
XML Prague 2014
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 14–16, 2014

XML Prague 2014 – Conference Proceedings
Copyright © 2014 Jiří Kosek

ISBN 978-80-260-5712-3

 Hello, we’re your
 Enterprise NoSQL

 database
 solution.

Say hello to the new generation.

POWERFUL & SECURE | AGILE & FLEXIBLE | ENTERPRISE-READY | TRUSTED

www.marklogic.com . sales@marklogic.com

Are you stuck �xing

YESTERDAY
Or are you solving for

TOMORROW?
The world’s largest banks use MarkLogic to get a 360-degree view
of the enterprise, reduce risk and operational costs, and provide

better customer service. What are you waiting for?

C

M

Y

CM

MY

CY

CMY

K

MarkLogic- DataLeadershipEvent-A4-v01b.pdf 1 11/21/2013 3:29:18 PM

MathFlow
The MathML Toolbox Standard

MathFlow™ for leading XML editors
MathFlow
for oXygen

MathFlow
for FrameMaker

MathFlow
for XMetaL

For more information
please visit
www.dessci.com

MathFlow
for Arbortext

MathFlow
Components

MathFlow use cases:

The building blocks you need to develop custom solutions requiring
equation editing, display, formatting and other advanced math
functionality. Design Science’s extensive experience working with
system integrators, VARs, and ISVs creating custom math solutions has
resulted in a flexible and powerful collection of components and APIs
covering most development environments.

Web collaboration Online assessment authoring �
and delivery, math-enabled blogs, wikis, whiteboards,
message boards and forums, live tutoring, virtual
classroom and homework help applications, web
meeting, instant messaging and chat applications

Web publishing workflows Editorial and production
workflows, technical documentation, training and
help authoring, elearning authoring tools, accessible
content production and delivery

Desktop publishing workflows Editorial and production
workflows for journals, textbooks and ebooks, prepress
editorial and production services, production of technical
documentation, training manuals and help systems

Integrated desktop applications Content conversion
software and services, mainstream word processing and
presentation apps that target education, science, and �
technology, scientific analysis, calculation, graphing and
simulation, flashcards, tutoring, teaching, scientific visualization

Attend the session
A MathML Progress Report,
Sunday, February 16, 2014,
12:10 PM, presented by
Autumn Cuellar

MathFlow and “How Science Communicates” are trademarks
of Design Science. All other company and product names
are trademarks and/or registered trademarks of their
respective owners.

Design Science, Inc. • 140 Pine Avenue, 4th Floor • Long Beach • California • 90802 • USA • 562.432.2920 • 562.432.2857 (fax) • info@dessci.com • www.dessci.com

FINAL cmyk colors

http://www.dessci.com

DOMAIN LLocalization quality

Loca

liz
ation

notee

te
xt

ann
otation

EFFICIENCY

The Internationalization Tag Set (ITS) 2.0
Leading the Multilingual Web to Its Full Potential

up to 60%

15–40%

ITS 2.0 savings in translation time
and costs (Source: Study by Linguaserve and

Cocomore, with the Spanish Tax Authority and VDMA)

Development and Participants
ITS 2.0 was developed by the MultilingualWeb-LT Working Group at the W3C. The MultilingualWeb-LT project received funding from the
European Commission (project name LT-Web) through the Seventh Framework Programme (FP7) in the area of Language Technologies. Grant
Agreement No. 287815. All contributors listed at: http://www.w3.org/TR/its20/#acknowledgements

ITS 2.0 video channel: http://www.youtube.com/user/W3CITS20
ITS Interest Group: http://www.w3.org/International/its/ig/

ITS 2.0 improves speed and quality throughout the entire multilingual content production cycle. Bene� ts include:

• Standardized metadata across platforms and languages
• Reduction in time through increased e� ciency
• Cost savings in translation management
• Faster and more � ne-grained communication

between all actors (e.g., webmasters, translators,
localization project manager)

• Easy format-independent integration of
technologies for automated processing of human
language (e.g., machine translation)

• Contribution to quality assurance everywhere: content
creation, translation, or post editing

Table of Contents
General Information ... ix

Sponsors ... xi

Preface .. xiii

Distributed Extensibility: Finally Done Right? – Robin Berjon 1

The web needs “XML: The Good Parts” –
Robbert Broersma and Yolijn van der Kolk ... 9

In Consideration of improvements to XProc – Norman Walsh 21

XSLT 3.0 Streaming for the masses – Abel Braaksma ... 29

Streaming in the Saxon XSLT Processor – Michael Kay ... 81

XFormsUnit: the Framework to Test Them All – Eric van der Vlist 103

XSLT 3.0 Testbed – Tony Graham .. 113

XML Schema Identity Constraints Revisited –
Anne Brüggemann-Klein, Mustapha Maalej, and Marouane Sayih 123

Data and Documents, Together Again – Charles Greer ... 147

Scientific Computing in the Open Web Platform –
R. Alexander Milowski and Henry S. Thompson .. 163

RESTful API Description Language (RADL) –
Jonathan Robie, Rémon Sinnema, and Erik Wilde ... 181

XML Authoring On Mobile Devices – George Bina ... 211

A MathML Progress Report – Autumn Cuellar .. 225

Finalising a (small) Standard – John Lumley ... 233

Publishing in Style with XML – Liam Quin .. 253

Formatting from XML – Tony Graham ... 265

ProXist - XProc Processes in eXist – Ari Nordström ... 273

vii

viii

General Information

Date
Friday, February 14th, 2014 (preconference day)
Saturday, February 15th, 2014
Sunday, February 16th, 2014

Location
University of Economics, Prague (UEP) – Vencovského aula
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee
Petr Cimprich, Xyleme
James Fuller, MarkLogic
Vít Janota, Xyleme
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Pavel Kroh, pavel-kroh.cz & Macness.com
Mohamed Zergaoui, ShareXML.com & Innovimax

Programm Committee
Robin Berjon, W3C
Petr Cimprich, Xyleme
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Uche Ogbuji, Zepheira LLC
Adam Retter, freelance consultant
Felix Sasaki, DFKI / W3C Fellow
John Snelson, MarkLogic
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By
XMLPrague.cz (http://xmlprague.cz)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)
Ubiqway, s.r.o. (http://www.ubiqway.com)

ix

http://xmlprague.cz
http://fis.vse.cz
http://www.ubiqway.com

x

Sponsors

Gold Sponsor
Mark Logic Corporation (http://www.marklogic.com)

Sponsors
Design Science (http://www.dessci.com)
oXygen (http://www.oxygenxml.com)
MultilingualWeb-LT (http://www.w3.org/International/multilingualweb/lt/)
Mercator IT Solutions Ltd (http://www.mercatorit.com)
le-tex publishing services (http://www.le-tex.de/en/)
BaseX (http://basex.org/)
OverStory Consulting Ltd (http://www.overstory.co.uk/)

xi

http://www.marklogic.com
http://www.dessci.com
http://www.oxygenxml.com
http://www.w3.org/International/multilingualweb/lt/
http://www.mercatorit.com
http://www.le-tex.de/en/
http://basex.org/
http://www.overstory.co.uk/

xii

Preface

This publication contains papers presented during the XML Prague 2014 conference.
In its nineth year, XML Prague is a conference on XML for developers, markup

geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big Data
and recent advances in XML technologies. The conference provides an overview of
successful technologies, with a focus on real world application versus theoretical
exposition.

The conference takes place 14–16 February 2014 at the campus of University of
Economics in Prague. XML Prague 2014 is jointly organized by the XML Prague
Organizing Committee and by the Faculty of Informatics and Statistics, University
of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate on-line.

The conference starts with a pre-conference day which provides space for various
XML community meetings in three parallel tracks. During the weekend classical
single-track format is used and papers from it are published in the proceeedings.
Additionally, we coordinate, support and provide space for W3C XSLT and XQuery
working group meetings collocated with XML Prague.

Last but not least—this year Web has 25th anniversary. It is good time to look
both back and forward to the future of the most important computing and commu-
nication platform.

We hope that you enjoy XML Prague 2014.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xiii

http://xmlprague.cz
http://xmlprague.cz

xiv

Distributed Extensibility:
Finally Done Right?

Robin Berjon
W3C

<robin@berjon.com>

Abstract

It has long been a frequent goal of markup— and often document technologies
in general — to enable extensibility by arbitrary third parties. However, all
attempts to date have fallen largely short of their promises.

XML Namespaces do enjoy a modicum of (much reviled) success in this
space, but they have managed this at the cost of a severe limitation in their
power, covering only distributed extensibility in naming. Hopes that this
would provide a solid foundation atop which richly extensible documents
would be built have not come to fruition.

A new contender has recently entered this fray: Web Components. Trying
to learn from past mistakes they offer rich, if complex, extensibility function-
ality, notably in behaviour and styling.

This presentation will look at howWeb Components work, what they offer
(and have so far declined to offer) in terms of distributed extensibility, and
show how they can be put to work to enable innovative behaviour in documents.

1. Introduction
Distributed Extensibility is, at heart, a simple notion. It is the property of languages
that can be extended by any party using them, with limited coördination — ideally
none.

However the details are gorier than the surface simplicity would suggest. There
are many aspects to a language and proponents of a given Distributed Extensibility
solution are only rarely clear as to extensions to which aspect or aspects they are
enabling. Making the syntax extensible requires a different architectural approach
from making the semantics extensible; and yet again different approaches for en-
abling extensibility for rendering, validation, protocols, or behaviour.

Nowadays when Distributed Extensibility is mentioned people typically think
of the debate that surrounded bringing the sort of extensibility supported by XML
Namespaces to HTML, but the discussion is much older. In fact, XML Namespaces
were themselves the topic of heated debates when they were introduced, and before
that the thread can be followed through HyTime or Architectural Forms.

1

Today the Web platform is in the process of adding the latest instalment in this
saga: Web Components. Have we finally found the right solution to this problem,
or is this only yet another step in history? If the latter, is it at least a step forward?

2. XML Namespaces
XML Namespaces are a simple mechanism that make it possible to bind prefixes to
arbitrary strings, and then use those prefixes on element and attribute names (and
sometimes on other language-dependent values) so as to produce names that have
a strong guarantee of uniqueness, being qualified names consisting of a
{arbitrary-string, local-name} tuple. The distributed nature of this mechanism
is reinforced by the common convention of using URLs for the arbitrary string,
which, since they include a domain name, can be attributed some form of ownership.
For our purposes it is sufficient to take that at face value and not enter a discussion
of URNs or of the permanence of ownership in domain name attributions. In practice,
the guarantees are in fact sufficient, and were it not there are solutions that can enable
it.

Namespaces therefore allow anyone to produce their own XML vocabulary
without having to coördinate with anyone else who may also be defining an XML
vocabulary. What's more, constructs relying on namespaces can be mixed in the
same document, without there being a risk of mistaking one for another that may
have the same local name.

While that is a useful property, we are however forced to note that it is one of
very limited power. In truth, even though one may mix namespaced vocabularies
inside a given document, namespaces provide us with no information whatsoever
as to how those vocabularies should be processed when mixed.

As soon as one tries to process a mixed namespaces document one needs to be
aware of the specific processing rules enforced by a given language, to know for
instance if recognised elements inside of containers belonging to an unknown
vocabulary need to be processed or ignored (as well as many other such permuta-
tions). This issue is compounded by the fact that common schema languages for
XML, most notably XML Schema, tend to operate on a default assumption that no
extensibility is taking place. More general solutions to this problem, such as NVDL,
never became broadly popular.

So XML Namespaces do indeed provide a syntactic hook for distributed extens-
ibility, but nothing more. Styling, behaviour — even semantics — are left as an ex-
ercise to the implementer. In practice, while XML Namespaces have shown to indeed
be useful in some cases (e.g. writing XSLT stylesheets that don't process what they
don't mean to by mistake) their stringent limitations have strongly contributed to
disqualifying them as a Distributed Extensibility solution for the Web platform. The
requirements of the latter are, in fact, a fair bit more complex than just syntax.

2

Distributed Extensibility: Finally Done Right?

3. Web Components
Over the past 25 years of the Web, there have been multiple attempts at defining a
Distributed Extensibility system for the Web platform. This includes both versions
of XBL as well as the several languages that were defined (and abandoned) as part
of SVG. The author has, in fact, been promoting one or the other at regular intervals
at the XML Prague conference.

The latest comer in this illustrious family of attempts is known as Web Compon-
ents. Web Components essentially started from the ground up on the primitives
that serve as integration points for the platform, informed by decades of experience
adding new elements to HTML.

Web Components are defined in a series of documents:
• Explainer1. A primer document that contains a high level overview of Web

Components, as well as an indication of what might soon be added to the system.
• Templates2. Recently integrated into HTML, the template element makes it

possible to deploy parsed but inert (no script processing or resource loading)
document fragments that can then be used to define custom elements in terms
of existing ones (or more generally can support code reuse as per common
practices of templating).

• Shadow DOM3. The Shadow DOM is a way of turning the DOM document tree
into essentially something that resembles more a forest. Any element can have
shadow branches attached to it, recursively. These are invisible to normal DOM
traversal, but participate in rendering and behaviour. This makes it possible to
support encapsulated extensibility in a shared document.

• Custom Elements4. Captures how new elements are defined and registered with
the platform so that they can be used, by providing an implementation that ex-
tends common constructs.

• Imports5. A simple mechanism to import arbitrary groups of dependencies
(typically script, style, and templates) into a document. Web Components are
expected to be commonly defined in such importable bundles.

At heart, the principle of custom elements in Web Components is articulated on a
simple notion: the integration hook for all things related to elements in the Web
platform is the HTMLElement interface (or its derivates). Be it the parser,
Document.createElement(), styling, behaviour, or scripting, all interactive aspects
of the platform operate through this common integration point.

1 http://w3c.github.io/webcomponents/explainer/
2 http://www.w3.org/html/wg/drafts/html/master/scripting-1.html#the-template-element
3 http://w3c.github.io/webcomponents/spec/shadow/
4 http://w3c.github.io/webcomponents/spec/custom/
5 http://w3c.github.io/webcomponents/spec/imports/

3

Distributed Extensibility: Finally Done Right?

http://w3c.github.io/webcomponents/explainer/
http://www.w3.org/html/wg/drafts/html/master/scripting-1.html#the-template-element
http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/imports/
http://w3c.github.io/webcomponents/explainer/
http://www.w3.org/html/wg/drafts/html/master/scripting-1.html#the-template-element
http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/imports/

Web Components therefore make it possible to declare a binding between a new
element name and an implementation for it that inherits from HTMLElement, give it
a shadow DOM on which templated content can be attached (with styles scoped to
the shadow), and the whole thing can be imported in one go, with a variety of ad-
ditional hooks (for styling and scripting) exposed.

An example may speak more than an abstract description. Let us say that big
red buttons are now all the rage on the Web, and that instead of having to constantly
reuse div elements with a special class or data-* attribute, and ad hoc scripting and
styling, we wish to build a nicely reusable big red button component that will be
properly encapsulated, and be safely integratable into any HTML document.

First, we define a page that will be the integration point for this component, and
in this page we define a template for the element's shadow DOM. That template
notably features some CSS styles, and these will be scoped to the shadow, ensuring
that they don't conflict with other styles in use on the importing page.

Example 1. The brb-component.html page

<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>Big Red Button Component</title>

</head>
<body>
<template id='brb-tmpl'>
<style>
.brb {

background: #f00;
font-family: Impact;
color: #fff;
text-align: center;
cursor: pointer;

}
</style>
<div class='brb'><content></content></div>

</template>
<script src='brb-component.js'></script>

</body>
</html>

Note how the template element contains a content element. When the template is
used as the shadow DOM for a big-red-button element, any content of the latter
will be interleaved where the content element appears, thereby making it possible
for content from the "real" DOM to be intermeshed with the shadow DOMs.

Then we implement the component itself in JavaScript.

4

Distributed Extensibility: Finally Done Right?

Example 2. The brb-component.js component implementation

(function () {
var cs = document._currentScript || document.currentScript
, doc = cs.ownerDocument
;
var brbProto = Object.create(HTMLElement.prototype, {

_size: { value: 100, writable: true }
, _div: { writable: true, configurable: true }
, size: {

enumerable: true
, get: function () { return this._size; }
, set: function (val) {

var s = this._size = parseInt(val || "100", 10)
, st = this._div.style;
st.width = s + "px";
st.height = s + "px";
st["border-radius"] = Math.floor(s / 2) + "px";
st["font-size"] = Math.floor(s / 3) + "px";
st["line-height"] = Math.floor(s / 2) + "px";

}
}

, createdCallback: {
value: function () {

var tmpl = ►
document.importNode(doc.getElementById("brb-tmpl").content, true);

this._div = tmpl.querySelector("div.brb");
this.createShadowRoot().appendChild(tmpl);
this.size = this.getAttribute("size") || 100;

}
}

, attributeChangedCallback: {
value: function (name, oldVal, newVal) {

if (name === "size") this.size = newVal;
}

}
});
window.BigRedButton = document.registerElement("big-red-button", { ►

prototype: brbProto });
}());

The details may be slightly daunting at first sight, but what is going on is actually
simple. We are extending the prototype of HTMLElement with our own behaviour,
that includes hooks that are called when the element is constructed
(createdCallback) so that its attributes can be processed and its rendering set up
or when its attributes change (attributeChangedCallback) so that setting attributes

5

Distributed Extensibility: Finally Done Right?

has the expected, live, effect. Additionally, we are giving the element a .size
property that can be manipulated directly in script.

The overhead of the above can seem like much for such a simple component;
but in truth it does not grow by that much for more complex elements.

With the above we have a fully functional component: we've effectively added
a new element to the platform that can now behave exactly as if it were defined as
part of the HTML standard.

We can then now just import the component into a regular page, and interact
with it as if it were any other element:

Example 3. A page using the Big Red Button component

<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<title>My Rockin' Page</title>
<link rel='import' href='brb-component.html'>

</head>
<body style='background: #fff'>
<h1>My Rockin' Page</h1>
<p>I am so hot I spontaneously unbreak symmetry.</p>
<big-red-button size="100" id='attr'>Attr</big-red-button>
<big-red-button size="200" id='brb'>Push Me!</big-red-button>
<script>
var step = 10
, brb = document.getElementById("brb")
, running = false
;
function animate () {

brb.size += step;
if (brb.size >= 300 || brb.size < 200) step = -step;
if (running) requestAnimationFrame(animate);

}
brb.onclick = function () {

if (running) running = false;
else {

running = true;
requestAnimationFrame(animate);

}
};
document.getElementById("attr").onclick = function () {

brb.setAttribute("size", brb.size === 200 ? "500" : "200");
};

</script>

6

Distributed Extensibility: Finally Done Right?

</body>
</html>

As we can see above, we simply import the component using a link element, just
use the big-red-button element, and then in the script interact with it in the most
natural manner.

Such elements can be nested and they will successfully interact. This is a
powerful way of building reusable markup pieces for the Web. Web Components
provide a powerful distributed extensibility method of specifying behaviour and
styling.

They do, however, have some limits. Semantics can, up to a point, be captured
by using ARIA in the shadow DOM but that is restrictive. Going beyond that, only
the name can provide key semantic information, and since that name is not
namespaced it may not prove unique. Web Components make it a required that
custom element names must contain a "-" and the expectation is that people will
use their own prefixes that way, e.g. robin-button.

While perfectly operational, such ad hoc syntactical extensibility may not satisfy
the XML user who wants to be able to obtain an arbitrary document and to extract
the information in it without requiring context and without fear of name clashes.
Can the two be married?

4. XML Components?
Web Components are defined for an HTML world, where namespaces have no
currency. However, if there were interest, it would be possible to have the very
same concepts extended to an XML world. This could be done at, in fact, relatively
little cost. It would require two things.

First, a way of importing components that works for XML would need to be
provided. That is quite simple: all that is required is a <?xml-import> processing
instruction that can replace HTML Imports in terms of syntax but work the same
way.

Second, where today we have document.registerElement(elName, elDefinition)
that just matches on the element name, we could easily have
document.registerElementNS(elNamespace, elLocalName, elDefinition) that
would work for namespaced documents.

Readers will not be surprised to hear that there are currently no plans for such
technology to be defined and incorporated into Web browsers. It is, however, a rel-
atively low-hanging fruit and were someone interested in producing a general-
purpose XML processing tool built atop a Web browser it would be relatively easy
to wire in the above based on the existing code.

In the meantime, Web Components can also be used to implement XML lan-
guages in HTML more easily than is done today. For example, XForms is currently

7

Distributed Extensibility: Finally Done Right?

usually handled by converting it completely to HTML, which in turn can require a
certain amount of hacking to keep everything aligned and usable when on the client.
With Web Components a two-pronged approach could be deployed. First, implement
a very simple, generic transformation that simply converts every element in the
XForms namespace into one with no namespace but with its local name prefixed
with "xforms-". Then, implement the behaviour of all the xforms-* elements using
components. The result will be a lot easier to use, deploy, and mix with other content
than existing solutions.

5. Conclusion
Distributed Extensibility is a complex topic and we have not covered its full breadth
here. However, we have shown that it is possible to find a solution that would work
for all of the syntactical, rendering, and behaviour aspects, which in turn is more
than has usually been supported to date.

It is an exaggeration to say that Web Components are Distributed Extensibility
"finally done right", but they certainly bring a major piece to the puzzle, what's
more a piece that can be made to play nicely with others.

8

Distributed Extensibility: Finally Done Right?

The web needs “XML: The Good Parts”
Robbert Broersma

Frameless
<robbert@frameless.io>

Yolijn van der Kolk
Frameless

<yolijn@frameless.io>

1. Introduction
A new generation of web development frameworks on the rise provide a compre-
hensive starting point for creating web applications. They combine a basic templating
engine, 'two-way data bindings' for form elements, and automatic recalculation of
calculated values. The most popular amongst these frameworks are AngularJS1,
Ember.js2, Knockout3, and Polymer4.

Fueled by the development of a suite of new web standards, Polymer is exploring
markup-based declarative web applications ("everything is an element") using a
simultaneously developed JavaScript implementation of the new Web Components
standards. [1]

The increasing adoption of declarative frameworks might finally change the
mindset of web developers in ways that make them appreciate the groundwork
that standards like XPath, XForms and XSLT have laid.

Using the momentum of Web Components, dubbed the 'declarative renaissance'5,
a rebound of declarative XML technologies is possible when they are re-imagined
to fill voids in JavaScript frameworks that are widely deployed today.

What could web development look like with full-fledged templating and query
engines?

2. Death of a browser technology
Web development is shifting towards developing declarative applications, and
frameworks are evolving slowly towards the same feature sets that have been de-
signed for the XPath, XForms and XSLT standards a long time ago. If these shared

1 http://angularjs.org/
2 http://emberjs.com/
3 http://knockoutjs.com/
4 http://www.polymer-project.org/
5 https://www.youtube.com/watch?v=PPJAKLq2ZsY

9

http://angularjs.org/
http://emberjs.com/
http://knockoutjs.com/
http://www.polymer-project.org/
https://www.youtube.com/watch?v=PPJAKLq2ZsY
http://angularjs.org/
http://emberjs.com/
http://knockoutjs.com/
http://www.polymer-project.org/
https://www.youtube.com/watch?v=PPJAKLq2ZsY

philosophies are growing more popular, then why aren't the XML technologies
themselves appealing to web developers?

XML has become an unspeakable technology, a future averted by WHATWG
pragmatists, a cumbersome toolset that has no place on the web.

While few web developers will have actual experience with XML, the image of
XML has irreversibly been damaged by the disappointment of a previous generation.

The decline of the technology can be seen in many things: using AJAX definitely
doesn't mean you're using XML anymore. [2] XMLHttpRequest is now mostly being
used for exchanging JSON, hardly anyone still uses XHTML, the new DOM specific-
ation no longer considers attributes to be a Node, [3] and Chrome even intents to
fully remove XSLT 1.0 support. [4]

Perhaps one of the main reasons for disappointment is that this family of extens-
ible standards have been the least extensible parts of browsers: implementations
cannot be extended to support new features. An XSLT 1.0 processor in the browser
cannot be made to support the more recent <xsl:for-each-group>. Using variables
in DOM XPath evaluators is technically impossible, and so is creating a polyfill for
XPath 3.0 functions. If one feature is missing from an XML standard that is essential
for your use case, on the web you cannot use the standard at all.

Not all should be considered lost: XML technologies that didn't make into
browsers, or have since disappeared, now have a second chance.

We will show what can be done to cut down on complexity, and how we can
give developers more flexibility. We will argue why Web Components should not
settle for less than the power of XSLT 2 templates, and how users of popular web
frameworks are missing out on the good parts of the XML platform.

3. Custom elements reincarnated
The extensible web manifesto pleads to design new web standards with low-level
extensibility in mind, opening up possibilities for web applications that were previ-
ously reserved for browser makers and browser extensions. [28] The new DOM
standard is specifically designed to allow to be influenced and extended using
JavaScript. [5] [6]

Web Components aim to transparently provide web applications with full control
over rendering and processing unknown elements in HTML.

4. Enable mix and match
With the Shadow DOM [7] 'mix and match' of markup vocabularies has never before
been so close to being practical. CSS styles are contained within their respective
components, so the theming of one widget library doesn't affect the layout of another.
Events and focus transparently handle components as one Node in the DOM tree,
even though internally they actually may consist out of dozens of elements.

10

The web needs “XML: The Good Parts”

The future seems bright indeed.
To prevent conflicts with elements that later might be added to the HTML

standard, all custom elements must be prefixed using a dash, e.g.: <custom-menu>.
Supposedly, it will not be long before someone will write a little script called
AutoPrefixer that for convenience will implement something equivalent to element
namespaces, to reduce typing and improve readability of the code.

<polymer-ui-menu>
<polymer-ui-menu-item icon="settings" label="Settings"></polymer-ui-menu-item>
<polymer-ui-menu-item icon="dialog" label="Dialog"></polymer-ui-menu-item>
<polymer-ui-menu-item icon="search" label="Search"></polymer-ui-menu-item>

</polymer-ui-menu>

The above could then become:
<ui-menu inherit-prefix="polymer-">
<ui-menu-item icon="settings" label="Settings"></ui-menu-item>
<ui-menu-item icon="dialog" label="Dialog"></ui-menu-item>
<ui-menu-item icon="search" label="Search"></ui-menu-item>

</ui-menu>

It's a trick that is remarkably similar to how XML works, where using the special
xmlns attribute essentially defines a default prefix for all elements. Usually however,
instead of being a notable convenience, namespace declarations make writing XML
documents from scratch a bother. It needn't be though: not using hard-to-remember
URLs would make namespaces as simple as writing import pickle in another lan-
guage. Like the HTML doctype declaration was simplified to <!DOCTYPE html>, and
since relative URLs in xmlns aren't being resolved anyway, [8] we might as well
start using predictable namespaces values and make our lives easier.

<menu xmlns="polymer-ui">
<menu-item icon="settings" label="Settings"/>
<menu-item icon="dialog" label="Dialog"/>
<menu-item icon="search" label="Search"/>

</menu>

Doesn't that look handsome, compared to the first example?
The above illustrates another syntax inconvenience of HTML compared to XML.

Custom elements in HTML cannot be self closing. Within the possibilities of HTML
parsing this seems like a reasonable trade-off, but compared to XML it is rather in-
convenient.

Namespaces could also be useful to prevent clashes across libraries providing
user interface widgets, and prevent the need for verbose element names that are
required to prevent clashes. Libraries that register custom HTML elements should
also register those elements in a namespace, providing maximum ease of use as
well as flexibility for those who require it.

11

The web needs “XML: The Good Parts”

Clashes between vocabularies already exist. In this example an SVG element,
inside the new <template> element introduced by Web Components, becomes an
HTML element:

<template id="vertical-bar">
<rect ... height="{value}"></rect>

</template>

Because of how HTML is parsed, [22] the namespace of the <rect> element will be
the HTML namespace instead of SVG, breaking the constructed image. This would
make implementing templates for the following example impossible, unless XHTML
syntax is used and a namespace prefix explicitly defines <svg:rect> in the SVG
namespace.

<bar-graph>
<vertical-bar value="42"></vertical-bar>

</bar-graph>

For namespaced custom elements to work, the Shadow DOM must also define
document.registerElementNS(). Registering these elements must not require a dash
in the element name when the namespace is not the HTML or SVG namespace.

5. Using XHTML imports
For reasons outlined above, Web Components might benefit from using XHTML
syntax in external template files. A major reason for not using XML syntax on the
web doesn't apply for these files: when a server framework uses string concatenation
to create XML instead of tree serialization there is a big risk of well-formedness er-
rors, causing the page not to load at all. HTML imports are most likely hand-coded,
and syntax errors can be caught during development just as easily as one would
with JavaScript files.

There are significant drawbacks though: ampersands, and the less-than and
greater-than signs need to be escaped as &, < and >. When handcoding
an HTML or XML file, unlike escaping < and >, it isn't very intuitive to escape am-
persands that are part of URL query strings, in the img src attribute for example.
For script blocks it is even a bigger issue, because escaping renders the script
completely unreadable.

Overcoming these disadvantages is necessary to make switching to XHTML
worthwhile for developers. On the web, XML is best served with error recovery.
An initiative like XML Error Recovery [23] is essential to increasing adoption of
XML. [21]

12

The web needs “XML: The Good Parts”

6. Templates will drive the web
Templates are at the core of most web pages. Historically templates are processed
server side, but increasingly additional content is provided with the servers only
sending the raw data and scripts from the web page implementing templates to
present it.

Conditionally showing validation warnings next to form inputs. A list of auto-
complete suggestions. The latest tweets. Showing the number of unread e-mails
between parentheses after "Inbox", or not anymore when the last unread mail is
opened.

7. Powered by queries
Data-driven templates need to specify what data sets to iterate trough, and what
values to present on the screen. For tabular data like relational databases and CSV
files using SQL makes sense, for traversing DOM trees using CSS selectors and the
more powerful XPath can be used.

For JSON a path-based language (like XPath, based on UNIX file paths) makes
sense as well. [9] In reality however, queries don't traverse data that is parsed from
a JSON string, that would guarantee the structure is in fact a tree. So called 'JSON
structures' really are regular JavaScript arrays and objects, and can potentially
contain cyclic references.

Handlebars is one example of a template engine that traverses over JavaScript
structures. It implements the popular Mustache template syntax, [10] self-described
as 'logicless templates': that means templates without if/else statements, and no
loops. Ironically these are in fact the only things they do offer, most notably these
engines are lacking query expressions: there are no comparison operators and no
arithmetic operators.

Here's the syntax, in a nutshell: {{#person}} … {{/person} is an instruction to
loop over a dataset and repeat the contained template, equivalent to <for-each
select="person"> in XSLT. {{^person}}Your address book is empty{{/person}}
is an if-not statement, and simply {{name}} renders text output, like <value-of
select="name"/> does.

The output of any template is essentially limited to the data that can be targeted
using the query language. When an advanced query language is not a significant
part of a template engine, complex selecting and filtering must occur in a prepro-
cessing step.

8. Taking advantage of XPath
Most query languages in JavaScript template engines evolve as part of a template
engine, and semantics are adapted to support more use cases while earlier versions

13

The web needs “XML: The Good Parts”

are already widely put in production use. Unfortunately absence of a diligent design
process will lead to quirky and undesirable behavior, such as the number value 0
evaluating to the boolean true in the case of Handlebars. [11]

Query engines for JavaScript structures are often bootstrapped by compilation
to JavaScript function bodies, relying on eval() to implement the query. This
shortcut gives these scripts the advantage of a smaller code size, offloading the
workload to the browser. Especially in early versions of such query engines, there
is significant risk for script injection [12] and constantly auditing security will remain
of the essence.

Reliance on the conversion to JavaScript, and the pressure to keep the codebase
small in general, has lead to an unexpressive and makeshift syntax [13] of the ex-
pressions that define what templates do. In Mustache selecting the n-th item from
an array is not even possible: only statically numbered indexes can be selected, like
accessing the first item using list.0. [14]

The meager semantics of the expression language ensure that the essence of
queries will move to helper functions implemented in JavaScript, diluting the fore-
most value of using a template: separation of concerns. When describing what is to
be computed can be defined in a query expression, the essence of the template is
captured on the spot.

The semantics of the query language should not be left to chance. Also, de-
velopers should not be so restricted in their templates that for what would be a basic
comparison in XPath, they need to resort to writing dozens of lines of code in
JavaScript. [24]

When so many users of template engines could use more advanced queries, why
not take advantage of an existing, fully documented language that too has been
designed for tree structures? A language designed around the exact use cases of all
these template frameworks, accompanied by tens of thousands of unit tests. We
shouldn't hold back the web by waiting the next ten years for makeshift solutions
to mature, instead we should be looking over the horizon, starting from a high point
that XPath has already reached.

9. To the benefit of everyone
Since JavaScript on the web is mainly used to power user interfaces, it is surprising
that Unicode string handling was never part of the language, or built into the core
of most libraries. String lengths are inaccurate, which is especially problematic for
validating form inputs. Sorting will cause ‘Motörhead’ to be listed after
‘Mott the Hoople’, reversing strings can even move diacritics to a different letter:
‘daehr̈otoM’. [15]

Being inclusive to a wide range of cultures has always been an important aspect
in the design of many W3C standards, because the web is always facing a larger
audience than just John Doe. [19] Both developers using XPath and XSLT and the

14

The web needs “XML: The Good Parts”

visitors of their sites enjoy the benefits of having full Unicode support, whether it
comes to input validation, sorting, string modifications or number formatting.

Both those who employ a library and the developers of what essentially are user
interface libraries face a choice: sacrifice the belief that it is okay to have a 'light-
weight' framework, or choose a policy of excluding individuals from all over the
world, like from Finland [26] or from Turkey. [27]

Support for Unicode can add considerably to the download size of libraries. [16]
When widely used libraries had never considered it an option to not support Uni-
code, browsers wouldn't have had the luxury to wait until 2013 [17] to deploy the
ECMAScript Internationalization API [18] and offer significant bandwidth savings
to their users by introducing new Unicode APIs.

Unicode that just works, localized formatting for numbers, currency, dates and
time zone corrected times should be within reach to anyone developing a template.
Based on thorough research to provide a publishing platform for content around
the world, XSLT and XPath are powerful tools that need a facelift but then really
need to find their way back to the web.

10. Design for developers
Starting with what web developers already know and expect, XPath should be ex-
tended to more conveniently support common use cases. At least all basic JavaScript
functions should have readily-available alternatives in XPath. The following string
functions need to be introduced, for example: string-split(), string-reverse(),
string-replace(), string-repeat() and trim(). To encourage consistent behavior,
all functions that are available in XPath should be available from JavaScript as well.

To align with expectations of JavaScript developers, the else-expression in if/
then/else should be made optional. The API should allow to add new functions to
XPath that can be used without namespace prefix, because namespaced functions...
you can't explain that! Of course the math functions must become available without
the math: prefix too. [25]

On the template front there are idiosyncrasies too, that we needn't expose a new
generation of developers to. For example: the regexp attribute on the analyze-string
instruction should not allow attribute value templates by default, because those
will obviously break the regular expression syntax: when { and } need to be escaped,
that will render the expression unreadable and make it impossible to just copy over
existing patterns.

What would templates look like if they were designed for use in HTML in the
first place?

<xsl:for-each-group select="blogpost/tag" group-by=".">
<xsl:sort order="descending"/>

<xsl:value-of select="."/>

15

The web needs “XML: The Good Parts”

</xsl:for-each-group>

In HTML the same template would involve a lot less typing:
<for-each select="blogpost/tag" sort reversed group-by=".">
{{.}}

</for-each>

This is the kind of template syntax that is easy to get started with and easy to re-
member, and still offers the power of XSLT.

11. Instantly add interactivity
When developers would declaratively implement the interactive parts of web pages,
they can not only move the burden of DOM manipulation to the template engine,
but also adding event listeners and cleaning up afterwards. Being relieved of these
duties is already hugely being appreciated by users of libraries such as D3.js6.

Implementing an actual ticking clock in SVG would become child's play:
<svg viewBox="0 0 1000 1000" width="150" height="150">
<g transform="translate(500, 500)">
<path stroke="black" stroke-width="20" d="M 0 0 L 0 -325"

transform="rotate({hours-from-dateTime(current-dateTime()) * 30 +
minutes-from-dateTime(current-dateTime()) div 2})"/>

<path stroke="black" stroke-width="20" d="M 0 0 L 0 -450"
transform="rotate({minutes-from-dateTime(current-dateTime()) * 6})"/>

<path stroke="red" stroke-width="5" d="M 0 0 L 0 -450"
transform=
"rotate({floor(seconds-from-dateTime(current-dateTime())) * 6})"/>

</g>
</svg>

The most common user interface widgets can easily be implementing declaratively
using XPath-driven templates. Paging of search results can be implemented by
simply applying templates to subsequence(result, $page * $pageSize, $pageSize).
Not only can browsing be implemented by simply updating the $page variable,
more search results will automatically be rendered when the $pageSize preference
for the number of items per page changes.

A list of autocomplete suggestions could highlight the search keyword matches
in bold using the analyze-string templates. Using XForms-like bindings between
the data model and HTML form inputs, a visitor of a webshop could narrow down
the search results using slider inputs for minimum and maximum price:

<input type="range" ref="$search/price/min" min="0" max="{max($results/price)}">

6 http://d3js.org

16

The web needs “XML: The Good Parts”

http://d3js.org
http://d3js.org

With no additional code, adjusting the sliders should trigger the removal of the
results that don't fall into the selected price range, as well as trigger rendering results
that we're previously limited to another page by the $pageSize maximum.

Because web pages must not become unresponsive when something unexpected
happens, the semantics of some XPath functions and XSLT instructions should be
amended for interactive queries not to cause fatal exceptions but instead to fail more
gracefully, like returning NaN or the empty sequence, or execute a fallback template.

12. Automatically optimizing performance
Using an extensive and expressive query language instead of the one-dimensional
queries offered by Mustache, has more advantages than just increased flexibility in
handling data structures.

The greatest benefit will come from programmatically analyzing expressions
for powering reactive templates: they can be used to determine reasons for recalcu-
lation and to automatically create dependency trees so recalculations can be per-
formed in optimal order. Expressions could even be split up into several parts,
limiting the impact of updating one variable to recalculation of only affected expres-
sions, always taking the most direct path to correctly updating the template output.

Combine aforementioned logic and parts of the query can also be allowed to
return values asynchronously, transparently making use of Promise return values,
[20] and finish rendering the dependent templates when the data arrives.

Even without reactive templates there is much to gain. There already is a lot of
experience with automatically optimizing templates based on query expressions,
such as fusion of tree traversal loops, branch elimination and hoisting (parts of)
expressions out of loops.

13. Brought to you by Frameless
Since the summer of 2011 the authors of this essay have been working on a frame-
work to make the declarative web reality: Frameless7. Designed as a multistage
project, work started out with implementing the latest versions of XSLT and XPath
in JavaScript, followed by repurposing the engine as an interactive template engine,
while staying compliant with the tens of thousands of test cases from existing test
suites.

Frameless is software implemented in JavaScript that aims to bring powerful
features from existing web standards together in the browser, and explores ways
to combine the declarative real-time data bindings from XForms with the powerful
templates of XSLT.

7 http://frameless.io/

17

The web needs “XML: The Good Parts”

http://frameless.io/
http://frameless.io/

We are happy to announce that all improvements and dreams that have been
put forward here are already being enjoyed in the Frameless labs: the future is now.

14. Conclusion
Web Components are a big step forward in providing the web platform with the
extensibility that was imagined for XML. Because browsers lacked APIs to extend
standards from the XML platform, the technologies failed to live up to expectations
of providing distributed extensibility and were abandoned.

Now that declarative programming is being appreciated more by the web devel-
opment community, a lot of value and experience can be found in these sidetracked
browser technologies, although some refurbishing will be in order to go from inter-
esting to desirable.

We must re-imagine existing technologies with a ease of use in mind: a leaner
syntax and a powerful JavaScript API. What would XSLT look like with HTML
syntax? What would XPath be like when it was designed by JavaScript developers?

Compromised have to be made: on the HTML side namespaced elements must
stay first class citizens, requiring changes to the Shadow DOM working draft spe-
cification. From the XML side, versions of XForms and XSLT should be distilled
that adhere to HTML syntax conventions. XPath must radically improve the extens-
ibility by and the interaction with JavaScript.

There is a future where declarative web applications will make lives of developers
much better, but only if together we start learning from the past and stop pretending
things don't need to get more complex before they get easier.

Bibliography
[1] W3C, Introduction to Web Components http://www.w3.org/TR/

components-intro/
[2] Adaptive Path, Ajax: A New Approach to Web Applications https://

web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/
essays/archives/000385.php

[3] WHATWG, DOM Standard: Attr interface http://dom.spec.whatwg.org/
#interface-attr

[4] Adam Barth, Intent to Deprecate and Remove: XSLT https://groups.google.com/
a/chromium.org/forum/#!searchin/blink-dev/xslt/blink-dev/zIg2KC7PyH0

[5] Alex Russel, Real Constructors & WebIDL Last Call http://infrequently.org/2011/
10/real-constructors-webidl-last-call

[6] W3C, Web IDL: NamedConstructor http://www.w3.org/TR/WebIDL/
#NamedConstructor

18

The web needs “XML: The Good Parts”

http://www.w3.org/TR/components-intro/
http://www.w3.org/TR/components-intro/
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://dom.spec.whatwg.org/#interface-attr
http://dom.spec.whatwg.org/#interface-attr
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/xslt/blink-dev/zIg2KC7PyH0
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/xslt/blink-dev/zIg2KC7PyH0
http://infrequently.org/2011/10/real-constructors-webidl-last-call
http://infrequently.org/2011/10/real-constructors-webidl-last-call
http://www.w3.org/TR/WebIDL/#NamedConstructor
http://www.w3.org/TR/WebIDL/#NamedConstructor

[7] W3C, Shadow DOM http://www.w3.org/TR/shadow-dom/
[8] W3C, Plenary Ballot on relative URI References In namespace declarations http://

www.w3.org/2000/09/xppa
[9] Stefan Goessner, JSONPath - XPath for JSON http://goessner.net/articles/JsonPath/
[10] Mustache: logic-less templates http://mustache.github.io/
[11] Handlebars: 0 is true https://github.com/wycats/handlebars.js/issues/608
[12] Mario Heiderich, A wiki dedicated to JavaScript MVC security pitfalls https://

code.google.com/p/mustache-security
[13] AngularJS filter module http://docs.angularjs.org/api/ng.filter:filter
[14] Mustache: Accessing Array item by index in template https://github.com/janl/

mustache.js/issues/158
[15] Mathias Bynens, JavaScript has a Unicode problem http://mathiasbynens.be/

notes/javascript-unicode
[16] Steven Levithan, XRegExp Unicode addon http://xregexp.com/plugins/#unicode
[17] Peter Beverloo, Chrome 24 beta http://blog.chromium.org/2012/11/

a-web-developers-guide-to-latest-chrome.html
[18] ECMAScript Internationalization API http://www.ecma-international.org/

ecma-402/1.0/
[19] W3C, Personal names around the world http://www.w3.org/International/

questions/qa-personal-names
[20] Domenic Denicola and Brian Cavalier, Promises/A+ specification http://

promisesaplus.com/
[21] Anne van Kesteren, XML5's Story http://archive.xmlprague.cz/2012/files/

xmlprague-2012-proceedings.pdf
[22] WHATWG, HTML: tree construction http://www.whatwg.org/specs/web-apps/

current-work/multipage/tree-construction.html
[23] W3C, XML Error Recovery Community Group http://www.w3.org/community/

xml-er/
[24] Sharon DiOrio, Angular Filters Beyond OrderBy and LimitTo https://

www.youtube.com/watch?v=L4FJ_kuO9Rc&t=4m49s
[25] W3C, XPath: Trigonometric and exponential functions http://www.w3.org/TR/

xpath-functions-30/#trigonometry
[26] Oona Räisänen, Wanted: Valid last name https://twitter.com/windyoona/status/

427176843158888449

19

The web needs “XML: The Good Parts”

http://www.w3.org/TR/shadow-dom/
http://www.w3.org/2000/09/xppa
http://www.w3.org/2000/09/xppa
http://goessner.net/articles/JsonPath/
http://mustache.github.io/
https://github.com/wycats/handlebars.js/issues/608
https://code.google.com/p/mustache-security
https://code.google.com/p/mustache-security
http://docs.angularjs.org/api/ng.filter:filter
https://github.com/janl/mustache.js/issues/158
https://github.com/janl/mustache.js/issues/158
http://mathiasbynens.be/notes/javascript-unicode
http://mathiasbynens.be/notes/javascript-unicode
http://xregexp.com/plugins/#unicode
http://blog.chromium.org/2012/11/a-web-developers-guide-to-latest-chrome.html
http://blog.chromium.org/2012/11/a-web-developers-guide-to-latest-chrome.html
http://www.ecma-international.org/ecma-402/1.0/
http://www.ecma-international.org/ecma-402/1.0/
http://www.w3.org/International/questions/qa-personal-names
http://www.w3.org/International/questions/qa-personal-names
http://promisesaplus.com/
http://promisesaplus.com/
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://www.whatwg.org/specs/web-apps/current-work/multipage/tree-construction.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/tree-construction.html
http://www.w3.org/community/xml-er/
http://www.w3.org/community/xml-er/
https://www.youtube.com/watch?v=L4FJ_kuO9Rc&t=4m49s
https://www.youtube.com/watch?v=L4FJ_kuO9Rc&t=4m49s
http://www.w3.org/TR/xpath-functions-30/#trigonometry
http://www.w3.org/TR/xpath-functions-30/#trigonometry
https://twitter.com/windyoona/status/427176843158888449
https://twitter.com/windyoona/status/427176843158888449

[27] Tex Texin, Internationalization for Turkish: Dotted and Dotless Letter "I" http://
www.i18nguy.com/unicode/turkish-i18n.html

[28] The Extensible Web Manifesto http://extensiblewebmanifesto.org/

20

The web needs “XML: The Good Parts”

http://www.i18nguy.com/unicode/turkish-i18n.html
http://www.i18nguy.com/unicode/turkish-i18n.html
http://extensiblewebmanifesto.org/

InConsiderationof improvements toXProc
Norman Walsh

MarkLogic Corporation
<norman.walsh@marklogic.com>

Abstract

XProc: An XML Pipeline Language has been gaining adoption steadily, if
slowly. Even among its fans, the observation has been made that some aspects
of the language frustrate new users. Recently, the XML Processing Model
Working Group, the working group at the W3C responsible for the continued
development of XProc, has drafted a new requirements document for V.next
of the language.

