e.g. windows-1252 encoded octets in a
utf-8 encoded resource). For HTML documents this only gave some information
loss (though you could usually still follow theURL), for XMLdocuments an external
Trackback could stop it from being an XML document (i.e. non-well-formed). This
has happened to e.g. Sam Ruby and Matt Mullenweg though they typically fixed
the problem fairly quickly.

Back in Evan Goer did a survey labeled the The XHTML 1004where he studied
the sites of what he called the "Alpha Geeks". Out of the 119 sites he looked at, only
one was completely fine. Mark Pilgrim had a similar experience looking at feeds
(RSS, Atom) and went as far as stating that XML on the Web has failed5.

Part of the problem here was that Internet Explorer did not support XHTML (so
people ended up transmitting XHTMLasHTML) and popular feed consumerswere
not actually using XML parsers. Popular browsers on phones back in the days were

3 http://hsivonen.iki.fi/producing-xml/
4 http://www.goer.org/Journal/2003/04/the_xhtml_100.html
5 http://www.xml.com/pub/a/2004/07/21/dive.html

23

http://hsivonen.iki.fi/producing-xml/
http://hsivonen.iki.fi/producing-xml/
http://www.goer.org/Journal/2003/04/the_xhtml_100.html
http://www.xml.com/pub/a/2004/07/21/dive.html
http://hsivonen.iki.fi/producing-xml/
http://www.goer.org/Journal/2003/04/the_xhtml_100.html
http://www.xml.com/pub/a/2004/07/21/dive.html

not much better, Simon Pieters revealed they performed poorly when it came to
XML6. For contrast, as things stand now feed consumers are stricter, but feeds are
less popular. Internet Explorer supports XHTML now, but the web developer
community is mostly concerned with HTML (again), and the phone market has
completely changed, aligning it much more with the general web.

2. Extensibility
Back in 2007when I started looking at whether we could improve XML, HTML had
non-draconian error handling and XML had the ability to include other languages.
In particular, HTML did not support SVG andMathMLwhen using HTML syntax.
XBL 2.0 was also proposed around that time and planned to be a new XML-based
vocabulary. SVG andMathMLwere already implemented to some extent in popular
browsers and interest in XBL was there too. To begin using these on normal pages
however web developers would have to switch to XML which is a pretty big step.
My idea was that we could make that step drastically smaller by giving XML the
same feature HTML has, non-draconian error handling.

Nowadays of course SVG and MathML can be used in HTML's HTML syntax.
And XBL became the Component Model and will be HTML-based. These events
make a potential XML5 less appealing, because the desired feature set (as seen from
a web developer) is already met.

3. XML5
XML's extensibility story combined with it being a lot harder to use is what led to
XML5.A version of XML fully backwards compatiblewith XML 1.0 documents that
could also handle resources that were not technically XML documents, but still
carried an XML MIME type. In other words, a version of XML that would not halt
at well-formedness errors.

Whether XML5 is something still worth pursuing today is up for debate. The
web developer community seems to havemoved to HTML and feeds are becoming
less popular. XML is still used as interchange format, but end users are no longer
exposed to it.Well, almost, well-formedness violations are still problematic to some
extent. RecentlyAndreas Bovens announcedOperawould no longer showviolations
of XML well-formedness7. This is only for resources fetched through a browsing
context and is mostly a user agent sniffing problem, but does show that people are
still not quite competent enough to meet all the requirements. In Tim Bray's words,
"bozos".

6 http://simon.html5.org/articles/mobile-results
7 http://my.opera.com/ODIN/blog/2011/09/28/no-more-xml-parsing-failed-errors

24

XML5's Story

http://simon.html5.org/articles/mobile-results
http://simon.html5.org/articles/mobile-results
http://my.opera.com/ODIN/blog/2011/09/28/no-more-xml-parsing-failed-errors
http://my.opera.com/ODIN/blog/2011/09/28/no-more-xml-parsing-failed-errors
http://simon.html5.org/articles/mobile-results
http://my.opera.com/ODIN/blog/2011/09/28/no-more-xml-parsing-failed-errors

XML5 also came up as one of the ways HTML and XML could converge more.
Per the HTML/XML Task Force Report8. (The W3C TAG has yet to publish it "offi-
cially".)

4. Principles
With those open questions, lets take a closer look at what was proposed back then
as XML5. And in particular, how XML5 was designed. XML5 was inspired by the
work done onHTML by IanHickson to define the HTML parser. The HTML parser
can handle any given input and always produces a tree as a result. The resulting
tree is not necessarily conforming to any standard, but if an octet went missing or
a developer missed a mistake only revealing itself under certain circumstances the
end user will be able to see the information provided by the resource. So the parser
should continue in the face of erroneous input.

Already mentioned was fully backwards compatible with XML 1.0. Documents
conforming to the XML 1.0 grammar have to be processed identically. Otherwise
an XML 1.0 parser could not be replaced.

Even erroneous input should not affect the streaming nature of the parser. The
HTMLparser requires a tree to be kept inmemory as some non-conforming content
cannot be handled without it. XML5 should not have that problem.

Although there is some XML that comes with a schema, parsing of XML should
not require it. This may lead to suboptimal handling of certain errors in a given
vocabulary, but what is more important is that any given input will result in the
same output across all XML parsers, whether they are schema-aware or not.

Which leads to the last principle, just as XML (if we ignore its optional feature
for now) is fully deterministic now, XML5 should be fully deterministic too. Dealing
with all potential input must be defined. Defining XML5 similar to how the HTML
parser is defined today makes this very feasible.

5. The parser
Writing a conceptual XML5 parser has been done and there is an XML5 Playground9

available online where you can test how it handles attribute values not delimited
by quotationmarks, for instance. The source code is available aswell: xml5 project10.
This implementation does not deal with octet decoding (just code points; characters
if you will), but if we assume it does, the mostly theoretical XML5 parser would
consist of three parts: input stream, tokenizer, and tree construction.

8 http://www.w3.org/2010/html-xml/snapshot/
9 http://quuz.org/xml5/play
10 http://code.google.com/p/xml5/

25

XML5's Story

http://www.w3.org/2010/html-xml/snapshot/
http://quuz.org/xml5/play
http://code.google.com/p/xml5/
http://www.w3.org/2010/html-xml/snapshot/
http://quuz.org/xml5/play
http://code.google.com/p/xml5/

In all these stages you have to dealwith input thatmight be incorrect. The XML5
parser in questionmade certain decisions here, however there is no XML5 standard
so the specifics are up for debate. They server to illustrate the concept.

E.g. in a shift_jis encoded document you might find a lead octet without a
matching trailing octet. This would be caught in the input stream phase. Error
handling from text/plain and text/html suggests the first octet will be turned into
a U+FFFD code point and the trail octet will be looked at again. (The exact details
of encoding error handling are somewhat ill-defined at this point.)

In the tokenizer stage when you tokenize a start tag youmight encounter a code
point that is neither whitespace nor a single/double quotation mark after an equal
sign. The XML5 parser treats this as the first code point of the attribute's value. A
< codepoint encounteredwhen tokenizing the start tag's name,would simply become
part of the name as it is neither whitespace nor a > code point.

The tree builder then deals with the cases where you encounter an end tag for
a start tag that is not on the stack (ignored), and mistakes in the use of namespaces.

6. Stray thoughts
Once such a fault tolerant system is in place additions such as </> (closes currently
open element) becomes easier as well. As with all new features uptake might take
a while, but at least you know legacy clients (post XML 1.0 though) will not fall
over.

Another thing to look at if XML is going to be touched is XML's optional feature
(external parsed entities) and whether there is a way to phase that out. XML is also
made non-deterministic by being open ended on encodings. And since encodings
are generally not well defined, what constitutes well-formed XML and what not
might be a bit of a challenge if you look at e.g. some octet combinations in the hz-
gb-2312 encoding.

7. Closing
Thanks for taking the time to read it through. Looking forward to discuss the ma-
terial in person!

26

XML5's Story

XProc: Beyond application/xml
Vojtěch Toman
EMC Corporation

<vojtech.toman@emc.com>

Abstract

Although primarily an XML processing language, XProc is increasingly being
used in environments that involve processing of non-XML data. However,
the limited support – or lack thereof – for non-XML media types in XProc
poses real issues, both for pipeline authors as well as performance-wise. This
article looks at some of these issues and explores the possibilities of extending
XProc to support processing of both XML and non-XML data.

Keywords: XProc, XML, XPath, MIME, data integration

1. Introduction
Unbelievable as it is, in May 2012 it will have been two years since the XProc spe-
cification [5] became a W3C Recommendation; surely enough time and backward
perspective for the W3C XML Processing Working Group to start assessing the
successes (and failures) of XProc in the real world – and to begin ruminating about
new features and enhancements for the next version of the language, should there
ever be one.

One of the interesting enhancement ideas1 discussed within the working group
is to provide better support for othermedia types than just XMLmedia types.While
supporting non-XML media types may seem outside the scope of what XProc is
supposed do (after all, it is an XML pipeline language, and the XProc specification
describes XProc as “a language for describing operations to be performed on XML
documents,” clearly indicatingwhat the primary focus of XProc is), practical exper-
ience shows that besides processing XML data, real-life XProc pipelines often deal
with non-XML data in one way or another. This data either comes from external
sources (a JSON response returned by aweb service or image data read from a file),
or is produced by the pipeline itself (a PDF document or a ZIP archive representing
an EPUB or an ODF document).

Unfortunately, support for non-XML media types is rather limited in XProc, as
the language is based on the XML data model exclusively. The specification even
states that: “Although some steps can read and write non-XML resources, what

1See the XProc V.Next wiki at http://www.w3.org/wiki/XprocVnext for more ideas that are being con-
sidered.

27

http://www.w3.org/wiki/XprocVnext

flows between steps through input ports and output ports are exclusively XML
documents or sequences of XML documents.” In practice, this means that in order
for non-XML data to flow through the pipeline, the data must be wrapped in an
XML element wrapper and typically also (in the case of non-text media types)
base64-encoded. This is not only inefficient, but it also makes dealing with such
data rather tedious for pipeline authors. For instance, a seemingly simple task such
as processing a JSON message from a web service is almost impossible to do in
standard XProc.

This article explores the implications of introducing non-XML media types to
XProc, and proposes a possible scheme for implementing seamless support for both
XML and non-XML media types into the language. Most of the ideas discussed in
this article come from experiments with Calumet2, EMC's XProc processor, which
will likely include support for non-XML media types as an experimental, “at your
own risk” feature.

2. Current level of support for non-XML media types in XProc
As alreadymentioned, the support for processing non-XMLdata is rather rudiment-
ary in standard XProc. Obviously, this is mainly due to the specification-stipulated
absolute that what flows in the pipeline can only be XML documents: XProc steps
thus can only accept XML documents on their input ports and can only produce
XML documents on their output ports. (By extension, this applies to complete
pipelines as well since they are steps, too.) The options of how to deal with non-
XML in XProc pipelines are therefore quite limited.

2.1. Using an external channel
Because non-XML data cannot flow through the pipeline, steps that process or
produce such data often have to rely on an external channel (usually the file system)
and refer to the data using URI references. This is a common technique in real-life
XProc pipelines, one that has been used also by the XProc specification itself, as
exemplified by the step p:xsl-formatter from the standard XProc step library:

<p:declare-step type="p:xsl-formatter">
<p:input port="source"/>
<p:input port="parameters" kind="parameter"/>
<p:output port="result" primary="false"/>
<p:option name="href" required="true"/>
<p:option name="content-type"/>

</p:declare-step>

2http://developer.emc.com/xmltech/

28

XProc: Beyond application/xml

http://developer.emc.com/xmltech/

The p:xsl-formatter step takes an XSL document, renders the content and stores
the result to theURI specified by the href option.What appears on the result output
port of p:xsl-formatter is a small XML document with the URI reference to the
generated output.

The p:xsl-formatter step is an example of a step that takes XML input and
produces non-XML data, but the same approach of using URI options is applicable
also to steps that take non-XML input and produce XML, or that are non-XML at
both ends. The common problem (especially with the latter), however, is how to
ensure the right sequencing of such steps in the pipeline. Consider the following
step, which processes data from the location specified via the source-href option
and writes the result to the location specified in the result-href option:

<p:declare-step type="ex:process-binary-data"
xmlns:ex="http://www.example.org/ns/xproc">

<p:option name="source-href" required="true"/>
<p:option name="result-href" required="true"/>

</p:declare-step>

The step has no input and output ports, so extra care needs to be taken when using
it in the pipeline. Because the step has no ports that other steps in the pipeline can
connect to, the order in which the steps in the pipeline will be executed may not be
deterministic. In the pipeline fragment below, the execution order of the steps
ex:generate-binary-data and ex:process-binary-data depends entirely on the
XProc processor, because the steps are not (explicitly nor implicitly) connected: if
we are lucky, then ex:generate-binary-data will be executed first, but there is
nothing preventing the XProc processor from executing the steps in the opposite
order, the consequences of which would be, most likely, fatal.

<p:pipeline>
...
<ex:generate-binary-data href="output.data"/>
<ex:process-binary-data source-href="output.data"

result-href="output2.data"/>
...

</p:pipeline>

The above situation can be worked around by using the more verbose
p:with-option-based syntax for specifying the step options and using helper p:pipe
bindings to enforce dependencies on other steps, or bywrapping problematic steps
in compound steps with dummy input and output ports to which other steps can
connect to. But all this would not be necessary if non-XML data could flow through
the pipeline directly. If this were possible, the declaration of the
ex:process-binary-data step might look as simple as this:

<p:declare-step type="ex:process-binary-data"
xmlns:ex="http://www.example.org/ns/xproc">

29

XProc: Beyond application/xml

<p:input port="source" primary="true"/>
<p:output port="result" primary="true"/>

</p:declare-step>

Using such a step would be almost as easy as using the standard p:identity step,
and the pipeline authorswould benefit greatly from the convenience of steps having
primary input and output ports (automatic connections between subsequent steps
etc.). Returning to the pipeline fragment from the previous example (and changing
the declaration of ex:generate-binary-data in the same fashion as with
ex:process-binary-data), the pipeline could then be rewritten as below:

<p:pipeline>
...
<ex:generate-binary-data/>
<ex:process-binary-data/>
...

</p:pipeline>

Such a pipeline would be safer (the execution order of the steps would be fixed be-
cause of the implicit connection between ex:generate-binary-data and
ex:process-binary-data), easier to write, and probably also more efficient when
run.

2.2. Base64-encoding
When pipeline authors want to (or are forced to) pass non-XML data from one step
to another without using an external channel, a solution is to wrap the data in an
XML wrapper element and base64-encode the data if it cannot be represented as a
sequence of Unicode characters. This is exactly how XProc deals with non-XML
data that the pipeline reads from an external location using the p:data binding or
the p:http-request step.

The p:http-request step can be seen as a dynamic and more powerful version
of the p:data binding. The p:data binding reads arbitrary resources from a fixed
URI, performing the necessarywrapping and base64-encoding to represent the data
as XML. The p:http-request supports using dynamically constructed URIs and
additional HTTP-specific features such as authentication, headers etc., but the basic
logic of how non-XML data is exposed to the pipeline is the same:
• If the media type is an XML media type or a text media type with a Unicode

charset, the data is encoded as a sequence of Unicode characters (and wrapped
in an XML element).

• If the media type is not an appropriate text type, or the media type is not recog-
nized, the data is base64-encoded (and wrapped in an XML element).

The following example, taken from the XProc specification, uses p:data to read a
CSV file:

30

XProc: Beyond application/xml

<p:identity name="readcsv">
<p:input port="source">
<p:data href="stateabbr.csv"/>

</p:input>
</p:identity>

If the processor is able to detect that the data is text, or if the data is annotated with
a textmedia type information (for instance,when retrieving the resource overHTTP),
the result of the p:identity step might look as follows:

<c:data xmlns:c="http://www.w3.org/2007/03/xproc-step"
content-type="text/plain">

AL,Alabama
AK,Alaska
AZ,Arizona
...
</c:data>

If, however, the processor fails to detect that the data is text (or if the data is annot-
ated with a binary content type), the result will be base64-encoded:

<c:data xmlns:c="http://www.w3.org/2007/03/xproc-step"
content-type="application/octet-stream" encoding="base64">

QUwsQWxhYmFtYQpBSyxBbGFza2EKQVosQXJpem9uYQo
...
</c:data>

Notice the content-type and encoding attributes on the c:data wrapper element
that can be used by subsequent steps in the pipeline to decode and process the data
as needed.

Although admittedly sub-optimal, at least this ability to pass non-XML data as
base64-encoded between steps seems like an acceptable compromise for many
situations. Unfortunately, while it is relatively straightforward to produce base64-
encoded content in XProc, there is only very little one can do with such content. In
fact, there are only two options: sending it over HTTP using p:http-request or
processing it using p:unescape-markup – however, the latter is only applicable if the
base64-encoded data is XML or HTML. Apart from this, XProc does not offer much
more. It is, for instance, not possible to base64-decode and store the data to an ex-
ternal location using the p:store step (which supports only XML documents), and
every attempt to process base64-encoded data in a meaningful way leads almost
inevitably to custom atomic steps or other XProc extensions.

3. Extending XProc to support non-XML media types
In order to allownon-XMLdata – in its raw form, notwrapped in an XMLdocument
nor encoded in any way – to flow through the pipeline, the requirement that what

31

XProc: Beyond application/xml

flows between the steps in an XProc pipeline are exclusively XMLdocuments needs
to be relaxed: the steps must be able to consume and produce not only XML docu-
ments, but also non-XML data. However, this introduces an interesting challenge
as XProc is built from the ground up on XML Infoset [1] and XPath data model
[3][4]. XProc steps expect XML Infoset instances on the input ports and produce
XML Infoset instances on the output ports. This leads to two options: either the
processor needs to be able to provide some kind of a (synthetic) XML Infoset view
on top of non-XML data, or the steps need to change so that they can operate not
only on XML Infoset instances, but also on non-XML data where this makes sense
(clearly the case of p:identity, p:store and a few others).

The addition of XPath, which XProc uses as the expression language, makes the
situation even more interesting as it immediately begs the question of what does
querying over non-XML data actually mean? Does it correspond to querying some
kind of metadata gleaned from the original data? Or is it the ability to inspect the
raw octet stream? The former would make sense for many binary formats: being
able to query for the dimensions of an JPEG image would surely be a powerful
feature. On the other hand, the value of being able to see the 5th, the 10th, or the
56961st byte of that same JPEG image is questionable in the XProc context. Formany
text and semi-binary formats, though, the ability to inspect the byte sequencemight
represent a very useful and practical way of extracting information from the data.
So, both query models are valid and ideally both should be supported; it depends
on the media type of the data and the actual use case which of the two makes more
sense.

The extension scheme that this article proposes addresses the above by adhering
to the following principles:
• Both XML and non-XML data can flow through the pipeline. Conceptually, and

for compatibility with the current XProc specification, XML data flows as XML
Infoset instances, and non-XML data as “raw” octet streams – in the remainder
of this article, the union of XML and non-XML data is referred to as simply data.

• The data that flows through the pipeline is annotated with media type informa-
tion.

• XProc steps can declare what media types they expect on their input ports and
whatmedia types they produce on their output ports. If data of an incompatible
media type arrives on a port of a step, the XProc processor attempts to convert
(“shim”) the data to the appropriate media type.

• To allow for non-XML support in XPath, the XPath datamodel has been extended
with a new type of node for representing binary data and with accessors for re-
trieving media type information associated with the nodes.

These principles are discussed in the following text in more detail.

32

XProc: Beyond application/xml

Note
The proposed extensions to XProc change the behavior of the XProc processor
and of some of the standard XProc constructs. Although the incompatibilities
with the official XProc specification are relatively minor and fairly isolated,
a processor that implements these extensions can no longer be considered a
conformant XProc processor.

3.1. Media type annotations
For the purpose of distinguishing between data of different media types, the data
that flows through the pipeline is annotated with media type information. The
media type information can be provided either explicitly (for example by the pipeline
user when passing the input data to the pipeline) or implicitly (for example when
the XProc processor retrieves a resource overHTTP and processes the Content-Type
header).

When no media type information is available (because it wasn't provided or
because the XProc processor was not able to infer it when retrieving a resource),
then – with the exception of the p:data binding and the p:http-request step, as
will be discussed in Section 3.4 – the media type application/xml is assumed. This
default reflects the most common scenario, which is processing of XML data.

In the situations when the defaulted or inferred media type is not correct, the
pipeline author can enforce a specificmedia type in the pipeline, using themechan-
isms described in Section 3.4.5.

3.2. Processing multiple media types via shimming
The steps in the pipeline (including the pipeline itself) can specifywhatmedia types
they process and what media types they produce. This is done by specifying the
media type on the input port and output port declarations (see Section 3.4.1 for exact
details).

The media type on a port can be specified in two ways:
• A specific media type, such as application/xml, text/plain, or

application/octet-stream.
• A wildcard (the “*” character) that matches any media type.
If no media type is declared on an input port or output port, then unless stated
otherwise (see Section 3.4.3), the media type application/xml is assumed.

While evaluating a pipeline, the XProc processor performs the following al-
gorithm when data appears on a port of a step:
• If the port media type is a wildcard or if the data media type is the same as the

port media type, the data appears on the port with no modifications; otherwise

33

XProc: Beyond application/xml

• if the XProc processor knows how to map (see the discussion below) from the
data media type to the port media type, the data is converted to the port media
type; otherwise

• the XProc processor performs one of the following fall-back actions:
• If both the data and the port media types are XML media types, the data

appears on the port with no modifications.
• If the port media type is application/xml, the data is processed as if it was

read via the standard XProc p:data binding with a c:datawrapper element.
• If both the data and the port media types are text media types, the data ap-

pears on the port with no modifications.
• Any other combination of the data and the port media types results in a dy-

namic error.
An important aspect of the above algorithm is that it applies not only to the input
ports, but also to the output ports: before the data appears on an output port, it is
converted to the appropriate media type. This leads to a number of interesting
properties, especially in conjunction with compound steps – it is, for example,
possible to create a p:for-each loop whose sub-pipeline produces data of all sorts
of media types which are then “consolidated” into one media type as specified on
the p:for-each's output port.

The media type conversion applies only to the p:input and p:output elements.
It does not take place when the XProc processor processes the p:with-option,
p:with-param, and p:variable elements, nor the p:xpath-context,
p:iteration-source, and p:viewport-source elements. It also does not applywhen
the XProc processor evaluates the test expressions of p:choose/p:when elements. In
these cases, the XPath expressions use the original data as the context item.

The kinds of mappings between different media types the XProc processor
supports is left implementation-defined. Admittedly, to ensure at least a minimum
level of interoperability between different XProc processors, it would be best if there
were a well-defined set of media type to media type mappings that the processors
were required to support. Identifying such a set ofmappings, however, is a research
topic on its own, almost certainly requiring a broader discussion within the com-
munity, as formanymedia types there are no agreed-on “one size fits all”mappings
thatwould satisfy all users or use cases. A typical example are the variousXML/JSON
mappings proposed in the recent past (a rather unfortunate situation as supporting
JSON is clearly of prime interest in the XProc context).

3.3. Extensions to the XPath data model
Supporting XPath queries over non-XML data requires a number of extensions to
the XPath data model. Note that for historical reasons, XProc allows using both

34

XProc: Beyond application/xml

XPath 1.0 and XPath 2.0 - however, this and the following sections focus solely on
XPath 2.0 and the XQuery and XPath data model (XDM) [2].

The XDM data model has been extended in two ways. First, in order to support
media type annotations, the data model has been augmented with:
• A new property on the document node:

content-type, possibly empty
• A new accessor defined on all kinds of XDM nodes:

dm:content-type($n as node()) as xs:string?

For the document node, the dm:content-type accessor returns the value of the
content-type property. For the other types of nodes (element, attribute, text,
namespace, processing instruction, and comment), it returns the value of the
content-type property of the owner document.

The second addition to the data model is the introduction of a new type of node
– binary data node – to represent non-XMLdata. The binary data node has the follow-
ing properties:
• base-uri, possibly empty
• content-type, possibly empty
For the binary data node, the dm:base-uri accessor returns the value of the base-uri
property, and the dm:content-type accessor returns the value of the content-type
property. The dm:node-kind accessor returns the value “binary-data”. All other
accessors defined on XDM nodes return the empty sequence for the binary node.

Note that it should be possible to expose the octet sequence of the binary data
node by introducing a special property and an accessor (representing the octets for
instance as a sequence of xs:unsignedByte or xs:integer). At the time of writing
this article, however, this has not been implemented.

3.4. Extension to the XProc language
This section describes the extensions to the XProc language to support multiple
media types. The extensions include XProc extension attributes, custom steps, and
XPath extension functions. Some of these extensions modify the functionality of
some XProc constructs to adapt them to the new processing environment.

A l l ex t ens ion cons t ruc t s a re in the namespace
http://www.emc.com/documentum/xml/xproc-mime; the conventional namespace
prefix “m:” is used in the following text.

3.4.1. Media type annotations on p:input and p:output

Media type annotations can be added to input and output port declarations using
the m:content-type extension attribute. The value of the m:content-type attribute
is either an exactmedia type string (such as application/xml) or awildcard, repres-

35

XProc: Beyond application/xml

ented by the “*” character. If the m:content-type attribute is not specified on a port
declaration, the media type application/xml is assumed.

The declaration belowdeclares a step that accepts XMLdata on the source input
port and that produces PDF output on the result output port:

<p:declare-step>
<p:input port="source" m:content-type="application/xml"/>
<p:output port="result" m:content-type="application/pdf"/>
...

</p:declare-step>

The following example declares a step that can process and produce data of any
media type:

<p:declare-step>
<p:input port="source" m:content-type="*"/>
<p:output port="result" m:content-type="*"/>
...

</p:declare-step>

The m:media-type attribute cannot be used on parameter input ports; the media
type of parameter input ports is always application/xml.

3.4.2. Modifications to p:data

For the purpose of better supporting non-XMLmedia types, the p:data binding has
been modified to support returning raw, not wrapped, data. This is possibly the
biggest breaking change to the language, but one that provides great usability bene-
fits in the multiple media types context: it makes it possible to process the results
of p:data right away, without having to unwrap and decode first.

Where previously the p:data binding always encoded andwrapped the resource
referred to via the href attribute (the wrapper being either a custom-specified ele-
ment or the default c:data element), the modified p:data only encodes and wraps
the resourcewhen the pipeline author requests an explicitwrapper using the wrapper
attribute. If no wrapper element is specified, p:data returns the resource “as is”.

The semantics of the content-type attribute of p:data remains the same: if the
resource comes with amedia type annotation, that onemust be used, otherwise the
media type specified in the content-type attribute should be assumed. If no media
type information can be associated with the resource, the media type
application/octet-stream is assumed.

3.4.3. Modifications to built-in XProc steps

Adding media type annotations to step declarations and modifying the p:data
binding is not enough: in order for non-XML data to truly flow through XProc

36

XProc: Beyond application/xml

pipelines – including complex non-linear pipelines with loops, conditional logic,
and recursion – a number of modifications to the standard built-in compound steps
are necessary. The following text summarizes these modificatons.
• The p:pipeline shortcut supports input and output of anymedia type by default.

It is equivalent to the following p:declare-step:
<p:declare-step>
<p:input port="source" primary="true" sequence="false"

m:content-type="*"/>
<p:input port="parameters" primary="true" kind="parameter"/>
<p:input port="result" primary="true" sequence="false"

m:content-type="*"/>
</p:declare-step>

This makes it possible to use p:pipeline to process both XML and non-XML
data easily.

• The p:for-each step can be used to process data of anymedia type. The current
implicit input port supports data of any media type. If the p:for-each step
contains explicit p:output declarations, then, inside of the p:for-each, these
output ports accept anymedia type regardless of the value of the m:content-type
attribute. On the outside of p:for-each, however, the data appearing on the
output port gets converted to the appropriatemedia type. By default, the implicit
output port of p:for-each supports any media type.

• The p:choose step can process data of any media type. The p:when branches
must declare the same numbers of output portswith the same names – however,
these output ports may specify different media types. By default, the implicit
output ports of p:when (and p:choose) support any media type.

• The p:groupwrapper can be used to process data of anymedia type. By default,
the implicit output port of p:group supports any media type.

• The p:try step can be used to process data of any media type. The error input
port of p:catch (the XML representation of the dynamic error) accepts data of
the media type application/xml. The output ports of the p:group and p:catch
sub-pipelines of p:trymust specify the same numbers of output ports with the
same names, but theymaydeclare differentmedia types. By default, the implicit
output port of p:catch supports any media type.

3.4.4. Modifications to the XProc standard step library

Most atomic steps from the standard XProc step library are too XML-specific (for
instance p:xinclude or p:validate-with-xml-schema) to be easily applicable to non-
XML data. Having said that, however, there is a small number of steps that can be
– in some cases to great benefit – adapted for non-XMLdata processing. This requires
both modifying the implementations of the steps and changing their declarations

37

XProc: Beyond application/xml

in the standard step library by addingmore relaxedmedia type annotations to their
input and output ports. The list below summarizes the changes in more detail:
• p:count – can be used to process data of any media type. The output format of

p:count (a c:result document with the count) remains unchanged from the
specification.

• p:http-request – can produce output of any media type. Very much similar to
the p:data binding, the p:http-request step nowpresents non-XML responses
in their raw form, not base64-encoding norwrapping themanymore. If themedia
type of the response data cannot be determined, the media type
application/octet-stream is assumed.

The “detailed” response mode of p:http-request remains unchanged from
the specification, and so does handling of multipart responses.

• p:identity – can be used to process data of any media type.
• p:sink – can be used to process data of any media type.
• p:split-sequence – can be used to process data of any media type.
• p:store – can be used to store data of any media type. The XML serialization

options are applied only for data that has an XML media types.
• p:exec – if the data that appears on the source input port is not XML, it is passed

in its raw form to the command as its standard input.
• p:xquery – if the media type of the data that appears on the query input port is

application/xquery, the data is passed to the query engine “as is”.

3.4.5. Overriding media type information

On some occasions it may be necessary to be able to override the media type of the
data: for examplewhen the XProc processor fails to detect themedia type (or detects
it incorrectly), or when the pipeline author deliberately wants to use a different
media type (for instance, to treat SVG data annotated as image/svg+xml as simply
application/xml).

The override media type can be specified statically – on the XProc binding ele-
ments – or dynamically – using an extension step.

On the binding level, the override media type is specified using the
m:as-content-type extension attribute. The fragment below shows an example of
how to ensure that the XQuery data read from an external file is annotated as
application/xquery:

...
<p:xquery>
<p:input port="query">
<p:data href="searchquery.xq"

m:as-content-type="application/xquery"/>

38

XProc: Beyond application/xml

</p:input>
</p:xquery>
...

Specifying the override media type on the binding level has the disadvantage that
it is static; the override media type cannot be constructed dynamically. A dynamic
override media type can be specified using the m:as-content-type extension step:

<p:declare-step type="m:as-content-type">
<p:input port="source" sequence="true" m:content-type="*"/>
<p:output port="result" sequence="true" m:content-type="*"/>
<p:option name="content-type" required="true"/>

</p:declare-step>

The m:as-content-type step behaves as the standard p:identity step, except that
it annotates the output data with the media type provided via the required
content-type option.

Note that applying an override media type does not result in data conversion
from the original media type to the override type; the override media type merely
replaces the original data media type annotation. If the override media type is in-
compatible with the data media type (for example, an application/xml override
for application/pdf), it is reasonable to expect that subsequent processingmay fail.

3.4.6. XPath extension functions

To be able to query the media type of the data flowing through the pipeline, a new
function has been added to the library of the XProc extension XPath functions:
m:content-type.

The m:content-type function is declared as follows:
m:content-type() as xs:string?
m:content-type($arg as node()?) as xs:string?

The function returns the value of the content-type property for $arg as defined by
the accessor function dm:content-type() for that kind of node (see Section 3.3). If
$arg is not specified, the behavior is identical to calling the functionwith the context
item (.) as argument.

4. Examples
This section presents a number of examples that illustrate how the proposed exten-
sions can be used in real-life pipelines.

39

XProc: Beyond application/xml

4.1. Media type-aware processing
The first example shows a simple pipeline that processes the input data (a sequence
of XML documents and non-XML data) based on the media type information. The
pipeline performs XInclude on XML documents while leaving the other data un-
modified.

<p:declare-step version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:m="http://www.emc.com/documentum/xml/xproc-mime">

<p:input port="source" sequence="true" m:content-type="*"/>
<p:output port="result" sequence="true" m:content-type="*"/>

<p:for-each>
<p:choose>
<p:when test="m:content-type()='application/xml'">
<p:xinclude/>

</p:when>
<p:otherwise>
<p:identity/>

</p:otherwise>
</p:choose>

</p:for-each>

</p:declare-step>

4.2. Using compound steps for media type consolidation
An interesting application of adding the m:content-type attribute to output port
declarations is to consolidate the media type of the results of a compound step. The
example pipeline below takes anXHTMLdocument and retrieves all images referred
to using the img elements. Because the declaration of the result output port of the
pipeline contains the m:content-type attributewith the value image/jpeg, all images
will be converted to JPEG before they appear on the result output port of the
pipeline. If the processor encounters an image with a media type that it does not
know how to convert to image/jpeg, the pipeline will fail with a dynamic error.

<p:declare-step version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:m="http://www.emc.com/documentum/xml/xproc-mime"
xmlns:h="http://www.w3.org/1999/xhtml">

<p:input port="source"/>
<p:output port="result" sequence="true" m:content-type="image/jpeg"/>

<p:for-each>

40

XProc: Beyond application/xml

<p:iteration-source select="//h:img"/>

<p:add-attribute match="c:request" attribute-name="href">
<p:input port="source">
<p:inline>
<c:request method="GET"/>

</p:inline>
</p:input>
<p:with-option name="attribute-value" select="/h:img/@href"/>

</p:add-attribute>

<p:http-request/>
</p:for-each>

</p:declare-step>

4.3. Processing JSON data
This example shows how to transparently process JSONdata.Note that this example
assumes that the XProc processor is able to map data from application/json to
application/xml. For this particular example, a simple JSON-to-XML mapper has
been implemented in Calumet using the open source JSON-lib3 Java library. The
table below shows the XML representation that the mapper produces for various
input JSON strings:

XMLJSON
<o>
<prop type="string">value</prop>

</o>

{"prop": "value"}

<o>
<prop1 class="array">
<e class="object">
<prop2 type="string">value</prop2>

</e>
</prop1>

</o>

{"prop1": [{"prop2": "value"}]}

3http://json-lib.sourceforge.net/

41

XProc: Beyond application/xml

http://json-lib.sourceforge.net/

XMLJSON
<a>
<e class="object">
<prop1 type="string">value</prop1>
<prop2 type="number">100</prop2>
<prop3 type="boolean">false</prop3>
<prop4 class="object" null="true"/>

</e>

[
{"prop1": "value",
"prop2": 100,
"prop3": false,
"prop4": null}

]

The pipeline below retrieves the Twitter public timeline using the p:http-request
step and then applies the p:xquery step to the JSON response data to extract user
information. The p:http-request produces raw JSON data on its result output
port. The JSON data is then passed to the source input port of the p:xquery step,
but because the media type of the source port is application/xml, the processor
first converts the data to XML. After that, the p:xquery step evaluates the XQuery
and produces the results.

<p:declare-step version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:m="http://www.emc.com/documentum/xml/xproc-mime">

<p:output port="result"/>

<p:http-request>
<p:input port="source">
<p:inline>
<c:request method="GET" override-content-type="application/json"

href="https://api.twitter.com/1/statuses/public_timeline.json"/>
</p:inline>

</p:input>
</p:http-request>

<p:xquery>
<p:input port="query">
<p:inline>
<c:query><![CDATA[
<users> {
for $user in //e/user
return
<user>
<id>{string($user/id)}</id>
<screen_name>{string($user/name)}</screen_name>
<name>{string($user/name)}</name>

</user>

42

XProc: Beyond application/xml

} </users>
]]></c:query>

</p:inline>
</p:input>
<p:input port="parameters"><p:empty/></p:input>

</p:xquery>

</p:declare-step>

4.4. Manipulating ZIP archives
The last example shows a slightly more complex pipeline that both consumes and
produces binary data. The pipeline takes an ODF document (a ZIP archive) on the
source input port and an image on the image input port, and produces a new ODF
document from the original one by inserting the image into it. The pipeline also
makes it possible to specify the image dimensions via the options width and height.

The pipeline assumes the existence of two extension steps – ex:unzip and ex:zip
– that it uses for extracting information out of a ZIP archive and for creating new
archives. The steps are analogous to the EXProc4 pxp:unzip and pxp:zip extension
steps, with the notable difference that they operate on ZIP streams directly as op-
posed to referring to external ZIP files via URI options.
ex:unzip The ex:unzip step takes a ZIP archive on the source input port and

extracts its contents. The signature of the ex:unzip step looks as follows:
<p:declare-step type="ex:unzip"

xmlns:ex="http://www.example.org/ns/xproc"
xmlns:m="http://www.emc.com/documentum/xml/►

xproc-mime">
<p:input port="source" m:content-type="application/zip"/>
<p:output port="result" sequence="true" m:content-type="*"/>
<p:option name="file"/>
<p:option name="content-type"/>

</p:declare-step>

By default, the step produces a sequence containing all files in the
archive, but it is also possible to extract a specific file by specifying its
path-name using the file option. The optional content-type option
specifies the media type for the extracted files. In the absence of the
content-type option, the extracted files have the media type
application/xml. The base URIs of the extracted files will be the same
as their archive path-names.

4http://exproc.org/proposed/steps/

43

XProc: Beyond application/xml

http://exproc.org/proposed/steps/

ex:zip The ex:zip step reads the data that appears on the source input port
and produces a new ZIP archive on the result output port.

<p:declare-step type="ex:zip"
xmlns:ex="http://www.example.org/ns/xproc"
xmlns:m="http://www.emc.com/documentum/xml/►

xproc-mime">
<p:input port="source" sequence="true" primary="true"

m:content-type="*"/>
<p:input port="manifest" m:content-type="application/xml"/>
<p:output port="result" m:content-type="application/zip"/>
<p:option name="compression-method" select="'deflated'"/>
<p:option name="compression-level" select="'default'"/>

</p:declare-step>

By default, the path-names of the ZIP entries will be the same as the
base URIs of the input data. This can be customized by providing a
manifest document on the manifest input port. Themanifest specifies
the mappings from base URIs to ZIP path-names, and optionally also
additional properties such as entry-specific compression settings or
comment strings. The schema for the manifest document is the same
as for the EXProc pxp:zip step; what the manifest might look like is
best illustrated by an example:

<c:zip-manifest xmlns:c="http://www.w3.org/ns/xproc-step">
<c:entry href="http://www.example.org/file.xml"

name="file.xml" comment="An example file"/>
<c:entry href="http://www.example.org/image.jpg"

name="images/image.jpg" method="stored"/>
</c:zip-manifest>

The ex:zip step also supports options for specifying archive-level
compression settings (compression-method and compression-level).

The example “insert image into ODF” pipeline consists of four main blocks:
1. Create the ex:zipmanifest for inserting the image.
2. Unzip the input ODF document.
3. Create new versions of the extracted files META-INF/manifest.xml and

content.xml.
4. Create a newZIP archive that includes the image data aswell as the newversions

of the files META-INF/manifest.xml and content.xml.
The pipeline also shows an example of using the m:as-content-type attribute

on the binding level. Because ex:unzip annotates the unzipped content as
application/octet-stream by default, the pipeline uses m:as-content-type tomake

44

XProc: Beyond application/xml

sure that the files META-INF/manifest.xml and content.xml are treated as XML
documents.

