
1 © Copyright 2012 EMC Corporation. All rights reserved.

XProc: Beyond
application/xml

Vojtěch Toman

EMC Corporation

vojtech.toman@emc.com

XML Prague 2012

mailto:vojtech.toman@emc.com

2 © Copyright 2012 EMC Corporation. All rights reserved.

Motivation

“[XProc is] a language for describing operations to be
performed on XML documents.”

“…what flows between steps through input ports and
output ports are exclusively XML documents or
sequences of XML documents.”

vs.

 Real-life pipelines often have to deal with non-XML
data

– Read from external sources
– Produced by the pipeline itself

3 © Copyright 2012 EMC Corporation. All rights reserved.

BaSE64enCoDINg==

<c:data content-type="application/octet-stream"

 encoding="base64">

 QUwsQWxhYmFtYQpBSyxBbGFza2EKQVosQXJpem9uYQo...

</c:data>

 Not much we can do with such content
– Sending it over HTTP using p:http-request

– Unescaping it with p:unescape-markup

 Cannot use p:store to store the raw octet stream

 Need for extensions

4 © Copyright 2012 EMC Corporation. All rights reserved.

Using an External Channel

 Steps use an external channel for non-XML data
– File system

 Steps pass URI references to the external data

p:xsl-formatter …

doc.pdf

<c:data>

file:doc.pdf

</c:data>

5 © Copyright 2012 EMC Corporation. All rights reserved.

Introducing Non-XML Media Types

 XProc is built from the ground up on XML Infoset
– Steps expect XML Infoset instances on the input ports and

produce XML Infoset instances on the output ports.

 Option 1
– XProc processor provides some kind of a (synthetic) XML

Infoset view

 Option 2
– The steps can operate on non-XML data as well

– p:identity, p:store, p:sink, ...

6 © Copyright 2012 EMC Corporation. All rights reserved.

Introducing Non-XML Media Types

 XProc uses XPath as the expression language

 What does querying over non-XML data actually
mean?

 Does it correspond to querying some kind of
metadata gleaned from the original data?

– Dimensions of an image

 Or is it the ability to inspect the raw octet stream?
– Querying text or semi-binary formats

7 © Copyright 2012 EMC Corporation. All rights reserved.

Proposed Extension at Glance

 Both XML and non-XML data can flow through the
pipeline

– XML data flows as XML Infoset instances

– Non-XML data flows as “raw” octet streams

 The data is annotated with media type information
– application/xml, image/png, ...

 Steps declare what media types they consume and
produce

– Specified on the p:input/p:output level

– Specific (application/xml) or wildcard (*)

– XProc processor converts between media types if necessary

 XPath data model extensions

8 © Copyright 2012 EMC Corporation. All rights reserved.

 Input port conversion

 Output port conversion

Input and Output Conversion

application/json application/xml

application/xml application/json

9 © Copyright 2012 EMC Corporation. All rights reserved.

Media Type Conversion Algorithm

 The data media type matches the port media type

 Otherwise, if the XProc processor knows how to map
from the data media type to the port media type

 Otherwise, fall-back

image/svg+xml image/svg+xml
 *

application/xml application/json

10 © Copyright 2012 EMC Corporation. All rights reserved.

Media Type Conversion Algorithm

 Both the data and the port media types XML media types

 The port media type is application/xml – apply p:data
binding with a c:data wrapper element

 Both the data and the port media types are text media types

 Any other combination of media types results in an error

image/svg+xml application/xml

image/png application/xml

<c:data content-type="image/png"

 encoding="base64">iVBORw0KG...

</c:data>

text/csv text/plain

11 © Copyright 2012 EMC Corporation. All rights reserved.

Supported Media Types Mappings

 …implementation-defined

 Undermines interoperability

 Difficult to agree on “one size fits all” mappings that
would satisfy all users or use cases

– XML/JSON

12 © Copyright 2012 EMC Corporation. All rights reserved.

XPath Extensions

 XPath 2.0 only

 A new property on the XDM Document Node
– content-type, possibly empty

 New node type: Binary Data Node
– base-uri, possibly empty

– content-type, possibly empty

 XPath extension function
– m:content-type() as xs:string?

– m:content-type($arg as node()?) as xs:string?

13 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Step Declaration

<p:declare-step>

 <p:input port="source"

 m:content-type="application/xml"/>

 <p:output port="result" m:content-type="*"/>

 ...

</p:declare-step>

 Parameter input ports always accept the media type
application/xml

14 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Bindings

 The p:data binding does not wrap/base64-

encode unless requested

 The m:as-content-type attribute

– All bindings

– No conversion

<p:xquery>

 <p:input port="query">

 <p:data href="searchquery.xq"

 m:as-content-type="application/xquery"/>

 </p:input>

</p:xquery>

15 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Built-in Steps

 p:pipeline is equivalent to:

<p:declare-step>

 <p:input port="source" primary="true"

 sequence="false" m:content-type="*"/>

 <p:input port="parameters" primary="true"

 kind="parameter"/>

 <p:output port="result" primary="true"

 sequence="false" m:content-type="*"/>

 ...

</p:declare-step>

 p:group, p:for-each, p:choose, p:try
– Can be used to process any media type

 p:viewport
– XML-specific

16 © Copyright 2012 EMC Corporation. All rights reserved.

Language Modifications: Atomic Steps

 Standard XProc steps
– p:count, p:http-request, p:identity, p:sink, p:split-
sequence, p:store, p:exec, p:xquery

 m:as-content-type

– A dynamic version of the m:as-content-type attribute

<p:declare-step type="m:as-content-type">

 <p:input port="source" sequence="true"

 m:content-type="*"/>

 <p:output port="result" sequence="true"

 m:content-type="*"/>

 <p:option name="content-type" required="true"/>

</p:declare-step>

17 © Copyright 2012 EMC Corporation. All rights reserved.

Conclusion

 A pragmatic approach
– Extensions to the XProc processing model as well as to the

language

– Reliance on the capabilities of the XProc processor as to
what kinds of media type conversions it supports

 Too open/non-interoperable or providing just the
right level of flexibility?

– The most practical solution most likely lies somewhere in-
between

 Starting point for further discussions