The principle focus of V.next is usability improvements. These range from
the relatively simple, obvious syntactic shortcuts, to the relatively audacious,
removing entire language features determined to be more trouble than they
are worth.

This paper reviews the current state of the art in XProc language design
with an eye towards explaining and amplifying the efforts of the working
group on the one hand, and on the other, encouraging members of the XML
community to voice their concerns.

Keywords: XML, Pipelines

1. Introduction
User and implementor experience with XProc 1.0 has exposed a number of ways
in which the XProc language could be improved. The Working Group's focus for
V2.0 is on usability improvements.

Broadly speaking, the requirements can be divided into two groups. The first
group, necessary enhancements, covers items that address specific, identified
shortcomings in the current language. The second group, additional enhancements,
covers items that are either deemed lower priority or more experimental.

21

2. Necessary enhancements

2.1. Allow attribute value templates
Formally, the way that options are passed to a step is through a p:with-option
mechanism analogous to xsl:with-param in XSLT. However, there's a “shortcut”
syntax that allows step options to be expressed concisely as options:

<p:declare-step version="1.0" name="main"
xmlns:p="http://www.w3.org/ns/xproc">

<p:output port="result"/>

<p:load href="doc.xml"/>

</p:declare-step>

The shortcut syntax is foiled whenever the value of the option must be computed
by the pipeline. In that case, users must fall back on the formal syntax:

<p:declare-step version="1.0" name="main"
xmlns:exf="http://exproc.org/standard/functions"
xmlns:p="http://www.w3.org/ns/xproc">

<p:output port="result"/>

<p:load>
<p:with-option name="href" select="resolve-uri('doc.xml', exf:cwd())"/>

</p:load>

</p:declare-step>

This is frustrating especially when the “computation” is a simple variable reference.
Allowing option shortcuts to contain XSLT-style attribute value templates (AVTs)
would simplify many pipelines. Additionally, allowing AVTs in other places, such
as the href attribute on p:document, are worth considering.

XSLT 3.0 introduces a feature which allows expressions in curly braces to be
evaluated in element content. This feature is similar to the facility provided by the
p:template step. Extending XProc to support curly braces in a manner consistent
with XSLT 3.0 will be considered.

2.2. Align with XPath 3.0 technologies
Some will remember that when the XProc 1.0 effort began, it was possible (perhaps
naïvely) to imagine that it would finish before XPath 2.0 and related specifications.

Supporting XPath 1.0 therefore seemed prudent. Today XPath 1.0 no longer
seems relevant; it adds complexity to the specification and is unlikely to be imple-
mented. XPath 1.0 support will be removed from XProc.

22

In Consideration of improvements to XProc

XProc 2.0 will be defined on top of the XPath data model.

2.3. Allow arbitrary XDM values in variables
XProc 1.0 restricts the values of variables, options, and parameters to be only strings.
This has proven to be an inconvenient limitation. Consistent with defining XProc
on top of the XDM, XProc 2.0 will allow variables, options, and parameters to have
any XDM value insofar as possible. XProc 2.0 will also allow the required types of
variables, options, and parameters to be specified.

2.4. Add explicit flow handling
If a pipeline runs XQuery on a document that has been processed with XInclude,
it follows logically that the XInclude step must run before the XQuery step. (Ignoring
questions of parallel processing and optimization.)

This is how the majority of steps in a pipeline are coordinated. The processor
computes a “dependency graph” and insures that for a step “A”, all the steps that
it depends on are run before “A” itself. However, there are cases where no such
explicit dependency exists.

Consider a step that creates a directory on the filesystem. It might be necessary
to run this step before an XSLT step, but there's no obvious way in which the create
directory step produces a document that the XSLT step consumes, there's no “data
flow dependency” between the two steps. (It is sometimes possible to contrive such
a dependency, but it's ugly and distracting.)

There's no standard XProc 1.0 mechanism to express this kind of dependency,
but there are implementation-defined extensions in most implementations. XProc
2.0 will provide a standard mechanism.

2.5. Simplify parameters
The parameter mechanism in XProc exists to support XSLT parameters. Consider
a pipeline that uses XSLT to apply the DocBook stylesheets:

<p:declare-step version="1.0" name="main"
xmlns:p="http://www.w3.org/ns/xproc">

<p:input port="source"/>
<p:output port="result"/>

<p:xslt>
<p:input port="stylesheet">
<p:document href="docbook.xsl"/>

</p:input>
</p:xslt>

23

In Consideration of improvements to XProc

</p:declare-step>

The first suprising thing about that pipeline is that it's erroneous. There are some
complicated syntactic and semantic shortcuts, but in principle the pipeline you have
to write is this one:

<p:declare-step version="1.0" name="main"
xmlns:p="http://www.w3.org/ns/xproc">

<p:input port="source"/>
<p:input port="parameters" kind="parameter"/>
<p:output port="result"/>

<p:xslt>
<p:input port="stylesheet">
<p:document href="docbook.xsl"/>

</p:input>
<p:input port="parameters">
<p:pipe step="main" port="parameters"/>

</p:input>
</p:xslt>

</p:declare-step>

The purpose of all this complexity is to address the problem that arises because the
DocBook stylesheets have hundreds of parameters. Asking the pipeline author to
enumerate all of them in every case is not practical. At the same time, telling the
user running the pipeline that none of them are available seems fairly hostile.

However, experience with parameters in XProc 1.0 reveals that the parameter
port mechanism is too complicated. It causes user confusion and introduces syntactic
complexity not justified by its function.

Something else must be done.

2.6. Integrate non-XML documents into pipelines
While I'm inclined to see everything in the world through the lens of XML, experience
has shown that real-world pipelines often involve non-XML documents. Several
workarounds have been invented for special cases. The limitation that V1.0 can only
pass XML between steps makes some pipelines difficult, if not impossible, to write.

Providing the ability to allow non-XML documents to flow between steps opens
up the possibility of writing simple pipelines to work with images, JSON, Turtle,
EPUB, etc.

Conceptually, this is not a difficult change to understand; but the details are not
obviously straightforward. It seems uncontroversial that non-XML documents
should be able to flow through the identity step and that it is an error to attempt to

24

In Consideration of improvements to XProc

add an attribute to one. It's less clear if the string-replace step, for example, can
operate on non-XML documents.

Once again, at a conceptual level, replacing strings in non-XML documents is
straightforward. But the existing string-replace step uses XPath to identify where
the replacement should occur. That's not going to work for non-XML documents.
Other non-XML formats, for example JSON, have different addressing mechanisms.
Does the string replace operation have to support multiple mechanisms, or are
several “flavors” of string replace step necessary?

2.7. Support a variety of syntactic simplifications
XProc 1.0 offers relatively few default behaviors, requiring instead that pipelines
specify every construct fully. User experience has demonstrated that this leads to
very verbose pipelines and has been a constant source of complaint. XProc 2.0 will
introduce a variety of syntactic simplifications as an aid to readability and usability,
including but not limited to:
• <p:pipe step="name"/> binds to the primary output port of the step named

“name”.
• <p:pipe port="secondary"/> binds to the “secondary” port of the step on which

the default readable port occurs.
• <p:input port="portname" href="..."/> is a shortcut for a nested p:document.
• <p:input port="portname"/> is a shortcut for a nested p:empty.
• Allow p:inline to be optional.
• Allow curly brace expansion in p:inline (with an attribute to control whether

or not that behavior is enabled)
• Provide a select attribute on p:for-each/p:viewport
• Change all steps with a single non-primary output to have a single primary

output
• Consider harmonizing p:viewport-source and p:iteration-source

• Add an AVT value attribute to options, parameters, and variables (to be used
instead of select)

3. Additional enhancements

3.1. Associate arbitrary metadata with documents
Adding metadata to documents is a natural thing for pipelines to do, either for
subsequent use by the pipeline or for eventual output. For example, the serialization
options provided in an XSLT stylesheet could be carried forward to the eventual

25

In Consideration of improvements to XProc

serialization of the result document by the pipeline. In XProc 1.0, there's no way to
maintain that association.

This metadata is a natural place to store information like the media type of (es-
pecially) non-XML documents. It may also be possible to store serialization para-
meters (such as ones specified by an XSLT stylesheet) in the metadata for subsequent
use.

3.2. Support steps with a dynamic number of ports
While most steps have a predetermined and static number of inputs and outputs,
this is not universally the case. In XProc 1.0, a putative p:eval step which could run
a dynamically constructed pipeline, for example, suffers from the limitation that
the signature of the p:eval step usually differs from the signature of the evaluated
pipeline.

3.3. Provide improved status information
XProc 1.0 provides scant support for reporting the status of a pipeline and providing
aid to users attempt to debug pipelines. Implementation-defined extensions have
demonstrated that some additional facilities, such as a p:message step, would be an
aid to users.

3.4. Provide a mechanism for importing user-defined functions
Experience with user-defined functions in XQuery and XSLT reveals that they can
be a powerful addition to the language. Providing some feature that allowed users
to extend the vocabulary of functions available in, for example, the test expressions
on p:when elements would greatly simplify some pipelines.

Such a mechanism might take the form of the ability to load extension functions
defined in, for example, XQuery, or it might include adding the ability to define
functions in XProc.

3.5. Enhance try/catch
Support for catching errors in XProc 1.0 is limited to a simple p:try/p:catch pair,
which catches and handles all errors uniformly. To align XProc with modern lan-
guages, the try/catch mechanism could be extended to support the ability to catch
specific errors and possibly with the addition of a “finally” construct.

26

In Consideration of improvements to XProc

3.6. Consider using XDM everywhere
In addition to supporting XDM values in variables, options, and parameters, XProc
2.0 might allow XDM values in more places, such as allowing p:for-each to iterate
over a sequence of strings or integers.

3.7. Simplify p:viewport and allow it to have multiple outputs
The use of an optional, single p:output binding in p:viewport creates confusion for
users. The binding is used both to connect the inner workings of the viewport and
as the name of the output port as seen from the outside.

In addition, the fact that viewport can produce only a single result means that
for some tasks, multiple passes are required, using a combination of p:viewport
and p:for-each. Consider the task of changing image references in an XHTML
document from .svg to .png and generating the sequence of .png images. In XProc
1.0, this requires a p:viewport and a p:for-each.

Adding an explicit p:viewport-result allows us to remove the confusion between
the input and the name of the output. Allowing multiple outputs allows us to col-
lapse the p:viewport and p:for-each logic into a single step.

<p:viewport
name? = NCName
match = XSLTMatchPattern>
((p:viewport-source? &
p:viewport-result? &
p:output* &
p:log?),
subpipeline)

</p:viewport>

The viewport-result connects the transformation inside the viewport back into the
source document over which viewport is operating. The transformed document
always appears on a port named 'result'. Any other outputs are simply sequences
analagous to p:for-each. It's a static error to name one of those outputs 'result'.

3.8. Provide a way to specify the base URI of a document
The base URI of a document created by the p:inline element is the base URI of the
p:inline element. Specifying an xml:base attribute on the root element of the doc-
ument does not help as that only applies to that element and its decendants.

Additionally, in some pipelines, it is desirable to be able to change the base URI
of documents produced by other steps. No convenient mechanism exists in XProc
V1.0 to satisfy these requirements.

27

In Consideration of improvements to XProc

28

XSLT 3.0 Streaming for the masses
Abel Braaksma

Abrasoft
<abel@abrasoft.net>

Abstract

Streaming in XSLT is often considered an elite technique that's only under-
stood and mastered by a happy few. However, streaming is everywhere
nowadays, with twitter and news feeds, big data processing, log listeners,
facebook, or any social media board, forums, streaming media like movies,
music etc. Does it really have to be so hard to process streams with XSLT?
The answer: it is not. It turns out that if you follow ten simple rules you can
already apply streaming to many common scenarios. Once you understand
those rules, it is a small step to move forward to more complex scenarios.

This paper first gives you a firm grasp about when to use streaming. And
once you need streaming, it introduces step-by-step approach that is easy to
memorize and master. And for more complex and corner cases not covered by
the ten basic rules, it provides a complete visual flowchart that covers all the
complex streaming rules that are otherwise so hard to follow from just the
specification text. Bottom line, this paper gives you a head start when you
consider using streaming with XSLT 3.0

Keywords: XML, XSLT, XPath, streaming, XSLT-30

1. Disclaimer
This paper discusses the new rules as they are defined in the most recent public
Working Draft, which is, as of this writing, currently in Last Call. The latest version
can be found at [27]and the version used for this paper is [28]. When this paper
refers to XPath, it uses the most recent version of XPath 3.0, which is currently in
Proposed Recommendation state [25]. The latest version of XPath 3.0 can be found
at [24]. The related XPath Functions and Operators specifications used is the Pro-
posed Recommendation [9], for which [8] holds the latest version.

Since none of these specifications is currently a W3C Recommendation, it is
possible that details mentioned in this paper will change in the future, or are removed
altogether from the specifications.

29

2. Errata and updates
After this paper is presented and published at XML Prague 20142, I will regularly
update it when the XSLT and related standards evolve, or when new insights lead
to a better set of common streamability rules. Those updates, and also any errata
for this paper can be found at http://exselt.net/papers. From the same site, you can
also download several versions of the flowcharts, like a one-page wallpaper version,
a condensed multi-page version for printing on A4 or Letter format paper and an
online interactive version. With time, I hope to create an online application that can
create a flowchart of any streaming XSLT construct.

3. A brief history of streaming
It is hard to find the first occurrences of streaming in computing. The analogy with
river flows must have been so obvious, that the word stream found its appearance
in computing related articles even before the ENIAC3 was build in the mid 1940s.
Using the analogy with rivers, one could argue that the first data streams were
Morse code send over the wire. However, the term stream as we know it now, is
used to signify the delivery method of data, which differentiates between inherent
nonstreaming delivery systems such as books, and CDs, and inherent streaming
systems, such as broadcasting radio or television through the ether. When we apply
the term streaming, we usually mean that data, which would otherwise be only
available in a nonstreaming way, is made available in a streaming way. It was [21]
who did the necessary ground-breaking work in the 1920s to split a signal in multiple
signals without loss, which he called multiplexing. He needed a way to stream ana-
logue data to multiple peers and did his invention while working for the US Army
as a Major General. Squier later patented his invention in 1922. [1] describes how
he used it to build a device that allowed bringing music to multiple devices at once
and dubbed it Muzak, a trademarked term still in use today.

It is his invention that ultimately led to streaming in computing as we know it
today. Some of the earliest uses of streams is in the [10] language, in the form of
READ, WRITE INPUT TAPE instructions. But it those "streams" were more comparable
to a Morse sequence of bits, because the analogy with broadcasting did not yet apply,
that is, there was no way yet to read the input into multiple programs at the same
time. But FORTRAN paved the way for other languages such as C which in turn
inspired the inventors of the Unix operating system, itself build in C in the early
1970s, to generalize access to I/O by means of standard input, output and error
streams. Around the same time we see the term stream pop up in early standards

2XML Prague 2014, see http://xmlprague.cz.
3The ENIAC was the first ever general purpose computer, see, among others, The ENIAC Story: http://
ftp.arl.mil/~mike/comphist/eniac-story.html.

30

XSLT 3.0 Streaming for the masses

http://exselt.net/papers
http://xmlprague.cz
http://ftp.arl.mil/~mike/comphist/eniac-story.html
http://ftp.arl.mil/~mike/comphist/eniac-story.html

about networking, such as [2] in 1968 and the New Host-Host protocol by [5] et al in
1970.

Those early advances in streaming techniques and standards for networking
and file and memory I/O cleared the way for media streaming in the 1980s for media
streaming, as defined and pioneered in the [11] standard by many researchers. The
MPEG standard defined a file structure and a delivery method that did not require
the knowledge of the whole file, it did not even require the start of the file, hence
allowing reading of the file in chunks, without requiring to read or download the
whole file at once.

The techniques applied in that standard still form a basis of our understanding
of streaming nowadays and the notion of having a limited amount of the stream in
memory at any given time, allowing to start in the middle or jump forward (and in
MPEG also backward) through the stream and it is that notion that also applies to
streaming with XML data: an XML stream has no direct knowledge of its beginning
or end and may start in the middle, as long as the streaming provider makes sure
that the structure is coherent XML, that is, if you were to start "in the middle", you
still require a full [23], with access to the ancestor axis all the way to the root node,
but no free-ranging (up and down the stream) access to all preceding or all forward
nodes. It is this limitation that requires a strict set of rules to allow processing of
such streaming XML with XSLT, that are explained in the next sections.

4. Why streaming?
Not all data manipulation scenarios require streaming. Where and when you should
switch to a streaming scenario may depend on many factors. This section briefly
describes what factors may come into play.

4.1. Input data size
The most obvious use-case for using a streaming aproach is the size of data. As a
rule of thumb, if the data that needs to be read does not fit in memory, or if the data
that needs to be written does not fit in memory, or both, you would choose a
streaming approach. In fact, streaming is your only option in these use-cases.
Whether or not data fits in memory depends on many factors. Your processor of
choice, the XML reader that creates the XDM in memory, the platform it is run on
and the capabilities of your physical computing environment, like bitness, memory
or a fast swap disk, together make it either possible or impossible to process a given
large XML file with XSLT.

Often it will be clear from the start whether the document is too large to fit into
memory, but in the case of doubt, you can also calculate it. The following example
calculation may need different constants for your processor of choice. Suppose you
have an 8GB RAM computer, but you're stuck with a 32-bit processor, your maxim-

31

XSLT 3.0 Streaming for the masses

um available memory will be 2, sometimes 3GB. If your input is 400MB in size, and
the chosen XML reader will require three to four times the size of the input XML
and the required output is estimated to be half the size of the input, the maximum
total required memory is 400 x 4 + 200 x 4 = 2,400MB. Assuming the operating system,
other programs and the processor itself also require memory, this relatively small
amount of input XML needs to be processed in a streaming way to prevent out of
memory issues.

4.2. Streamed input
But size is not the only factor in play. Not all data can always be read at once. Sup-
pose you have a logging feed from your website and your stylesheet wants to send
a report on each serious error that is reported, there's no way you can read all the
data at once, simply because it is not yet available. In such scenarios, where the input
is already streamed and your stylesheet needs to continue processing virtually in-
definitely, you should use a streamed processing approach. In this scenario, you
could consider the stylesheet to operate as a certain event dispatcher: when the
event of an error occurs, it will do something.

4.3. Output streaming
It is important to distinguish between input streaming and output streaming. The
XSLT specification is very thorough when it comes to input streaming and all rules
that allow streamability are written in such a way that they also allow output
streaming, but whether or not a processor actually does output streaming is not
required by the specification. Before you begin using streaming, you should check
your processor whether it can do output streaming, or whether it will keep the
output in memory until the processing is completed. If so, you should not use that
processor for scenarios that run indefinitely, where intermediate output is a require-
ment.

Some scenarios require little or no input, but the output is too large to fit in
memory. Suppose you want to calculate all the possible permutations of a given
input string. The output in such case can be huge, and then again, streaming is your
best option (on a side note, the XSLT 3.0 specification says little about output buf-
fering, but it requires that it runs in constant memory when streaming is enabled,
which also applies to the writing result sets).

Output streaming has another compelling use-case: chained, or piped streaming,
which can be applied to scenarios where multiple passes are required over the
streamed input document. For instance, suppose you want to sort an XML file using
streaming. It is not possible to use xsl:sort with streamable nodes (the reason is that
it requires multiple back and forth readings to do the sorting), but several algorithms
exist that allow streamed sorting, which usually requires the output of a first, partial

32

XSLT 3.0 Streaming for the masses

sort, to be applied again as input to a new pass, until the full stream is sorted. For
these and related scenarios to work, your processor or your XML Pipeline [26] en-
vironment must have a mechanism of using the streamed output of one pass as
streamed input for the next pass.

4.4. Unparsed text input streaming
This paper discusses streaming of XML, but XPath 3.0 introduces a new function,
fn:unparsed-text-lines4, which takes an external resource as input and parses it
line by line. The original intend of that function was to allow unparsed data to be
streamed, however the Working Group at some point decided to not formalize this
requirement. When your intend is to do streaming of unparsed input, you should
check the capabilities of your processor to find out whether it can do streaming using
this function, or whether you would requite an extension function.

At the moment of this writing, the XSLT 3.0 specification does not provide an
additional function for doing streaming of unparsed text input.

5. XSLT 3.0 streaming basics
There is one golden rule while doing streaming with XSLT: each instruction can
have a maximum of one downward expressions5. Remember this rule. Memorize
it. It is important, as we will come back to this rule again and again.

5.1. Guaranteed streamability
Streaming is all about guaranteed streamability6. Knowing that your stylesheet rules,
when they apply to streaming, are guaranteed streamable is important, because it
means it will be processed in a streaming way on every streaming processor, that
is, on any processor that supports the streaming feature. It is possible that individual
vendors have created ways to allow a broader group of constructs or expressions
to be streamable, but that is out of the scope of this paper. Guaranteed streamabitlity
is well defined in the XSLT 3.0 specification, but the rules are complex. This paper
shows an alternative approach to the rules, which will fit most scenarios and are
easier to follow.

You might wonder why you would bother with guaranteed streamability. After
all, you could just write the stylesheet the way you always did, initialize streaming

4See section 14.8.6 of XPath Functions and Operators: http://www.w3.org/TR/xpath-functions-30/
#func-unparsed-text-lines.
5The specification does not use this terminology, instead it uses the term consuming expression, which
consumes the input tree. Iin practice it is easier to visualize what happens by considering the term
downward expression which was often used in informal discussions during meetings.
6See section 19.10 in XSL Transformations 3.0: http://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable.

33

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-lines
http://www.w3.org/TR/xpath-functions-30/#func-unparsed-text-lines
http://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

as described in one of the following sections and hope for the processor to do its
best and process as much as possible using streaming. After all, wasn't XSLT written
with streamability in mind in the first place? The answer to this question is yes and
no. In the course of defining the standard, we've found that many approaches to-
wards streamability exist. Just like watching a movie on Youtube, where you can
scroll back to a previous point, there have been papers in the past describing
streamability of processing XML that can stream both up and down the tree. Given
such an approach, it would theoretically be possible to use any expression with
streaming.

However, the working group has decided that such a broad definition of
streaming was not feasible. In fact, the complexity of supporting different kinds of
streaming and formalizing it would prove to be too hard in practice, let alone hoping
for implementers to implement such complexity in their processors. By choosing
for a limited approach, namely, forward-only streaming (give or take a few excep-
tions, which we will get to in the next sections), the result is already quite complex,
but doable for implementers and, given some help with tutorials here and there,
understandable for programmers.

This does not preclude implementers from using smarter algorithms to allow
more complex constructs to be streamable, or to even allow forward and backward
streaming. The term guaranteed streamability is meant to denote the subset of rules
that is formalized in the specification and that all processors that claim to support
streaming, must adopt. As a consequence of this, it is a necessary evil for program-
mers learning streaming to also adopt and understand guaranteed streamability ana-
lysis7, at least to the level where it can provide you with enough tools to create usable
stylesheets for your scenarios.

5.2. How to find out whether your processor supports streamability
Before we even attempt to use streaming, we should find out whether our processor
supports it. This can be done similarly to how you would check for the supported
XSLT version, or whether the processor supports schema-awareness.

If you are uncertain whether your processor supports streaming, or whether the
license for your processor entitles you to using it, you can use the new streaming
system property xsl:supports-streaming8, which takes the value yes or no depend-
ing on whether the processor supports it. For instance, the following snippet will
output "Supports streaming" or "Does not support streaming" depending on your
processor's capabilities:

7See section 19 of XSL Transformations 3.0, which deals with streamability analysis: http://www.w3.org/
TR/xslt-30/#streamability.
8See section 20.3.4 in XSL Transformations 3.0: http://www.w3.org/TR/xslt-30/#function-system-property.

34

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#streamability
http://www.w3.org/TR/xslt-30/#streamability
http://www.w3.org/TR/xslt-30/#function-system-property

<xsl:template name="xsl:initial-template">
<xsl:value-of select="

if(system-property('xsl:supports-streaming') eq 'yes')
then 'Supports streaming'
else 'Does not support streaming'" />

</xsl:template>

Note: this snippet uses the new special name xsl:initial-template9 as name for
the template, which means nothing more that this template is the entry point for
the transformation, regardless whether an input document is provided or not.

5.2.1. How non-streaming processors deal with streamability

What happens when you process a stylesheet with a processor that does not support
streaming, and the stylesheet itself contains templates that are defined in a streamable
mode (see next section), or they contain xsl:stream10 instructions? The answer is
simple: when a processor does not support streaming, it should try its best to process
the stylesheet in a normal way, as if each streaming construct was non-streaming.
It will simply ignore the guaranteed streamability analysis required by streaming
processors.

If your stylesheet requires streaming, it is very well possible that a non-streaming
processor will blow itself up, for instance because it runs out of memory. You can
require streamed processing if you feel that is a requirement for your stylesheet by
raising an error (a new feature of XPath 3.0), by using an xsl:message with
terminate="yes" instruction, by stopping processing in the initial template, by using
the new xsl:assert11 instruction or by using an xsl:use-when expression, all with
a test on the system property xsl:supports-streaming.

Here is one way to do that in the initial template:
<xsl:template name="xsl:initial-template">

<xsl:choose>
<xsl:when test="system-property('supports-streaming') eq 'yes'">

<xsl:stream href="streamable-source.xml">
<!-- streamable instructions -->

</xsl:stream>
</xsl:when>
<xsl:otherwise>

<xsl:message terminate="yes">
Sorry, this stylesheet requires

9See section 10.1 in XSL Transformation 3.0: http://www.w3.org/TR/xslt-30/ [http://www.w3.org/TR/
xslt-30] (search the document for xsl:initial-template).
10See section 18.1 of XSL Transformations 3.0: http://www.w3.org/TR/xslt-30/#element-stream.
11Assertions are a new and powerful feature, that help specifically in testing scenarios. Whether or not
an assertion is run can be switched on or off when initiating the transformation. For more information,
see XSL Transformations 3.0, section 22.2: http://www.w3.org/TR/xslt-30/#assertions

35

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xslt-30
http://www.w3.org/TR/xslt-30/#element-stream
http://www.w3.org/TR/xslt-30/#assertions

a streaming processor
</xsl:message>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

5.3. How to initiate streaming
There are several ways to tell the processor that you want to use streaming. You
can set the default mode to streaming, which means that the processor will have to
process the principal input document through streaming, you can tell the processor
to use streaming on a specific mode, you can merge in a streaming way or you can
use the new xsl:stream instruction.

5.3.1. Using xsl:stream to initiate streaming

Most commonly, streaming is initiated with this new xsl:stream instruction, which
takes an uri in the href attribute that is resolved to the document you want to stream.
The xsl:stream instruction works the same as the fn:doc function in regards to uri
resolution, except for the fact that it is not stable. That means, for multiple invocations
it can return different nodes, whereas the fn:doc function would always return the
same document for the same uri. This is an important difference and a consequence
of streamability: the input document cannot be read in memory all at once, hence
it requires multiple read-requests to the source. How the stream is read and how
the nodes are given to the XSLT processor are not part of the XSLT specification.
Typically, a processor will have a streaming XDM implementation, which is in
principle the same as a normal XDM implementation, except that it will only have
a limited set of nodes and a limited set of accessors at any given time.

5.3.2. Using xsl:mode to initiate streaming

Another way to initiate streaming is by using the new xsl:mode12 declaration and
setting its streamable attribute to yes. The xsl:modedeclaration defines the properties
in which a certain mode can operate, among other things, whether or not a mode
can be used within streamable processing.

When you have an xsl:mode declaration without the name attribute present, the
declaration applies to the default default mode (the default mode can be specifically
selected with xsl:apply-templates and the mode attribute set to the special name

12Modes can now be specified declaratively, with features as streamable, whether to ignore or copy non-
matched nodes, to warn on non-matched or doubly matched nodes, or whether typing is strict or lax
etc. See section 6.6.1 on Declaring Modes in XSL Transformations 3.0: http://www.w3.org/TR/xslt-30/
#declaring-modes

36

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#declaring-modes
http://www.w3.org/TR/xslt-30/#declaring-modes

#default, the default of the defaults, if none is specified, is the unnamed mode). If
you define streamable="yes" to the default mode, the processor must process the
default input document using streaming.

When you declare a named mode to be streamable, and the initial mode of the
stylesheet is set to that named mode, the processor must process the default input
document using streaming as well. However, a streamable mode does not always
mean that any nodes going through that mode are streamed. This happens for in-
stance when you would apply the result of an fn:doc function to that mode. Because
the fn:doc function returns a non-streamed stable document, the whole document
is already in memory and the streamable property of the mode does not have any
effect. However, processors are allowed to optimize processing other input using
streaming, as long as it doesn't affect the way the stylesheet would have operated
without streaming.

Any mode that is declared with streamable="yes" is required to be guaranteed
streamable. Processors are not required to raise an error when the mode is not
guaranteed streamable, but they are required to inform the user if it is not, for in-
stance, by showing a warning (which in turn, the processor is allowed to switch off
at user option).

5.3.3. Using xsl:merge to initiate streaming

The new xsl:merge is different from other instructions in that it allows the user to
inform the processor that you want the documents-to-be-merged to be merged using
streaming. The current state of the specification however contains a bug13 that
conflicts with stability and streaming rules, but once the bug is fixed, the third option
to initiate streaming is by means of the xsl:merge instruction.

To initiate merged streaming, you specify the streamable attribute of
xsl:merge-source14, which is a child instruction of the xsl:merge instruction, and
set it to yes. It is possible mix both streamed and non-streamed sources together,
in other words, you are not required to set all xsl:merge-source instructions to the
same streamable attribute value.

This type of streaming is very specific, as it is only intended to be used when
merging multiple sources into one. This is very hard to do using just the xsl:stream
instruction and the strict streaming rules, not in the least because you are not allowed
to move streamed nodes around (as explained in a later section in this document).
This paper will not go into the details of streamed merging, as it is considered an
advance concept. However, the flowcharts later in this paper do have the xsl:merge

13This particular bug was raised on the public bugzilla against the latest working draft, see: https://
www.w3.org/Bugs/Public/show_bug.cgi?id=24343
14For more info on streamable merging, see section 15.4 of XSL Transformations 3.0: http://www.w3.org/
TR/xslt-30/#streamable-merging

37

XSLT 3.0 Streaming for the masses

https://www.w3.org/Bugs/Public/show_bug.cgi?id=24343
https://www.w3.org/Bugs/Public/show_bug.cgi?id=24343
http://www.w3.org/TR/xslt-30/#streamable-merging
http://www.w3.org/TR/xslt-30/#streamable-merging

instruction, which should give you enough information to start doing streamable
merging if your use-case requires so.

5.3.4. Using fn:unparsed-text-lines to initiate unparsed text streaming

After the three ways to initiate streaming for XML documents (or any document
available as a streamable XDM), you may wonder whether it is possible to stream
unparsed text input. Unfortunately, the answer is both yes and no as we already
saw in section 3.4. You can use fn:unparsed-text-lines the same way you are used
to use fn:unparsed-text. If you want the largest chance on your processor optimizing
it for streaming, either apply templates on it (yes, in XSLT 3.0 you can apply tem-
plates on other things than nodes15) or use an xsl:for-each. Since each context item
will be an atomic value and since there is no way to navigate from one line to another,
the rules discussed in this paper do not apply. Perhaps it is a good idea, however,
to set the modes you use for parsing unparsed text to streamable="yes", just in
case, hoping the processor will understand the hint. But remember, the processor
is not required to apply streaming processing of unparsed text, so it is probably a
good idea to simply try it out with your processor, or to check your processor's
manual.

There is still discussion going on both inside the working group as outside the
working group16 as to whether we should formalize streaming of unparsed input.
It is obvious from the discussions that many people expect fn:unparsed-text-lines
to behave in a streaming way, but the specification says nothing to confirm that.
Well, perhaps apart from a note in the current XSLT 3.0 specification that says that
it facilitates streaming17, and a large note in an earlier draft of the specification18,
quote:

"This function has been added in XSLT 2.1 for three reasons: to do the line splitting
in a way consistent with the rules applied during XML parsing; to do it without

15Matching non-nodes is done with the new .[Expr] syntax, which is called a predicate pattern. It contains
an expression that returns a boolean and takes as input the current item, which can be a node, any
atomic type, a map or even a function item. See The Meaning of a Pattern in section 5.6.3 of XSL Trans-
formations 3.0 for a more detailed description or predicate patterns: http://www.w3.org/TR/xslt-30/
#pattern-semantics
16In September 17, 2013, Wendell Piez wrote a message to the XSL Mailing List of Mulberry Technologies
Inc., in which he laid out a common scenario of parsing large CSV files, grouping them and outputting
them as XML. See: http://xsl-list.markmail.org/thread/pwuzpcvdoi7eam4h. On the same list, more dis-
cussions have arisen about using unparsed text in a streamable way. Quite recent, Dimitre Novatchev
wrote "it seems not obvious how cases involving very large unparsed text files have been addressed",
in answer to a discussion on streaming unparsed text, see: http://markmail.org/message/jcvjh54fyuav3y4h.
17See section J.2 Changes in Other Related Specifications: http://www.w3.org/TR/xslt-30/
#xpath-changes-since-2.0
18See section 19.2.2, The unparsed-text-lines function, of the June 2010 Working Draft of XSLT 2.1: http://
www.w3.org/TR/2010/WD-xslt-21-20100511/#unparsed-text-lines

38

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#pattern-semantics
http://www.w3.org/TR/xslt-30/#pattern-semantics
http://xsl-list.markmail.org/thread/pwuzpcvdoi7eam4h
http://markmail.org/message/jcvjh54fyuav3y4h
http://www.w3.org/TR/xslt-30/#xpath-changes-since-2.0
http://www.w3.org/TR/xslt-30/#xpath-changes-since-2.0
http://www.w3.org/TR/2010/WD-xslt-21-20100511/#unparsed-text-lines
http://www.w3.org/TR/2010/WD-xslt-21-20100511/#unparsed-text-lines

recourse to regular expressions (which is likely to be more efficient), and to make it
easier for processors to read the input file line by line, which is likely to use less
memory."

But none of these notes have made it to a formal section of the current specification
yet.

5.3.5. Other means of initiating or using streaming

There are two other instructions that have a streamable attribute. Those instructions
are xsl:accumulator and xsl:attribute-set. The meaning of using
streamable="yes" on these two instructions is slightly different than the meaning
on xsl:merge-source and xsl:mode. For modes and merging, setting streamable to
yes actually forces the processor to take a streaming approach for the initial source
document or the input merge sources. In the case of xsl:mode it also allows the
mode to be used when called or applied to from any streaming scenario, for instance
from under an xsl:stream instruction, but when the mode is used without streaming,
it acts as any other mode. The same applies to accumulators and attribute-sets. If
you intend to use them with streaming, you must specify that on their declaration.
However, they themselves do not instantiate streaming. Conversely, when
streamable="yes" is not specified on either an attribute-set or an accumulator, you
are not allowed to use them from a streamed template or instruction.

As with any other feature, it is possible that processors extend the capabilities
provided by the standard and create their own extension functions, instructions or
declarations that can initiate streaming. For example, the EXPath HTTP Client [13],
as implemented in Java as an extension for Saxon by Florent George [14] supports
a limited amount of streaming 19. If you are interested in using this EXPath [6] ex-
tension, James R. Fuller has provided a good tutorial in [15] for working with web
services using XSLT and this EXPath extension. Another one worth mentioning is
the Saxon saxon:stream extension, which was dubbed Burst mode streaming [4].

Neither these, nor other extensions will be covered in this paper, as the focus of
this paper is on the new streaming facitilities provided by the XSLT 3.0 specification
and most of these extensions were provided because earlier XSLT standards did
not support streaming out of the box. With the new streaming features becoming
an integral part of new streaming processors such as [7] or existing processors such
as [20], legacy streaming extensions, which typically only work on one processor,
are no longer necessary.

19A brief mention of this support was on the public EXPath mailing list by Florent George, see: http://
lists.w3.org/Archives/Public/public-expath/2013Oct/0010.html

39

XSLT 3.0 Streaming for the masses

http://lists.w3.org/Archives/Public/public-expath/2013Oct/0010.html
http://lists.w3.org/Archives/Public/public-expath/2013Oct/0010.html

6. Rules of thumb for streaming with XSLT 3.0
This section describes rules that can be deducted from the complex rules as outlined
in section 19 of the XSLT 3.0 specification. The rules are deliberately simple and
easy to follow. When the rules do not work for your situation you may well need
a more complex solution. It is the intend of these rules to cover most of the common
scenario's found when processing streaming XML with XSLT, but there is no inten-
tion to be complete. For that purpose, see the next section, where a set of more or
less complex flowcharts can be used to analyze any streaming scenario for guaran-
teed streamability assessments.

The constructs in the following sections, when not specifically specified otherwise,
assume that they are an immediate child of a streamable template20 or an immediate
child of the xsl:stream instruction. For instance, if the text has an example saying
that the following construct is streamable:

<xsl:for-each select="foo">
<xsl:value-of select="@bar" />

</xsl:for-each>

it means that it is guaranteed streamablewhen used within a streamable template rule
such as this:

<xsl:mode streamable="yes" />
<xsl:template match="somenode">

<xsl:for-each select="foo">
<xsl:value-of select="@bar" />

</xsl:for-each>
</xsl:template>

In this example, the xsl:mode declares the unnamed mode streamable, hence any
template rule that doesn't specify another mode, must also be streamable. The whole
example above is guaranteed streamable and uses only rule #1 and rule #2. The pattern
in a streaming template rule is not as free as a pattern in a non-streaming pattern.
See rule number 3 for streamable patterns and how to construct them.

In those examples where an xsl:template is used, a further unspecified attribute
mode="streaming" assumes that an xsl:modedeclaration exists with name="streaming"
and streamable="yes". Where a template rule is used with mode="non-streaming"
this means that again a mode declaration is assumed, this time however with
name="non-streaming" and streamable="no".

20A streamable template is a template that is in the scope of a mode with streamable="yes" as outlined
earlier in this paper. When any mode is streamable and your template uses the #all special mode name,
that template rule must also be guaranteed streamable.

40

XSLT 3.0 Streaming for the masses

6.1. Rule 1: each template rule can have a maximum of one downward
expression
Each template rule that is in a streamable mode can contain a maximum of one
downward expression21 in all of its immediate children. This is the most important
rule to remember. A downward expression can be a child selection expression, a
descendant-or-self expression or any of these with a motionless filter expression
(see Rule 3).

The effect of this rule is that a streaming stylesheet will most typically contain
many very small template rules, that move through the streamed input document
one tiny step at the time. Streaming is all about thinking in one direction: down.
Make sure to craft your rules in such a way that you never have to look back, because
once you have visited a node, you cannot visit it again.

The following trivial example selects author elements from a book. It is guaran-
teed streamable because it has at most one downward expression in the first child
of the template rule.

<xsl:template match="book" mode="streaming">
<xsl:copy-of select="author" />

</xsl:template>

The following example is slightly more complex, but by just glancing over it, it is
clear that the first template has one downward child select expression and the second
template concatenates some literals with the value of the name element.

<xsl:template match="book" mode="streaming">
<xsl:apply-templates select="author" mode="#current"/>

</xsl:template>

<xsl:template match="author" mode="streaming">
<xsl:value-of select="'Author: ' || name || '
'" />

</xsl:template>

It is allowed to have more than one construct as immediate children under a template
rule, as long as at most one of these children consumes the input stream, that is,
contains a downward expression. Of course, if there is no downward expression at
all, it is also guaranteed streamable.

This simple and basic rule is easy to get wrong, however. For example, consider
changing the content of the second template as follows:

<xsl:value-of select="'Author: ' || firstname || ' ' || surname" />

21The specification talks about at most one consuming expression. In the flowchart later in this paper, the
term consuming is used instead of downward expression. But most consuming expressions become consum-
ing because they are a downward expression. Later rules and the flowchart help define the term consuming
to a greater extend.

41

XSLT 3.0 Streaming for the masses

Surely, this can be streamable, right? Yes, you might be right if you consider this to
be streamable. The select expression of xsl:value-of contains two downward ex-
pressions. Even though it is only one expression, you should always split your ex-
pression into single steps, in this case the steps are the first literal expression 'Author:
', the child-select expression firstname the second literal expression ' ' and the
second child-select expression surname.

If this were to be processed using streaming, ignoring the rules for a moment,
the processor would first find the element firstname, reads and parses its content,
and positions the read pointer at the end of that element; then it will search for the
element surname, reads and parses its content and positions the read pointer at the
end of that element (effectively, the closing tag). This could work, if you knew be-
forehand that surname always comes after firstname. However, a processor cannot
possibly know that.

Even in the even that the processor would know the order of the elements, for
instance in the presence of a schema, it still validates a principle of XSLT processing
and that is, that the order of processing does not matter. In other words, if the pro-
cessor were to decide in all its wisdom that finding surname first and then firstname,
it would be no problem in a non-streaming situation, but in a streaming environment,
there is no way the processor can go back. Hence it is vital that we are lenient with
the processor and think along.