<p:pipeline name="main" version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:m="http://www.emc.com/documentum/xml/xproc-mime"
xmlns:ex="http://www.example.org/ns/xproc"
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:manifest="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0"
xmlns:draw="urn:oasis:names:tc:opendocument:xmlns:drawing:1.0"
xmlns:text="urn:oasis:names:tc:opendocument:xmlns:text:1.0"
xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0"
xmlns:xlink="http://www.w3.org/1999/xlink">

<p:input port="image" m:content-type="*"/>
<p:option name="width" select="'100px'"/>
<p:option name="height" select="'100px'"/>

<p:variable name="image-content-type" select="m:content-type()">
<p:pipe step="main" port="image"/>

</p:variable>
<p:variable name="image-file-name"

select="tokenize(base-uri(), '/')[last()]">
<p:pipe step="main" port="image"/>

</p:variable>

<p:template name="create-zip-manifest">
<p:input port="source">
<p:pipe step="main" port="image"/>

</p:input>
<p:input port="template">
<p:inline>
<c:zip-manifest>
<c:entry href="{base-uri()}" name="Pictures/{$file-name}"/>

</c:zip-manifest>
</p:inline>

</p:input>
<p:with-param name="file-name" select="$image-file-name"/>

</p:template>

<ex:unzip>
<p:input port="source">
<p:pipe step="main" port="source"/>

</p:input>
</ex:unzip>

<p:for-each name="for">

45

XProc: Beyond application/xml

<p:output port="result" m:content-type="*"/>
<p:variable name="path" select="base-uri()"/>

<p:choose>
<p:when test="$path='META-INF/manifest.xml'">
<p:template name="create-file-entry">
<p:input port="template">
<p:inline>
<manifest:file-entry manifest:media-type="{$content-type}"

manifest:full-path="Pictures/{$file-name}"/>
</p:inline>

</p:input>
<p:with-param name="content-type" select="$image-content-type"/>
<p:with-param name="file-name" select="$image-file-name"/>

</p:template>

<p:insert position="last-child" match="manifest:manifest">
<p:input port="source">
<p:pipe step="for" port="current"

m:as-content-type="application/xml"/>
</p:input>
<p:input port="insertion">
<p:pipe step="create-file-entry" port="result"/>

</p:input>
</p:insert>

</p:when>

<p:when test="$path='content.xml'">
<p:template name="create-image">
<p:input port="template">
<p:inline>
<text:p>
<draw:frame text:anchor-type="paragraph"

svg:width="{$width}" svg:height="{$height}">
<draw:image xlink:href="Pictures/{$file-name}"

xlink:type="simple" xlink:show="embed"
xlink:actuate="onLoad"/>

</draw:frame>
</text:p>

</p:inline>
</p:input>
<p:with-param name="file-name" select="$image-file-name"/>
<p:with-param name="width" select="$width"/>
<p:with-param name="height" select="$height"/>

</p:template>

46

XProc: Beyond application/xml

<p:insert position="last-child" match="office:body">
<p:input port="source">
<p:pipe step="for" port="current"

m:as-content-type="application/xml"/>
</p:input>
<p:input port="insertion">
<p:pipe step="create-image" port="result"/>

</p:input>
</p:insert>

</p:when>

<p:otherwise>
<p:identity/>

</p:otherwise>
</p:choose>

</p:for-each>

<ex:zip name="zip">
<p:input port="source">
<p:pipe step="for" port="result"/>
<p:pipe step="main" port="image"/>

</p:input>
<p:input port="manifest">
<p:pipe step="create-zip-manifest" port="result"/>

</p:input>
</ex:zip>

</p:pipeline>

5. Conclusion
This article proposes a number of extensions to XProc to provide better support for
non-XMLmedia types. The approach taken is a pragmatic one: it involves extensions
to the XProc language and to the processingmodel in order to allow non-XML data
to flow through the pipeline and be processed by the XProc steps, but it also relies
on the capabilities of the XProc processor that determines the kinds of conversions
between differentmedia types are supported (andwhat they look like). The viability
of such an approach is to be seen. Abstracting from specific media type-to-media
type conversion schemes might be viewed as too open and non-interoperable by
some, while others might think that it provides the right level of flexibility in a
world where no universally agreed-on or applicable set of conversions exist. Both
viewpoints are rational, and the most practical solution will most probably lie
somewhere in-between.

47

XProc: Beyond application/xml

Ideally, the ideas presented in this article will serve as a starting point for further
discussions in the community and within the XML Processing Mode Working
Group. Practical experiments with an existing XProc implementation show that the
proposed extensions are implementable and can be used in practicewith interesting
results.

Bibliography
[1] Cowan, John – Tobin, Richard: XML Information Set (Second Edition). W3C

Recommendation, 4 February 2004. http://www.w3.org/TR/xml-infoset/
[2] Berglund, Anders – Fernández, Mary – Malhotra, Ashok – Marsh, Jonathan –

Nagy, Marton – Walsh, Norman: XQuery 1.0 and XPath 2.0 Data Model (XDM)
(SecondEdition).W3CRecommendation, 14December 2010. http://www.w3.org/
TR/xpath-datamodel/

[3] Clark, James – DeRose, Steve: XML Path Language (XPath) Version 1.0. W3C
Recommendation, 16 November 1999. http://www.w3.org/TR/xpath/

[4] Berglund, Anders – Boag, Scott – Chamberlin, Don – Fernández, Mary F. – Kay,
Michael – Robie, Jonathan, Siméon, Jérôme: XML Path Language (XPath) 2.0
(SecondEdition).W3CRecommendation, 14December 2010. http://www.w3.org/
TR/xpath20/

[5]Walsh,Norman –Milowski, Alex – Thompson,Henry S.: XProc: AnXMLPipeline
Language. W3C Recommendation, 11 May 2010. http://www.w3.org/TR/xproc/

48

XProc: Beyond application/xml

http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xproc/

Understanding NVDL
The Anatomy of an Open Source

XProc/XSLT implementation of NVDL
George Bina

Syncro Soft / oXygen XML Editor
<george@oxygenxml.com>

Abstract

NVDL stands for Namespace-based Validation and Dispatching Language.
It is an ISO standard, like RelaxNG and Schematron. NVDL allows to validate
documents containing markup from different vocabularies without the need
to change the schema of each vocabulary to know about the others, to use dif-
ferent schema languages to validate different parts of the document and to
perform multiple validations.

In this presentation I will show an XSLT implementation of the NVDL
dispatching plus an XProc orchestration of dipatching and validation tasks.
This will allow to quickly understand how NVDL works, especially for people
with an XSLT background.

I developed the XSLT implementation of NVDL dispatching initially as
part of oNVDL (the open source implementation of NVDL now contributed
to Jing) to helpme understand howNVDLworks. Now, havingXProc available
it is easy to put all the processing together, add also the validation steps and
create a complete NVDL implementation based on XProc and XSLT.

Keywords:NVDL, XML, validation, XSLT, XProc, XML Schema, Relax
NG, Schematron, Current advances in XML

1. Introduction
The NVDL processing has two logical parts, first we have a dispatching part where
the document is processed to extract document fragments called validation candid-
ates and then these document fragments are validated with the specified schema.
To understand NVDL you need to understand how these validation candidates are
obtained, especially because they can overlap.

49

2. NVDL Dispatching

2.1. Splitting the Document into Sections
TheNVDLdispatching is themost important thing to understand. First, NVDL acts
on sections. Sections are adjiacent fragments from the same namespace. We have
element sections and attribute sections. Element sections can be further split if the
NVDL script defines a trigger that specifies the elements that can split sections, the
new sections start with these elements. So, the first processing step is to split the
document into element and attribute sections. This takes into account the document
content and the triggers defined in the NVDL script.

In our implementation we have this processing done by the getSections.xsl
stylesheet. This takes the NVDL script as a parameter and determines the defined
triggers from that. The result is a document with the sections marked with special
elements and attributes from the http://www.oxygenxml.com/nvdl namespace.

For example, let's consider the following document that contains XHTML plus
XForms

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-model href="xhtml-xforms.nvdl" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"?>

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<head>
<title>Sample</title>
<xforms:model id="myForm">
<xforms:submission id="submit" method="post"
action="http://www.example.com/xforms/request"/>

<xforms:instance id="my" xmlns="">
<myData>
<input>Initial input</input>

</myData>
</xforms:instance>

</xforms:model>
</head>
<body>
<h1>XForms sample</h1>
<p>Input</p>
<p>
<xforms:input ref="/myData/input">
<xforms:label>Input Form Control</xforms:label>

</xforms:input>
</p>
<p>Submit:</p>
<p>

50

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

<xforms:submit submission="my">
<xforms:label>Submit Me</xforms:label>

</xforms:submit>
</p>

</body>
</html>

The sections are marked with elements and attributes from the http://
www.oxygenxml.com/nvdlnamespace that uses the prefix n. TheNVDL script specifies
head and body as trigger elements, that is they split a XHTML section when they
appear, resulting new sections that start with these elements. The result of getting
the section infromation for the above sample file is

<n:section xmlns:n="http://www.oxygenxml.com/nvdl"
ns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<n:section xmlns="" ns="http://www.w3.org/1999/xhtml">
<head xmlns="http://www.w3.org/1999/xhtml">
<title>Sample</title>
<n:section xmlns="" ns="http://www.w3.org/2002/xforms">
<xforms:model xmlns="http://www.w3.org/1999/xhtml"
id="myForm" n:attSection1="id" n:attSection1ns="">
<xforms:submission id="submit" method="post"
action="http://www.example.com/xforms/request"
n:attSection1="id method action" n:attSection1ns=""/>

<xforms:instance xmlns="" id="my"
n:attSection1="id" n:attSection1ns="">
<n:section ns="">
<myData>
<input>Initial input</input>

</myData>
</n:section>

</xforms:instance>
</xforms:model>

</n:section>
</head>

</n:section>
<n:section xmlns="" ns="http://www.w3.org/1999/xhtml">
<body xmlns="http://www.w3.org/1999/xhtml">
<h1>XForms sample</h1>
<p>Input</p>
<p>
<n:section xmlns="" ns="http://www.w3.org/2002/xforms">
<xforms:input xmlns="http://www.w3.org/1999/xhtml"
ref="/myData/input" n:attSection1="ref" n:attSection1ns="">
<xforms:label>Input Form Control</xforms:label>

51

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

</xforms:input>
</n:section>

</p>
<p>Submit:</p>
<p>
<n:section xmlns="" ns="http://www.w3.org/2002/xforms">
<xforms:submit xmlns="http://www.w3.org/1999/xhtml"
submission="my" n:attSection1="submission" n:attSection1ns="">
<xforms:label>Submit Me</xforms:label>

</xforms:submit>
</n:section>

</p>
</body>

</n:section>
</html>

</n:section>

Note
Notice the sections that start with head and body elements from the XHTML
namespace, they are generated because these elements are defined as trigger
elements in the NVDL script, otherwise these elements will be included in
the XHTML section that starts with the html element.

The n:section element marks the start of a section and the ns attribute specifies the
namespace of the elements from that section. It can contain elements from the section
namespace and other sections. The other section can appear anywhere, when the
namepsace of an element is different or when a trigger element is encountered.

The attrinute sections are also marked. We use attributes in this case, again in
the http://www.oxygenxml.com/nvdl namespace with the following form
n:attSectionX and n:attSectionXns (where X stands for a number, from 1 to the
number of attribute sections), as can be seen in the previous example. The
n:attSectionXns attribute identifies the namespace of the attribute section while
the n:attSectionX attribute contains the names of all the attributes forming this
attribute section separated by space.

2.2. Converting the NVDL script to XSLT
The most important thing in order to understand NVDL is that its processing is
similarwith the XSLT processing, but instead ofworking on elements and attributes
it works on element and attribute sections. Thus an NVDL script can be converted
to an XSLT stylesheet that can process the document with sections and produces
the dispatching output. Here it is the NVDL script for processing XHTML and
XForms:

52

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

<?xml version="1.0" encoding="UTF-8"?>
<rules xmlns="http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
startMode="html">
<trigger ns="http://www.w3.org/1999/xhtml" nameList="head body"/>
<!-- Validations of XHTML and XForms -->
<mode name="html">
<namespace ns="http://www.w3.org/1999/xhtml">
<validate schema="http://www.w3.org/1999/xhtml/xhtml.rng"
useMode="allXHTML"/>

<validate schema="XFormsHTMLWrapper.xsd" useMode="allXForms"/>
</namespace>

</mode>
<!-- Attaches all XHTML sections, ignores everything else -->
<mode name="allXHTML">
<namespace ns="http://www.w3.org/1999/xhtml">
<attach/>

</namespace>
<anyNamespace>
<unwrap/>

</anyNamespace>
</mode>
<!-- Attaches all XForm sections, ignores everything else -->
<mode name="allXForms">
<namespace ns="http://www.w3.org/2002/xforms">
<attach/>

</namespace>
<anyNamespace>
<unwrap/>

</anyNamespace>
</mode>

</rules>

This generates as the dispatching result two validation candidates, one contains all
the XHTML content and the other puts all the XForms inside the html element. The
corresponding XSLT stylesheet for this NVDL script is

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:n="http://www.oxygenxml.com/nvdl" version="2.0"
exclude-result-prefixes="n">

<xsl:template match="/">
<xsl:variable name="content">
<n:dispatch>
<xsl:apply-templates mode="mode_html"/>

</n:dispatch>
</xsl:variable>

53

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

<xsl:apply-templates mode="flatten" select="$content"/>
</xsl:template>

<!--Templates for mode html-->
<xsl:template mode="mode_html"
match="n:section[@ns='http://www.w3.org/1999/xhtml']">
<n:validate schema="http://www.w3.org/1999/xhtml/xhtml.rng"
useMode="allXHTML">
<xsl:apply-templates mode="mode_allXHTML"/>

</n:validate>
<n:validate schema="XFormsHTMLWrapper.xsd" useMode="allXForms">
<xsl:apply-templates mode="mode_allXForms"/>

</n:validate>
</xsl:template>
<xsl:template match="n:section" mode="mode_html">
<n:reject>
<xsl:apply-templates mode="mode_html"/>

</n:reject>
</xsl:template>

<!--Templates for mode allXHTML-->
<xsl:template mode="mode_allXHTML"
match="n:section[@ns='http://www.w3.org/1999/xhtml']">
<xsl:apply-templates mode="mode_allXHTML"/>

</xsl:template>
<xsl:template match="n:section" mode="mode_allXHTML">
<xsl:variable name="thisSection" select="generate-id(.)"/>
<xsl:apply-templates
select="//n:section[generate-id(ancestor::n:section[1])=$thisSection]"
mode="mode_allXHTML"/>

</xsl:template>

<!--Templates for mode allXForms-->
<xsl:template mode="mode_allXForms"
match="n:section[@ns='http://www.w3.org/2002/xforms']">
<xsl:apply-templates mode="mode_allXForms"/>

</xsl:template>
<xsl:template match="n:section" mode="mode_allXForms">
<xsl:variable name="thisSection" select="generate-id(.)"/>
<xsl:apply-templates
select="//n:section[generate-id(ancestor::n:section[1])=$thisSection]"
mode="mode_allXForms"/>

</xsl:template>

<xsl:template match="*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="#all" priority="-100">

54

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

<xsl:copy>
<xsl:apply-templates
select="@*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="#current"/>

<xsl:apply-templates select="@n:*" mode="#current"/>
<xsl:apply-templates mode="#current"/>

</xsl:copy>
</xsl:template>
<xsl:template match="@*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="#all" priority="-100">
<xsl:copy/>

</xsl:template>
<xsl:template match="@n:*" mode="#all" priority="-100"/>

<xsl:template match="n:dispatch" mode="flatten">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates select=".//n:*" mode="flatten1"/>

</xsl:copy>
</xsl:template>
<xsl:template match="n:*" mode="flatten1">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates
select="text()|*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="flatten2"/>

</xsl:copy>
</xsl:template>
<xsl:template match="*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="flatten2">
<xsl:copy>
<xsl:copy-of
select="@*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"/>

<xsl:apply-templates
select="text()|*[namespace-uri()!='http://www.oxygenxml.com/nvdl']"
mode="flatten2"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

As you can see, the namespace and anyNamespace rules are transformed to XSLT
templates matching the corresponding sections and the actions contain along with
their execution also an apply-templates that triggers a top-down procesing of the
document. TheNVDLmodes are exactly theXSLTmodes these templates are defined
in and selecting a different useMode for an action results in applying templates in

55

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

the XSLT mode corresponding to the XSLT mode. Here it is how they correspond
for the html mode:

<mode name="html">
<namespace ns="http://www.w3.org/1999/xhtml">

-->
<xsl:template mode="mode_html"
match="n:section[@ns='http://www.w3.org/1999/xhtml']">

then we have
<validate schema="http://www.w3.org/1999/xhtml/xhtml.rng"
useMode="allXHTML"/>

-->
<n:validate schema="http://www.w3.org/1999/xhtml/xhtml.rng"
useMode="allXHTML">
<xsl:apply-templates mode="mode_allXHTML"/>

</n:validate>

and
<validate schema="XFormsHTMLWrapper.xsd" useMode="allXForms"/>

-->
<n:validate schema="XFormsHTMLWrapper.xsd" useMode="allXForms">
<xsl:apply-templates mode="mode_allXForms"/>

</n:validate>

and finally
</namespace>

</mode>

-->
</xsl:template>

The additional part in the XSLT code
<xsl:template match="n:section" mode="mode_html">
<n:reject>
<xsl:apply-templates mode="mode_html"/>

</n:reject>
</xsl:template>

is the result of something similar with the XSLT buil-in rules, the NVDL built-in
rule that says that if an anyNamespace rule is not specified then an any namespace
reject action is implied:

<anyNamespace><reject/></anyNamespace>

56

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

The XSLT for the generated script is obtained by applying an XSLT stylesheet
on the NVDL script. This is similar with the Schematron skeleton implementation.
This is a little more complex, reaching about 300 lines of XSLT code. Its source can
be found in the oNVDL project.

2.3. Getting the dispatch output
The result of applying this styleheet on the XMLdocumentwithmarked up sections
is the dispatching result, which for our sample looks like this:

<n:dispatch xmlns:n="http://www.oxygenxml.com/nvdl">
<n:validate schema="http://www.w3.org/1999/xhtml/xhtml.rng"
useMode="allXHTML">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<head>
<title>Sample</title>

</head>
<body>
<h1>XForms sample</h1>
<p>Input</p>
<p>

</p>
<p>Submit:</p>
<p>

</p>
</body>

</html>
</n:validate>
<n:validate schema="XFormsHTMLWrapper.xsd" useMode="allXForms">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xforms="http://www.w3.org/2002/xforms">
<xforms:model id="myForm">
<xforms:submission id="submit" method="post"
action="http://www.example.com/xforms/request"/>

<xforms:instance xmlns="" id="my">

</xforms:instance>
</xforms:model>
<xforms:input ref="/myData/input">
<xforms:label>Input Form Control</xforms:label>

</xforms:input><xforms:submit submission="my">
<xforms:label>Submit Me</xforms:label>

57

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

</xforms:submit>
</html>

</n:validate>
</n:dispatch>

3. Orchestrating Validation with XProc
Now, all these transformations can be orchestrated with XProc. Even more, we can
run also the validate actions as specified in the dispatch output also with XProc and
thus getting the full NVDL implementation.

<?xml version="1.0" encoding="UTF-8"?>
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" name="main"
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:n="http://www.oxygenxml.com/nvdl" version="1.0">

<p:input port="source" primary="true"/>
<p:input port="nvdl"/>

<p:output port="result" primary="true" sequence="true"/>
<p:output port="sections">
<p:pipe port="result" step="split"/>

</p:output>
<p:output port="compiled">
<p:pipe port="result" step="compile"/>

</p:output>
<p:output port="dispatch">
<p:pipe port="result" step="dispatch"/>

</p:output>

<!-- Extract the NVDL script filename -->
<p:xslt name="extractNVDLFilename">
<p:input port="parameters"><p:empty/></p:input>
<p:input port="source">
<p:pipe port="nvdl" step="main"/>

</p:input>
<p:input port="stylesheet">
<p:inline>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="2.0">
<xsl:template match="/">
<result><xsl:value-of select="document-uri(.)"/></result>

</xsl:template>
</xsl:stylesheet>

</p:inline>
</p:input>

58

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

</p:xslt>

<p:xslt name="split">
<p:input port="source">
<p:pipe port="source" step="main"/>

</p:input>
<p:input port="stylesheet">
<p:document href="getSections.xsl"/>

</p:input>
<p:with-param name="nvdl" select="/result/text()">
<p:pipe port="result" step="extractNVDLFilename"/>

</p:with-param>
</p:xslt>

<p:xslt name="compile">
<p:input port="source">
<p:pipe port="nvdl" step="main"/>

</p:input>
<p:input port="stylesheet">
<p:document href="nvdl2xslt.xsl"/>

</p:input>
<p:input port="parameters"><p:empty/></p:input>

</p:xslt>

<p:xslt name="dispatch">
<p:input port="source">
<p:pipe port="result" step="split"/>

</p:input>
<p:input port="stylesheet">
<p:pipe port="result" step="compile"/>

</p:input>
<p:input port="parameters"><p:empty/></p:input>

</p:xslt>

<p:filter name="candidates" select="//*[self::n:validate or self::n:reject]"/>

<p:for-each>
<p:identity name="candidate"/>
<p:choose>
<p:when test="ends-with(/*/name(), 'reject')">
<p:error code="Reject">
<p:input port="source">
<p:inline>
<message>Content rejected by a "reject" action.</message>

</p:inline>
</p:input>

59

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

</p:error>
</p:when>
<p:when test="ends-with(/*/@schema, '.rng')">
<p:load name="loadedSchema">
<p:with-option name="href"
select="resolve-uri(/*/@schema, document-uri(/))"/>

</p:load>
<p:validate-with-relax-ng>
<p:input port="source" select="/*/*[1]">
<p:pipe port="result" step="candidate"/>

</p:input>
<p:input port="schema">
<p:pipe port="result" step="loadedSchema"/>

</p:input>
</p:validate-with-relax-ng>

</p:when>
<p:when test="ends-with(/*/@schema, '.xsd')">
<p:load name="loadedSchema">
<p:with-option name="href"
select="resolve-uri(/*/@schema, document-uri(/))"/>

</p:load>
<p:validate-with-xml-schema>
<p:input port="source" select="/*/*[1]">
<p:pipe port="result" step="candidate"></p:pipe>

</p:input>
<p:input port="schema">
<p:pipe port="result" step="loadedSchema"/>

</p:input>
</p:validate-with-xml-schema>

</p:when>
<p:when test="ends-with(/*/@schema, '.sch')">
<p:load name="loadedSchema">
<p:with-option name="href"
select="resolve-uri(/*/@schema, document-uri(/))"/>

</p:load>
<p:validate-with-schematron>
<p:input port="source" select="/*/*[1]">
<p:pipe port="result" step="candidate"></p:pipe>

</p:input>
<p:input port="schema">
<p:pipe port="result" step="loadedSchema"/>

</p:input>
<p:input port="parameters"><p:empty/></p:input>

</p:validate-with-schematron>
</p:when>
<p:otherwise>

60

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

<p:error code="SchemaNotSupported">
<p:input port="source">
<p:inline>
<message>Unsupported schema type!</message>

</p:inline>
</p:input>

</p:error>
</p:otherwise>

</p:choose>
<p:wrap match="/" wrapper="document"
wrapper-namespace="http://www.oxygenxml.com/nvdl" wrapper-prefix="n"/>

<p:add-attribute match="/*" attribute-name="status" attribute-value="valid"/>
</p:for-each>

</p:declare-step>

The schema detection is implemented right now based on extension but the
XProc script can be modified to lookup the namespace of the root element of the
schema and thus automatically use the corresponding validate step.

4. Conclusions and Further Work
The implementation of NVDL in XProc and XSLT makes NVDLmore accessible as
it can be used whereever there is an XProc engine. It also provides an insight into
NVDL processing showing how it works in terms of XSLT, which many people
already know, thus allowing them to understand quickly how NVDL works.

The implementation needs more tests and maybe also optimizations. Currently
if the validation fails then the processing ends, it will be nice to change the XProc
script to just annotate the dispatching result with the validation outcome for each
validation candidate.

5. References
The NVDL standard is freely available from http://standards.iso.org/ittf/
PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip

The oNVDL project is hosted on Sourceforge and its current status is described
on the oXygen XML website http://www.oxygenxml.com/onvdl.html

61

The Anatomy of an Open Source XProc/XSLT implementation of NVDL

http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c038615_ISO_IEC_19757-4_2006(E).zip
http://www.oxygenxml.com/onvdl.html

62

JSONiq
XQuery for JSON, JSON for XQuery

Jonathan Robie
<jonathan.robie@emc.com>

Matthias Brantner
<matthias.brantner@28msec.com>

Daniela Florescu
<dana.florescu@oracle.com>

Ghislain Fourny
<ghislain.fourny@inf.ethz.ch>

Till Westmann
<till.westmann@28msec.com>

Abstract

XML and JSON have become the dominant formats for exchanging data on
the Internet, and applications frequently need to send and receive data in many
different JSON-based or XML-based formats. For XML data, a query language
like XQuery can be used to query data, create or update data, transform it
from one format to another, or route data. Adding JSON support to XQuery
allows it to perform these tasks for both XML and JSON, combining data from
multiple sources as needed. In addition, JSON support gives XQuery a light-
weight, simple, and useful data structure that can often simplify queries.

JSONiq is a query language for JSON, based on XQuery. It is designed
to allow an existing XQuery processor to be rewritten to support JSON with
moderate effort. One profile of JSONiq removes everything directly related to
XML, adding JSON constructors and navigation. Another profile of JSONiq
includes the full XQuery language, with added JSON support, allowing
queries to consume or produce JSON, XML, or HTML.

1. Introduction
XQuery is the standard query language for XML, and has been implemented in
databases, streaming processors, data integration platforms, application integration
platforms, XML message routing software, web browser plugins, and other envir-
onments. Both XML and JSONare both text formats that represent hierarchical data,
each implies a data model, and both formats require a query language that can

63

easily query hierarchies to create hierarchies. JSON is now being used in many of
the same environments as XML, and a variety of JSON query languages are emer-
ging, including MongoDB's BSON, IBM's jaql, and CouchDB and Sqlite's UnQL.
JSONiq is a query language based on XQuery, which makes it easy for an XQuery
processor to support JSON in the same environments that currently use XQuery.

Many JSONprogrammers shy away fromXQuery because they do not want the
complexity of XML. For these programmers, we have developed a simpler profile
called XQ--1. Because of the modular, compositional design of XQuery, it is easy to
remove the XML-specific portions of the language, such as XML constructors and
XML path expressions, and add the much simpler constructors and navigation
needed for JSON. The resulting language is simpler and easier to optimize, andwell
suited to JSONviews inmiddleware. But it includes sophisticated query capabilities,
including grouping and windowing, that are very useful in a JSON environment.
Unless stated otherwise, the queries in this paper use the XQ-- profile.

Another profile of JSONiq includes the full XQuery language, with added JSON
support, allowing queries to consume or produce JSON, XML, orHTML. This profile
is called XQ++2. Every valid XQ-- query has the same syntax and semantics in XQ++,
and every valid XQuery has the same syntax and semantics in XQ++. XML continues
to be widely used for data interchange on the Internet, andmany applications need
to process both JSONandXML. XMLhas significant advantages for document data,
is well supported by standards, is part of a rich ecosystem of tools, libraries, and
language extensions, and is required by many existing data interchange standards.
Particularly in applications where data resembles human documents, including
many healthcare, financial, government, intelligence, legal, and publishing applic-
ations, XMLcontinues to have advantages over JSON—particularlywhendocument
data needs to be queried. Adding the JSONiq extensions to XQuery allows queries
to process or produce JSON, XML, or HTML, combining and transforming data
fromany of these formats as needed.And adding JSONobjects and arrays to XQuery
also provides these useful data structures to programs that process only XML.

The W3C XSL Working Group has been working on support for maps, with
proposals for importing and exporting JSON. At the time JSONiq was designed,
we felt the XSL work was not yet sufficient for JSON processing, and the XQuery
Working Group was not working on maps or JSON support. The XML Query
WorkingGroup is nowworkingwith the XSLWorkingGroup to determine require-
ments for maps and for querying and processing JSON. Both the XSL Working
Group proposal for maps and JSONiq are contributing to this work.

1 http://jsoniq.org/grammars/xq--/ui.xhtml
2 http://jsoniq.org/grammars/xq++/ui.xhtml

64

JSONiq

http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq++/ui.xhtml
http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq++/ui.xhtml

2. JSONiq in a Nutshell
JSONiq consists of the following extensions to XQuery:
• Support for JSON's datatypes, adding nulls, and mapping other JSON types to

equivalent XML Schema types.
• Extensions to the XPath andXQueryDataModel (XDM) to support JSONobjects,

arrays, and object pairs.
• Navigation for JSON Objects and JSON Arrays.
• Constructors for JSON Objects, Pairs, and JSON Arrays, using the same syntax

as JSON.
• Support for XQuery expressions within JSONiq Constructors, and for JSONiq

constructors within XQuery expressions.
• Typematching expressions to allow the type of JSONiq datatypes to be specified

in function parameters, return types, and other expressions that specify XQuery
types.

JSONiq adds constructors for creating JSON objects and arrays, and member ac-
cessors for navigating them. JSON constructors use the same syntax as JSONobjects
and arrays. For instance, the following query creates a JSONobject for a socialmedia
site:

{
"name" : "Sarah",
"age" : 13,
"gender" : "female",
"friends" : ["Jim", "Mary", "Jennifer"]

}

JSONiq member accessors navigate JSON objects using the names of name/value
pairs or the position of array items.
• If $o is anObject, then $o("n") returns the Pair named "n", or the empty sequence

if no such pair exists.
• If $a is an Array, then $a($posn) returns the member at position $posn, or the

empty sequence if no such member exists.
• If $p is an Pair, it delegates member accessors to its value.
For instance, if the above object is bound to the variable $sarah, then $sarah("age")
returns 133. Member accessors can be chained to navigate down through objects
and arrays. For instance, $sarah("friends")(1) returns Jim, the first friend in the
array. In deeply nested objects, member accessor chains function like path expres-

3JSONiq member accessors use the same syntax as XQuery dynamic function invocation. If $x is bound
to a function, then $x("foo") is a function call; if $x is bound to an object, then $x("foo") is a member
accessor.

65

JSONiq

s i on s ; f o r i n s t an c e , t h e membe r a c c e s s o r ch a i n
$entry("app$control")("yt$state")("name") navigates a Youtube feed.

JSONiq allows expressions in JSON constructors in the same way that XQuery
allows expressions in XML constructors. The following JSONiq query creates a new
user named "Jennifer", one year older than Sarah,with a friend list based on Sarah's.
Jennifer does not appear on her own friends list, but Sarah does:

let $sarah := collection("users")[.("name") = "Sarah"]
return {

"name" : "Jennifer",
"age" : $sarah("age") + 1,
"friends" : [values($sarah("friends")) except "Jennifer", "Sarah"]

}

The result of the above query is:
{

"name" : "Jennifer",
"age" : 14,
"friends" : ["Jim", "Mary", "Sarah"]

}

JSONiq also adds a few functions, including updating functions. But most of the
power of JSONiq comes from the existing XQuery language, which iswell designed
for transformations on hierarchical structures, well understood, and widely imple-
mented.

3. Grouping Queries for JSON
JSONiq allows the same functionality for JSON that XQuery provides for XML, ex-
cept for functionality that depends directly on the properties of XML. This includes
joins, grouping, and windowing. This section demonstrates this using a grouping
example based on a similar example in the XQuery 3.0 Use Cases.

Suppose collection("sales") is an unordered sequence that contains the following
objects:

{ "product" : "broiler", "store number" : 1, "quantity" : 20 },
{ "product" : "toaster", "store number" : 2, "quantity" : 100 },
{ "product" : "toaster", "store number" : 2, "quantity" : 50 },
{ "product" : "toaster", "store number" : 3, "quantity" : 50 },
{ "product" : "blender", "store number" : 3, "quantity" : 100 },
{ "product" : "blender", "store number" : 3, "quantity" : 150 },
{ "product" : "socks", "store number" : 1, "quantity" : 500 },
{ "product" : "socks", "store number" : 2, "quantity" : 10 },
{ "product" : "shirt", "store number" : 3, "quantity" : 10 }

We want to group sales by product, across stores.

66

JSONiq

Query:
{
for $sales in collection("sales")
let $pname := $sales("product")
group by $pname
return $pname : sum(for $s in $sales return $s("quantity"))

}

Result:
{
"blender" : 250,
"broiler" : 20,
"shirt" : 10,
"socks" : 510,
"toaster" : 200

}

Now let's do a more complex grouping query, showing sales by category within
each state. We need further data to describe the categories of products and the loc-
ation of stores.

collection("products") contains the following data:
{ "name" : "broiler", "category" : "kitchen", "price" : 100, "cost" : 70 },
{ "name" : "toaster", "category" : "kitchen", "price" : 30, "cost" : 10 },
{ "name" : "blender", "category" : "kitchen", "price" : 50, "cost" : 25 },
{ "name" : "socks", "category" : "clothes", "price" : 5, "cost" : 2 },
{ "name" : "shirt", "category" : "clothes", "price" : 10, "cost" : 3 }

collection("stores") contains the following data:
{ "store number" : 1, "state" : CA },
{ "store number" : 2, "state" : CA },
{ "store number" : 3, "state" : MA },
{ "store number" : 4, "state" : MA }

The following query groups by state, then by category, then lists individual products
and the sales associated with each.

Query:
{
for $store in collection("stores")
let $state := $store("state")
group by $state
return

$state : {
for $product in collection("products")
let $category := $product("category")
group by $category

67

JSONiq

return
$category : {

for $sales in collection("sales")
where $sales("store number") = $store("store number")
and $sales("product") = $product("name")

let $pname := $sales("product")
group by $pname
return $pname : sum(for $s in $sales return $s("quantity"))

}
}

}

Result:
{
"CA" : {

"clothes" : {
"socks" : 510

},
"kitchen" : {

"broiler" : 20,
"toaster" : 150

}
},
"MA" : {

"clothes" : {
"shirt" : 10

},
"kitchen" : {

"blender" : 250,
"toaster" : 50

}
}

}

4. JSON Views in Middleware
XQuery is used in middleware systems to provide XML views of data sources. Be-
cause JSON is simpler than XQuery, JSON-based views are an attractive alternative
to XML-based views in applications that use large scale relational, object, or semi-
structured data. JSONiq provides a powerful query language for systems that
provide such views.

This example assumes a middleware system that presents relational tables as
JSON arrays. The following two tables are used as sample data.

68

JSONiq

Table 1. Users

lastnamefirstnameuserid
DenisovichWalterW0342
GoulishMickM0535

The JSON representation this particular implementation provides for the above
table looks like this:

[
{ "userid" : "W0342", "firstname" : "Walter", "lastname" : "Denisovich" },
{ "userid" : "M0535", "firstname" : "Mick", "lastname" : "Goulish" }

]

Table 2. Holdings

sharestickeruserid
153212312DISW0342
10DISM0535
23412AIGM0535

The JSON representation this particular implementation provides for the above
table looks like this:

[
{ "userid" : "W0342", "ticker" : "DIS", "shares" : 153212312 },
{ "userid" : "M0535", "ticker" : "DIS", "shares" : 10 },
{ "userid" : "M0535", "ticker" : "AIG", "shares" : 23412 }

]

The following query uses the fictitious vendor's vendor:table() function to retrieve
the values from a table, and creates an Object for each user, with a list of the user's
holdings in the value of that Object.

[
for $u in vendor:table("Users")
order by $u("userid")
return {
"userid" : $u("userid"),
"first" : $u("firstname"),
"last" : $u("lastname"),
"holdings" : [

for $h in vendor:table("Holdings")
where $h("userid") = $u("userid")
order by $h("ticker")
return {

69

JSONiq

"ticker" : $u("ticker"),
"share" : $u("shares")

}
]

}
]

5. JSON with XML and HTML
When JSONiq is used together with the full XQuery language, it can be used to
convert data from one format to another, whether the formats use JSON, XML, or
HTML. It can also be used to combine data frommultiple formats, transform it, and
create a result in any desired format.

For instance, suppose the following JSON data needs to be converted to HTML:
{
"col labels" : ["singular", "plural"],
"row labels" : ["1p", "2p", "3p"],
"data" :

[
["spinne", "spinnen"],
["spinnst", "spinnt"],
["spinnt", "spinnen"]

]
}

The following query uses the XQ++ profile of JSONiq. It creates an HTML table
from this JSON Object, using the column headings and row labels specified:

<table>
<tr> (: Column headings :)

{
<th> </th>,
for $th in values(json("table.json")("col labels"))
return <th>{ $th }</th>

}
</tr>
{ (: Data for each row :)

for $r at $i in values(json("table.json")("data"))
return

<tr>
{
<th>{ json("table.json")("row labels")($i) }</th>,
for $c in values($r)
return <td>{ $c }</td>

}
</tr>

70

JSONiq

}
</table>

The result of the query is the following HTML table:
<table>

<tr>
<th> </th>
<th>singular</th>
<th>plural</th>

</tr>
<tr>
<th>1p</th>
<td>spinne</td>
<td>spinnen</td>

</tr>
<tr>
<th>2p</th>
<td>spinnst</td>
<td>spinnt</td>

</tr>
<tr>
<th>3p</th>
<td>spinnt</td>
<td>spinnen</td>

</tr>
</table>

6. Conclusion
JSON and Cloud-based computing have brought new challenges to the Internet.
XML is no longer the universal data interchange format once envisioned, but it is
still widespread andXML-based services need to be used togetherwith JSON-based
services and various other data sources.

XQuery is a powerful and mature query language that has been implemented
in many environments. By adding a small number of constructors and member ac-
cessors for JSONobjects and arrays, JSONiqmakes it possible for queries to consume,
combine, or produce data in any JSON, XML, or HTML format, converting among
them as needed. Any existing XQuery processor can add JSON support with mod-
erate effort. Data integration was always an important application for XQuery, and
adding support for JSON allows XQuery to play well with both of the dominant
data interchange formats on the Internet. Where XML-based views of data such as
relational databases are currently used, JSON-based views provide a simpler altern-
ative.

71

JSONiq

In some implementations and environments, both JSON and XML will be sup-
ported. In other environments, only JSON support will be provided for the sake of
simpler, more easily optimizable implementations.

Bibliography
[1] JSONiq: Language Specification4. Jonathan Robie. Matthias Brantner. Daniela

Florescu. Ghislain Fourny. Till Westmann.
[2] JSONiq: Use Cases5. JonathanRobie.Matthias Brantner. Daniela Florescu. Ghislain

Fourny. Till Westmann.
[3] XQuery 3.0: An XML Query Language. W3C Working Draft 13 December 2011.6.

World Wide Web Consortium. 13 December 2011.
[4] XQuery and XPath Data Model 3.0. W3C Working Draft 13 December 2011.7. World

Wide Web Consortium. 13 December 2011.

4 http://jsoniq.com/docs/spec/en-US/html/index.html
5 http://jsoniq.com/docs/spec/en-US/html/index.html
6 http://www.w3.org/TR/xquery-30/
7 http://www.w3.org/TR/xpath-datamodel-30/

72

JSONiq

http://jsoniq.com/docs/spec/en-US/html/index.html
http://jsoniq.com/docs/spec/en-US/html/index.html
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xpath-datamodel-30/
http://jsoniq.com/docs/spec/en-US/html/index.html
http://jsoniq.com/docs/spec/en-US/html/index.html
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xpath-datamodel-30/

Corona:Managing andQueryingXMLand
JSON via REST

Jason Hunter
MarkLogic Corporation

Abstract

What if you tried to provide the core value of MarkLogic Server to people who
didn’t want to learn XQuery? The very idea might be blasphemous in XML
crowds, but is it possible? How far could you get?

This paper explores that issue and shares our experience in designing and
developing the open source "Corona" project. Corona provides a set of REST
endpoints to store, retrieve, query, and analyze documents held inside Mark-
Logic. Corona exposes the vast majority of MarkLogic’s most popular XML-
aware indexes and features, but in a way that lets them code in whatever lan-
guage they’d like.

Note
The Corona project is in pre-release and details are subject to change.
Source code is available at https://github.com/marklogic/Corona.

1. MarkLogic Architecture
First, a quick refresher. MarkLogic Server is a database purpose-built for Big Data.
It’s document-centric, transactional, search-centric, structure-aware, schema-agnostic,
high performance, and clusters on commodity hardware. MarkLogic specializes in
a new type of indexing that enables ad hoc queries against documents with widely
varying schemas, delivering subsecond answers.

Developerswrite applications inMarkLogic usingXQuery andXSLT. Sometimes
they invoke the XQuery from Java, such as when integrating with a pre-existing
Java stack, and sometimes they write the entire application in XQuery and XSLT
and use MarkLogic directly as the application server. Usually XQuery acts as a
scripting language and XSLT as a styling language.

Unfortunately XQuery, despite being aW3C standard, is not widely known. It’s
easy to learn and highly productive, but it’s still a new language. People often want
to solve problemswith theminimal disruption possible, and learning a new language
can feel like a disruption.

The challenge then is to expose the core MarkLogic functionality— the main
things people do— as a set of services callable from other languages, letting people

73

be successful without knowing XQuery, or ideally even having special knowledge
about MarkLogic’s internals. We’ve been exploring to what extent this is possible
with an open source project named Corona, and we’ve been very happy with the
results.

2. Corona
Corona is built as a set of web endpoints exposing the core MarkLogic application
services. It’s an architecture often described as REST, even if it’s not strictly RESTful
in all aspects. By using REST principles it’s easy to access Corona functionality from
any environment, work with load balancers when in a clustered environment, and
integrate with caching proxies to offload work.

During development thus far we’ve focused mostly on the REST layer; we plan
to add standard language endpoints above this layer in the future, tomake it possible
for people in languages such as Java to make service calls without thinking about
the HTTP underpinnings.

Note
If you’d like to review the REST API documentation as the functionality is
described below, it’s available at https://github.com/marklogic/Corona/wiki.
This paper describes functionality rather than exact access methods.

3. Corona User Roles
Corona assumes three job roles for individuals:
1. The Corona Developer. This person does their day to day programming against

the Corona endpoints. They’re a pro with Java, .NET, Ruby, or some other lan-
guage, and the Corona documentation is the only exposure they have to Mark-
Logic.

2. The Corona Admin. This person controls Corona’s administrative settings. For
example, they adjust current query settings, any stored transformations which
may be called, and index settings. They do this via Corona endpoints separate
from those available to the regular Corona Developer. They often dictate the
document schema(s) for an application. They are familiarwithMarkLogic beha-
viors, but they do not access MarkLogic’s administrative port.

3. The MarkLogic Admin. This person installs MarkLogic, and uses MarkLogic’s
administrative port to manage forests, system uptime, and get Corona installed
and started. They’re the classic IT database administrator, often not a program-
mer, and don’t need to be familiar with the applications being deployed.

74

Corona: Managing and Querying XML and JSON via REST

https://github.com/marklogic/Corona/wiki

We envision a typical project will have several Corona Developers, one or two
Corona admins, and a shared MarkLogic Admin who assists with other projects as
well. On a smaller project a single person could play all roles.

4. Storing Documents
Corona stores XML, JSON, text and binary documents. Simple REST calls are used
to place a document, retrieve it, delete it, or replace it. MarkLogic natively supports
XML, text, and binary. For JSON documents Corona is mapping them to XML
documents, in a format designed for efficient queries.