So how would we fix our stylesheet? As mentioned in the beginning of this
section, a stylesheet that uses streaming typically contains many very small template
rules. Assume that in this particular situation, as an author of the stylesheet we
know that the order of firstname and surname is always the same and in that respect-
ive order, we can write the whole stylesheet as follows:

<xsl:mode on-no-match="shallow-skip"
name="streaming"
streamable="yes" />

<xsl:template match="book" mode="streaming">
<xsl:apply-templates select="author" mode="#current"/>

</xsl:template>

<xsl:template match="author" mode="streaming">
<xsl:apply-templates select="*" mode="#current"/>

</xsl:template>

<xsl:template match="firstname" mode="streaming">
<xsl:value-of select="'Author: ' || ." />

</xsl:template>

<xsl:template match="surname" mode="streaming">

42

XSLT 3.0 Streaming for the masses

<xsl:value-of select="' ' || . || '
'" />
</xsl:template>

This may look much more like the older XSLT 1.0 style of writing stylesheets, where
in the absence of more advanced constructs, it was not uncoming to have many
short template rules. In a way, using streaming feels a bit like going back to XSLT
1.0 ways of doing things, however, many powerful functions from XSLT 3.0 and
XPath 3.0 are available that were not available at the time of XSLT 1.0.

Note, as a convenience, I added the new on-no-match attribute to the mode de-
claration, which was covered in depth in an earlier paper from my hand, Lazy
processing of XML in XSLT for Big Data [3]. It is a shortcut for removing the nodes
that we are not interested in from the output stream.

You may wonder how this particular use-case is supposed to be written if the
order of surname and firstname were the other way around. And indeed, it is not
trivial at first how to do this, but in some of the following rules we will come back
to this example and provide alternative streamable approaches for this scenario.

6.1.1. What are downward expressions?

So far, this section assumed you would understand the concept of downward ex-
pressions, and more concretely, the concept of one downward expression. But it may
not be so trivial as it looks. For instance, the expression following::foo is clearly a
downward expression, but is not considered streamable at this time. The reason for
it not being streamable is that with multiple templates, it is very hard to write rules
that prevent a matching template to visit nodes multiple times. Currently, the
streamability analysis is explicitly written to prevent analysis to go over the
boundaries of the current construct, which makes it possible to statically analyze
whether any given construct is streamable or not.

To understand why it is indeed not streamable, remember that we cannot visit
a node twice, and have a look at this example:

<xsl:template match="book" mode="streamable">
<xsl:apply-templates

mode="#current"
select="following-sibling::book[1]" />

</xsl:template>

This example clearly goes over each node only once. It doesn't actually do anything
(let's assume it outputs the @name attribute), but it is a typical XSLT pattern for re-
taining state, in fact, for a long time it was even considered a streamable way of
keeping a running total, see [18]22. However, suppose we write this example slightly
differently. In fact, let us introduce a common error seen with many beginning XSLT
students:

22In particalur, the section in the mentioned paper called "Streaming with retained state".

43

XSLT 3.0 Streaming for the masses

<xsl:template match="book" mode="streamable">
<xsl:apply-templates

mode="#current"
select="following-sibling::book" />

</xsl:template>

It is not always obvious to anyone starting out with XSLT what such an example
does. It goes over each book element many times. In fact, the first book element is
visited once, the second twice, the third four times, the fourth eight times etc, which
is not compatible with streaming. While at first it seems trivial that the following-
sibling axis is streamable, in practice it is very hard to come up with a rule that allows
usage of the following-sibling axis, but prevents situations like the one above, which
is legal XSLT, but illegal in streaming.

While the following and following-sibling axes may not have seem obvious, the
other axes that are not streamable in any expression that operates on a streamed
node, preceding:: and preceding::sibling::, are much easier to understand: they
force the processor to look back, and looking back is not allowed. These four axes
together form the group of intrinsicly non-streamable axis steps.

6.2. Rule 2: each construct can have a maximum of one downward
expression
This rule extends the previous rule and introduces the concept of a construct. In
streaming, a construct is an instruction, a sub-instruction (such as xsl:when), an
expression, a sub-expression (in a | b there are two subexpressions a and b) and
declarations, if they are of influence to streamability. Typically, many constructs
have a sequence constructor (examples are xsl:for-each, xsl:sequence,
xsl:with-param, xsl:template, xsl:attribute etc). This sequence constructor is a
very powerful means in XSLT and it allows us to nest instructions inside other in-
structions.

The essence of this rule is that any sequence constructor, no matter how deeply
nested, may contain at most one downward expression in its immediate child.
However, if that child has itself a sequence constructor, it is also allowed to have
one downward expression. Here is an example:

<xsl:for-each select="author">
<xsl:for-each select="books/book">

<xsl:apply-templates select="summary" mode="#current" />
</xsl:for-each>

</xsl:for-each>

This example, when placed inside a streamble template, in total contains three
downward expressions: author, books/book and summary. However, each immediate
child contains at most one downward expression, which makes it guaranteed

44

XSLT 3.0 Streaming for the masses

streamable. Once the read pointer is at the first author, the processor knows that it
needs to process all children books and its children book (typically, a processor will
go over all descendants and test whether the pattern books/book fits, rooted at the
context node author); finally it will select the children of book that match the nametest
summary and applies templates to it. Once done, it goes on to the next matching book
until all books are processed. Once done with that, it will go on to the next matching
author, until all authors are processed.

This rule does not apply to all constructs. In particular, it only applies to con-
structs that change focus, like xsl:for-each, xsl:iterate, xsl:for-each-group,
xsl:template. It also applies to expressions, in that an expression such as a/b/c
changes focus from one axis step to another. As a consequence, in our example, we
were allowed to write books/book, as the first books changed focus from author to
books and each was allowed to have at most one downward expression. Were we
to write books/book[isbn], the second half, book[isbn], does not change focus (i.e.,
to isbn, the focus remains on book and the whole construct still returns a book) and
we have two downward expressions in this path expression, which is not guaranteed
streamable23.

Here is a counter example that is not guaranteed streamable:
<xsl:for-each select="author">

<xsl:for-each select="books/book">
<summary isbn="{isbn}">

<xsl:value-of select="summary" />
</summary>

</xsl:for-each>
</xsl:for-each>

The literal result element summary has an attribute value template that selects a child
element isbn. Since a literal result element does not also change focus to this element,
the nested xsl:value-of instruction cannot be processed using guaranteed
streamability, because the processor cannot know whether it is available before or
after the isbn element.

This particular example cannot be rewritten using nested constructs and main-
taining guaranteed streamability. It cannot even be rewritten with xsl:fork (see
next section), because the two elements isbn and summary are siblings of one another,
and we actually want to nest them. There are, however, several other ways of re-
writing this particular use-case. Sticking with the nested for-each loops (in itself not

23This rule is not entirely in line with the specification. In the specification, a filter expression is still a
focus changing construct. However, that is because it changes the focus in A[B] to A inside the filter ex-
pression. But because a top level filter expression must be motionless, the rule still holds, and I consider
the construct not changing focus because A[B] returns A, so the return focus is the same as the focus
inside the filter. The few exceptions to this rule will not be discussed in this paper. For a more in depth
view, see section 19.3, Determining the Context Item Type in XSL Transformations 3.0: http://www.w3.org/
TR/xslt-30/#determining-context-item-type

45

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#determining-context-item-type
http://www.w3.org/TR/xslt-30/#determining-context-item-type

a good programming style, but we use it here illustratively), this is one way to rewrite
it:

<xsl:for-each select="author">
<xsl:for-each select="books/book">

<xsl:variable name="items"
select="*[self::isbn or self::summary]/string()" />

<summary isbn="{$items[1]}">
<xsl:value-of select="$items[2]" />

</summary>
</xsl:for-each>

</xsl:for-each>

The variable $items is assigned the string-value of the nodes (see Rule 5 for a more
in-depth explanation on using variables in streaming) and the whole body of the
inner xsl:for-each now has only one downward selection, the expression *.

You may have wondered why we don't write the select expression of the variable
differently. Why using this verbose syntax? The reason is that if you were to write
(isbn, summary)/string(), the expression contains two downward selections,
which can potentially result in returning overlapping nodes, for instance in the ex-
pression (section, section/para), with multiple nested sections this will return
nodes that overlap24, which is not compatible with streaming. While we could see
that (isbn, summary) will never return overlapping nodes, the working group de-
cided to not make the rules overly complex for this one particular expression, since
there is an easy way to rewrite this type of expression.

The reason that the predicate, combined with the child-select expression is al-
lowed and streamable, is because a nametest on the self:: axis is considered mo-
tionless: a streaming processor does not need to look ahead to determine the name
of the current node. See also Rule 9, about motionless filters.

6.3. Rule 3: Use motionless expressions where possible
A motionless expression, or construct, is one that doesn't require the processor to
move from the current point in the input XML stream at all. At each current node,
the following properties can always be requested:
• Nametests on the current node, like name(), local-name and self::foo. Example:

<xsl:element name="{local-name()}" /> creates a new element with the local
name of the current element.

24Overlapping means: one or more nodes in the sequence contain nodes that are itself also part of the
sequence. For instance, <section><para></para></section> and the expression section | section/para
will return two items, the root section element and the child para element. Since para is already contained
in section, these nodes are said to overlap. In streaming, overlapping nodes are not allowed, because it
requires the processor to go over the input stream multiple times.

46

XSLT 3.0 Streaming for the masses

• Climbing the parent, ancestor or ancestor-or-self axes. Example:
*[ancestor-or-self::section], returns all elements that are children of a section
element or that is itself a section element. Here the * makes this a downward
expression, but the predicate is allowed because it is motionless.

• Visit the attribute axis. Example: <xsl:value-of select="'Name' || @name ||
', age: ' || @age || ', birth: ' || @birthyear outputs concatenated strings
of the values of the attribute nodes name, age and birthyear of the current context
node.

• Any function or instruction that takes atomic values, unless the atomic values
are created from serializing the content of a streamable node, in which case that
operation itself is consuming and must be the only one in the construct. Examples:
current-dateTime(), any math function, any stylesheet function that does not
take a streamed node as input. Consider string(.), this expression takes a node
and returns the string-value. When used on itself, it is allowed, because it con-
sumes the current node. Similarly, you can use my:fibonacci(input), if the input
parameter is declared as an atomic type, for instance xs:integer.

• Functions that are inspectional and that operate on the current node. Examples:
has-children(.), exists(.), nilled(.), not(.), in-scope-prefixes(.) etc,
which makes expressions such as foo[has-children()] streamable.

• Literal result elements. As long as literal result elements do no use a consuming
expression among its children or in its attribute value templates, it is motionless.

• Any node creation instruction. If the content or an attribute value template in a
node creation instruction contains a non-motionless expression, it is considered
consuming, and you should apply Rule 1 or 2. Example: <xsl:comment>My
comment</xsl:comment> is motionless, as is <xsl:element name="@lastname" /
>, which uses a motionless expression in its attribute value template. Conversely,
<xsl:copy-of select="author" /> is not motionless, but it contains only one
downward expression, so it is allowed in streaming.

• Any variable reference is motionless. The reason this works is that it is not al-
lowed to store a reference to a streamed node in a variable. As a result, any
variable reference is motionless25, even a variable reference that contains nodes,
because allowed nodes can only be grounded nodes. Example: suppose you
have declared a variable <xsl:variable name="doc" select="doc('foo.xml')
/>, you can have multiple expressions operating on $doc, like $doc//para[em |
bold], which would otherwise not be streamable.

25A notable exception exists for grouping and merging, where it is possible to bind the grouping variable
using bind-group or the source using bind-source. These variables behave differently, see the flowchart
section in this paper for details.

47

XSLT 3.0 Streaming for the masses

Not all motionless expressions are grounded26 and there is a notable exception for
so-called climbing path expressions27: they are not allowed to be passed on. A
climbing path expression is any of the attribute, the ancestor, the ancestor-or-self,
the parent or the namespace axis. Consider for instance the third bullet point above,
the attribute axis. The axis is motionless, but not grounded. To see what that means,
consider the following example:

<xsl:template match="author" mode="streaming">
<xsl:apply-templates select="@name" mode="#current" />
<xsl:copy-of select="." />

</xsl:template>

<xsl:template match="*@" mode="streaming">
<xsl:copy-of select="parent::*" />

</xsl:template>

At first sight, there is nothing wrong with this slightly contrived example. But if we
look closely, we see that, assuming the example is considered streamable, the pro-
cessor has to visit all the children of the author twice, because both template rules
create a copy of that element. To prevent this from happening, streamability analysis
uses the term climbing for expressions that are themselves motionless, but can po-
tentially be used to move away from in a non-streamable way. As in the example
above: when you move a node around that is climbing, anything can happen. Hence
we consider the above example free-ranging. To rewrite the example in a streamable
way, see Rule 6, or consider using xsl:fork as explained in the previous section.

To determine this for your own situation, consider whether the instruction or
expression can return streamed nodes. If it can, it may not pass them on (for instance
with xsl:apply-templates or a function defined with xsl:function that takes nodes
as arguments) , because the processor cannot possibly predict what will happen
with that node. The solution for this situation is commonly relatively simple: atomize
the nodes, use xsl:fork or create grounded copies of the nodes (see Rule 6). When
you need to pass an attribute on to another function or template, atomization is the
way to go:

<xsl:template match="author">
<xsl:value-of select="my:format-date(@publish-date/string())" />

</xsl:template>

<xsl:function name="format-date">
<xsl:with-param name="date" />
<xsl:value-of

26A grounded expression is an expression or construct is one that does not return any streamed nodes.
27See for the definition of climbing section 19.5 of XSL Transformations 3.0: http://www.w3.org/TR/
xslt-30/#dt-climbing

48

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#dt-climbing
http://www.w3.org/TR/xslt-30/#dt-climbing

select="format-date($date, '[MNn] [Do], [Y]', 'de', 'BE', ())" />
</xsl:function>

In this example, we would want to pass the attribute node publish-date to the
function, but we are not allowed because the processor cannot know beforehand
that the function will not travel away from that node. To circumvent this, we can
simply atomize the attribute node using the string() function.

Alternatively, as described in the fourth item of the bulleted list above, we can
define the parameter $date to be of atomic value, which forces the argument to be
atomized prior to it entering the function. Personally, I prefer pre-atomizing it as it
is a clearer pattern for other programmers and it does not require them to investigate
the signature of the function arguments, which may well be hidden deep in a
package28 [19].

6.4. Rule 4: You can move up the tree, but never down again
The ancestor axis, together with the attributes and properties of the nodes, is the
only axis that is kept in memory while performing streaming. Even though
streaming is defined to have to process a document in constant memory, the XSL
Working Group considered keeping the ancestor axis allowed and of much use for
many use-cases. Since in all but a few edge cases29 have limited depth, the required
memory for keeping the ancestor axis around was considered acceptable.

As with the attribute axis, discussed in more depth in the previous section, the
parent and ancestor axis are motionless. But other than the attribute axis, it is not
possible to consume the parent node in any way and you are not allowed to move
it around (which is the same as with attribute nodes). Why it cannot be consumed
can best be explained with an example:

<xsl:template match="author">
<xsl:copy-of select="parent::paper" />

</xsl:template>

Consider an input XML file that has a structure as follows:
<paper>

<name>Something fantastic</name>
<publishyear>2012</publishyear>
<author>John Doe</author>

</paper>

28Packages are a new feature of XSLT 3.0 and allow component based development and protection of
intellectual property by pre-compilation. See for more info the bibliography or XSL Transformations
3.0, section 2.7 Packages and Modules: http://www.w3.org/TR/xslt-30/#packages-and-modules
29Theoretically it is possible to have a tree with unlimited depth, but this edge case has not been considered
by the working group. In fact, if such a tree exists, it is probably a faulty XML and should be fixed at the
source or be processed in another way than through XSL streaming.

49

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#packages-and-modules

Once the template matches author, the read pointer is positioned just at the end of
the operning tag. Just as with any other streaming situation, this read pointer is not
allowed to move back. Even though the processor remembers the parent and ancestor
axes, it does not remember all their content, as the content can be of arbitrary size.
Hence the name and publishyear elements have already been forgotten by the time
author is visited. If the previous example was supposed to be streamable, it would
require the processor to remember these nodes. Since it cannot do that, and since
as with any other streaming construct it cannot look back, the example is not
streamable.

This rule is best remembered as follows: you can move up the tree, but you can
never move back down the tree again. So parent::paper[parent::archive] is allowed,
but parent::paper[name = 'John doe'] is not, as the latter moves up, and then
down again (the child-select expression in the predicate).

The same applies to atomizing the parent or ancestor axis. You cannot do that,
as an expression such as parent::paper/string()would require reading all previous
siblings as well, just as in the above example with xsl:copy-of.

The only expressions that are allowed to operate on these nodes are expressions
that inspect the node without moving away from its head. For instance, the expres-
sion exist(parent::paper) is allowed, as is <xsl:if test="parent::paper">, because
both expressions only have to test whether the parent exists, they don't have to
consume the element to return true or false.

Likewise, the only path expressions allowed from a parent, ancestor or ancestor-
or-self axis are the same upward axes, plus the attribute and namespace axes. For
instance, it is allowed to select the union of all ancestoral attributes by doing
<xsl:copy-of select="ancestor-or-self::*/attribute()" />.

6.5. Rule 5: You cannot store a reference to a node
We have come across this rule already in some of the previous examples. This rule
is very easy to master: you cannot store a reference to a streaming node, ever30.

Remember the XSLT 1.0 times? The times that you required an [4] extension
function to re-process a variable containing a result set31? When you do streaming
in XSLT 3.0, part of that 'nightmare' is back. Since XSLT 2.0 it has become a very
common programming paradigm to re-process a temporary result tree by applying
the variable with xsl:apply-templates or with xsl:for-each. This still exists in
XSLT 3.0, but when doing streaming, it is not allowed. The Working Group is still

30Unless your processor supports streamed references of nodes, but this paper is about guaranteed
streamability, not about potential extensions created by implementors.
31The particular function referred to here is the infamous exslt:node-set function, available in many
XSLT 1.0 processors, see http://www.exslt.org/exsl/functions/node-set/exsl.node-set.html, though the
list of processors supporting this function is much larger.

50

XSLT 3.0 Streaming for the masses

http://www.exslt.org/exsl/functions/node-set/exsl.node-set.html

discussing possibilities to allow streamed variables, but at its current status, a
variable cannot contain a reference to any streamed node.

The reason for this is similar to the reason not to allow following-sibling::
(see section "What is a downward expression"), it is very hard to define correct rules
that allow statically assessable streamability.

Though references to streamed nodes are not allowed, references to non-streamed
nodes, to atomic items, to function and map items are allowed. For instance, it is
perfectly safe to write the following:

<xsl:variable name="names">
<xsl:for-each select="name">

<name birthdate="{@year || @month || @day}">
<xsl:apply-templates

select="affiliate"
mode="#current"/>

</name>
</xsl:for-each>

</xsl:variable>

<xsl:apply-templates select="$names/name" mode="non-streaming" />

The example, assuming it is the only thing inside the sequence constructor of
xsl:template, creates new elements name inside the variable $names. Since these are
newly created nodes, they are not streamable nodes. In fact, just as in non-streaming
XSLT 2.0, you have created a temporary result tree which can be applied again, just
like you used to do in XSLT 1.0 with the exslt:node-set function.

Note that the streamability assessment would turn out to be different when the
immediate child of the xsl:variable instruction was xsl:apply-templates. The
latter returns a sequence of nodes and the sequence returned could, theoretically,
be a sequence of streamed nodes. Hence, it is not allowed to do that inside
xsl:variable, unless we take precautions and make sure that the result is grounded.
Here we did that by introducing a literal result element, which forces the result of
the xsl:apply-templates to be copied, as opposed to referenced.

That is not the end of the story of variables and node-sets. In fact, what once
was an extension function is XSLT 1.0, has come back as a built-in function in XSLT
3.0, but that is the subject of the next section.

6.5.1. A note on global variables and streaming

While you cannot store references to nodes using normal variables or parameters,
the restrictions on global variables are even larger. It is not possible at any rate to
refer to the context item from a global variable or parameter if the initial mode is a

51

XSLT 3.0 Streaming for the masses

streamable mode32. The reason behind this is simple: when initiating the global
variables, the processor would have to start reading the input stream, then, once it
starts with the initial template, it would have to move back to the root node. Since
moving back is not allowed, any expression that relies on the context item, either
implicitly or explicitly, is disallowed for a global variable or parameter. In fact, it
will statically raise error XTSE054533.

That does not mean that you cannot use streaming from within a global variable.
It is perfectly legal to write something like the following:

<xsl:variable name="settings">
<xsl:stream href="settings.xml">

<xsl:apply-templates
select="settings"
mode="streamable"/>

</xsl:stream>
</xsl:stream>

Such a global variable would then have to read the settings file using streaming. It
can be assumed, but is not guaranteed, that a processor caches the result of initiating
the variable. But under streaming, a processor might be tight on memory usage and
reclaim the memory occupied by global variables, re-evaluating them once they are
needed again. It would be a performance vs. memory usage trade-off, but the po-
tential glitch is, that the xsl:stream instruction is not stable and if, between invoca-
tions, the settings.xmlfile changes, it is possible that on different occasions, different
results are returned.

This side effect may not be easily exploitable with global variables because dif-
ferent processors optimize differently, but with stylesheet functions it creates some
interesting possibilities that could previously only be achieved by using extension
functions. Consider the following example:

<xsl:function name="time" caching="no">
<xsl:stream href="http://time.gov/now.xml">

<xsl:value-of select="time/@current" />
</xsl:stream>

</xsl:stream>

Given the new caching attribute34introduced in XSLT 3.0, we hint the processor not
to remember the result of executing the function. As a result, each time we call the

32There is an exception though, you are allowed to use a motionless expression that operates on the
document node, such as base-uri(), but these are in practice of limited use.
33Error XTSE 0545 "It is a static error if there is both (a) a mode definition in the stylesheet that has the
effective attribute values streamable="yes" and initial="yes", and (b) a global variable in the stylesheet
whose initializing expression is not motionless with respect to its context item, as defined in 19 Stream-
ability.", see XSL Transformations 3.0, section 6.6.1: http://www.w3.org/TR/xslt-30/#err-XTSE0545
34See section 10.3.8 on Memoization in the XSL Transformations 3.0 specification: http://www.w3.org/
TR/xslt-30/#memoization

52

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#err-XTSE0545
http://www.w3.org/TR/xslt-30/#memoization
http://www.w3.org/TR/xslt-30/#memoization

function, the xsl:stream instruction is evaluated again and a new time value is re-
turned. This can be useful in profiling your stylesheet, for instance, or on long-
running stylesheets to add a current time to the output of elements (the function
fn:current-time is deterministic, which means that, regardless how long your
stylesheet runs, it will always return the same time).

At this moment, the caching attribute is only a hint. Hopefully implementors
take that hint seriously, or assess whether or not the stylesheet function calls an
external non-deterministic resource, which should be evaluated again on each call.

6.6. Rule 6: Break out of streaming abundantly
Because of the limitations of streaming, it can be hard to write stylesheets that typ-
ically require roaming expressions. While in most scenarios it will be possible to
write a streaming equivalent to the roaming version you would have written if
streaming were not a requirement, it is not always possible, and sometimes, when
it is hard, it is better to use a simple technique that I've called Lazy XML Processing
in a previous paper [3].

Others have called thisWindowed Streaming, for instance in the earlier mentioned
[18]. It is mentioned as a technique used in databases, such as in a paper by Utkarsh
Srivastava in 2004 [22], and in the same year, by Lukasz Golab about querying online
data streams [12]; it is part of the description of a US Patent from 2006 about pro-
cessing XML data streams [17], the technique is used in fast hashing and search al-
gorithms meant for large input data. One of the first mentions of this technique was
by Richard Karp and Michael Rabin in their 1987 paper for IBM about efficient
pattern-matching algorithms [16], where they propose a solution to use windowed
searching as opposed to linear searching algorithms. They did not yet use the term
Windowed streaming, but the basic idea in their paper is the same.

The key to breaking out of streaming is to change your expression from returning
streamed nodes, to returning grounded nodes, an atomic value, a map or a function
item. We have already seen how to return an atomic value in earlier rules, but you
cannot always operate on the atomized version of a node-set. The functions that
you can use to create a grounded node-set are fn:copy-of35, which is essentially
the equivalent of the XSLT 1.0 exslt:node-set function discussed in the previous
rule, and fn:snapshot36, which works the same as fn:copy-of, except that it retains
the ancestor axis.

Consider a typical input XML document that contains a root node and a set of
many first children. For instance, a large XML file containing all available books on

35See for more information and more elaborate examples fn:copy-of in XSL Transformations 3.0: http://
www.w3.org/TR/xslt-30/#func-copy-of
36See for more information and more elaborate examples fn:snapshot in XSL Transformations 3.0: ht-
tp://www.w3.org/TR/xslt-30/#func-snapshot [http://www.w3.org/TR/xslt-30/#func-copy-of]

53

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#func-copy-of
http://www.w3.org/TR/xslt-30/#func-copy-of
http://www.w3.org/TR/xslt-30/#func-copy-of
http://www.w3.org/TR/xslt-30/#func-copy-of
http://www.w3.org/TR/xslt-30/#func-copy-of

amazon.com. Each individual book element easily fits in memory, but not all books
at once. If your stylesheet is primarily concerned with the individual book elements,
you can create a snapshot of each book and use free-ranging and roaming expressions
from then on. For example:

<xsl:template match="book" mode="streamable">
<!-- switching modes to non-streaming is now possible -->
<xsl:apply-templates select="copy-of(.)" mode="non-streamable" />

</xsl:template>

<xsl:template match="book" mode="non-streamable">
<!-- use any roaming and free-ranging expressions here -->

</xsl:template> ►

This technique is so simple, that I cannot stress it enough. Look at the structure of
your input document and find out how it can be split into smaller chunks that fit
into memory perfectly and use the snapshot() or copy-of() functions to split it in
usable parts.

Be careful what you copy, however. The moment you copy nodes using
fn:copy-of, you tell the processor "I know how large this subset is, you can safely
copy it in total in memory". Once you start using this function, the requirement to
run under constant memory is subject to the maximum extra memory required by
the use of the fn:copy-of function. As an extreme comparison, consider the following
two examples, which are semantically equal:

<!-- example 1 -->
<xsl:apply-templates select="copy-of(book)" />

<!-- example 2 -->
<xsl:apply-templates select="book/copy-of()" />

The difference is subtle and is often misunderstood. Both examples return copied
nodes of the book element, and both will result in exactly the same result document.
However, the essential difference is that the first example copies all the book elements
at once and then processes the whole set, and the second example copies one book
element at the time and processes each element one by one. It is the second example
that can be considered Windowed Streaming as mentioned in the beginning of this
chapter. The first example is how not to do windowed streaming. Instead, if the set
of book elements is large, you just broke out of streaming and read almost the whole
document at once: you should have saved yourself the trouble.

When you are in doubt whether windowed streaming can be applied by your
processor on your expression, split it up and apply windowed streaming from a
matching template, as in the original example in this chapter. That way, you are
certain that that and only that node will be copied. Once the template goes out of

54

XSLT 3.0 Streaming for the masses

scope, the processor can garbage collect the memory occupied by your copied node
and the overall memory will remain constant.

6.7. Rule 7: Understand streamable patterns
So far we have talked about what constructs are allowed and how you must stick
to the rule of a maximum of one downward selection in your expressions. The same
applies to patterns, but patterns have slightly more freedom because they are essen-
tially a test on each node that passes through the input stream. As such, you could
compare them with an inspection context, where upon visiting a node we only need
to know one thing: does it fit the pattern, or not.

Essentially, patterns can be one of two things: they can either be motionless and
grounded, or they can be roaming and free-ranging. Because the pattern syntax itself
is already limited, you can pretty much use almost every expression with them,
provided you take a few precautions37:
• A pattern cannot start with a variable reference, nor can it start with

fn:element-with-id, fn:doc, fn:id or fn:key.
• No top-level predicate may contain any of the functions fn:position, fn:last,

fn:function-lookup.
• No top-level predicate may be numeric.
• No top-level predicate may contain a downward, or otherwise consuming ex-

pression.
• Nested predicates are allowed to use the functions fn:position, fn:last and

fn:function-lookup, but are themselves also required to be motionless.
• Variables are allowed (except the pattern may not start with one), but may not

be bound, that is, they may not refer to a bind-group or bind-source attribute
of xsl:merge-source or xsl:for-each-group.

In practice this means that you can write pretty much anything. For instance, an
expression such as para | section/para is often not allowed in other places, but
is allowed in a pattern. You are also allowed to write more complex patterns, such
as para[@status eq 'edited'][ancestor::section[@editor = 'john']] or even
text()[matches(., '\d+')].

That last expression requires perhaps a bit extra explanation. After all, we saw
earlier that consuming a node (the (.) expression in this example) was not allowed.
But so-called childless nodes are considered a special case. These nodes are text(),
attribute(), comment(), processing-instruction(), namespace-node(). Because
the processor knows that these nodes cannot possibly have children, it can read the
contents completely without worrying that it has to ever look back. Hence, the fol-

37These rules follow directly from the rules in XSL Transformations 3.0, section 19.8.9, see: http://
www.w3.org/TR/xslt-30/#classifying-patterns

55

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#classifying-patterns
http://www.w3.org/TR/xslt-30/#classifying-patterns

lowing example is fully streamable, even though it looks like both the pattern and
the xsl:value-of contruct have a consuming expression.

<xsl:template
match="para/comment()[contains('TODO')]"
mode="streamable">

<todo by="{ancestor::section/@editor}">
<xsl:value-of select="." />

</todo>
</xsl:template>

Because patterns cannot themselves contain the preceding, preceding-sibling, the
following or the following-sibling axis, the expression prior to the predicate is
automatically motionless. Similarly, because the predicate in the pattern itself must
be motionless, it cannot possibly contain these axes either. Just as with other expres-
sions, these axes are out of bounds when doing streaming.

6.8. Rule 8: Templates must be grounded
Any template rule or named template must be grounded38, which means, it is not
allowed to return streaming nodes. This rule is very similar to variables and para-
meters not being allowed to return streamed nodes. As a consequence, you cannot
use xsl:sequence with an expression returning nodes:

<xsl:template match="book" mode="streamable">
<xsl:sequence select="author" />

</xsl:template>

While this template contains only one downward experession (see Rule 1), it is not
guaranteed streamable. The reason behind this is that the xsl:sequence instruction
returns references to the nodes it selects, and in turn, the xsl:template returns those
references as well. Consider you would be allowed to write this, then consider the
following example:

<xsl:template match="publications" mode="streamable">
<xsl:variable name="books">

<xsl:apply-templates select="book" />
</xsl:variable>

<xsl:copy-of select="$books" />
</xsl:template>

<xsl:template match="book" mode="streamable">

38See XSL Transformations 3.0, section 6.6.3: http://www.w3.org/TR/xslt-30/#streamable-templates

56

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#streamable-templates

<xsl:sequence select="author" />
</xsl:template>

If this were allowed to work with streaming, the variable $books would contain
references to streamed nodes, which, as we know, cannot be retained in memory.
Hence, once the xsl:copy-of construct is called, the processor would have to look
back, up the stream, which is not allowed.

By defining the result of a template to always be grounded, we make the analysis
of many streaming situations a lot easier. It is analogous to the the problems we
saw when looking at variables not being allowed to contain refernces to streamed
nodes.

The solution here is to avoid using xsl:sequence as a direct child under
xsl:template, or to use any construct that returns streamable nodes. Of course, it
is still allowed to use xsl:sequence with a grounded expression (that is, making
sure that the nodes are either copied, or they are atomized). In the above example,
the problem is solved with using xsl:copy-of, which disconnects the nodes from
the streaming process.

6.9. Rule 9: Use motionless filters
In earlier chapters we have already seen what a motionless expression is. In filter
expressions, that is, in a predicate, you should always only use motionless expres-
sions, or the result will not be streamable. The same rules apply here as for patterns.
Here are a few examples of motionless filters:
• *[self::para or self::p]

• price[@currency[starts-with(., 'EUR')]]

• node()[. instance of element()]

• parent::foo[ancestor::document/@version eq $glob-version]

• *[ancestor::foo >> ancestor::bar]

• buildnumber/text()[. = $builds/buildnumber[last()]]

The last example may perhaps require a bit extra explanation. It assumes a global
variable (which, by default, is grounded and motionless, see Rule 5) containing
successful buildnumbers and the input document contains all the buildnumbers.
You are interested in the most recent successful buildnumber. Similar to the descrip-
tion about patterns (see Rule 7), childless nodes can be consumed in expressions,
because there is no navigation away from them. As a result, it is possible to use the
predicate with the context item expression, and an otherwise free-ranging expression
as the left-hand side of the equal sign, because $build is already grounded.

57

XSLT 3.0 Streaming for the masses

6.10. Rule 10: Master xsl:fork
If you remember my note from Rule 1 about being able to process nodes in any order
and how that influences streaming, this last rule offers an alternative to the one
downward selection per construct rule. By using xsl:fork39, you explicitly tell the
processor that from this point on, it should start multiple threads for processing the
input stream in parallel. In other words, the stream reader will get multiple read
pointers that all have their own starting point, the current node. This process, called
forking allows multiple downward selections in a single instruction, but is very
strictly defined.

Using forking, it becomes easier to split an input stream on disjunct nodes, which
could otherwise be very hard to achieve using streaming. For example:

<xsl:fork>
<xsl:sequence>

<errors>
<xsl:copy-of select="entry[@type eq 'err']"/>

</errors>
</xsl:sequence>
<xsl:sequence>

<warnings>
<xsl:copy-of select="entry[@type eq 'warn']" />

</warnings>
</xsl:sequence>

</xsl:fork>

In any normal streaming analysis, this would not be allowed, because one construct
contains two downward selections, in this case selecting all child entry element
nodes from an XML log file. By introducing xsl:fork, each xsl:sequence child
construct is allowed to be consuming.

An xsl:fork instruction contains solely of xsl:sequence children. Each
xsl:sequence child has a sequence constructor just as a regular xsl:sequence in-
struction, and each of these sequence constructors can have at most one consuming
construct, or in the event the select attribute of xsl:sequence is used, at most one
downward selection. However, the xsl:fork instruction can contain as many
xsl:sequence children as you want, with each their own consuming expression,
allowing for splitting a source as shown above.

Processors are not required to go over the input stream only once. Some stream
readers may not allow multiple reading positions, in which case the processor will

39See also XSL Transformations 3.0, The xsl:fork instruction, section 16.1: http://www.w3.org/TR/xslt-30/
#fork-instruction

58

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#fork-instruction
http://www.w3.org/TR/xslt-30/#fork-instruction

be forced to go over the stream multiple times. However, as a programmer, you
`usually do not have to worry about this40.

This technique is particularly useful with splitting to multiple result-documents
with xsl:result-document, as a clear example in the XSLT 3.0 specification shows41.

7. Follow the arrow
Doing full streaming analysis is a complex task. The previous chapters have shown
relatively easy rules that can be followed and that cover most of the common
streaming scenarios you will encounter in practice. However, sometimes the rules
are not enough, or even after following the rules, you are wondering why it actually
is streamable, or not streamable.

The following chapters present a set of flowcharts that make it easier to determine
whether a given construct is guaranteed streamable. The rules in the specification
can be challenging to read, and these charts may make it easier to do the analysis.
It prevents you to have to scroll back and forth through pages of text. Instead, you
just have to scroll to a few pages of charts.

At first, the charts may appear overwhelming. But they are set up in such a way
that you do not need to go through each and every step for each and every scenario.
By visually going over the analysis, it will soon become apparent that many similar
scenarios follow the same arrows and after a short while it will get easier and easier
to do.

The charts use standard flowchart shapes:
• Oval: start of an (sub) analysis process
• Diamond: decision. Down arrow is always the positive (Yes) answer, right arrow

is always the negative (No) answer
• Rectangle: explanation or preparation for a next step, in these charts, most often

the collection of operand usages prior to jumping to the general streamability
chart

• Rectangle with bars: a process, often elsewhere defined in the charts
• Circle: reference to another flowchart, most commonly, "GS", which means

"General Streamability"
• Right square arrow-like symbol: in multi-page flowcharts, means you should

continue the same chart at the refered to label
• Callouts: extra information, often normative, about the current step

40The exception being that some streams cannot be traversed multiple times, for instance a live twitter
feed, unless buffered. Also, an obvious worry can be that multiple passes can have a detrimental effect
on performance.
41See for the example XSL Transformations section 16.2, Examples of Splitting with Streamed Data:
http://www.w3.org/TR/xslt-30/#splitting-examples

59

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/xslt-30/#splitting-examples

Abbreviations used (it is outsite of the scope of this paper to define each term, please
refer to the specification, other online sources or an updated version of this document
at http://exselt.net/papers, which will contain more details in this section).
• P: Posture
• S: Sweep
• S': Adjusted sweep
• O or Op: Operand or Operand Role
• OU: Operand Usage
• CP: usually Context Posture, sometimes Combined Posture (in the General

Streamability chart)
• PC: Potentially Consuming
• C: Construct
• Fun: Function
• RT: Required Type
• IP: Input Posture
• GS: General Streamability
• Seqtor: Sequence Constructor
• AVT: Attribute Value Template
• TVT: Text Value Template
Most abbreviations are explained on first use in the flowcharts, often in a rectangle
shape prior to the steps requiring the use of the new term.

The result of following the flowcharts for a particular construct, such as an ex-
pression or an instruction, is a posture, which can be any of grounded, climbing,
striding, crawling or roaming and a sweep, which is any of motionless, consuming, free-
ranging. If, at the end of the analysis, the resulting posture is not "roaming and free-
ranging", your construct is streamable, or potentially streamable. Potentially in the
sense that it often depends where and how the construct is used. Only after doing
the whole analysis from most outward construct to most inward construct, you can
find out whether all the instructions that use streaming are indeed guaranteed
streamable.

60

XSLT 3.0 Streaming for the masses

http://exselt.net/papers

7.1. Start of streaming analysis
Start streamability

analysis

Limit scope to a
stylesheet, including

includes and
imports

For each streamable
mode, xsl:stream,
xsl:merge-source

Is xsl:stream?

Analyze seqtor of
xsl:stream

Is streamable
xsl:mode?

Analyze templates
in that mode

Is streamable
xsl:merge-
source?

Analyze xsl:merge

Nothing to analyze
for streamability

61

XSLT 3.0 Streaming for the masses

7.2. Streaming of templates and sequence constructors
Most streaming analysis starts essentially with either a streaming template or an
xsl:stream instruction. An xsl:stream instruction contains a sequence constructor,
as many other instructions in XSLT, and the streamability for both templates and
sequence constructors can be determined by using these flowcharts.

Streamability of
xsl:template

Any xsl:mode
streamable?

Is template
mode #all?

Is match pattern
motionless?

Is seqtor
grounded?

xsl:param/
@select or
seqtor

motionless?

Grounded and
motionless

Roaming and free-
ranging

Roaming and free-
ranging

Roaming and free-
ranging

Is any @mode
streamable?

Roaming and free-
ranging

Stylesheet cannot
process templates

by streaming
Any of the modes
selected in xsl:template/
@mode, including the
unnamed mode if none is
selected

Template must be
analyzed for
streamability

Streamability of
sequence

constructors

GS with OU for each
instruction set to
transmission, and
set to absorption

for TVTs

GS

62

XSLT 3.0 Streaming for the masses

7.3. Streaming of patterns
Patterns are used in matching templates and some other instructions like xsl:number.
To determine the streamability of a pattern, use this flowchart.

Posture and sweep
of Patterns

Starts with
VarRef (any
variable)

Roaming and free-
ranging

Yes

Starts with
element-with-id

doc, id, key
No

Roaming and free-
ranging

Yes

Contains
predicates?No

TLP uses
position(), last(),

function-
lookup()?

Yes

Roaming and free-
ranging

Yes

Is TLP
motionless (CP

striding)

Has a VarRef

Yes

VarRef is bound
to bind-group

Yes

Roaming and free-
ranging

Yes

Grounded and
motionlessNo

Grounded and
motionlessNo

Roaming and free-
rangingNo

Grounded and
motionlessNo

Does expr in TLP
return numeric?No

Roaming and free-
ranging

Yes

No

TLP means top-level
predicate, as opposed to
nested predicates

These patterns use
positional predicates,
which is not allowed

63

XSLT 3.0 Streaming for the masses

7.4. Flowchats for determining general streamability
Many flowcharts and with a circle and the letters GS, which means that you should
apply the general streamability rules layed out in this flowchart, with the operand
usage (OU) set to the operand usage as explained in the last rectangle instruction
from the refering flowchart.

Has construct
operands?

Grounded and
motionlessNo

Determine
operands O of

construct

Yes

Determine
adjusted

sweep S’ of
each operand

Is any S’ free-
ranging

Roaming and free-
ranging

NoYes

No

Are all PC part of
choice op grp?

Posture CP and
Consuming

Is O a higher
order operand?

Yes

Is OU
transmission or
navigation?

Grounded and
consumingNo

Determine the
posture P of
the operand

Yes

Is P crawling?

Is C a fun call
cardin. max 1

Yes

Striding and
consuming

Yes

Crawling and
consumingNo

Roaming and free-
ranging

Determine
combined

posture CP of
PC ops

Yes

General
Streamability

Grounded and
motionless

Yes

Count ops that
are potentially
consuming PC

No

Is count(PC)
zero?

Is count(PC)
gt one?No

Yes

Determine
operand
usage OU

No

GS

Posture P and
consumingNo

Roaming and free-
rangingNo

A choice operand
group are xsl:when
and xsl:otherwise

seqtors and X and Y
in the expression
if (A) then X else Y

64

XSLT 3.0 Streaming for the masses

7.5. Flowcharts for determining adjusted sweep S' and potentially
consuming operands
In the General Streamability flowchart, the adjusted sweep of single operands are
requested, which can be assessed with this flowchart. The chart on Potentially
Consuming is required in combination with the adjusted sweep during the general
streamability analysis.

Adjusted sweep S’
(of operand)

Determine
sweep S of
operand O

Is P roaming or S
free-ranging?

S’ s free-ranging

Yes

Is P grounded?No

S’ is S (motionless
or consuming)

Yes

Determine
operand usage

U
No

Is U absorption?

Determine
static type T

Yes

T is childless
node-kind

S’ is S (motionless
or consuming)

Yes

Is P striding?No

S’ is consuming

Yes

S’ is free-rangingNo

Is U navigation?No

S’ is free-ranging

Yes

S’ is S (motionless
or consuming)No

If operand contains a construct for
which the sweep is not known, it
exists of nested constructs.
Determine the sweep of nested
construct first, which will determine
the sweep of the current operand

A childless node-kind is
one of text(), attribute(),
comment(), processing-

instruction() or
namespace-node()

Is S’ consuming?
Determine
operand
usage OU

No

Is OU
transmission?

Determine for
each operand
posture P

Yes

Is P grounded?

Potentially
consuming

(for adjusted sweep S’)

Not potentially
consuming

Yes

Potentially
consumingNo

Not potentially
consumingNoPotentially

consuming

Yes

65

XSLT 3.0 Streaming for the masses

7.6. Flowcharts for determining combined posture and type determined
usage
Some charts, such as General Streamability, need to know the combined posture of
a choice operand group, which is either the X and Y in this if(test) then X else
Y or the combination of xsl:when and xsl:otherwise in an xsl:choose instruction.

Some operands need to know whether a type is atomic or not through type de-
termined usage (TDU), which can be determined with this brief flowchart.

Combined
posture CP

Collect all (input)
postures of the
choice operand

group: IP

Is any IP
roaming?

CP is roaming

Yes

Are all IP
grounded?No

CP is grounded

Yes

Max one
non-grounded

IP?
No

Are all IPs
either crawling
or striding?

No

CP is crawling

Yes

Set CP to non-
grounded IP

Yes

CP is roamingNo

Type determined
usage (TDU)

Determine
required type RT for

the construct,
ignoring cardinality

Is RT (subtype
of) function(*)?

Usage is inspection

Is RT (subtype
of) anyAtomic?

Usage is absorption

Usage is navigation

7.7. Flowcharts for determining streamability of instructions
This two-part flowchart can be used to assess the streamability of any XSLT instruc-
tion. Many flowchart endpoints refer to the flowcharts of the individual instructions,
as it became too challenging to put them all together in one chart.

66

XSLT 3.0 Streaming for the masses

Is node creation
instruction?

GS with OU for
select expr set to
inspection, rest to

absorption

xsl:attribute
xsl:comment
xsl:copy
xsl:copy-of
xsl:document
xsl:element
xsl:message
xsl:namespace
xsl:processing-instruction
xsl:result-document
xsl:text
xsl:value-of

Is test
instruction?No

Is xsl:assert?

Yes

GS with OU for test
set to inspection,
for seqtor to
transmission

No

GS with OU for test
set to inspection,

rest set to
absorption

Yes

Is xsl:copy?

Yes

GS with OU for
AVTs, expr and
seqtor set to
absorption

No

Yes

xsl:assert
xsl:choose
xsl:if

No Is fully
transmissional?

GS with OU for
select or seqtor set
to transmission

Yes

Is instr control
flow related?No

xsl:apply-imports
xsl:apply-templates
xsl:call-template
xsl:for-each
xsl:for-each-group
xsl:iterate
xsl:next-iteration
xsl:next-match

Is xsl:apply-
imports, next-

match?

Yes

GS with OU for
with-param set to
TDU, implied expr
(.) set to absorption

Yes

Is xsl:next-
iteration?No

GS with OU for
xsl:with-param set

to TDU

Yes

See
streamability

of that
instruction

No

Is an XSLT 3.0
instruction?

Is literal result
element? No

GS with OU for
seqtor, AVTs and
attrib sets set to

absorption

Yes

Streamability of an
instruction

xsl:break
xsl:fallback
xsl:sequence

Streamability is
implementation

defined
No

See also xsl:fallback
streamability, which is -
defined and streamable

GS

GS

GS

GS GS

GS

GS GS

instr
part 2No

Is navigational
instr?

xsl:analyze-string
xsl:evaluate
xsll:map-entry
xsl:number
xsl:perform-sort
xsl:variable

Is xsl:variable?

Yes

GS with OU for
select or seqtor set

to navigation

Yes

Is xsl:analyze-
stringNo

GS with OU for
select and AVTs set

to absorption,
seqtor to navigation

Yes

Is xsl:map-
entry?

GS with OU for key
set to absorption,
for select or seqtor

to navigation

Yes

Is xsl:perform-
sort?No

GS with OU for
select is navigation,
xsl:sort AVT/select

to absorption

Is xsl:number

Yes

GS with OU for
select is navigation,

from/count to
inspection, rest
absorption

GS with OU xpath/base-
uri: absorption, with-
params, context-
item:navigation,

namespace-context:
inspection, xsl:with-

param TDU
Yes

See
streamability

of that
instruction

No

xsl:fork
xsl:map
xsl:merge
xsl:stream
xsl:try

No No No

GS GS GS GS GS

GS

instr
part 2

67

XSLT 3.0 Streaming for the masses

7.8. Flowcharts for determining streamability of selective specific
instructions
In the previous flowchart about XSLT instrucions, some end in "see streamability
of...", in which case you will find a chart on one of the following pages for that in-
struction.

7.8.1. Streamability of xsl:apply-templates and xsl:call-templates
Streamability of
xsl:call-template

Has target
xsl:context-

item?

Is its use
prohibited?

Yes

Define an implicit
operand (.), the

context item expr.
No

The implicit
operand is absent

Yes

GS with OU for all
xsl:with-params and
implicit op set to

TDU

No

Streamability of
xsl:apply-templates

Is select expr
grounded?

Is select expr
omitted, assume
implicit operand
select=”node()”

GS with OU for
with-params set to
TDU, select, xsl:sort
AVTs, select and

seqtor to absorption

Yes

Any xsl:sort
children?No

Roaming and free-
ranging

Is mode non-
streamable?No

Roaming and free-
ranging

GS with OU for
select expr set to

absorption, xsl:with-
params set to TDU

No

GS

GS

GS

68

XSLT 3.0 Streaming for the masses

7.8.2. Streamability of xsl:fork
Streamability of

xsl:fork

Any child
xsl:sequence?

Grounded and
motionless

One
xsl:sequence

child

Yes

Is xsl:seq
motionless and
not grounded

Yes

P of xsl:sequence,
sweep motionless

Yes

Grounded and
consuming

No
Any xsl:seq

roaming or free-
ranging?

Roaming and free-
ranging

Yes

All P of xsl:seq
grounded?No

Grounded and
consuming

Yes

Roaming and free-
rangingNo

69

XSLT 3.0 Streaming for the masses

7.8.3. Streamability of xsl:map, xsl:stream, xsl:try and xsl:iterate
Streamability of

xsl:map

Contains only
xsl:map-entry?

Any map-entry
roaming or free-

ranging?

Yes

Roaming and free-
ranging

Yes

Posture and sweep
of contained seqtorNo

Any map-entry
consuming?No

Grounded and
consuming

Grounded and
motionlessNo

Streamability of
xsl:try

Is catch/@select
motionless?

Posture and sweep
of select expr or
seqtor of xsl:try

Yes

Is seqtor
of xsl:catch
motionless?

No

Posture and sweep
of select expr or
seqtor of xsl:try

Yes

Roaming and free-
rangingNo

Streamability of
xsl:stream

VarRef bind-
group outside
xsl:stream?

Does the sequence
constructor of xsl:stream
have a variable reference
at any depth bound to a
bind-group or bind-
source that is an ancestor
of this xsl:stream
instruction?

Roaming and free-
ranging

Yes

Grounded, and
sweep of @href AVTNo

Streamability of
xsl:iterate

Is select expr
grounded?

GS with OU for
@select:inspection, xsl:param/
@select: navigation, seqtor: CP
grounded, transmission, xsl:on-

completion/@select: CP
roaming, type xs:error,

transmission

Yes

Is select expr
or seqtor free-

ranging?
No

Roaming and free-
ranging

Yes

Assess seqtor
with CP to
posture of
select expr

No
Is select or
seqtor

consuming?

Posture of seqtor,
consuming

Yes

Posture of seqtor,
motionlessNo

GS

70

XSLT 3.0 Streaming for the masses

7.8.4. Streamability of xsl:for-each and xsl:for-each-group
Streamabiity of
xsl:for-each

Is select expr
grounded?

GS with OU for @select:
inspection, seqtor: CP

grounded, transmission,
AVTs absorption, xsl:sort/
@select CP grounded,

absorption

Yes

Any xsl:sort
children?No

Roaming and free-
ranging

Yes

Is seqtor or
select expr free-

ranging?
No

Roaming and free-
ranging

Yes

Assess seqtor
with CP to
posture of
select expr

No
Is select
or seqtor

consuming?

Posture of seqtor,
consuming

Yes

Posture of seqtor,
motionlessNo

GS

Streamability of
xsl:for-each-group

Is select expr
grounded?

GS with OU for @select:
inspection, seqtor: CP

grounded, transmission,
AVTs absorption, @group-
by/adjacent and xsl:sort/
@select CP grounded,

absorption

Yes

Has @group-by?

Roaming and free-
ranging

Yes

Has group-
adjacent?No

Is it consuming
or free-ranging?

Yes

Roaming and free-
ranging

Yes

Any xsl:sort
children?No

Roaming and free-
ranging

Yes

@bind-group
absent?No

Roaming and free-
ranging

Yes

@bind-
grouping-key

absent?
No

Roaming and free-
ranging

Yes

Is seqtor or
select expr free-

ranging?
No

Roaming and free-
ranging

Yes

No

Assess seqtor
with CP to
posture of
select expr

No

Is select
or seqtor

consuming?

Posture of seqtor,
consuming

Yes

Posture of seqtor,
motionlessNo

No

GS

71

XSLT 3.0 Streaming for the masses

7.8.5. Streamability of xsl:merge

The instruction xsl:merge is currently under review for its streamability as a result
of a public bug report. It is likely that the instruction will undergo significant changes
to allow better streamability analysis.

Streamability of
xsl:merge

xsl:merge-
source

streamable is
yes?

All xsl:
merge-source
motionless?

No Roaming and free-
rangingNo

Grounded and
motionless

Yes

@for-each a
doc or collection

fun?

Yes

ErrorNo

Is xsl:merge-
source/@select

striding?

Yes

Roaming and free-
rangingNo

@sort-before-
merge = “no”?

Yes

Roaming and free-
rangingNo

xsl:merge
-key/@select
motionless?

Yes

Roaming and free-
rangingNo

xsl:merge
-action seqtor
grounded?

Yes

Roaming and free-
rangingNo

xsl:merge
-action seqtor
free-ranging?

Yes

Roaming and free-
ranging

Yes

Grounded and
motionlessNo

Even when xsl:merge-
action is consuming, the
result is motionless,
because it doesn’t
operate on the streamed
input from the parent of
xsl:merge

7.9. Flowcharts for determining streamability of expressions
The following five-part flowchart form the core of the expression streamability
analysis. Axis expressions have their own flowchart, as do functions, which can be
found in the next chapters.

72

XSLT 3.0 Streaming for the masses

Streamability of
expressions

Determine most
specific production
rule for expression

Is a map
expression?

Convert map
expression into

xsl:map instruction

Yes

Inline function
expression?No

Any VarRef
bound to bind-

group?

Yes

MotionlessNo

Free-ranging

Yes

No Is named
function ref?

Refs a focus
dependent
function?

Yes

Free-ranging

Yes

Motionless

No

Is function-call?No Is context item
expr (.)No

Posture is CP,
sweep is motionless

Yes

Parenthesized
expression?No

GS with OU set to
transmission for

contained
expression, if any

Yes

GS

Functi
ons

Yes

xsl:map

Expr
part 2No

Is a literal

Motionless

Yes

Is a postfix
expression?No

Is a filter
expression E[F]?

Yes

No

Is E crawling and
consuming?

Yes

Is F a numeric
literal or VarRef?

Yes

Is F motionless?No

Crawling and
consuming

Yes

Posture and sweep
of E

Yes

Roaming and free-
rangingNo

No

Is an axis step?

Axis
steps

Yes

Functi
onsNo

NoIs a variable
reference?

Motionless

Yes

Special rules apply when
variable reference is

bound to bind-source or
bind-group, but at the

time of writing, the spec
was not conclusive in

this respect

Expr
part 2

Expr
part 3No

73

XSLT 3.0 Streaming for the masses

Comparison or
unary expr?

GS with OU for each
operand set to
absorption

Yes

GS

Is path
expression?

Rewrite abbrev.
steps to expanded

steps

Yes

Rewrite expression
left-associative
A/B/C à (A/B)/C

which is L/R

Is L or R free-
ranging?

Posture of R, Free-
ranging

Yes

Is L or R
consuming?No

Posture of R,
Consuming

Yes

Posture of R,
MotionlessNo

Determine P for
R with CP and CT
set to posture
and type of L

Is simple
mapping expr?No

Rewrite expression
left-associative
a!b!c à (a!b)!c
which is L!R

Yes

Determine P + S
for R with CP and
CT set to posture
and type of L

Posture and
sweep of R

Node
comparison

expr?
No

GS with OU for each
operand set to
inspection

Yes

GS

No
Expr
part 3

Expr
part 4No

Cast, treat as,
instance of?

Cast or castable
expr?

Yes

GS with OU set to
absorption

Yes

Treat as expr?No

GS with OU set to
transmission

Yes

No GS with OU set to
inspection

Union, intersect
or except?No

Arithmetic,
concat or range

expr?
No

GS with OU for each
operand set to
absorption

Yes

Or or And
expression?No

GS with OU for each
operand set to
inspection

Yes

if-then-else
expression?No

GS with OU of test
set to inspection,

rest to transmission

Yes

Yes

Any operand
free-ranging?

Roaming and free-
ranging

Yes

One op
grounded and
motionless?

No

Posture and sweep
of other operand

Yes

Both climbing
and motionless?No

Climbing and
motionless

Yes

Both striding
or crawling?No

Any op is
consuming?

Yes

Crawling and
consuming

Yes

Roaming and free-
rangingNo

Crawling and
motionlessNo

GS GS

GS

GS

Expr
part 4

Expr
part 5No

74

XSLT 3.0 Streaming for the masses

some or every
expression?

Is satisfies expr
motionless?

Yes

Posture and sweep
of the in-expr

Yes

Roaming and free-
rangingNo

Let expression?No

GS with OU set to
navigation for

assign, transmission
for return

for-in-return
expression?No

Is return expr
grounded?

Yes

Roaming and free-
rangingNo

GS with OU set to
navigation for in-
expr, transmission
for return expr

Yes

GS with OU for each
operand set to
transmission

No

this applies only to
comma-expressions

GS

GS

GS
Expr
part 5

7.10. Flowcharts for determining streamabiity of axis steps
The following two flowcharts can be used for determining the streamability of an
axis step, as referenced in the core expression flowcharts.

Streamability of
axis steps

Is CP grounded?

Grounded and
motionless

Yes

Is CP roaming?No

Roaming and free-
ranging

Yes

Is context item
always childless?No

In expressions such as
text()/foo, which will
never select anything in
any axis step

Grounded and
motionless

Yes

Contains
predicate?

Is predicate
consuming or
free-ranging?

Yes

Is axis
descendant?No

Roaming and free-
ranging

Yes

Is predicate
numeric?

Is CP striding?

Striding and
consuming

Yes

No

No

No

NoIs forbidden
axis?No

Roaming and free-
ranging

Yes

No

Forbidden axes are:
following
following-sibling
preceding
preceding-sibling

Axis
part 2

75

XSLT 3.0 Streaming for the masses

Is CP climbing?

Is child or
descendant

axis?

yes

Roaming and free-
ranging

Yes

Climbing and
motionlessNo

No Is CP striding?

Is self axis?

Yes

Striding and
motionless

Yes

Is child axis?No

Striding and
consuming

Yes

Is descendant
axis?No

Crawling and
consuming

Yes

Climbing and
motionlessNo

No Is self axis?

Crawling and
motionless

Yes

Is child or
descendant

axis?
No

Roaming and free-
ranging

Yes

MotionlessNo

CP can only be crawling
at this point

Axis
part 2

7.11. Flowcharts for determining streamabiity of functions
The following three flowcharts can be used for determining the streamability of a
function, when used in an expression or a pattern.

Streamability of
function calls (FC)

Is FC a
constructor
function?

Is FC a
stylesheet
function?

No

Determine
TDU (type
determined
usage) per O

Yes

Arguments of FC are
the operands O for

GS analysis

Is FC a dynamic
function call?No

Is FC an
extension
function?

No Is FC a partial
function appl?No

Is the PFA focus-
dependent?

Yes

Roaming and free-
ranging

Yes

Remove argument
placeholders from
list of operands O

No

Determine
TDU (type
determined
usage) per O

In this analysis, OU
means operand usage,
used as input for GS
(General Streamability)

Construct has one
operand O, usage

absorption

Yes

GS with each OU set
to results from TDU

Streamability is
implementation

defined

Yes

Determine
TDU (type
determined
usage) per O

Yes

GS with each OU set
to results from TDU,
plus OU inspection

for FuncRef

GS with each OU set
to results from TDU

GS

GSGS

GS

FC is a built-in XPath
or XSLT functionNo

Fun
part 2

76

XSLT 3.0 Streaming for the masses

Is FC purely
inspectional?

base-uri
boolean
count
document-uri
empty
exists
generate-id
has-children
in-scope-prefixes
local-name
name
namespace-uri
nilled
node-name
not

GS with OU set to
inspection

Yes

Is FC purely
transmissional?No

Result posture is
striding, sweep

follows GS with OU
set to transmission

exactly-one
head
one-or-more
outermost
tail
unordered
zero-or-one

GS

Fill in default args,
usually the context

item

Is FC without
args? No

Is FC current?

Yes

Posture is CP,
sweep is motionless

Yes

Is FC current-
group?No

Roaming and free-
ranging

Yes

Is FC last?No

Is CP climbing or
grounded?

Yes

Grounded and
motionless

Yes

Roaming and free-
rangingNo

No Grounded and
motionless

The only remaining zero-arg
function is fn:position()

Is FC outermost?

Yes

Is posture or arg
crawling?

Yes

GS with OU set to
transmissionNo

Yes

No

GS

No

Fun
part 2

Fun
part 3No

GS with OU set to
transmission

GS

GS

77

XSLT 3.0 Streaming for the masses

Does FC
add/remove itm

in seq?

GS with item() OU
set to transmission,

atomic OU to
absorption

Yes

insert-before
remove
subsequence

Is FC absorp-
inspectional?No

GS with 1st OU set
to absorption, 2nd

OU (also implied)
set to inspection

Yes

document
lang
namespace-uri-for-prefix
resolve-QName

Is FC
navigational?No

element-with-id
error
id
id-ref
filter
fold-left
fold-right
for-each
for-each-pair
innermost
key
map:entry
path
reverse

GS with each OU set
to absorptionNo

Does FC
have >1 args?

Yes

GS with OU set to
navigationalNo

Is FC higher-
order function?

Yes

Is FC a fold
function?

Yes

GS with OUs set to
navigation,
absorption,

inspection resp.

Yes

GS with last OU set
to inspection, other
OUs to navigation

No

GS with last OU
(also implied) set to
navigation, other
OUs to absorption

No

GS

GS

GS

GS

GS

GS GS

Fun
part 3

Bibliography
[1] Elevator going down: the story of Muzak. http://www.redbullmusicacademy.com/

magazine/history-of-muzak. Luke Baumgarten. 2012.
[2] Binary message forms in computer networks. http://tools.ietf.org/html/rfc31‎. Daniel

Bobrow. 1968.
[3] Lazy processing of XML in XSLT for big data. Presented at XML London 2013 http://

xmllondon.com/2013/presentations/braaksma/ or direct download: doi:10.14337/
XMLLondon13.Braaksma01. Abel Braaksma. 2013.

[4] Burst mode streaming extension in Saxon. http://saxonica.com/
documentation9.4-demo/html/sourcedocs/streaming/burst-mode-streaming.html.
Michael Kay.

[5] New HOST-HOST protocol. http://tools.ietf.org/html/rfc33‎. C. Stephen Carr.
1969.

[6] EXPath, Standards for Portable XPath Extensions. http://expath.org/. Collaboration
of several authors.

78

XSLT 3.0 Streaming for the masses

http://www.redbullmusicacademy.com/magazine/history-of-muzak
http://www.redbullmusicacademy.com/magazine/history-of-muzak
http://tools.ietf.org/html/rfc31�
http://xmllondon.com/2013/presentations/braaksma/
http://xmllondon.com/2013/presentations/braaksma/
doi:10.14337/XMLLondon13.Braaksma01
doi:10.14337/XMLLondon13.Braaksma01
http://saxonica.com/documentation9.4-demo/html/sourcedocs/streaming/burst-mode-streaming.html
http://saxonica.com/documentation9.4-demo/html/sourcedocs/streaming/burst-mode-streaming.html
http://tools.ietf.org/html/rfc33�
http://expath.org/

[7] Exselt, a concurrent streaming processor. http://exselt.net. Abel Braaksma, Vitaliy
Yudenkov, and Eugene Fotin.

[8] XPath and XQuery Functions and Operators 3.0, latest version. http://www.w3.org/
TR/xpath-functions-30/. Michael Kay.

[9] XPath and XQuery Functions and Operators 3.0, W3C Proposed Recommendation 22
October 2013. http://www.w3.org/TR/2013/PR-xpath-functions-30-20131022/.
Michael Kay.

[10] The FORTRAN Automatic Coding System. http://www.bitsavers.org/pdf/ibm/
704/FORTRAN_paper_1957.pdf‎. J.W. Backus. 1957.

[11] MPEG: A video compression standard for multimedia applications. http://
www.stanford.edu/class/ee398a/handouts/papers/Gall%20-%20MPEG.pdf.
Didier le Gall. 1991.

[12]Querying SlidingWindowsOver Online Data Streams. EDBT 2004Workshops PhD,
DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004.
Revised Selected Papers. Computer Science Volume 3268, 2005, pages 1-11. http://
dx.doi.org/10.1007/978-3-540-30192-9_1. Lukasz Golab and Jennifer Widom.
2004.

[13]HTTPClientModule, EXPath CandidateModule 9 January 2010. http://expath.org/
spec/http-client. Florent Georges.

[14] Implementation of the EXPath HTTPClient for Java and Saxon. https://github.com/
fgeorges/expath-http-client-java. Florent Georges.

[15] Working with web services using the EXPath HTTP client. https://www.ibm.com/
developerworks/library/x-expath/. James R. Fuller.

[16] Efficient randomized pattern-matching algorithms. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.86.9502. Richard M. Karp and Michael O. Rabin.
1987.

[17] Processing XML data stream(s) using continuous queries in a data streammanagement
system. US Patent. US20080120283. http://www.google.com/patents/
US20080120283. Zhen Hua Liu, Shailendra K. Mishra, and Muralidhar
Krishnaprasad. 2006.

[18] A Streaming XSLT Processor, presented at Balisage. http://www.balisage.net/
Proceedings/vol5/html/Kay01/BalisageVol5-Kay01.html. Michael Kay. 2010.

[19] Stylesheet Modularity in XSLT 3.0, presented at XML Amsterdam. http://
www.xmlamsterdam.com/2013/sessions#xslt3. Michael Kay. 2013.

[20] Saxon XSLT processor. http://saxonica.com. Michael Kay.

79

XSLT 3.0 Streaming for the masses

http://exselt.net
http://www.w3.org/TR/xpath-functions-30/
http://www.w3.org/TR/xpath-functions-30/
http://www.w3.org/TR/2013/PR-xpath-functions-30-20131022/
http://www.bitsavers.org/pdf/ibm/704/FORTRAN_paper_1957.pdf�
http://www.bitsavers.org/pdf/ibm/704/FORTRAN_paper_1957.pdf�
http://www.stanford.edu/class/ee398a/handouts/papers/Gall%20-%20MPEG.pdf
http://www.stanford.edu/class/ee398a/handouts/papers/Gall%20-%20MPEG.pdf
http://dx.doi.org/10.1007/978-3-540-30192-9_1
http://dx.doi.org/10.1007/978-3-540-30192-9_1
http://expath.org/spec/http-client
http://expath.org/spec/http-client
https://github.com/fgeorges/expath-http-client-java
https://github.com/fgeorges/expath-http-client-java
https://www.ibm.com/developerworks/library/x-expath/
https://www.ibm.com/developerworks/library/x-expath/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502
http://www.google.com/patents/US20080120283
http://www.google.com/patents/US20080120283
http://www.balisage.net/Proceedings/vol5/html/Kay01/BalisageVol5-Kay01.html
http://www.balisage.net/Proceedings/vol5/html/Kay01/BalisageVol5-Kay01.html
http://www.xmlamsterdam.com/2013/sessions#xslt3
http://www.xmlamsterdam.com/2013/sessions#xslt3
http://saxonica.com

[21] Electrical Signaling. US Patent. US0001641608.
http://www.google.com/patents/US164160842. George O. Squier. 1922.

[22] Proceedings of the Thritieth international conference on Very large databases - Volume
30. Pages 324 - 335. http://dl.acm.org/citation.cfm?id=1316719. Utkarsh
Srivastava and Jennifer Widom. 2004.

[23] XQuery and XPath Data Model 3.0, latest version. http://www.w3.org/TR/
xpath-datamodel-30/. Norman Walsh, Anders Berglund, and John Snelson.

[24]XMLPath Language (XPath) 3.0, Latest Version. http://www.w3.org/TR/xpath-30/.
Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson.

[25] XML Path Language (XPath) 3.0, W3C Proposed Recommendation 08 January 2013.
http://www.w3.org/TR/2013/PR-xpath-30-20131022/43. Jonathan Robie, Don
Chamberlin, Michael Dyck, and John Snelson.

[26] XXProc: An XML Pipeline Language, W3C Recommendation 11 May 2010. http://
www.w3.org/TR/xproc/. Norman Walsh, Alex Milowski, and Henry S.
Thompson.

[27] XSL Transformations (XSLT) Version 3.0, Latest Version. http://www.w3.org/TR/
xslt-30/. Michael Kay.

[28] XSL Transformations (XSLT) Version 3.0, W3C Working Draft 1 February 2013.
http://www.w3.org/TR/2013/WD-xslt-30-20130201/. Michael Kay.

42 http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/
43 http://www.w3.org/TR/2013/CR-xpath-30-20130108/

80

XSLT 3.0 Streaming for the masses

http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/
http://dl.acm.org/citation.cfm?id=1316719
http://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/2013/CR-xpath-30-20130108/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/xslt-30/
http://www.w3.org/TR/2013/WD-xslt-30-20130201/
http://www.w3.org/TR/2013/CR-xpath-datamodel-30-20130108/
http://www.w3.org/TR/2013/CR-xpath-30-20130108/

Streaming in the Saxon XSLT Processor
Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

Streaming is a major new feature of the XSLT 3.0 specification, currently a
Last Call Working Draft. This paper discusses streaming as defined in the
W3C specification, and as implemented in Saxon.1Streaming refers to the
ability to transform a document that is too big to fit in memory, which depends
on transformation itself being in some sense linear, so that pieces of the output
appear in the same order as the pieces of the input on which they depend. This
constraint is reflected in the W3C specification by a set of streamability rules
that determine statically whether a stylesheet is streamable or not.

This paper gives a tutorial introduction to the streamability rules and they
way they are implemented in Saxon. It then does on to describe the implement-
ation architecture for implementing streaming in the Saxon run-time, by
means of push pipelines, and gives rationale for this choice of architecture.

1. Introduction
Even seasoned readers of W3C specifications may find it bewildering to read, in
the Last Call draft of XSLT 3.0[7], that “if exactly one operand O of a construct C is
potentially consuming, and if the operand usage of O is absorption or inspection,
then the posture of C is grounded and the sweep of C is consuming”. Welcome to
the language of streamability. This talk has two purposes: firstly to give an introduc-
tion to these concepts, and secondly to explain how they relate to the challenge of
actually building a streaming implementation of XSLT.

Streaming is one of the main planks of XSLT 3.0 (the other is stylesheet modu-
larity). Streaming is rather informally defined in the specification as “a manner of
processing in which documents are not represented by a complete tree of nodes [in
memory], but rather... as a sequence of events”. The definition is deliberately fuzzy,
to give maximum scope for implementors to innovate around it. Despite this, the
specification gives a very precise definition of a subset of the language that is deemed
to be “guaranteed streamable”, which means that every processor that claims to

1References to Saxon in this paper refer to the current development snapshot, that is, to the state of the
code base some time after the release of version 9.5 and some time before version 9.6. There may therefore
be no public release of Saxon that corresponds in every respect to the description herein.

81

implement streaming at all must be capable of streaming this subset (which in turn
means that when this subset is used, the processor is expected to be capable of
handling indefinitely large source documents.)

Inevitably, in formulating the rules that define this subset, the working group
had in mind ideas as to how streaming might be implemented in real processors,
and the kind of constraints they might be operating under. Some of the constraints
can be formalized, at least in principle: for example, to be streamable, there must
be some kind of ordered correspondence between the events representing the source
tree and the events representing the result tree. But the WG has not attempted to
articulate the constraints in these terms; rather it has used intuitive reasoning to
recognize that some functions and operators (such as min(), max(), and sum()) can
be evaluated in a forwards pass through the document, and others (such as sorting,
or reverse()) can not.

The general streamability rules that emerge are derived essentially from a process
of abstracting these observations into a set of general rules. How do max() and
count() differ, for example? The answer is that count() has no problems handling
an input sequence that contains overlapping nodes, whereas max() cannot handle
overlapping nodes without buffering. The streamability of a function like count()
or max() thus depends on two factors: the nature of the supplied argument (does it
contain streamed nodes, and if so, can they overlap?) and the way in which the
function uses the items supplied as the argument. The first property is called "pos-
ture", the second (more intuitively) is called "usage". When the posture is striding,
overlapping streamed nodes are allowed, when it is crawling, they are not. From
this we get rules that say, for example, that (for an expression to be streamable), if
the operand usage is inspection then the posture can be striding or crawling, but if
the operand usage is absorption then the posture must be striding.

Streaming in Saxon[6] divides into two parts. The first part is static analysis to
determine whether a construct is streamable and to devise the streamed execution
plan. This follows the W3C analysis very closely, though Saxon implements some
extensions, for example where it is able to take advantage of optimizations such as
function and variable inlining. The second part is the actual streamed evaluation
at run-time. Streamed execution is in principle possible using either a pull or push
approach. The merits of the two approaches were described in [5]. To summarise
the conclusions of that paper, the main advantages of a pull approach are (a) the
ability to merge two streamed inputs (for constructs such as deep-equal(), the
union operator, or the new <xsl:merge> instruction), and (b) easier coding, because
most of the state of the processing can be kept on the programming language stack.
By contrast, the advantage of push processing is that input events can be directed
to more than one destination, which is essential for constructs such as <xsl:fork>.
Saxon's streaming implementation is based largely on push processing, because
although the implementation is more work, the architecture is more flexible. The

82

Streaming in the Saxon XSLT Processor

fact that significant components of Saxon have always used push processing (for
example, the schema validator and the serializer) is another contributory factor.

The push pipelines used for streamed evaluation in Saxon are interesting because
they include a mix of fine-grained events (startElement, endElement), and complete
items (including complete trees). The paper will include some examples of how a
few simple streamable expressions translate into such hybrid-granularity pipelines,
and how the structure of these pipelines relates to the classifications established by
the W3C streamability model.

2. Streamability
The static analysis performed by Saxon is modelled very closely on the rules in the
W3C specification. The main concern in these rules is to show that
• the body of an <xsl:stream> instruction, and
• the body of an <xsl:template> whose mode is declared with streamable="yes"

are in fact streamable.

2.1. The W3C Streamability Rules
The rules (given in section 19 of the XSLT 3.0 specification) appear complex but
once formulated, they are not in fact difficult to implement. Most of the apparent
complexity is not in the logic of the rules, but in understanding the abstractions
used in the rules, and understanding why the rules work.

The rules start with the idea of modelling a stylesheet (or at least, the parts of it
that need to be analysed) as a tree of constructs. Construct is our first new technical
term: it’s a generalisation of an XPath expression, an XSLT instruction, and a few
other things that are capable of being evaluated, like sequence constructors and
patterns. The children of a construct in the construct tree are called its operands.
The result of evaluating a construct is always a value. (Which sounds obvious, but
we would have to modify this to handle FLWOR expressions in XQuery, which
deliver not values but tuple streams.)

The sweep indicates how much of the input document is needed to evaluate the
construct. The values are:
• Motionless: the construct either doesn’t look at the input document at all, or it

only needs to look at the place where the input document is currently positioned.
Examples are 2+2, name(), and @status. This relies on an assumption that as the
input document is read, the system maintains a stack holding the names and
attributes of the current node and all its ancestors, and the contents of this stack
are always available without moving the input position.

83

Streaming in the Saxon XSLT Processor

• Consuming: the construct needs to read everything between the current start tag
and the corresponding end tag. Examples are string(), data(), number(),
<xsl:value-of>, <xsl:copy-of>.

• Free-ranging: the construct potentially needs to read outside the slice of the doc-
ument represented by the current element and its ancestors. Examples are pre-
ceding-sibling::x, and xsl:number. Such constructs are never streamable. (But
note, this doesn’t prevent preceding-sibling::x or xsl:number appearing in a
streamable stylesheet; the construct is free-ranging only if it operates on the
streamed input document.)

The other property of a construct that affects streamability is a bit harder to visualize,
and is referred to as the posture of the construct. Posture is concerned with determ-
ining whether an expression returns nodes from the streamed input document, and
if so, where these nodes come from. There are five values:
• Grounded: this means that the expression doesn't return nodes from the streamed

input. It either returns atomic values (or function items), or it returns nodes from
non-streamed documents only.

• Striding: this means that the expression returns a set of nodes from the streamed
input document, in document order, and that none of these nodes will contain
another node in the result (none is an ancestor or descendant of another). A
typical example is an axis expression using the child axis.

• Crawling: again, the expression returns a set of nodes from the streamed input
document, in document order, but this time some of the nodes may be ancestors
or descendants of others. A typical example is an axis expression using the des-
cendant axis.

• Climbing: The spec assumes that when an input document is streamed, a stack
of information is retained containing details of the names and attributes of all
ancestor elements of the element at which the stream is currently positioned.
Any expression that accesses ancestor nodes or their attributes from this stack
has a posture of climbing. The key thing to remember about climbing expressions
is that you can go upwards to ancestors of the current node, but you can't then
navigate downwards again, because the children/descendants of these nodes
are not retained in memory.

• Roaming: This indicates that an expression navigates off to parts of the document
that aren't accessible when streaming, such as preceding or following siblings.
This always makes the containing expression non-streamable.

Although some constructs have their own special rules, it’s worth summarising and
explaining the general streamability rules that apply to most instructions and ex-
pressions. The rules aim to determine the sweep and posture of a construct. The
rules depend on identifying the operands (subexpressions) of a construct; for each
operand you potentially need to know:

84

Streaming in the Saxon XSLT Processor

• its static type (this in fact is not often used)
• the sweep and posture of the operand (which you get by applying the rules re-

cursively)
• the way in which the value of the operand is used, called the operand usage.

This is one of the following:
• Absorption: the parent expression makes use of information from the entire

subtree rooted at nodes returned by the operand expression. Examples:
string(), data(), .//descendant::x

• Inspection: the parent expression makes use of properties of the nodes returned
by the operand expression that can be established while positioned at a node's
start tag. Examples: name(), base-uri(), @status, ../@status.

• Transmission: the parent expression returns nodes delivered by the operand
expression. Examples: A|B, tail(X), filter expressions.

• Navigation: the parent expression performs arbitrary reordering of the re-
turned nodes, or navigates away from them in arbitrary ways. Examples:
reverse(), <xsl:number>.

The general streamability rules start by refining the sweep and usage of the operands
by taking additional information into account. Specifically:
• If the type of the operand is a childless node kind, for example text(), then usage

absorption is changed to inspection, because the entire subtree of such nodes is a
simple property of the node and doesn't involve advancing the input stream.

• If the usage of the operand is absorption (for example if the parent expression
atomizes the value of the operand), then the sweep of the operand may have to
be increased. For example given the expression contains(., "e"), the sweep
of the first operand is consuming, not because "." is intrinsically consuming, but
rather because the contains() function performs atomization and this involves
reading the whole subtree of the context node.

Once the properties of all the operands have been established in this way, the
properties of the parent expression can be established:
• If there aren't any operands, the expression is grounded andmotionless. This applies

for example to simple literals like "London", and also to the empty sequence ().
It doesn't apply to axis expressions such as child::*, because axis expressions
have special streamability rules. The general streamability rules described here
are only the default.

• If any operand is non-streamable (technically, if it is free-ranging or roaming) then
the parent expression is also non-streamable.

• If several operands are consuming, then in general the parent expression is not
streamable (it is free-ranging and roaming). We'll discuss this important rule

85

Streaming in the Saxon XSLT Processor

below, There are exceptions for conditional expressions, where both branches
can be consuming.

• If exactly one operand is consuming, then the parent expression will usually have
the sweep of that operand. An exception is where the consuming operand is
evaluated more than once (consider an expression such as (1 to 5)!child::x)
in which case the result is not streamable. The posture of the result depends on
the operand usage of this operand. If the usage is transmission (for example X[@a
= 3]) then the posture of the result is the same as the posture of the operand. If
the usage is inspection or absorption (for example name() or data()), then the
posture of the result is grounded, because the result does not include any streamed
nodes.

So there’s a general rule that (with a few exceptions), no construct can have two
operands that are both consuming. This rule is fairly easy to learn, and it’s fairly
easy for an implementation to give good diagnostics that explain when it’s been
violated. it’s also fairly easy to understand why it should be true: you can only scan
the input file once, and unless you're pretty smart, you can only evaluate one ex-
pression while doing so.

The exceptions are cases where the implementation is expected to be smart
enough to evaluate both operands during a single pass:
• The <xsl:fork> instruction is explicitly introduced to request evaluation of two

or more instructions during a single pass. One can imagine this being done by
two parallel threads, but in fact it doesn’t need true parallelism: as we'll see later
in the paper, Saxon implements it simply by passing each parsing event to sev-
eral expression evaluators in turn.

• Union expressions such as a|b, and map expressions such as map{'a': price,
'b': discount} can also have multiple consuming operands.

• A rather different case is conditional expressions (<xsl:choose>, or XPath
if-then-else) where both branches can be consuming. This is a bit different
because only one of the branches is actually evaluated.

If implementations have to be smart enough to evaluate <xsl:fork> and map con-
structors, then one might reasonably ask why we don't require them to evaluate
multiple consuming operands wherever they occur, rather than treating these con-
structs as a special case. Perhaps some of the reason is pure caution; if there were
no constraints at all, the number of parallel evaluations could run completely out
of control. This reflects a recognition that forked evaluation has a cost, and indeed,
that it’s not really pure streaming, because although the input is streamed, the
output has to be buffered so that the results of the separate construct evaluations
can be assembled in the right order on completion. XSLT has a tradition of not
leaving everything to the optimizer but allowing programmers to get involved in
some of the key performance trade-offs, and this is an example of this philosophy.

86

Streaming in the Saxon XSLT Processor

The rules given above (the general streamability rules) apply to most kinds of
expression, but they don't apply to the important case of path expressions and axis
expressions. For axis expressions, the posture of the result depends on the posture
of the context item and the choice of axis, using transition rules like the following:
• striding + child => striding
• striding + parent => climbing
• grounded + any => grounded
• climbing + child => roaming
• crawling + child => roaming
This last rule is one of the trickiest to get used to. The rule in its simplest form can
be stated as "if you reached a node via the descendant axis, then you can't select
downwards from it".

The reason for this rule is as follows. Suppose you select a sequence of nodes
using the descendant axis. Then, in general, this sequence can contain two nodes
where the first is an ancestor of the second. Suppose you want to process all the
nodes in this sequence in turn. When you evaluate a consuming expression while
positioned at the first node (the ancestor), this will move the position in the input
stream to the end of that node, by which time you will have moved past the second
node (the descendant), which is the next one you want to process.

The way that posture is used in determining the streamability of path expressions
gives us another way of thinking about what posture actually means. Suppose that
all the navigation in a template is reduced to a simple path, then that path has to
match the regular expression C*D?A*, where C is a child step, D is a descendant step,
and A is an ancestor or attribute step. It turns out that the rules for permitted posture
transitions effectively define a finite state automaton that is equivalent to this regular
expression; the posture values, with their fanciful names such as striding, crawling,
and climbing can be seen as labels for the states in this automaton.

Note that the use of the descendant axis does not have to be explicit to fall foul
of this rule. Operations such as taking the string value or typed value of a node,
which are used all the time in XSLT programming, implicitly make a downward
selection and are therefore not allowed on nodes that were reached via the descend-
ant axis.

The rule disallowing multiple descendant steps is without doubt a great incon-
venience. There are a number of workarounds:
• If you know, for example, that <title> elements will not be nested, then you

can use the function outermost(//title) to select those titles that do not contain
other titles. This expression, because it always selects nodes with disjoint subtrees,
is deemed striding rather than crawling, and therefore allows further downward
selection.

87

Streaming in the Saxon XSLT Processor

• If you only need a single node, you can write this in various ways: head(//title),
or (//title)[1], or zero-or-one(//title). Again these expressions cannot return
nested nodes, so they are deemed striding rather than crawling.

• Similarly, text nodes are never nested, so the expression //text() is also striding.
• If several downward steps occur in a simple path expression such as //section/

title, the specification says this is to be treated as equivalent to //
title[parent::section] – that is, it is crawling rather than roaming. The reason
here is that path expressions select nodes in document order, so it’s always
possible to evaluate the entire path in a single scan of the subtree under the
current node, making it equivalent to a single use of the descendant axis.

The problem with this rule, as it appears in the W3C spec, is that it is very rigid. A
great deal of the time, it prevents you writing constructs that you, with knowledge
of the data, know will actually be streamable in practice even though they are not
streamable in the worst case. Saxon therefore takes a more pragmatic view here (the
spec permits this). Given a construct like the one above, Saxon will attempt an op-
timistic streamed implementation. If while processing one <section> element it
encounters another nested <section> element, then it will process both of them in
parallel during the same pass over the input. Any output produced from the inner,
nested <section> will be buffered and emitted only when processing of the outer
<section> is complete. So in the worst case, the process is not fully streamed, but
it will still produce the right answer if enough memory is available for the buffered
results. In effect, Saxon is doing an implicit <xsl:fork>: when it finds that a crawling
expression produces two nodes where one contains the other, and there is then a
further downward selection from these nodes, then it evaluates these two downward
selections in parallel, buffers the results, and assembles the output in the correct
order at the end. The beauty of this is that in the common case where elements are
not in fact nested (as would typically be the case for <xsl:value-of select="//
title"/>), no buffering is ever necessary, and the convenience of being able to write
the expression in the natural way is delivered without any performance penalty
and with no risk of running out of memory.

2.2. Visualising the Streamability Rules
Evaluating the streamability rules by hand for anything but trivial examples is
challenging; the detail quickly becomes overwhelming, especially as the rules are
highly recursive. This is of course a serious usability problem since stylesheet authors
need to know whether they are writing streamable code or not.

With experience, the effect of the rules starts to become more predictable. One
quickly develops an eye for coding patterns where the result of applying the rules
is immediately obvious. Two of these patterns (expressions with multiple consuming

88

Streaming in the Saxon XSLT Processor

operands, and downward selection from a node reached using the descendant axis)
have already been discussed.

However, for cases where the behaviour of the rules is less obvious, and for the
benefit of users who have not yet formed the ability to predict the effect of the rules,
Saxonica has developed a tool that allows the construct tree to be visualized, with
all the properties of each construct that are relevant to streaming (sweep, posture,
usage, type, context item posture, context item type) explicitly displayed.

The tool can be found at http://dev.saxonica.com/stream. At the time of writing
it does not handle all the rules in the W3C specification, but it handles all the most
frequently-encountered ones.

The tool is implemented using Saxon-CE[1] (XSLT logic running client-side in
the browser).

2.3. Implementation of the Streamability Rules in Saxon
Saxon internally implements the streamability rules by means of a method
getSweepAndPosture() on its Expression class (which corresponds to what the
specification calls a Construct). The general streamability rules are defined on the
class Expression itself, and constructs that have their own special rules override
the method as required. The method takes a parameter to indicate whether the
evaluation should proceed strictly according to W3C rules, or whether Saxon exten-
sions are permitted. This allows the user to decide whether to take advantage of
Saxon extensions or to prefer portability.

Implementation of the rules is not difficult. The expression class provides a
method operands()which returns the operands of an expression together with their
usage; it also provides static type information. So all the input to the W3C rules is
readily available. Once the sweep and posture of an expression have been computed,
the results are saved in the expression tree to avoid the costs of multiple computation.

Users don't only want to know whether an expression is streamable, they also
want to know why not. So the method getSweepAndPosture() also takes an (output)
parameter called reasons, which on return, if the expression is not streamable,
contains messages explaining which rules were violated; these messages are used
as the basis for compiler diagnostics.

Saxon performs the streamability analysis after all type-checking and optimiza-
tion is complete. This creates the possibility that non-streamable code will be rewrit-
ten by the optimizer as streamable, or vice-versa.

The first case is not a problem, except for the rather stringent requirement in the
W3C specification that an implementation should be capable of distinguishing
stylesheets that are ‟guaranteed streamable” according to the spec, from those that
rely on implementation extensions for their streamability. The only way to achieve
that with Saxon is to switch optimization off.