Each document can have certain metadata associated with it:
Name A unique name
Permissions Security rules for what roles can view and

modify the document; users and roles are man-
aged by the MarkLogic Admin

Properties Key-value metadata for the document
Collections Named grouping for documents, as an alternat-

ive to implicit grouping by the directory path in
the name

A Quality An integer representing the intrinsic relevance
of a document in a search

Extracted text and othermetadata For binaries, such as when inserting a JPEG the
EXIF data will be extracted as metadata

5. Document Retrieval
Sometimes when retrieving a document you want the full document back and
sometimes just a piece. To specify a piece you provide an extra parameter on the
retrieval call. For XML documents this parameter is a simplified XPath expression
(simplified for security purposes, to disallow a Corona Developer from executing
arbitrary code). For JSON documents it’s a JSON path (a custom notation invented
here that looks like JavaScript object traversal, the closest standard yet available).
This cuts down wire transmission overhead, especially for larger documents.

It’s also possible to wholly transform the document as part of its retrieval. To
do this you can specify a parameter on the retrieval call indicating the name of a
transformer that should process the document. (You can transform a document as
part of the insert call as well.)

Transformers are XQuery or XSLT scripts. They’re specified by name, not as
code. This is for security. The library of available transformers has to have been es-
tablished earlier by a Corona Admin, using a separate and secured transformers

75

Corona: Managing and Querying XML and JSON via REST

management REST endpoint. This prohibits regular developers from invoking ar-
bitrary server-side code, an important feature sincewe assume they lackMarkLogic
familiarity.

6. Search Queries
Corona includes extremely robust support for queries. Queries can be specified
similar to a traditional database with value, range, and geospatial constraints; or
like a search engine with free-text relevance-based language-aware constraints.
(Having both in one transactional system is one of the advantages of MarkLogic.)

Query results can be sorted by search relevance or (soon) by a scalar such as a
date or price. Result items can be paged (to view say 10 results at a time), snippeted
(to show a blurb containing the matching terms), and highlighted (to bold the
matching words).

A search result can include a simple description of the matching documents, or
include the documents within the result as well, for efficiency by avoiding repeated
web calls. When fetching the documents as part of a search, the same XPath/JSON-
Path subsetting options and transformation features are available.

Corona includes three ways to issue search queries:

6.1. Key/Value Query Service
This is a simple endpoint, for executing a quick retrieval based on a key (JSON key,
XML element, etc) that’s equal to a certain value.

6.2. String Query Service
This is a user-friendlyway to specify a query as a speciallymarked-up string similar
to those used by Google. This is something a Corona Developer could pass directly
from the user interface text box to the Corona back-end for execution. It accepts
queries using a "string query syntax". For example:

winter NEAR storm (title:Lebowski OR title:Country OR title:Fargo) AND
(cast:Buscemi OR cast:Jones) -director:Ethan

6.3. Structured Query Service
This is a programmer-friendly way to specify a query as a set of hierarchical query
constraints expressed using an XML or JSON encoding. It accepts queries using the
"structured query syntax" which is fully expressive and arbitrarily complex. For
example:

{"and": [
{

76

Corona: Managing and Querying XML and JSON via REST

"element": "author",
"equals": "Noam Chomsky" // Can be a boolean, number, string or array

},
{
"range": "price",
"from": 10.00,
"to": 14.99

},
{
"geo": "location", // The name of the geo index
"region": { "polygon": [
{"point": {"latitude": 1, "longitude": -1}},
{"point": {"latitude": 1, "longitude": 1}},
{"point": {"latitude": -1, "longitude": 1}},
{"point": {"latitude": -1, "longitude": -1}},
{"point": {"latitude": 1, "longitude": -1}}

]}
}

]}

7. Search Configuration Management
It’s often necessary for a Corona Admin to configure some aspects of the Corona
environment to facilitate effective queries. Corona lets these adminsmanage several
aspects of the environment.

7.1. Places
A Place gives an assigned name to a set of locations in a document, either JSON
keys or XML nodes. For example, RSS has a variety of formats. A single place called
"title" could be created that aliases "rdf:title" (RSS 0.9), "title" (RSS 0.91 thru 2.0, no
namespace), and "atom:title" (Atom 1.0) into one.

Queries can use Places to indicate where a query constraint should apply. In
string queries the Place name automatically becomes a field prefix, available to the
user. A user can type title:"all the king’s men" and Corona will understand that the
phrase has to appear in one of the locations specified by the Place "title".

There’s also a special place, the place without a name, which controls the beha-
vior of searches that aren’t field constrained. This is very important because the
majority of users won’t type fielded constraints.

When defining a Place you can assign relevance weights to each specified loca-
tion. This helps maintain high-quality relevance-sorted results.

77

Corona: Managing and Querying XML and JSON via REST

7.2. Ranges
A Ranges gives an assigned name to a location in a document, either a JSON key
or XML node, that should be treated as a scalar value. For example, a "birthday"
element might be assigned the type of date.

Each range creates an index in the background that enables:
1. Fast range queries on that scalar (i.e. limiting to dates between X and Y)
2. (Soon) Optimized sorting of results by that scalar (i.e. sort by date)
3. Fast extraction of the scalar’s values (i.e. show birthday occurrences by month).
Range values can be assigned into named "buckets". Each bucket represents a subset
of possible values for the scalar. For example, timestamps can be bucketed into
days, dates can be bucketed into months, or prices can be bucketed into "Cheap"
and "Expensive".

7.3. Named Queries
If a particular query is to be reused frequently, either alone or in combination with
other query constraints, then for convenience and performance it can be registered
as a named query. The query can then be embedded in another query just by spe-
cifying its name. Internally a named query gets optimized so repeated calls will be
fast.

An upcoming feature will enable MarkLogic’s powerful "reverse query" func-
tionality against named queries. Reverse queries enable you to take a document
and quickly determine which of a large set of pre-existing queries would match it.
It’s the reverse of a usual query. It’s commonly used for alerting (tell me when…)
or automated classification (route based on…). Technically it involves indexing the
queries by making a decision tree out of them and running the document through
the tree. With Corona a named query can have associated with it a URL, and that
URL will be called whenever a new document arrives matching the named query.

7.4. Facets
A facet is data of a certain type often displayed next to a query that tells you analytics
about the query results, such as the top senders for emails matching your query.

To execute a facet query you specify a Range name (or names) as well as an op-
tional query, and Corona returns all the distinct values (or distinct bucket names)
for documents matching the query, as well as the frequency count for each.

It’s a fairly simple idea but it’s tremendously powerful and enables accurate
analytics against documentswithout pre-defining your dimensions. This technique
is howMarkMail.org produces the facetes on the left hand side of each search result.

78

Corona: Managing and Querying XML and JSON via REST

7.5. Namespaces
XML Namespaces are centrally managed in Corona. This allows all references to
namespaced elements and attributes in Corona to simply use the namespace prefix
and rely on the central management system to dictate the associated URI.

8. Transactions
Transactions are a core feature of MarkLogic and Corona exposes them so that
multiple REST requests can be grouped together into a singular transaction, which
at the end can be atomically committed or rolled back. There’s one endpoint to start
a transaction, one to commit a transaction, and one to rollback a transaction. Most
requests accept an optional token to indicate inwhat transaction the request should
be placed into. You can have any number of transactions in process at a given time.

9. Environment Variables
Environment variables allow aCorona administrator to adjust aspects of the Corona
runtime. Much like UNIX environment variables, these are name-value pairs that
control execution behavior. An important pair of variables dictates what, if any,
transformers should execute during all insertions and retrievals. This allows a
CoronaAdmin to, for example, enforce an XMLSchema for all incoming documents
or invisibly adjust the document format (and reverse the adjustment on output) to
optimize some query.

10. What’s Next?
That was a long list of features. What’s next?

The biggest remaining item, besides the higher-level language bindings discussed
earlier, is extensibility. Corona should allow Corona Admins to add new REST en-
dpoints in a supported manner. If there’s something that needs to get done, which
Corona doesn’t expose, a new endpoint should make it possible. Often times we
expect custom endpoints to be used to achieve a performance gain bymoving some
business logic execution closer to the data. Itmight also be used to exposeMarkLogic
features that Corona isn’t directly supporting: entity enrichment, thesaurus expan-
sion, spell check, SVMclassifier, document fragmentation, schema validation, highly
structured properties, and custom snippeting. The list ofwhat you can do in custom
code is long— just about limitless— and custom endpoints should make sure
Corona never paints a user into a corner without an escape hatch.

79

Corona: Managing and Querying XML and JSON via REST

11. Discussion
Does Corona satisfy the goal of providing the core value of MarkLogic Server to
people who didn’t want to learn XQuery? We think yes.

It provides to aCoronaDeveloper a highly scalable document storewhich should
appear as a simple web service with enough power to handle more than a billion
documents. It makes it easy for that developer to run advanced queries (value,
range, text, geospatial) against the documents, using either a string or a structured
query syntax. It exposes fast aggregates in the form of facets. It even includesmulti-
statement transactions.

It isolates to the Corona Admin the special knowledge about MarkLogic and
lets them use XQuery and XSLT as needed, to support document transformations
as well as adding new endpoints.

It also isolates MarkLogic administration expertise to the MarkLogic Admin
who should be able to support multiple applications without particular knowledge
about any of them.

At the end of the day, Corona should make it easier for everybody on a project
to get themaximumvalue out ofMarkLogic whileminimizing howmuch expertise
they need to develop. We think that’s terrific.

80

Corona: Managing and Querying XML and JSON via REST

Treating JSON as a subset of XML
Using XForms to read and submit JSON

Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

XForms 1.0 was an XML technology originally designed as a replacement for
HTML Forms. In addressing certain shortcomings of XForms 1.0, the next
version, XForms 1.1 became far more than a forms language, but a declarative
application language where application production time could be reduced by
an order of magnitude compared with traditional procedural programming.

Although XForms treats its data internally as if it is XML, using XPath
both to address data and to calculate new values, it is not the intention that
external data necessarily be only in XML.

An obvious data format widely in use on the web is JSON. There are sev-
eral mappings defined in both directions between XML and JSON, but largely
because JSON can only represent a subset of what XML can represent, many
of the mappings are cumbersome, andmake data-references both JSON-specific,
and difficult to write.

Ideally, an XForm processing JSON data shouldn't have to know which
data format has been used, so that JSON data can be selected with natural
XPath selectors. Furthermore, XForms doesn't need the full generality of
translating any XML to JSON, since the only need is to read and write data
to and from existing JSON sources. In other words, it only needs to process
existing JSON. This simplifies the mapping, and makes the selectors needed
with minor exceptions opaque to the data format.

This paper presents the mapping proposed for XForms 2.0, the special
cases that have had to be dealt with, and discusses generalisation to other
formats, such as VCARD.

Keywords: XForms, JSON, XML

1. Introduction
XForms is an XML technology originally designed as a replacement for HTML
Forms [7]. It was designed by doing an analysis of HTML features, and a require-
ments analysis derived from usage of HTML Forms and other electronic forms
systems [XForms requirements]. The resultant design used aMVC-based approach

81

to the data, used intent-based controls, and as well as the standard URL and POST
forms of data submission, addedXMLas a first-class data format, both for initialising
data from external sources, as for submission.

What this concretely means is that the data is physically separated from the
controls in the form. The data is placed in the head of the document, and the controls
bind to the data.

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<model xmlns="http://www.w3.org/2002/xforms">

<instance>
<data xmlns=""><year>2012</year>...</data>

</instance>
</model>

</head>
<body>

Controls in the body refer to values in the data instance(s) using XPath expressions
[15]:

<input ref="year">...
<input ref="event[1]/title/@language">...

The controls can be initialised by putting values in the data:
<data xmlns=""><year>2001</year>...</data>

or the data can also be initialised from external sources:
<instance src="http://www.example.org/events"/>

Relationships between, and restrictions on, values can be specified in the model,
allowing dependent values to be calculated automatically and data checking to be
performed on the client rather than on the server.

<bind nodeset="year" constraint=". > 1752"/>
<bind nodeset="state" required="../country = 'USA'"/>
<bind nodeset="age" calculate="../thisyear - ../birthdate/year"/>

Values can be exposed in the document itself, using an output control:
The result for the year <output ref="year"/> is ...

Controls are intent-based, by expressing what the control should do, rather than
how it should look. So a control like this:

<select1 ref="colour">
<label>Colour:</label>
<item><label>red</label><value>#ff0000</value></item>
<item><label>green</label><value>#00ff00</value></item>
<item><label>blue</label><value>#0000ff</value></item>

</select1>

82

Treating JSON as a subset of XML

can be represented in different ways depending purely on styling: as radio buttons,
a drop-down menu, a select box, or anything else that the designer can think of. It
also makes it easier to make forms device independent and accessible, since there
is no explicit binding to presentation.

Further details of XForms can be found in the Quick Reference [11], Tutorial
[XForms Tut], and Specification. [XForms 1.1]

2. Experience
Initial experience showed XForms to be far more powerful and flexible than the
HTML Forms it was replacing, but that it had too slavishly followed the HTML
design in some aspects, particularly in the use of fixed strings rather than (poten-
tially) calculated values for such things as the submission URI. As a consequence
this restricted what was possible with the language.

As a consequence, XForms 1.1 [9] addressed these shortcomings, and the resultant
language turned out to be far more than a forms language, but a declarative applic-
ation language. Since XForms has input, output, and a processing engine, XForms
is Turing-complete, and much more than just forms is now possible with the lan-
guage.

Experiencewith some large projects has shown that application production time
can be reduced by an order of magnitude compared with traditional procedural
programming [16], with one large project reporting a reduction from 5 years with
30 programmers using traditional programming, to 1 year with 10 programmers
using XForms.

3. Data Opacity
AlthoughXForms treats its data internally as if it is XML, usingXPath both to address
data as to calculate new values, it is not the intention that external data be only in
XML (clearly, considering the other formats produced by XForms, such as URL-
encoding). Just as a photo editor in general doesn't care in what format the image
is kept externally in order to be able to edit the image, neither does XForms require
the external data to be in XML form. However, since the internal form of the data
that XForms deals with is XML (since the data is accessed using XPath), there has
to be a mapping between the external form and the internal one.

83

Treating JSON as a subset of XML

An obvious data format widely in use on the web is JSON [4]. There are several
mappings defined in both directions between XML and JSON, for instance Badger-
fish [1], and JXON [5], but largely because JSON can only represent a subset of what
XML can represent, many of the mappings are cumbersome, and make data-refer-
ences both JSON-specific, and difficult to write.

For instance, just to take one example, here of the mapping from JXON, the fol-
lowing XML:

<BOOKS>
<BOOK id="1">
<TITLE>My Favorite Book</TITLE>
<PRICE>1.23</PRICE>

</BOOK>
<BOOK id="1a">
<TITLE>XML for Dummies</TITLE>
<PRICE>5.25</PRICE>

</BOOK>
<BOOK id="3">
<TITLE>JSON for Dummies</TITLE>
<PRICE>200.95</PRICE>

</BOOK>
</BOOKS>

would be transformed [5] into:
{
"childNodes": [
{
"childNodes": [
{
"childNodes": ["My Favorite Book"],
"tagName": "TITLE"
},
{
"childNodes": [1.23],
"tagName": "PRICE"
}
],
"id": 1,
"tagName": "BOOK"
},
{
"childNodes": [
{
"childNodes": ["XML for Dummies"],
"tagName": "TITLE"
},

84

Treating JSON as a subset of XML

{
"childNodes": [5.25],
"tagName": "PRICE"
}
],
"id": "1a",
"tagName": "BOOK"
},
{
"childNodes": [
{
"childNodes": ["JSON for Dummies"],
"tagName": "TITLE"
},
{
"childNodes": [200.95],
"tagName": "PRICE"
}
],
"id": 3,
"tagName": "BOOK"
}
],
"tagName": "BOOKS"
}

It is left as an exercise to the reader to derive the equivalent JSON selector for the
XPath BOOKS/BOOK[1]/@title.

4. JSON in XForms
During the design phase of a suitable mapping for JSON for the coming XForms
2.0 standard [10], wewent through several iterations before coming to a key realisa-
tion: since the aim is only to address existing JSON stores, it is not necessary to be
able to convert every possible XML representation into an equivalent JSON repres-
entation, only the reverse. This reduces the task considerably, since it means several
features of XML do not have to be addressed, such as namespaces, attributes, and
mixed content.

Someof the requirements for amapping from JSON toXML for XForms included:
• All possible JSON values be representable
• Round-trippable, so that you can both read from and submit to a JSON store.
• As natural-looking selectors as possible.
Ideally, an XForm processing JSONdata shouldn't have to knowwhich data format
has been used; so that, for instance, data such as

85

Treating JSON as a subset of XML

{"company":"example.com", "locations":[{"city": "Amsterdam"},{"city": "London"}]}

with the right mapping could be selected with XPath selectors like
locations/city[1]

In this way data could be loaded using content negotiation [HTTPG], andwill work
whether the data comes in as XML or JSON.

The basic mapping designed is rather simple [13]. Since JSON has no attributes,
all content can be represented in elements, and attributes are therefore free to be
used to help with the mapping.

Since a JSON value can have several values at the top level, a root element is
used <json>. JSON names become XML elements:

{"name": "XForms"}

becomes
<json><name>XForms</name></json>

Strings are the default datatype. In order to allow the processor to distinguish
between {"size": 30} and {size: "30"} when serialising, other types are marked:

"age": 21

becomes
<age type="integer">21</age>

and
"registered": true

becomes:
<registered type="boolean">true</registered>

Nested values are obvious:
"name": {"given": "Isaac", "family": "Newton"}

becomes
<name><given>Isaac</given><family>Newton</family></name>

Arrays are marked specially:
"colour": ["red", "green", "blue"]

becomes
<colour starts="array">red</colour><colour>green</colour><colour>blue</colour>

This allows selectors like colour[3] to work, but also allows to distinguish things
like single element arrays:

{city: ["Amsterdam"]}

86

Treating JSON as a subset of XML

from
{city: "Amsterdam"}

and empty arrays:
{"set": []}

from
{"set": ""}

5. Example
To take an example from the JSON site:

{"bindings": [
{"ircEvent": "PRIVMSG", "method": "newURI", "regex": "^http://.*"},
{"ircEvent": "PRIVMSG", "method": "deleteURI", "regex": "^delete.*"},
{"ircEvent": "PRIVMSG", "method": "randomURI", "regex": "^random.*"}

]
}

would become
<json>

<bindings starts="array">
<ircEvent>PRIVMSG</ircEvent><method>newURI</method><regex>^http://.*</►

regex>
</bindings>
<bindings>

<ircEvent>PRIVMSG</ircEvent><method>deleteURI</method><regex>^delete.*</►
regex>

</bindings>
<bindings>

<ircEvent>PRIVMSG</ircEvent><method>randomURI</method><regex>^random.*</►
regex>

</bindings>
</json>

and a JSON selector like
bindings[0].method

would become in XPath
bindings[0]/method

6. Special Cases
There are a small number of special cases that have to be accounted for:

87

Treating JSON as a subset of XML

• JSON allows the empty name "", which XML does not allow.
• JSON names may contain characters that are not allowed as name characters in

XML.
• JSON stringsmay contain anyUnicode character; XMLdisallowsmost characters

below #x20 [14].
The first two are easy to deal with: any character that is not possible in XML is re-
placedwith an underscore, and an attribute name is added to the element giving the
correct name. The empty name is replaced with a single underscore, and an empty
name attribute is used.

For example:
"$": "$"

would be transcribed:
<_ name="$">$</_>

The third is harder to deal with, with an example being:
{"backspace": "\b"}

The backspace character is completely disallowed in XML (even hex encoded),
leaving the only option to leave those illegal characters encoded in JSON notation.

7. Implementation
Implementation of the mapping is relatively trivial: at the point where an imple-
mentation normally receives a document of type application/xml (or similar), either
during initial instance initialisation from an external resource, or as the return value
of a submission, if the media type of the resource is application/json, the resource
can be parsed, and transformed to an equivalent XML instance, as described above.
The media type can be recorded as an attribute of the root element, so that it can be
reused if the instance is to be resubmitted as JSON.

8. Extension to other formats
Clearly this method can be extended to other datatypes such as VCARD [6] and
iCalendar [iCal]. For instance an iCalendar value such as

BEGIN:VCALENDAR
METHOD:PUBLISH
PRODID:-//Example/ExampleCalendarClient//EN
VERSION:2.0
BEGIN:VEVENT
ORGANIZER:mailto:a@example.com
DTSTART:19970701T200000Z

88

Treating JSON as a subset of XML

DTSTAMP:19970611T190000Z
SUMMARY:ST. PAUL SAINTS -VS- DULUTH-SUPERIOR DUKES
UID:0981234-1234234-23@example.com
END:VEVENT
END:VCALENDAR

can be transformed to
<VCALENDAR>
<METHOD>PUBLISH</METHOD>
<PRODID>-//Example/ExampleCalendarClient//EN</PRODID>
<VERSION>2.0</VERSION>
<VEVENT>
<ORGANIZER>mailto:a@example.com</ORGANIZER>
<DTSTART>19970701T200000Z</DTSTART>
<DTSTAMP>19970611T190000Z</DTSTAMP>
<SUMMARY>ST. PAUL SAINTS -VS- DULUTH-SUPERIOR DUKES</SUMMARY>
<UID>0981234-1234234-23@example.com</UID>

</VEVENT>
</VCALENDAR>

9. Conclusions
Due to the lack of a need to represent arbitrary XML in JSON, dealing with external
JSON values in XForms becomes easy, and natural, in most cases not even exposing
the fact that the external data type is not XML in the XForm. The approach can be
extended to other types, and thanks to the generality of XML, mostly without re-
striction.

Bibliography
[1] David Sklar, What is Badgerfish?, http://www.sklar.com/badgerfish/
[2] R. Fielding, et al., Hypertext Transfer Protocol -- HTTP/1.1, ISOC 1999 http://

www.w3.org/Protocols/rfc2616/
rfc2616-sec12.htmlhttp://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

[3] B. Desruisseaux, Ed., Internet Calendaring and Scheduling Core Object
Specification (iCalendar), IETF 2009, http://tools.ietf.org/html/
rfc5545http://tools.ietf.org/html/rfc5545

[4] Introducing JSON http://www.json.org/http://www.json.org/
[5] David Lee, JXON: anArchitecture for Schema andAnnotationDriven JSON/XML

Bidirectional Transformations, Proc Balisage, 2011. http://www.balisage.net/
Proceedings/vol7/html/Lee01/
BalisageVol7-Lee01.htmlhttp://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html

89

Treating JSON as a subset of XML

http://www.sklar.com/badgerfish/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://tools.ietf.org/html/rfc5545
http://tools.ietf.org/html/rfc5545
http://www.json.org/
http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html
http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html
http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html

[6] S. Perreault, vCard Format Specification, IETF, 2011 http://tools.ietf.org/html/
rfc6350http://tools.ietf.org/html/rfc6350

[7]MicahDubinko et al. (eds.), XForms 1.0,W3C 2003. http://www.w3.org/TR/2003/
REC-xforms-20031014/http://www.w3.org/TR/2003/REC-xforms-20031014/

[8]MicahDubinko et al. (eds.), XFormsRequirements,W3C2001, http://www.w3.org/
TR/xhtml-forms-reqhttp://www.w3.org/TR/xhtml-forms-req

[9] John Boyer (ed.), XForms 1.1, W3C 2009, http://www.w3.org/TR/2009/
REC-xforms-20091020/http://www.w3.org/TR/2009/REC-xforms-20091020/

[10] JohnM. Boyer, et al. (eds.), XForms 2.0,W3C 2012, http://www.w3.org/MarkUp/
Forms/wiki/XForms_2.0http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0

[11] Steven Pemberton, XForms 1.1Quick Reference,W3C 2010, http://www.w3.org/
MarkUp/Forms/2010/
xforms11-qr.htmlhttp://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html

[12] Steven Pemberton, XForms for HTML Authors, W3C 2010,-authors/ http://
www.w3.org/MarkUp/Forms/2010/
xforms11-for-html-authors/http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/

[13] Steven Pemberton et al., JSON-based instances and submissions, W3C 2011,
http://www.w3.org/MarkUp/Forms/wiki/
Jsonhttp://www.w3.org/MarkUp/Forms/wiki/Json

[14] Tim Bray, et al. (eds.), Extensible Markup Language (XML) 1.0 (Fifth Edition),
http://www.w3.org/TR/REC-xml/
#charsetshttp://www.w3.org/TR/REC-xml/#charsets

[15] James Clark, et al. (eds.), XML Path Language (XPath), W3C 1999, http://
www.w3.org/TR/xpath/http://www.w3.org/TR/xpath/

[16] Steven Pemberton, XRX - Restful XForms, CWI 2011, http://www.cwi.nl/~steven/
Talks/2011/07-05-steven-xrx/
#appshttp://www.cwi.nl/~steven/Talks/2011/07-05-steven-xrx/#apps

90

Treating JSON as a subset of XML

http://tools.ietf.org/html/rfc6350
http://tools.ietf.org/html/rfc6350
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/2009/REC-xforms-20091020/
http://www.w3.org/TR/2009/REC-xforms-20091020/
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/
http://www.w3.org/MarkUp/Forms/wiki/Json
http://www.w3.org/MarkUp/Forms/wiki/Json
http://www.w3.org/TR/REC-xml/#charsets
http://www.w3.org/TR/REC-xml/#charsets
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.cwi.nl/~steven/Talks/2011/07-05-steven-xrx/#apps
http://www.cwi.nl/~steven/Talks/2011/07-05-steven-xrx/#apps
http://www.cwi.nl/~steven/Talks/2011/07-05-steven-xrx/#apps

RESTful XQuery
Standardised XQuery 3.0 Annotations for REST

Adam Retter
Adam Retter Consulting

<adam@adamretter.org.uk>

Abstract

Whilst XQuery was originally envisaged and designed as a query language
for XML, it has been adopted by many as a language for application develop-
ment This, in turn, has encouraged additional and diverse extensions, many
of which could not easily have been foreseen.

This paper examines how XQuery has been used for Web Application de-
velopment, current implementation approaches for executing XQuery in a
Web context, and subsequently presents a proposal for a standard approach
to RESTful XQuery through the use of XQuery 3.0 Annotations.

Keywords: Query 3.0, Annotations, REST, HTTP, Standard

1. Introduction

1.1. Background
XMLQuery Language (XQuery) was originally born from several competing query
languages for XML[1]. All of these languages had in common the noble yet limited
goal of querying XML. They focused on XML as a read-only store for data. In addi-
tion, whilst several of these predecessors recognised the Web as a critical factor,
like their successor XQuery, none of them attempted to implement constructs in
the language that supported use as a (Web) server-side processing language.

With the adoption and use of XQuery, because of its functional nature and
module system which permit the organisation of code units, people attempted to
write complex processing applications in XQuery. As the limits of what was
achievable in XQuery were tested, real world scenarios emerged which called for
additional XQuery facilities, resulting in extension standards: XPath and XQuery
Update[2] and XQuery Full-Text[3].

Triggered by XQuery users developing increasingly complex applications in
XQuery, and the understanding that XQuery could easily produce XHTML, an
XQuery processor operating on an XML Database was for the first time in 2003
coupled with a Web Server and REST interface in the eXist Native XML Database
project[4][5].

91

With the advent of being able to use XQuery as a server-side processing language,
developers were soon building complete data driven Web Applications entirely in
XQuery.

Today most XQuery vendor's products operating on collections of XML docu-
ments, provide some mechanism for invoking this processing from the Web by
URI[6–10].

The W3C XQuery Working Group has itself recognised the value in XQuery as
a general purpose processing language through a new extension standard which
enhances XQuery for this purpose: XQuery Scripting Extensions[11].

1.2. Problem Statement
The value in using XQuery as a server side processing language is well recognised
by both vendors, users and the XQuery Working Group. However, to date there
has been no effort to standardise how XQuery may be invoked in a Web context.
Presently, each vendor has their ownnon-standard approach towiringWeb requests
andXQuery scripts together; which in-turn causes developers to create non-portable
platform dependent XQuery when coding for the Web.

Sadly non-portable XQuery code that relies on vendor extensions ormechanisms,
limits and fragments the XQuery community; it is much harder to share useable
code and promote an environment of learning from peers and building on existing
work, when code that onewould hope should run on any XQuery processor simply
cannot.

Efforts such as the EXPath[12] and EXQuery[13] projects have attempted to
promote portable XQuery code by creating community standardised versions of
existing vendor extensions. The EXPath project has attempted to standardise a
HTTP Client[14] request module for XQuery. However, there is no such vendor
independent standard for invoking server-side XQuery on the Web.

1.3. Contributions
The W3C XQuery 3.0 language specification[15] (currently a Last Call Working
Draft) introduces several new features to XQuery. This paper proposes a newvendor
agnostic standard for invoking XQuery from the Web based on the new feature of
Annotations present in XQuery 3.0.

1.4. Outline
This paper first attempts a brief description of the fundamentals of XQuery and
REST and why it is desirable to combine these in Section 2. Section 3 reviews and
critiques several current approaches. Based on this knowledge, a standard for a
vendor agnostic approach is proposed in Section 4. Section 5 describes a concrete

92

RESTful XQuery

technical implementation of the proposed standard and Section 6 discusses the
conclusions of this work and possible future work.

2. Fundamentals

2.1. XQuery
XML Query Language (XQuery) is a W3C Recommendation[1] for writing queries
against the XPath and XQuery Data Model (XDM)[16], which is to say, the logical
structure of XML documents. Now in its Second Edition of Version 1.0, the W3C
XQueryWorkingGroup is currently finalising the newupcoming version, numbered
3.0[15]. XQuery is a Turing-complete[17] functional programming language which
is centred around FLWOR (For Let Where Order-by Return) statements which
utilise path expressions to address the XDM. XQuery code may be grouped into
functions and modules, of which there is always a main module where processing
begins.

Whilst XQuery is most usually used for querying XML documents, there are
several serialization options for the results of an XQuery: XML, XHTML, HTML
and Text; The specification of the serialization mechanism has been formalised in
XQuery 3.0. The capability to produce XHTML, HTML from querying XML docu-
ments whilst remaining in the same data type model, removes the impedance mis-
match between the data query language and application programming language
that is present in other environments[18]; XQuery therefore lends itself well to
rapid (X)HTML generation. The ability to also serialize results as Text allows for
dynamic generation of CSS, JavaScript and JSON amongst others, indeed some
vendors already provide a JSON serialization option for their XQuery implementa-
tions.

Example 1. XQuery 3.0: Querying XML and generating some simple XHTML

xquery version "3.0";

declare namespace output = "http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "xhtml";
declare option output:version "1.1";
declare option output:doctype-system "http://www.w3.org/TR/xhtml11/DTD/►
xhtml11.dtd";
declare option output:doctype-public "-//W3C//DTD XHTML 1.1//EN";

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Word of the Day</title>
</head>

93

RESTful XQuery

<body>
<h1>Hello</h1>
<p>Todays special word is:

{doc("mydoc.xml")//word[xs:date(@date) eq current-date()]/text()}</►
span>

</p>
</body>

</html>

2.1.1. XQuery 3.0 Annotations

Whilst XQuery 3.0 introducesmany new features, an understanding of Annotations
in XQuery 3.0 is fundamental to the contribution of this paper. Annotations declare
properties of functions or variables, zero or more annotations may be added to a
function or variable declaration. Annotations start with the '%' character and consist
of an expanded qualified name and an optional value, the value being a sequence
of literals.

Example 2. XQuery 3.0 Annotations

xquery version "3.0";

declare namespace java = "http://java";

declare
%java:method("java.lang.Math.sin")
function local:calculate-sin($a as xs:double) as xs:double external

<sin>{
local:calculate-sin(1.4)

}</sin>

Apart from the %private and %public annotations, no other annotations are defined
by the XQuery 3.0 specification.However, the specification states, “Implementations
MAYdefine further annotations, whose behaviour is implementation-defined”, and
it is this property which this paper exploits to define a standard set of RESTful An-
notations for XQuery 3.0.

2.2. REST
Representational State Transfer (REST) is an architectural style developed by Dr.
Roy Fielding for his doctoral thesis. RESTdescribes the architectural designprinciples
of the evolvedWeb and remains abstract from the implementation: “REST is defined
by four interface constraints: identification of resources; manipulation of resources

94

RESTful XQuery

through representations; self-descriptive messages; and, hypermedia as the engine
of application state”[19]. Applications that adhere to REST are described as RESTful.

The Web utilises Hyper-Text Transfer Protocol (HTTP) as its transport and
UniformResource Identifier (URI) as its addressingmechanism, and can be described
as RESTful.

However, Web Sites built with HTML (and possibly JavaScript) typically only
use a subset of the full HTTP capabilities; commonly just HTTP verbs GET and
POST,with a blanketHTTPAccept headerwhich allow for the retrieval of resources
and transmission of simple form data and encoded files. In contrast, RESTful Web
Services implemented over HTTP, may use the full range of HTTP verbs and HTTP
content negotiation of resources to retrieve or store representations against rich
descriptiveURI namespaces. SuchRESTful applications benefit over the incumbents
(SOAP, RPC, etc.), in that additional vocabularies and technology are not required;
they, like the Web, are submittable to the same caching, transformation and inter-
mediate security mechanisms due to the common layered architecture.

Arguably, RESTful HTTP Web Services, through their use of descriptive verbs
(e.g. GET, PUT, POST, DELETE, OPTIONS etc.) and transfer of representations, are
perhaps more applicable to Document Management Systems, such as XML Data-
bases, than they are to the hypermedia systems like the Web which are largely still
read-only.

It is the RESTful HTTPWeb Service style of REST that shall be considered from
hereon in this paper.

2.3. XQuery and REST together
XQuery processors are often integratedwith large systems thatmaintainmanyXML
documents, such as XML Databases. Considering the following as Resources in
REST terminology, XML documents, or representations of, such as the output of an
XQuery; RESTfulHTTPWeb Services havemanydesirable and symbiotic properties
for addressing and describingmanipulations of said XML resources, whilst XQuery
affords the implementation power to realise such implementation.

3. Review of Current Approaches
Current approaches to invoking XQuery in a RESTful manner using HTTP are ex-
amined in this section.

There are many vendors of XQuery processors[21], most of the Document Re-
pository or XML Database vendors with such processors provide HTTP API's to
the document store with the facility to invoke XQuery scripts remotely against the
document store. The notable exception to this is Servlex, an implementation of EX-
PathWebappModule. Rather, it is concernedwithmapping URI's to the invocation
of any Servlex Servlet (i.e. an XPath function, XSLT named template, XQuery main

95

RESTful XQuery

module, XSLT stylesheet, XProc pipeline or XProc step)[22] without concern for
document stores.

Providing a complete review of all current approaches would be too resource
intensive and lengthy for this paper; as such, four vendors' products have been
chosen for examination. These have been chosen to represent products which may
contrast, yet arewidely used in the industry, and/or provide justification and inspir-
ation for developing a standard approach based on XQuery 3.0 Annotations.

3.1. eXist-db
eXist-db was chosen because 1) it is arguably the most popular and widely used
Open SourceNative XMLDatabase, 2) it appears to have been the first such product
to offer the facility to invoke XQuery viaHTTP and 3) it has a history of transparently
mapping XQuery functions directly to HTTP APIs, in the form of its XQuery SOAP
Server[23].

eXist-db provides two mechanisms for invoking XQuery in a RESTful manner
over HTTP.

3.1.1. REST Server

The first mechanism relies on a REST Server which is embedded into eXist-db. This
REST Server allows any resource stored into the database to be addressed by a URI,
and the database content to bemanipulated byHTTP POST, PUT andDELETE, but
it does not support content negotiation.

For example if one wanted to retrieve the XML document on Hamlet from the
Classics, Shakespeare collection, aHTTPGET on http://localhost:8080/exist/rest/db/clas-
sics/shakespeare/hamlet.xmlmay retrieve the desired document.

eXist-db provides three proprietary XQuery function modules for accessing the
HTTP context of the REST Server, namely, Request Module, Response Module and
Session Module. XQuery invocation by REST Server is possible by:
1. Sending anXQuery to the REST Server for execution against a database collection

or document URI context.
a. ForHTTPGET a parametermay be appended to theURL query-stringwhich

contains an XQuery to execute. For example to retrieve speeches given in
Hamlet - http://localhost:8080/exist/rest/db/classics/shakespeare/ham-
let.xml?_query=//speech or for example, to retrieve speeches given in any
Shakespeare script - http://localhost:8080/exist/rest/db/clas-
sics/shakespeare/?_query=//speech

b. Formore complexXQuerys, the XQuerymay bewrapped in aCDATAsection
of a simple XML document and sent to the server URI by HTTP POST.

96

RESTful XQuery

2. An XQuery main module, and supporting modules may be pre-stored into the
database. This approach is akin to stored procedures in a relational database,
however the REST servermakes themainmodule invokable byURI. For example
performing a HTTP GET or POST against http://localhost:8080/exist/rest/db/some-
script.xqywould invoke the some-script.xqy XQuery main module.

The REST Server is a powerful mechanism that has been used to build entire and
complex enterprise web applications in pure XQuery, however URI's serviced by
the REST Server implicitly mirror the database collection hierarchy in eXist-db
which is not always desirable. Hyperlinking to child resources and collections are
implicit in the response (when requesting a database or collection), thus supporting
the REST promise of hypermedia for application state. However, when requesting
resources themselves, there is no mechanism for hyperlinking to related resources,
a disadvantage when compared to xDB's XML REST Framework in Section 3.3.3.
In addition parameters can only be passed to XQuery modules via HTTP through
URLquery-string parameters or POST'ed formfields, which leads to complexURLs.
This makes building applications with simple, logical and descriptive URI schemes
a challenge.

3.1.2. XQuery URL Rewriting

XQuery URL Rewriting filters all HTTP requests to eXist-db. If a HTTP request URI
matches a prefix defined in a configuration file, then that URI is mapped to a collec-
tion in the database. Typically that collectionmay then contain a Controller written
as an XQuery main module and named 'controller.xql'. If a Controller is found, then
processing of the HTTP request is handed to the XQuery, and the XQuery has abso-
lute access to the HTTP request and response and may take any action it wishes,
returning any desirable HTTP response and status code, or handing the request off
to another XQuery or Servlet.

Example 3. eXist-db, URL Rewriting Configuration snippet

<forward pattern="/webdav/" servlet="milton"/>
<forward pattern="/atom/" servlet="AtomServlet"/>
<root pattern="/solutions" path="xmldb:exist:///db/apps/local/solutions/"/>
<root server-name="www.example.com" pattern="/*" path="xmldb:exist:///db/com/►
example/www/"/>

Example 4. eXist-db, URL Rewriting Controller snippet (controller.xql)

(: homepage :)
if($exist:path eq "/" or $exist:path eq "/home.xml") then

template:process-template($rel-path, $exist:path, $DEFAULT-TEMPLATE, ►
($menus, fn:doc(fn:concat($rel-path, "/home.xml"))))

97

RESTful XQuery

(: login page :)
else if($exist:path eq "/login") then

if(security:login(request:get-parameter("username", "unknown"), ►
request:get-parameter("password", "unknown")))then

local:redirect("entry/browse")
else

local:redirect("./?login=failed")

(: user sign-up page :)
else if($exist:path eq "/register") then

if(request:get-method() eq "GET")then
template:process-template($rel-path, $exist:path, $DEFAULT-TEMPLATE, ►

($menus, fn:doc(fn:concat($rel-path, "/registration.xml"))))
else if(request:get-method() eq "POST")then

let $request-data := request:get-data()/user return
if(security:register-user($request-data))then

local:redirect("entry/browse")
else
(

(: could not register the user - xform will show error :)
response:set-status-code(400),

<message>Unable to register the user '{$request-data/username}'</►
message>

)
else

local:ignore()
else

local:ignore()

XQuery URL Rewriting is much more flexible than the REST Server as it decouples
the logical application URI space from the logical database URI space, it also allows
you complete control over the lifecycle of HTTP Requests made to the database.
However, with this flexibility comes complexity. For real-world enterprise applica-
tions the Controller can end up becoming several thousand lines of XQuery code,
which is really just encoding if/else statements to match URI patterns and/or HTTP
actions. The order of statements in the Controller becomes a concern, and this non-
declarative approach becomes very hard to maintain and debug as the code size
grows.

3.2. MarkLogic
MarkLogicwas chosen because 1) it is almost certainly themost successful commer-
cial Native XML Database Server, 2) whilst a newer creation than eXist-db, it ulti-
mately provides similar REST capabilities but through a different approach, and in
addition has layered some new frameworks atop these, 3) MarkLogic caters for the

98

RESTful XQuery

enterprise market whereas Open Source projects like eXist-db are better known in
smaller, educational or public institutions.

MarkLogic provides threemechanisms for invokingXQuery in aRESTfulmanner
over HTTP.

3.2.1. HTTP App Server

MarkLogic's HTTP App Server varies somewhat from that of eXist-db's REST
Server. MarkLogic differentiates between a Modules database and a Content data-
base.

Resources stored into the Content database (i.e. XMLdocuments) are not directly
accessible by URI from the HTTP App Server. They may only be accessed via an
XQueryModule. Resources stored into theModules database (i.e. XQueryModules,
or Binary files such as JPEG, CSS etc) are all accessible by URI. An advantage over
eXist-db is that resources stored into the database may be assigned an arbitrary lo-
gical URI, rather than the URI being representative of a logical collection or folder
hierarchy.

XQuery invocation by HTTP App Server is possible by pre-storing XQuery
modules into MarkLogic's Modules database. Like eXist-db, this is akin to stored
procedures in a relational database. Likewise, theHTTPApp Servermakes themain
module invokable by URI. For example, performing a HTTP GET or POST against
http://localhost:8060/some-script.xqywould invoke the some-script.xqy XQuery main
module.