89

Streaming in the Saxon XSLT Processor

Rewriting streamable code as non-streamable would be more of a problem for
users. The problem is avoided by ensuring that the optimizer is aware of the need
for streaming. In most cases this merely suppresses a rewrite that would otherwise
take place, for example the use of indexing to support filter expressions such as //
emp[@id=$id].

In a few cases the optimizer deliberately tries to turn a non-streamable expression
into one that is streamable. An example is the expression for $x in //emp return
($x/@name, $x/@salary). This is not streamable as written because it is not permitted
to bind a variable to a node in a streamed document. However, it can be rewritten
as //emp/(@name, @salary), which is indeed streamable.

On other occasions streamability is achieved as an unintended consequence of
optimization. For example, the streamability rules don't allow streamed nodes to
be bound to variables, passed as arguments to functions, or returned from functions
(this is primarily to avoid the need for complex data-flow analysis). The Saxon op-
timizer will bypass this rule when it does variable and function inlining (replacing
a variable reference or function call by the body of the variable or function). For
example, a call to the function

<xsl:function name="inc">
<xsl:param name="n"/>
<xsl:sequence select="$n + 1"/>

</xsl:function>

is not streamable according to the W3C rules, simply because it fails to declare the
type of its argument (and could therefore be processing a streamed node). After
optimization, however, this function call will have been expanded inline, and the
expanded code will satisfy all the streamability rules.

3. Run-time execution
While the W3C specification has a lot to say about how a stylesheet is analyzed to
classify its constructs as streamable or not streamable, it says nothing at all about
how to actually organize evaluation at run-time in a streaming manner.

The architecture of a typical XSLT 1.0 processor [3] is shown in Figure 1. The
data flow is from left to right, but the control flow is more complex. In fact there
are two control modules: the XML parser reads (pulls) data from a lexical XML input
stream and writes (pushes) it to a tree in memory. The XSLT transformer, via its
XPath engine, reads (pulls) data from this tree, and then writes (pushes) events
down a pipeline which constructs events representing nodes in the result tree, which
are in turn pushed to the serializer.

90

Streaming in the Saxon XSLT Processor

Figure 1. The architecture of a typical XSLT 1.0 processor

Note that the source tree is materialized in memory, but the result tree is not. Eval-
uation of XSLT instructions that construct nodes, and the serialization of those
nodes, operate in a seamless push pipeline.

XSLT 1.0 famously does not allow a stylesheet to create temporary trees and
then process them further using XPath; but in practice all 1.0 processors implement
the EXSLT node-set() extension which circumvents this restriction. A typical XSLT
1.0 processor with the node-set() extension operates as shown in Figure 2:

Figure 2. An XSLT 1.0 processor with the node-set() extension

Here variables containing temporary trees are materialized as trees in memory by
XSLT instructions operating in push mode, and they are read by XPath expressions
operating in pull mode.

XSLT 2.0 adds the possibility of schema validation, which can be applied to
source trees, result trees, and also to temporary trees. The places where a schema
validator can be invoked are shown with red tick-marks in Figure 3:

91

Streaming in the Saxon XSLT Processor

Figure 3. An XSLT 2.0 processor with schema validation

The XML Schema specification was designed to allow validation to be streamed:
that is, one can determine schema validity over a stream of events representing the
instance document, without needing to materialize the instance document as a tree
in memory. Although one could envisage schema processors operating in either
pull or push mode, in practice all the ones I know of work in push mode, and it can
be seen in this diagram that this is rather convenient because in each case we have
added the schema processor to a push pipeline.

In this architecture there are two kinds of pipeline: a push pipeline for the
parsing and source validation, a pull pipeline for XPath evaluation, and another
push pipeline for result tree consruction, result tree validation, and serialization.

A simple pipeline contains one control module which pulls data from the source
end of the pipeline and pushes it to the result end of the pipeline. Data can flow
naturally from a pull pipeline to a push pipeline, but the opposite is more difficult.
There are essentially two ways to do it. One is to buffer the data into a reservoir
from where another pipeline can read it; that needs memory. The other is to have
to control modules that operate in some kind of synchrony so that data pushed by
one is pulled by the other. This can be achieved by running the two control modules
in separate threads under some kind of synchronization control, or with appropriate
support from a programming language it can be achieved in a single thread by use
of co-routines.

For more detail on these concepts, see [5]. The basic ideas are not at all new.
Until the advent of large online disc storage, most data processing was done with
magnetic tapes, and a major objective was to perform streamed processing of hier-
archic data held in sequential form to transform it to another hierarchic data set
also held in sequential form, with minimal use of tapes for holding intermediate
data. Michael Jackson built many of the ideas of Jackson structured programming

92

Streaming in the Saxon XSLT Processor

[2] around these concepts, and the ideas are fully applicable to pipelines of XML
transformations today.

Both pull and push pipelines can perform well, but a turbulent pipeline that has
to switch between push and pull mode is likely to be less efficient. Some measure-
ments demonstrating this effect can be found in [4].

To eliminate the need for interrupting the transformation pipeline with a reservoir
that holds everything in memory, one can envisage a number of possible architec-
tures:
• a single pipeline that operates in push mode from end to end.
• a single pipeline that operates in pull mode from end to end.
• a pipeline that has both push and pull sections, with the push-pull transitions

being handled through multithreading (the co-routine alternative can probably
be eliminated because of the paucity of modern programming languages that
support the concept).

In Saxon's first forays into streaming, the third approach was adopted. This had the
advantage that it was least disruptive to the existing architecture of the product; in
particular, the XPath engine could continue to operate in pull mode.

In a pull mode XPath engine, evaluation of XPath expressions operates top-
down. A parent expression controls the evaluation of its child expressions, typically
asking child expressions to deliver their results as a stream of items which can be
read as required. There is usually no need for the entire result of a child expression
to be stored in memory, because each item can be processed as it becomes available.
For example, the sum() function might be coded like this:

Iterator sum() {
int total = 0;
for item i in argument[0].evaluate() {
total += i;

};
return monoIterator(total);

}

In general, every XPath construct is implemented by a function that consumes
iterators representing the results of its subexpressions, and that itself delivers an
iterator over its results. That is, each XPath construct is implemented by a component
of a pull pipeline. This design approach is common in the implementation of func-
tional programming languages; it can be seen as a combination of the Interpreter
and Iterator design patterns in [Gamma et al].

In particular cases, it is possible to recognize XPath expressions where the tree
does not need to be materialized. An example might be sum(doc('employee.xml')//
employee/salary). This could be implemented either by having the XPath engine
make calls on an XML pull-mode parser as each salary element is required; or, as
in the Saxon case, it could be implemented by having a push-mode XML parser

93

Streaming in the Saxon XSLT Processor

deposit a sequence of salary elements in a cyclic buffer, to be picked up by the XPath
engine running in a separate thread. In Saxon this style of processing is implemented
using the saxon:stream() extension function.

While this approach allows some useful applications to be written, it has many
serious limitations. In particular, it does not allow for streaming applications that
need to process the input data hierarchically. it’s very hard to see how the XSLT 3.0
mechanism for streamable template rules, which perform a top-down hierarchic
(but sequential) processing of the source tree, could be implemented using this kind
of architecture.

Instead, Saxon is moving inexorably towards the first approach: an end-to-end
push pipeline, illustrated by Figure 4.

Figure 4. An XSLT 3.0 streamed processor using a pure push pipeline

Many components of Saxon have always been implemented as push pipelines,
notably the XSLT instruction engine, node construction, serialization, and schema
validation. The serializer alone contains around 30 components which are available
to be assembled into a push pipeline based on the serialization options selected; the
schema validator also has around 30 components each performing separate tasks.
So the only part of the run-time engine which needs to be re-engineered for this
streaming architecture is the XPath engine, where the existing pull-mode components
need to be replaced by components that work in push mode. The next section of
the paper explains how this works.

It’s worth noting that where expressions operate on singleton values (for example,
arithmetic expressions), the same code can be used in either a pull or push pipeline;
the entire input value is available in materialized form, so pipelined evaluation be-
comes meaningless. By contrast, there are a few expressions (an example is the
insert-before() function) that have more than one sequence-valued operand, and

94

Streaming in the Saxon XSLT Processor

where the roles of these operands are not symmetric. In a push pipeline multiple
push-based implementations of such an expression are needed, depending on which
operand is streamed (the rule that requires at most one operand to be consuming
ensures that we can always choose one or the other, and of course we can select
which one statically, because we know statically which operand is consuming).

3.1. Example of Push-based Expression Implementation
Perhaps some code would make these ideas more concrete. Here is an example that
shows a simplified implementation of the sum() function in push mode. (it’s simpli-
fied by only handling integers, by ignoring the second operand which gives a zero
value, and by ignoring conditions such as overflow). Note that IntegerValue is a
subclass of Item.

IntegerValue total;
void open() {
total = 0;
getResult().open();

}

void processItem(Item it) {
total = total.add((IntegerValue)it);

}

void close() {
getResult().processItem(total);
getResult().close();

}

In push mode, evaluation is bottom-up, so these methods are called by whatever
component it is that is evaluating the argument to the sum() function. That compon-
ent is responsible for delivering a sequence of items; each one is delivered by calling
processItem(), and the sequence is topped and tailed by calls of open() and close().
The component implementing sum() delivers a singleton sequence to the next
component in the pipeline (available as getResult()), and this too is delivered using
a sequence of three calls: open(), processItem(), and close().

In this example, the things passed from one component to another are complete
items. This is always the case for functions that operate on atomic values, which is
the case for sum() and for a great many other expressions. In fact, more generally
it is true whenever the operand is grounded or climbing. For functions that operate
on streamed nodes, however (specifically, striding and crawling expressions), we
don't always want to assemble the items before we can process them. Consider the
expression count(//*): the first item to be counted is the outermost element of the
document, and we don't want to construct this as an object just so that it can be

95

Streaming in the Saxon XSLT Processor

counted. For this example, the pipeline needs to operate at a finer level of granularity:
it needs to be notified of startElement and endElement events. The push code for
count() looks like this:

IntegerValue count;
void open() {
count = 0;
getResult().open();

}

void startElement(FleetingNode node) {
count = count.add(1);

}

void processItem(Item it) {
count = count.add(1);

}

void close() {
getResult().processItem(count);
getResult().close();

}

This implementation can handle both complete items and fine-grained events. Often
it will only have to handle one or the other: if the operand is striding (e.g. child::X)
or crawling(e.g. descendant::X) then it will be notified of startElement events,
while if it is grounded (e.g. data(X)) or climbing (e.g. ancestor::A/@B) then it will
be notified of complete items. Nodes other than element or document nodes are
also notified via the processItem() method, so with an expression such as count(//
node()) the two methods will both be called, for different kinds of nodes.

The class FleetingNode used in the startElement call is a representation of a
node within a streamed document. It implements Saxon's NodeInfo interface, which
is the standard way that nodes in trees are represented, but it only supports opera-
tions that are permitted when positioned at the start tag in a streamed document
(classified in the spec as inspection operations). That is, you can call methods such
as name(), localName(), and baseUri(); you can determine the type annotation; you
can navigate the attribute, ancestor, and namespace axes; but you cannot make a
downwards or sideways selection either explicitly by following axes such as
preceding-sibling, child, or descendant, or implicitly by getting the string value
or typed value. For the count() function, of course, we don't need to know any
properties of the node, we just need to note its existence by incrementing the tally.

As well as constructs like count() that process fine-grained events representing
element start and element end, there are also constructs that create new element
nodes (for example, the <xsl:element> and <xsl:copy> instructions). Again, we
don't want to materialize these nodes in memory; instead such constructs need to

96

Streaming in the Saxon XSLT Processor

generate startElement and endElement events which can then filter their way down
the output pipeline, usually ending up in the serializer where they can be turned
directly into start and end tags. Alternatively, if the streamed output is being cap-
tured in a variable, they might end up being passed to a tree builder that constructs
a tree in memory, but this will only happen if the tree is actually needed.

3.2. Why not pull?
It would be possible to build a streaming processor that used a uniform pull model
throughout, rather than Saxon’s push model. Indeed, in some ways it would be
easier.

As explained in [5] the primary benefit of a push model is that it allows events
to be sent to more than one destination. This is used when implementing the expres-
sions that explicitly allow more than one consuming operand, such as union expres-
sions, <xsl:fork>, and map constructors, and it is also used for the Saxon extensions
that permit downward selection from nodes reached using the descendant axis.

The other significant reason for using this model for Saxon streaming is that it
is already used in significant parts of Saxon such as the serializer and schema valid-
ator, and this model therefore permits better re-use of existing code.

The main drawbacks of a push model are (a) that the coding required to imple-
ment it is probably more complex, and (b) that it is more difficult to handle constructs
that merge two independent streamed inputs. There is only one such construct in
XSLT 3.0, the <xsl:merge> instruction; Saxon has yet to implement streamed merging,
but when it comes, it will probably use multiple threads.

4. Constructing the Push Pipeline
In the previous section we looked at how individual constructs in the expression
tree are represented by push-evaluation components feeding events to each other
in a bottom-up manner. This is bottom-up in the sense that subexpressions are
processed before their parent expressions, and that the code for a subexpression
calls the code for its parent expression to supply data, contrasted with top-down
evaluation where the control flow is in the opposite direction. The relationship is
very much the same as that between a top-down parser and a bottom-up parser,
and the process of converting from one form to the other is known in Jackson
Structured Programming [2] as inversion. Jackson showed that the process of inver-
sion can be automated by a compiler.

It would be nice to think that we could invert Saxon's pull-based implementations
of operations like count() and sum() to push-based implementations by an auto-
mated process; unfortunately doing so would require creating something akin to a
new Java compiler, so instead we have done the process by hand. However, the
assembly of these individual expression implementations into a working push

97

Streaming in the Saxon XSLT Processor

pipeline is of course fully automated. This process is essentially performing a Jackson
inversion of the streamable XSLT templates in the stylesheet, and inversion at this
level is greatly simplified because XSLT is a functional language free of side-effects.
It is akin to the process of creating a bottom-up parser from a top-down BNF de-
scription, which is well-understood technology.

Consider first a simple template rule such as the following:
<xsl:template match="employee">

<e><xsl:value-of select="name"/></e>
</xsl:template>

Saxon will build an expression tree representing this template rule. The expression
tree is a little more complex than might be imagined, because it contains nodes
representing all the internal operations implied by the semantics of xsl:value-of:
specifically a call to data() to atomize the <name> element; a call to string-join()
to handle the case where there are multiple <name> elements.

Working top-down, the rule that a construct is only permitted one consuming
child allows us to construct a path through this tree that contains all the consuming
operations from bottom to top: this is called the streaming route, and the expressions
on the streaming route provide the raw material for assembling the push pipeline
that evaluates the template rule. Expressions on the streaming route may of course
have other non-consuming operands; these are evaluated top-down in the usual
way, at the point where their values are needed.

At the bottom of the streaming route there is always a pattern, which identifies
which nodes the template is interested in (this is not the pattern that the template
matches; it is a pattern that matches the nodes which the template reads from the
streamed input). In this case the first operation in the push pipeline is to atomize
<name> elements, so the relevant pattern is name. When the template is activated, it
constructs a Watch; the Watch is a combination of the pattern, and the pipeline to be
invoked when the Watch is matched. This Watch is registered with a WatchManager,
which receives all events emanating from the XML parser, and tests each one against
a list of registered Watches, to see who needs to be notified. When the start tag for
<name> is encountered, the WatchManager calls the startElement() method for the
first component of this pipeline. This component is an atomizer, so it responds to
this startElement() call by telling the WatchManager that it wants to know about all
events up to the corresponding endElement() call. As these events arrive, it constructs
the typed value of the element. The typed value of an element is in general a sequence
of atomic values (though in the absence of a schema, this sequence will always be
of length one). Each value in this sequence is notified to the next step in the push
pipeline by a call on processItem(), so this next step (in our example, it represents
the implicit string-join() operation) sees the sequence of atomic values comprising
its streamed input. The string-join() operation in our example probably does
nothing very interesting, because it’s likely that employees only have one name; it

98

Streaming in the Saxon XSLT Processor

passes this name on to the next operation, which converts the string to a text node
as required by the xsl:value-of instruction. The next operation after this in the
streaming route is the literal result element that creates the <e> element. This emits
events corresponding to the <e> start and end tags as part of its open() and close()
calls, while the processItem() call that supplies the text node is passed on un-
changed. So the template rule as a whole delivers a sequence of three calls (startEle-
ment, text node, endElement) and these become the result of the
<xsl:apply-templates> instruction in the calling template rule, to be passed on up
that template rule’s pipeline.

The situation becomes a little more complex, of course, with template rules that
involve loops and conditionals. The logic, however, is very similar to what would
happen if all loops and conditionals were translated into apply-templates calls.
Saxon doesn’t quite go as far as doing that literally (it probably wouldn’t be very
efficient), but in terms of defining patterns and registering them with the
WatchManager, it gives a good picture of what is going on.

As mentioned earlier, there are some constructs like union expressions,
<xsl:fork> and <xsl:map> that explicitly allow multiple consuming operands.
Saxon handles these by registering with the WatchManager one pattern (and corres-
ponding pipeline) for each consuming operand. The pipelines operate in parallel
as matching nodes are encountered, and the final step in each pipeline is to leave
the result somewhere (in memory) where it is available to be assembled into the final
result of the <xsl:fork> or <xsl:map> instruction.

5. Early exit, and error handling
A feature of functional languages like XPath is that it is not always necessary to
evaluate the whole of an operand sequence in order to establish the result of the
parent expression. For example, given the expression exists(child::author) it is not
necessary to find all the author children; as soon as one is found, the expression can
return true.

In a pull model, this is handled naturally by the parent expression iterating over
the nodes returned by the operand expression, and simply not reading any further
once it knows the answer.

This is less easy to achieve in a push (bottom-up) evaluation model, because the
child expression knows nothing of its parent, so it will keep supplying new author
elements until it reaches the end of the sequence of children. Of course, the parent
expression can simply ignore them, but there are sometimes performance benefits
to be gained by avoiding the unnecessary computation.

With streaming, particular gains are possible if the result to the entire transform-
ation can be delivered before the whole input document has been parsed. This is
more likely with some XPath or XQuery scenarios than with XSLT itself, but the
same principles apply. For example, one can imagine a phase of a publishing pipeline

99

Streaming in the Saxon XSLT Processor

that is merely interested to read the value of the expression /article/@version —
that is, an attribute of the outermost element of the document, which can be found
very near the start of the file. Delivering this without parsing the rest of the file is
potentially a big win.

To achieve this in a push pipeline, Saxon adds a parameter to the open() method
for each each expression, whose value is a Terminator object. If the expression does
not need any more input, it can call the Terminator object to say so. This enables
expressions further up the pipeline to respond by themselves terminating; potentially
the WatchManager itself is able to recognize that no more input is needed from the
XML input stream, and it can then terminate the parse by throwing a (recognizable)
exception, which is then caught so the user never knows about it. This does have
the side-effect that XML well-formedness errors appearing subsequently in the file
will never be detected (something that can be regarded as a bug or a feature).

A related issue is the implementation of the XSLT 3.0 try/catch facility. A con-
ventional top-down implementation of try/catch can take advantage of the exception
handling provided by the implementation language, which in Saxon's case is Java.
With bottom-up evaluation, however, throwing a Java exception is no use, because
the Java call stack is inverted so the exception will never reach the try/catch expres-
sion that is watching for it. Instead it is necessary to notify exceptions up the push
pipeline in the same way as success results.

As it happens, the XSLT 3.0 try/catch capability is not streamable according to
the specification; this is because it requires either output buffering or some kind of
rollback capability to ensure that output produced before a failure that is caught
does not make it into the result. Saxon however is more liberal here than the spe-
cification: it does allow try/catch with streamed input, and buffers the output in
case an error occurs. This extension to the streamability rules can be justified on the
basis that the output is sometimes much smaller than the input; indeed, in some
cases its size is independent of the input, which would make it truly streamable
even with buffering.

6. Conclusions
In this paper I have given a brief introduction to the concepts that are used in defin-
ing the streamability rules in the XSLT 3.0 specification, and have outlined some of
the more important rules that determine whether constructs are or are not considered
streamable; I have also explained some of the circumstances in which Saxon achieves
streaming even in cases where this is not guaranteed by the specification. I then
went on to outline how streaming is implemented in Saxon using an end-to-end
push pipeline in which both whole items and fine-grained events can be notified
in a bottom-up data flow from called expressions to calling expressions, and I ex-
plained some of the consequences of this architecture.

100

Streaming in the Saxon XSLT Processor

In 2001 [3] I wrote ‟Perhaps the biggest research challenge is to write an XSLT
processor that can operate without building the source tree in memory. Many people
would welcome such a development, but it certainly isn't an easy thing to do.” I
was right: it took a dozen years, but it has now been achieved.

References
[1] Delpratt, O'Neil, and Kay, Michael. Multi-user interaction using client-side XSLT

Presented at XML Prague 2013. http://archive.xmlprague.cz/2013/files/
xmlprague-2013-proceedings.pdf

[2] Jackson, Michael A. JSP in Perspective. (A retrospective look at Jackson Structured
Programming, more accessible to a modern audience than the original
publications from the 1970s). SD&M Pioneers' Conference, Bonn, 2001. http://
mcs.open.ac.uk/mj665/JSPPers1.pdf

[3] Kay, Michael. Anatomy of an XSLT Processor. Published online by IBM
DeveloperWorks https://www.ibm.com/developerworks/library/x-xslt2/

[4] Kay, Michael. Ten Reasons why Saxon XQuery is Fast. Bulletin of the IEEE
Technical Committee on Data Engineering. http://sites.computer.org/debull/
A08dec/saxonica.pdf

[5] Kay, Michael. You Pull, I'll Push: On the Polarity of Pipelines. Presented at
Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009.
In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on
Markup Technologies, vol. 3 (2009). doi:10.4242/BalisageVol3.Kay01. http://
www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html

[6] Saxonica: XSLT and XQuery Processing http://www.saxonica.com/
[7] XSL Transformations (XSLT) Version 3.0. W3C Last Call Working Draft, 12

December 2013. Ed. Michael Kay. http://www.w3.org/TR/xslt-30

101

Streaming in the Saxon XSLT Processor

http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://mcs.open.ac.uk/mj665/JSPPers1.pdf
http://mcs.open.ac.uk/mj665/JSPPers1.pdf
https://www.ibm.com/developerworks/library/x-xslt2/
http://sites.computer.org/debull/A08dec/saxonica.pdf
http://sites.computer.org/debull/A08dec/saxonica.pdf
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.saxonica.com/
http://www.w3.org/TR/xslt-30

102

XFormsUnit:
the Framework to Test Them All

Eric van der Vlist
Dyomedea

Abstract

Current practices to test XForms developments rely on generic web testing
frameworks and expose implementation specific details which can change from
version to version.

XForms forms can be incredibly complex and they deserve a proper test
framework allowing to define tests using XForms paradigms.

This talk presents XFormsUnit, a native XForms test framework.

1. What XForms Unit is
XForms Unit3 is a web application which combine a test designer and a test runner:
• The test designer is an XForms application developed with Orbeon Form

Builder.
• The test runner is implemented as an Orbeon XPL pipeline which can delegate

the test execution to a number XForms implementations (Orbeon Forms, better-
FORM and XSLTForms are currently supported).

Test suites can be edited with and run from the test designer. Such test suites asso-
ciate a number of actions and assertions to an XForms document.

The test designer window is divided into three sections with corresponding tool
boxes:
• The first section selects the target form on which the tests will be run and the

target XForms implementations. Its toolbox enables to download the form and
run it with the target implementations.

• The second section is the edition of the test actions and assertions using an em-
bedded XML editor. The edition can be done item by item (each action and as-
sertion being edited in a separated control) or globally (the test suite document
is edited in a big control). The associated toolbox includes buttons to save the
suite, revert its changes, download or upload it and run it with the different
implementations.

3 http://xformsunit.org/

103

http://xformsunit.org/
http://xformsunit.org/

• The third section is about gathering tests results. With its toolbox you can run
the tests with the target implementations and download the results.

Figure 1. Test builder

The edition being made by editing the XML source of the test suite does expose the
XML vocabulary which has been defined to formalize test suites. This vocabulary
is designed to be as close as possible from the concepts introduced by XForms. To
achieve this, elements are prefixed by the words "controller", "model" and "view"
depending on the level with which they interact:
• Elements prefixed by "controller" define ways to act on the controller. These are

typically actions, such as controller.setvalue which syntaxes are similar to
the corresponding XForms actions.

104

XFormsUnit: the Framework to Test Them All

• Elements prefixed by "model" work at the model level. These are assertions,
such as model.assertEqual which testes that an instance value is equal to an
expected value.

• Elements prefixed by "view" work on the view. These are also assertions, such
as view.assertEqualswhich testes if a control property (such as visible, enabled,
...) is equal to an expected value.

Note
This vocabulary has been designed4 and formalized as an Examplotron
schema5.

Under the scene, the most important principle is that these test suites are executed
on the target implementations in pure XForms. To that effect, an XSLT transformation
is run to add XForms instances and controls which perform the tests defined by the
test suite on the XForms read event and write the test results in an instance.

These test results can either be displayed inline in the form itself (this is what
happens in the section of the test builder when you run a test suite) or replace the
form to be read by the pipeline which runs the test (this is what happens in the third
section of the test builder when tests results from different implementations are
gathered).

Note
A screen-cast presenting this user interface is available in the latest XForms
Unit progress report6.

2. A native XForms test suite framework
At that point you may wonder why it might be important to have a native test suite
framework, after all, neither the XForms Working Group, XForms implementers
nor form developers have been waiting XForms Unit to run and define test suites
whenever they needed them.

That's true and a common way of testing XForms application is to use a generic
purpose web testing tool7 such as Selenium8.

The benefits of such tools is that you can test exactly what is displayed in the
browser and simulate user actions. It’s downside is that the tests are expressed in
browser related terms rather than using XForms concepts. To write these tests you

4 http://xformsunit.org/2013/08/23/a-vocabulary-to-describe-test-suites
5 http://xformsunit.org/trac/browser/resources/apps/xformsunit/suite.eg
6 http://xformsunit.org/2013/09/20/progress-report-and-standby/
7 http://en.wikipedia.org/wiki/List_of_web_testing_tools
8 http://en.wikipedia.org/wiki/Selenium_%28software%29

105

XFormsUnit: the Framework to Test Them All

http://xformsunit.org/2013/08/23/a-vocabulary-to-describe-test-suites
http://xformsunit.org/trac/browser/resources/apps/xformsunit/suite.eg
http://xformsunit.org/trac/browser/resources/apps/xformsunit/suite.eg
http://xformsunit.org/2013/09/20/progress-report-and-standby/
http://xformsunit.org/2013/09/20/progress-report-and-standby/
http://en.wikipedia.org/wiki/List_of_web_testing_tools
http://en.wikipedia.org/wiki/Selenium_%28software%29
http://xformsunit.org/2013/08/23/a-vocabulary-to-describe-test-suites
http://xformsunit.org/trac/browser/resources/apps/xformsunit/suite.eg
http://xformsunit.org/2013/09/20/progress-report-and-standby/
http://en.wikipedia.org/wiki/List_of_web_testing_tools
http://en.wikipedia.org/wiki/Selenium_%28software%29

need to know how XForms will be transformed into HTML and this transformation
depends on the XForms implementation being used and may vary between versions.

By contrast a native XForms test environment does allow to express the tests
using XForms concepts such as binds, controls and events.

In practice, if you have a form such as:
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:xf="http://www.w3.org/2002/xforms">
<head>
<title>Hello World in XForms</title>
<xf:model id="model">
<xf:instance id="instance" xmlns="">
<data>
<PersonGivenName></PersonGivenName>
<Greetings></Greetings>

</data>
</xf:instance>
<xf:bind id="greetings" nodeset="/data/Greetings"
calculate="concat('Hello ', ../PersonGivenName,

'. We hope you like XForms!')"/>
</xf:model>

</head>
<body>
<p>Type your first name in the input box.
 If you are running XForms,

the output should be displayed in the output area.</p>
<xf:input ref="PersonGivenName" incremental="true">
<xf:label>Please enter your first name: </xf:label>

</xf:input>

<xf:output value="Greetings">
<xf:label>Output: </xf:label>

</xf:output>
</body>

</html>

You can write the following test suite to test that the calculated value for the greetings
element is correct:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="../../suite.rng" type="application/xml"

schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="../../suite.rng" type="application/xml"

schematypens="http://purl.oclc.org/dsdl/schematron"?>
<suite xmlns:xh="http://www.w3.org/1999/xhtml"

xmlns:xf="http://www.w3.org/2002/xforms"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

106

XFormsUnit: the Framework to Test Them All

<form src="hello-world.xhtml"/>

<!-- The test cases -->
<case id="test-greetings">
<title>Test that greetings are correctly set</title>
<controller.setvalue
ref="instance('instance')/PersonGivenName">Eric</controller.setvalue>

<model.assertEqual>
<actual ref="instance('instance')/Greetings"/>
<expected>Hello Eric. We hope you like XForms!</expected>
<message>The greetings should be the concatenation of "Hello ",

the given name and ". We hope you like XForms!".</message>
</model.assertEqual>

</case>
</suite>

The test runner transforms the form to add actions that check the tests defined in
the suite and you can run these tests in a number of different ways on all three
XForms implementations.

The tests can be run and displayed in the resulting form itself. A section is then
added to the form to display the results before the resulting form. For this example,
the resulting form would be:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:xf="http://www.w3.org/2002/xforms"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xh="http://www.w3.org/1999/xhtml"
xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xfu="http://xformsunit.org/">

<head>
<title>Hello World in XForms</title>
<xf:model id="model">
<xf:instance id="instance">
<data xmlns="">
<PersonGivenName/>
<Greetings/>

</data>
</xf:instance>
<xf:bind id="greetings" nodeset="/data/Greetings"

calculate="concat('Hello ', ../PersonGivenName, '. We hope you ►
like XForms!')"/>

<!-- Test cases -->
<xf:instance id="xfu-instance">
<suite xmlns="">
<case id="test-greetings">
<title id="d28e12">Test that greetings are correctly set</title>
<controller.setvalue ref="instance('instance')/PersonGivenName"

107

XFormsUnit: the Framework to Test Them All

id="d28e15">Eric</controller.setvalue>
<model.assertEqual id="d28e18" passed="">
<actual ref="instance('instance')/Greetings" id="d28e20"/>
<expected id="d28e22">Hello Eric. We hope you like XForms!</►

expected>
<message id="d28e25">The greetings should be the concatenation ►

of "Hello ", the given name and ".
We hope you like XForms!".</message>

</model.assertEqual>
</case>

</suite>
</xf:instance>
<xf:dispatch ev:event="xforms-ready" targetid="model"

name="xfu-d28e15-action"/>
<xf:action ev:event="xfu-d28e15-action">
<xf:recalculate/>
<xf:refresh/>
<xf:setvalue

ref="instance('instance')/PersonGivenName">Eric</xf:setvalue>
<xf:dispatch targetid="model" name="xfu-d28e18-action"/>

</xf:action>
<xf:action ev:event="xfu-d28e18-action">
<xf:recalculate/>
<xf:refresh/>
<xf:setvalue ref="instance('xfu-instance')//*[@id = 'd28e20']"

value="instance('instance')/Greetings"/>
<xf:setvalue ref="instance('xfu-instance')//*[@id = 'd28e18']/@passed"

value="(instance('instance')/Greetings) = 'Hello Eric. We ►
hope you like XForms!'"/>

</xf:action>
</xf:model>

</head>
<body>
<xf:group ref="instance('xfu-instance')" id="xfu-group">
<h3>Test results</h3>
<dl>
<xf:repeat nodeset="case">
<dt>
<dfn>
<xf:output ref="@id"/>

</dfn>
</dt>
<dd>

<xf:repeat nodeset="*[@passed]">

108

XFormsUnit: the Framework to Test Them All

<xf:group ref=".[@passed = 'true']">
passed

</xf:group>
<xf:group ref=".[@passed = 'false']">
failed
<xf:output ref="*:actual|control">
<xf:label>Actual :</xf:label>

</xf:output>
<xf:output ref="*:expected">
<xf:label>Expected :</xf:label>

</xf:output>
</xf:group>

</xf:repeat>

</dd>

</xf:repeat>
</dl>

</xf:group>
<hr/>
<h3>Form</h3>
<p>Type your first name in the input box.

If you are running XForms,
the output should be displayed in the output area.

</p>
<xf:input ref="PersonGivenName" incremental="true">
<xf:label>Please enter your first name:</xf:label>

</xf:input>

<xf:output value="Greetings">
<xf:label>Output:</xf:label>

</xf:output>
</body>

</html>

3. Limitations
The current version is a merely a proof of concept and has many limitations. A lot
of these limitations are teething problems:
• lack of support for multi-model forms
• No other action than controller.setvalue

• No other assertions than model.assertEqual and view.assertEqual

• ...

109

XFormsUnit: the Framework to Test Them All

A more serious limitation is coming from the fact that XForms implementation may
require client-server interactions and the situation is different for each implement-
ation:
• XSLTForms is a pure browser side application an requires a browser to run. This

is not a problem when a test suite is run from a browser which is the case when
we use the test designer. However this is an issue to run the test suite server
side, for instance from a continuous integration framework. To work around
this issue it is necessary to emulate or run a browser server side.

• On the contrary, Orbeon Forms is a client-server implementation of XForms that
has been optimized to apply all the initial actions (basically everything that
happens up to the end of the xforms-ready event) server side without requiring
any client-server interaction. In other words, test suites can be executed server
side within an XPL pipeline.

• Like Orbeon Forms, betterFORM is a client-server implementation of XForms
but the initial actions are applied after a first client-server exchange. It might be
possible to emulate this first exchange to avoid to use a browser but the current
version runs the test suites from a browser like it does for XSLTForms with the
same consequences.

A last set of limitations are due to XForms itself. XForms has been designed as the
response to a demand for “better Web forms with richer interactions” and using it
to implement a unit test framework is quite challenging.

In particular, XForms' functions library is quite weak in the domain of introspec-
tion, for instance there is no function to determine if a control is visible or relevant.

To implement its view.assertEqual assertions, XForms Unit relies on events
sent to the controls but XForms events processing has not been defined with this
kind of purposes in mind and doesn't really solve the issue in all the cases.

As a result, next versions of XForms Unit will have to rely on extension functions
which are not yet available in all three supported implementations.

4. XForms flavours
When I have started the project I was anticipating interoperability issues between
these different implementations through incompatible extensions that I would
probably need to use sooner or later.

What I had not anticipated was that the lack of interoperability between XForms
implementations would be worse than the lack of interoperability between browsers
and I would be spending most of my time with interoperability issues between
implementations on basic XForms features.

On the web it is impossible to predict which browsers will be used by your vis-
itors and the lack of interoperability between web browsers has a direct and visible

110

XFormsUnit: the Framework to Test Them All

cost on every web development. This is a strong argument to reduce if not eliminate
the extensions and incompatibilities between web browsers.

Because of the lack of native implementation of XForms in the browsers, the in-
teroperability between XForms implementations is more like interoperability between
SQL databases: most applications are written with a target XForms implementation
in mind and each implementation seems eager to add its own extensions without
much concern for interoperability.

Since it appears to be almost impossible to write any complex XForms application
without using any extension we have now a number of different and incompatible
XForms flavours (one per implementation) with their own communities of form
developers.

111

XFormsUnit: the Framework to Test Them All

112

XSLT 3.0 Testbed
Tony Graham

Mentea
<tgraham@mentea.net>

Abstract

https://github.com/MenteaXML/xslt3testbed is a public, medium-sized XSLT
3.0 project where people could try out new XSLT 3.0 features on the trans-
formations to (X)HTML(5) and XSL-FO that are what we do most often and,
along the way, maybe come up with new design patterns for doing transform-
ations using the higher-order functions, partial function application, and
other goodies that XSLT 3.0 gives us.

There’s undoubtedly many things to try out, but a starter list of things to look at
includes:
• How will XSLT 3.0 features make it easier to:

• Customise the output?
• Modularise stylesheets?
• Re-use modules between HTML and XSL-FO output?

• Will higher-order functions, anonymous function, partial function application,
and/or dynamic XPath evaluation improve upon xsl:attribute-set?

The project is ongoing, so the presentation will report on work done to date.

1. Timing
The project started in October 2013, when XSLT 3.0 was sufficiently cooked that it
could be used without the language changing drastically before Recommendation
but not so hard-baked that it wouldn’t be possible for anything the project found
making a change to the spec.

The generalisation about comments on W3C specs is that people don’t pay much
attention to drafts until the spec is in Last Call or Candidate Recommendation stage,
by which point it’s hard for a WG to make substantive changes.

XSLT 3.0 [1] was released as a Last Call Working Draft on 12 December 2013, so
the timing was just about right.

113

https://github.com/MenteaXML/xslt3testbed

2. JATS
The XSLT 3.0 testbed stylesheets are derived from the XSLT 1.0 “NISO Journal
Article Tag Suite (JATS) version 1.0” stylesheets [22] by the National Center for Bi-
otechnology Information [23] at the U.S. National Library of Medicine (NLM) [24].

The JATS preview stylesheets made a good place to start since:
• JATS is in wide use as the medium of exchange, and of archiving, for published

scientific journal articles (and more)
• It has the Goldilocks factor of not being too large (it’s not as large as DocBook

or TEI) nor too small (it’s also not a toy)
• There’s lots of sample data available
• There’s existing XSLT 1.0 stylesheets
• The existing stylesheets are in the public domain
• There’s a quick win in just adding XSLT 2.0-isms to the XSLT 1.0 stylesheets

3. Goals
Results to work towards:
• Trial – and make prior art for – different techniques for using XSLT 3.0
• Get an early start for developing the patterns and idioms for using XSLT 3.0 that

many of us will be using for years to come
• Standalone XSLT 3.0 xsl:package for transforming XHTML tables to XSL-FO

and/or HTML
xsl:package is new in XSLT 3.0, plus (X)HTML tables are used with many

document types, so a stable, reusable module for formatting tables that takes
advantage of any new or improved syntax or functions available in XSLT 3.0
and XPath 3.0 will be a good thing

4. Non-goals
Possible results to not work towards or to actively work against:
• The single best way of doing anything

Since this is a testbed it’s okay for it to try different ways of achieving the
same result

• The definitive XSLT 3.0 testbed
This project is on GitHub because it’s easy to fork Git projects and develop

your own flavour of them. Pull requests are encouraged, but if you want to make
your own version of this, that’s more than fine, too

• Complete stylesheets for all of JATS

114

XSLT 3.0 Testbed

JATS gives the work a focus, but it isn’t the focus of the work. Also, the ori-
ginal XSLT 1.0 stylesheets don’t cover all of JATS to begin with, so there’s no
onus for this project to cover all of JATS

5. Results so far
As of 25 January 2014, results include:
• Six new tickets against XSLT 3.0 or XPath 3.0 on the W3C Bugzilla system

The issues raised have been minor, which is a good sign for XSLT 3.0, but
addressing them now is less burden than if the same issues were raised when
XSLT 3.0 is either a Proposed Recommendation or already a Recommendation.

• Analysis, below, comparing a map of functions against attribute sets
• One change merged into the original JATS stylesheets [22], with more pull re-

quests to come
• One change merged into Wendell Piez’s Oxygen framework for JATS [21], with

more under discussion
• A technique for hosting Oxygen add-ons as GitHub project releases [25]
The presentation in February 2014 will be able to report even more results. Devel-
opments after the conference will be reported on the GitHub project’s wiki [19]
and/or my blog [20].

6. Map of functions compared to xsl:attribute-set

After comparing using a map of functions that return attributes to using
xsl:attribute-set, neither is significantly better than the other.

The current input is a JATS [6] document that contains two table-wrap [3][4]
that each contain a table. For the sake of the exercise, the table in the second table-
wrap has ‘style="orange"’ [5].

There’s currently three branches in the repository, but only two are sufficiently
well developed to report on: ‘master’ uses xsl:attribute-set, and ‘table-map’ uses
maps of functions.

Also for the sake of the exercise there’s multiple stylesheets in use:
• xhtml-tables-fo3xsl – Base table module (‘master’: [7]; ‘table-map’: [8])
• red.xsl – Styles text is the table head as red (‘master’: [9]; ‘table-map’: [10])
• blue.xsl – Styles text is the table body as blue (‘master’: [11]; ‘table-map’: [12])
• red-blue.xsl – Imports both ‘red.xsl’ and ‘blue.xsl’ to achieve a combined effect

(or try to) (‘master’: [13]; ‘table-map’: [14])
• orange.xsl – Styles table background as orange (‘master’: [15]; ‘table-map’: [16])

115

XSLT 3.0 Testbed

There’s also an Oxygen project file to make it easier to run the different-coloured
stylesheets.

The xsl:attribute-set approach uses an attribute set named after each table-
related element, and the different stylesheets add attribute instructions to the appro-
priate attribute set. ‘red-blue.xsl’ takes the convenient approach of just importing
‘red.xsl’ and ‘blue.xsl’ (and, coincidentally, manages to import the whole JATS
stylesheets twice, but that’s the price you pay for convenience) and the
xsl:attribute-set from the different stylesheets just combine (since at present
there’s no overlap/conflict to worry about) 1.

For the table that wants to be orange, ‘orange.xsl’ passes specific attributes in a
‘table-attributes’ parameter:

<xsl:template match="table[@style eq 'orange']">
<xsl:next-match>
<xsl:with-param

name="table-attributes"
as="attribute()*"
tunnel="yes">

<xsl:attribute name="background-color" select="'orange'" />
</xsl:with-param>

</xsl:next-match>
</xsl:template>

that override attributes defined in the ‘table’ attribute set:
<xsl:template match="table">
<xsl:param name="table-attributes"

as="attribute()*"
tunnel="yes" />

<fo:table xsl:use-attribute-sets="table fo:table">
<xsl:sequence select="$table-attributes" />
<xsl:apply-templates />

</fo:table>
</xsl:template>

For the ‘map of functions’ approach, the templates for the table-related elements
each have a ‘table-functions’ tunnel parameter that is a map of the functions to use
for the appropriate table-related element(s). These override the default functions,
which don’t do anything. Making a default map is analogous to needing to define
empty attribute sets since calling a non-existent attribute set is an error [17], but an
alternative would be to only call the function for the current element if it exists in
the current $table-functions map.

1There’s also attribute sets corresponding to the FOs that the table elements become, but they have no
effect at present.

116

XSLT 3.0 Testbed

‘red.xsl’ and ‘blue.xsl’ work by passing appropriate maps of functions. ‘red-
blue.xsl’ is the same as for the xsl:attribute-set approach, and it doesn’t produce
red table head text because, with the way that import precedence works, the template
for ‘thead’ in ‘red.xsl’ is never used.

The template for the table that wants to be orange uses the same mechanism as
the general table templates and passes a map containing a function to use for the
table element:

<xsl:function name="x3tb:orange-table" as="attribute()*">
<xsl:param name="context" as="element()" />

<xsl:attribute name="background-color" select="'orange'" />
</xsl:function>

<xsl:template match="table[@style eq 'orange']">
<xsl:next-match>
<xsl:with-param

name="table-functions"
as="map(xs:string, function(element()) as attribute()*)"
select="map {

'table' := x3tb:orange-table#1
}"

tunnel="yes" />
</xsl:next-match>

</xsl:template>

The absence of an XPath-level computed attribute constructor made making the
function verbose compared to how you’d make an attribute in XQuery and meant
that it could not be an anonymous function.