Unlike in eXist-db's REST Server, in MarkLogic's HTTP App Server, resources
in the Modules or Content databases cannot be manipulated by HTTP POST, PUT
or DELETE. Similarly there is no support for content negotiation by default. Like
eXist-db, passing parameters to XQuery modules via HTTP must be achieved
throughURL query-string parameters or POST'ed formfields. Similarly,MarkLogic
also provides a proprietary XQuery function module for accessing the context of
the HTTP interaction, namely the functions, xdmp:get-request-*, xdmp:set-response-*,
xdmp:get-session-* and xdmp:set-session-*.

When comparing the HTTP App Server against eXist-db's REST Server, as the
default out-of-the-box experience, it is less RESTful in its approach, as it does not
supportURI addressing of document resources ormanipulation byHTTPmethods.
However, it does not purport to being an advanced REST server, andmore complex
RESTful requirementsmay be addressed by additionalmechanismsdiscussed below.

3.2.2. URL Rewriting

URL Rewriting may be setup independently for each HTTP App Server. When en-
abled, all HTTP requests to a specific HTTP App Server are filtered by executing
the configured XQuery main module for each HTTP Request that is received. This

99

RESTful XQuery

XQuery module is typically called 'url_rewrite.xqy' and is responsible for rewriting
URL's. The approach ismuch simpler than that of eXist-db described in Section 3.1.2,
and the purpose of the script is to solely return a single String value which is the
rewritten URI path.

Example 5. MarkLogic, URL Rewriting snippet (url_rewrite.xqy)

let $url := xdmp:get-request-url() return

(: homepage :)
if(fn:matches($url, "^/$") or fn:matches($url, "^/home.xml$")) then

"/home.xqy"

(: login page :)
else if(fn:matches($url, "^/login$")) then

"/login.xqy"

(: user sign-up page :)
else if(fn:matches($url, "^/register$")) then

if(xdmp:get-request-method() eq "GET")then
"/registration-form.xqy"

else if(xdmp:get-request-method() eq "POST")then
"/sign-up.xqy"

else
"/nowehere.html"

else
"/nowehere.html"

URLRewriting adds greater flexibility toMarkLogic'sHTTPApp Server by decoup-
ling the logical URI space from the actual modules database URI space. It is much
simpler than the approach taken by eXist-db, with the disadvantage in functionality
leading to the advantage of there being less non-declarative XQueryURLRewriting
code to maintain. However, it results in the same problem, which is that large ap-
plications will call for unwieldy and complex rewriting rules, creating a spaghetti
of if/else statements, which will ultimately obscure the very URI's that are of such
importance.

3.2.3. XQuery Libraries

A number of additional XQuery libraries such as the MarkLogic REST Library or
Corona[24] are available for MarkLogic App Server. Each of these libraries may be
installed as a URL Rewriter for a particular HTTP App Server, and in addition
provide anXQuerymodulewhose functionsmaybe invoked fromyour ownXQuery
code to simplify handling of incoming HTTP REST requests.

100

RESTful XQuery

These libraries substantially improve upon the standard URL Rewriting, by al-
lowing you to have declarative XML files that define the URL mappings, and can
make working with RESTful requests much simpler. However, they still have the
disadvantages of, requiring additional XQuery glue code, andmoving the declarative
URLmappings away from the end-points of execution,which could lead to difficulty
when identifying which URI rules apply to which code sites.

Example 6. MarkLogic, REST Library, declarative XML URL rewriting snippet

<options>
<request uri="^/(.+)/act(\d+)$" endpoint="/endpoint.xqy">

<uri-param name="play">$1.xml</uri-param>
<uri-param name="act" as="integer">$2</uri-param>

</request>
<request uri="^/(.+)/?$" endpoint="/endpoint.xqy">

<uri-param name="play">$1.xml</uri-param>
</request>

</options>

3.3. EMC xDB
EMC xDB was chosen because 1) it has a different technical heritage, as it was ori-
ginally designed as a product to be embeddedwithin JavaApplications, 2) it purports
to be the most widely used XML Native Database (due to its embedded nature), 3)
whilst it can operate as a standalone server, it is typical to have to construct your
own REST API layer.

xDB provides a single mechanism for invoking XQuery in a RESTful manner
over HTTP. In addition, there are also two proscribed self-build mechanisms from
EMC publications which will also be briefly reviewed.

3.3.1. xDB REST API

With the release of version 10.1 of xDB, aWebClientwas provided for the standalone
server, which allows administration and management of the database from a Web
Browser. ThisWeb Client is underpinned by the xDB RESTAPI[25]. Whilst the xDB
RESTAPI ismentioned briefly in the documentation, and there is limited document-
ation accompanying an xDB installation, it is understood that thisAPI is not intended
for production consumption. However, there are some aspects of the xDB REST
API which make it interesting to consider here.

This xDB REST API is most similar to eXist-db's REST Server in that it allows
any resource stored into the database to be addressed by a URI, and the database
content to be manipulated by HTTP PUT and DELETE. An advantage of the xDB
REST API when compared to the others, is that it does support some content nego-
tiation (i.e. XML or JSON) for retrieving lists of what is present in the database, and

101

RESTful XQuery

alsometadata about the resources themselves. For example if onewanted to retrieve
the XMLdocument onHamlet from the Classics database, aHTTPGET on http://loc-
alhost:1280/federation/classics/shakespeare/hamlet.xmlmay retrieve the desireddocument.
However, for our focus on XQuery, amajor disadvantage is that there are no XQuery
function modules for accessing the HTTP context in xDB. It is also impossible to
invoke the execution of XQuery main modules stored into the database, as calling
thesemodules byURI simply results in their textual code content. XQuery invocation
by xDB REST API is possible by:
1. Sending an XQuery to the REST API for execution against a database, library

(a.k.a. collection) or document URI context.
a. a) For HTTP GET a parameter may be appended to the URL query-string

which contains an XQuery to execute. For example to retrieve speeches given
in Hamlet – http://localhost:1280/federation/classics/shakespeare/ham-
let.xml/_xquery?query=//speech or for example, to retrieve speeches given in
any Shakespeare script – http://localhost:1280/federation/clas-
sics/shakespeare/_xquery?query=//speech.

b. b) For more complex XQuerys, the XQuery may be wrapped in a CDATA
section of a simple XMLdocument and sent to the serverURI byHTTPPOST.

The REST API is a capable mechanism and, whilst not supporting the execution of
pre-stored XQuery main modules, it does have in its favour support for content
negotiation, and hyperlinking to child resources and libraries are implicit in the
response (when requesting a database or library), thus supporting the RESTpromise
of hypermedia for application state.However,when requesting resources themselves,
there is no mechanism for hyperlinking to related resources, a disadvantage when
compared to EMC's xDB XML REST Framework described in Section 3.3.3. URI's
serviced by the REST API, implicitly mirror the database hierarchy in xDB, which
is not always desirable. In addition parameters can only be passed to the XQuery
module via XQuery external variables, whichmay be bound in the XMLdocument,
when using the HTTP POST approach. This coupled with the lack of XQuery func-
tions for accessing the HTTP context, makes building applications in pure XQuery
impossible, and building applications with simple, logical and descriptive URI
schemes a difficult challenge.

3.3.2. Implementing a RESTful API (JAX-RS)

Published by EMC is an approach designed by Martin Probst[10] which couples
together xDB standalone server with JAX-RS (Java API for RESTful Web Services)
for the purposes of database management and XQuery execution. The article de-
scribes implementing an example REST API for use with xDB, and allows anyone
to build upon this. In fact the API described in the article is almost certainly the
exact API discussed in Section 3.3.1. However, it is not the similarity that we are

102

RESTful XQuery

interested in, but rather the idea that JAX-RS, which is a REST API framework, is
itself used to produce a domain specific REST API with relevance for XQuery. The
ability to use JAX-RS in this way is conceptually no different to using the URL Re-
writing support in eXist-db or MarkLogic for writing a domain specific REST API.

The reason for looking at JAX-RS here is that, like URL rewriting in eXist-db
and MarkLogic, or WebApp Descriptors in Servlex, JAX-RS provides a declarative
mechanism for defining the URL rewriting/mapping rules. However, JAX-RS has
a major advantage over the other approaches, which enables the declarative URL
rewriting rules to live alongside the code sites of execution. This is achieved through
annotations. These annotations should allow easy determination of code and URI
relationships due to their proximity to the executable code sites, whilst the declar-
ative nature should make reasoning about the mappings simple.

Example 7. xDB, JAX-RS API Snippet

@GET
@Path("_query")
public Response doXQuery(@QueryParam("xquery") String query, @Context ►
HttpServletRequest context) {

//get the xquery sent to us
if (query == null)
throw new ►

WebApplicationException(Response.status(Status.BAD_REQUEST).entity(
"xquery parameter is required").build());

//execute the query
String results = executeXQuery(query, context.getParameterMap());

//return the results in the http response
String contentType = xquery.getOptions().get(new QName(XHIVE_NS, ►

"content-type"));
return Response.ok(results, contentType).build();

}

The JAX-RS Java annotations @GET and @Path(“_query”) imply that, should the
HTTP application server encounter a HTTP GET for the path '_query', then the code
in the function 'doXQuery(...)' should be executed. In JAX-RSpaths are always defined
relative to the server's HTTP URI context. The @QueryParam(“xquery”) annotation
injects the value of the HTTP URL query-string parameter named 'xquery' into the
String function parameter called 'query'.

103

RESTful XQuery

3.3.3. XML REST Framework

The XMLREST Framework[20], an approach advocated by Cornelia Davis at EMC,
advances the JAX-RS approach described in Section 3.3.2, to produce a framework
for building domain specific REST API's for xDB. Resultant APIs do not permit the
direct execution of XQuery by HTTP, rather the framework indirectly executes de-
veloper defined XQuery code for each REST API function invoked. Each REST en-
dpoint is coded as a POJO (Plain Old Java Object) in Java with JAX-RS annotations,
and it is this which mediates the execution of the XQuery and the marshalling and
de-marshalling of the XQuery external variables and output overHTTP for the client.

Arguably, the most interesting aspect of this framework and its approach is that
it recognises that whilst REST APIs are good at delivering representations or re-
sources, they often lack hyperlinking in the returned resource content to enable
further resource URI's to be autonomously determined.

The initial technical implementation detail of the XML REST Framework[26],
describes the situation thusly, “(as is sadly common inmanyRESTful services today)
the consumer has no choice but to leverage the knowledge of these URI templates”.
In further implementation[27], the XML REST Framework is extended to allow
XSLT to be applied to content before it is returned as the result of a REST response
to a request; XSLT can be used to modify XML content responses and insert hyper-
links to other related resource representations.Whilst XSLT is used in this instance,
this could easily be substituted for XQuery. The XML REST Framework has since
been advanced, so that the REST end-points in Java now call an XProc pipeline
rather than the XQuery directly. The advantage of this is that multiple processes
can be placed inside the XProc pipeline, including XQuery. The disadvantage is the
XQuery is moved further away from the HTTP context and this could make under-
standing the code used to fulfil the request for a specific URI more convoluted.

The XMLREST Framework for xDB stands alone from all other reviewed vendor
approaches to REST in that it attempts to address the hyper-linking tenant of the
REST architecture. The approach to embedding hyperlinks with XSLT is however
only applicable when hypermedia instances such as XML or XHTML are used for
application state.

3.4. Servlex
Servlexwas chosen because 1) it is an implementation of a public common standard
(the EXPath Webapp Module) for wiring HTTP Requests to XML processors, 2)
unlike others, it does not require a Document Repository or XML Database, and 3)
it provides a purely declarative approach toURImapping, insteadplacing constraints
on the interface with the underlying XML processing code. Servlex is the reference
implementation of the EXPath Webapp Module.

104

RESTful XQuery

Servlex provides a single mechanism for wiring HTTP Requests to XML pro-
cessors, this mechanism is the declarative vocabulary of the Webapp descriptor, an
XML file named 'expath-web.xml'. This descriptor must be placed inside a larger
EXPath Package[28]. Whilst Servlex supports mapping URI's to XPath, XQuery,
XSLT and XProc code, inline with the focus of this paper, we will only consider
herein Servlex's ability to interoperate with XQuery.

Example 8. Servlex, Webapp Descriptor snippet (expath-web.xml)

<webapp xmlns="http://expath.org/ns/webapp/descriptor"
xmlns:app="http://example.org/ns/my-website"
name="http://example.org/my-website"
abbrev="myweb"
version="1.3.0">
<title>My example website</title>

<resource pattern="/style/.+\.css" media-type="text/css"/>
<resource pattern="/images/.+\.png" media-type="image/png"/>

<servlet>
<xquery function="app:product-page"/>
<url pattern="/product/(.+)">

<match group="1" name="id"/>
</url>

</servlet>
</webapp>

The example descriptor wouldmap the URL starting with '/product/' to the function
'app:product-page' in the XQuery module of the namespace 'http://example.org/ns/my-
website', which would need to be pre-defined in the EXPath Package descriptor 'ex-
path-pkg.xml'. Servlex places constraints on its interface with the XQuery pro-
cessor[29], so an example module showing a possible function is illustrated below.

Example 9. Servlex, XQuery Module (products.xqy)

module namespace app = "http://example.org/ns/my-website";

declare namespace web="http://expath.org/ns/webapp";

declare function app:product-page($request as element(web:request), $bodies ►
as item()*) as item()* {

(
<web:response status="200" message="Ok"/>
,
<debug>Chosen Product ID was:

<id>{/web:path/web:match[@name eq 'id']/text()}</id>

105

RESTful XQuery

</debug>
)

};

The declarative nature of the URL mapping in Servlex is an advantage over the
eXist-db andMarkLogic mechanisms, as it allows the URIs to remain outside of the
code and easily visible and maintainable; however, it is a disadvantage when com-
pared with the JAX-RS approach recommended for use with xDB in Section 3.3.2,
as the declarative URI patterns are moved away from the code execution sites. An-
other disadvantage of the Servlex approach is that it enforces an interface which
must be present in XQuery function signatures which are URI mapped by Servlex.
This can lead to the creation of adapter functions and glue code to act as a facade
for Servlex to interface with the desired XQuery module functions to be invoked.
Apart from URI mapping, for identification of resources, Servlex leaves all other
REST requirements to the implementer of the XQuery processing code,which allows
great flexibility at the expense of the time required for implementation of a Servlex
Servlet.

3.5. Summary
Whilst all of the reviewed vendors' products differ in their approaches and enabling
facilities for developers to build RESTful applications in XQuery, each offers at least
one mechanism for XQuery to be executed by HTTP.

Table 1. Summary of compliance with RESTful interface constraints

Hyper-media for
ApplicationState

Self-Descriptive
Messages

Manipulation,
Representations

Identification of
Resources

Browsing
XQuerydeveloper
option

YesGET/POST/PUT/DE-
LETE
XQuery repres-
entations

DirectREST Server
Section 3.1.1

eXist-db

XQuerydeveloper
option

YesGET/POST/PUT/DE-
LETE
XQuery repres-
entations
Content negoti-
ation

Direct and Indir-
ect

XQuery URL Re-
writing
Section 3.1.2

106

RESTful XQuery

Hyper-media for
ApplicationState

Self-Descriptive
Messages

Manipulation,
Representations

Identification of
Resources

XQuerydeveloper
option

YesGET
XQuery repres-
entations

Indirect - Only
XQuerys

HTTPApp Server
Section 3.2.1

MarkLogic

XQuerydeveloper
option

YesGET
XQuery repres-
entations

IndirectURL Rewriting
Section 3.2.2

XQuerydeveloper
option

YesGET/POST/PUT/DE-
LETE
XQuery repres-
entations
Content negoti-
ation

IndirectXQuery Libraries
Section 3.2.3

Browsing
XQuerydeveloper
option

YesGET/POST/PUT/DE-
LETE
XQuery repres-
entations
Content negoti-
ation

DirectxDB REST API
Section 3.3.1

EMC xDB

Java developer
option

YesGET/POST/PUT/DE-
LETE
Java pro-
grammedrepres-
entations
Content negoti-
ation

IndirectJAX-RS
Section 3.3.2

Yes
Injectedhyperlink-
ing via. XSLT

YesGET/POST/PUT/DE-
LETE
Indirect XQuery
representations
Content negoti-
ation

IndirectXML REST
Framework
Section 3.3.3

XQuery/XSLT/XProc
developer option

YesGET/POST/PUT/DE-
LETE
Indirect
XQuery/XSLT/XProc
representations
Content negoti-
ation

Indirect
Only
XQuery/XSLT/XProc

Servlex
Section 3.4

EXPath

eXist-db's REST Server and EMC's xDB REST API provide the most RESTful out-
of-the-box experiencewithout the need towrite additional code because they permit
manipulation of the database (including XQuerymainmodules) by the use ofHTTP
verbs. In addition, when browsing resources hyper-media state with hyper-linking
is automatically delivered. These features meet the RESTful architectural require-
ments of: Identification of Resources,Manipulation ofManifestations, Self-Descript-
ive Messages and some limited support for Hyper-Media for Application State.
eXist-db's REST Server has the slight advantage for building applications, because
1) XQuery can be pre-loaded into the database through the HTTP verbs PUT or

107

RESTful XQuery

POST and then invoked with HTTP GET, and 2) XQuery function modules are
provided to support the HTTP context.

However, if we compare all options reviewed available for building XQuery
RESTful Web Applications the conclusion is different. We will dismiss EMC xDB
because without also writing Java alongside XQuery, its REST API is too limited.
There is no access to the HTTP context from XQuery, and there is no support for
URI Rewriting to decouple the application URI space from the physical database
layout.

Both the URL Rewriting capabilities of eXist-db andMarkLogic are impressive,
however by default they both use an XQuerymainmodule to do theURL rewriting,
which as previously discussed can lead tomaintainability issues.MarkLogic probably
has the advantage that there are several XQuery Libraries that extend their URL
rewriting mechanism to both allow URL mappings to be declaratively defined,
whilst also simplifyingmany commonHTTP/REST functions required bydevelopers.
Servlex, likeMarkLogic's XQuery Libraries, provides a declarative approach toURL
rewriting, however unlike MarkLogic and eXist-db the mechanisms defined for
accessing the HTTP context from the processors is still embryonic and not widely
tested. There is a problemwith the declarativeURL rewriting approach inMarkLogic
and Servlex in that theURL rewrite rules aremoved away from the code sites, which
in complex applications canmake themapping between functions andURI's difficult
to maintain. Conceptually this is solved in JAX-RS as used in xDB as the URI's are
still declarative yet precede the code site.

Section 4 proposes a set of Annotations for XQuery 3.0 which enable the best
features found in the reviewed products above, but that maintain both the advant-
ages of declarative URI Rewriting and keeping URI rules close to the code site.

4. Standardised XQuery 3.0 Annotations for REST
Herein we present a set of XQuery 3.0 Annotations to enable the construction of
RESTful Web Services in XQuery. The goals of our approach are:
1. Interoperability. It is envisaged that this paper will provide the basis for a public

XQuery community standard, which if adopted by vendors, would permit
portable XQuery Web Services. To enable this, an implementation agnostic de-
scription is provided.

2. Simplicity for XQuery developers. Developers should not have to maintain ex-
ternal or complex code for wiring RESTful services to XQuery functions.

3. Technical improvement. Having reviewed existing approaches in Section 3, we
build upon the best aspects of each vendor's approach.

108

RESTful XQuery

4.1. Approach
FormappingRESTful requests to executable code, the declarative approachdiscussed
in Section 3, is felt to be the most advantageous, particularly when the declaration
is an annotation on the code site (Section 3.3.2). Therefore, our approach is heavily
influenced by that of JAX-RS[30]. However, we simplify and deviate from JAX-RS
due to the language structure differences between Java and XQuery. Where JAX-
RS describes Resource Classes and Resources Methods for Java, in XQuery we
simply use the term Resource Function; for mapping HTTP calls to XQuery invoca-
tion, our unit of granularity is the XQuery function. Through the use of annotations
on functions in XQuery, we declaratively mark-up the HTTP capabilities of a func-
tion.

To minimise refactoring by developers when adding annotations to existing
code, two measures must be respected by implementations:
1. Implementations must support annotated functions which have additional

function parameterswhich are not annotationmapped, providing the cardinality
type of those un-mapped parameters accepts an empty sequence.

2. Implementations must not enforce the order of function parameters. Whether
mapped by annotations or not is unimportant, as annotations explicitly name
the parameters to which they are mapped.

For the purposes of this paper, HTTP Multipart Requests and Responses are con-
sidered out of scope. However, some attention has been paid to not preventing
support for these in future, and this is briefly discussed in Section 6.2

4.2. Resource Functions
A Resource Function is an XQuery function which has been marked up with
RESTful web service annotations. These annotations indicate to a processor that
when presented with a RESTful web service request, that matches the constraints
indicated by the annotations, the function should be invoked and the result returned
as the result of the service request.

Whilst the concept of dynamically and transparently mapping web service calls
to XQuery function invocation has previously been proved[23], this is the first time
XQuery annotations have been used to provide a standardised and developer con-
trollable approach.

4.3. Resource Function Constraints
Constraints restrict the service requests that a Resource Function may process.

109

RESTful XQuery

4.3.1. URI Path and Templates

A 'Path Annotation' provides for URI templates and allows the URI of a RESTful
web service to bemapped to a Resource Function. AResource Functionmust contain
a single path annotation. Additional annotations may also be used to constrain the
Resource Function.

The path annotation is named '%rest:path' and takes a single mandatory literal
string, which describes the URI path for this service. The URI path is relative to a
base URI defined by the implementation.

The URI path itself may contain zero or more URI templates which denote path
segments that map to named function parameters. A URI template, has the syntax
'{$fn-param-name}', where 'fn-param-name', is the name of a parameter to the annotated
function, whose value should be taken from the path. Parameters addressed byURI
templates, must meet the following constraints:
1. Cardinality that allows for an atomic value, otherwise an error should be raised

by the implementation.
2. Type that inherits from xs:anyAtomicType, otherwise, an error should be raised

by the implementation. In addition, conversion from the URI segment string to
the required type should be performed at run-time, and an error raised if con-
version is impossible.

Example 10. XQuery Path Annotation

declare
%rest:path("/stock/widget/{$id}")

function local:widget($id as xs:int) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id]

};

For example, a HTTP GET on the following URI, would cause the Widget with the
'id' of '1981' to be retrieved: http://www.widget-factory.com/stock/widget/{$id}.

When many URI paths are defined, conflicts may occur. It is implementation
defined how these should be resolved. However, most specific URI paths must al-
ways be evaluated before less specific URI paths, to ensure that lesser paths do not
unintentionally consume requests.

4.3.2. HTTP Methods

Resource Functions may be constrained to zero or more HTTP methods by means
of a method annotation. Unless otherwise constrained by a method annotation, the
path annotation of a Resource Function applies to all HTTP methods.

110

RESTful XQuery

Annotations are defined for allHTTP1.1methods except TRACEandCONNECT.
All methods may return resources except for HEAD, which must only return a
rest:response element.

Example 11. XQuery Method Annotation

declare
%rest:GET
%rest:POST
%rest:path("/widget/{$id}")

function local:widget($id as xs:int) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id]

};

Method annotations POST and PUT may take an optional string literal which map
the HTTP request body to a named function parameter. The same syntax as that
used for URI templates is applied, for example %rest:POST(“{$request-body”),
would inject the request body into the function through the function parameter
named 'request-body'. The function parameter for the request body must meet the
following constraints:
1. Cardinality that allows for one or more of the typed item(s).
2. Typing that is compatible with the request body. The type of the request body

is determined by the HTTP Content Type header and may be constrained by
means of the %rest:consumes annotation (see Section 4.3.3). The interpretation
of the request body is similar to that of the EXPath HTTP Client[14]:
a. If the media-type is a text media-type, the function parameter type will be

xs:string.
b. If the media-type is an XMLmedia-type, the request body is parsed as XML

and the function parameter type will be document-node().
c. If themedia-type is a HTMLmedia-type, the content is tidied-up and parsed

as XML. The parameter type will be document-node(). The tidying process
is implementation defined as no known standard exists.

d. Otherwise, a binarymedia type is assumed, and the function parameter type
will be xs:base64Binary.

4.3.3. Media-Type Capabilities

Support for content negotiation is indirectly provided by two annotations:

111

RESTful XQuery

1. %rest:consumes, which constrains a Resource Function, by only accepting re-
quests for which one of the defined Internet media-types matches the HTTP
Content-Type header of the request.

2. %rest:produces, which constrains a Resource Function, by only accepting re-
quests for which the mime-type matches the HTTP Accept Header.

Both annotations take a single mandatory String Literal which contains an Internet
media-type.

Example 12. XQuery Consumes and Produces Annotations

declare
%rest:PUT("{$body}")
%rest:path("/widget")
%rest:consumes("application/xml", "application/atom+xml")
%rest:produces("application/xml")

function local:widget($body as document-node(element(widget)) {

(: store the widget :)
let $db-uri := xmldb:store("/db/widgets", (), $body),

(: return a hyper-link :)
$rest-uri := rest:get-absolute-uri("wiget", $body/widget/@id) return

{$rest-uri}</►
a>
};

4.4. Resource Function Parameters
Parameters to Resource Functions are extracted from the RESTful Web Service re-
quest andpassed in as additional functionparameters.Unlike constraints, parameters
are always optional. Resource Function Parameters use the same URI template
syntax as described in Section 4.3.1 tomap the parameter onto a function parameter.
They may also provide a default value should the parameter not be present in the
request. Resource Function Parameters always place the following constraints on
the function parameters that they map to:
1. Cardinality that allows for: zero or many atomic values in the case of Query,

Form or Header parameters, or zero or one atomic values in the case of Cookie
parameters, otherwise an error should be raised by the implementation.

2. Type that inherits from xs:anyAtomicType, otherwise, an error should be raised
by the implementation. In addition, conversion from the parameter string to the
required type should be performed at run-time, and an error raised if conversion
is impossible.

112

RESTful XQuery

4.4.1. Query String Parameters

The annotation rest:query-param is provided for accessing parameters in the Query
String of the URL used for the RESTful Web Service request.

Example 13. Query String Parameter Annotation with a default value

declare
%rest:GET
%rest:path("/widget/{$id}")
%rest:query-param("client", "{$client}", “unknown”)

function local:widget($id as xs:int, $client as xs:string*) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id][@client = $client]

};

4.4.2. Form Field Parameters

The annotation rest:form-param is provided for accessing parameters from a HTML
Form submitted in the request body of the RESTful Web Service request with the
Internet media-type 'application/x-www-form-urlencoded'.

Example 14. Form Field Parameter Annotation

declare
%rest:GET
%rest:path("/widget/{$id}")
%rest:form-param("client", "{$client}")

function local:widget($id as xs:int, $client as xs:string*) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id][@client = $client]

};

4.4.3. HTTP Header Parameters

The annotation rest:header-param is provided for accessing HTTP Request headers
from the RESTfulWeb Service request. If a singleHeader field value contains comma
separated values, an implementation must extract each value from the comma
separated list into an item in the sequence provided to the function parameter.

Example 15. HTTP Header Parameter Annotation

declare
%rest:GET
%rest:path("/widget/{$id}")

113

RESTful XQuery

%rest:header-param("X-Client-Type", "{$client-type}")
function local:widget($id as xs:int, $client-type as xs:string*) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id][@clientType = $client-type]

};

4.4.4. Cookie Parameters

The annotation rest:cookie-param is provided for accessing HTTP Cookies from the
RESTful Web Service request.

Example 16. Cookie Parameter Annotation

declare
%rest:GET
%rest:path("/widget/{$id}")
%rest:cookie-param("locale", "{$locale}")

function local:widget($id as xs:int, $locale as xs:string?) {

(: get the widget :)
fn:collection("/db/widgets")/widget[@id eq $id][@locale = $locale]

};

4.5. Resource Function Serialization
Herein we detail how the results of a Resource Function may be serialized back to
an HTTP response for the RESTful web service response.

A Resource Function may return one of three response types:
1. A Resource, i.e. just content.
2. HTTP headers, for example acknowledging the request or providing a status

code or additional information.
3. Both HTTP Headers and a Resource.
When returning Resources from Resource Functions, we need to consider how the
Resource should be serialized for use in the RESTful web service response. Rather
than define a serialization mechanism, XQuery 3.0 in §2.24 of the specification
already specifies how serialization of an XDM[31] (i.e. the result of an XQuery)may
be controlled by use of Output Declarations. However, Output Declarations are
only applicable toXQueryMainModules, sowhen re-purposingOutputDeclarations
for serialization the following rules should be applied:
1. If the function is from within a Main Module, and an output declaration exists,

then we use this as the default serialization settings for each Resource Function
in that module.

114

RESTful XQuery

2. Output Declarationsmay be re-written as annotations on any Resource Function
e.g. %output:method("xml"). These annotation output declarations override any
defaults from (1). This is also applicable if our function comes from a Library
Module, of which the XQuery specification forbids Output Declarations.

3. If no Output Declaration, annotated or otherwise, is provided, then the default
is to serialize as XML, UTF-8 encoding, with indenting.

Each of the three possible result types of a Resource Function needs to be handled
in a different manner by an implementation, and as such we provide appropriate
function signature restrictions, and detail how annotations interact with these:
1. For a function that returns just a resource, either:

a. If the result type is omitted from the function, it is assumed to be document-
type(element()) or just element(), and XML Serialization should be applied to
the result of the function. The annotation %output:method, if present, must
be set to 'xml'.

b. If the result type is present, it must be a type which is compatible with the
chosen serializationmethod, defined by either the XQuery 3.0 output declar-
ation or overridden by the %output:method annotation on the Resource
Function. The default serialization method is XML. If the result type is not
compatible with the serialization, an implementation must throw an error.

2. For a function that returns just HTTP headers:
The result type of the functionmust be defined as document-type(element(rest:re-

sponse)). Any other annotations that effect the serialization of the result are ig-
nored.

3. For a function that returns both HTTP headers and a resource:
The result type of the function must be defined as item()+. The first item in

the result sequence is the HTTP headers i.e. document-type(element(rest:response),
the second item in the result sequence is the resource itself. The rules of both (1)
and (2) must be applied to the result sequence.

4.5.1. REST Response Format

As described above, a REST Response document may be returned from a function
either with or without a Resource. The purpose of this document is to control the
REST (in this caseHTTP) response sent back to the client of the RESTfulweb service.

Example 17. REST Response Format

<rest:response>
(http:response?)

</rest:response>

<http:response status?="integer" reason?="string">

115

RESTful XQuery

(http:header*)
</http:response>

<http:header name="string" value="string"/>

Should the status be omitted for the response, or a REST Response document not
returned fromaResource Function, then the status defaults to 200OK. It is expected
that implementations will make use of sane defaults for HTTP headers as part of
their HTTP responses, however any default headers must be overridable by those
values set in the REST Response document.

4.6. REST Function Module
RESTful annotations are designed to be hosted by an implementation that provides
aWeb Server end-point. As theURI Paths of Resource Functions are defined relative
to an implementation defined base URI (see Section 4.3.1), it is impossible without
additional support to return hyper-links to the client for Resources. A simple
module which provides just two XQuery extension functions is proposed to enable
the resolution of absolute URIs, such as the use-case shown in Example 12.

rest:get-base-uri() as xs:anyURI

Returns the base URI of the web context in which the invoking Resource Function
is executing. The result of this function should be stable across invocations within
an implementation.

rest:get-absolute-uri($path-segments as xs:anyAtomicType+) as xs:anyURI

Returns an absolute URI by concatenating the base URI as returned by
rest:get-base-uri() with each path segment in the parameter $path-segments,
separating each by a '/' character. The result of this function should be stable across
invocations within an implementation.

5. Proof of Concept
As a proof of concept, the approach described in Section 5 has been implemented
in the eXist-db Open Source Native XML Database project by the author of this
paper. eXist-db is written in the Java programming language, with an XQuery
parser written in ANTLR. Both Java and ANTLRwere used to implement the proof
of concept.

5.1. Implementation
There were several steps to the implementation:

116

RESTful XQuery

1. Adding support for XQuery 3.0 Annotations to eXist-db's XQuery parser. eXist-
db supports XQuery 1.0with a high-level of compliance, but recently has started
a staged adoption of XQuery 3.0 support; annotations were previously missing.

2. Adding support for Multiple-Triggers per-database Collection. It was decided
to develop the majority of the RESTful Annotations implementation outside of
the core product code. eXist-db provides for database triggers, to enable de-
velopers to execute arbitrary code upon various events. Previously, eXist-db
only supported a single trigger per database Collection. Rather than modify the
XQuery parser further, a database Trigger was used to support this implement-
ation.

3. Implementation of support for the RESTful, the RESTful web services that they
declare and the supporting XQuery functions extension module.

The implementation is made up of two distinct processes:
1. When a user stores an XQueryModule into the database, a Trigger is fired. This

trigger initiates several steps in order:
a. Compilation of the XQuery Module into an AST (Abstract Syntax Tree)
b. Additional static analysis upon any User Defined Functions that have

RESTful annotations. These are known as Resource Functions.
c. Compilation of a Regular Expression for the PathAnnotation of eachResource

Function. This expression enables both pathmatching and extraction of value
for URI templates.

d. Creation of a RESTful Service Object for each Resource Function, which
contains the Path Regular Expression, any additional constraint annotations,
any optional parameter annotations, a reference back to the database location
of the XQuery Module, and the name and arity of the Resource Function
(User Defined Function).

e. Registration of the RESTful Service Object with the RESTful Service Registry
for each HTTP Method that it supports.

2. When aHTTPWeb Request is made to the system, the receiving Servlet initiates
the several steps in order:
a. Querying the RESTful Service Registry for any Resource Functions which

can service the incoming Request.
b. The Service Registry examines the RESTful Service Objects registered with

it to determine if they are applicable to the incoming request. If so, the
RESTful Service Object is returned.

c. A new instance of the XQuery Module referenced by the RESTful Service
Object is compiled, and function parameters (as defined by the RESTful an-
notations) are extracted from the request and mapped into a function call to
the underlying User Defined Function.

117

RESTful XQuery

d. The User Defined Function is executed. The result is serialized back to the
HTTP client based on the rules defined in $4.3.

Figure 1. Implemented Architecture for RESTful XQuery Annotations

5.2. Evaluation
Themodifications to eXist-db to support the implementation of RESTful annotations
took three working days. Implementation of the RESTful annotations and web
server itself took another three days. This figure does not include the Resource
Function Parameters defined in Section 4.4, which will be implemented in the near
future.

The implementation certainly feels cleaner than that of the current REST Server
and URL Rewrite in eXist-db, and in use is much simpler as a potentially complex
controller.xql does not need to be authored ormaintained. The new implementation
permits for complete declarative decoupling of the URI space from the Resources
themselves, without having to declare the URI space externally of the code sites
themselves.

In addition the RESTful XQuery Annotations approach, due to its JAX-RS herit-
age, should feel very familiar to those with an existing knowledge of Java program-
ming, hopefully easing any transition.

A port of the XML Summer School's[32] 'See What I Think' project[33] to the
new RESTful Annotations was undertaken. The project is a learning tool originally
written in XQuery atop eXist-db's REST Server andURLRewriting framework. The
port was undertaken to understand how the use of Annotations compares to the
previous approach. The resultant port uses slightlymore lines of XQuery code than
the original project, however it is subjectively easier to understand the wiring of
URIs to XQuery functions as the URIs are declarative. The port did not attempt to
re-structure the original code layout which was written around eXist-db's URL Re-
writing Framework. Arguably if the code was further restructured instead around

118

RESTful XQuery

the concept of Resource Functions, then the lines of code could be reduced and the
code-base may become more modular.

5.3. Further Work
Certainly the majority of the code written for the eXist-db implementation could
trivially bemade useable for other implementations in Java, by removing any direct
eXist-db dependencies and replacing themwith implementation agnostic interfaces.
However, other implementationswould need to support something akin to Triggers
or consider modifying their XQuery 3.0 parser with rules for XQuery RESTful An-
notations.

In addition, as the majority of XQuery implementations appear to be written in
either Java or C++, should the majority of the code be made implementation inde-
pendent, it would be interesting to perform a port to C++.

6. Conclusion
In this work we tackled the problem of using XQuery as a Server Side processing
language for the Web whilst maintaining vendor independence and portability of
XQuery code. The presented approach, driven by the review of current vendors'
products, was to propose an implementation agnostic set of RESTful Annotations
for XQuery 3.0. The goals of the approach developed in this paper were Interoper-
ability, Simplicity and Technical Improvement:
• Interoperability has been addressed by proposing a set of Annotations which do

not require anyparticular product or programming language for implementation.
Whilst these Annotations permit the development of RESTful services, they do
not constrain implementors choice of platform or technology.

• Simplicity has been addressed by developing an approach that is not disruptive.
XQuery developers can continue to write XQuery in the same method that they
always have. Should they require to provide RESTful Web Services, they can
simply add theRESTful annotations to their functions, enabling themasResource
Functions.

• Technical Improvement has been achieved by understanding the strengths and
limitations of the approaches taken in current vendors' products and building
upon these. The strength of using URI Rewriting, in a declarative mechanism
fromXQuery frameworks has been enhanced by removing the framework aspect
and ensuring that the declarations of intention appear alongside the code target
function.

Additionally, we justify how our approach meets the four interface constraints of
REST:
1. Identification of Resources

119

RESTful XQuery

URIs are used to identify resources (or representations) and are mapped (or
partially mapped) to XQuery functions for delivery. This is achieved through
the use of Path Annotations and URI Templates as described in Section 4.3.1.
XQuery Functions themselves enable further mechanisms for the addressing of
XML documents or other resources through fn:doc() and fn:collection(), and/or
XML nodes through XPath.

2. Manipulation of Resources Through Representations
Resource Functions (RESTful Annotated XQuery Functions) permit the

generation of representations of resources through XQuery processing, and
serialization of the the representation through repurposing theXDMSerialization
rules as described in Section 4.5. In addition content negotiationmay be enabled
by themechanismsdescribed in Section 4.3.3 to enable a server to deliver different
serializations (e.g. XML, XHTML, Text, JSON etc) of a resource depending on
the constraints of a request.

Manipulation of resources in typical RESTful HTTP service requests is by
the use of both URI addressing (1) and HTTP methods. Many XQuery imple-
mentations have vendor extensions for manipulating document stores and the
XQuery Update specification provides for document modifications. The mech-
anism for mapping HTTP methods to XQuery functions, which may utilise
vendor extensions and/or XQuery Update is described in Section 4.3.2.

3. Self-Descriptive Messages
The use of HTTP for RESTful services with support for all relevant HTTP

methods provides for the constraint of Self-Descriptivemessages. If themessage
content itself is XML or (X)HTML the message content in itself is also hopefully
self-descriptive. Indeed, our approach attempts to be lightweight and not con-
strain developers and, as such, they have complete control over the message
content.

4. Hypermedia as the Engine of Application State
The result of a Resource Function should permit a developer to provide as

much hyper-linking of the application state as they desire. Whilst attempts for
specific systems have describedmechanisms such as XSLT for embedding hyper-
links in resultant content[20], the approach developed in this paper is rather to
provide the generic constructs to enable this, without prescribing an approach
to developers.

6.1. Limitations
Currently the approach developed by this paper does not provide support for either
HTTP Matrix Parameters or HTTP Multipart requests or responses.

In addition, there is currently no mechanism for the default handling of URI's
that do not meet a declared URI Path, for example, customised HTTP 404 Page Not

120

RESTful XQuery

Found responses. However, this could perhaps be considered out of scope for such
a project.

6.2. Future Work
Future work would include technical support for both HTTP Matrix Parameters
and HTTP Multipart requests and responses. Certainly it is envisaged that HTTP
Multipart responses from Resource Functions could be achieved by returning a se-
quence of functions as the result, where each function is responsible for generating
both the REST Response Headers and content for each part of a multipart response.

We believe that our declarative approach based onAnnotationsmakesmaintain-
ability of RESTful web applications easier. However, in large applications there
could still be some difficulty involved in developers understanding the bindings
between Resource Functions andWeb Services. As such, additional functions could
be added toRESTFunctionmodule (see Section 4.6), to enable the lookupof functions
based on Request parameters.

Whilst we have called our approach 'standardised', it is surely more independent
that standardised. Rather we hope that it will form the basis of a publicly available
and agreed standard. It is, of course, recognised that furtherworkwould be required
to create a thorough technical standard based on this work, and communities such
as EXQuery or the W3C Community Groups might be an appropriate vehicle for
such work.

The Annotations that we have developed, once standardised could also be ap-
plied to other XML processing languages such as XSLT and XProc. Whilst XSLT
and XProc do not directly have the concept of Annotations, they certainly support
mechanisms that would yield a similar implementation and result.

Bibliography
[1] XQuery 1.0: An XMLQuery Language (Second Edition)http://www.w3.org/TR/

xquery/[Accessed: 19-Nov-2011].
[2] XQueryUpdate Facility 1.0http://www.w3.org/TR/xquery-update-10/[Accessed:

19-Nov-2011].
[3] XQuery and XPath Full Text 1.0http://www.w3.org/TR/

xpath-full-text-10/[Accessed: 19-Nov-2011].
[4] SourceForge.net Repository - [exist] Contents of

/trunk/eXist-1.0/src/org/exist/http/HttpServerConnection.javahttp://
exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/http/
HttpServerConnection.java?limit_changes=0&revision=133&view=markup&pathrev=133[Accessed:
20-Nov-2011].

121

RESTful XQuery

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xpath-full-text-10/
http://www.w3.org/TR/xpath-full-text-10/
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/http/HttpServerConnection.java?limit_changes=0&revision=133&view=markup&pathrev=133
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/http/HttpServerConnection.java?limit_changes=0&revision=133&view=markup&pathrev=133
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/http/HttpServerConnection.java?limit_changes=0&revision=133&view=markup&pathrev=133

[5] SourceForge.net Repository - [exist] Contents of
/trunk/eXist-1.0/src/org/exist/xpath/functions/request/RequestParameter.javahttp://
exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/xpath/
functions/request/
RequestParameter.java?revision=158&view=markup&pathrev=158[Accessed:
20-Nov-2011].

[6] eXist-db Developer’s Guide - Calling Stored XQueries eXist-db Developer’s
Guidehttp://www.exist-db.org/devguide_rest.html#d1915e781[Accessed:
14-Jan-2012].

[7] 28msec RESTful Conventions 28msechttp://www.28msec.com/documentation/
sausalitobasics-restfulservices[Accessed: 14-Jan-2012].

[8] BaseX REST - BaseX Documentation BaseX Wikihttp://docs.basex.org/wiki/
REST[Accessed: 14-Jan-2012].

[9] MarkLogic, Application Programming in XQuery and XSLT - HTTPApp Server
FunctionsMarkLogic Server Documentation.http://docs.marklogic.com/5.0doc/
docapp.xqy#display.xqy?fname=http://pubs/5.0doc/xml/xquery/
programming.xml%2353595[Accessed: 14-Jan-2012].

[10]Martin Probst EMCEMCCommunityNetwork - ECN: Implementing a RESTful
API for xDB using Jersey/JAX-RS EMC Developer Network.https://
community.emc.com/docs/DOC-4276[Accessed: 14-Jan-2012].

[11] XQuery Scripting Extension 1.0http://www.w3.org/TR/xquery-sx-10/[Accessed:
19-Nov-2011].

[12] EXPath - Standards for Portable XPath Extensionshttp://
www.expath.org/[Accessed: 19-Nov-2011].

[13] EXQuery - Standards for Portable XQuery Applicationshttp://
www.exquery.org/[Accessed: 19-Nov-2011].

[14] EXPath - HTTP Clienthttp://www.expath.org/modules/http-client/[Accessed:
14-Jan-2012].

[15] XQuery 3.0: An XML Query Languagehttp://www.w3.org/TR/
xquery-30/[Accessed: 19-Nov-2011].

[16] XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition)http://
www.w3.org/TR/xpath-datamodel/[Accessed: 14-Jan-2012].

[17] S Kepser A Proof of the Turing-completeness of XSLT and XQuery May 2002.
[18] M Kaufmann D Kossmann Developing an Enterprise Web Application in

XQuery Web Engineering, vol. 5648/2009, pp. 465–468, 2009.

122

RESTful XQuery

http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/xpath/functions/request/RequestParameter.java?revision=158&view=markup&pathrev=158
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/xpath/functions/request/RequestParameter.java?revision=158&view=markup&pathrev=158
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/xpath/functions/request/RequestParameter.java?revision=158&view=markup&pathrev=158
http://exist.svn.sourceforge.net/viewvc/exist/trunk/eXist-1.0/src/org/exist/xpath/functions/request/RequestParameter.java?revision=158&view=markup&pathrev=158
http://www.exist-db.org/devguide_rest.html#d1915e781
http://www.28msec.com/documentation/sausalitobasics-restfulservices
http://www.28msec.com/documentation/sausalitobasics-restfulservices
http://docs.basex.org/wiki/REST
http://docs.basex.org/wiki/REST
http://docs.marklogic.com/5.0doc/docapp.xqy#display.xqy?fname=http://pubs/5.0doc/xml/xquery/programming.xml%2353595
http://docs.marklogic.com/5.0doc/docapp.xqy#display.xqy?fname=http://pubs/5.0doc/xml/xquery/programming.xml%2353595
http://docs.marklogic.com/5.0doc/docapp.xqy#display.xqy?fname=http://pubs/5.0doc/xml/xquery/programming.xml%2353595
https://community.emc.com/docs/DOC-4276
https://community.emc.com/docs/DOC-4276
http://www.w3.org/TR/xquery-sx-10/
http://www.expath.org/
http://www.expath.org/
http://www.exquery.org/
http://www.exquery.org/
http://www.expath.org/modules/http-client/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

[19] Roy Fielding Architectural Styles and the Design of Network-based Software
Architectures University of California, Irvine, 2000.

[20] Cornelia Davis Programming Application Logic for RESTful Services Using
XML Technologies in Proceedings of Balisage: The Markup Conference 2011,
Montreal, Canada, 2011, vol. 7.

[21] LiamQuinXMLQuery Implementations 15-Jan-2012http://www.w3.org/XML/
Query/#implementations[Accessed: 15-Jan-2012].

[22] Florent Georges EXPath - Servlet fgeorges.org Wiki, 15-Jan-2012http://
fgeorges.org/wiki/EXPath#Servlet_definition[Accessed: 15-Jan-2012].

[23] Adam Retter SOAPServer - SourceForge.net Repository - [exist] Revision
3626http://exist.svn.sourceforge.net/viewvc/
exist?view=revision&revision=3626[Accessed: 15-Jan-2012].

[24] Corona - InstallationCorona -GitHub, 15-Jan-2012https://github.com/marklogic/
Corona/wiki/Installation[Accessed: 15-Jan-2012].

[25] EMC xDB 10.1.0 manual - Web clienthttp://developer.emc.com/docs/
documentum/xdb/manual/index.html#doc:topic/web_client.html[Accessed:
18-Jan-2012].

[26] Cornelia Davis EMC EMC Community Network - ECN: Building Domain
Specific RESTful Services over xDB with the EMC XML REST Framework
(Version 1)https://community.emc.com/docs/DOC-6434[Accessed: 18-Jan-2012].

[27] Cornelia Davis EMC EMC Community Network - ECN: Adding Hyperlink
Insertion and XML Transformations to the XMLREST Frameworkhttps://
community.emc.com/docs/DOC-6485[Accessed: 18-Jan-2012].

[28] Florent Georges Packaging SystemEXPath, 11-Nov-2010http://expath.org/spec/
pkg[Accessed: 15-Jan-2012].

[29] Florent Georges CXAN: a case-study for Servlex an XML web framework in
XMLPrague 2011Conference Proceedings, Lesser TownCampusPrague, Czech
Republic, 2011, vol. 2011-519.

[30] Mark Hadley Paul Sandoz JAX-RS: Java API for RESTful Web Services Version
1.0 Sun Microsystems Inc., 08-Sep-2008.

[31] XSLT and XQuery Serialization 3.0http://www.w3.org/TR/
xslt-xquery-serialization-30/[Accessed: 22-Jan-2012].

[32] XML Summer Schoolhttp://xmlsummerschool.com/[Accessed: 23-Jan-2012].
[33] See What I Think | Free software downloads at SourceForge.nethttp://

sourceforge.net/projects/seewhatithink/[Accessed: 23-Jan-2012].

123

RESTful XQuery

http://www.w3.org/XML/Query/#implementations
http://www.w3.org/XML/Query/#implementations
http://fgeorges.org/wiki/EXPath#Servlet_definition
http://fgeorges.org/wiki/EXPath#Servlet_definition
http://exist.svn.sourceforge.net/viewvc/exist?view=revision&revision=3626
http://exist.svn.sourceforge.net/viewvc/exist?view=revision&revision=3626
https://github.com/marklogic/Corona/wiki/Installation
https://github.com/marklogic/Corona/wiki/Installation
http://developer.emc.com/docs/documentum/xdb/manual/index.html#doc:topic/web_client.html
http://developer.emc.com/docs/documentum/xdb/manual/index.html#doc:topic/web_client.html
https://community.emc.com/docs/DOC-6434
https://community.emc.com/docs/DOC-6485
https://community.emc.com/docs/DOC-6485
http://expath.org/spec/pkg
http://expath.org/spec/pkg
http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.w3.org/TR/xslt-xquery-serialization-30/
http://xmlsummerschool.com/
http://sourceforge.net/projects/seewhatithink/
http://sourceforge.net/projects/seewhatithink/

124

Compiling XQuery code into Javascript
instructions using XSLT

Exploiting XQuery grammar
Alain Couthures

agenceXML
<alain.couthures@agencexml.com>

Abstract

There are different approaches for having XQuery in the browser. Developing
a plugin is hazardous because of the number of versions of browsers. Perform-
ance is to be considered when porting an existing Java implementation with
an engine such as GWT. Compiling XQuery code into Javascript instructions
is another possibility and XML technics can facilitate this. XQueryX is an
XMLnotation for XQuery code and converting into it is a first step to consider.
Then, the resulting tree can be transformed with XSLT back to Javascript.
XSLT 1.0 is powerful enough to write such a compiler, from text to tree and
back to text (with the nodeset function), for both XQuery and XQueryUpdate
Facility. This has been demonstrated by XSLTForms with its own XPath 1.0
engine: an XSLT 1.0 stylesheet to transform (with errors detection) XPath
1.0 expressions into Javascript objects and a collection of Javascript classes to
effectively evaluate the XPath 1.0 expressions. YAPP is another interesting
tool for generating a XSLT 1.0 parser from the grammar of a language ex-
pressed in BNF notation (XQuery Grammar is currently described in EBNF
notation). After parsing, for more performance, instead of having the resulting
Javascript instructions being the image of the tree, it is possible to generate
the minimal number of effective instructions after optimization ([n] detection,
maximal use of DOM API, ...), as compilers should always do. Finally, there
are functions to be written so the generated instructions are limited to pertinent
loops and calls.

Keywords: xml, xquery, xslt, javascript, ebnf, grammar, compiler,
xforms, xsltforms

1. Introduction
XQuery at browser-side is interesting for developers already writing XQuery code
at server-side: just one programming language. But XQuery has not been designed
to handle interactivity within the browser (events, controls),

125

XForms is good for interactions. XForms is currently specified with its own ac-
tions in XMLnotation to avoid Javascript use. XForms 2.0 Specificationswill encour-
age the use of XPath 2.0. A transformation function is also at study based on XSLT
or XQuery. Defining actions associated to controls appears to because more and
more complex (loops performed with attributes, variables,...) and XQuery Update
Facility might be more appropriate.

So, it is time to consider how to implement XPath/XQuery in XSLTForms (an
XForms implementation based on XSLT 1.0 to generate HTML+Javascript) with an
industrial approach instead of a specific XPath 1.0 engine (with extra functions and
dependencies detection).

Browsers cannot execute XQuery instructions natively. As for any other program-
ming language, an implementer can choose between writing a plugin or coping
with Javascript engines.

Plugins require to be installed and they have to be different for each kind of
browser: they are not easy to use widely.

On the contrary, Javascript engines have a good compatibility and they are be-
coming faster and faster. There are generic tools to convert fromhigh level program-
ming languages into Javascript instructions so it is possible to get an XQuery engine
written in Javascript from the same enginewritten in Java, for example. Performance
optimization is difficult andmixing Javascript instructions of XSLTFormswith such
generated instructions might be cumbersome.

Actually in most situation, an XQuery engine is not required: there is no need
to parse each XQuery instruction to interpret it at run time because, even if an eval()
function can be very powerful, most XQuery instructions are static. XSLTForms is
already implementing an XPath 1.0 compiler into Javascript instructions.

Compiling XQuery code is interesting for performance. Such a compiler should
not be written in Javascript itself because it is too much iterative to be fast. XSLT
1.0 engines are faster and freely available almost everywhere: browsers, Windows,
Linux, ASP.Net, PHP, Java EE,... Again, XSLTForms is already using XSLT 1.0 for
its XPath 1.0 compiler.

2. Parsing XQuery with XSLT 1.0

2.1. Existing specifications and tools

2.1.1. XQuery Grammar

XQuery is described in EBNF notation. Example:
FLWORExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause? "return" ►

ExprSingle
ForClause ::= "for" "$" VarName TypeDeclaration? PositionalVar? "in" ►

126

Compiling XQuery code into Javascript instructions using XSLT

ExprSingle ("," "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle)*
PositionalVar ::= "at" "$" VarName
LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle ("," "$" ►

VarName TypeDeclaration? ":=" ExprSingle)*
WhereClause ::= "where" ExprSingle
OrderByClause ::= (("order" "by") | ("stable" "order" "by")) OrderSpecList
OrderSpecList ::= OrderSpec ("," OrderSpec)*
OrderSpec ::= ExprSingle OrderModifier
OrderModifier ::= ("ascending" | "descending")? ("empty" ("greatest" | ►

"least"))? ("collation" URILiteral)?

XQuery is also described in a non-normative XMLnotation (http://www.w3.org/
2011/08/qt-applets/xgrammar_src.zip) to be usedwith JavaCC. This XML grammar
notation allows to have multiple languages (XPath 1.0/2.0/3.0, XQuery 1.0/3.0,
XQuery Update Facility 1.0, XSLT 2.0 Match Patterns,...) and corresponding entry
points.

Contrary to EBNF notation, the XML grammar notation is evolving according
to the W3C Query Working Group requirements for both JavaCC use and EBNF
productions in specifications.Main elements are: grammar, language, start, produc-
tion, ref, choice, sequence, optional, oneOrMore, zeroOrMore, string, level, binary,
postfix, token, char, charClass, charCode, charRange, state, transition, tref. There
are extra informations with them expressed by attributes (@lookahead, @process-
value, @unfold, @break, @if, @not-if, @show, @node-type, @condition, @prefix-seq-
type, @prod-user-action, @token-user-action, @nt-user-action-start, @nt-user-action-
end, @whitespace-spec, @subtract-reg-expr, @needs-exposition-parens, @inline,
@force-quote, @is-xml, @is-macro, @next-state, @action).

<g:production name="FLWORExpr10" exposition-name="FLWORExpr" if="xcore ►
xquery10">

<g:oneOrMore if="xquery10" name="FLWORClauseList">
<g:choice name="ForOrLet">
<g:ref name="ForClause"/>
<g:ref name="LetClause"/>

</g:choice>
</g:oneOrMore>
<g:choice if="xcore" name="ForOrLetCore">
<g:ref name="ForClause"/>
<g:ref name="LetClause"/>

</g:choice>
<g:optional if="xquery10" name="OptionalWhere">
<g:ref name="WhereClause"/>

</g:optional>
<g:optional name="OptionalOrderBy" if="xquery10">
<g:ref name="OrderByClause"/>

</g:optional>
<g:string>return</g:string>

127

Compiling XQuery code into Javascript instructions using XSLT

http://www.w3.org/2011/08/qt-applets/xgrammar_src.zip
http://www.w3.org/2011/08/qt-applets/xgrammar_src.zip

<g:ref name="ExprSingle"/>
</g:production>

2.1.2. YAPP

YAPP (http://www.o-xml.org/yapp/) is a BNF engine written in XSLT 1.0 and gen-
erating a dedicated parser as another XSLT1.0 stylesheet . A specific notation is
defined for describing the grammar: grammar, terminal, ignore, end, delimited,
equals, construct, option, part.

<terminal name="axisName">
<equals>ancestor::</equals>
<equals>ancestor-or-self::</equals>
<equals>attribute::</equals>
<equals>child::</equals>
<equals>descendant::</equals>
<equals>descendant-or-self::</equals>
<equals>following::</equals>
<equals>following-sibling::</equals>
<equals>namespace::</equals>
<equals>parent::</equals>
<equals>preceding::</equals>
<equals>preceding-sibling::</equals>
<equals>self::</equals>

</terminal>
<construct name="LocationPath">
<option>
<part name="RelativeLocationPath"/>

</option>
<option>
<part name="AbsoluteLocationPath"/>

</option>
</construct>
<construct name="AbsoluteLocationPath">
<option>
<part name="slash"/>
<part name="RelativeLocationPath"/>

</option>
<option>
<part name="slashslash"/>
<part name="RelativeLocationPath"/>

</option>
<option>
<part name="slash"/>

</option>
</construct>

128

Compiling XQuery code into Javascript instructions using XSLT

http://www.o-xml.org/yapp/

XSLT templates for tokenizing are separately generated. CustomXSLT templates
can be associated with the grammar so a fully operational XSLT 1.0 stylesheet is
generated from the grammar.

YAPP comes with a BNF grammar file with templates for dynamically recreate
the grammar in the specific notation so YAPP can also be used to directly generate
an XSLT 1.0 parser from a BNF text file.

<construct name="Grammar">
<option>
<part name="Rules"/>
<part name="end"/>

</option>
</construct>

<construct name="Rules">
<option>
<part name="Rule"/>
<part name="Rules"/>

</option>
<option>
<!-- empty -->

</option>
</construct>

<construct name="Rule">
<option>
<part name="name"/>
<part name="def"/>
<part name="Definition"/>
<part name="Definitions"/>
<part name="semicolon"/>

</option>
</construct>

With extra templates, YAPP is capable to push further for a better output struc-
ture.

For example, with a subset of XPath 1.0 grammar:
../queen

becomes
<Expr>
<LocationPath>
<RelativeLocationPath>
<Step>
<AbbreviatedStep>
<dotdot>..</dotdot>

129

Compiling XQuery code into Javascript instructions using XSLT

</AbbreviatedStep>
</Step>
<slash>/</slash>
<Step>
<AxisSpecifier/>
<NodeTest>
<NameTest>
<ncname>queen</ncname>

</NameTest>
</NodeTest>

</Step>
</RelativeLocationPath>

</LocationPath>
<end/>

</Expr>

YAPP has been written for Xalan-Java. Portability is not compromized but
xalan:nodeset() function is heavily used.

No error management mechanism is incorporated in YAPP.

2.1.3. Jaxen (package org.jaxen.expr) and AJAXForms

AJAXForms (the ancestor XForms implementation for XSLTForms) has a Java part
to generate Javascript instructions from XPath 1.0 expressions. It is based on Jaxen
Expr package:when building anXPath expression, Java objects are created according
to the expression structure and error management is performed at the same time.

try {
this.xpath = new DOMXPath(this.expression);

} catch (JaxenException e) {
throw new XPathException(e.getLocalizedMessage(), this.expression);

}

AJAXForms profits from this compiled form of expression to generate Javascript
code to create similar Javascript objects.

private StringBuffer build(Expr expr, boolean instance) {
StringBuffer jsExpr = new StringBuffer();

if (expr instanceof BinaryExpr) {
BinaryExpr bi = (BinaryExpr) expr;

if (expr instanceof UnionExpr) {
jsExpr.append("new UnionExpr(");
jsExpr.append(build(bi.getLHS()));
jsExpr.append(",");
jsExpr.append(build(bi.getRHS()));
jsExpr.append(')');

130

Compiling XQuery code into Javascript instructions using XSLT

} else {
jsExpr.append("new BinaryExpr(");
jsExpr.append(build(bi.getLHS()));
jsExpr.append(", '");

if (expr instanceof AdditiveExpr) {
jsExpr.append(((AdditiveExpr) expr).getOperator());

} else if (expr instanceof EqualityExpr) {
jsExpr.append(((EqualityExpr) expr).getOperator());

} else if (expr instanceof LogicalExpr) {
jsExpr.append(((LogicalExpr) expr).getOperator());

} else if (expr instanceof MultiplicativeExpr) {
jsExpr.append(((MultiplicativeExpr) expr).getOperator());

} else if (expr instanceof RelationalExpr) {
jsExpr.append(((RelationalExpr) expr).getOperator());

}

jsExpr.append("',");
jsExpr.append(build(bi.getRHS()));
jsExpr.append(')');

}
...

The resulting string will create all the corresponding Javascript objects.
. > /range/from

becomes:
new XPath(". > /range/from",

new BinaryExpr(new LocationExpr(false, new StepExpr('self',new ►
NodeTestAny())),

'>',
new LocationExpr(true, new StepExpr('child',new ►

NodeTestName('','range')),
new StepExpr('child',new ►

NodeTestName('','from')))),
'','');

2.1.4. XSLTForms 1.0

XSLTForms 1.0 has its own XPath 1.0 parser written in XSLT 1.0. It has not been
generated butwritten by hand so unusual featuresmight not be correctly supported.
New features are difficult to add.

<xsl:variable name="precedence" xmlns:xsl="http://www.w3.org/1999/XSL/►
Transform">./►
.;0.|.;1.div.mod.*.;2.+.-.;3.<.>.<=.>=.;4.=.!=.;5.and.;6.or.;7.,.;8.</►
xsl:variable>

131

Compiling XQuery code into Javascript instructions using XSLT

<xsl:template name="xp2js" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="xp"/>
<xsl:param name="args"/>
<xsl:param name="ops"/>
<xsl:variable name="c" select="substring(normalize-space($xp),1,1)"/>
<xsl:variable name="d" select="substring-after($xp,$c)"/>
<xsl:variable name="r">
<xsl:choose>
<xsl:when test="contains('./@*',$c)">
<xsl:variable name="t"><xsl:call-template ►

name="getLocationPath"><xsl:with-param name="s" select="concat($c,$d)"/></►
xsl:call-template></xsl:variable>

<xsl:value-of select="substring-before($t,'.')"/>
<xsl:text>.new XsltForms_locationExpr(</xsl:text>
<xsl:choose>
<xsl:when test="$c = '/' and not(starts-with($ops,'3.0./'))">true</►

xsl:when>
<xsl:otherwise>false</xsl:otherwise>

</xsl:choose>
<xsl:value-of select="substring-after($t,'.')"/><xsl:text>)</►

xsl:text>
</xsl:when>
<xsl:when test="$c = "'"">
<xsl:variable name="t">'<xsl:value-of ►

select="substring-before($d,"'")"/>'</xsl:variable>
<xsl:value-of select="concat(string-length($t),'.new ►

XsltForms_cteExpr(',$t,')')"/>
</xsl:when>

XSLTForms XPath parser does not depend on node-set() XSLT 1.0 extension:
formatted strings are heavily used for exchanging complex structures between
named templates and only text is generated.

For example, detecting whether node sorting is required or not is performed on
the resulting string. Errors when parsing are integrated in the resulting string and
extracted after processing.

<xsl:otherwise>~~~~Unexpected char at '<xsl:value-of select="concat($c,$d)"/►
>'~#~#</xsl:otherwise>

2.1.5. XQueryX

XQueryX is not an human-friendly XML notation. XQueryX structure is optimized
for processing so it is slightly different from XQuery Grammar structure (different
element names, extra elements,...).

<xsd:complexType name="flworExpr">
<xsd:complexContent>

132

Compiling XQuery code into Javascript instructions using XSLT

<xsd:extension base="expr">
<xsd:sequence>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="forClause"/>
<xsd:element ref="letClause"/>

</xsd:choice>
<xsd:element name="whereClause" minOccurs="0"/>
<xsd:element name="orderByClause" minOccurs="0"/>
<xsd:element name="returnClause"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="flworExpr" type="flworExpr" substitutionGroup="expr"/>

<xsd:element name="forClause">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="forClauseItem" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="forClauseItem">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="typedVariableBinding"/>
<xsd:element ref="positionalVariableBinding" minOccurs="0"/>
<xsd:element name="forExpr" type="exprWrapper"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="letClause">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="letClauseItem" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="letClauseItem">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="typedVariableBinding"/>

133

Compiling XQuery code into Javascript instructions using XSLT

<xsd:element name="letExpr" type="exprWrapper"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="whereClause" type="exprWrapper"/>

<xsd:element name="returnClause" type="exprWrapper"/>

XQueryX comes with an XSLT 1.0 stylesheet to generate XQuery equivalent but
not the reverse one...

<xsl:template match="xqx:flworExpr">
<xsl:value-of select="$NEWLINE"/>
<xsl:value-of select="$LPAREN"/>
<xsl:apply-templates select="*"/>
<xsl:value-of select="$RPAREN"/>

</xsl:template>

<xsl:template match="xqx:forClause">
<xsl:text> for </xsl:text>
<xsl:call-template name="commaSeparatedList"/>
<xsl:value-of select="$NEWLINE"/>

</xsl:template>

<xsl:template match="xqx:forClauseItem">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="xqx:forExpr">
<xsl:value-of select="$NEWLINE"/>
<xsl:text> in </xsl:text>

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="xqx:letClause">
<xsl:text> let </xsl:text>
<xsl:call-template name="commaSeparatedList"/>
<xsl:value-of select="$NEWLINE"/>

</xsl:template>

<xsl:template match="xqx:letClauseItem">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="xqx:letExpr">
<xsl:value-of select="$ASSIGN"/>

134

Compiling XQuery code into Javascript instructions using XSLT

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="xqx:returnClause">
<xsl:text> return </xsl:text>
<xsl:apply-templates select="*"/>
<xsl:value-of select="$NEWLINE"/>

</xsl:template>

<xsl:template match="xqx:whereClause">
<xsl:text> where </xsl:text>
<xsl:apply-templates select="*"/>
<xsl:value-of select="$NEWLINE"/>

</xsl:template>

2.2. Proposed architecture

2.2.1. XQuery Grammar Parser generating intermediate XML document

The XML notation of the XQuery grammar is used to generate the corresponding
XSLT templates with an XSLT stylesheet inspired from YAPP: templates for token-
izing and templates for productions.

This new XSLT stylesheet is more complex than the one for YAPP for EBNF ex-
plicit support but without automat mechanism.

Multiple languages support requires to add tests within generated templates.
Instead of using intermediate XML fragments, formatted strings avoid repetitive

node-set() calls.
The intermediate XMLdocument notation directly reflectswhatwas recognized

according to the grammar.
So,
../queen

becomes:
<PathExpr>
<RelativePathExpr>
<StepExpr>
<AxisOrFilterStep>
<AxisStep>
<ForwardOrReverseStep>
<ReverseStep>
<ReverseAxisOrAbbrev>
<AbbrevReverseStep/>

</ReverseAxisOrAbbrev>
</ReverseStep>

135

Compiling XQuery code into Javascript instructions using XSLT

</ForwardOrReverseStep>
<PredicateList/>

</AxisStep>
</AxisOrFilterStep>

</StepExpr>
<RelativePathExprTail>
<Slash/>
<StepExpr>
<AxisOrFilterStep>
<AxisStep>
<ForwardOrReverseStep>
<ForwardStep>
<ForwardAxisOrAbbrev>
<AbbrevForwardStep>
<NodeTest>
<KindOrNameTest>
<NameTest>
<QNameOrWildcard>
<_QName_or_EQName>
<QName>
<QNameChoiceList>
<FunctionQName>
<FunctionQNameChoiceList>
<QNameToken>
<LocalPart>queen</LocalPart>

</QNameToken>
</FunctionQNameChoiceList>

</FunctionQName>
</QNameChoiceList>

</QName>
</_QName_or_EQName>

</QNameOrWildcard>
</NameTest>

</KindOrNameTest>
</NodeTest>

</AbbrevForwardStep>
</ForwardAxisOrAbbrev>

</ForwardStep>
</ForwardOrReverseStep>

</AxisStep>
</AxisOrFilterStep>

</StepExpr>
</RelativePathExprTail>

</RelativePathExpr>
</PathExpr>

Errors are embedded in resulting formatted text so they can be extracted.

136

Compiling XQuery code into Javascript instructions using XSLT

2.2.2. XQueryX generation

A single node-set() call is required at the end to allow to process the resulting
XQueryX for target language generation.

There is a way to validate if the generated XQueryX document is correct: apply
the XQueryX to XQuery XSLT stylesheet, run the two XQuery codes and check that
results are identical. This allowed also to beautify XQuery code.

Finally,
../queen

becomes:
<pathExpr>
<stepExpr>
<xpathAxis>parent</xpathAxis>
<anyKindTest/>

</stepExpr>
<stepExpr>
<xpathAxis>child</xpathAxis>
<nameTest>queen</nameTest>

</stepExpr>
</pathExpr>

3. Generating Javascript instruction

3.1. The object approach

3.1.1. Object creation

From XQueryX structure, XSLT templates create a similar tree of objects creations.
A non-leaf node becomes an object, its children being parameters for its constructor
method.

<pathExpr>
<stepExpr>
<xpathAxis>parent</xpathAxis>
<anyKindTest/>

</stepExpr>
<stepExpr>
<xpathAxis>child</xpathAxis>
<nameTest>queen</nameTest>

</stepExpr>
</pathExpr>

becomes:

137

Compiling XQuery code into Javascript instructions using XSLT

new pathExpr(new stepExpr(XPATHAXIS_parent), new stepExpr(XPATHAXIS_child, ►
new nameTest("queen"))

3.1.2. Object evaluation

Each generated object has an evaluate() method with the standard parameters: the
reference of the current node and a namespace resolver.

XSLTForms 1.0 is using the same approach:
XsltForms_binaryExpr.prototype.evaluate = function(ctx) {
var v1 = this.expr1.evaluate(ctx);
var v2 = this.expr2.evaluate(ctx);
var n1;
var n2;
n1 = XsltForms_globals.numberValue(v1);
n2 = XsltForms_globals.numberValue(v2);
if (isNaN(n1) || isNaN(n2)) {
n1 = XsltForms_globals.stringValue(v1);
n2 = XsltForms_globals.stringValue(v2);

}
var res = 0;
switch (this.op) {
case 'or' : res = XsltForms_globals.booleanValue(v1) || ►

XsltForms_globals.booleanValue(v2); break;
case 'and' : res = XsltForms_globals.booleanValue(v1) && ►

XsltForms_globals.booleanValue(v2); break;
case '+' : res = n1 + n2; break;
case '-' : res = n1 - n2; break;
case '*' : res = n1 * n2; break;
case 'mod' : res = n1 % n2; break;
case 'div' : res = n1 / n2; break;
case '=' : res = n1 === n2; break;
case '!=' : res = n1 !== n2; break;
case '<' : res = n1 < n2; break;
case '<=' : res = n1 <= n2; break;
case '>' : res = n1 > n2; break;
case '>=' : res = n1 >= n2; break;

}
return typeof res === "number" ? Math.round(res*1000000)/1000000 : res;

}

For XForms, dependencies have to be identified: a binding evaluation has to be
performed again only if the value of an intermediate node has been modified.

138

Compiling XQuery code into Javascript instructions using XSLT

3.2. Run-time data model and functions set

3.2.1. Data model

Javascript objects are to be used for every data. Sequences data can easily be mod-
elized with a Javascript array, except for ranges for which bounds have to memor-
ized.

Because Javascript data types are not as rich as XPath atomic types, objects are
to be used. Defining classesmight be not good for performance, just JSON structures
for type and value.

3.2.2. Functions

XPath operators and functions equivalents have to be rewritten in Javascript as in
XSLTForms 1.0.

3.3. Effective instructions

3.3.1. Loops and temporary variables

Steps in a location are transformed into successive loopswhile predicates are filtering
expressions evaluated for each item. Thismeans that variables have to be generated
for processing.

3.3.2. Possible optimizations

There are many possibilities when generating instructions to optimize them.
For example:

• Attributes can be read directly with DOM API
• Positional predicates detection allows to limit loops
• Dependencies are not to be detected when this is not required

4. Conclusion
Even if compiling XQuery code into Javascript instructions with XSLT this way is
not highly optimized, this is a robust and evolutive solution which can be used at
server-side or at client-side.

It is also possible to optimize the generation of the Javascript instructionswithout
modifying the XQuery parser.

139

Compiling XQuery code into Javascript instructions using XSLT

140

Implementing an XQuery/XSLT hybrid
Parsing and compiling Carrot

Evan Lenz
MarkLogic Corporation

<evan.lenz@marklogic.com>

Abstract

The idea for Carrot, "an appetizing hybrid of XQuery and XSLT," was first
presented at Balisage 2011. Since then, progress has been made on implement-
ing Carrot by way of compilation to XSLT. This paper describes current pro-
gress on the Carrot parser and compiler, detailing certain fundamental aspects
of the current architecture.

Keywords: XML, XSLT, XQuery, Carrot

I first presented the idea for "Carrot: An appetizing hybrid of XQuery and XSLT"1

at Balisage 20112. At that time, it was still only in the conception stage. Although
most of the chief ideas for the language were fleshed out, no implementation was
yet available andmy initial attempts at generating a Carrot parser had failed. Now,
several months later, I have an XQuery-based Carrot parser and the compiler is
moving right along. This paper describes my current strategy for implementing
Carrot, and highlights things learned along the way.

1. Introduction
XQuery and XSLT are closely related languages. They share a common data model
and large syntactic subset in XPath 2.0. Depending on a programmer's background,
he or she tends to gravitate toward (or be repelled from) one language or the other.
However, despite the large overlap, each language provides unique value. XSLT
has template rules, whereas XQuery is concise and composable. Carrot aims to
bridge the gap between the two, bringing into a single hybrid language the best
features of both languages, particularly:
• the power and flexibility of XSLT's template rules and modularization features,

and
• the conciseness and composability of XQuery expressions.

1 http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
2 http://balisage.net/2011/Program.html

141

http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://balisage.net/2011/Program.html
http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://balisage.net/2011/Program.html

Carrot has a minimalistic design, both in terms of its syntax and its feature set. It
relies heavily on the syntax of XQuery and the semantics of both XSLT and XQuery,
rarely departing from either.While Carrot can be thought of as an alternative syntax
for XSLT, it ismore properly described as an XQuery/XSLT hybrid, because it affords
the full power of XQuery expressions. In that sense, it can also be thought of as a
host language for XQuery expressions.

For purposes of this introduction, the basic idea of Carrot is that template rules
can be defined and invoked using a function-like syntax, distinguished from a
normal function by use of the caret symbol (^). Like XSLT, a rule is defined using
a pattern (what looks like the "function argument"), a mode name (what looks like
the "function name"), and a numeric priority value (implicit or explicit). Unlike
XSLT, rules can be invoked (i.e. templates applied) inline—within an expression.
As with XQuery, all expressions are fully composable with each other. In fact, 90%
of the Carrot grammar is identical to the XQuery grammar. XQuery expressions
are extended to support ruleset invocations, text node literals, and shallow copy
constructors. In this way, Carrot combines the best of both languages.

AlthoughCarrot has been fully introduced elsewhere3, a tutorial-like introduction
is presented for the reader's convenience in Appendix A. If you are new to Carrot
or want to be reminded of what it's about, you should read that introduction first.

2. Implementation approaches
There are several approaches that could be taken to implementing Carrot:
1. native implementation
2. compilation to XSLT
3. compilation to XQuery

One piece of feedback received at Balisage was that compilation to XQuery or
XSLTwould be particularly valuable, in that it would allowusers to continue devel-
opment outside of Carrot, or use any XQuery or XSLT implementation that does
not directly support Carrot. For that reason, the current implementation I'mworking
on consists of an XQuery-based parser and an XSLT-based compiler that generates
XSLT 2.0 code (#2 above). This will enable users to run Carrot programs by calling
a function library.

The plan is to provide two implementations: one for Saxon and one forMarkLo-
gic. (They will differ only in how the processor's extensions call XSLT from XQuery
and vice versa.) Since both of these products support both XQuery and XSLT, they
are able to support Carrot.

3 http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html

142

Implementing an XQuery/XSLT hybrid

http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html

3. Parsing Carrot
The Carrot parser was implemented using these steps:
1. Start with the XQuery 1.0 EBNF grammar4

2. Hand-modify the grammar, turning it into a grammar for Carrot5

3. Run the grammar through the REx parser generator6 (online utility), using these
options:
• -xquery -tree

3.1. Step 1: Start with the XQuery grammar
The first step is simple. I started with the EBNF grammar for XQuery 1.0 provided
here: http://www.bottlecaps.de/rex/XQueryV10.ebnf.

3.2. Step 2: Define Carrot by manually modifying the XQuery grammar
Next, I disabled large portions of the XQuery grammar that had to dowith top-level
declarations. Some of thesewill be reintroduced (startingwith NamespaceDecl) with
or without modification, as Carrot evolves.

The rest of this section will show the Carrot-specific grammar rules, current at
the time of this writing. The XQuery production rules on which these depend have
been left unchanged (except when some slight refactoring was beneficial in
providing extra hints to the compiler). The latest version of the Carrot grammar can
be found here: https://github.com/evanlenz/Carrot/blob/master/parser/Carrot.ebnf.

3.2.1. Carrot definitions

The following production rule indicates the overall structure of a Carrot module:
/* Top-level Carrot module */
Carrot ::= CarrotModule EOF
CarrotModule

::= (NamespaceDecl Separator)*
/* other top-level declarations will go here (import, etc.) */
((VarDecl | FunctionDecl | RuleDecl) Separator)*

The NamespaceDecl production rule in Carrot has been left unchanged; namespace
declarations use the same syntax as XQuery. After any namespace declarations (and
other declarations for import, etc., which have not yet been but will soon be defined
for Carrot), the Carrot module consists of zero or more:

4 http://www.bottlecaps.de/rex/XQueryV10.ebnf
5 https://github.com/evanlenz/Carrot/blob/master/parser/Carrot.ebnf
6 http://www.bottlecaps.de/rex/

143

Implementing an XQuery/XSLT hybrid

http://www.bottlecaps.de/rex/XQueryV10.ebnf
https://github.com/evanlenz/Carrot/blob/master/parser/Carrot.ebnf
http://www.bottlecaps.de/rex/
http://www.bottlecaps.de/rex/XQueryV10.ebnf
https://github.com/evanlenz/Carrot/blob/master/parser/Carrot.ebnf
http://www.bottlecaps.de/rex/XQueryV10.ebnf
https://github.com/evanlenz/Carrot/blob/master/parser/Carrot.ebnf
http://www.bottlecaps.de/rex/

• variable definitions (VarDecl),
• function definitions (FunctionDecl), and
• rule definitions (RuleDecl).

(Unlike XQuery, a Carrot module consists entirely of definitions. There is no
query body in Carrot, and Carrot makes no distinction between main modules and
query modules.)

The following exampleCarrotmodule includes a namespace declaration followed
by one of each kind of definition:

declare namespace my="http://example.com";
$foo := "a string"; (: VarDecl :)
my:foo() := $foo; (: FunctionDecl :)
^(/) := my:foo(); (: RuleDecl :)

Each definition is terminated using the colon character:
Separator ::= ';'

3.2.1.1. Variable definitions

Variable and function definitions in Carrot are functionally equivalent to the same
constructs in XQuery, with a slightly simpler syntax. In the case of variable defini-
tions, the "declare variable" verbiage has been removed:

VarDecl ::= '$' QName TypeDeclaration? ':=' Expr

Also, for consistency with the other two types of definitions (FunctionDecl and
RuleDecl), the right-hand side of a variable definition is allowed to have a full Expr,
not just ExprSingle. In practice, this means that Carrot, unlike XQuery, doesn't re-
quire you to put parentheses around a sequence expression that's bound to a variable.
For example, $foo := 1,2,3; is a valid variable definition in Carrot, whereas in
XQuery, when binding the value to a top-level variable, you would need to write
the expression using parentheses: (1,2,3).

3.2.1.2. Function definitions

Similarly, in the case of function definitions, "declare function" has been removed.
Also, for consistencywith the other two types of definitions (VarDecl and RuleDecl),
the binding operator (:=) is used rather than curly braces ({}):

FunctionDecl ::= FunctionName '(' ParamList? ')' TypeDeclaration? ':=' Expr

144

Implementing an XQuery/XSLT hybrid

3.2.1.3. Rule definitions

Rule definitions have no analogue in XQuery. They correspond directly to template
rules in XSLT, but in Carrot they use a function-like syntax:

RuleDecl ::= '^' (ModeName ('|' ModeName)*)? '(' Pattern (';' RuleParamList)? ►
')' Priority? ':=' Expr
ModeName ::= (QName | '#current' | '#default')
Priority ::= (IntegerLiteral | DecimalLiteral)
RuleParamList

::= ParamWithDefault (',' ParamWithDefault)*
ParamWithDefault

::= Tunnel? Param (":=" ExprSingle)?
Tunnel ::= 'tunnel'

The production rule for Patternwas copied unchanged from the XSLT 2.0 specific-
ation.

3.2.2. Carrot expressions

Since Carrot expressions are just XQuery expressions with some extensions, most
of the production rules for XQuery expressions were left unchanged. At this time,
Carrot includes only three extensions to XQuery expression syntax:
• ruleset invocations (^mode(nodes)),
• shallow copy constructors (copy{...}), and
• text node literals (`my text node`).

The identity transform in Carrot makes use of the first two of Carrot's extended
expression syntax constructs (a ruleset invocation and a copy constructor):

^(@*|node()) := copy{ ^(@*|node()) };

And here's an example Carrot rule that uses a text node literal:
^title(name) := `Mr. `;

3.2.2.1. Ruleset invocations

In the case of ruleset invocations (equivalent to xsl:apply-templates in XSLT),
XQuery is extended by adding RulesetCall to PrimaryExpr:

PrimaryExpr ::= Literal
| VarRef
| ParenthesizedExpr
| ContextItemExpr
| FunctionCall
| OrderedExpr
| UnorderedExpr

145

Implementing an XQuery/XSLT hybrid

| Constructor
| RulesetCall /* Carrot-specific */

Here's the production rule for RulesetCall:
RulesetCall ::= '^' ModeName? '(' Expr? (';' RulesetCallParamList)? ')'
RulesetCallParamList ::= InitializedParam (',' InitializedParam)*
InitializedParam ::= Tunnel? Param ':=' ExprSingle

3.2.2.2. Shallow copy constructors

Shallow copy constructors were added by extending ComputedConstructor in the
XQuery grammar:

ComputedConstructor ::= CompDocConstructor
| CompElemConstructor
| CompAttrConstructor
| CompTextConstructor
| CompCommentConstructor
| CompPIConstructor
| CompCopyConstructor /* Carrot-specific */

CompCopyConstructor ::= 'copy' '{' Expr '}'

3.2.2.3. Text node literals

Text node literals were added by extending Literal in the XQuery grammar:
Literal ::= NumericLiteral

| StringLiteral
| TextNodeLiteral /* Carrot-specific */

The production rule for TextNodeLiteral is very similar to the XQuery production
rule for StringLiteral (shown unmodified below for comparison purposes):

TextNodeLiteral ::= '`' (PredefinedEntityRef | CharRef | EscapeTick | [^`&] ►
)* '`' /* ws: explicit */
StringLiteral ::= '"' (PredefinedEntityRef | CharRef | EscapeQuot | [^"&] ►

)* '"'
| "'" (PredefinedEntityRef | CharRef | EscapeApos | [^'&] ►

)* "'" /* ws: explicit */

3.2.3. Conclusion

And with that, we have all the production rules that are unique to Carrot. The rest
of the grammar comes straight fromXQuery 1.0 (or XSLT 2.0, in the case of Pattern).