That function for ‘table’ overrode the default:
<xsl:template match="table">
<xsl:param

name="table-functions"
as="map(xs:string, function(*))?"
tunnel="yes" />

<xsl:variable
name="use-table-functions"
select="map:new(($default-table-functions, $table-functions))"
as="map(xs:string, function(*))" />

<fo:table>
<xsl:sequence select="$use-table-functions('table')(.)" />
<xsl:apply-templates />

</fo:table>
</xsl:template>

117

XSLT 3.0 Testbed

The alternative to making a XSLT-level function to use the xsl:attribute constructor,
as was pointed out to me, is to make a custom XSLT function for constructing an
attribute:

<xsl:function name="x3tb:attribute" as="attribute()*">
<xsl:param name="name" as="xs:string" />
<xsl:param name="value" as="xs:string" />

<xsl:attribute name="{$name}" select="$value" />
</xsl:function>

and use that in the anonymous function:
<xsl:template match="table[@style eq 'orange']">
<xsl:next-match>
<xsl:with-param

name="table-functions"
as="map(xs:string, function(element()) as attribute()*)"
select="map {

'table' := function($context as element()) as attribute()* {
x3tb:attribute('background-color', 'orange')

}
}"

tunnel="yes" />
</xsl:next-match>

</xsl:template>

6.1. Discussion
Using a function that takes the context node as a parameter to define attributes is
not dissimilar to using xsl:attribute-set, since both can evaluate expressions
based on the context node and global variables only.

The way that attribute instructions defined with xsl:attribute-set can combine
across modules can work to your advantage, but there’s no way to ‘undefine’ attrib-
ute instructions in attribute sets other than defining attributes with the same name
(and, presumably, a neutral value) in a situation that has higher precedence, so the
convenience is convenient only up to a point.

Combining the functions that define attributes or the maps of functions that
define attributes across modules in a way that ‘just works’ when you add a new
module or override an existing template still requires thought. Currently it can
provide more control but is more verbose and less convenient than using attribute
sets, and even in its current form may be hard for a novice user to understand
compared to using attribute sets.

The ‘map of functions’ approach could be extended to use functions that take
other, additional parameters to further control the processing and/or other maps

118

XSLT 3.0 Testbed

of other functions could be used in other places to generate elements. Indeed, the
entire table processing could be rewritten to use a map of functions that each ‘do’
the processing for the context element, but by then you’ll have just reimplemented
‘typeswitch’ [18] in XSLT.

7. Idioms
An idiom is a “manner of expression characteristic of or peculiar to a language”
[26]. XSLT 1.0 and XSLT 2.0 each produced their own idioms, and it can be expected
that XSLT 3.0 and XPath 3.0 will produce new idioms though we don’t yet know
what they all will be.

7.1. XSLT 1.0
Muenchian Grouping [27], invented because XSLT 1.0 didn’t provide good facilities
for grouping, is probably that version’s ultimate idiom since the technique became
obsolete after the addition of xsl:for-each-group in XSLT 2.0.

7.2. XSLT 2.0
Replacement of xsl:choosewith an XPath if expression and, ultimately, a sequence
constructor with a predicate are idioms that first became possible in XSLT 2.0. For
example, in XSLT 1.0, supplying a default value when an attribute is not present in
the source tree requires a xsl:choose:

<fo:table-cell>
<xsl:attribute name="text-align">
<xsl:choose>
<xsl:when test="@align">
<xsl:value-of select="@align"/>

</xsl:when>
<xsl:otherwise>from-table-column()</xsl:otherwise>

</xsl:choose>
</xsl:attribute>

</fo:table-cell>

With the addition of the conditional expression in XPath 2.0 [29], this reduces to:
<fo:table-cell

text-align="{if (exists(@align))
then @align

else 'from-table-column()'}">

Yet as people became familiar with using sequences, it has become common to see
this idiom:

<fo:table-cell text-align="{(@align, 'from-table-column()')[1]}">

119

XSLT 3.0 Testbed

where the result of “(@align, 'from-table-column()')[1]” is the @align, if it exists,
otherwise it is the string “from-table-column()” [30], which will be evaluated by
the XSL-FO formatter to return either the value from corresponding property on
the table cell’s column definition, if the property is specified there, or the property’s
initial value.

7.3. XSLT 3.0
I expect that people will develop idioms for the common cases of using streaming
XSLT, if only as a defense against having to think their way through the terminology
and its ramifications each time they want to write a streaming expression. There
will be a few tried-and-tested formulations that are all that the majority of people
will use with streaming XSLT, but that number can, of course, increase over time
as more people become more familiar with using streaming.

The other area ripe for new idioms is higher-order functions and named function
references added in XPath 3.0. For example, a recent post by Ihe Onwuka to the
‘xquery-talk’ mailing list [32] sought a more direct alternative expression for:

if (@firstpage eq 0)
then floor($totalPagesDecimal)

else ceiling($totalPagesDecimal)

The first proposed solution [33]:
(floor#1,ceiling#1)[@firstpage + 1]($totalPagesDecimal)

is elegant but really only workable with schema-aware processing, and at the time
of this writing, it’s unclear whether there is a general solution using named function
references that won’t end up longer and harder to understand than the orginal.

8. Stylesheet License
The stylesheets are in the public domain and may be reproduced, published or
otherwise used without the permission of Mentea or of the National Library of
Medicine (NLM), and neither the GitHub project nor Mentea has any affiliation
with NLM.

9. Conclusion
Activity on the XSLT 3.0 testbed to date has already produced worthwhile results.
Now is the right time to trial new techniques and new idioms using XSLT 3.0 and
XPath 3.0 since they will benefit all users and since any issues found in the specific-
ations are easier to fix now than they will be later when the specifications are W3C
Recommendations.

120

XSLT 3.0 Testbed

Bibliography
[1] XSL Transformations (XSLT) Version 3.0. http://www.w3.org/TR/xslt-30/
[2] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

table-test.xml
[3] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

table-test.xml#L30
[4] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

table-test.xml#L50
[5] http://jats.nlm.nih.gov/articleauthoring/tag-library/1.0/index.html?attr=style
[6] http://jats.nlm.nih.gov/index.html
[7] https://github.com/MenteaXML/xslt3testbed/blob/master/xsl/xhtml-tables-fo3.xsl
[8] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xsl/

xhtml-tables-fo3.xsl
[9] https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/red.xsl
[10] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

red.xsl
[11] https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/blue.xsl
[12] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

blue.xsl
[13] https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/

red-blue.xsl
[14] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

red-blue.xsl
[15] https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/

orange.xsl
[16] https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/

orange.xsl
[17] http://www.w3.org/TR/xslt-30/#err-XTSE0710
[18] http://www.w3.org/TR/xquery/#id-typeswitch
[19] https://github.com/MenteaXML/xslt3testbed/wiki
[20] https://inasmuch.as/
[21] https://github.com/wendellpiez/oXygenJATSframework
[22] https://github.com/NCBITools/JATSPreviewStylesheets

121

XSLT 3.0 Testbed

http://www.w3.org/TR/xslt-30/
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml#L30
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml#L30
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml#L50
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/table-test.xml#L50
http://jats.nlm.nih.gov/articleauthoring/tag-library/1.0/index.html?attr=style
http://jats.nlm.nih.gov/index.html
https://github.com/MenteaXML/xslt3testbed/blob/master/xsl/xhtml-tables-fo3.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xsl/xhtml-tables-fo3.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xsl/xhtml-tables-fo3.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/red.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/red.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/red.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/red-blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/red-blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/red-blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/red-blue.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/orange.xsl
https://github.com/MenteaXML/xslt3testbed/blob/master/xml/table-test/orange.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/orange.xsl
https://github.com/MenteaXML/xslt3testbed/blob/table-map/xml/table-test/orange.xsl
http://www.w3.org/TR/xslt-30/#err-XTSE0710
http://www.w3.org/TR/xquery/#id-typeswitch
https://github.com/MenteaXML/xslt3testbed/wiki
https://inasmuch.as/
https://github.com/wendellpiez/oXygenJATSframework
https://github.com/NCBITools/JATSPreviewStylesheets

[23] http://www.ncbi.nlm.nih.gov/
[24] http://www.nlm.nih.gov/
[25] https://inasmuch.as/2013/10/23/oxygen-add-on-hosted-on-github/
[26] http://www.thefreedictionary.com/idiom
[27] http://www.jenitennison.com/xslt/grouping/muenchian.html
[28] http://www.w3.org/TR/xslt#section-Result-Tree-Fragments
[29] http://www.w3.org/TR/xpath20/#id-conditionals
[30] http://www.w3.org/TR/xsl/#d0e5961
[31] http://www.w3.org/TR/xpath-30/#id-named-function-ref
[32] http://x-query.com/pipermail/talk/2014-January/004378.html
[33] http://x-query.com/pipermail/talk/2014-January/004379.html

122

XSLT 3.0 Testbed

http://www.ncbi.nlm.nih.gov/
http://www.nlm.nih.gov/
https://inasmuch.as/2013/10/23/oxygen-add-on-hosted-on-github/
http://www.thefreedictionary.com/idiom
http://www.jenitennison.com/xslt/grouping/muenchian.html
http://www.w3.org/TR/xslt#section-Result-Tree-Fragments
http://www.w3.org/TR/xpath20/#id-conditionals
http://www.w3.org/TR/xsl/#d0e5961
http://www.w3.org/TR/xpath-30/#id-named-function-ref
http://x-query.com/pipermail/talk/2014-January/004378.html
http://x-query.com/pipermail/talk/2014-January/004379.html

XML Schema Identity Constraints
Revisited

Anne Brüggemann-Klein
Technische Universität München

<brueggem@in.tum.de>

Mustapha Maalej
Technische Universität München

<maalej@in.tum.de>

Marouane Sayih
Technische Universität München

<sayih@in.tum.de>

Abstract

In this paper, we attempt to explain clearly our reading of XML Schema's
identity constraint concepts. We illustrate our reading extensively with ex-
amples, in the style of a tutorial. We also illustrate usage styles and limitations
of identity constraints in XML Schema. Finally, we demonstrate how the
limitations that we have identified can be by-passed with assertions as intro-
duced by XPath 2.0 and XML Schema 1.1.

1. Introduction
XML Schema transfers one of the fundamental database concepts into the realm of
XML documents, namely identity constraints. Using XML Schema's identity con-
straint mechanisms, schema developers may impose that specific elements in a
document are uniquely identified by some of the data they contain, so that these
data serve as key for the elements; they may also demand that other elements refer
to such keys, guaranteeing referential integrity.

The contributions of this paper are as follows: Primarily, we attempt to explain
clearly our reading of XML Schema's identity constraint concepts. We illustrate our
reading extensively with examples, in the style of a tutorial. All examples validate
as expected with Saxon. We also illustrate usage styles and limitations of identity
constraints in XML Schema. Finally, we demonstrate how the limitations that we
have identified can be by-passed with assertions as introduced by XPath 2.0 and
XML Schema 1.1.

123

This investigation was motivated by and is applicable to the second author's
PhD work that concerns XForms documents that are generated from an XML Schema
and serve as editors for instances of the schema. Since the XForms editors should
support identity constraints, it was necessary to understand the concepts and im-
plementation options with XPath.

There has been some critical discussion in the XML community on the wording
and semantics of the XML Schema section on identity constraints. In this paper, we
hope to clarify some issues and to illustrate benefits and limitations. The general
discussion is in terms of an abstract data model for identity constraint constructs;
syntax is used only in examples.

2. XML Schema's concepts for identity constraints: key
In XML Schema, an element declaration may contain a key constraint1 that determ-
ines which sub-parts of a conformant element information item should be uniquely
determined by which combination of values that each of the sub-parts contains.
Each key constraint has a name that is unique within the schema, a selector function
s and a fields function f that is made up of a sequence (f1,…,fn) of n field functions
f1,…,fn for some natural number n. An element information item E satisfies the key
constraint if and only if the following conditions hold:
• The expression E.s()2 evaluates to a sequence of element information items on

the descendent-or-self axis of E. The set of those element information items is
called the target set of E.

• For each element information item N in the target set of E, the expression N.fi()
evaluates to an element information item or an attribute information item of an
element information item on the descendant-or-self-axis of N; in the former case,
the element information item N.fi() must be declared to be of a simple type,
with no subelements allowed. We call the sequence of string3values of
N.f()=(N.f1(),…,N.fn()) the key sequence of N.

• The key sequences of the element information items in the target set of E are all
different sequences.4 This condition gives rise to an index table at element in-
formation item E for the key constraint that collects pairs of key sequences and

1Actually, XML Schema introduces two similar concepts called key and unique. For the sake of brevity,
we only discuss key in this article.
2We are using an object-oriented notational style, so E.s() stands for function s applied to argument E.
3XML Schema deals with typed values. We are simplifying to strings in this paper, without any relevant
loss of generality. XML Schema also has some condition on nillable elements that we are ignoring here,
blending out some subtle points of type definitions.
4This is the main uniqueness condition that makes a key a key. The notion of equality of sequences needs
to be adapted when items in the sequence are not just strings but typed values.

124

XML Schema Identity Constraints Revisited

corresponding element information items in the target set of element E. Such an
index table has no multiple entries for any one key sequence.

XML Schema's key concept is obviously transfered from relational databases, where
a schema may require of a table that each of its rows is uniquely determined by the
combination of values of a specific selection of table attributes. The main difference
is that elements in XML are more freely structured than tables. Hence, we need to
(or may) customize explicitly which sub-parts of the element should be uniquely
identified by the key: In databases, automatically all rows in a table must be uniquely
identified; in XML Schema, a general selector function defines the set of target ele-
ments. Also, in XML Schema we have more flexibility in selecting the fields that
make up a unique key sequence: They can be any textual values in (sub-)elements
or attributes of (sub-)elements of the "keyed" element, as defined by a general fields
function, not just attributes, as in relational databases.

The schema collections.xsd in the appendix illustrates key constraints with
progressing complexity. The scenario is a repository of collections of items. There
are a number of ways how collections are structured and how items are assigned
to collections, as illustrated in Figure 1.

Figure 1. Alternatives how to structure collections.

On the most elementary level, see Figure 2, we have a sequence of collection ele-
ments, each containing a sequence of item elements that are uniquely identified by
their attribute idItem within that collection container. This constraint is expressed
by the key collectionKey which is defined within the element declaration of
collection. Consequently, at the instance level, each element information item has
its own index table for the key constraint collectionKey, so that key sequences can
be re-used in different element scopes. This is illustrated in the XML document
sampleCollection.xml, see Figure 3.

125

XML Schema Identity Constraints Revisited

Figure 2. The collection structure.

Figure 3. The collection instance.

This example uses hierarchical structure that is typical for XML. A database-like
approach would use a flat repository of collections and another repository of items
that indicate to which collection they belong. The schema collections.xsd, see Figure 4
and Figure 5, illustrates that way of structuring the data with an element
collectionsDBStyle that may contain sequences of subelements collectionDBStyle
and itemInCollection. Elements itemInCollection express to which collection they
belong by their attribute idCollection, not by the hierarchy within a collection
container.

126

XML Schema Identity Constraints Revisited

Figure 4. The collectionsDBStyle outer structure.

Figure 5. The collectionsDBStyle inner structure.

The key constraint collectionDBStyleKey expresses that elements collecionDBStyle
must be uniquely indentified by their attributes idCollection. The key constraint
itemInCollection expresses that elements itemInCollection are uniquely identified
by the combination of their idCollection and idItem attributes.

In addition, the schema expresses referential integrity with the key reference
itemRefersToCollection, a feature we explain in the next section.

The XML document sampleCollectionDBStyle.xml, see Figure 6 illustrates the
database style of structuring the data on the instance level.

127

XML Schema Identity Constraints Revisited

Figure 6. The collectionsDBStyle instance.

Finally, with the element collectionXMLStyle, we further explore the use of key
constraints for hierarchical structures by adding collectionXMLStyle recursively,
see Figure 7.

Figure 7. The collectionXMLStyle structure.

Each element collectionXMLStyle establishes its own scope for key constraints on
unique collection and item IDs. The relationships between containing and contained
elements is expressed implicitly, through hierarchy, not through explicit references.

128

XML Schema Identity Constraints Revisited

Alternatively, we can demand globally unique IDs for collections and items in this
scenario by activating the keys globalCollectionXMLStyle and globalItemKey.

Instantiation of recursive structures is illustrated by sampleCollectionXML-
Style.xml, see Figure 8.

Figure 8. The collectionXMLStyle instance.

3. Propagating index tables upwards
Element information items that carry a key constraint make their index tables
available for referencing, just as keys in one table of a relational database can be
used as foreign keys in another table to refer to table rows.

How to design a reference concept that utilizes XML Schema key constraints?
The case is less clear-cut than the definition of the key-foreign key concept in rela-
tional databases, for reasons of hierarchy: In XML documents, element information
items that carry identity constraints may be buried in the document hierarchy and
they may be recursively nested.

So what does it mean that such an element information item makes it index table
available for referencing? The XML Schema concept is that index tables propagate
upwards in the element hierarchy and that each element that gets an index table
that way may use it for referencing, as explained in the next section. There is only
one problem with that approach: Entries in the index tables of two sibling element
informations might be in conflict, as might be entries in the index tables of a parent
and child element information item. in conflict. Two entries consisting of a key se-
quence and an element information item are in conflict if the two key sequences are

129

XML Schema Identity Constraints Revisited

equal but the two element information items are not. XML Schema defines two
conflict resolution rules for index table propagation:
• If two or more sibling element information items have conflicting entries for

some key sequence in their index table, none of the entries is included in the
parent element information item's index table: Competing children cancel each
other out.

• If a parent and a child element information item have conflicting entries for
some key sequence in their index table, the parent's index table keeps its entry
and the child's entry is discarded at the parent level: Parents dominate children.

There are a number of implications:
First, a key can only be used for referencing at an element information item at

which it is defined or above in the element information item hierarchy.
Second, entries in index tables that propagate upwards in the element information

item hierarchy may become unavailable for referencing, due to conflict resolution
rules.

Finally, at an element information item E, all entries that arise directly from a
key at E, are available for referencing. Since parents dominate children, they are
never removed from that element information item's index table for the key, although
they might be cancelled out further up in the hierarchy.

We illustrate these effects after discussing XML Schema's key reference constructs.

4. XMLSchema's concepts for identity constraints: Referencing keys
In XML Schema, an element declaration may also contain a key reference constraint.
Just like a key constraint, a key reference constraint has a name that is unique
within the schema, a selector function s and a field function f=(f1,…,fn) of width
n for some natural number n. In addition, it has the name of the key constraint that
it refers to. The fields functions of the key reference constraint and of the referenced
key constraint must have identical width. An element information item E satisfies
the key reference constraint if and only if there is an index table for the referenced
key constraint at E that has, for each element information item N in the target set
E.s(), an entry in the index table for the key sequence N.f(). The referenced index
table includes any entries that originate directly at E, plus any entries that propagate
upwards from below E and survive conflict resolution. The semantics of this condi-
tion is that the element information item N refers to the node that appears in the index
table for the key sequence N.f(). Hence, reference key constraints guarantee refer-
ential integrity.

Let us now look at examples that add owner information to our collections
scenario in a number of ways.

On the most elementary level, see Figure 9, generalizing the collection elements,
we have elements collectionWithLocalOwners that contain item elements and owner

130

XML Schema Identity Constraints Revisited

elements, the latter listing the item elements that this owner owns. As before, item
elements within the collection are uniquely identified by their attribute idItem, as
expressed by key constraint uniqueItems. In addition, each item element can be
owned by at most one owner, as expressed by key constraint uniqueOwnership. Fi-
nally, each item that has an owner must be listed within the collection, as expressed
by key reference constraint ownedItem2ItemInCollection. Conversely, we could
also postulate that each item in a collection must be owned by someone, via a second
key reference constraint. We position key and key reference constraints at the element
declaration for collectionWithLocalOwners. Hence, items listed in a collection and
ownership information for these items live completely within each collection, without
interfering with items and owner in parallel collections. We illustrate with the XML
instance sampleCollectionsWithLocalOwners.xml, see Figure 10.

Figure 9. The collectionWithLocalOwners structure.

131

XML Schema Identity Constraints Revisited

Figure 10. The collectionsWithLocalOwners instance.

Now we reorganize the data slightly, pulling ownership information from the col-
lection and moving it up one level, into a new container element
collectionsWithGlobalOwners, see Figure 11. In tandem, we also move the unique
ownership constraint and the key reference constraint that expresses integrity of
references from owned items to items in a collection up. The problem with this
structure is that item attributes idItem that are locally unique within collections are
not unique at the level of the container element collectionsWithGlobalOwners. The
conflict resolutions rules for the upwards propagation of index tables imply, that
on the instance level items with conflicting idItem attributes cannot be referenced
by non-local owners. This phenomenon is illustrated in the XML instance sample-
CollectionsWithGlobalOwners.xml see Figure 12.

132

XML Schema Identity Constraints Revisited

Figure 11. The collectionsWithGlobalOwners structure.

Figure 12. The collectionsWithGlobalOwners instance.

The previous example demonstrates that key reference constraints are not as fully
adapted to the hierarchical nature of XML documents as are key constraints. Before
delving further into causes and potential solutions, we show one straight-forward
use of key reference constraints in a database-like scenario with flat, non-hierarch-

133

XML Schema Identity Constraints Revisited

ical structures in XML instance sampleCollectionsWithOwnersDBStyle.xml, see
Figure 13 and Figure 14.

Figure 13. The collectionsWithOwnersDBStyle structure.

134

XML Schema Identity Constraints Revisited

Figure 14. The collectionsWithOwnersDBStyle instance.

Let us now explore how we can reconcile key reference constraints with true hier-
archies. How can we fix the container element collectionsWithGlobalOwners, ref-
erencing into locally defined keys? First of all, methodically, it is necessary to give
unique IDs to collections. Then we need a method to refer to an item within a spe-
cific collection. Theoretically, this could be achieved in to possible ways:
• First, by having a global key constraint that states that items are uniquely defined

by their own attribute idItem and by the attribute idCollection of the collection
to which the item belongs. Unfortunately, such a key constraint cannot be defined
in XML Schema, because field functions may only point to information within
the element that is to be "keyed".

• Second, by keeping the local key constraint that guarantees locally unique attrib-
utes idItem within each collection and combining it with a two-part, "chaining"
key reference constraint that references the collection with one component and
the item within that collection with the second component. Evidently, XML
Schema provides no such mechanism that locates a local index table with one
component and an entry in that local index table with another component. We
feel that such a chaining key reference mechanism would be the perfect comple-
ment to local key constraints, fully adapting not only key constraints but also
key reference constraints to the hierarchical nature of XML documents.

135

XML Schema Identity Constraints Revisited

We have seen that XML Schema's key reference mechanism, as it is currently defined,
is too weak to express referential integrity with locally defined key constraints. We
can solve this type of problems, however, with another mechanism that was intro-
duced in XML Schema 1.1, namely assertions. We illustrate this with element
collectionsWithOwnersSensible and the corresponding XML instance in sample-
CollectionsWithOwnersSensible.xml, see Figure 15 and Figure 16.

Figure 15. The collectionsWithOwnersSensible structure.

136

XML Schema Identity Constraints Revisited

Figure 16. The collectionsWithOwnersSensible instance.

The XML Schema recommendation provides a solution to our problem that works
but, unfortunately, introduces redundancy, namely to repeat the collection id on
each item within the collection. This is a cross between the database-style solution
and the hierarchical XML approach that accommodates the shortcomings of key
and key reference constraints with respect to hierarchical data. We demonstrate
this solution with the container element collectionsWithOwnersHybridStyle see
Figure 17. We use the assertion mechanism of XML Schema 1.1 to guarantee that
redundant information is consistent. An XML instance for the hybrid solution can
be found in sampleCollectionsWithOwnersHybridStyle.xml, see Figure 18.

137

XML Schema Identity Constraints Revisited

Figure 17. The collectionsWithOwnersHybridStyle structure.

138

XML Schema Identity Constraints Revisited

Figure 18. The collectionsWithOwnersHybridStyle instance.

Unfortunately, the hybrid solution works for one level of collections only. It breaks
down for recursive structures. We still have to verify that we can solve the problem
with assertions even for the recursive case.

5. Conclusions and further work
XML Schema transfers one of the fundamental database concepts into the realm of
XML documents, namely identity constraints, introducing the concepts of key con-
straint and key reference constraint. XML Schema allows index tables for key con-
straints that have local element scope, thus adapting the key-constraint concept
successfully to the hierarchical nature of XML documents. However, adaptation is
incomplete because locally defined key constraints are not fully available for refer-
encing. Some kind of key chaining is missing.

We have demonstrated how assertions, that have been introduced with XML
Schema 1.1, can be used as a substitute for key references in scenarios that involve
hierarchy. With assertions, the key reference constraints are essentially expressed
with XPath expressions.

Although XML Schema identity constraints are much more powerful than the
ID/IDREF concepts that orginate from XML DTD, they don't seem to be used much
in practice. We intend to present an overview regarding current practice at the 2014

139

XML Schema Identity Constraints Revisited

XML Prague conference. We also hope that we have clarified some issues in connec-
tion with XML Schema's identity constraints.

This investigation was motivated by the second author's PhD thesis that targets
XForms documents that are generated from an XML Schema and serve as fully
functional editors for instances of the schema. Naturally, these editors should support
identity constraints, guaranteeing uniqueness and referential integrity dynamically,
while the document is edited. This can be achieved within XForms, when identity
constraints are expressed as XPath expressions. We have demonstrated for the case
of key reference constraints, how this can be accomplished with XPath 2.0. A more
extensive discussion is included in Mustapha Maalej's PhD thesis.

6. Acknowledgement
Eric van der Vlist in personal communication pointed out to us that XML Schema's
concepts of identity constraints are better adapted to database-like flat structures
than to truely hierarchical structures, providing a valuable entry point into this in-
vestigation. Thank you!

Bibliography
[1] Mustapha Maalej:Generieren von XML-Editoren in XForms aus XML Schema. Ph.D.

Thesis, TU München, 2014. In preparation.
[2] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn:

XML Schema Part 1: Structures Second Edition. W3C Recommendation, W3C,
October 2004, http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[3] Eric van der Vlist: XML Schema. O'Reilly, Kindle Edition, 2011.
[4] Priscilla Walmsley: Definite XML Schema. Prentice Hall, 2nd edition, 2012.

A. Appendix: Listing
This paper comes with an XSD file, as listed below completely. Screenshots of the
schema and instances are embedded into the paper.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Items in a collection have unique IDs.
There are a number of ways how collections may be structured.
-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="collections">
<xs:complexType>

140

XML Schema Identity Constraints Revisited

<xs:choice>
<xs:element ref="collection" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="collectionsDBStyle"/>
<xs:element ref="collectionXMLStyle"/>
<xs:element ref="collectionsWithLocalOwners"/>
<xs:element ref="collectionsWithGlobalOwners"/>
<xs:element ref="collectionsWithOwnersDBStyle"/>
<xs:element ref="collectionsWithOwnersHybridStyle"/>
<xs:element ref="collectionsWithOwnersSensible"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="collection">
<xs:complexType>
<xs:sequence>
<xs:element ref="item" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="collectionKey">
<xs:selector xpath="item"/>
<xs:field xpath="@idItem"/>

</xs:key>
</xs:element>
<xs:element name="item" type="itemType"/>
<xs:complexType name="itemType">
<xs:attribute name="idItem" type="xs:string" use="required"/>

</xs:complexType>
<xs:element name="collectionsDBStyle">
<xs:complexType>
<xs:sequence>
<xs:element ref="collectionDBStyle" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="itemInCollection" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:key name="collectionDBStyleKey">
<xs:selector xpath="collectionDBStyle"/>
<xs:field xpath="@idCollection"/>

</xs:key>
<xs:key name="itemInCollectionKey">
<xs:selector xpath="itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:key>
<xs:keyref name="itemRefersToCollection" refer="collectionDBStyleKey">
<xs:selector xpath="itemInCollection"/>
<xs:field xpath="@idCollection"/>

141

XML Schema Identity Constraints Revisited

</xs:keyref>
</xs:element>
<xs:element name="itemInCollection">
<xs:complexType>
<xs:complexContent>
<xs:extension base="itemType">
<xs:attribute name="idCollection" type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:element name="collectionDBStyle">
<xs:complexType>
<xs:attribute name="idCollection" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="collectionXMLStyle">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="collectionXMLStyle"/>
<xs:element ref="item"/>

</xs:choice>
<xs:attribute name="idCollection" type="xs:string" use="required"/>

</xs:complexType>
<xs:key name="collectionXMLStyleKey">
<xs:selector xpath="collectionXMLStyle"/>
<xs:field xpath="@idCollection"/>

</xs:key>
</xs:element>
<xs:element name="collectionsWithLocalOwners">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="collectionWithLocalOwners"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="collectionWithLocalOwners">
<xs:complexType>
<xs:sequence>
<xs:element ref="item" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="owner" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="uniqueItems">
<xs:selector xpath="item"/>
<xs:field xpath="@idItem"/>

142

XML Schema Identity Constraints Revisited

</xs:key>
<xs:key name="uniqueOwnership">
<xs:selector xpath="owner/item"/>
<xs:field xpath="@idItem"/>

</xs:key>
<xs:keyref name="ownedItem2itemInCollection" refer="uniqueItems">
<xs:selector xpath="owner/item"/>
<xs:field xpath="@idItem"/>

</xs:keyref>
</xs:element>
<xs:element name="owner">
<xs:complexType>
<xs:sequence>
<xs:element ref="item" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="collectionsWithGlobalOwners">
<xs:complexType>
<xs:sequence>
<xs:element ref="collection" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="owner" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="uniqueGlobalOwnership">
<xs:selector xpath="owner/item"/>
<xs:field xpath="@idItem"/>

</xs:key>
<xs:keyref name="globalOwnedItem2itemInCollection" refer="collectionKey">
<xs:selector xpath="owner/item"/>
<xs:field xpath="@idItem"/>

</xs:keyref>
</xs:element>
<xs:element name="collectionsWithOwnersDBStyle">
<xs:complexType>
<xs:sequence>
<xs:element ref="collectionsDBStyle"/>
<xs:element ref="ownerDBStyle" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="uniqueOwnershipDBStyle">
<xs:selector xpath="ownerDBStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:key>
<xs:keyref name="ownedItem2ItemInCollectionDBStyle"

143

XML Schema Identity Constraints Revisited

refer="itemInCollectionKey">
<xs:selector xpath="ownerDBStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:keyref>
</xs:element>
<xs:element name="ownerDBStyle">
<xs:complexType>
<xs:sequence>
<xs:element ref="itemInCollection" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="collectionsWithOwnersHybridStyle">
<xs:complexType>
<xs:sequence>
<xs:element name="collectionHybridStyle"
minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="itemInCollection"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="idCollection" type="xs:string" use="required"/>
<xs:assert
test="every $id in itemInCollection/@idCollection satisfies
$id=@idCollection"

/>
</xs:complexType>

</xs:element>
<xs:element ref="ownerDBStyle" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="uniqueItemsHybridStyle">
<xs:selector xpath="collectionHybridStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:key>
<xs:key name="uniqueCollectionsHybridStyle">
<xs:selector xpath="collectionHybridStyle"/>
<xs:field xpath="@idCollection"/>

</xs:key>
<xs:key name="uniqueOwnershipHybridStyle">
<xs:selector xpath="ownerDBStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

144

XML Schema Identity Constraints Revisited

</xs:key>
<xs:keyref name="ownedItems2ItemsInCollectionHybridStyle"
refer="uniqueItemsHybridStyle">
<xs:selector xpath="ownerDBStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:keyref>
</xs:element>
<xs:element name="collectionsWithOwnersSensible">
<xs:complexType>
<xs:sequence>
<xs:element name="collectionWithID" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element ref="item" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="idCollection" type="xs:string" use="required"/>
</xs:complexType>
<xs:key name="uniqueItemsInCollection">
<xs:selector xpath="item"/>
<xs:field xpath="@idItem"/>

</xs:key>
</xs:element>
<xs:element ref="ownerDBStyle" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:assert
test="every $ownerItem in ownerDBStyle/itemInCollection satisfies
(some $collection in collectionWithID satisfies
($ownerItem/@idCollection=$collection/@idCollection and
(some $item in $collection/item satisfies $ownerItem/@idItem=$item/►

@idItem)))"
/>

</xs:complexType>
<xs:key name="uniqueCollections">
<xs:selector xpath="collectionWithID"/>
<xs:field xpath="@idCollection"/>

</xs:key>
<xs:key name="uniqueOwnershipSensible">
<xs:selector xpath="ownerDBStyle/itemInCollection"/>
<xs:field xpath="@idCollection"/>
<xs:field xpath="@idItem"/>

</xs:key>
</xs:element>

</xs:schema>

145

XML Schema Identity Constraints Revisited

146

Data and Documents, Together Again
RDF-in-XML for simple and flexible data management

Charles Greer
MarkLogic Corporation

<cgreer@marklogic.com>

Abstract

The practice of embedding RDF triples in XML documents proves a surpris-
ingly useful paradigm for data stores that combine structured and unstructured
data.

In this paper I consider well-known features of an XML document-oriented
database, and mix those with RDF data and SPARQL queries. On the one
hand, XML documents are well-suited for encoding human-readable text and
markup. On the other hand, RDF is an) emergent de facto standard for
structured, typed, and distributed data. These two worlds are conceptually
quite distinct; RDF data has no inherent interaction with the concept of the
document boundary. But it turns out that the document boundary can scope
RDF access; the interaction between RDF data and their enclosing documents
can help solve problems around structured and unstructured data together in
the same database management system.

In this paper I explore a few aspects in which RDF and documents are
complementary when used together. First, I will consider the hybridization of
query and mixed-content search. Since we can now mix data and text content
freely, the lines between search and query blur in favor of a kind of information
retrieval based on both relevance and exactitude. Second, I'll take a look differ-
ent kinds of RDF-in-XML documents. Some examples of document-based
RDF use cases include a simple (and naive) method for maintaining rule-based
inference state machines, and data binding objects to XML within a greater
RDF context.

Document databases are mature and provide many capabilities that are
missing from native RDF triple stores.We can help people leverage structured
data simply by overlaying that structured data on top of an XML document-
oriented substrate, and at the same time have providing continuity to legacy
applications already using documents. Storing RDF in XML document
databases opens them up to a wide new range of capabilities, as the global in-
dexing and querying of data in the XML database becomesmore interconnected
and randomly accessible when indexed as RDF.

Keywords: XML, RDF, Data Architecture

147

1. Introduction
I've come to believe (and it is a belief) that SPARQL will replace SQL as query lan-
guage of choice for the post-relational generation of databases. But saying that so
an XML conference begs further explanation. I'm telling this story at an XML con-
ference because XML documents happen to provide an easy-to-understand and
flexible transport mechanism and serialization container for managing RDF data.
Furthermore, XML databases can function as RDF triple stores, with wide-ranging
implications.

How is RDF-in-XML different from simply using XML to encode data directly?
Well, the main distinction in the context of this paper is that data in an RDF form,
although contained and managed in a document, is not bounded whatsoever by
that document with regard to other RDF data. The interface to RDF data remains
the same regardless of how documents are managed; the documents provide the
context and scope in which one accesses the structured data therein, without affecting
interfaces to those data.

This RDF-in-XML approach assumes that documents can contain arbitrary RDF
data, intermingled with, derived from, or invisible to the XML context. The docu-
ments in the database contain RDF triples as first-class citizens; they are incorporated
seamlessly into the graphs accessed by a SPARQL query processor. However, these
documents can also contain markup, text, and be managed as a single human-
readable atom in the corpus. A collection of such documents provides the data ar-
chitecture to bridge search and exact queries, including inferencing, in ways hitherto
either unknown or very awkward.

Even for large datasets, a document-oriented database provides a single simple
stratum of the data model at which to manage updates and dependencies among
sets of triples.

Note
This paper uses MarkLogic for its examples. Indeed, there's really no other
database that combines these features at this point, but my hope is that this
paradigm's usefulness transcends the particular implementation that supports
it now.

2. The document model, with triples as special guest.
Here is an XML document that is used in MarkLogic to contain RDF triples. I'll refer
to this structure throughout the paper, simply to bore you with these simple facts
about an accordion:

148

Data and Documents, Together Again

Figure 1. The Saltarelle

1. "Charles's Saltarelle is a Button Box (diatonic accordion)
2. It has 2.5 rows of buttons.
3. It is in the key of C
4. It is (also) in the key of G.
5. "Key of G" is is known as (labeled with) "Key of G"
Here is the XML:

<?xml version="1.0" encoding="UTF-8" ?>
<mydocument>
<sem:triples xmlns:sem="http://marklogic.com/semantics">
<sem:triple>
<sem:subject>http://example.org/charlesSaltarelle</sem:subject>
<sem:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</►

sem:predicate>
<sem:object>http://example.org/ButtonBox</sem:object>

</sem:triple>
<sem:triple>
<sem:subject>http://example.org/charlesSaltarelle</sem:subject>
<sem:predicate>http://example.org/numberOfRows</sem:predicate>
<sem:object

datatype="http://www.w3.org/2001/XMLSchema#float">2.5</sem:object>
</sem:triple>

149

Data and Documents, Together Again

<sem:triple>
<sem:subject>http://example.org/charlesSaltarelle</sem:subject>
<sem:predicate>http://example.org/key</sem:predicate>
<sem:object>http://example.org/keys/C</sem:object>

</sem:triple>
<sem:triple>
<sem:subject>http://example.org/charlesSaltarelle</sem:subject>
<sem:predicate>http://example.org/key</sem:predicate>
<sem:object>http://example.org/keys/G</sem:object>

</sem:triple>
<sem:triple>
<sem:subject>http://example.org/keys/G</sem:subject>
<sem:predicate>http://www.w3.org/2000/01/rdf-schema#label</sem:predicate>
<sem:object>Key of G</sem:object>

</sem:triple>
</sem:triples>

<para>This is arbitrary mixed content that perhaps, just <i>perhaps</i>,
has something to do with the data included. I could explain, for
example, that a cherry-wood finish is a veneer of cherry over a balsa
wood frame. I could say random and unpleasant things.</para>

</mydocument>

This particular use of XML for representing triples is not a standard, but that's not
relevant for the ideas in this paper. The important thing about how XML encodes
RDF is that (in MarkLogic) such XML elements are all indexed triples, accessible to
the SPARQL query engine immediately upon ingestion. I can manage such a docu-
ment like any other XML with XQuery:

xdmp:document-insert("/accordion-triples.xml", <mydocument>...</mydocument>)

You can query the triples via a SPARQL endpoint or as a string argument to the
XQuery sem:sparql($sparql) function:

select ?s ?o where { ?s <http://example.org/key> ?o }

?s ?o
<http://example.org/charlesSaltarelle> <http://example.org/keys/C>
<http://example.org/charlesSaltarelle> <http://example.org/keys/G>

MarkLogic provides low-level access to the values in the triple index as well. There
is a primitive function simply to extract matching patterns from the triple index.
The following will return triples from the index that have "http://example.org/
charlesSaltarelle" in subject position, and any data at all in predicate or object
position:

cts:triples(sem:iri("http://example.org/charlesSaltarelle"), (), ())

@prefix xs: <http://www.w3.org/2001/XMLSchema#> .

150

Data and Documents, Together Again

@prefix : <http://example.org/>
:charlesSaltarelle

a :ButtonBox ;
:key :keys/C , :keys/G ;
:numberOfRows "2.5"^^xs:float .

So that's how to access embedded RDF. But despite this document-agnostic access,
the backing XML is still a first-class citizen within the database, and you can use
the same document-oriented queries that have been supported with XQuery for
years. The point of the query that follows is not to return triples, but rather to find
documents which contain the triples specified by the query. This kind of query
bridges the worlds of RDF and XML by using the structured data embeded within
a document to qualify it for search filters:

cts:search(collection(),
cts:triple-range-query(sem:iri("http://example.org/charlesSaltarelle"),

(), ()))

(returns the entire document as quoted above)

This query returns all of the XML documents which contain embedded triples that
have the given subject.

3. Mixing triple queries and document searches
So you've now are the building blocks of a hybrid application. SPARQL and XQuery
access to the triple index complements how you can use documents to manage the
blocks of RDF that go together and should be accompanied by mixed text. Now I'll
enumerate some of the use cases that might use RDF-in-XML to mixed search and
SPARQL.

3.1. Document security to change access to structured data.
First, one might use implicit restrictions on document access to qualify the data re-
turned by a SPARQL query. Embedding RDF in documents allows a straightforward
and well-known security overlay across the entire triple store.

If I insert documents such as the one above with a certain set of permissions,
then SPARQL queries will respect that document's permissions. Thus queries
automatically respect access restrictions, orthogonally to the queries themselves.

It's hard to imagine data about my accordions being sensitive to security consid-
erations, so let's imagine we have instead a database that contains information about
diseases and also records for individual patients and their diagnoses. The metadata
about diseases can be embedded within documents with minimal security, since
they contain public information. Documents about individual patients, however,
would be restricted in order to protect their privacy.

151

Data and Documents, Together Again

Document 1 contains this triple:

@prefix : <http://example.org/health/> .
:familial_hypercholesterolemia a :HereditaryDisease .

Document 2 contains this triple, with restricted permissions

@prefix : <http://example.org/health/> .
:patientJohnDoe :diagnosedWith :familial_hypercholesterolemia .

The following query would reveal information about patients only to clients with
sufficient access privileges. Anonymous users could hit the same database but not
have access to individual cases.

prefix : <http://example.org/health/>
select ?patient ?disease
where
{ ?disease a :HereditaryDisease
OPTIONAL { ?patient :diagnosedWith ?disease }

}

public's result:

?disease ?patient
:familial_hypercholesterolemia [null]

doctor's result:
?disease ?patient
:familial_hypercholesterolemia :patientJohnDoe

3.2. Document search to constrain query to subset of corpus.
We can also select documents explicitly, using familiar search methods. One way
to do this might be to arrange documents within a directory structure in the database.
Each directory represents on way to partition the available data so as to

Documents are stored at a URI, and directories are implicit given the structure
of the document URI.

Say an accordion company has three product lines [8]. Maybe the data for each
accordion in the production line is stored at a URI that corresponds to the product
line:

/products/2014/centreville
/products/2014/sterling
/products/2014/parismelrose

152

Data and Documents, Together Again

We can use these directory structures to limit queries just to the documents contained
within each directory. So, to get prices and descriptions for all products in the
"Centre Ville" line, we use this combination of SPARQL and XQuery in MarkLogic:

sem:sparql('
select ?desc ?price
where
{?product a :Product ;

:hasPrice ?price ;
:hasDescription ?desc }

', (), cts:directory-query("/products/2014/centreville"))

Out of respect for RDF purists, I'm bound to mention that this kind of semantics
could of course be encoded directly within the RDF data model. Keeping the docu-
ment concerns separate from the structured data model however encourages query
reuse, by manipulating the context in which a single query operates.

From this cts:directory-query example, one can extrapolate. Word searches
can also be used as qualifying queries to determine the dataset upon which SPARQL
queries run. Next, we'll consider how documents provide not just a partitioning
strategy, but also a natural unit of data management, a way to keep updates limited
to a set of triples that naturally go together.

3.3. Document updates to maintain data state.
In the history of native RDF triple stores, users found that maintaining triples without
some external context for them is really impractical. N-Quads [5] were introduced
for just this reason; a fourth IRI (in addition to the three in the "triple") was added
to provide the grouping context for a set of triples. Documents that contain triples
provide this same kind of management layer to data encoded in RDF.

This idea doesn't take much to illustrate; it just means that I can model objects
as RDF, and package them as documents, and with that combination of model and
packaging, I get an alternate to named graphs as atomic unit of update. Document-
oriented databases already understand this approach to managing data.

One might wonder how to get standard RDF serializations in and out of a doc-
ument store. It's as simple as using an input and output transform on a REST end-
point. The following XQuery module provides a function to parse RDF in turtle
format and return MarkLogic's internal format for triples, as an XML document:

xquery version "1.0-ml";

module namespace ingest = "http://marklogic.com/rest-api/transform/ingest";

import module namespace sem = "http://marklogic.com/semantics"
at "/MarkLogic/semantics.xqy";

153

Data and Documents, Together Again

declare function ingest:transform(
$context as map:map,
$params as map:map,
$content as document-node())

as document-node() {
let $turtle := $content/node()
let $triples := sem:rdf-parse($turtle, "turtle")
return document {

element sem:triples {
$triples

}
}

};

MarkLogic's REST API can be used in combination with such transform modules
to enable RESTful CRUD for RDF documents. If you install the above transform:

curl -X PUT \\
-Hcontent-type:application/xquery \\
-d@'transform.xqy' \\
http://rest-host:port/v1/config/transform/rdfparse

Then you can use it on the document CRUD endpoint to transform turtle documents
into MarkLogic XML.

curl -X PUT \\
-Hcontent-type:text/turtle \\
-d@'turtle.ttl' \\
http://rest-host:port/v1/documents?uri=docuri.xml&ingest=rdfparse

Note
The only difference between using this method and the graph protocol end-
point included with MarkLogic REST API is that the triples ingested with
this method will be guaranteed to reside together within a single document,
while the graph protocol implementation chooses another method for man-
aging documents.

4. My content accompanies data I can query.
You've seen that it's possible to mix RDF and documents according to the document-
oriented functionality you want out of the database. This section considers the
varying relationship that this structured data has with the document envelope, and
the consequences for search and query that emerge from various embedding
strategies.

154

Data and Documents, Together Again

4.1. RDF Data Embedded in (or extracted from) Content
While MarkLogic currently supports triples only in the internal XML format, em-
bedded RDF already exists in a number of forms. The most well known method in
use today is RDFa [6]. Others include schema.org [9]markup, microformats [4], and
to some extent JSON-LD [3].

The idea behind each of these is that markup contains not just text for reading,
but also has implicit data in it. RDFa annotates these data in order to make it explicit.
An RDFa parser can traverse an HTML or XML document and recognize triples
within it.

As an example, a document that contains form data is very useful as a data entry
template or display for reading; annotations that are not of interest to a human
reader can tell the database how that data can be queried directly with SPARQL. A
form document, for example, might be marked up with not only values, but the
names and referents of individual form elements.

This kind of RDF is distinguishable from the ones in subsequent sections because
it actually interleaves the data elements within mixed content; the data is embedded
within a template for human consumption.

155

Data and Documents, Together Again

4.2. Content describes the data.
Let's flip the preceding scenario on its head. Sometimes a dataset is the primary
published artifact. Say, for example, I wanted to publish a database about all the
various kinds of accordions in use. This data would be all but useless without some
amount of accompanying documentation. I might wish to write the whole narrative
concerning my data, and also include that data within the same document such that
it's clear they are always to travel together. This is a perfect strategy for simplified
provenance of data, and also for circulation of published data with docs.

4.3. Document contains statistics about other data.
Often one processes RDF graphs, say, using CONSTRUCT transformations or
reasoners. The processing from such operations is often stored in a named graph
separate from the originals, so that it can be invalidated or reprocessed if depend-
encies upstream change. Rather than naming the results of such an operation and
managing them at the application tier, it's may be simpler to use existing document-
oriented facilities to manage the dependencies among datasets, rather than to
manage graph names in an application tier.

156

Data and Documents, Together Again

One useful application of this idea would be to store documents that contain
entity annotations. The original document and thesaurus are two documents, and
the annotation metadata could be a third, with a clear dependency graph in case
either the document or thesaurus change.

4.4. Commonalities
All of these cases have in common the ability to pool all structured data into one
query space, while maintaining dependencies and relationships among documents
and their associated data clear and easy-to-manage. The separation of document
boundaries from data boundaries makes essentially a kind of pluggable RDF data
store, and a wide variety of ways to leverage it.

5. An example – Rule-based inference
So how might we use RDF-in-XML? Here's a naive method for constructing and
managing rule-based inferences. I'm assuming the same kind of document-embedded
RDF as above in section 2. By using the XML document as an input to an inferencing
toolchain, we can easily manage the relationship between "given" triples, those

157

Data and Documents, Together Again

which as asserted by a data model, and "inferred" ones, which have been generated
from the given triples using generative rules.

Inference operations in RDF, devil-in-details complexity aside, can be thought
of as update triggers. The idea is to match existing RDF triples, and generate some
more triples from them. You implement these rules with SPARQL CONSTRUCT
queries. Combined with XQuery update support, we can manage inferences. Here's
a fragment of RDF that extends the accordion model further:

:charlesSaltarelle a :ButtonBox ;
:finish :cherryWoodFinish .

:ButtonBox a owl:Class ;
rdfs:label "Button Box"@en .

:Melodeon a owl:Class ;
rdfs:label "Melodeon"@en ;
rdfs:label "Melodeon"@cs .

A "button box" is a kind of accordion, which is known in many places as "Melodeon."
If for some reason I had included a :Melodeon class in my data, I could assert that
:Melodeon and :ButtonBox are identical by including the following statement in my
dataset:

:ButtonBox owl:equivalentClass :Melodeon .

You can implement owl:equivalentClass by asserting thatWhile a specially-made
OWL reasoner could take this assertion and generate the required inferences, you
can also do it "by hand" with a CONSTRUCT QUERY:

"For every class1 and class2 that are equivalent,
objects of type class1 are also of type class2,
and vice-versa"

CONSTRUCT {
?x a ?c2 .

}
WHERE {

?c1 owl:equivalentClass ?c2 .
?x a ?c1 .

}[7]

The output of this query is a single triple:
:charlesSaltarelle a :Melodeon

I can store the output of the CONSTRUCT query in a new document. Since I have
XQuery as a programming language, doing so is quite simple:

xdmp:document-insert("/charles-saltarelle-inferences.xml", ►
<sem:triples>{sem:sparql('THE QUERY ABOVE')}</sem:triples>)

158

Data and Documents, Together Again

Actually, there's one more step to making this a fully-functioning reasoning scenario.
Since I want this result to be tied directly to an input document, I'll filter the input
query as well, in order to tie a particular document to a single inferred one:

xdmp:document-insert("/charles-saltarelle-inferences.xml",
<sem:triples>{

sem:sparql('THE QUERY ABOVE',
(),
cts:document-query("/charles-saltarelle-asserted.xml"))}

</sem:triples>)

Imagine now that this XQuery is the code executed for an update trigger. A trigger
firing on update to the original document will regenerate inferences, and keep the
model up-to-date, within a transaction.

6. Another Example: Data pipelines
There are well-known methods to describe pipelines and state machines over doc-
uments. If your documents are RDF-in-XML, then such methods can be used to
manage structured data. The document boundary makes it simple(r) to maintain
the multitude of documents that appear in a processing pipeline.

Here's a common scenario that I've been considering, cribbed from the "Dynamic
Semantic Publishing" scenario popularized by Jon O'Donovan and Jem Rayfield
[1]. Let's say I have these triples in my database:

:ButtonBox a owl:Class ;
rdfs:subClassOf :Accordion ;
:tags ("Button Box", "Diatonic Accordion", "Melodeon") .

:CajunBox a owl:Class ;
rdfs:subClassOf :ButtonBox ;
rdfs:label "Cajun Box" ;
:tags ("Cajun Accordion" "Single Row") .

:ThreeRow rdfs:subClassOf :ButtonBox ;
:tags ("Tex Mex Accordion", "Three-row button box") .

I can use a classification scheme such as this one to provide entity tagging for textual
documents. First step is to have the input document available, say this one:

<text>
The Cajun Accordion is still played, manufactured and taught
throughout Louisiana.

</text>

I can use the tags from the RDF as search terms. I search for them in input documents
and store information about matches, along with ontology information, in a new
document. So searching for tags from the classification, I'll be able to tag this docu-

159

Data and Documents, Together Again

ment with :CajunBox. These triples, stored in a new document, can provide match
information to the SPARQL engine:

:match1 a :Match ;
:startToken 10;
:endToken 24 ;
:entity :CajunBox ;
:classes (:ButtonBox, :Accordion) .

Since I'm using a document-oriented database, it's simple to track the dependencies
between the original text and the tag document.

7. Databinding into Structured Context
A last example to conclude. We can mix RDF data and typical XML data binding
scenarios. Java Objects (POJOs) are often used for a domain model. An instance of
this Java class:

@OWLClass
public class ButtonBox {
long id;
String brand;
int numberOfButtons;

... getters and setters ...
}

Transforms trivially using JAXB [2] (or XStream [10]) into the following XML:
<ButtonBox>

<id>1</id>
<brand>Saltarelle</brand>
<numberOfButtons>26</numberOfButtons>

</ButtonBox>

While it would be possible to bind this Java object to RDF instead, XML data binding
is nearly ubiquitous, and perhaps less storage-intensive.

The intent of the OWLClass attribute on the class is to signal a data-access-layer
to insert a triple along with the XML, resulting in this document:

<ButtonBox>
<sem:triple>

<sem:subject>http://example/org/charlesSaltarelle</sem:subject>
<sem:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</►

sem:predicate>
<sem:object>http://example.org/ButtonBox</sem:object>

</sem:triple>
<id>1</id>
<brand>Saltarelle</brand>

160

Data and Documents, Together Again

<numberOfButtons>26</numberOfButtons>
</ButtonBox>

If I happen to have a database full of such documents, one can serialize them as
part of a SPARQL result set. Thus the Java objects can themselves be part of a larger
RDF ecosystem. Presuming that the URIs of such objects are available as triples,
this query:

select ?uri (fn:doc(?uri) as ?pojo)
where
{
?uri a :ButtonBox

}

would return all of the ButtonBox objects in the database in the following kind of
format, which could be marshalled back into Java Objects:

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="uri"/>
<variable name="doc"/>

</head>
<results>
<result>
<binding name="uri">
<uri>http://example/org/charlesSaltarelle</uri>

</binding>
<binding name="doc" type="XMLLiteral">
<ButtonBox xmlns="">
<sem:triple>
<sem:subject>http://example/org/charlesSaltarelle</sem:subject>
<sem:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</►

sem:predicate>
<sem:object>http://example.org/ButtonBox</sem:object>

</sem:triple>
<id>1</id>
<brand>Saltarelle</brand>
<numberOfButtons>26</numberOfButtons>

</ButtonBox>
</binding>

</result>
...

</results>
</sparql>

This method provides a way to construct scalable data-access layers in SPARQL,
while keeping marshalling and unmarshalling as expected from enterprise Java
applications.

161

Data and Documents, Together Again

8. Concluding
Documents in XML are among the more expressive data models. This expressiveness
allows documents to embed and/or encode simpler structures, such as JSON or
RDF. When a database knows what embedded RDF looks like in XML -- it can index,
query and retrieve it. This new access to RDF within documents combines two very
powerful modeling techniques, and when used together, they appear to tear down
data management boundaries.

Bibliography
[1] Jem Rayfield, "Sports Refresh: Dynamic Semantic Publishing", 2012

http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
[2] http://www.oracle.com/technetwork/articles/javase/index-140168.html
[3] http://json-ld.org/
[4] http://microformats.org/
[5] Richard Cyganiak, et al. "N-Quads: Extending N-Triples with Context".

http://sw.deri.org/2008/07/n-quads/
[6] Shane McCarron; et al. RDFa Core 1.1 Syntax and processing rules for embedding

RDF through attributes. 07 June 2012. W3C Recommendation. http://
www.w3.org/TR/2012/REC-rdfa-core-20120607/

[7] Holger Knublauch RDFS Plus as a subset of OWL RL in SPARQL Rules http://
composing-the-semantic-web.blogspot.com/2010/09/
rdfs-plus-as-subset-of-owl-rl-in-sparql.html

[8] Saltarelle Accordions, Company website. http://www.saltarelle.com
[9] http://schema.org
[10] XStream http://xstream.codehaus.org/

162

Data and Documents, Together Again

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://composing-the-semantic-web.blogspot.com/2010/09/rdfs-plus-as-subset-of-owl-rl-in-sparql.html
http://composing-the-semantic-web.blogspot.com/2010/09/rdfs-plus-as-subset-of-owl-rl-in-sparql.html
http://composing-the-semantic-web.blogspot.com/2010/09/rdfs-plus-as-subset-of-owl-rl-in-sparql.html

Scientific Computing
in the Open Web Platform

R. Alexander Milowski
ILCC, School of Informatics, University of Edinburgh

<alex@milowski.com>

Henry S. Thompson
ILCC, School of Informatics, University of Edinburgh

<ht@inf.ed.ac.uk>

Abstract

Publishing and using scientific data on the Web is difficult; size and data
formats thwarts its use within the browser. Yet, the Open Web Platform
provides a basis for many forms of computing and communication and so we
look to the principles of Web Architecture to help enable scientific data on the
Web. Through a combination of these principles and the use of RDFa annota-
tion technologies, we describe a methodology for publishing data and show
how it can be computed upon within the Web browser as a platform for sci-
entific computing.

1. Science and the Open Web Platform
Publishing, accessing, and processing scientific data on the Web is much harder
than publishing other content on the Web. In this paper we advance the claim that
this can and should be fixed, by a judicious combination of existing Web technologies
and some core principles of Web Architecture [1]. We'll examine the ability of the
existing Web to enable scientific data to become a first-class constituent.

The Open Web Platform (OWP) [2] is a “platform for innovation, consolidation
and cost efficiencies” focused on those things happen within or intersect the actions
of the Web browser. This platform is defined by both the shared behavior expected
by the publisher and users of content and services--a type of contract readable by
developer and authors alike. The collection of individual recommendations
(standards documents), technologies, practical algorithms, APIs, vocabularies, and
their interactions make this a cohesive and motivating platform for business and
consumers alike.

Consumers use this platform to access the Ordinary Web; the typical Web pages,
whether mapped from database content or hand-authored by individuals, organized
by content-management systems or on an ad hoc basis, hosted by Web servers, and

163

possibly discovered and/or disseminated by search engines or social networks. Time
has shown that operating on the Ordinary Web has become increasingly easy. Tools
and technologies have advanced to enable the ordinary person to publish information
on their blogs, as comments or reviews, or to build their own Web sites.

It is by using these relationships between the written word, their context in the
document's markup, and the linked structure of the Web, that search engines and
other systems derive knowledge from the Web. These systems are able to apply
pipelines of processing to extract meaning from the context of the markup and the
native language to build massive Deep Web databases [3] to use for applications of
search, relevance, or mapping. These Deep Web services, like mapping services that
expose mash-ups of the Web and GIS data, wouldn't be able to exist unless they
were embedded in and harvested from information from the Ordinary Web.

The result is that by participating in the Web in a seemingly minor way, the or-
dinary user is creating value for the Web as a whole. That is, there is a huge economy
of scale in allowing people to publish information on the Web in simple ways that
is then easily harvested by some set of criteria. The information published is informal,
often unreliable, possibly incorrect, but, taken as a whole, very valuable.

But for scientific endeavors, the story degrades: data is inaccessible due to
formats, size, resource constraints, and limited discovery. Deep Web services do
not really exist for scientific data as Web crawlers tend to ignore data they do not
understand. As a final insult, data that is accessible is usually in formats incompatible
with the Web browser as a platform.

2. Scientific Data Sets
A survey of the geospatial data contained in the US Government repository at
data.gov as shown in Figure 1 reveals that a majority, possibly more than two thirds,
of the data is or contains tabular data. Similar forays into other areas of scientific
data sets reveal a propensity for the use tabular data formats. While the complexity
of specific collections of data may go beyond simple tables of data, at a particular
level of granularity, data is often tables of measurements of observed phenomenon.

For example, the International Virtual Observatory Alliance (IVOA) [4] develops
standards to enable astronomers to exchange information directly across the Web
and, while their data sets contain “images” in various formats and different instru-
ment measurements, their basic method of data exchange is a XML vocabulary for
tabular data called VOTable [5]. The various services they provide are oriented
around the table as a unit of information and we've used their model as inspiration
for this generalized approach to scientific data.

164

Scientific Computing in the Open Web Platform

Figure 1. Geospatial Data by Type

3. Changing the Paradigm
We want to come back to the idea of the OWP as a mechanism for computing and
aggregation and enable real scientific computations to take place in real time. To
accomplish this, we need:
1. A methodology for publishing scientific data sets onto the Web so that they are

accessible.
2. A model for processing data within the browser.
3. The APIs necessary to support this within the OWP.
First we must address the problem of sharing potentially large data sets with precise
semantics in “small enough” portions that the Web browser can process the data.
Any reasonable sized scientific data set can potentially overload the browser--espe-
cially if it is time-series data. As such, data handling needs markup, annotations,
resource structures, and naming rules that all work together to allow the browser
platform to navigate the data set.

Within the browser, processing the data cannot happen all at once or otherwise
the efforts of (1) would be in vain. A processing model such as map/reduce needs
to be applied so that a computational process can be enacted without overloading
the browser or host.

Finally, accessing data cannot be ad hoc and so additional APIs within the browser
may be necessarily. Specifically, if RDFa annotations are used, then some kind of
RDFa API will be necessary. Which APIs are necessary is a direct consequence of
the choices made in (1).

165

Scientific Computing in the Open Web Platform

4. The PANMethodology
We start with three general problems of using the Web for scientific data:
1. Data sets are typically too large to be processed by the typical Open Web Platform

(OWP) implementation as one large Web resource.
2. HTML table markup lacks the constructs to convey all the information coded

within typical tabular data sets.
3. A naming strategy must be developed so that information is usable on the Web

such that it can be both identified and easily retrievable by a common mechanism
(e.g. over HTTP GET requests).

In solving these problems, it is essential that we return to the principles of the Web
where naming (URIs) is used to access the data set, common formats are used, and
the size of the representation returned when the URI is accessed work together to
meet the needs of a user on the Web. We want to avoid the pitfalls of other attempts
to disseminate scientific data where large packaged archives (e.g. compressed tar
files) of data files in a variety of formats are distributed and meant for offline pro-
cessing. Instead, we want to expose this data in "Web sized" portions that are usable
within the OWP via a new methodology.

The basic tenets of the PAN methodology are:
1. Partition the data set along properties inherent in the data (e.g. time, geospatial

coordinates, etc.) into reasonable sized subsets suitable to Web applications.
2. Annotate the data according to some ontology and encode in a common syntax

(HTML) using RDFa.
3. Name each data partition with a unique URI using a consistent naming scheme

that can be traced back to your partitioning scheme from (1).
In the ontology, shown in Figure 2, there are classes for the basic structures:
DataCollection, DataSet, Partition, and DataView. At the core of the ontology are
data sets that have partitions that contain items typed as some kind of DataView
instance. These are currently limited to tabular data (Table) or an labeled table
(LabeledTable) in the PAN ontology but other item types are possible and allowed
(e.g. non-tabular data representations). A Table instance is used to describe typical
tabular data and a LabeledTable is a matrix of a single kind of data with labeled
rows and columns.

The main complexity comes in navigating between the data set and its partitions.
While there is a property called partition on the DataSet class that contains the
subject URI of a partition, it is impractical to just enumerate all the partitions. In
fact, in certain cases, this may be nearly impossible due to very large or countably
infinite number of partitions.

Instead, partitions are discovered by following links within their Web represent-
ations as shown in Figure 3. A user can navigate from summaries to partitions and

166

Scientific Computing in the Open Web Platform

DataCollection

DataSet

Partition

PartitionSummary
Table IndexedTable

DataView

Entry IndexColumn

column [1..*] entry [1..1] index [1..*]

item [1..*]

summary [1..*]

partition [0..*]
dataset [1..*]

Figure 2. Pantabular Ontology Class Structure

then from partition to partition by links typed by relationship and other properties.
As links are traversed and resources are processed, new data set partitions are dis-
covered and expanding the knowledge the application has of the available data.

A typical discovery process starts by examining the summary property of a data
set to find the URI of the partition summary. The resource returned provides a
summary of available partitions (e.g. a LabeledTable data item) with links to each
of these partitions. For example, a partition summary of a set of weather reports
might contain a set of counts of weather reports within the last hour with links to
partitions defined by specific quadrangles.

next

previous

DataCollection

dataset

DataSet

"metadata"

PartitionSummary

dataset DataSet

nearby

summary

...

Partition

Figure 3. Pantabular Resource Structure

Once an application navigates from the summary to a particular partition, the par-
tition can contain certain properties such as nearby, next, or previous. These prop-
erties link to related partitions with some adjacent property range. For example,
"next" might be the following time period (future) while "nearby" might be an adja-
cent quadrangle in the same time period.

167

Scientific Computing in the Open Web Platform

By properly providing a starting summary and links within each partition, a
whole data set can be enumerated by just examining annotation graph and the links
contained within it. The property dimensions (e.g. time) along which the link extends
should be available within the current partition to allow applications to make de-
cisions about whether a new partition resource should be retrieved. By doing so,
an application can test whether the currently visited set of partitions satisfy a par-
ticular query by its inclusion in a particular property range and possibly avoid ad-
dition partition retrievals.

When a data set is multidimensional, it may be partitioned by multiple property
ranges at the same time as shown in Figure 4. Each partition is shown as blocks in
the diagram and can be addressed by a specific range for each of the partitioned
properties. For example, in the diagram the basic facets are latitude, longitude, and
observation time and each block has a specific range for each of them.

Facet A (lat)

Facet B (long)

Facet C (time)

U i,j,k

Data Set Partition with name

Annotated data
contained within the

partition and
accessible as a

resource.

Figure 4. PANMethodology Partitioning

While any data set is likely to contain a finite amount of data, it should be noted
that the set of partitions can be open-ended (infinite). That is, particular properties
(e.g. observation time) whose value space is infinite lend themselves to an possibly
infinite number of partitions. At any point in time, the actual set of partitions that
contain data is likely to be finite and the data accessible for that particular partition
is stable, but the addressable space of partitions is infinite.

168

Scientific Computing in the Open Web Platform

<table typeof="Table">
<thead>
<tr>
...
<th property="column" typeof="Column">

Temperature

(°C)

</th>

...
</tr>
</thead>
<tbody>

<tr>
...

<td>22.2</td>
...

</tr>

Figure 5. Data Partition Table Markup

The actual data of a data set is accessed by accessing partitions. Within each partition
(blocks in the diagram) is the subset of data (rows) from the data set that has prop-
erties values in the property ranges. A consuming application accesses that data by
a fixed URI assigned via some encoding rules for translating the property ranges
into a URI. Accessing that URI returns a representation that contains the data set
subset in a common syntax such as HTML with RDFa annotations.

Crucial to the exchange of data, each data partition of tabular data is encoded
as an HTML table with RDFa annotations for each column header. Each row of data
is just a sequence of table cells containing plain literals (see Figure 5). An application
can interpret the table cell by using the associated annotations from the column
header. This technique minimizes the markup and annotation necessary for tabular
data without loss of specificity but possibly increases the processing by applications
that expect everything as RDFa properties.

5. Mesonet.info Example
One such data set is weather observations from the Citizen Weather Observation
Program (CWOP) [6], which is a loosely associated network of automated weather
stations hosted by citizens, local governments, and businesses. These weather stations

169

Scientific Computing in the Open Web Platform

provide their data through a peer-to-peer network that communicates over the
APRS-IS protocol [7]. This line-oriented protocol can be received from servers that
aggregate the feeds of weather and position reports from all the various weather
stations and an example is shown in Figure 6.

The APRS feed contains coded weather reports accord to the US National
Weather Service NWS APRS standard [8] that also contain date/time and location
information. To make this format easier to handle, the feed is turned into XML and
stored into a MarkLogic database [9] via XProc [10]. The system receives more than
74,000 weather reports per hour from more than 10,000 weather stations unevenly
distributed throughout the world. On average, over 53.6 million weather reports
per month generates more than 12GB of XML data.

DW3904>APRS,TCPXX*,qAX,CWOP:@090158z5132.18N/00043.53W_061/►
000g001t030r000p000P000h87b10389L000.DsVP
CW1604>APRS,TCPXX*,qAX,CWOP:@090158z4444.70N/06531.17W_204/►
004g009t027r000p000P000h80b10204.DsVP
DW6741>APRS,TCPXX*,qAX,CWOP:@090158z3749.55N/08000.08W_296/►
005g...t036r...p...P008h74b10188.DsVP
DW6916>APRS,TCPXX*,qAX,CWOP:@090158z4310.23N/10818.40W_238/►
001g002t027r000p000P000h58b10189.DsVP
DW6011>APRS,TCPXX*,qAX,CWOP:@090158z4307.07N/08756.60W_261/►
002g006t028r000p000P000h55b10249.DsVP

Figure 6. Example APRS Feed

As a scientific data set, it has two distinct qualities: geospatial orientation and
measurement of observed phenomena. For the weather measurements, there are
number of different properties that are necessary to define detail the data so that,
for example, “temperature” means “air temperature, over land, measured at a par-
ticular elevation.” As such, the data set provides more than sufficient examples of
the complexity of exchanging data with precisely defined semantics.

Layered over MarkLogic is a multi-tiered system at mesonet.info whose archi-
tecture is shown in Figure 7 that both stores the data set and provides it via the PAN
Methodology. On the left side of the diagram the APRS feed is turned into XML
and stored into MarkLogic via an XProc pipeline. The data is then indexed in various
ways and made accessible via PAN-enabled Web resources at various URIs via
XProc again.

For example, the quadrangle summaries are available at the URI path template
/data/q/{size}/ where the size variable is the size of the quadrangle in degrees.
Each partition of data is available at the path template /data/q/{size}/n/{seq}
where the seq variable is the sequence number of the quadrangle. Both of these URI
paths allow at optional start time to be appended; if it is omitted, the agent is redir-
ected to the most current time period.

170

Scientific Computing in the Open Web Platform

120254120

0 11 153

/data/q/5/

lat.

long.

/data/q/5/n/767/

/data/q/5/n/768/

/data/q/5/n/769/

MarkLogic XML Database
+

Geospatial Index

CWOP
APRS

Feed Reader

Chunked XML
(5 minutes)

XProc

XProc

Figure 7. mesonet.info Architecture

A user can navigate from the summary pages, which show the weather report
counts for each quadrangle for a specific time period, to specific quadrangles for
that same time period. Each quadrangle is just a simple link to the quadrangle data
page. As the data partition page is also a regular Web page, it can include useful
visualization as shown in Figure 8 where the page demonstrates a dual purpose as
both data and a visualization of the weather.

These data access methods implement the PAN methodology and its encoding
of the weather in HTML with RDFa annotations. They provide the ability to navigate
the CWOP data set both in terms of quadrangles (geospatial) and by time period.
The summary provides a simple way to get a snapshot of how much data is available
for all the quadrangles for a given time period. Meanwhile, the specific quadrangle
data pages provide access to the weather reports.

6. Computing on the Open Web Platform

6.1. Data Access Methods
An application task that requires access to data for particular time periods and
geospatial regions must first:
1. Choose a reference quadrangle size.
2. Calculate the number of intersecting quadrangles needed for the task's geospatial

region.
3. Calculate the number of time period partitions needed for the task's total time

period.
While calculating the number of time period partitions necessary is a straight-forward
calculation, it might seem like computing the necessary quadrangles is complex.

171

Scientific Computing in the Open Web Platform

Figure 8. Quadrangle Data Partition Page

Fortunately, all that is required is to compute a bounding box and then compute
the sequence number for each corner of the box. The corners give the extreme values
for the sequence numbers. As sequence numbers simply enumerate quadrangles
over the whole reference ellipsoid (i.e. the earth's surface), the quadrangles that
cover the bounding box can just be listed by counting from a given reference
quadrangle in the upper right and the using the number of quadrangles that tile
the circumference (which is constant) to move to the next row. An example of this
process is shown in Figure 9.

Given the naming choices implemented for mesonet.info, requesting the data
for a polygon becomes a simple process of generating a sequence of URIs from the
sequence numbers found using the bounding box algorithm. Each URI can be directly
constructed from the set of sequence numbers allowing all the data can be retrieved
in serial or parallel in as much as the OWP platform implementation allows.

This gives us an efficient algorithm for retrieving data over both a geospatial
region and time period as shown in Figure 10. Rather than computing the exact
number of time partitions and quadrangles necessary as a complete cross product,
an application can backtrack from the end of the time period. Requests are made

172

Scientific Computing in the Open Web Platform

12 13 14 15 16

84 85 86 87 88

156 157 158 159 160

228 229 230 231 232

360° / 5°
=
+72

P

A

B

1 2 3 418171615

19 20 21

Sequence Numbers
enumerate quadrangles

Figure 9. Bounding Box Algorithm for Sequence Numbers

for just the quadrangle data partitions that contain the end of the time period for
each quadrangle identified by the Bounding Box Algorithm. From the annotation
graph for each retrieved quadrangle data partition, the previous link is selected and
if the time period for that newly discovered partition is within the desired range,
the link is queued for retrieval. This process continues until all the necessary parti-
tions are visited.

300

300

154

298 156

12:30

1:00

1:30

13

12

11

156

155

299

300
previous links

Fa
cet

Dim
ens

ion

Figure 10. Backtracking Algorithm

6.2. Data Navigation via APIs
There are number of APIs to help navigate both HTML and RDFa. First, the DOM
has long defined interfaces to HTML elements [11] and defines specific interfaces
to HTML tables. Every table row and cell can easily be enumerated via a script via
a matrix-like API (rows and cells properties). The advantage being that any row
or column spans, etc. are computed by the browser before the API is presented to
the consuming script.

173

Scientific Computing in the Open Web Platform

More importantly, there is a document-oriented API for RDFa [12] that is pub-
lished as a W3C Note and defined by the W3C Working Group that published
RDFa 1.1. This API provides the ability to access the RDFa annotations directly from
the document and to navigate back and forth between the document and specific
properties. The graph can be accessed and processed directly or in parts as constructs
are found within the document.

A conforming RDFa 1.1 processor and the RDFa API was implemented, along
with some extensions, in Green Turtle [13] as an RDFa processor for browsers. While
browsers may provide native RDFa implementations within the OWP in the future,
existing Websites can enable RDFa by simply including the Green Turtle script.
Other processing environments may have similar capabilities and also enable RDFa
via Green Turtle or other implementations.

A typical application interaction starts with accessing a data partition's data
using the API and is shown in Figure 11. While more complex partitions may contain
many items, mesonet.info only has one and so finding the table of data within the
Web page is simple. In the example, the script (1) finds the container element, (2) uses
the element returned to get a list of subject URIs, and (3) uses the subject URI to find
the table element. As such, the script navigates from the document into the annotation
graph and then back to the document.

// (1) Find the element that holds the partition
var datasets = document.getElementsByType("pan:Partition");

// (2) Use the subject to find the partition's item subjects
var items = document.data.getValues(datasets[0].data.id,"pan:item");

// (3) Access the first item (a table)
var table = document.getElementsBySubject(items[0])[0];

Figure 11. Accessing a Table via the API

Once the tabular data is located, an application has a direct reference to the table
element containing the data and can enumerate the table rows and cells. To under-
stand which columns contain the desired data, the script must first locate the columns
by their annotations. For example, locating the first air temperature column is shown
in Figure 12.

174

Scientific Computing in the Open Web Platform

var columns = document.data.getValues(table.data.id,"pan:column");
var column = null; // A variable to hold the subject URI.

for (var i=0; !column && i<columns.length; i++) {
// Find the column labeled with the air temperature property
if (document.data.getValues(columns[i],"pan:property")

.indexOf("http://mesonet.info/airTemperature")>=0) {
column = columns[i];

}
}

// Find the index by finding the column element by subject URI.
var index = document.getElementsBySubject(column)[0].cellIndex;

Figure 12. Finding Air Temperature

As the API currently lacks more complex query capabilities, finding joint values
such as “air temperature whose unit is Celsius” is more complicated. The PAN on-
tology attaches the unit to the valueSpace property's subject and so the iteration
must navigate an additional set of properties (e.g. unit or quantity) in the annotation
graph. The resulting script is only slightly more complicated.

In both examples, the table column can be located in each row by using the
cellIndex property. This property provides the array index of the table cell within
each rows property array value. An application can now simply enumerate the table
rows, skipping the column definitions, and pick out the specific column of data by
accessing the value via table.rows[...].cells[index].

The result is that an application has a wide range of abilities to consume data
within the table. From the column definition, the datatype and other properties of
the value space can be extracted and dynamic interpretation of the textual value
can be applied. On the other end, once a column is recognized by label, the cell
values can be used directly as textual content without conversion into a specific
datatype. This flexibility enables the ability to scale up or down in terms of its
complexity for using cell values.

6.3. Computing on the OWP
As data sets expressed via the PAN methodology can be accessed and traversed
within the OWP using a combination of RDFa and HTML APIs, the immediate
question that arises is what can be accomplished with that ability. The browser
within the OWP has become a surprisingly solid platform for deploying applications
with a myriad of advanced features and capabilities. The idea of directly using the
OWP and computing against data is captivating. The question remains as to how
far this platform can be practically pushed before other methods are more tractable.

175

Scientific Computing in the Open Web Platform

6.3.1. Map / Reduce

Given the structure that results in regularly partitioning data sets, it is straight for-
ward to define a map / reduce algorithm for use over data sets. For geospatial data,
computing over geospatial regions is also enhanced by the use of quadrangles and
sequence numbers within the PAN methodology. The process becomes a task of
mapping user functions over Web resources (data partitions) and then apply the
reduction.

We start with the input of a geospatial region G , a time period T(ts, te) and a set
of facet types F (i.e. the URIs of types of columns - temperature, etc.). The process
produces an output O is as follows:

1. Let R =∅ .
2. Calculate the quadrangle sequence numbers S from the region G .
3. For each sequence number in S , generate a URI for the latest partition which

contains te and add to the queue Q .
4. While Q is not empty:

a. Remove U from Q and request a representation W of U .

b. Locate and harvest the columns C(F) ∈ R from W via the RDFa annotations
and unmarshall as necessary into an array of data D.

c. Apply the user's map function: map (D) → MD and add the result to R

d. Locate a link to the previous partition. If te is after the time period start for
the partition, add the URI to Q .

5. Apply the user's reduce function: reduce (R) → O .
An example of a map / reduce process has been implemented in about 450 lines of
JavaScript [14] code (uncompressed) without including the RDFa implementation
that may not be provided directly by the browser. The implementation has been
limited to rectangular regions to simplify generation of the starting quadrangle se-
quence numbers and testing of membership of returned data locations. The user
only needs to provide the region, time period, columns they are interested in pro-
cessing, and their map / reduce functions. A simple use of this is shown in Fig-
ure 13for calculating average temperature.

176

Scientific Computing in the Open Web Platform

// Calculate Average Temperature

var mr = new MapReduce();

// The date/time as of now.
var endDateTime = new Date();
// The date/time as of one hour ago.
var startDateTime = new Date(endDateTime.getTime()-60*60*1000);

mr.init("http://www.mesonet.info/");
mr.columns.push({ uri: "http://mesonet.info/airTemperature",

unit: "http://qudt.org/vocab/unit#DegreeFahrenheit" });

// Calculates the average per quadrangle data partition
mr.mapper = function(data) {

var total = 0;
var count = 0;
for (var i=0; i<data.length; i++) {

total += data[i][0];
count++;

}
return total / count;

}

// Calculates the average over all quadrangles
mr.reducer = function(data) {
var total = 0;
for (var i=0; i<data.length; i++) {

total += data[i];
}
return total / data.length;

}
mr.apply(

[38,-123,37,-122], // geospatial region
startDateTime,endDateTime, // time period
2.5 // quadrangle size

);

Figure 13. Using Map / Reduce to Calculate Average Temperature

6.3.2. Barnes Interpolation

Barnes Interpolation [15] is the interpolation of data points from a set of measure-
ments across a two-dimensional surface that was originally developed specifically
for weather forecasting. It produces the renderings of temperature, wind, pressure,
etc. that are commonly expected (e.g. a colored gradient) from discrete measurements

177

Scientific Computing in the Open Web Platform

such as those from weather stations. As the interpolation is typically for a geospatial
region over time, this process is a perfect further application the Map / Reduce im-
plementation from the previous section.

The interpolation process starts with a weighted average and then calculates a
refinement using all the grid points:

(1)
gk
0(x, y) =

∑i
nwioi

∑i
nwi

, gk
1(x, y) = gk

0(x, y) +
∑i

n
wi(oi − gi0(x, y))
∑i
nwi

, ... ,

gk
n+1(x, y) = gk

n(x, y) +
∑i

nwi(oi − gin(x, y))
∑i
nwi

where:

• weight for each observed value is wi = exp (−di2L2C) ,

• oi is the observed value,

• di is the distance from the grid point to observation point (e.g. in kilometers),
• L is the length scale relative to the observed phenomena (e.g. 111.3km) and C is

a convergence factor (e.g 1 for the initial pass and 0.3 afterward) [16].
The OWP provides all the basics elements for computing and visualizing an inter-
polation surface for weather data. As an experiment, an implementation of Barnes
Interpolation was developed as a script that takes as input a rectangular geospatial
region, a time period, and a quadrangle size. The Map / Reduce process described
previously first calculates averages over the necessary quadrangle data partitions
to produce the interpolation surface after first calculating an average temperature
for each station within the geospatial region.

An example visualization of the output of the process is shown in Figure 14 for
the region defined by the two locations (40°,-125°) and (35°,-120°) for an half hour
of data where on the left is the raw colored grid and on the right is an overlay of a
map. To access the necessary data with 2.5° quadrangles and 30 minute durations,
9 quadrangles (2975, 2976, 2977, 3119, 3120, 3121, 3263, 3264, 3265) are used where
9 to 18 partitions are retrieved over the Web depending on the time period chosen.
The example took 2.5 seconds to render of which 1.7 seconds was the map / reduce
process over the data and 870 milliseconds was the interpolation and rendering.
Accessing the data over the Web required 66% of the processing time where for
each request that time was spent on receiving the response (query, formulation,
and transport). These transport times may vary and the example was computed
over a network with relatively high latency which can add several seconds to the
measured time (total times vary from 2.5 seconds to over 4 seconds).

178

Scientific Computing in the Open Web Platform

A warm winter morning (2014-01-17 8:00:00 PST) in the San Francisco Bay Area.

Figure 14. Example Barnes Interpolation for the San Francisco Bay Area

7. Conclusion
One cannot underestimate the value of “view source” in the development of the
Web. The ability to extend this to both scientific data and its use within computations
allows enables the “copy and modify” model that has allow good constructs to go
viral on the Web. This only works if the OWP platform can become a direct parti-
cipant in scientific endeavors.

The PAN Methodology was born from a desire to address this for both the pro-
fessional and citizen scientist while providing access to any interested party. The
use of the OWP as a basis allows the methodology to scale down to very small data
sets and this enables both medium and small scale science to operate on the Web
at a lower cost with increased network effects. At the same time, compatibility is
maintained by allowing applications to crawl and harvest data via the annotations.

Current “open data” trends advocates exposing data on the “Semantic Web”
and for providing a complex stack of semantic-enabled (triple aware) technologies.
These trends ignore the need to enable data usage for simple consumers and the
PAN methodology provides a useful middle ground between complex data repres-
entations or services and simple expressions of partitioned tabular data. By doing
so, PAN enables the OWP platform as an active participant; all that is required is a
Web browser for real work to be accomplished.

179

Scientific Computing in the Open Web Platform

Bibliography
[1] Architecture of the World Wide Web, Volume One, 2004-12, W3C Ian Jacobs and

Norman Walsh http://www.w3.org/TR/webarch/
[2] The future of applications: W3C TAG perspectives, Henry S. Thompson, School of

Informatics,University of Edinburgh, 2011-03-28, W3C Technical Architecture
Group http://www.w3.org/2001/tag/doc/IAB_Prague_2011_slides.html

[3] Deep Web, 2012-05, Wikipedia http://en.wikipedia.org/wiki/Deep_web
[4] International Virtual Observatory Alliance http://www.ivoa.net/
[5] VOTable Format Description, Version 1.2, 2009-11-30, IVOA, Francois Ochsenbein,

Roy Williams http://www.ivoa.net/documents/VOTable/20091130/
[6] Citizen Weather Observation Program http://www.wxqa.com/
[7] Automatic Packet Reporting System-Internet Service, Bob Bruninga http://

www.aprs-is.net/
[8] Automatic Position Reporting System; APRS Protocol Reference, Protocol Version 1.0,

Ian Wade, 2000-08-29 http://www.aprs.org/doc/APRS101.PDF
[9] MarkLogic http://developer.marklogic.com/inside-marklogic
[10] XProc: An XML Pipeline Language, Norman Walsh, Alex Milowski, and Henry

S. Thompson, W3C, 2010-05-11 http://www.w3.org/TR/xproc/
[11] Document Object Model (DOM) Level 2 HTML Specification; version 1.0, Johnny

Stenback, Philippe Le Hégaret, and Arnaud Le Hors, W3C, 2003-01-09 http://
www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/

[12] RDFa API, Nathan Rixham, Mark Birbeck, and Ivan Herman, W3C, 2012-07-5
http://www.w3.org/TR/rdfa-api/

[13] Green Turtle, R. Alexander Milowski https://code.google.com/p/green-turtle/
[14] ECMAScript Language Specification, 5th Edition, ECMA International, 2011-06

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
[15] A Technique for Maximizing Details in Numerical Weather Map Analysis Stanley L.

Barnes Journal of Applied Meteorology, American Meteorological Society, vol 3,
issue 4, pp. 396-409, 1964-08-01 http://dx.doi.org/10.1175/
1520-0450(1964)003<0396:ATFMDI>2.0.CO;2

[16] Barnes Analysis for Surface Interpolation, Martin Davis http://
lin-ear-th-inking.blogspot.com/2012/02/barnes-analysis-for-surface.html

180

Scientific Computing in the Open Web Platform

http://www.w3.org/TR/webarch/
http://www.w3.org/2001/tag/doc/IAB_Prague_2011_slides.html
http://en.wikipedia.org/wiki/Deep_web
http://www.ivoa.net/
http://www.ivoa.net/documents/VOTable/20091130/
http://www.wxqa.com/
http://www.aprs-is.net/
http://www.aprs-is.net/
http://www.aprs.org/doc/APRS101.PDF
http://developer.marklogic.com/inside-marklogic
http://www.w3.org/TR/xproc/
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/
http://www.w3.org/TR/rdfa-api/
https://code.google.com/p/green-turtle/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://dx.doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
http://lin-ear-th-inking.blogspot.com/2012/02/barnes-analysis-for-surface.html
http://lin-ear-th-inking.blogspot.com/2012/02/barnes-analysis-for-surface.html

RESTful API Description Language
(RADL)

Hypermedia-driven API design
Jonathan Robie

<jonathan.robie@emc.com>

Rémon Sinnema
<remon.sinnema@emc.com>

Erik Wilde
<erik.wilde@emc.com>

Abstract

In a REST API, the server provides options to a client in the form of hyperme-
dia links in documents, and the main thing a client needs to know is how to
locate and use these links in order to use the API. The main job of a REST
API description is to provide this information to the client in the context of
media type descriptions. Unfortunately, most REST service description lan-
guages and design methodologies focus on other concerns instead.

RESTful API Description Language (RADL) is an XML vocabulary for
describing Hypermedia-driven RESTful APIs. The APIs it describes may use
any media type, in XML, JSON, HTML, or any other format. The structure
of a RADL description is based on media types, including the documents as-
sociated with a media type, links found in these documents, and the interfaces
associated with these links.

RADL can be used as a specification language or as run-time metadata to
describe a service.

This is an article that will be presented at XML Prague 2014, based on a
pre-release version of RADL. Themost recent version of the RADL specification
is always available at http://github.com/restful-api-description-language1.

Keywords: REST, XML, authoring, metadata

1. Introduction
Web APIs are critical to the business strategy of many companies, and vital to the
way users use information on the Web. Companies like eBay, Amazon, Salesforce,

1 https://github.com/restful-api-description-language

181

https://github.com/restful-api-description-language
https://github.com/restful-api-description-language

and Google provide valuable services via Web APIs, and developers are using these
APIs together with other data sources to create new kinds of applications that run
on a variety of devices and environments. Some analysts are now writing about the
API Economy, and even people who have never programmed may know why Web
APIs are important.