146

Implementing an XQuery/XSLT hybrid

3.3. Step 3: Generate the parser
The final step is generating the parser using the REx parser generator7. Running
this online utility with the -xquery and -tree options results in an XQuery-based
parser which outputs an XML parse tree for the given Carrot module.

Note
For full interoperability with MarkLogic Server, it was necessary to add a
default function namespace declaration to the auto-generated XQuery parser:
declare default function namespace "http://www.w3.org/2005/
xpath-functions";

Writing the compiler thus becomes "a small matter of XML transformations". Since
the XML consists solely of element markup added around the original Carrot text,
the string-value of the output is the same as the original Carrot code. This is a very
useful property since it means that translation from XPath in the Carrot to XPath
in the resulting XSLT is trivial: just get the string-value.

For example, the followingCarrot expression is also a valid XPath 2.0 expression:
for $x in /names/name return lower-case(.)

Thus, compilation to XSLT 2.0 in this case is trivial. We just get the string-value of
the XMLparse tree for the expression, as shown in Example 1 (with extra line breaks
added).

Example 1. XML parse tree for a simple FLWOR expression

<Expr><ExprSingle><FLWORExpr><ForClause><TOKEN>for</TOKEN><ForBinding> <TOKEN>$</►
TOKEN>
<VarName><QName><FunctionName><QName>x</QName></FunctionName></QName></VarName> ►
<TOKEN>
in</TOKEN><ExprSingle><OrExpr><AndExpr><ComparisonExpr><RangeExpr><AdditiveExpr>
<MultiplicativeExpr><UnionExpr><IntersectExceptExpr><InstanceofExpr><TreatExpr><CastableExpr>
<CastExpr><UnaryExpr><ValueExpr><PathExpr> <TOKEN>/</►
TOKEN><RelativePathExpr><StepExpr>
<AxisStep><ForwardStep><AbbrevForwardStep><NodeTest><NameTest><QName><FunctionName><QName>
names</QName></FunctionName></QName></NameTest></NodeTest></AbbrevForwardStep></►
ForwardStep>
<PredicateList/></AxisStep></StepExpr><TOKEN>/</►
TOKEN><StepExpr><AxisStep><ForwardStep>
<AbbrevForwardStep><NodeTest><NameTest><QName><FunctionName><QName>name</QName></►
FunctionName>
</QName></NameTest></NodeTest></AbbrevForwardStep></ForwardStep><PredicateList/►
></AxisStep>

7 http://www.bottlecaps.de/rex/

147

Implementing an XQuery/XSLT hybrid

http://www.bottlecaps.de/rex/
http://www.bottlecaps.de/rex/

</StepExpr></RelativePathExpr></PathExpr></ValueExpr></UnaryExpr></CastExpr></►
CastableExpr>
</TreatExpr></InstanceofExpr></IntersectExceptExpr></UnionExpr></►
MultiplicativeExpr>
</AdditiveExpr></RangeExpr></ComparisonExpr></AndExpr></OrExpr></ExprSingle></►
ForBinding>
</ForClause> <TOKEN>return</►
TOKEN><ExprSingle><OrExpr><AndExpr><ComparisonExpr><RangeExpr>
<AdditiveExpr><MultiplicativeExpr><UnionExpr><IntersectExceptExpr><InstanceofExpr><TreatExpr>
<CastableExpr><CastExpr><UnaryExpr><ValueExpr><PathExpr><RelativePathExpr><StepExpr>
<FilterExpr><PrimaryExpr><FunctionCall><FunctionName> <QName>lower-case</QName></►
FunctionName>
<TOKEN>(</►
TOKEN><ExprSingle><OrExpr><AndExpr><ComparisonExpr><RangeExpr><AdditiveExpr>
<MultiplicativeExpr><UnionExpr><IntersectExceptExpr><InstanceofExpr><TreatExpr><CastableExpr>
<CastExpr><UnaryExpr><ValueExpr><PathExpr><RelativePathExpr><StepExpr><FilterExpr>
<PrimaryExpr><ContextItemExpr><TOKEN>.</TOKEN></ContextItemExpr></►
PrimaryExpr><PredicateList/>
</FilterExpr></StepExpr></RelativePathExpr></PathExpr></ValueExpr></UnaryExpr></►
CastExpr>
</CastableExpr></TreatExpr></InstanceofExpr></IntersectExceptExpr></UnionExpr>
</MultiplicativeExpr></AdditiveExpr></RangeExpr></ComparisonExpr></AndExpr></►
OrExpr>
</ExprSingle><TOKEN>)</TOKEN></FunctionCall></PrimaryExpr><PredicateList/></►
FilterExpr>
</StepExpr></RelativePathExpr></PathExpr></ValueExpr></UnaryExpr></CastExpr></►
CastableExpr>
</TreatExpr></InstanceofExpr></IntersectExceptExpr></UnionExpr></►
MultiplicativeExpr>
</AdditiveExpr></RangeExpr></ComparisonExpr></AndExpr></OrExpr></ExprSingle></►
FLWORExpr>
</ExprSingle></Expr>

which yields the original:
for $x in /names/name return lower-case(.)

So for a large portion of Carrot, compilation to XPath 2.0 is trivial. In fact, we can
just use XSLT's built-in template rule for elements and text nodes (process children
and copy text, respectively). A single call to <xsl:apply-templates/> takes care of
this large portion:

<xsl:apply-templates mode="xpath" select="Expr"/>

For an implementation that compiles to XQuery, getting the string-value takes care
of an even larger portion of Carrot (the portion that is identical to XQuery 1.0).

148

Implementing an XQuery/XSLT hybrid

Of course, not everything in Carrot can be trivially translated to XSLT or XQuery.
But this is where things start to get interesting.

4. Compiling Carrot
It may help to broadly identify the nature of the translation task, depending on
what the compiler's target language is (XQuery or XSLT). The following tables show
the obvious corollaries for each major construct in Carrot:

Table 1. Obvious corollaries in XSLT

Translated to:In Carrot:
<xsl:template>Rule definition
<xsl:variable>Variable definition
<xsl:function>Function definition
XPath expressionXPath expression
???non-XPath expression

Table 2. Obvious corollaries in XQuery

Translated to:In Carrot:
???Rule definition
declare variable...Variable definition
declare function...Function definition
XQuery expressionXQuery expression
???non-XQuery extension

Both tasks have their murky areas that will require extra thought (signified by
questionmarks in the above tables).While I hope that therewill be a Carrot compiler
that targets XQuery, I chose to startwith XSLT, becauseCarrot is designed to behave
very much like XSLT. In particular, rules in Carrot are equivalent to template rules
in XSLT,whereas XQuery has no corresponding built-in construct. Also, even though
imports and includes haven't yet been added to the Carrot grammar as of this
writing, the intention is that Carrot modules will relate to each other the same way
that XSLT modules relate to each other, e.g., using import precedence. Simulating
XSLT's import precedence is one task that I won't have to worry about, whereas it
will be extra work for the person (perhaps me in the future) who is writing a Carrot
compiler that outputs XQuery.

149

Implementing an XQuery/XSLT hybrid

Since Carrot is a hybrid of both XSLT and XQuery, the task of compiling it is
closely related to some other projects involved in translating from one language to
the other:
• Translating XQuery to XSLT: David Carlisle's xq2xml project8

• Translating XSLT to XQuery: "Compiling XSLT 2.0 into XQuery 1.0," by Fokoue,
Rose, Siméon, and Villard9

As I've found some of the insights in David Carlisle's xq2xml project to be helpful
for compiling Carrot to XSLT, I'm sure that insights in the latter project would be
similarly helpful in compiling Carrot to XQuery.

Having decided to target XSLT, the next step is to implement the transformation
from the XML parse tree representation to an XSLT 2.0 stylesheet that implements
the behavior of the Carrot module. Naturally, I chose to use XSLT for this task. (As
a matter of fact, once I've got a fairly solid baseline compiler working, I plan to port
the compiler itself to Carrot.) Generating the top-level definitions themselves is
pretty straightforward. For example, a function definition maps directly to an
<xsl:function> element:

<xsl:template match="FunctionDecl">
<out:function name="{FunctionName/QName}">
<xsl:apply-templates select="TypeDeclaration"/>
<xsl:apply-templates select="Expr"/>

<out:function>
<xsl:template>

Things start to get tricky as soon as expressions are involved. In XQuery andCarrot,
there is only ever one syntactic context for the construction of XPath data model
values (sequences of nodes, strings, numbers, etc.), namely the expression. Anything
you can create or reference is created or referenced by an expression, in XQuery
and Carrot. However, that's not true in XSLT, which has two syntactic contexts for
constructing sequences:
• expressions, and
• sequence constructors.
Expressions are limited to XPath 2.0 syntax and appear in attribute values, whereas
sequence constructors consist of zero or more:
• literal result elements,
• text nodes,
• XSLT instructions, or
• extension elements

8 http://monet.nag.co.uk/xq2xml/
9 http://www2005.org/cdrom/docs/p682.pdf

150

Implementing an XQuery/XSLT hybrid

http://monet.nag.co.uk/xq2xml/
http://www2005.org/cdrom/docs/p682.pdf
http://www2005.org/cdrom/docs/p682.pdf
http://monet.nag.co.uk/xq2xml/
http://www2005.org/cdrom/docs/p682.pdf

Most importantly, not everything in XQuery (or Carrot) can be expressed in XPath.
If it could, then our task would be much simpler. For example, a global variable
definition would be trivial to implement. We could just copy the expression as is
into an <xsl:variable>'s "select" attribute:

<xsl:template match="VarDecl">
<out:variable name="{QName}" select="{Expr}"/>
<xsl:apply-templates select="TypeDeclaration"/>

<out:variable>
<xsl:template>

And in fact that will work just fine for some variable definitions. For example, using
the above rule:

$foo := 'my string';

would translate to:
<xsl:variable name="foo" select="'my string'"/>

But things break as soon as the right-hand side has something other than an
XPath expression:

$foo := <my-element>hello</my-element>

Nowwe need a sequence constructor, not an expression, in the XSLT result. So we'll
have to do something more sophisticated: recognize the non-XPath expression and
act accordingly.

Similarly, if we're already in the context of a sequence constructor, e.g., inside
<xsl:function> and we come across an expression, we'll need to switch back to an
expression context, such as the "select" attribute of <xsl:sequence>. For example,
consider the following function definition in Carrot:

my:title() := <TITLE>{ /doc/title }</TITLE>;

In the compiled-to-XSLT version of this code, the <TITLE> element constructor
translates directly to a literal result element in XSLT (i.e. a sequence constructor),
but for its contents, we'll need to switch back to an expression context, using
<xsl:sequence> (or more idiomatically, <xsl:copy-of>):

<xsl:function name="my:title">
<TITLE>
<xsl:sequence select="/doc/title"/>

</TITLE>
</xsl:function>

But what if the expression wasn't just a simple XPath expression?What if it had
a predicate containing an element constructor? That's perfectly legal in Carrot and
XQuery, but not XPath (and thus not in XSLT):

151

Implementing an XQuery/XSLT hybrid

/doc/title[deep-equal(., <title>A special title</title>)]

Now we find ourselves in a situation of having to switch back to using a sequence
constructor context. This can be done, of course, butwe'll need to defer it to a variable
or function definition:

/doc/title[deep-equal(., my:special-title())]

What this illustrates is that Carrot andXQuery are fully syntactically composable.
Values can only be represented by expressions, andwhere an expression can appear,
any expression can appear. Wemight say that XSLT is semantically composable: any
value you can create in XQuery, you can also create in XSLT. But since values can
(and must) be represented in two different ways in XSLT, the language is not syn-
tactically composable.

The challenge is then in identifyingwhen to switch back and forth between these
two contexts: expressions and sequence constructors, and having done that, translate
from the various XQuery/Carrot expressions into equivalent XSLT constructs. But
first, since the XML parse tree is pretty noisy (as shown in Example 1), try cleaning
it up, removingwhatever noise I can. Thus the compiler, as currently implemented,
breaks the task into three steps, achieving the following separation of concerns:
1. Simplify the parse tree, removing noise.
2. Annotate the expressions (as XPath or sequence constructor).
3. Generate the XSLT.
The rest of this section is about the details of each step. To see the full source code
for the latest Carrot compiler, see https://github.com/evanlenz/Carrot/tree/master/
compiler.

Warning
The Carrot compiler is a work in progress, not yet ready for prime time.

4.1. Step 1: Simplify the parse tree
Consider the following simple Carrot module:

^(/) := for $x in /names/name return lower-case(.);

The FLWOR expression shown here is the same as the one shown in Example 1.
After running simplify.xsl10 against the full XML parse tree for this module, we get
a much-simplified result (with indentation added):

<Carrot>
<CarrotModule>
<RuleDecl>

10 https://github.com/evanlenz/Carrot/blob/master/compiler/simplify.xsl

152

Implementing an XQuery/XSLT hybrid

https://github.com/evanlenz/Carrot/tree/master/compiler
https://github.com/evanlenz/Carrot/tree/master/compiler
https://github.com/evanlenz/Carrot/blob/master/compiler/simplify.xsl
https://github.com/evanlenz/Carrot/blob/master/compiler/simplify.xsl

<TOKEN>^</TOKEN>
<TOKEN>(</TOKEN>
<Pattern>
<PathPattern>
<TOKEN>/</TOKEN>

</PathPattern>
</Pattern>
<TOKEN>)</TOKEN>
<TOKEN>:=</TOKEN>
<Expr>
<FLWORExpr>
<ForClause> <TOKEN>for</TOKEN>
<ForBinding> <TOKEN>$</TOKEN>
<VarName>
<QName>
<FunctionName>
<QName>x</QName>

</FunctionName>
</QName>

</VarName> <TOKEN>in</TOKEN>
<ExprSingle>
<PathExpr> <TOKEN>/</TOKEN>
<AxisStep>
<ForwardStep>
<AbbrevForwardStep>
<NodeTest>
<NameTest>
<QName>
<FunctionName>
<QName>names</QName>

</FunctionName>
</QName>

</NameTest>
</NodeTest>

</AbbrevForwardStep>
</ForwardStep>

</AxisStep>
<TOKEN>/</TOKEN>
<AxisStep>
<ForwardStep>
<AbbrevForwardStep>
<NodeTest>
<NameTest>
<QName>
<FunctionName>
<QName>name</QName>

153

Implementing an XQuery/XSLT hybrid

</FunctionName>
</QName>

</NameTest>
</NodeTest>

</AbbrevForwardStep>
</ForwardStep>

</AxisStep>
</PathExpr>

</ExprSingle>
</ForBinding>

</ForClause> <TOKEN>return</TOKEN>
<ExprSingle>
<FunctionCall>
<FunctionName> <QName>lower-case</QName>
</FunctionName>
<TOKEN>(</TOKEN>
<ExprSingle>
<ContextItemExpr>
<TOKEN>.</TOKEN>

</ContextItemExpr>
</ExprSingle>
<TOKEN>)</TOKEN>

</FunctionCall>
</ExprSingle>

</FLWORExpr>
</Expr>

</RuleDecl>
<Separator>
<TOKEN>;</TOKEN>

</Separator>
</CarrotModule>

</Carrot>

Only the elements that are actually descriptive (and useful) remain. The stripped-
out elements are artifacts of how the entire XQuery grammar is defined. Most im-
portantly, the simplification enables the compiler to confidently know that, if it
comes across a given element, then that element is descriptive of the contained ex-
pression. For example, if <AdditiveExpr> appears in the source, then it means that
there is actually an additive expression present, e.g. 2 + 2.

The following template rule in simplify.xsl shows how the simplification is
achieved:

<!-- If only one child, then it's a useless container -->
<!-- If the compiler comes across one of these elements, it

means the element contains more than one child, which
means it actually is what it says it is, e.g. "$x or $y"

154

Implementing an XQuery/XSLT hybrid

would be annotated as an <OrExpr> but not "'hello'" (even
though it technically is an OrExpr the way grammar is defined.)

-->
<xsl:template mode="simplify"

match="*[count(*) eq 1]
[local-name() = ('OrExpr'

, 'AndExpr'
, 'ComparisonExpr'
, 'RangeExpr'
, 'AdditiveExpr'
, 'MultiplicativeExpr'
, 'UnionExpr'
, 'IntersectExceptExpr'
, 'InstanceofExpr'
, 'TreatExpr'
, 'CastableExpr'
, 'CastExpr'
, 'UnaryExpr'
, 'PathExpr'
)]">

<xsl:apply-templates mode="#current"/>
</xsl:template>

4.2. Step 2: Annotate the expressions
Once the XML parse tree is simplified, we can start to categorize expressions as
being XPath-friendly or needing a sequence constructor. These are not mutually
exclusive, which is to say that an expression can start off being annotated as a se-
quence constructor but have a sub-expression annotated as XPath, which in turn
can have a sub-expression annotated as a sequence constructor, etc.

To demonstrate this, consider the following example:
$names := for $x in //names return <firstname>{$x}</firstname>;

The FLWOR expression itself doesn't use any non-XPath constructs, except in the
return clause (a sub-expression). The annotate.xsl11 stylesheet thus annotates the
outer-level expression as XPath, using the <c:XPATH> tag:

<Carrot xmlns:c="http://evanlenz.net/carrot">
<CarrotModule>
<VarDecl>
<TOKEN>$</TOKEN>
<QName>

11 https://github.com/evanlenz/Carrot/blob/master/compiler/annotate.xsl

155

Implementing an XQuery/XSLT hybrid

https://github.com/evanlenz/Carrot/blob/master/compiler/annotate.xsl
https://github.com/evanlenz/Carrot/blob/master/compiler/annotate.xsl

<FunctionName>
<QName>names</QName>

</FunctionName>
</QName> <TOKEN>:=</TOKEN>
<c:XPATH>
<Expr>
<FLWORExpr>
<ForClause> <TOKEN>for</TOKEN>
<ForBinding> <TOKEN>$</TOKEN>
<VarName>
<QName>
<FunctionName>
<QName>x</QName>

</FunctionName>
</QName>

</VarName> <TOKEN>in</TOKEN>
<ExprSingle>
<PathExpr> <TOKEN>//</TOKEN>
<AxisStep>
<ForwardStep>
<AbbrevForwardStep>
<NodeTest>
<NameTest>
<QName>
<FunctionName>
<QName>names</QName>

</FunctionName>
</QName>

</NameTest>
</NodeTest>

</AbbrevForwardStep>
</ForwardStep>

</AxisStep>
</PathExpr>

</ExprSingle>
</ForBinding>

</ForClause> <TOKEN>return</TOKEN>
<ExprSingle>
<c:SEQUENCE_CONSTRUCTOR needs-helper="yes">
<Constructor>
<DirectConstructor>
<DirElemConstructor> <TOKEN><</TOKEN>
<QName>
<FunctionName>
<QName>firstname</QName>

</FunctionName>

156

Implementing an XQuery/XSLT hybrid

</QName>
<TOKEN>></TOKEN>
<DirElemContent>
<CommonContent>
<c:XPATH>
<EnclosedExpr>
<TOKEN>{</TOKEN>
<Expr>
<VarRef>
<TOKEN>$</TOKEN>
<VarName>
<QName>
<FunctionName>
<QName>x</QName>

</FunctionName>
</QName>

</VarName>
</VarRef>

</Expr>
<TOKEN>}</TOKEN>

</EnclosedExpr>
</c:XPATH>

</CommonContent>
</DirElemContent>
<TOKEN></</TOKEN>
<QName>
<FunctionName>
<QName>firstname</QName>

</FunctionName>
</QName>
<TOKEN>></TOKEN>

</DirElemConstructor>
</DirectConstructor>

</Constructor>
</c:SEQUENCE_CONSTRUCTOR>

</ExprSingle>
</FLWORExpr>

</Expr>
</c:XPATH>

</VarDecl>
<Separator>
<TOKEN>;</TOKEN>

</Separator>
</CarrotModule>

</Carrot>

157

Implementing an XQuery/XSLT hybrid

All is well in XPathmode until the annotator comes across the Constructor instance
in the parse tree. It recognizes that as a non-XPath sub-expression and thus annotates
the result with <c:SEQUENCE_CONSTRUCTOR>. The "needs-helper" attribute is a signal
to the compiler that it will need to create an auxiliary function to implement the
given sequence constructor.

It then switches back to XPath mode once again when encountering the
EnclosedExpr instance.

Depending on the context in the stylesheet, therewill sometimes be a bias toward
XPathmode and sometimes a bias toward sequence constructormode. For example,
at the top level of a function definition, there's no choice but to start with a sequence
constructor (<xsl:functiondoesn't have a "select" attribute). Butwhenwe're gener-
ating a global <xsl:variable> element, we don't want to assume a bias toward se-
quence constructors if wewant to generate idiomatic code. For example, we'd rather
generate this:

<xsl:variable name="foo" select="3"/>

than the equivalent version using a sequence constructor:
<xsl:variable name="foo" as="item()*">
<xsl:sequence select="3"/>

</xsl:variable>

The advantage of separating out the expression categorization (step 2) from
XSLT generation (step 3) is that the two can be tweaked independently. For example,
if we wanted to continue improving the compiler's output in generating more
idiomatic XSLTwith regard to expression categorization,we can addmore scenarios
to annotate.xsl without affecting the subsequent XSLT generation stage.

How do we decide whether an expression needs to use a sequence constructor?
It depends on whether or not it's a valid XPath expression. Here's an excerpt from
annotate.xsl, which shows a list of all the non-XPath XQuery expressions:

<xsl:template mode="requires-sequence-constructor" match="*"/>
<xsl:template mode="requires-sequence-constructor" match=" TypeswitchExpr

| ValidateExpr
| ExtensionExpr
| OrderedExpr
| UnorderedExpr
| Constructor
| ►

QuantifiedExpr[TypeDeclaration]
| RulesetCall
| TextNodeLiteral

| FLWORExpr[LetClause
| ►

WhereClause
| ►

158

Implementing an XQuery/XSLT hybrid

OrderByClause
| ►

ForClause/ForBinding/TypeDeclaration
| ►

ForClause/ForBinding/PositionalVar
]">

<xsl:sequence select="true()"/>
</xsl:template>

I came upwith this list by clicking through the hyperlinked grammars in the XPath
2.0 and XQuery 1.0 specifications, respectively (opened in adjacent browser tabs).
Wherever the XQuery grammar deviated from the XPath 2.0 grammar, I noted the
exception. I could rely on this list because of the fact that "Any expression that is
syntactically valid and executes successfully in both XPath 2.0 and XQuery 1.0 will
return the same result in both languages." [1] Even though the FLWORExpr production
is not listed in the XPath 2.0 grammar, ForExpr, a subset of FLWORExpr, is allowed.
The above pattern delineates the subset of FLWORExpr that's unique to XQuery (and
thus requires a sequence constructor using <xsl:for-each>).

4.3. Step 3: Generate the XSLT
Once the parse tree has been simplified and annotated, it's time to convert it to
XSLT. Let's walk through an example of how this is done. The following template
rule converts a Carrot rule definition to an XSLT template rule in the output:

<xsl:template match="RuleDecl">
<out:template match="{c:xpath(Pattern)}">
<xsl:apply-templates select="ModeName[1],

Priority,
RuleParamList/ParamWithDefault"/>

<xsl:apply-templates select="Expr"/>
</out:template>

</xsl:template>

For the Pattern, we cannot safely output it unchanged into the resulting "match"
attribute. That's because the patternmight have a predicate containing a non-XPath
sub-expression (such as an element constructor, full FLWOR expression, etc.). For
that reason,we need to process it further, being sure to handle any nested expressions
that are categorized as sequence constructors. We defer this processing to the
c:xpath() function.We do the exact same thing elsewherewhen processing expres-
sions that need to be output as XPath in the result. For example, here's the rule for
processing Carrot ruleset invocations:

<xsl:template match="RulesetCall">

159

Implementing an XQuery/XSLT hybrid

<out:apply-templates select="{c:xpath(Expr)}">
<xsl:apply-templates select="ModeName,

RulesetCallParamList/InitializedParam"/>
</out:apply-templates>

</xsl:template>

Now let's look at the c:xpath() function itself:

<!-- Convert a parsed Carrot expression to XPath -->
<xsl:function name="c:xpath" as="xs:string">
<xsl:param name="carrot-expr"/>
<xsl:variable name="xpath" as="xs:string">
<xsl:value-of>
<xsl:apply-templates mode="xpath" select="$carrot-expr"/>

</xsl:value-of>
</xsl:variable>
<xsl:sequence select="$xpath"/>

</xsl:function>

Applying templates in the "xpath" modemakes use of XSLT's built-in template rule
for elements and text nodes (process children, and copy text, respectively). So, the
default, is to copy the expression text through unchanged—which works great for
XPath expressions. It's only when it encounters a sequence constructor annotation
that it needs to do something different, namely call out to a helper function:

<!-- Call a helper function from within XPath -->
<xsl:template mode="xpath" match="c:SEQUENCE_CONSTRUCTOR">
<xsl:value-of select="c:helper-name(.)"/>
<xsl:text>(</xsl:text>
<!-- Pass in all the necessary context -->
<xsl:apply-templates mode="helper-arg" select="c:helper-params(.)"/>
<xsl:text>)</xsl:text>

</xsl:template>

Elsewhere, we generate the helper functions at the top level of the stylesheet:
<!-- Delegate non-XPath expressions to stylesheet helper functions -->
<xsl:template mode="helper" match="c:SEQUENCE_CONSTRUCTOR[@needs-helper]">
<out:function name="{c:helper-name(.)}">
<xsl:apply-templates mode="helper-param" select="c:helper-params(.)"/>
<xsl:apply-templates select="."/>

</out:function>
<!-- Check for sub-expressions that also require help -->
<xsl:apply-templates mode="#current"/>

</xsl:template>

160

Implementing an XQuery/XSLT hybrid

And thuswe see another great reason to categorize expressions ahead of time. Since
we need to generate both the helper functions and the calls to them, separately, in
different places in the result, the annotations save us from having to detect the need
for them more than once. That work has already been done.

The rest of the task in generating XSLT is translating fromvarious Carrot/XQuery
constructs to XSLT. The following table shows some of themappings fromXQuery-
specific constructs:

Table 3. Some mappings from XQuery to XSLT

Translated to:In Carrot:
<xsl:for-each>with <xsl:variable>for
<xsl:variable>let
<xsl:if> or pulled into a predicatewhen
feasible

where

<xsl:sort>, but only under certain cir-
cumstances; see [2]

order by

<xsl:choose>typeswitch

5. Conclusion
This paper has described the current implementation of the Carrot parser and the
implementation progress of the Carrot compiler. If you're interested in participating
on this project in any way, join the [9]

A. Introduction to Carrot

A.1. Background and influences
Carrot is not the first XSLT-inspired project to provide a shorter syntax than XSLT
itself. Syntax shorthands have included Paul Tchistopolskii's XSLScript1, Sam
Wilmott's RXSLT2, and another project called XSLTXT3. Although none of these
projects provided direct inspiration for Carrot, they all address one of the same
desires that Carrot addresses: being able to program in XSLT more concisely.
However, unlike these projects, Carrot addresses more than XSLT's verbosity. It
also addresses XSLT's limited composability. For example, in XSLT you can't include

1 http://markmail.org/message/niumiluelzho6bmt
2 http://www.wilmott.ca/rxslt/rxslt.html
3 http://savannah.nongnu.org/projects/xsltxt

161

Implementing an XQuery/XSLT hybrid

http://markmail.org/message/niumiluelzho6bmt
http://www.wilmott.ca/rxslt/rxslt.html
http://savannah.nongnu.org/projects/xsltxt
http://markmail.org/message/niumiluelzho6bmt
http://www.wilmott.ca/rxslt/rxslt.html
http://savannah.nongnu.org/projects/xsltxt

an element constructor in a path expression (like you can in XQuery and Carrot) or
apply templates inside a path expression (which you can uniquely do in Carrot).

A more direct inspiration was James Clark's proposal for Unifying XSLT and
XQuery element construction4. Written during the early days of the W3C activity
on XQuery, that proposal suggested that XQuery and XSLT language constructs
could be used interchangeably if XQuery used an XML-based syntax (via a simple
document element wrapper). As we now know, things didn't turn out that way.
Carrot takes essentially the opposite approach. Rather than make XQuery use an
XML-based syntax like XSLT's, make XSLT (Carrot, actually) use a non-XML-based
syntax like XQuery's.

Carrot is also inspired byHaskell's syntax,which defines functions using pattern-
matching and an equation-like syntax.

A.2. Introduction by example
Carrot is best understood by example. Here's an example of XSLT's syntax for a
template rule (henceforth "rule"):

<xsl:template match="para">
<p>
<xsl:apply-templates/>

<p>
</xsl:template>

In Carrot, you'd write the above rule like this:
^(para) := <p>{^()}</p>;

There are a few things to note about the above. To define a rule in Carrot, you use
the same operator that XQuery uses for binding variables (:=). Everything on the
right-hand side up to the semi-colon is an expression in Carrot. An expression in
Carrot is simply an XQuery expression, plus some extensions. In this case, the ex-
pression is using the extended syntax for invoking rules:

^()

which is short for:
^(node())

just as:
<xsl:apply-templates/>

is short for:
<xsl:apply-templates select="node()"/>

4 http://www.jclark.com/xml/construct.html

162

Implementing an XQuery/XSLT hybrid

http://www.jclark.com/xml/construct.html
http://www.jclark.com/xml/construct.html
http://www.jclark.com/xml/construct.html

All rules belong to a ruleset (equivalent to a "mode" in XSLT). The above examples
use the unnamed ruleset (there's just one of these). Here's an example that belongs
to a ruleset named "toc":

^toc(section) := { ^toc() };

The above is short for:
<xsl:template match="section" mode="toc">

<xsl:apply-templates mode="toc"/>

</xsl:template>

Here's the identity transform in Carrot:
^(@*|node()) := copy{ ^(@*|node()) };

This recursively copies the input to the output, one node at a time.
Here's a Carrot script that creates an HTML document with dynamic content

for its title and body, converting <para> elements in the input to <p> elements in
the output:

^(/) :=
<html>
<head>
{ /doc/title }

</head>
<body>
{ ^(/doc/para) }

</body>
</html>;

^(para) := <p>{ ^() }</p>;

As a comparison, here's what you'd have to write if you were using regular XSLT:
<xsl:transform version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>
<head>
<xsl:copy-of select="/doc/title"/>

</head>
<body>
<xsl:apply-templates select="/doc/para"/>

</body>
</html>

</xsl:template>

163

Implementing an XQuery/XSLT hybrid

<xsl:template match="para">
<p>
<xsl:apply-templates/>

</p>
</xsl:template>

</xsl:stylesheet>

Just as in XSLT, rules in Carrot can be associatedwithmore than onemode. In XSLT,
this template rule belongs to two modes:

<xsl:template mode="foo bar" match="bang"/>

Here's the equivalent rule in Carrot, belonging to two rulesets:
^foo|bar(bang) := ();

A.3. Carrot definitions
A Carrot module consists of a set of unordered definitions. Unlike XQuery, there is
no distinction between main modules and library modules. Likewise, a Carrot
module has no "body." Instead, there are only definitions. Carrot is more like XSLT
in this regard. Also unlike XQuery, Carrot modules need not be associated with a
namespace.

There are three kinds of definitions in Carrot:
• global variables,
• functions, and
• rules.

A.3.1. Global variables

Aglobal variable definition is very similar to a variable declaration in XQuery, except
that you don't need the "declare variable" verbiage. Whereas in XQuery you would
write:

declare variable $foo := "a string value";

In Carrot you would instead write:
$foo := "a string value";

A.3.2. Functions

A function definition is just like a function declaration in XQuery except that you
don't need the "declare function" verbiage and, instead of curly braces, you use the

164

Implementing an XQuery/XSLT hybrid

same binding operator (:=) as a variable definition. For example, whereas in XQuery,
you would declare functions like this:

declare function my:foo() { "return value" };
declare function my:bar($str as xs:string) as xs:string { upper-case($str) };

In Carrot, you would instead write:
my:foo() := "return value";
my:bar($str as xs:string) as xs:string := upper-case($str);

Whynot just use the regular XQuery syntax? Two reasons: conciseness (lower signal-
to-noise ratio) and consistency (with the other two types of definitions).

A.3.3. Rules

The third type of definition is a rule. This corresponds to a template rule in XSLT.
For example, this rule matches any element node (*):

^foo(*) := "return value";

Unlike a function definition, the "argument" of a rule definition ("*" in the above
case) is not an (optional) formal parameter list; instead it is a required pattern (as
XSLT defines a pattern). Thus, it's illegal to have an empty set of parentheses in a
rule definition:

^foo() := "return value"; (: NOT LEGAL :)

Note the asymmetry with ruleset invocations, where it is legal to call ^foo(), which
is short for ^foo(node()).

Of course, rules can also have parameters (just as template rules can have para-
meters in XSLT). The syntax for declaring these is very similar to an XQuery function
parameter list, except that it comes after the pattern and is separated from the pattern
by a semicolon:

^foo(* ; $str as xs:string) := concat($str, .);

Carrot also supports tunnel parameters, as in XSLT. To indicate a tunnel parameter,
you add the keyword "tunnel" before the parameter:

^foo(* ; tunnel $str as xs:string) := concat($str, .);

Unlike XQuery functions, parameters in a rule are identified by name, not position.
Thus the syntax for passing them looks very similar to how they are declared, and
the order of parameters is insignificant. The following expression applies the "foo"
ruleset to the context node, passing the tunnel parameter $str with the value "Hello":

^foo(. ; tunnel $str := "Hello")

What about conflict resolution amongmultiple matching rules? Carrot behaves the
same as XSLT: rules with higher import precedence win, followed by rules with

165

Implementing an XQuery/XSLT hybrid

higher priority. Default priority is based on the syntax of the pattern, just as in XSLT.
You can also specify the priority explicitly (right before the binding operator :=), as
in the first rule of this example, which explicitly sets the priority to 1:

^author-listing(author[1]) 1 := ^();
^author-listing(author) := ", " , ^();
^author-listing(author[last()]) := " and " , ^();

A.4. Carrot expressions
The right-hand side of a Carrot definition, whether it be a variable, function, or rule,
is a Carrot expression. The context for the expression evaluation is the same as it is
for sequence constructors within a template rule in XSLT. For example, the context
node is the node matched by the rule's pattern.

A Carrot expression is an XQuery expression with some extensions:
• ruleset invocations — ^mode(nodes)

• shallow copy{…} constructors
• text node literals — `my text node`

Let's look at each of these extensions in turn and the rationale behind each one.

A.4.1. Ruleset invocations

Ruleset invocations (i.e., "apply-templates" in XSLT) are largely Carrot's raison d'etre.
They are not possible in XQuery; thus, the extension is required. Not only that, but
XSLT can't invoke rules (apply templates) in an expression either. In Carrot, all
definitions are bound to an expression, so the only way to "do" anything is to write
an expression. (Unlike XSLT, Carrot does not make a distinction between "instruc-
tions" and "expressions"; everything is an expression.)

A.4.2. Shallow copy constructors

Shallow copy constructors are possible in XSLT but not XQuery. The difference
between a copy constructor and using an XQuery element constructor is that, in the
latter case, the namespace context comes from the query rather than the source
document. XQuery allows you to perform deep element copies from the source
document, but not shallow copies.Without this ability, modified identity transforms
are impractical in XQuery. The semantics of Carrot's copy constructor are essentially
the same as XSLT's <xsl:copy> instruction. For example, when the context node is
not an element node, it behaves the same as if a deep copy were being performed.

166

Implementing an XQuery/XSLT hybrid

Note
XSLT 2.1/3.0 promises to add a "select" attribute to <xsl:copy> to make it
convenient to perform a shallow copy of a node other than the context node.
This is largely unnecessary in Carrot, since copy constructors can be easily
composed within an expression, making it convenient to write, for example,
foo/copy{…}.

A.4.3. Text node literals

Carrot also adds text node literals, using the back-tick (`) for the delimiter. This ex-
tension may at first seem to be of minimal value, since XQuery already allows you
to construct text nodes using text{…}, and strings using quotes (or apostrophes).
However, in practice, text node literals will often be the preferred syntax, as the
following examples should make clear. Consider the following template rules in
XSLT:

<xsl:template mode="file-name" match="doc">doc</xsl:template>
<xsl:template mode="file-ext" match="doc">.xml</xsl:template>

<xsl:template match="/doc">
<result>
<xsl:apply-templates mode="file-name" select="."/>
<xsl:apply-templates mode="file-ext" select="."/>

</result>
</xsl:template>

In Carrot, you might naturally rewrite the above as follows:
^file-name(doc) := "doc";
^file-ext (doc) := ".xml";
^(/doc) := <result>{ ^file-name(.), ^file-ext(.) }</result>

The problem is that this will produce an undesired result:
<result>doc .xml</result>

The extra space results because of the way in which sequences of atomic values are
combined to make a text node in XQuery. Contiguous sequences of text nodes, on
the other hand, are merged together without any intervening spaces, so you could
fix things by using explicit text node constructors:

^file-name(doc) := text{"doc"};
^file-ext (doc) := text{".xml"};

The problem here is that it may be an edge case with a large syntactic cost if you
want to cover your bases (six extra characters for every text node). If in 90% of cases,
using a string will result in the exact same behavior as if you had used a text node,
youwill be strongly tempted as a user to use quotes instead of text{…} everywhere.

167

Implementing an XQuery/XSLT hybrid

However, you will get bugs in the remaining 10% of your code because of the way
sequences of strings are concatenated to make a text node in XQuery.

Whereas it's more verbose in XQuery to construct a text node (using text{…})
than it is to return a string (using quotes), it's more verbose in XSLT to return a
string (using <xsl:sequence>) than it is to return a text node (using a literal text node
in the stylesheet). Text node literals in Carrot address this imbalance by making it
equally convenient to create text nodes and strings. Thus, we naturally rewrite our
Carrot definitions to get the desired result, without having to think about whether
this is an edge case or not:

^file-name(doc) := `doc`;
^file-ext (doc) := `.xml`;

The existence of text node literals makes it easy to follow a simple rule: use text
node literals when you are constructing part of a result document; use string literals
when you know you want to return a string.

A.4.4. Expression semantics

Expressions in Carrot, unless otherwise noted here, are assumed to have the same
semantics as in XQuery. Carrot operates on exactly the same data model as XQuery
1.0 and XPath 2.0.

One exception is that namespace attribute declarations on element constructors
in Carrot do not affect the default element namespace for XPath expressions. Carrot
is more like XSLT in this regard, in that it makes a distinction between the default
namespace for input documents and the default namespace for output documents
("xpath-default-namespace" in XSLT), thereby correcting what is arguably a design
bug in XQuery.

A.4.5. What about xsl:for-each, xsl:for-each-group, etc.?

Given that XQuery expressions do not include everything that it's possible to do in
an XSLT template rule, that begs the question: What do all the XSLT instructions
get mapped to in Carrot? In many cases, Carrot simply does not have an analogue.
In some cases, that's because XQuery already provides a different way to achieve
the same use case. For example, <xsl:for-each> does not have a direct analogue in
Carrot. For iteration over a sequence, you can use "for" expressions, or even just "/"
when applicable. The following Carrot (and XQuery) expression constructs a new
<bar> element for each <foo> element, rendering <xsl:for-each> unnecessary for this
case: foo/<bar/>. Similarly, Carrot does not support <xsl:sort>. For sorting sequences
in Carrot, you would instead use "order by", as in XQuery. Local variables are
defined using "let" expressions. Etc.

168

Implementing an XQuery/XSLT hybrid

The biggest area not currently addressed byCarrot—andwhich remains an open
question—is how to perform grouping. There are a few answers to this question,
not all mutually exclusive:
1. Extend Carrot to support grouping.
2. Import an XSLT 2.0 stylesheet when you need grouping.
3. Wait for grouping to be added to XQuery 3.0 expressions and use those.
At this stage, the operative answers to this question are #2 and #3.

Designing support formultiple output documents (corresponding to <xsl:result-
document> in XSLT) and how it interacts with document{} node constructors is on
my TODO list. (If you have ideas, I'd be happy to hear them.)

Bibliography
[1] Boag, Scott – Chamberlin, Don – Fernández, Mary F. - Florescu, Daniela – Robie,

Jonathan – Siméon, Jérôme: XQuery 1.0: An XML Query Language (Second
Edition). W3C Recommendation, 14 December 2010. http://www.w3.org/TR/
xquery/#id-introduction

[2] Carlisle, David: XQ2XML: Transformations onXQueries. Slide #19 of XMLPrague
2006 presentation. http://www.xmlprague.cz/2006/slides06/carlisle/
dpc-prague2006-19.html

[3] Carlisle, David: XQ2XML project site. http://monet.nag.co.uk/xq2xml/
[4] Fokoue, Achille – Rose, Kristoffer – Siméon, Jérome – Villard, Lionel: Compiling

XSLT 2.0 into XQuery 1.0. Paper at WWW2005. http://www2005.org/cdrom/
docs/p682.pdf

[5] Rademacher, Gunther: REx Parser Generator. online utility http://
www.bottlecaps.de/rex/

[6] Lenz, Evan: Carrot: An appetizing hybrid of XQuery and XSLT. Paper. Balisage
2011. http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html

[7] Lenz, Evan: Carrot: An appetizing hybrid of XQuery andXSLT. Slide presentation.
Balisage 2011. http://www.slideshare.net/evanlenz/
carrot-an-appetizing-hybrid-of-xquery-and-xslt

[8] Carrot: An appetizing hybrid of XQuery and XSLT. Project site. https://
github.com/evanlenz/Carrot

[9] Carrot. Google Group site. http://groups.google.com/group/carrot-xml
[10] Tchistopolskii, Paul: XSLScript. Email announcement on xml-dev, 13 October

2000. http://markmail.org/message/niumiluelzho6bmt
[11] Wilmott, Sam: RXSLT. project site. http://www.wilmott.ca/rxslt/rxslt.html

169

Implementing an XQuery/XSLT hybrid

http://www.w3.org/TR/xquery/#id-introduction
http://www.w3.org/TR/xquery/#id-introduction
http://www.xmlprague.cz/2006/slides06/carlisle/dpc-prague2006-19.html
http://www.xmlprague.cz/2006/slides06/carlisle/dpc-prague2006-19.html
http://monet.nag.co.uk/xq2xml/
http://www2005.org/cdrom/docs/p682.pdf
http://www2005.org/cdrom/docs/p682.pdf
http://www.bottlecaps.de/rex/
http://www.bottlecaps.de/rex/
http://balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://www.slideshare.net/evanlenz/carrot-an-appetizing-hybrid-of-xquery-and-xslt
http://www.slideshare.net/evanlenz/carrot-an-appetizing-hybrid-of-xquery-and-xslt
https://github.com/evanlenz/Carrot
https://github.com/evanlenz/Carrot
http://groups.google.com/group/carrot-xml
http://markmail.org/message/niumiluelzho6bmt
http://www.wilmott.ca/rxslt/rxslt.html

[12] XSLTXT. project site. http://savannah.nongnu.org/projects/xsltxt
[13] Clark, James: Unifying XSLT and XQuery element construction. 27 May, 2001.

http://www.jclark.com/xml/construct.html

170

Implementing an XQuery/XSLT hybrid

http://savannah.nongnu.org/projects/xsltxt
http://www.jclark.com/xml/construct.html

Transform.xq
A Transformation Library for XQuery 3.0

John Snelson
MarkLogic Corporation

<john.snelson@marklogic.com>

Abstract

It has long been held that one of the use cases for which XSLT [3] excels over
XQuery [1] is document transformation. With its central rule based template
engine and extensibility features, specifying and customising a transformation
are straightforward. Although XQuery users have achieved transformation
capabilities using recursive functions and type switch expressions, these have
been found lacking in the expressiveness of the pattern syntax, and the extens-
ibility of the resulting transformation code.

XQuery 3.0 [2] provides many powerful new features which extend the
boundaries of what can be accomplished in an XQuery program. This paper
introduces Transform.xq, an XQuery 3.0 module which implements rule based
transformations using higher order functions. It further extends this library
with automatic construction of template "modes" using reflection extensions
to examine the XQuery 3.0 annotations on functions designated for use as
template rules.

1. Introduction
The power of XQuery 3.0 means that many things that used to fall firmly into the
realm of language extensions are now possible in the language itself. The principle
language mechanisms that provide this extensibility are higher order function
support and function annotations.

The Transform.xq library uses these XQuery 3.0 features and others to address
the shortcomings of XQuery when describing transformations. A look at its design
will not only help XQuery programmers to take advantage of the power of declar-
ative transformations, butwill also equip them to create similarly powerful XQuery
libraries - providing functionality that was previously only possible by extending
the XQuery language itself.

171

2. Head First into XQuery 3.0
Since XQuery 3.0 is still very new to most people, this paper won't assume a good
understanding of its features. Instead, it will adopt a "head's first" tutorial approach,
and explain the features from XQuery 3.0 as they become relevant to the topic at
hand.

2.1. Creating a Mode

let $mode := tfm:mode((
tfm:rule("section/title", function($mode, $node) {
<h2>{ $mode($node/node()) }</h2>

}),
tfm:rule("article/title", function($mode, $node) {
<h1>{ $mode($node/node()) }</h1>

}),
tfm:rule("section", function($mode, $node) {
<div>{ $mode($node/node()) }</div>

}),
tfm:rule("article", function($mode, $node) {
<html>
<head><title>{ $node/title/string() }</title></head>
<body>{ $mode($node/node()) }</body>

</html>
})

))
return $mode(<article>...</article>)

The tfm:mode() function is a quintessential higher order function, both accepting
a sequence of rules as functions, and returning a function itself. The function returned
by tfm:mode() can be called with a node as argument in order to execute the trans-
formation specified by the rules on that node.

The new type of expression passed into the tfm:rule() function calls is an inline
function. It defines the parameter names and body of an anonymous function. That
function is then returned as a value, and passed into tfm:rule() as an argument.

You can see that the function returned by tfm:mode() is assigned to the $mode
variable, and that function is then called in the return clause, using the new but fa-
miliar trailing parentheses notation.

These two new expressions form the bulk of the higher order functions feature
in XQuery 3.0. In addition you can reference a named function as an expression
using its name followed by a hash (or pound if you're from the US) sign and the
arity (the number of arguments the function accepts) like this: tfm:mode#1.

172

Transform.xq

2.2. The Main Transform.xq Functions

declare function tfm:mode(
$rules as (function(xs:string) as function(*)?)*

) as function(node()*) as item()* { ... };

Looking at the function signature for tfm:mode(), you can see some new Sequence-
Type syntax that can be used to check the type of functions. The SequenceType
function(*) matches any function, whist the more specific function types specify
the parameter types and return type of the function.

The sequence of rules passed into tfm:mode() as an argument are actually
functions from xs:string to function(*)?. The tfm:rule() function returns a special
wrapper function that encapsulates the information about a rule, and returns that
information when passed the correct string as an argument.

declare function tfm:rule(
$pattern as xs:string,
$action as function(

function(node()*) as item()*,
node()

) as item()*
) as function(xs:string) as function(*)?
{
tfm:predicate-rule(tfm:pattern($pattern), $action)

};

The tfm:rule() function takes the pattern to match as a string, and the action
to perform as a function. The action function itself takes the mode function, and the
matched node as arguments. The pattern string is passed to tfm:pattern(), which
compiles the pattern into a predicate function.

declare function tfm:predicate-rule(
$predicate as function(node()) as xs:boolean,
$action as function(

function(node()*) as item()*,
node()

) as item()*
) as function(xs:string) as function(*)?
{
function($k as xs:string) as function(*)?
{
switch($k)
case "predicate" return $predicate
case "action" return $action
default return ()

173

Transform.xq

}
};

Patterns are a useful special case for the more general predicate function. More
complex matching behaviour that cannot be specified using the pattern syntax can
be acheived using tfm:predicate-rule() and a custom predicate function. A rule
is considered to match if the predicate function returns true - if it returns false or
raises an error, then the rule does not match.

The tfm:predicate-rule() function returns an inline function that wraps the
predicate and action. Thiswill be returned by the new rule functionwhen the strings
"predicate" and "action" are passed in as arguments. This demonstrates the closure
of the inline function - the variables $predicate and $action from the surrounding
scope are available from the body of the inline function, and the inline function
carries (or closes over) their values with it, even though the variables may not be
in scope where the function is evaluated. This facility forms the basis for creating
many new data structures with XQuery 3.0.

You can also see an example of another XQuery 3.0 expression, the switch ex-
pression. This behaves like typeswitch but chooses a branch depending on the value
of the operand rather than its type.

3. Pattern Matching
The tfm:pattern() function takes a string containing a subset of XSLT 2.0 pattern
syntax, and compiles it into a single predicate function. This subset currently excludes
predicates andmatching using an element or attribute's type, but there is opportunity
to add these features in the future using calls to implementation specific eval func-
tions. A grammar for the pattern syntax currently supported is included in Ap-
pendix A.

3.1. Parsing Patterns
To parse the pattern strings, Transform.xq uses a REx [5] generated parser. REx is
an excellent parser generator by Gunther Rademacher, which has the option of
targeting XQuery. The generated parser is then executed to create an XML parse
tree - effectively the source string marked up with XML elements spanning every
grammar production and token thatwasmatched. This turns out to be a very effect-
ive method of parsing using XQuery - rather than executing specific XQuery code
associated with each production (as is often done with parser generators), the
compile stage essentially becomes a transformation of the parse tree document
produced by the parser.

174

Transform.xq

3.2. Compiling Patterns

declare %private function pat:compile-nametest($prev, $qn, $resolver)
{
typeswitch($qn)
case element(NCNameColonStar) return
let $prefix := substring-before($qn,"*")
let $ns :=
namespace-uri-from-QName($resolver($prefix || "fake"))

return function($n) {
namespace-uri($n) eq $ns and
(empty($prev) or $prev($n/..))

}
case element(StarColonNCName) return
let $localname := substring-after($qn,"*:")
return function($n) {
local-name($n) eq $localname and
(empty($prev) or $prev($n/..))

}
case element(Star) return
function($n) {
empty($prev) or $prev($n/..)

}
case element(QName) return
let $name := $resolver($qn)
return function($n) {
node-name($n) eq $name and
(empty($prev) or $prev($n/..))

}
default return error(xs:QName("tfm:BADNAMETEST"),
"Invalid name test: " || $qn)

};

At the heart of the transformation to compile the pattern, the
pat:compile-nametest() function creates functions which check the element or at-
tribute has the correct name. The predicate function for the previous step in the
path is provided in the $prev argument. The parse tree node in $qn contains the
nametest, and the function uses the typeswitch style of XQuery transformation 1,
to select the correct inline function for it.

The inline functions follow a common pattern: After checking for the correct
name, they then call the previous step's predicate function with the parent node if
the function exists. This chains the special purpose name testing functions together

1Hopefully the last time I have to write this style of transformation in XQuery - alas it's not possible to
bootstrap Transform.xq with itself in this case!

175

Transform.xq

into a single function, using the closure mechanism. Suitably clever XQuery imple-
mentations will be able to partially specialize the functions produced in this way
such that they produce optimized function bodies equivalent to a hand written
function.

4. Modes

declare function tfm:mode(
$rules as (function(xs:string) as function(*)?)*

) as function(node()*) as item()*
{
let $map := fold-left(tfm:add-rule#2, map:create(), $rules)
return tfm:run-mode($map,?)

};

The tfm:mode() function returns a single function which applies the mode. This is
created using partial application to specialize the private tfm:run-mode() function
with the processed rules. Partial application specifies some arguments for a function,
and uses the question mark ("?") syntax to represent missing arguments. It results
in a functionwith reduced arity, which accepts themissing arguments when called.

4.1. Rule Matching Optimization
The mode is executed by searching the rules for one whose predicate matches the
node being transformed. Done naively this would result in a linear search through
the rules for the one which applies. A common optimization in XSLT engines is to
store template rules by the type of node which they match. This allows the set of
potentially matching rules to be narrowed quickly.

In Template.xq, this optimization is performed by looking at the type of the ar-
gument accepted by the predicate function. The pattern parser is careful to return
a predicate function with the most specific argument type it can, so that the rule is
optimized well. Custom predicate functions can also take advantage of this optim-
ization by declaring their argument to be one of the primary node types (element(),
attribute(), etc.).

declare %private function tfm:add-rule($map,$rule)
{
let $predicate := $rule("predicate")
return
if(not($predicate instance of function(*))) then
error(xs:QName("tfm:BADPREDICATE"),
"The predicate should be a function")

else if(function-arity($predicate) ne 1) then

176

Transform.xq

error(xs:QName("tfm:BADPREDICATE"),
"The predicate should have arity 1")

else
let $map := if($predicate instance of
function(element()) as xs:boolean)
then tfm:add($map,"element",$rule) else $map

let $map := if($predicate instance of
function(attribute()) as xs:boolean)
then tfm:add($map,"attribute",$rule) else $map

let $map := if($predicate instance of
function(document-node()) as xs:boolean)
then tfm:add($map,"document",$rule) else $map

let $map := if($predicate instance of
function(comment()) as xs:boolean)
then tfm:add($map,"comment",$rule) else $map

let $map := if($predicate instance of
function(text()) as xs:boolean)
then tfm:add($map,"text",$rule) else $map

let $map := if($predicate instance of
function(processing-instruction()) as xs:boolean)
then tfm:add($map,"pi",$rule) else $map

return $map
};

When a function $f is matched against a function type, the return type of $f must
be a subtype of the expected return type. However, the argument types of $fmust
be supertypes of their expected types. This is because a function is logically allowed
to be more permissive in what it accepts compared to what it is expected to accept.

This means that if $f has the signature function(node()) as xs:boolean it will
match the function types function(element()) as xs:boolean,
function(attribute()) as xs:boolean, and function(node()) as xs:boolean (to
name a few). This fact is used in the tfm:add-rule() function to find all predicates
that will match each of the permissable node types.

Having determined the types of nodes a predicate functionwill match, rules are
stored in amap indexed by node type, in order to quickly narrow the set of applicable
rules to test.

4.2. For the Lack of Maps
The previous optimization relies on the ability to update and retrieve a set of rules
by the type of node that they match. This requires some kind of map facility in the
language.

177

Transform.xq

Sadly the XSLT 3.0 maps feature arrived too late to make it into XQuery 3.0.
What's a standards conformant library supposed to do? Implement maps using
higher order functions, or course! That's exactlywhat the RBTree.xq library [6] does.

declare function map:create(
) as function() as item()*
{ ... };

declare function map:put(
$map as function() as item()*,
$key as item(),
$value as item()*

) as function() as item()+
{ ... };

declare function map:get(
$map as function() as item()*,
$key as item()

) as item()*
{ ... };

Using a similar closure technique to that used by tfm:predicate-rule() to wrap
rules, RBTree.xq provides an efficient implementation of an immutable red-black
tree [7], and uses that to implement a general purpose map data structure in pure
XQuery 3.0.

4.3. Extending Modes
One of the powerful features of XSLT is theway thatmodes can be extendedwithout
altering the original stylesheet. Since there is an extensible map data structure at
the heart of a mode function, it is also possible to extend Transform.xq mode func-
tions.

declare %private variable $tfm:magic as element() := <magic/>;

declare function tfm:extend-mode(
$mode as function(node()*) as item()*,
$rules as (function(xs:string) as function(*)?)*

) as function(node()*) as item()*
{
let $map := $mode($tfm:magic)
let $map := fold-left(tfm:add-rule#2, $map, $rules)
return tfm:run-mode($map,?)

};

178

Transform.xq

A special private global variable is defined, $tfm:magic, which can be passed to a
mode function in order to return themap of rules that it contains. This takes advant-
age of the fact that constructed elements each have a unique identity by matching
themode function's input nodes against $tfm:magic using the is operator. It is then
a simple matter of using the original mode's map as the base case for constructing
the extended mode's map.

5. Using Annotations to Create Modes
Wouldn't it be nice to make the definition of Transform.xq modes more like XSLT?
It is much simpler to be able to declare template rules at the top level, without
having to go through the process of constructing a sequence of rules, and then
constructing amode function from them. XQuery 3.0 function annotations open up
an opportunity to do just that.

declare %tfm:rule("html","article/title",10)
function local:html1($mode, $node)
{
<h1>{ $mode($node/node()) }</h1>

};

declare %tfm:rule("html","title")
function local:html2($mode, $node)
{
<h2>{ $mode($node/node()) }</h2>

};

declare %tfm:rule("html","section")
function local:html3($mode, $node)
{
<div>{ $mode($node/node()) }<div>

};

declare %tfm:rule("html","article")
function local:html4($mode, $node)
{
<html>
<head><title>{ $node/title/string() }</title></head>
<body>{ $mode($node/node()) }</body>

</html>
};

let $mode := tfm:named-mode("html")
return $mode(<article>...</article>)

179

Transform.xq

Function annotations start with a "%" followed by a QName, and then optionally
by a sequence of string or numeric literals contained in parentheses. XQuery 3.0
defines the %private annotation itself, but allows implementations and users to add
their own annotations to functions as well.

Transform.xq uses the %tfm:rule annotation to declare a mode name, pattern,
and optional numeric priority on an action function defined in a query prolog. The
tfm:named-mode() function can then be used to return the mode function, given the
mode name as argument. The priority field is use to order the rules, with a higher
priority rule being tried for a match before a lower priority rule.

5.1. On Reflection
Unfortunately the XQuery 3.0 specification doesn't contains any reflection capabil-
ities to allow named function discovery and inspection of annotations. However,
given modest extension functions, we can easily implement tfm:named-mode().

declare function tfm:named-mode(
$name as xs:string

) as function(node()) as item()*
{
tfm:mode(
for $f in xdmp:functions()
where xdmp:annotation($f, xs:QName("tfm:mode")) = $name
let $predicate := xdmp:annotation($f, xs:QName("tfm:pattern"))
return tfm:rule($predicate, $f)

)
};

The MarkLogic specific experimental function xdmp:functions() can be used to
return every named (top-level) function that is known about anywhere in the cur-
rently executing query, whilst xdmp:annotation() will return an annotation value
from it's function argument, given a name as an xs:QName. These two simple functions
are sufficient to implement the tfm:named-mode() funtionality, as well as a great
many other interesting uses for function annotations.

5.2. Platform Independence
The presence of such implementation specific functions in anXQuerymodulewould
mean that themodule could not be executed on a different XQuery implementation
when using XQuery 1.0. Historically, this has been a major headache to anyone
hoping to implement a cross-platform library in XQuery. However, new XQuery
3.0 functionality gives us away towrite such libraries and still use platform specific
functions when available.

180

Transform.xq

declare %private function tfm:functions(
) as function() as function(*)*?
{
(
function-lookup(
fn:QName("http://marklogic.com/xdmp","xdmp:functions"),0)

)[1]
};

The fn:function-lookup() function takes the name of a function and it's arity
as arguments and returns the function if it is in-scope, or the empty sequence if it
doesn't exist. This provides both a way to check if the function exists, and a way to
call that function or recover gracefully. Transform.xq uses this technique to adapt
to work with difference platform specific reflection APIs, or to return a useful error
message otherwise.

6. Future Enhancements
There's plenty of scope for expanding this library in the future. I'd like to implement
predicates containing numeric literals, simple path expressions, and comparisons.
I don't have the appetite to implement a full XPath 2.0 interpreter in XQuery itself,
but using the fn:function-lookup() trick I could implement anypredicate expression
using implementation specific eval functions. Another possibility that struck me as
interestingwas the possibility of implementingCSS selectors as an alternative pattern
syntax.

7. Conclusion
XQuery 3.0 includes many powerful features that will vastly increase the scope of
what can be achieved using the language. Transform.xq is a simple to use yet
powerful library that significantly extends the capabilities of XQuery. However the
techniques the library uses have the potential to be used for the creation of any
number of new and as-yet unimagined libraries.

Transform.xq is available under the Apache License v2 from GitHub2.

A. EBNF for the Pattern Syntax
This appendix uses the same notation as the XQuery specification [2]. Non-terminals
not explicitly defined by this paper are references to non-terminals in the XQuery
grammar.

2 http://github.com/jpcs/transform.xq

181

Transform.xq

http://github.com/jpcs/transform.xq
http://github.com/jpcs/transform.xq

Pattern ::= PathPattern ('|' PathPattern)*
PathPattern ::= ('/' | '//')? RelativePathPattern
RelativePathPattern ::= PatternStep (('/' | '//') PatternStep)*
PatternStep ::= (ChildAxis | AttributeAxis)? NodeTest
ChildAxis ::= 'child' '::'
AttributeAxis ::= 'attribute' '::' | '@'

NodeTest ::= KindTest
| NameTest

NameTest ::= QName
| NCNameColonStar
| StarColonNCName
| Star

KindTest ::= DocumentTest
| ElementTest
| AttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

DocumentTest ::= 'document-node' '(' ')'
AttributeTest ::= 'attribute' '(' (QName | Star)? ')'
ElementTest ::= 'element' '(' (QName | Star)? ')'
AnyKindTest ::= 'node' '(' ')'
TextTest ::= 'text' '(' ')'
CommentTest ::= 'comment' '(' ')'
PITest ::= 'processing-instruction' '('
(NCName | StringLiteral)? ')'

Bibliography
[1] XQuery 1.0: An XML Query Language (Second Edition)1.
[2] XQuery 3.0: An XML Query Language2.
[3] XSL Transformations (XSLT) Version 2.03.
[4] Carrot: An appetizing hybrid of XQuery and XSLT.4. Evan Lenz.
[5] REx Parser Generator.5. Gunther Rademacher.

1 http://www.w3.org/TR/2010/REC-xquery-20101214/
2 http://www.w3.org/TR/2011/WD-xquery-30-20110614/
3 http://www.w3.org/TR/2007/REC-xslt20-20070123/
4 http://www.balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
5 http://www.bottlecaps.de/rex/

182

Transform.xq

http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2011/WD-xquery-30-20110614/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://www.bottlecaps.de/rex/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2011/WD-xquery-30-20110614/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.balisage.net/Proceedings/vol7/html/Lenz01/BalisageVol7-Lenz01.html
http://www.bottlecaps.de/rex/

[6] RBTree.xq: A red/black tree implemented using XQuery 3.0 higher order functions.6.
John Snelson.

[7] Red-Black Trees in a Functional Setting7. Chris Okasaki. Journal of Functional
Programming, 9(4):471-477, July 1999.

6 https://github.com/jpcs/rbtree.xq
7 http://www.eecs.usma.edu/webs/people/okasaki/pubs.html#jfp99

183

Transform.xq

https://github.com/jpcs/rbtree.xq
http://www.eecs.usma.edu/webs/people/okasaki/pubs.html#jfp99
https://github.com/jpcs/rbtree.xq
http://www.eecs.usma.edu/webs/people/okasaki/pubs.html#jfp99

184

Building Bridges from Java to XQuery
A new approach to invoke XQuery functions from Java as if they

were Java methods.
Charles Foster

<charles@xqj.net>

Abstract

The Java ecosystem surrounding relational databases has enjoyed years of
improvements such as a standardmeans to invoke stored SQL code from JDBC
and time-saving object relational mapping (ORM) frameworks such asHibern-
ate.

For Java programmers working with XQuery [1] and XML databases,
there is the XQuery API for Java (XQJ); however it lacks the means to invoke
stored XQuery code and currently provides no answer to the very successful
ORM paradigm.

This paper introduces a novel, RPC style approach to calling XQuery from
Java. Through the use of Java reflection, Java programmers are now able to
invoke XQuery functions as if they were regular Java methods, with ease.

As for parameters and return types of both Java methods and XQuery
functions, Java data types are mapped to XDM [2] data types according to
the rules described in the XQJ specification. Additionally, POJOs [3] are
mapped to XML which may save programmers a great deal of time, just as
ORM technologies have done for SQL.

This paper proposes extensions to the XQJ APIs as well as discussing some
initial implementations, namely MarkLogic, eXist and Sedna XQJ APIs.

Keywords: XQuery, Java, XQJ

1. Introduction
The XQuery API for Java provides a standard way to submit XQuery expressions
to anXQueryprocessor and themeans to handle their consequential result sequences.

The XQJ API is to XML databases and XQuery processors as the JDBC API is to
relational databases and SQL, but lacks a standard way of invoking stored XQuery
code, e.g. invokable XQuery modules or XQuery module functions.

Since JDBC 2.0, Java acquired a standard means to invoke stored procedures
within relational databases. Stored procedures were stored directly in the database
and thus can reduce compilation overhead, network traffic and enabledprogrammers
to embed business logic as an API in the database.

185

XQuery being a dual query and functional programming language is perfectly
placed to offer exactly the same service.

This paper proposes extensions to the XQJ interfaces which would allow pro-
grammers to call stored XQuery module functions as if they were regular native
Javamethods with great ease, introducing an RPC/Service like model to Java's rela-
tionshipwith XQuery processors. Example implementations of these XQJ extensions
are available forMarkLogic, eXist and Sedna and can be found at the xqj.netwebsite1.

1.1.1. Summary of Contributions

• Introduces the notion of calling XQuery functions from Java as if they were
native regular Java methods.

• Introduces an RPC/Service-like model to Java's relationship with XQuery pro-
cessors.

• Introduces binding Java interfaces to XQuery library modules, enabling easy
switching of XQuery implementations.

2. Related Work

2.1. Invoking XQuery Main Modules from Java with XCC
The MarkLogic XCC Driver2 allows programmers to invoke an XQuery main
module3whichmay be storedwithin aMarkLogic Server through its ModuleInvoke
interface. Programbehavior can be altered by binding Java values to XQuery external
variables defined in the main module, the result of this invocation then produces
an XQuery result sequence which must then be handled by the programmer.

While achieving the goal of invoking stored XQuery code, the approach may
not be intuitive to the seasoned Java developer who is taking their first tentative
footsteps in the exotic new world of XQuery, especially when they can see that
XQuery functions are available which appear to bare some vague similarity, at least
in concept, to Java methods. Many are left wondering if they could just invoke the
XQuery functions directly, but ultimately accept the status quo.

2.2. Invoking XQuery Functions from Java with Saxon
Saxon APIs for instance, do have the ability to call XQuery functions directly from
Java. (see Appendix A).

1 xqj.net http://www.xqj.net/
2 MarkLogic XCC http://developer.marklogic.com/products/xcc/5.0
3 Main Module Definition http://www.w3.org/TR/xquery/#dt-main-module

186

Building Bridges from Java to XQuery

http://www.xqj.net/
http://developer.marklogic.com/products/xcc/5.0
http://www.w3.org/TR/xquery/#dt-main-module

Once obtaining an XQueryExpression (essentially an XQuery main module), the
programmer can then get a handle on an XQuery function via obtaining a
UserFunction.

From there, aside from the necessity to create a Controller instance, the XQuery
function can be invoked by using the UserFunction's call method, but this is not
entirely straight-forward.

If the XQuery function accepts parameters, regular Java values must first be
converted into a descendant of ValueRepresentation which is responsible for de-
scribing XDM data.

The result of calling the XQuery function from Java will also return a
ValueRepresentation which the programmer must then handle and convert back
into a regular Java value or values.

This definitely achieves the goal of invoking XQuery functions from Java.
However, this approach requires quite a degree of boilerplate code. Conversion
between XDM and Java data types adds complexity and thus is not entirely pro-
grammer friendly.

2.3. Redstone XML RPC Library and Java Proxies
Greger Olsson's XML-RPC implementation [4] has a novel approach to invoking
XML-RPC web services from Java. Like both XQJ and JAXB specifications, it has
default mapping rules for converting between Java data types and XML-RPC data
types. Most importantly, through the use of Java proxies [5], an XML-RPC web
service can be defined as a regular Java interface. So Java programmers can invoke
XML-RPC web services as if they were Java methods.

3. Invoking XQuery Functions from Java

3.1. Defining the approach
XML in Java is a second class citizen, neither XML or any of the XDM data types
are native data types as they are in XQuery.

So far, Java APIs for parsing, processing and transforming XML have been a
little inelegant, so approaching the problemwith an unconventional approachmay
not be such a bad idea.

Conceptually, XQuery functions bare some resemblance to Java methods.
This paper discusses using a regular Java interface as a facade for an arbitrary

XQuery library module4, where by each Java interface method relates directly to
an XQuery library module's function.

4 Library Module Definition http://www.w3.org/TR/xquery/#dt-library-module

187

Building Bridges from Java to XQuery

http://www.w3.org/TR/xquery/#dt-library-module

Javamethod signatures are mapped to XQuery function signatures by adhering
to the Java / XDM data type mapping rules defined in the XQuery API for Java
Specification [6].

Invoking a Java interface method would in turn invoke the according XQuery
function, marshalling Java parameter values into XDM values as necessary. The
XQuery result would then be unmarshalled back into a Java value that is compatible
with the Java method's return type.

An implementation of this approach would likely need to use Java reflection,
specifically dynamic proxies [5]. TheMarkLogic, eXist and Sedna XQJ implementa-
tions found at xqj.net all use Java reflection to achieve this. However, any XQJ im-
plementation could also implement these interfaces.

3.2. A Simple Example

3.2.1. XQuery Library Module

Consider the following very simple XQuery library module, which contains three
very simple functions.

module namespace eg = "http://www.example.com";

declare function eg:contains-any-of
($arg as xs:string?,
$searchStrings as xs:string*) as xs:boolean

{
some $searchString in $searchStrings
satisfies fn:contains($arg,$searchString)

};

declare function eg:word-count
($arg as xs:string?) as xs:integer

{
fn:count(fn:tokenize($arg, '\W+')[. != ''])

};

declare function eg:multiply
($a as xs:float, $b as xs:float) as xs:float

{
$a * $b

};

3.2.2. Java Interface Definition

Nowconsider the following Java interface as a facade for the XQuery librarymodule.

188

Building Bridges from Java to XQuery

public interface Example
{
public boolean containsAnyOf(String arg, String... searchStrings);

public int wordCount(String arg);

public float multiply(float a, float b);
}

This raises some points to address.
Firstly, Javamethod names are not identical to XQuery function names andwith

good reason. Aside from the fact that Java methods can not contain hyphen charac-
ters, there is amismatch between Javamethod naming conventions 5 and commonly
accepted XQuery function naming conventions6. As such, XQuery function names
will be identical to Java method names, with one caveat.

When translating XQuery function names to Java method names, hyphens are
dropped and instead cause the following letter to be capitalized. For example, the
XQuery function name hours-from-duration would translate to the Java method
name hoursFromDuration. The default name translation behavior, can also be over-
ridden (see Overriding default behavior with Annotations).

Secondly, the XQuery function eg:word-count returns a value with an XDM
type xs:integer, which leaves the possibility that the returned valuemay fall outside
the primitive int range. However, this is allowed for simplicity's sake. It is the im-
plementation's responsibility to convert the returned XDM value into an instance
of the method's expected return type. If the implementation is unable to perform
the mapping; an exception is thrown. In this instance, int could be replaced with
numerous other return types, such as BigInteger, long or XQItem.

Thirdly, the containsAnyOf Java method signature includes a tailing varargs 7

parameter; this maps quite well to the eg:contains-any-of XQuery function which
declares its last parameter with an XDM sequence type of xs:string*. The Java
method has been declared this way out of convenience, but the method could also
have been declared in any one of the following ways.

public boolean containsAnyOf(String arg, String[] searchStrings);
public boolean containsAnyOf(String arg, List<String> searchStrings);
public boolean containsAnyOf(String arg, XQItem[] searchStrings);

5 Java Language Specification (Second Edition). 6.8.3 Method Names http://java.sun.com/docs/books/
jls/second_edition/html/names.doc.html#34563
6 XQuery Style Conventions. 5.2 Function declarations. http://xqdoc.org/xquery-style.pdf
7 http://download.oracle.com/javase/1,5.0/docs/guide/language/varargs.html

189

Building Bridges from Java to XQuery

http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#34563
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#34563
http://xqdoc.org/xquery-style.pdf
http://download.oracle.com/javase/1,5.0/docs/guide/language/varargs.html

3.2.3. Client Code

By using an XQJ implementation, which also implemented the interface defined in
Appendix B, the following code would then be possible.

Example example =
XQConnection2.createXQModuleProxy(
"http://www.example.com",
"/modules/example.xqy",
Example.class

);

boolean contains =
example.containsAnyOf("abc", "bc", "xy");

int totalWords =
example.wordCount("The quick brown fox jumps over the lazy dog");

float product =
example.multiply(3f, 4f);

Some XML databases differentiate between stored XQuery modules by module
namespaces and have no concept of module URIs8. By making the library module
namespace URI and library module URI arbitrary, the XQuery implementation can
be switched with ease, even at runtime, if necessary.

3.3. Overriding default behavior with Annotations

3.3.1. Java Method to XQuery Function Name Translation

Overriding default name translation behavior is achieved by using the
XQFunctionName annotation which is declared in Appendix C.

Sometimes, default name translation behaviormay cause unsuitable results. For
instance, a programmer wishing to use the method insertXMLContent probably
doesn't want its ultimate XQuery function endpoint to be called
insert-x-m-l-content. Instead they would probably prefer insert-xml-content.

Consider the following example, which shows themeans to override the default
name translation behavior.

public interface MyXMLStore
{
@XQFunctionName("insert-xml-content")

8 Sedna Programmer's Guide, 2.5.5 Managing Modules http://www.sedna.org/progguide/
ProgGuidesu8.html#x14-570002.5.5.

190

Building Bridges from Java to XQuery

http://www.sedna.org/progguide/ProgGuidesu8.html#x14-570002.5.5.
http://www.sedna.org/progguide/ProgGuidesu8.html#x14-570002.5.5.

public void insertXMLContent(Source xmlSource);
}

3.3.2. Java to XDMData Type Mapping

There are rules to convert Java primitives and objects to XDM data types defined
in section 14.2 of the XQJ specification [6]. Methods accepting regular Java values
as parameterswill map to XDM types for XQuery functions according to these rules.

Overriding default value mapping rules is achieved by using the XQCastAs an-
notation which is declared in Appendix D.

Consider the following XQuery function, which accepts a single parameter that
has an XDM type of document-node(element()).

declare function insert-content(
$uri as xs:string,
$value as document-node(element()))

{
xdmp:document-insert($uri, $value)

};

A Java interface which declares the method signature public void
insertContent(String uri, Source value)would suffice. However, the user may
wish to use a String as the content's value, e.g. public void insertContent(String
uri, String value), but by default the implementation may try to map value to
an xs:string instance.

Consider the following example, which shows themeans to override the default
Java value to XDMmapping behavior.

public interface MyXMLStore
{
public void insertContent(
String uri,
@XQCastAs("document-node(element())") String value

);
}

3.4. Plain Old Java Objects Mapping
POJO [3] to XML mapping is not new concept, XStream9 is a notable example of a
Java package which does this very successfully.

As well as defining default mapping rules for regular Java and XDM data types
which are included in Appendix E for reference; the XQJ specification [6] implies

9 XStream http://xstream.codehaus.org/

191

Building Bridges from Java to XQuery

http://xstream.codehaus.org/

thatwhenmapping Java data types not covered in the specification (e.g. user-defined
POJOs), behavior should be implementation-defined.

When invoking anXQuery function via a Java proxywhere the XQuery function
accepts parameters of XDM types such as document-node(element()) or element(),
regular POJO instances can be used instead of common readable XML sources, such
as JAXP Source or StAX XMLStreamReader instances.

The XQJ implementation is expected to marshal the POJO instances to an XML
structure for the XQuery function, where all the POJO's descendent member fields
are also mapped to XML elements or attributes. Furthermore, the member fields
are serialized according to the defaultmapping rules defined by theXQJ Specification
(14.2) [6].

A Java interface methodmay also define its return type as a user-defined POJO,
in this case the XQuery function must return a document-node(element()) or a
element() which when unmarshalled is compatible with the POJO definition. The
XQJ implementation is responsible for unmarshalling the XML document to a new
POJO instance. If the XQJ implementation is unable to unmarshal the returning
XDM item into the defined POJO, an exception is thrown.

This approach allows Java to deal solely with regular Java types and POJOs
while allowing XQuery to solely deal with atomic XDM data types and XML.

The approach of binding POJOs to XQuery function parameters and their return
types is complementary to and does not exclude using regular Java representations
of an XML readable source such as Source, XMLStreamReader or even InputStream.
A JAXBContextmay also be used, but mapping will then be controlled externally.

Just as object to relationalmapping tools likeHibernate10 has saved programmers
time with relational databases, this technique used in conjunction with XQJ may
save programmers' time with XML databases and XQuery. This approach doesn't
intend to act as a Hibernate or ORM replacement, instead simply offers a practical
solution for handling POJOs with XQuery and XML databases. Furthermore, the
ORMprogramming paradigmdoes have its imperfections, largely due to an object-
relational impedance mismatch11. The act of shredding tree like Java objects into
separate relational tables and back again lacks a degree of elegance whereas the
approach of serializing tree like Java objects into XML documents, which can then
be stored as conceptual units of information in an XML database, is perhaps more
intuitive and elegant than the ORM paradigm could ever hope to achieve.

3.4.1. A Simple POJO Use Case

Consider the following data-centric XML document

10 Hibernate http://www.hibernate.org/
11 Object-relational impedance mismatch http://en.wikipedia.org/wiki/
Object-relational_impedance_mismatch

192

Building Bridges from Java to XQuery

http://www.hibernate.org/
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

<person>
<first-name>John</first-name>
<last-name>Smith</last-name>
<date-of-birth>1970-04-12</date-of-birth>
<phone-numbers>
<number>123-789<number>
<number>789-123<number>

</phone-numbers>
</person>

Because the XML document's data model is data-centric, it can easily be mapped
to Java objects.

Consider the following Java code which describes the data model of a person
XML document.

class Person
{
String firstName;
String lastName;
XMLGregorianCalendar dateOfBirth;
PhoneNumbers phoneNumbers;

}

class PhoneNumbers
{
public PhoneNumbers(String[] number) {
this.number = number;

}

String[] number;
}

Instances of these POJO classes can now be used as Javamethod parameters, where
the XQJ implementation is responsible formarshalling the POJO instance into XML
for the XQuery function. Also, a Java interface method can return an instance of
these POJO classeswhere the XQJ implementation is responsible for unmarshalling
XML documents into POJO instances.

Now consider the following Java interface code, which acts as a facade for an
arbitrary XQuery library module chosen at runtime.

public interface PersonStore
{
public Person getPerson(String uri);

public void insertPerson(String uri, Person person);
}

193

Building Bridges from Java to XQuery

Note that the Java interface allows a POJO to be used as both a method parameter
as well as a return type.

Consider the following XQuery library module implementation, which is com-
patible with the defined Java interface.

module namespace ps = "http://www.person-store.com";

declare function ps:get-person(
$uri as xs:string) as element(person)?

{
fn:doc($uri)/element()

};

declare function ps:insert-person(
$uri as xs:string,
$person as element(person))

{
xdmp:document-insert($uri, $person)

};

Now that POJO definitions are created, along with a Java interface facade and an
XQuery library module, consider the following Java code.

PersonStore personStore = XQConnection2.createXQModuleProxy(
"http://www.person-store.com",
"/modules/person-store.xqy",
PersonStore.class);

Person john = new Person();

john.firstName = "John";
john.lastName = "Smith";
john.dateOfBirth = DatatypeFactoryImpl.newXMLGregorianCalendar("1970-04-12");
john.phoneNumbers = new PhoneNumbers(
new String[] { "123-789", "789-123" }

);

personStore.insertPerson("/john-smith.xml", john);
john = null; // John is gone!

john = personStore.getPerson("/john-smith.xml"); // Welcome back John!

The above example creates a Person POJO instance and persists it into the database
only to then to lose the local reference. A POJO instance that would have been equal
to the lost instance12 is then retrieved from the database.

12 Users must supply the equals(Object) and hashCode()methods on their POJOs.

194

Building Bridges from Java to XQuery

The XQJ implementation is not expected to keep track of node or object identity,
while trivial for an IntraVM XQuery engine, such functionality in a client/server
based implementation would be very difficult to achieve.

3.4.2. POJOMapping Complications

This approach lends itself well to data-centric XML structures, but is incompatible
with document-centric XML structures which contain mixed content.

While developing a proof of concept implementation for MarkLogic, eXist and
Sedna XQJ APIs, XStream was used. XStream's default mapping of Java data types
toXDMdata types is incompatiblewith themappingdefinedby theXQJ specification
[6]. As such, custom XStream Converter code had to be written in order for the
POJO/XML mapping of regular Java data types to be consistent with the mapping
rules outlined in the XQJ specification.

4. Code Generation
Java interfaces as facades for XQuery librarymodules can be hand-crafted depending
on how the programmer wishes data types to be mapped at runtime.

However, someXQuery librarymodulesmay have a sizeable amount of complex
functions which would make hand-crafting Java interfaces not only irksome, but
prone to human error.

Conversely, creating an XQuery library module implementation based on a
complex Java interface may also prove tiresome and be susceptible to human error.

The xquery2java command line program performs static analysis of a user-
defined XQuery library module, identifying function signatures and generating a
compatible Java interface, which can then be used as a Java facade for the XQuery
module.

The java2xquery command line program performs the inverse operation of
xquery2java, by reading a Java interface source or compiled class file, then generating
an XQuery library module stub where the XQuery functions do nothing, but have
strictly typed signatureswhich are then ready to be fleshed outwith actualworking
code.

5. Conclusion
This paper has shown the possibility of a simple, convenient and practical new ap-
proach to invoking XQuery code from the Java environment. It also proposes an
answer to the successful ORM programming paradigm which relational databases
have enjoyed for years and is well overdue in the XML/XQuery world.

The XQJ interface extensions proposed in this paper currently work within the
MarkLogic, eXist and Sedna XQJ implementations, but there is no reasonwhy other

195

Building Bridges from Java to XQuery

vendors could not also follow suit. If the proposals outlined in this paper become
successful, there may be an argument for adding them to the next official release
of the XQJ specification.

6. Acknowledgements
Thanks go to Jim Fuller, Adam Retter and Dr. Stephen Foster who greatly helped
me by giving advice and reviewing this paper. Thanks also go to Miguel De Melo
for providing motivation and inspiration.

A. Saxon code example for invoking XQuery functions
Configuration config = new Configuration();
StaticQueryContext sqc = config.newStaticQueryContext();

XQueryExpression exp1 = sqc.compileQuery(
"declare namespace f='f.ns';" +
"declare function f:t1($p as xs:integer) { $p * $p };" +
"declare function f:t2($p as xs:integer) { $p + $p };" +
"1"

);

QueryModule qm = exp1.getStaticContext();

UserFunction fn1 = qm.getUserDefinedFunction("f.ns", "t1", 1);
UserFunction fn2 = qm.getUserDefinedFunction("f.ns", "t2", 1);

Controller controller = exp1.newController();

IntegerValue[] arglist = new IntegerValue[1];
for (int x=1; x<1000000; x++) {
arglist[0] = IntegerValue.makeIntegerValue(BigInteger.valueOf(x));
ValueRepresentation v1 = fn1.call(arglist, controller);
ValueRepresentation v2 = fn2.call(arglist, controller);
System.err.println("Returned product " + v1 + "; sum =" + v2);

}

196

Building Bridges from Java to XQuery

B. Subset of the XQConnection2 Java interface
This is a subset of the XQJ2 (XQJ Squared)1 interface, which is an experimental API
built on top of the XQJ interfaces. This extension's approach is similar to the StAX2
(StAX Squared) Interfaces2.

package com.xqj2;

import javax.xml.xquery.*;

public interface XQConnection2 extends XQConnection
{
public <T> T createModuleProxy(
String namespaceUri,
String moduleUri,
Class<T> clazz) throws XQException;

public <T> T createModuleProxy(
String namespaceUri,
String moduleUri,
Class<T> clazz,
XQStaticContext properties) throws XQException;

/** Other XQJ2 Methods **/
}

C. The XQFunctionName Annotation
package com.xqj2.proxy;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(value = RetentionPolicy.RUNTIME)
public @interface XQFunctionName
{
public String value();

}

1 XQJ2 API interfaces https://github.com/cfoster/xqj2
2 "StAX2" API. Tatu Saloranta. http://docs.codehaus.org/display/WSTX/StAX2

197

Building Bridges from Java to XQuery

https://github.com/cfoster/xqj2
http://docs.codehaus.org/display/WSTX/StAX2

D. The XQCastAs Annotation
package com.xqj2.proxy;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(value = RetentionPolicy.RUNTIME)
public @interface XQCastAs
{
public String value();

}

E. XQJ's Java Data Type to XDMData Type mapping table

Table E.1. Java Data Type Default XQuery Data Type(s)

XDMData TypeJava Data Type
xs:booleanboolean
xs:bytebyte
xs:hexBinarybyte[]
xs:doubledouble
xs:floatfloat
xs:intint
xs:longlong
xs:shortshort
xs:booleanjava.lang.Boolean
xs:bytejava.lang.Byte
xs:floatjava.lang.Float
xs:doublejava.lang.Double
xs:intjava.lang.Integer
xs:longjava.long.Long
xs:shortjava.lang.Short
xs:stringjava.lang.String
xs:decimaljava.math.BigDecimal
xs:integerjava.math.BigInteger

198

Building Bridges from Java to XQuery

XDMData TypeJava Data Type
depending on Duration Object state, one
of the following; xs:dayTimeDuration,
xs:yearMonthDuration, xs:duration,
xs:date, xs:dateTime, xs:gDay, xs:gMonth,
xs:gMonthDay, xs:gYear, xs:gYearMonth,
xs:time

javax.xml.datatype.Duration

xs:QNamejavax.xml.namespace.QName
document-node(element(*, xs:untyped))org.w3c.dom.Document
document-node(element(*, xs:untyped))org.w3c.dom.DocumentFragment
element(*, xs:untyped)org.w3c.dom.Element
attribute(*, xs:untypedAtomic)org.w3c.dom.Attr
comment()org.w3c.dom.Comment
processing-instruction()org.w3c.dom.ProcessingInstruction
text()org.w3c.dom.Text

Bibliography
[1] XQuery 1.0: An XMLQuery Language (Second Edition)W3CRecommendation.

1

[2] XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C Recommendation. 2

[3] Plain Old Java Object 3

[4] Redstone XML-RPC Library - Greger Olsson. Redstone. 4

[5] Engineering Java™ Proxy Objects using Reflection - Karen Renaud and Huw
Evans. University of Glasgow. 5

[6] XQuery API for Java™ (XQJ) 1.0 Specification - Spec Lead: Jim Melton, Oracle.
Editor: Marc Van Cappellen, DataDirect Technologies. March, 2009

1 http://www.w3.org/TR/2010/REC-xquery-20101214/
2 http://www.w3.org/TR/xpath-datamodel/
3 http://en.wikipedia.org/wiki/Plain_Old_Java_Object
4 http://xmlrpc.sourceforge.net/
5 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.2217&rep=rep1&type=pdf

199

Building Bridges from Java to XQuery

http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/xpath-datamodel/
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
http://xmlrpc.sourceforge.net/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.2217&rep=rep1&type=pdf

200

AWiki-basedSystem for Schema andData
Evolution
Lorenzo Bossi

Dept. of Biology, Informatics and Communication (BICOM) – Insubria University
<lorenzo.bossi@uninsubria.it>

Alberto Trombetta
Dept. of Biology, Informatics and Communication (BICOM) – Insubria University

<alberto.trombetta@uninsubria.it>

Abstract

The community of users of a large data-driven web site may directly contribute
to its management by feeding corrections and new additions, thus keeping
“fresh” the information provided by the site. However, several issues may
arise due to the fact that users may modify data in a more or less controlled
way. Starting from a real-world scenario, we point out such issues and we
present a simple and efficient framework. The proposed solution has been im-
plemented in a XML-based prototype framework, that have been tested with
large, real-world datasets.

1. Introduction
Large electronic commerce sites allow users to actively participate in collecting
feedback information about items and products available on such sites. Typically,
users may add comments and rank or tag items according to their preferences.
Typically, the information provided by e-commerce sites’ users is used for providing
tailored recommendations to them and as the functionalities offered by to the users
for adding andmanipulating information are very limited: users typically can only
add comments to the items and rate them, according to some ranking criteria. Fol-
lowing the recent trend of community-based information management [DRC06,
Doa07, BCLM11] – according towhich the informationmay be directlymanipulated
by end users –we propose to augment the “expressive power” of tools users employ
in organizing and managing the semistructured (XML-based) information they
provide about items, in order to allow an expressive and useful structuring of the
information itself. As such, users may add and structure information about items
(or even add new items) of their interest. We adopt an approach inspired by wikis,
in which users may structure the data they provide in complex ways and manage
it in a collaborative way.

201

Our application scenario (see Section 1.1) deals with a vast number of XML
documents containing information about items as shown on a large e-commerce
site, and since such information is not completely unstructured, our framework
assumes that each document may (possibly in a loose way) adhere to one of a relat-
ively small number of schemas (thereon called templates).

Henceforth, usersmay create andmodify both documents and their correspond-
ing templates. Furthermore users may interact by modifying documents and tem-
plates created by other users as well, thus adding and modifying information in a
collaborativeway (of course, such interactions have to be regulated by proper access
policies and trust/reputation mechanisms stating which users may modify which
data. In the present work we do not deal with such issues). Having the users such
possibilities entails that our system has to take into account the interplay occurring
among amodified template and the corresponding (unmodified) documents.More
precisely the system, enforcing the constraints about the document structure, sup-
ports users in finding ill-formed documents by allowing them to improve their
content.

While supporting a community-based approach for updating documents and
templates offers the advantage in keeping information up to date (provided by
users’ feedbacks), such approach poses several non-trivial questions about the correct
management of such information. In particular, (i) when and how updates on tem-
plates are reflected on the corresponding documents? (ii) How to manage the roll-
backs of unwanted (possibly malicious) updates without erasing subsequent licit
ones? And how such rollbacks on templates affect the corresponding documents?

This may be non-trivial tasks, as we will argue in the following. As for point (i)
above, the problems we incur in dealing with a community-inspired data manage-
ment approach come from the existence of integrity constraints that are expressed
in a template and that the corresponding documents have to satisfy; whereas for
point (ii), the difficulties arise in guaranteeing the maximum possible number of
updates without losing validity of documents with respect of their templates.

In fact classical wikis handle structured data through the use of infoboxes [14],
but they don’t support any kind of constraint enforcement which can guarantee the
uniformity of pages which use them.

The framework we present in this work is based on XML Schema [TMBM04,
MB04] for the definition of the basic structure of templates, on Schematron [8] for
the definition of more complex integrity constraints and on a XQuery Update-like
language for the query language. As it is well known, updating XML documents
in a consistent way is a far from trivial task [4] and our work can be summarized
as follows.

Our Contributions. In this paper, we focus on the following main topics:
i. describe the prototype for a wiki focused on store and manage semistructured

data,

202

AWiki-based System for Schema and Data Evolution

ii. define ad-hocmethods for automatic documents evolutionupon template change,
iii. propose a new kind of revision control system that is centered on how to min-

imize loss of newdata andmaximize data coherence in case of template rollback,
iv. define a simple, ad-hoc, XML-based data model to store data and an XQuery

like update language for it.
We remark thatwe do not address relevant issues concerning access control policies
to documents and templates (and the corresponding enforcement). We are aware
of the paramount relevant of such aspect and we plan to work on them in the near
future.

1.1. Our motivating scenario
As a real-world example of a large repository of relatively small and relatively
uniform documents, we consider the price comparison service http://
www.shoppydoo.it. Such site holds the large majority of the market share in Italy
with more than 2 million users and it has a very significant presence in other
european countries (e.g. Spain, France, Germany, Netherlands) and non-european
as well (e.g. Brazil). More details on data volumes are detailed in Section 5.

The site stores information aboutmore than 1million items, grouped in roughly
one hundred categories. Items are described in pages containing their technical
details. Such information is displayed in concise and tabular form for letting users
quickly find and compare items.

For example, the information about technical details about digital camera must
specify brand andmodel, as well as camera resolution andmemory support. Other
less relevant – but still useful information – may comprise the presence of features
like an image stabilizer or a face detector, etc.

The users of such site form an online community that may create, update and
share information about items by interactingwith the site itself. At the present time,
the site does not allow its users to actively participate in the management of the
displayed information. Our long-term goal is to provide community-based inform-
ation capabilities to a large, e-commerce-based web site.

Thus, for example, in the case that the user Alice notices that the page describing
her preferred camera reports incorrect information about its resolution, she can
correct it. Further, Bob is a more active user and notes that almost every digital
camera is able to connect to a PC and thus explicitly specifying such information is
useless. As such, he decides tomodify the digital camera template in order to remove
such information from every corresponding document.

In what follows we present methods and techniques that allow users to directly
manage suchupdates and to control the interplay betweendocuments and templates.
We will present in a more detailed way the actions performed by such users, as we
unfold our motivating scenario in the following sections.

203

AWiki-based System for Schema and Data Evolution

http://www.shoppydoo.it
http://www.shoppydoo.it

2. Related Works
To the best of our knowledge, the most mature work closest to ours is present in
[2] in which the authors describe a prototype for a wiki for structured data. The
main difference between our project consist that they manage only one (usually
fairly big) XMLdocument. It turns out that the considered schemas are simpler than
ours: for example, they do not allow to specify the type of the data but only the tree
structure. Rather, the author focus on query language issues. They are developing
a powerful query language which let to select only a fragment of the XML based
on various constraints which can involve also annotation on nodes. Finally they
support only two types of schema updates: insertion that happen automatically
when inserting a data which require a schema extension and deletion which delete
also the corresponding data subtree.

Other works deal only with the schema evolution. We think that the most im-
portant for our context are [9] in which the authors propose a conceptual model for
XML Schema evolution. They use a graphical environment to define schemas and
schemas update. Then some normalizations are performed on updates tominimize
their. After schemaupdate, they recheck document validity and perform adocument
update. But there’s noway to update node values on documents. Another interesting
work is [7], where the authors define a set of update primitives for XML Schema.
They study which evolution primitives are known not to compromise documents
validity. Then, they use a labeling process to keep track of the document portions
whose validity might have been compromised so they can revalidate only subtree
to speedup the process. Their approach to documents evolution consist on the de-
tection of the minimal modifications required to make the documents valid for the
evolved schema. But only document structure can evolve, not document data.

3. Documents and Templates
We customarily represent a document as an XML tree. For example, a document
containing information about a given digital camera may be structured in the fol-
lowing – rather conventional –way: the camera’smodel is stored in an alphanumeric
string, its megapixel capacity is an integer number, the supported memory is a
single value chosen from a set of alphanumeric strings. Further, we add a section
elementwhich is used to group related elements under a section name. Each element
name is unique in its section.

Templates are defined in a way similar to what proposed by Examplotron [13].
We have chosen such approach for its ease of use (see Section 3.2). Thus, we define
a template as an instance of a empty document, where each element has an addi-
tional boolean attribute specifyingwhether it is mandatory or not in the documents.

More formally, a document is composed by data nodes and elements nodeswhere:
a data node contains only a string value; an element node is a tuple associated with a

204

AWiki-based System for Schema and Data Evolution

name, a type and a set of children nodes; Elements may have simple or complex
types, where complex types are in {enum, values, section} and simple types are in
{int, float, str, bool}. The type of an element node defines restrictions on the set of
children nodes. That is,
i. simple type elements and enum elements children set must contain only a data

node;
ii. values elements children set must be a non empty set of distinct data nodes;
iii. section element children sets can be only a non empty list of children elements

with distinct names (in this way, elements can be found without ambiguity).
As such, the document is an unordered tree of section and value elements, where
the root is a section element.

A template is composed by template elements which are similar to documents’
one. In addition, they have an extra boolean mandatory attribute. Every template
has to satisfy the following constraints:
i. template elements of simple type must have an empty set of children;
ii. template elementswith type values or enummust have a non empty set of distinct

data nodes;
iii. template elements with type section must have a non empty set of children ele-

ments with distinct names.
As for documents, a template is an unordered tree where root element is a template
section element.

A document is valid, of course we assume the well-formedness, if all data nodes
contain values that:
i. an integer, if the type of parent node is int;
ii. a float, if the type of parent node is float;
iii. a boolean, if the type of parent node is bool;
iv. a non empty string, if the type of parent node is str.
A document is valid with respect to a template if and only if:
i. it is valid (see above);
ii. all document’s elements are also present in the template with the same name

and the same type;
iii. all template’s elements with mandatory set has a corresponding element in the

document;
iv. the children of enum, values and section elements of the document are also children

of the corresponding template’s elements.

205

AWiki-based System for Schema and Data Evolution

3.1. Our scenario, continued
As one may suspect, documents and templates are stored in XML files. Document
elements are serialized in XML nodes where the tag name defines the node type
and the name is stored in an attribute. For example an elementModel of type string
is serialized as <str name="Model">Z80</str>.

Templates enforce the information type of complex element, in such a way that
theWiewfinder can be one of optical or LCD, while Extra featuremust be one or more
between a list of valid values. Templates XMLs are very similar to documents’ one,
the main difference is that simple elements are empty and that every element has
an attribute mandatory which contain a boolean value. For example the element
Model in a template is <str name="Model" mandatory="true"/>

3.2. Validation of documents
We use XML Schema [MB04, TMBM04] to validate documents and templates as
serialized XML documents. This first step validates the overall structure of XML
documents. Regarding documents, XML Schema is used to check that they are
structured in sections containing the named values and the correct types of simple
elements’ values. Regarding templates, XML Schema is used to check sections, the
uniqueness of name into their sections and the presence of a mandatory boolean
attribute for each element.

As said before, users specify templates as an empty document. As such, in order
to validate a document with respect to some template, templates themselves have
to be rewritten in some suitable XML schema language.

We use Schematron [8] since its assertion rule validation style makes error re-
porting clearer and the usage of XPath constraints allows the definition of constraints
over unordered sets of context-dependent elements. Furthermore, Schematron
checks the presence of mandatory elements, the absence of illegal elements and the
correctness of values and enum children elements. The conversion from a template
to its corresponding Schematron schema is performed by an XSLT stylesheet [3].

As already pointed out, the main advantage in writing templates in the above
presentedXML format is its compact and easily readable syntax, that can be promptly
deployed by the community users.

3.3. Evolution of templates and documents
Returning to our motivating scenario, since Bob reputes very important to know if
a digital camera is able to record videos, he adds a new boolean mandatory field
called video recording in the camera template.We note that this kind of update inval-
idates all the documents associated to the corresponding template. We patch this

206

AWiki-based System for Schema and Data Evolution

problem adding a special page showing all invalid documents to let active users of
the community perform updates on such documents, to restore their validity again.

3.3.1. Interacting with templates and documents

Community users can read, create and modify documents and templates. After a
document is updated, the following steps are performed: (i) check whether the
document is valid according to the corresponding XML Schema, if this is not the
case, reject the update; (ii) otherwise get the associated template and translate it
into a Schematron document; (iii) validate the document with the corresponding
Schematron to check if it complieswith the template and return the validation results.

A template update can (i) leave all associated documents valid (for example, the
insertion of a newvalue in an enumeration); (ii) invalidate all associated documents
(for example, adding a mandatory element in a mandatory section); (iii) require a
necessary update and consequent re-checking of all associated documents (for ex-
ample, deleting an element); or, finally, (iv) leave the documents in an unpredictable
state, regarding their validity (for example, an optional value becomesmandatory).
In this case, the only way to discern the documents’ validity is to re-check them all.
Since cases (iii) and (iv) are similar, because (iv) is like (iii) with an empty update,
we treat them in the same way.

The update language we propose allows community users to create and update
elements’ types, their name, mandatory fields, add, modify and delete elements.

Since the community users may perform updates on templates and documents
defined by the previously defined data model, we do not need the full expressive
power of XQuery Update Facility [4] and, thus, our update language is basically a
simplified version of XQuery Update. First, we define the element selector as a
string that allows to find an element in unambiguous way. It is formed by the ele-
ment name preceded by all sections name separated by the slash sign (e.g. /Digital
camera/Brand).We also define a data selector as the selector of its container followed
by a slash sign followed by the data text value wrapped by brackets (e.g. /Digital
camera/Supported memory/[CompactFlash]). Those selectors can be easly translated
into XPath [1] expressions. The latest example in XPath is written
/*/*[@name='Digital camera']/*[@name='Supported
memory']/*[text()='CompactFlash'].

3.3.2. Evolution of documents

In this sectionwe describe our document update language and how each command
can be translated in an XQuery Update statement.

Every command that we had defined take a selector as parameter. Whether it
is an element selector or a data selector is first transformed into an XPath selector

207

AWiki-based System for Schema and Data Evolution

while the command is recognized and translated into a valid XQuery Update
statement.

A usermay delete either a data or element nodewith the command delete node
<selector>. In this casewe need only to translate the selector to have a valid update.

Add new data into a document let a user to fill values list. This operation is
performed by the command insert data(text) into <elementSelector> which
is converted into insert node <value>text</value> into <xpathSelector>.

Since the most of elements node need a data child to be valid (all simple and
enum types) we provide the command insert node(type, name, value) into
<elementSelector> to insert both of them. When translated into XQuery Update,
such command becomes insert <type name="name">value</type> into
<xpathSelector>. Differently, section and values elements have may child nodes, so
we need an overload for this command that doesn’t require a value.

The last command we describe is for replacing the value of a data node. Its
syntax is replace value of <selector> with <newval> and is translated intoXQuery
Update in replace <xpathSelector>/text() with 'newval'

3.3.3. Evolution of templates

Template evolution is more difficult because for every defined command we need
not only to update – of course – the template but also to decide whether the docu-
ments associated have to be modified as well and, in the affirmative case, perform
such updates. It is important to note that our node selectors (and the translated
XPath equivalents) are valid both on documents and templates.

To add a new field on template specify we should specify the name, the type
and if this information is to be mandatory. This operation is performed with the
instruction insert node(type, elName, isMandatory) into <elementSelector>,
which we translate it into XQuery Update with insert <type name='elName'
mandatory='isMandatory'/> into <xpathSelector>. If the inserted node is not
mandatory, after this update documents are still valid. If the inserted node is man-
datory and all ancestors sections are mandatory too, after this update all associated
documents are nomore valid.Otherwise all associateddocumentmust be re-checked
to define if they are still valid.

Another useful command is similar to the last one but lets user to specify a default
value for the new elements. The template update is equal to the last one, but in this
case we have also the following document update insert <type
name='elName'>defaultVal</type> into <xpathSelector>.

New data nodes can be added to an enum or values element with insert
data(val) into <elementSelector>. This update preserves validity of documents
and can be written in XQuery Update as insert <value>val</value> into
<xpathSelector>.

208

AWiki-based System for Schema and Data Evolution

The command change type <elementSelector> with newType is useful to change
the type of an element. The template and document XQuery Update is rename node
<xpathSelector> as newType. Is important to note that, depending on the update
and on the old data, document validity could be preserved after this update.

In a similar way, to change the name of an element we use changename
<elementSelector> with newName andwe apply to the template and the correspond-
ing documents the instruction replace <elementSelector>/@name with newName.

The command changemandatory <selector> with (true|false) is used to
change the mandatory value of an element. It is translated in replace
<elementSelector>/@mandatory with (true|false). After this operation, if the
updated element is not mandatory all documents are still valid. If it is mandatory,
as well as all the section ancestors, all documents is marked as invalid. Otherwise,
all documents have to be revalidated.

The simplest operation is the deletion of a node, that is performed in the same
wayboth on templates anddocuments by theXQuery delete node <xpathSelector>.

The last operation is replace value of <selector> with newVal that uses
XQuery functions to compute newVal. This operation is used to perform an update
to a field on all documents associated to the current template.

Is important to note that particular updates sequence can leave the system in an
inconsistent state. For example we have a template with a not mandatory element,
then some documents will contain this element while some other will not. All doc-
uments and templates are valid. This is the initial state. A user decide that the ele-
mentmust bemandatory and update the template. As described previous, after the
template update, all documents are revalidate. So we have some valid documents
(those have the mandatory elements) and some invalid ones (all the other). In this
state another user see the new template and change back the same element to be
optional. An unskilled or heedless user can perform this operation as a normal up-
date, instead using the correct feature of the versioning system. So the template is
updated however no operation on document is performed because this kind of
update don’t compromise their validity. But all documents that was marked as in-
valid is now valid again and in this final state we have all templates and documents
valid but with some documentmarked as invalid. Therefore we need also a process
scheduled for re-checking at regular intervals the validity of documents to achieve
an eventual consistency of data.

3.4. Revision control support
Revision control is a very relevant feature for wikis. It is useful for monitoring a
page evolution and to deal with modifications performed by malicious users.

Implementing a revision control system for our wiki-based repository is not
trivial, since documents are represented as XML trees with complex constraints
occurring among their elements, as specified by their corresponding templates.

209

AWiki-based System for Schema and Data Evolution

In order to illustrate the problems in building a revision control system fulfilling
the above mentioned conditions, we consider the scenario in which a user wishes
to undo a template update, but – in the meanwhile, after the template update – the
documents associated to such template have been modified, so they are no more
valid with the old template.

In this scenario we can operate in two different and completely opposite way:
(1) we can revert all documents to their valid versions with the old template or (2)
we can leave all documents to the last revision and revert only the template. Both
solutions have pros and cons: The formermaintains consistency between documents
and templates but it can potentially loosemany useful document updates. The latter
does not loose document updates, but it can potentially leave all documents in an
invalid state.

There is no single best solution to the problemof how to retain document updates
while satisfying template consistency too, since it may depend very heavily from
the context. For example, if one wishes to undo revert a malicious template update
(possibly the outcome of a deliberate act of vandalism), it is pointless to save the
correspondingdocument updates because documents contain information corrupted
by the vandalism act, as well. In this case, Solution (1) appears to be the best fit. On
the other side, inconsistencies between a template and the corresponding documents
arising from aminor change in the template structure (e.g., an elementmay become
optional) seem to be viably managed by Solution (2).

Given the extreme sensitiveness to the context of the chosen solution, our aim
is to define helpful techniques and tools that support the user in adopting the best
possible solution that fits its needs.

In particular, we define a hierarchy of possible solutions formed by the two
scenarios introduced above, plus other two intermediate levels that offer a sort of
“interpolation” between such two extremes. In more detail, when a user has to
“revert” a template to a previous version, we can choose to:
1. revert all the corresponding documents to their previous versions, in agreement

with the reverted template;
2. revert only the structure (as dictated by the reverted template) of the documents

but not the content;
3. revert only the document involved by the template update;
4. leave the document unmodified.

The following examples show a real-world scenario the four options just intro-
duced.

As a deliberate act of vandalism, consider the following: an user deletes a large
part of a template and renames the elements of the remaining part with unrelated
content. A document update performed with the new template, can only try to
limit the damages, but can not improve the document quality. In this case the best

210

AWiki-based System for Schema and Data Evolution

solution is ignore the document updates and revert documents as they were before
the template update.

As for the second option, consider a car radio template, describing its features.
In the Car Radio template, a user rename the Audio section in Speaker system. The
semantic of the section does not change. So every document update is legit. But all
the other templates which describe consumer electronics stuffs contain an Audio
section. So, to uniform the templates, is better revert this update undoing the rename
but without loose any update to the documents (Level 2).

Consider aNotebook template which contains aMemory and aHD sections. Both
of them contains two integer Total size and Max size. An unskilled user, who does
not know the difference between RAM memory and Hard Disk, can rename the
Memory section inDisk sizes section hoping tomake the template better. This update
changes the semantic of the section. So every document update which involve this
section is compromised. When someone reverts the template update, the best
solution should revert all documents updateswhich involved this section, but should
keep all the others (Level 3).

Suppose that someone add a new data Autofocus under the multi-values Extra
features in a camera template. This is a useful information, but it is redundant since
there is an optional boolean field Auto focus in the section Lens system yet. In this
case document updates happen after the template update contains useful information
but in the wrong place. The better solution consist to revert the template but not
the documents so no information is loose (Level 4). In this way we can encourage
the community to correct the documents moving the information in the right place.

4. Our framework
Our framework, as seen in Figure 1, is structured in four components: the XML re-
pository, the query/update processor, the document and template validity checker
and the user interface.

211

AWiki-based System for Schema and Data Evolution

Figure 1. Framework schema

For the XML repositorywe need a system that can efficiently handlemany XML
files and that supports XQuery Update. We choose eXist [12] because, as of now, is
the most standards-compliant and extensible among free native XML databases.
This component provides the persistence of data, the XQuery Update engine and
the XML validation.

The query processor component takes as input the user queries and translates
them into XQuery Update. It communicates with the database by sending updates,
asking for validations and performs commit or rollback depending on validation
results. Algorithms described in Section 3 are implemented in this component.

The user interface provide a set of featureswhich let the user to intuitively inter-
act with the prototype without the requirement of a formal training. Since the pur-
pose of the prototype is to build a collaborative system, the user interface is a web
application. It lets the user to (i) easily find documents and templates based on dif-
ferent criteria, (ii) read a rendered version of templates and documents and (iii) edit
templates and documents in an interactive way.

5. Experimental results
Since the relatively small size of documents and templates and since updates and
validations are performed on a native XML database, we can safely assume that a
single update operation is performed in a relatively short, constant time roughly
equal to 10 ms.

212

AWiki-based System for Schema and Data Evolution

Thus, the performance issues of our framework depends on the number of
documents that have to be checked, depending on the kind of update operation
that has been issued.

All tests have been performed on a PC with an Intel® Core™ 2 Duo P8700 CPU
and 4 GB of RAM runningWindows Vista™. The framework is implemented in C#
3.0 and deploys eXist 1.4 [12] as the XML native database.

As already mentioned in the introduction, the dataset used in the experiments
come from the ShoppyDoo online price comparison servicewhich is visited bymore
than twomillion of unique user permonth and compare prices of fourmillion offers
from fifteen hundred merchants. Every document describes the technical details of
a single product and there is one template for product category. In total, our dataset
contains 9605 documents and 72 templates, totaling about 65 MB of XML files. The
less populated category (Digital photo frames) contains only 3 documents, while
the most populated one (LCD, LED and plasma TVs) contains 798 documents. We
want remark that the current dump of Wikispecies [15] is approximately 370 MB
of XML data. It’s interesting for us show that our test dataset is big about the 18%
of a small Wikimedia Foundation project.

As explained in Section 3.3.1, a template update can fall into three different cat-
egories, depending upon its impact on the associated documents: it can leave them
all valid, it can invalidate all of them or it canmake necessary to update and recheck
all of them. As such, we performed editing templates tests with different quantities
of documents and with the three different kinds of update. The results are shown
in Figure 2.

The first type of update is very fast and it is not affected by howmany documents
are associated to the modified template. Since the algorithm needs only to update
one (typically) small XML document (the template itself) it executes in about 100
milliseconds.

We point out the in our current prototype, all documents have a metadata field
that records their validity with respect to their templates. In this way, the second
type of update performs in a time linear in the number of documents. Since updating
the validity to given value is very fast, all our tests ended within 150 milliseconds.

The last type of update is the worst because, after the template update, the pro-
totype has to perform an update to all the documents and they all have to be reval-
idated. The time is linear to the number of documents, and since validation process
is slower than the update execution, the worst case takes about two minutes to ex-
ecute.

213

AWiki-based System for Schema and Data Evolution

Figure 2. Template update performance test

6. Conclusions
Although our framework is still under development, the first experimental results
show that updates of templates associated with small – yet significative – sets of
documents execute in reasonable time; still, there is ample space for optimizing the
proposed procedures. The optimization process may involve as well a phase of lo-
gical redesign of large XML schemas into smaller, more manageable ones. Along
with optimization issues, we are dealing with the realization of a suitable web ap-
plication that allow users to easilyinteract with the repository.

Finally, the other major topic deserving further investigation is – of course –
how to regulate the access of users to data, allowing them to modify items created
by other users. To this end, we are investigating the integration of classical access
control techniques with incentive-based mechanisms borrowed from reputation
systems, in order to elicit a collaborative behaviour from users but keeping an eye
– at the same time – on what they can do.

Bibliography
[1] Anders Berglund, Scott Boag,DonaldD. Chamberlin,Mary F. Fernández,Michael

Kay, Jonathan Robie, and Jérôme Siméon. XML path language (XPath) 2.0 (second
edition). W3C recommendation. W3C. December 2010.

[2] Peter Buneman, James Cheney, Sam Lindley, and Heiko Müller. The database
wiki project: A general-purpose platform for data curation and collaboration. 15–20.
SIGMOD Record. 40. 3. 2011.

[3] James Clark. XSL transformations (XSLT) version 1.0. W3C recommendation.
W3C. November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

214

AWiki-based System for Schema and Data Evolution

[4] DonChamberlin, Jonathan Robie, Daniela Florescu, JimMelton, Jérôme Siméon,
and Michael Dyck. XQuery update facility 1.0. Candidate recommendation.
W3C. June 2009. http://www.w3.org/TR/2009/CR-xquery-update-10-20090609/.

[5] AnHai Doan. Data quality challenges in community systems. QDB. 2007.
[6] AnHai Doan, Raghu Ramakrishnan, Fei Chen, Pedro DeRose, Yoonkyong Lee,

RobertMcCann,MayssamSayyadian, andWarren Shen. Community information
management. 64–72. IEEE Data Eng. Bull.. 29. 1. 2006.

[7] Giovanna Guerrini, Marco Mesiti, and Daniele Rossi. Impact of xml schema
evolution on valid documents.. WIDM. pages 39–44. ACM. 2005.

[8] R. Jelliffe. Schematron. Web page. October 2000.
http://www.ascc.net/xml/resource/schematron/.

[9] Meike Klettke. Conceptual xml schema evolution - the codex approach for design and
redesign.. http://dblp.uni-trier.de/db/conf/btw/btw2007w.htmlKlettke07. BTW
Workshops. pages 53–63. Verlagshaus Mainz, Aachen. 2007.

[10] AshokMalhotra and Paul V. Biron. XML schema part 2: Datatypes second edition.
W3C recommendation. W3C. oct 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[11] Henry S. Thompson, Murray Maloney, David Beech, and Noah Mendelsohn.
XML schema part 1: Structures second edition. W3C recommendation. W3C. oct
2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[12] eXist-db open source native xml database. Web page. http://exist.sourceforge.net/.
[13] Eric van der Vlist. Examplotron. Technical report. 2003. http://examplotron.org/.
[14] Help:infobox — wikipedia, the free encyclopedia. 2011. Web page.

http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=455091951.
Online; accessed 18-November-2011.

[15]Wikispecies main page. 2011. Web page. http://species.wikimedia.org. Online;
accessed 28-November-2011.

215

AWiki-based System for Schema and Data Evolution

216

Jiří Kosek (ed.)

XML Prague 2012
Conference Proceedings

Published by
Ing. Jiří Kosek
Filipka 326

463 23 Oldřichov v Hájích
Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and XEP.

1st edition

Prague 2012

ISBN 978-80-260-1572-7

	XML Prague 2012
	Table of Contents
	General Information
	Sponsors
	Preface
	The eX Markup Language?
	1. XML as new lingua franca for the Web. Why did it never happen?
	1.1. Flashback
	1.2. Why?

	2. Is it a time to refactor XML? Converge or convert?

	XML and HTML Cross-Pollination: A Bridge Too Far?
	1. Introduction
	2. XML in Today's Browser
	2.1. XML, CSS, Javascript
	2.2. What, no links?
	2.3. The Accessibility of XML
	2.4. Why bother?

	3. Born in XML, Live in HTML
	3.1. XPointer and CSS
	3.2. Can we replace FO?
	3.3. Compilation to JS
	3.4. How SVG made the jump
	3.5. Distributed Extensibility on the Web
	3.6. Web Transformations
	3.7. CSS Schema

	4. Conclusion

	XML5's Story
	1. Background
	2. Extensibility
	3. XML5
	4. Principles
	5. The parser
	6. Stray thoughts
	7. Closing

	XProc: Beyond application/xml
	1. Introduction
	2. Current level of support for non-XML media types in XProc
	2.1. Using an external channel
	2.2. Base64-encoding

	3. Extending XProc to support non-XML media types
	3.1. Media type annotations
	3.2. Processing multiple media types via shimming
	3.3. Extensions to the XPath data model
	3.4. Extension to the XProc language
	3.4.1. Media type annotations on p:input and p:output
	3.4.2. Modifications to p:data
	3.4.3. Modifications to built-in XProc steps
	3.4.4. Modifications to the XProc standard step library
	3.4.5. Overriding media type information
	3.4.6. XPath extension functions

	4. Examples
	4.1. Media type-aware processing
	4.2. Using compound steps for media type consolidation
	4.3. Processing JSON data
	4.4. Manipulating ZIP archives

	5. Conclusion
	Bibliography

	Understanding NVDL The Anatomy of an Open Source XProc/XSLT implementation of NVDL
	1. Introduction
	2. NVDL Dispatching
	2.1. Splitting the Document into Sections
	2.2. Converting the NVDL script to XSLT
	2.3. Getting the dispatch output

	3. Orchestrating Validation with XProc
	4. Conclusions and Further Work
	5. References

	JSONiq
	1. Introduction
	2. JSONiq in a Nutshell
	3. Grouping Queries for JSON
	4. JSON Views in Middleware
	5. JSON with XML and HTML
	6. Conclusion
	Bibliography

	Corona: Managing and Querying XML and JSON via REST
	1. MarkLogic Architecture
	2. Corona
	3. Corona User Roles
	4. Storing Documents
	5. Document Retrieval
	6. Search Queries
	6.1. Key/Value Query Service
	6.2. String Query Service
	6.3. Structured Query Service

	7. Search Configuration Management
	7.1. Places
	7.2. Ranges
	7.3. Named Queries
	7.4. Facets
	7.5. Namespaces

	8. Transactions
	9. Environment Variables
	10. What’s Next?
	11. Discussion

	Treating JSON as a subset of XML
	1. Introduction
	2. Experience
	3. Data Opacity
	4. JSON in XForms
	5. Example
	6. Special Cases
	7. Implementation
	8. Extension to other formats
	9. Conclusions
	Bibliography

	RESTful XQuery
	1. Introduction
	1.1. Background
	1.2. Problem Statement
	1.3. Contributions
	1.4. Outline

	2. Fundamentals
	2.1. XQuery
	2.1.1. XQuery 3.0 Annotations

	2.2. REST
	2.3. XQuery and REST together

	3. Review of Current Approaches
	3.1. eXist-db
	3.1.1. REST Server
	3.1.2. XQuery URL Rewriting

	3.2. MarkLogic
	3.2.1. HTTP App Server
	3.2.2. URL Rewriting
	3.2.3. XQuery Libraries

	3.3. EMC xDB
	3.3.1. xDB REST API
	3.3.2. Implementing a RESTful API (JAX-RS)
	3.3.3. XML REST Framework

	3.4. Servlex
	3.5. Summary

	4. Standardised XQuery 3.0 Annotations for REST
	4.1. Approach
	4.2. Resource Functions
	4.3. Resource Function Constraints
	4.3.1. URI Path and Templates
	4.3.2. HTTP Methods
	4.3.3. Media-Type Capabilities

	4.4. Resource Function Parameters
	4.4.1. Query String Parameters
	4.4.2. Form Field Parameters
	4.4.3. HTTP Header Parameters
	4.4.4. Cookie Parameters

	4.5. Resource Function Serialization
	4.5.1. REST Response Format

	4.6. REST Function Module

	5. Proof of Concept
	5.1. Implementation
	5.2. Evaluation
	5.3. Further Work

	6. Conclusion
	6.1. Limitations
	6.2. Future Work

	Bibliography

	Compiling XQuery code into Javascript instructions using XSLT
	1. Introduction
	2. Parsing XQuery with XSLT 1.0
	2.1. Existing specifications and tools
	2.1.1. XQuery Grammar
	2.1.2. YAPP
	2.1.3. Jaxen (package org.jaxen.expr) and AJAXForms
	2.1.4. XSLTForms 1.0
	2.1.5. XQueryX

	2.2. Proposed architecture
	2.2.1. XQuery Grammar Parser generating intermediate XML document
	2.2.2. XQueryX generation

	3. Generating Javascript instruction
	3.1. The object approach
	3.1.1. Object creation
	3.1.2. Object evaluation

	3.2. Run-time data model and functions set
	3.2.1. Data model
	3.2.2. Functions

	3.3. Effective instructions
	3.3.1. Loops and temporary variables
	3.3.2. Possible optimizations

	4. Conclusion

	Implementing an XQuery/XSLT hybrid
	1. Introduction
	2. Implementation approaches
	3. Parsing Carrot
	3.1. Step 1: Start with the XQuery grammar
	3.2. Step 2: Define Carrot by manually modifying the XQuery grammar
	3.2.1. Carrot definitions
	3.2.1.1. Variable definitions
	3.2.1.2. Function definitions
	3.2.1.3. Rule definitions

	3.2.2. Carrot expressions
	3.2.2.1. Ruleset invocations
	3.2.2.2. Shallow copy constructors
	3.2.2.3. Text node literals

	3.2.3. Conclusion

	3.3. Step 3: Generate the parser

	4. Compiling Carrot
	4.1. Step 1: Simplify the parse tree
	4.2. Step 2: Annotate the expressions
	4.3. Step 3: Generate the XSLT

	5. Conclusion
	A. Introduction to Carrot
	A.1. Background and influences
	A.2. Introduction by example
	A.3. Carrot definitions
	A.3.1. Global variables
	A.3.2. Functions
	A.3.3. Rules

	A.4. Carrot expressions
	A.4.1. Ruleset invocations
	A.4.2. Shallow copy constructors
	A.4.3. Text node literals
	A.4.4. Expression semantics
	A.4.5. What about xsl:for-each, xsl:for-each-group, etc.?

	Bibliography

	Transform.xq
	1. Introduction
	2. Head First into XQuery 3.0
	2.1. Creating a Mode
	2.2. The Main Transform.xq Functions

	3. Pattern Matching
	3.1. Parsing Patterns
	3.2. Compiling Patterns

	4. Modes
	4.1. Rule Matching Optimization
	4.2. For the Lack of Maps
	4.3. Extending Modes

	5. Using Annotations to Create Modes
	5.1. On Reflection
	5.2. Platform Independence

	6. Future Enhancements
	7. Conclusion
	A. EBNF for the Pattern Syntax
	Bibliography

	Building Bridges from Java to XQuery
	1. Introduction
	1.1.
	1.1.1. Summary of Contributions

	2. Related Work
	2.1. Invoking XQuery Main Modules from Java with XCC
	2.2. Invoking XQuery Functions from Java with Saxon
	2.3. Redstone XML RPC Library and Java Proxies

	3. Invoking XQuery Functions from Java
	3.1. Defining the approach
	3.2. A Simple Example
	3.2.1. XQuery Library Module
	3.2.2. Java Interface Definition
	3.2.3. Client Code

	3.3. Overriding default behavior with Annotations
	3.3.1. Java Method to XQuery Function Name Translation
	3.3.2. Java to XDM Data Type Mapping

	3.4. Plain Old Java Objects Mapping
	3.4.1. A Simple POJO Use Case
	3.4.2. POJO Mapping Complications

	4. Code Generation
	5. Conclusion
	6. Acknowledgements
	A. Saxon code example for invoking XQuery functions
	B. Subset of the XQConnection2 Java interface
	C. The XQFunctionName Annotation
	D. The XQCastAs Annotation
	E. XQJ's Java Data Type to XDM Data Type mapping table
	Bibliography

	A Wiki-based System for Schema and Data Evolution
	1. Introduction
	1.1. Our motivating scenario

	2. Related Works
	3. Documents and Templates
	3.1. Our scenario, continued
	3.2. Validation of documents
	3.3. Evolution of templates and documents
	3.3.1. Interacting with templates and documents
	3.3.2. Evolution of documents
	3.3.3. Evolution of templates

	3.4. Revision control support

	4. Our framework
	5. Experimental results
	6. Conclusions
	Bibliography