Web service providers may have little knowledge of the clients that use them,
but they need to ensure that these clients can continue to run as they evolve their
services. Web services may need to support large numbers of users, so they must
be scalable. This means that Web API providers must design their APIs to support
evolution and scalability in distributed systems. This is not easy.

Fortunately, this is precisely the problem that REST (Representational State
Transfer) was designed to solve. Unfortunately, designing and documenting
RESTful APIs is still too much of a black art, causing many difficulties for the average
developer. An XML vocabulary that supports the design process is extremely
helpful for designing a RESTful API and for teaching RESTful API design, and is
well suited to writing documentation.

In a REST API, the server provides options to a client in the form of hypermedia
links in documents, and the main thing a client needs to know is how to locate and
use these links in order to use the API. The main job of a REST API description is
to provide this information to the client in the context of media type descriptions.
This is the main focus of RADL. Unfortunately, most REST service description lan-
guages and design methodologies focus on other concerns instead, and most APIs
that claim to be REST APIs ignore the principle that REST APIs must be hypertext-
driven, publishing lists of URIs and conventions for using those URIs instead. Roy
Fielding, the inventor of REST, has frequently pointed out that systems like these
are not RESTful, and lead to tightly coupled systems.

RESTful API Description Language (RADL) is an XML vocabulary created to
support RESTful Web API design. RADL is hypertext-driven, designed to support
tooling and design methdologies for purist REST, and to make it easier to teach
REST design. RADL can be used to create both documentation and runtime metadata,
transforming to formats like HTML and JSON to suit various environments. The
design of RADL is focused on the media type, in keeping with this famous quote
by Roy Fielding REST APIs must be hypertext-driven:

Any effort spent describing what methods to use on what URIs of interest should be
entirely defined within the scope of the processing rules for a media type.

Unlike most other description languages for REST APIs, RADL is hypertext-driven.
The structure of RADL is driven by media types. To support implementation, RADL
also provides resources, which associate interfaces with URI patterns. Resource
descriptions are for implementation only, and are not generally provided to clients.
RADL also provides support for authentication, which is orthogonal to the REST
service per se.

182

RESTful API Description Language (RADL)

2. The REST Architectural Style
REST Is an Architectural Style that is formally defined by the following constraints:
1. Client/Server
2. Stateless
3. Cache
4. Uniform interface
5. Layered system
6. Code-on-demand (optional)
The client/server constraint demands that we divide our system in multiple com-
ponents, since monolithic applications cannot be made to scale. Each component
can be further divided as needed. For instance, the client can be a browser and the
server a web application. We can then further divide the web application into a web
server for the CPU-intensive processing and a database server for I/O-intensive
processing. Distributing capabilities over multiple components gives us the oppor-
tunity to give each the resources it needs.

The layered system constraint additionally requires that the client cannot see
beyond its immediate server. This allows us to change our server landscape without
breaking the client. We could, for example, insert proxy servers to aid with scaling.

We can further improve scalability by moving some of the processing from the
server to the client. The stateless constraint makes us move data to the client so that
the server need not maintain application state. Here, we must distinguish two dif-
ferent kinds of state: the server will maintain resource state, so that interesting data
is available from multiple clients, but the client is responsible for application state.
The client knows what goal it wants to achieve and can easily remember where
along the path to that goal it is.

The code-on-demand constraint additionally pushes processing to the client.
We see this when web servers send JavaScript to the browser, which then executes
it. This optional constraint is very common on the Web, but less common in RESTful
APIs.

The cache constraint also helps with scalability. The server indicates how long
data that it sends is valid, so that the client does not have to keep asking for it. If
clients do so anyway, we can insert caching proxy servers to keep our servers
available for useful work.

The uniform interface constraint is the one that really distinguishes REST from
other approaches. Anybody who has played with Legos knows the power of a
universal interface. In REST over HTTP, we capture all actions with the standard
HTTP methods.

183

RESTful API Description Language (RADL)

3. REST APIs must be hypertext-driven
The previous section describes the REST architectural style, this section describes
REST APIs. A REST client uses a service much as a human user uses a set of web
pages. The client starts out by retrieving an initial document from a known URI.
Each document represents a client application state, and the links in the document
represent the choices available to the client in that state. The server provides options
to a REST client in the form of hypermedia links that it places in these documents,
just as it provides options to a human user using links. The client can use these links
to proceed to another state, just as a human user might click on a link.

But a REST client can only do this if it knows how to interpret the documents it
receives, and how to locate and use the links that it encounters. The main job of a
REST API description is to provide this information to the client.

Roy Fielding described this in REST APIs must be hypertext-driven, where he
says that REST APIs must be hypertext-driven and describes how a client uses this
kind of API:

A REST API should be entered with no prior knowledge beyond the initial URI
(bookmark) and set of standardized media types that are appropriate for the intended
audience (i.e., expected to be understood by any client that might use the API). From
that point on, all application state transitions must be driven by client selection of
server-provided choices that are present in the received representations or implied
by the user’s manipulation of those representations. The transitions may be determ-
ined (or limited by) the client’s knowledge of media types and resource communication
mechanisms, both of which may be improved on-the-fly (e.g., code-on-demand).
[Failure here implies that out-of-band information is driving interaction instead of
hypertext.]

In the same post, Fielding says that a REST API description must explain these
things in the context of the media type for the document.

Any effort spent describing what methods to use on what URIs of interest should be
entirely defined within the scope of the processing rules for a media type.

Internet media types are used in many different ways on the Web. Email clients use
media types to identify the format of attached files, web browsers use them to de-
termine how to display or process HTML, images, video, audio, scripts, and other
types of data appropriately. Search engines and feed readers use media types to
correctly index or distribute information. Most Web programmers are familiar with
media types like HTML (text/html), JPEG (image/jpeg), Atom (application/
atom+xml, JavaScript (application/javascript), JSON (application/json), XML
(application/xml), MP4 (audio/mp4), etc. Each of these media types is associated
with a specification that describes the media type's format and the semantics asso-

184

RESTful API Description Language (RADL)

ciated with the format. The specification for a media type is called a media type
description.

For services that use structured information, the media type is generally described
in terms of structured formats like XML or JSON. They can be generic, like XML,
or tailored to a specific use, like XACML (application/xacml+xml) for access control.
They can even be specific to a single service, such as Documentum (application/
vnd.emc.documentum+xml). However, media types can also be unstructured, like
JPEG (image/jpeg). A media type may define a single kind of document or more
than one kind of document. The Atom Syndication Format defines feed and entry
documents, for example. A media type used in a complex custom RESTful service
might define many more kinds of documents.

In a REST API, the media type description identifies the documents associated
with a media type, links found in these documents, and the interfaces associated
with these links. The interface for a link includes the HTTP methods that can be
applied to that link, together with any URI parameters, headers, and request bodies
used when making these requests. These are the things that a REST client must
understand in order to use a REST API, and their interpretation depends on the
documents in which they are found, so most of the documentation for a REST API
belongs in these media type descriptions.

Unfortunately, most APIs that claim to be RESTful completely ignore this
paradigm, as Cory House points out in How RESTful is Your API?.

Here’s the unicorn. Virtually none of today’s APIs honor this. To prevent tight
coupling between the client and the service, truly RESTful APIs provide a discovery
based API. Each call provides a reference to related calls. This allows the API to be
highly evolvable because it avoids creating a coupling between the client and the
server. This aspect is nearly universally ignored by today’s popular APIs, as made
evident by the common pattern of publishing a list of URIs.

Most tools that claim to support REST actually use a tightly-coupled approach that
documents a static list of URIs and the interface associated with each URI. The in-
formation provided at runtime rarely includes descriptions of the links available in
the documents that a server provides to a client, so clients do not have the informa-
tion they need to discover and use these links. As a result, most Web APIs borrow
bits and pieces from Roy Fielding's REST vision, but violate key aspects such as
HTTP verb semantics, correct use of HTTP status codes, use of media types that
identify the semantics of documents that are served, discovery of links in hyperme-
dia, and loose coupling. Some have started to use the term "Pragmatic REST" to
describe these non-REST APIs, implying that REST is not practical.

We believe that REST is both practical and simple, and the benefits of loose
coupling are important for scalability and for supporting clients as servers evolve.
However, we also believe that the REST community has not done well at teaching
REST design and providing the tooling and run-time metadata that developers

185

RESTful API Description Language (RADL)

need. RADL provides a model of a REST API that is useful for teaching purposes
and an XML format that is useful for generating client documentation, server spe-
cifications, and run-time metadata. We hope that RADL will be used for tools and
frameworks that offer the same level of functionality currently available for "prag-
matic REST", making it easier for developers to create services that are truly RESTful.

4. RADL - a hypertext-driven REST API description
RADL is a description for hypertext-driven REST APIs, as described in the previous
section. Most of the information in a RADL description tells a client how to interpret
the documents it receives, and how to locate and use the links that it encounters.
This information is provided in media type descriptions. To support well-known
media types that are described by specifications, RADL also allows a reference to
human-readable documentation instead2. A media type can be defined as an exten-
sion to an existing media type.

In addition to media types, RADL describes resources, which are needed for
implementation but are not part of the client API. Once complete media type de-
scriptions have been done, the resource description for a service is simple and small,
associating URI formats with interfaces that are defined in the media type descrip-
tions.

RADL also supports authentication, which is needed by both the client and the
server implementation, but is orthogonal to the API per se.

RADL allows the entire service description to be specified in one description
The information needed for client documentation, server stub generation, runtime
metadata, and testing can then be extracted from the complete description as needed.

The following template illustrates the overall structure of RADL (a RELAX-NG
schema can be found in Appendix A):

<service name="Outline" xmlns="http://identifiers.emc.com/vocab/radl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="https://github.com/restful-api-description-language/►

RADL/tree/master/schema"
radl.xsd">

<start document-ref="">
<!-- optional: describes the document associated with the initial URI -->

</start>

<link-relations>
<!-- Link relations used by all media types -->

</link-relations>

2If you need run-time metadata for well known media types, you need a RADL description that provides
this information, which cannot be automatically extracted from a HTMl document.

186

RESTful API Description Language (RADL)

<media-types>
<!-- Media types used by all resources -->
<media-type>
<documents>
<!-- The kinds of documents defined by this media type -->

</documents>
<interfaces>
<!-- The interfaces for links defined by this media type -->

</interfaces>
</media-type>

</media-types>

<resources>
<!-- Resources that make up the service -->
<!-- Resources implement interfaces of media types -->

</resources>

</service>

The document element is service. It contains elements that model the main concepts
we discussed in the previous section: link relations, media-types, and resources.
Media types contain documents that describe the data format and interfaces that
describe the semantics.

Now let us provide a concrete example, taken from chapter 5 of the book
RESTful Web Services. This chapter deals with the read-only aspects of a service
that provides information about places. To get an overview of the service we are
describing, let us look at the client API documentation for this interface, generated
from the RADL description that we describe in the rest of this section.

This example illustrates some important aspects of a RADL description:
• A service is defined primarily by its media types.
• A media type is defined primarily by its documents.
• A document is defined primarily by the links it contains.
• A link is defined by its link relation3 and the requests and responses supported

by the link.
• In the descriptions of links, each link relation 4 / HTTP method pair identifies a

request and the associated response.
• A request is is defined by the conventions associated with applying the HTTP

method to the given link, such as URI parameters, HTTP headers, and documents
used in the request body (for PUT, POST, and PATCH requests).

3A link type can also be used, if a link does not have a link relation.
4or link type

187

RESTful API Description Language (RADL)

Figure 1. HTML client documentation generated from a RADL description

• A response is defined by an HTTP method, the kinds of documents that can be
returned in the response, and any headers or status codes that need to be docu-
mented for the response.

Now we will see how these things are represented in RADL markup. Here are the
first few lines of the RADL description:

<service name="Maps" xmlns="http://identifiers.emc.com/vocab/radl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://identifiers.emc.com/vocab/radl radl.xsd"
xmlns:html="http://www.w3.org/1999/xhtml/">

<documentation>
This is an example based on chapter 5 of the book
<ref uri="http://shop.oreilly.com/product/9780596529260.do">RESTful
Web Services</ref>.

</documentation>

<start interface-ref="int-planets" />

188

RESTful API Description Language (RADL)

This fragment shows how we can add documentation to RADL. We support different
documentation modules. Our TechPubs department uses DocBook, for instance,
but in this paper we will only use HTML. To keep the RADL document well-formed
XML, we will use XHTML and we declare its namespace. We can use all of HTML's
elements and additionally we can use the ref element to refer to things. We added
refso that we could refer to RADL concepts, like link relations, and more easily
process those references. Working with only generic a elements would be awkward.

The fragment also contains a start element, an optional element that identifies
the interface associated with the initial URI for the service. Note that the initial URI
is not part of the RADL description - the same service can be deployed from many
different locations, and is not part of the API per se.

Here are the link relations we use in this service:
<link-relations>
<link-relation id="rel-place" name="place">
<documentation>
The target resource is a place related to the current resource.

</documentation>
</link-relation>
<link-relation id="rel-point" name="point">
<documentation>
The target resource is a point on a planet related to
the current resource.

</documentation>
</link-relation>
<link-relation id="rel-map" name="map">
<documentation>
The target resource is a map related to the current resource.

</documentation>
</link-relation>
<link-relation id="rel-image" name="image">
<documentation>
The target resource is an image related to the current resource.

</documentation>
</link-relation>

</link-relations>

This example uses only link relations that were invented for this service, but you
could add more generic ones, like self as well.

There is no defined model for naming link relations. All the generic ones like
self use simple names, and they are registered by IANA in a flat namespace.
However, to avoid name collisions, you may want to use URIs for your own special-
ized link relations. For instance, EMC is moving towards using URIs of the form
http://identifiers.emc.com/linkrel/<name>.

189

RESTful API Description Language (RADL)

The next section defines the media types. The first media type used in this service
is PNG (image/png). It is used for displaying images of maps of places. This media
type defines only one kind of document and one interface. Since this chapter of the
book deals with a read-only service, all you can do with the images is retrieve them
through the GET method.

<media-types>
<media-type id="med-png" name="image/png">
<description type="html"

href="http://www.iana.org/assignments/media-types/image/png"/>
<documents>
<document id="doc-png" name="png"/>

</documents>
<interfaces>
<interface id="int-image" name="image">
<methods>
<method name="GET">
<request>
</request>
<response>
<document ref="doc-png"/>

</response>
</method>

</methods>
</interface>

</interfaces>
</media-type>
!!! SNIP !!!

The next media type defines most of the documents used in this service, together
wtih their semantics. It is based on XHTML.

<media-type id="med-planets" name="application/xhtml+xml">
<documentation>
We define an <ref uri="http://www.w3.org/TR/xhtml11/">XHTML</ref>
<html:em>microformat</html:em> by adding
meaning using the <html:code>class</html:code> attribute to elements.
For example, adding <html:code>class="planets"</html:code> to the
<html:code>ul</html:code> element, we can
turn a generic list into a list of planets.

</documentation>
<description type="html" href="http://tools.ietf.org/html/rfc3236"/>
<documents>
<document id="doc-planets" name="planets">
<links>
<link link-relation-ref="rel-place" interface-ref="int-place">
<documentation>

190

RESTful API Description Language (RADL)

Links of this type are found by looking for
<html:code>a</html:code> elements with
<html:code>class="place"</html:code>. Additionally, you can
find search links to places via the
<html:code>form</html:code> element with
<html:code>id="searchPlace"</html:code>.

</documentation>
</link>

</links>
</document>
<document id="doc-place" name="place">
<links>
<link link-relation-ref="rel-map" interface-ref="int-map">
<documentation>
Links of this type are found by looking for
<html:code>a</html:code> elements with
<html:code>class="map"</html:code>.

</documentation>
</link>
<link link-relation-ref="rel-point" interface-ref="int-point">
<documentation>
Links of this type are found by looking for
<html:code>a</html:code> elements with different values for
the <html:code>class</html:code> attribute, like
<html:code>coordinates</html:code>,
<html:code>map_nav</html:code>, <html:code>zoom_in</html:code>,
and <html:code>zoom_out</html:code>.

</documentation>
</link>
<link link-relation-ref="rel-place" interface-ref="int-place">
<documentation>

Links of this type are found by looking for
<html:code>a</html:code> elements with
<html:code>class="place"</html:code>. Additionally, you can
find search links to places via the
<html:code>form</html:code> element with
<html:code>id="searchPlace"</html:code>.

</documentation>
</link>

</links>
</document>
<document id="doc-point" name="point">
<links>
<link link-relation-ref="rel-place" interface-ref="int-place">
<documentation>

Links of this type are found by looking for

191

RESTful API Description Language (RADL)

<html:code>a</html:code> elements with
<html:code>class="place"</html:code>. Additionally,
you can find search links to places via the
<html:code>form</html:code> element with
<html:code>id="searchPlace"</html:code>.

</documentation>
</link>
<link link-relation-ref="rel-point" interface-ref="int-point">
<documentation>
Links of this type are found by looking for
<html:code>a</html:code> elements with different values for
the <html:code>class</html:code> attribute, like
<html:code>coordinates</html:code>,
<html:code>map_nav</html:code>, <html:code>zoom_in</html:code>,
and <html:code>zoom_out</html:code>.

</documentation>
</link>

</links>
</document>
<document id="doc-map" name="map">
<links>
<link link-relation-ref="rel-image" interface-ref="int-image">
<documentation>

Links of this type are found by looking for
<html:code>img</html:code> elements with
<html:code>class="map"</html:code>.

</documentation>
</link>
<link link-relation-ref="rel-map" interface-ref="int-map">
<documentation>
Links of this type are found by looking for
<html:code>a</html:code> elements with
<html:code>class="map"</html:code>.

</documentation>
</link>

</links>
</document>

</documents>
<interfaces>
<interface id="int-planets" name="planets">
<methods>
<method name="GET">
<response>
<document ref="doc-planets"/>

</response>
</method>

192

RESTful API Description Language (RADL)

</methods>
</interface>

<interface id="int-place" name="place">
<methods>
<method name="GET">
<response>
<document ref="doc-place"/>

</response>
</method>

</methods>
</interface>

<interface id="int-point" name="point">
<methods>
<method name="GET">
<response>
<document ref="doc-point"/>

</response>
</method>

</methods>
</interface>

<interface id="int-map" name="map">
<methods>
<method name="GET">
<response>
<document ref="doc-map"/>

</response>
</method>

</methods>
</interface>

</interfaces>
</media-type>

</media-types>

This media type defines several kinds of documents and interfaces. It defines how
to get from one document to another via links that are typed using link relations.
It also defines how these documents can be processed using interfaces.

In the above definitions, the author could have defined its own media type, say
application/vnd.oreilly.maps+xml, but decided against that, and extends the
application/xhtml+xml media type instead. The HTML part of the media type
makes it easy to consume the service with generic clients like web browsers. The X
part of the media type also makes it possible to consume the service with a special-
purpose client. For those types of clients, it would probably have been easier to use
a new vocabulary, but then you would loose the browsers. Every service has to

193

RESTful API Description Language (RADL)

weigh the pros and cons. In the services that EMC provides, general purpose clients
can provide very little value, so we create new media types like application/
vnd.emc.documentum+xml and build special purpose clients instead.

The final section of the RADL document contains the implementation details:
the resources. These are not part of the client API, but they are important for servers
that implement the API. A resource associates one or more interfaces with a URI or
URI Template. URI Templates. 5 Resources implement interfaces. In this example
the correspondence is 1:1, so that's not very interesting, but there are cases where
it makes sense to let a resource implement more than one interface.

<resources>
<resource id="res-planets" name="planets">
<location uri="/"/>
<interface ref="int-planets"/>

</resource>

<resource id="res-place" name="place">
<location uri-template="/{planet}/[{scoping-information}/►

][{place-name}]{?show}"/>
<interface ref="int-place"/>

</resource>

<resource id="res-point" name="point">
<location uri-template="/{planet}/{latitude},{longitude}"/>
<interface ref="int-point"/>

</resource>

<resource id="res-map" name="map">
<location uri-template="/{map-type}{scale}/{planet}/►

{latitude},{longitude}"/>
<interface ref="int-map"/>

</resource>

<resource id="res-image" name="image">
<location uri-template="/{map-type}{scale}/{planet}/images/►

{latitude},{longitude}.png"/>
<interface ref="int-image"/>

</resource>
</resources>

</service>

5URI Templates allow URIs to be created using variables, which can be supplied by the client in the
REST API. They are not used in this example.

194

RESTful API Description Language (RADL)

This short example does not show how to handle things like URI parameters, HTTP
headers and status codes, or authentication. All of these are possible in RADL.

5. Using RADL Descriptions
The following are some of the major uses we envision for RADL descriptions. We
have experience supporting the following uses in our commercial REST APIs using
a precursor of RADL:
• Providing a clear, complete model of REST APIs for teaching purposes, whether

or not RADL descriptions are actually used as part of the teaching.
• Generating client documentation using HTML or DocBook.
• Providing a standard representation of a service to make it easier to review and

to mentor REST API design. We have successfully taught RESTful design to two
teams with RSDL using this approach.

• Generating test clients to ensure that a running instance correctly implements
the specified interfaces. We have limited experience with this using RSDL.

We do not yet have implementation experience with the following, but we believe
they are plausible uses of RADL.
• Providing a clear, complete model of REST APIs for tools that generate RADL

descriptions for those who prefer not to author in XML.
• Comparing RADL descriptions to REST annotations to identify discrepancies

in those aspects of the API that are actually described by the annotations.
• Definining formats to provide API descriptions for those aspects not described

by conventional REST annotations so that complete run-time metadata can be
generated in a manner that is always consistent with the current server imple-
mentation.

• Providing run-time metadata that can be generated dynamically to allow multiple
services to be combined, modify the service based on available permissions or
preferences, etc. This metadata may be provided in either XML, JSON, or HTML.
For instance, a service might provide run time metadata via the about link relation
from JSON Home Documents or XML Home Documents.

A. RADL Schema
The RADL schema is a RELAX-NG compact notation schema that allows document-
ation to be embedded using a separate documentation schema. This appendix shows
sample documentation schemas for XHTML and DocBook, then shows the schema
for RADL per se.

195

RESTful API Description Language (RADL)

This schema is current as of the time of writing. For the latest version, see the
RADL github repository at https://github.com/restful-api-description-language.

B. Schema for embedded XHTML
namespace ns1 = "http://www.w3.org/1999/xhtml/"

documentation = element documentation { inline?, doc-title?, html }
inline = attribute inline { "true" | "false" }
doc-title = element title { text }
html = html-content*
html-content = html-element | text | ref
html-element = element ns1:* { html-attribute*, html-content* }
html-attribute = attribute * { text? }

C. Schema for embedded DocBook
namespace docbook = "http://docbook.org/ns/docbook"

documentation = element documentation { inline?, doc-title?, docbook }

inline = attribute inline { ("true" | "false") }
doc-title = element title { text }

docbook = docbook-content*
docbook-content = (docbook-element | text | ref)
docbook-element = element docbook:* { docbook-attribute*, docbook-content* }
docbook-attribute = attribute * { text? }

D. RADL schema
default namespace radl = "http://identifiers.emc.com/radl"

Copyright 2014, EMC Corporation
##
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
##
http://www.apache.org/licenses/LICENSE-2.0
##
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

196

RESTful API Description Language (RADL)

See the License for the specific language governing permissions and
limitations under the License.

start = service
include "ref.rnc"
include "documentation.rnc"
service =
element service {
id?,
name,
documentation?,
service-start?,
link-relations?,
link-types?,
service-conventions?,
media-types?,
resources?,
authentication?

}
Generic definitions
id = attribute id { xsd:ID }
idref = attribute ref { xsd:IDREF }
title = element title { text }
name = attribute name { text }
href = attribute href { xsd:anyURI }
ref-attribute = attribute ref { xsd:IDREF }
foreign-element =
element * - radl:* { any-attribute*, (foreign-element* | text)* }

any-attribute = attribute * { text? }
public = attribute public { "true" }
status = implementation-status?, design-status?
implementation-status =
attribute implementation-status {
"future" | "assigned" | "poc" | "partial" | "complete" | "passed"

}
design-status =
attribute design-status {
"future" | "assigned" | "poc" | "partial" | "complete" | "approved"

}
service-start = element start { href?, document-ref, identity-provider-ref? }
identity-provider-ref = attribute identity-provider-ref { xsd:IDREF }
link-relations =
element link-relations { documentation?, link-relation* }

link-relation =
element link-relation {

197

RESTful API Description Language (RADL)

documentation?, id, status, link-relation-name, href?
}

link-relation-name = attribute name { xsd:anyURI }
link-relation-ref = attribute link-relation-ref { xsd:IDREF }
link-types = element link-types { documentation?, link-type* }
link-type =
element link-type { documentation?, id, status, name?, href?, path? }

path = attribute path { xsd:string }
service-conventions = element conventions { documentation?, headers?, ►
uri-parameters?, status-codes? }
media-types = element media-types { documentation?, media-type* }
media-type =
element media-type {
id?,
(href
| (media-type-extends?,

name,
documentation?,
description*,
documents?,
media-type-conventions?,
interfaces?))

}
media-type-ref = attribute media-type-ref { xsd:IDREF }
media-type-extends = attribute extends { xsd:anyURI }
description = element description { type, href, documentation? }
type =
attribute type {
"rnc" | "rng" | "xsd" | "JSONSchema" | "sedola" | "text" | "html"

}
documents = element documents { document* }
document =
element document {
(id?,
extends?,
name,
documentation?,
properties?,
links?,
document*)
| ref-attribute

}
document-ref =
element document {
attribute ref { xsd:IDREF },
documentation?

198

RESTful API Description Language (RADL)

}
document-refs =
element documents {

document-ref*
}

media-type-conventions = element conventions { documentation?, headers?, ►
uri-parameters?, status-codes? }
properties = element properties { documentation?, property* }
property = element property { id?, name, documentation? }
links = element links { documentation?, link* }
link =
element link {
(link-relation-ref | link-type-ref),
interface-ref,
status?,
documentation?

}
link-type-ref = attribute link-type-ref { xsd:IDREF }
interfaces =
element interfaces {
interface-conventions?,
interface*

}
uri-parameters =
element uri-parameters { documentation?, uri-parameter* }

uri-parameter =
element uri-parameter {
id?, name, documentation, datatype, value-range?, default-value?

}
uri-parameter-ref = attribute uri-parameter-ref { xsd:IDREF }
interface-conventions = element conventions { documentation?, headers?, ►
uri-parameters?, status-codes? }
interface = element interface { headers?, id?, name, methods }
interface-ref = attribute interface-ref { xsd:IDREF }
headers = element headers { header* }
header = element header { id?, name, header-type, documentation? }
header-type =
attribute type { "request" | "response" | "general" | "entity" }

methods = element methods { method* }
method =
element method { id?, method-name, status?, request?, response? }

method-name = attribute name { http-method }
http-method =
"GET"
| "PUT"
| "HEAD"

199

RESTful API Description Language (RADL)

| "POST"
| "DELETE"
| "TRACE"
| "OPTIONS"
| "CONNECT"
| "PATCH"

request =
element request {
documentation?, request-uri-parameters?, header-refs?, document-refs?

}
request-uri-parameters =
element uri-parameters { request-uri-parameter* }

request-uri-parameter =
element uri-parameter {
documentation?, id?, name?, request-uri-parameter-ref

}
request-uri-parameter-ref = attribute ref { xsd:IDREF }
header-refs = element header-refs { documentation?, header-ref* }
header-ref = element header-ref { ref }
response =
element response {
documentation?, response-status-codes?, header-refs?, document-refs?

}
response-status-codes =
element status-codes {
element status-code { ref }*

}
status-codes = element status-codes { documentation?, status-code* }
status-code = element status { code, id, documentation?, http-problem? }
status-code-ref = attribute ref { xsd:IDREF }
code = attribute code { HTTP-status-enum }
HTTP-status-enum =
"100"
| "101"
| "102"
| "200"
| "201"
| "203"
| "204"
| "205"
| "206"
| "207"
| "208"
| "301"
| "302"
| "303"

200

RESTful API Description Language (RADL)

| "304"
| "305"
| "306"
| "307"
| "308"
| "400"
| "401"
| "402"
| "403"
| "404"
| "405"
| "406"
| "407"
| "408"
| "409"
| "410"
| "411"
| "412"
| "413"
| "414"
| "415"
| "416"
| "417"
| "418"
| "420"
| "422"
| "423"
| "424"
| "425"
| "426"
| "428"
| "429"
| "431"
| "444"
| "449"
| "450"
| "451"
| "494"
| "495"
| "496"
| "497"
| "499"
| "500"
| "501"
| "502"
| "503"

201

RESTful API Description Language (RADL)

| "504"
| "505"
| "506"
| "507"
| "508"
| "509"
| "510"
| "511"
| "598"
| "599"

http-problem =
element problem { problemType, title, detail, supportId, more }

problemType = element problemType { xsd:anyURI }
detail = element detail { text }
supportId = element supportId { xsd:anyURI }
more = element more { foreign-element* }
resources = element resources { id?, documentation?, resource* }
resource =
element resource {
documentation?,
id,
name,
identity-provider-ref?,
public?,
status?,
extends?,
location?,
resource-interface*

}
resource-ref = attribute resource-ref { xsd:IDREF }
extends = attribute extends { xsd:QName }
location = element location { documentation?, (uri | uri-template) }
uri-template = attribute uri-template { text }
resource-interface = element interface { ref-attribute }
authentication =
element authentication { authentication-conventions?, mechanism*, ►

identity-provider? }
authentication-conventions = element conventions { documentation?, headers?, ►
status-codes? }
mechanism =
element mechanism {
id?, name, authentication-type, documentation?, scheme*

}
mechanism-ref = attribute mechanism-ref { xsd:IDREF }
identity-provider = element identity-provider { id, mechanism-ref }
authentication-type = attribute authentication-type { text }

202

RESTful API Description Language (RADL)

scheme = element scheme { id?, name, documentation?, scheme-parameter* }
scheme-parameter = element parameter { id?, name, documentation? }
datatype =
attribute datatype {
"string"
| "boolean"
| "decimal"
| "float"
| "double"
| "duration"
| "dateTime"
| "time"
| "date"
| "hexBinary"
| "base64Binary"
| "anyURI"
| "integer"
| "language"
| "ID"
| "IDREF"
| "integer"
| "long"
| "short"
| "byte"

}
value-range = element value-range { text }
default-value = element default { text }
uri = attribute uri { xsd:anyURI }

E. Complete Maps Example
Here is the complete RADL description for the example used in the text of this article.

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="radl2html.xsl"?>
<service xmlns:html="http://www.w3.org/1999/xhtml/" xmlns="http://identifiers.emc.com/radl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Maps">

<documentation> This is an example from the book RESTful Web Services, chapter 5. </documentation>

<start interface-ref="int-planets" />

<link-relations>
<link-relation id="rel-place" name="place">
<documentation> The target resource is a related place. Links of this type are found by
looking for <html:code>a</html:code> elements with <html:code>class="place"</html:code>.
Additionally, you can find search links to places via the <html:code>form</html:code>
element with <html:code>id="searchPlace"</html:code>. </documentation>

</link-relation>
<link-relation id="rel-point" name="point">

203

RESTful API Description Language (RADL)

<documentation> The target resource is a related point on a planet. Links of this type are
found by looking for <html:code>a</html:code> elements with different values for the
<html:code>class</html:code> attribute, like <html:code>coordinates</html:code>,
<html:code>map_nav</html:code>, <html:code>zoom_in</html:code>, and
<html:code>zoom_out</html:code>. </documentation>

</link-relation>
<link-relation id="rel-map" name="map">
<documentation> The target resource is a map related to the current resource. Links of this
type are found by looking for <html:code>a</html:code> elements with
<html:code>class="map"</html:code>. </documentation>

</link-relation>
<link-relation id="rel-image" name="image">
<documentation> The target resource is an image related to the current resource. Links of this

type are found by looking for <html:code>img</html:code> elements with
<html:code>class="map"</html:code>. </documentation>

</link-relation>
</link-relations>

<media-types>
<media-type id="med-planets" name="planets" extends="application/xhtml+xml">
<documentation> We are defining an XHTML <html:em>microformat</html:em> by adding meaning
using the <html:code>class</html:code> attribute to elements. For example, adding
<html:code>class="planets"</html:code> to the <html:code>ul</html:code> element, we can
turn a list into a list of planets. </documentation>
<description type="html" href="http://tools.ietf.org/html/rfc3236"/>
<documents>
<document id="doc-planets" name="planets">
<links>
<link link-relation-ref="rel-place" interface-ref="int-place"/>

</links>
</document>
<document id="doc-place" name="place">
<links>
<link link-relation-ref="rel-map" interface-ref="int-map"/>
<link link-relation-ref="rel-point" interface-ref="int-point"/>
<link link-relation-ref="rel-place" interface-ref="int-place"/>

</links>
</document>
<document id="doc-point" name="point">
<links>
<link link-relation-ref="rel-place" interface-ref="int-place"/>
<link link-relation-ref="rel-point" interface-ref="int-point"/>

</links>
</document>
<document id="doc-map" name="map">
<links>
<link link-relation-ref="rel-image" interface-ref="int-image"/>
<link link-relation-ref="rel-map" interface-ref="int-map"/>

</links>
</document>

</documents>
<interfaces>
<conventions>
<uri-parameters>
<uri-parameter id="par-planet" name="planet" datatype="string">
<documentation> Human friendly name of a planet, like <html:code>Earth</html:code>.
</documentation>

</uri-parameter>

204

RESTful API Description Language (RADL)

<uri-parameter id="par-place-name" name="place-name" datatype="string">
<documentation> Human friendly name of a place, like <html:code>Mount%20Rushmore</►

html:code>.
</documentation>

</uri-parameter>
<uri-parameter id="par-scoping-information" name="scoping-information" datatype="string">

<documentation> A hierarchy of <ref uri-parameter="par-place-name">place names</ref> ►
like

<html:code>/USA/New%20England/Maine/</html:code>. </documentation>
</uri-parameter>
<uri-parameter id="par-map-type" name="map-type" datatype="string">
<documentation> The type of map, like <html:code>satellite</html:code>. </documentation>
</uri-parameter>
<uri-parameter id="par-scale" name="scale" datatype="string">
<documentation> Dot followed by an integer, like <html:code>.1</html:code>. A bigger ►

number
indicates more details. </documentation>

</uri-parameter>
<uri-parameter id="par-show" name="show" datatype="string">
<documentation> Things to search for near a given place, like <html:code>diners</►

html:code>.
</documentation>

</uri-parameter>
<uri-parameter id="par-latitude" name="latitude" datatype="float">
<documentation> Latitude on a planet, like <html:code>24.9195</html:code>. </►

documentation>
</uri-parameter>
<uri-parameter id="par-longitude" name="longitude" datatype="float">
<documentation> Longitude on a planet, like <html:code>17.821</html:code>. </►

documentation>
</uri-parameter>

</uri-parameters>
</conventions>

<interface id="int-planets" name="planets">
<methods>
<method name="GET">
<response>
<document ref="doc-planets"/>

</response>
</method>

</methods>
</interface>

<interface id="int-place" name="place">
<methods>
<method name="GET">
<request>
<uri-parameters>
<uri-parameter name="planet" ref="par-planet"/>
<uri-parameter name="scoping-information" ref="par-scoping-information"/>
<uri-parameter name="place-name" ref="par-place-name"/>
<uri-parameter name="show" ref="par-show"/>

</uri-parameters>
</request>
<response>
<document ref="doc-place"/>

</response>

205

RESTful API Description Language (RADL)

</method>
</methods>

</interface>

<interface id="int-point" name="point">
<methods>
<method name="GET">
<request>
<uri-parameters>
<uri-parameter name="planet" ref="par-planet"/>
<uri-parameter name="latitude" ref="par-latitude"/>
<uri-parameter name="longitude" ref="par-longitude"/>

</uri-parameters>
</request>
<response>
<document ref="doc-point"/>

</response>
</method>

</methods>
</interface>

<interface id="int-map" name="map">
<methods>
<method name="GET">
<request>
<uri-parameters>
<uri-parameter name="map-type" ref="par-map-type"/>
<uri-parameter name="scale" ref="par-scale"/>
<uri-parameter name="planet" ref="par-planet"/>
<uri-parameter name="latitude" ref="par-latitude"/>
<uri-parameter name="longitude" ref="par-longitude"/>

</uri-parameters>
</request>
<response>
<document ref="doc-map"/>

</response>
</method>

</methods>
</interface>

</interfaces>
</media-type>

<media-type id="med-png" name="image/png">
<description type="html" href="http://www.iana.org/assignments/media-types/image/png"/>
<documents>
<document id="doc-png" name="png"/>

</documents>
<interfaces>
<interface id="int-image" name="image">
<methods>
<method name="GET">
<request>
<uri-parameters>
<uri-parameter name="map-type" ref="par-map-type"/>
<uri-parameter name="scale" ref="par-scale"/>
<uri-parameter name="planet" ref="par-planet"/>
<uri-parameter name="latitude" ref="par-latitude"/>
<uri-parameter name="longitude" ref="par-longitude"/>

206

RESTful API Description Language (RADL)

</uri-parameters>
</request>
<response>
<document ref="doc-png"/>

</response>
</method>

</methods>
</interface>

</interfaces>

</media-type>

</media-types>

<resources>

<resource id="res-planets" name="planets">
<location uri="/"/>
<interface ref="int-planets"/>

</resource>

<resource id="res-place" name="place">
<location uri-template="/{planet}/[{scoping-information}/][{place-name}]{?show}"/>
<interface ref="int-place"/>

</resource>

<resource id="res-point" name="point">
<location uri-template="/{planet}/{latitude},{longitude}"/>
<interface ref="int-point"/>

</resource>

<resource id="res-map" name="map">
<location uri-template="/{map-type}{scale}/{planet}/{latitude},{longitude}"/>
<interface ref="int-map"/>

</resource>

<resource id="res-image" name="image">
<location uri-template="/{map-type}{scale}/{planet}/images/{latitude},{longitude}.png"/>
<interface ref="int-image"/>

</resource>
</resources>

</service>

Bibliography
[1] Marc Hadley, Sun Microsystems. Web Application Description Language, W3C

Member Submission 31 August 2009. http://www.w3.org/Submission/wadl/.
[2] Joe Gregorio, Google; Roy Fielding, Adobe; Marc Hadley, MITRE; Mark

Nottingham, Rackspace; David Orchard, Salesforce.com. URI Template, IETF
RFC 6570, March 2012. http://tools.ietf.org/html/rfc6570

[3] Mark Nottingham, Rackspace. Home Documents for HTTP APIs, May 8, 2013.
http://www.ietf.org/id/draft-nottingham-json-home-03.txt

207

RESTful API Description Language (RADL)

[4] Erik Wilde, EMC. Home Documents for HTTP Services: XML Syntax, June 11, 2013.
http://www.ietf.org/id/draft-wilde-home-xml-01.txt

[5] N. Freed, Oracle; J. Klensin; T. Hansen, AT&T Laboratories. Media Type
Specifications and Registration Procedures, IETF RFC 6838, January 2013.
http://tools.ietf.org/html/rfc6838

[6] N. Freed, J. Klensin, J. Postel. Multipurpose Internet Mail Extensions (MIME) Part
Four: Registration Procedures, IETF RFC 2048, November 1996.
http://tools.ietf.org/html/rfc2048

[7] Bill Burke. To WADL or not to WADL, blog post, May 21, 2009.
http://bill.burkecentral.com/2009/05/21/to-wadl-or-not-to-wadl/.

[8] Roy Fielding. REST APIs must be hypertext-driven, blog post, Mon 20 Oct 2008.
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven/.

[9] Home Documents for HTTP APIs,
http://tools.ietf.org/html/draft-nottingham-json-home-02.
http://tools.ietf.org/html/draft-nottingham-json-home-02

[10] Problem Details for HTTP APIs,
http://datatracker.ietf.org/doc/draft-nottingham-http-problem/.
http://datatracker.ietf.org/doc/draft-nottingham-http-problem/

[11] XML Media Types, IETF RFC 3023, MURATA Makoto (FAMILY Given), Simon
St.Laurent, Daniel Kohn. http://tools.ietf.org/html/rfc3023

[12] Media Type Specifications and Registration Procedures, IETF RFC 4288, Ned Freed,
John C. Klensin. http://tools.ietf.org/html/rfc4288

[13] Additional Media Type Structured Syntax Suffixes, IETF RFC 5830, Tony Hansen,
Alexey Melnikov. http://tools.ietf.org/html/rfc4288

[14] Aristotle Pagaltzis.Does REST need a service description language?, blog post, May
27, 2007. http://plasmasturm.org/log/460/.

[15] Cory House. How RESTful is your API?, blog post, August 26, 2012.
http://www.bitnative.com/2012/08/26/how-restful-is-your-api/.

[16] Martin Fowler. Richardson Maturity Model: steps toward the glory of REST, blog
post, 18 March 2010.
http://martinfowler.com/articles/richardsonMaturityModel.html.

[17] Dare Obasanjo. What's Wrong with WADL?, blog post, June 4, 2007.
http://www.25hoursaday.com/weblog/2007/06/04/WhatsWrongWithWADL.aspx

[18] Jim Webber, Savas Parastatidis and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O'Reilly Media; 1 edition (September 24, 2010). ISBN-13:
978-0596805821.

208

RESTful API Description Language (RADL)

[19] Leonard Richardson, Sam Ruby RESTful Web Services. O'Reilly Media; Dec 17,
2008f. ISBN-13: 978-0596554606.

[20] Erik Wilde. Service Documentation Language https://github.com/dret/sedola/
[21] Roy Thomas Fielding,Architectural Styles and the Design of Network-based Software

Architectures, PhD Dissertation Thesis, University of California, Irvine © 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[22] RESTful Service Description Language (RSDL). Michael Pasternak, Red Hat.
Available at http://www.ovirt.org/RSDL.

[23] Jonathan Robie, Rob Cavicchio, Rémon Sinnema and Erik Wilde.RESTful Service
Description Language (RSDL): Describing RESTful Services Without Tight Coupling.
Presented at Balisage: The Markup Conference 2013, Montréal, Canada, August
6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013. Balisage
Series on Markup Technologies, vol. 10 (2013). doi:10.4242/BalisageVol10.Robie01.
Available at
http://www.balisage.net/Proceedings/vol10/html/Robie01/BalisageVol10-Robie01.html.

[24] Swagger. Available at http://developers.helloreverb.com/swagger/,
https://github.com/wordnik/swagger-ui.

[25] RAML (RESTful API Modeling Language. Available at raml.org.
[26] I/O Docs (Mashery). Available at https://github.com/mashery/iodocs.

209

RESTful API Description Language (RADL)

210

XML Authoring On Mobile Devices
George Bina

Syncro Soft / oXygen XML Editor
<george@oxygenxml.com>

Abstract

Not too long ago XML-born content was not present in amobile-friendly form
on mobile devices. Now, many of the XML frameworks like DocBook, DITA
and TEI provide output formats that are tuned to be used on mobile devices.
These are either different electronic book formats (EPUB, Kindle) or different
mobile-friendly web formats.

Many people find XML authoring difficult on computers, let alone mobile
devices. However, due to the constantly increasing number of mobile devices,
that made people create mobile-friendly output formats fromXML documents,
there is clearly a need to provide also direct access to authoring XML content
on these devices.

I would like to explore the options for providing XML authoring onmobile
devices and describe our current work and the technology choices we made to
create an authoring solution for mobile devices. Trying to enable people to
create XML documents on mobile devices is a very exciting, mainly because
the user interaction is completely different on a mobile device: different screen
resolutions, different interaction methods (touch, swipe, pinch), etc. See how
we imagined XML authoring on an Android phone or on iPad! How about
editing XML on a smart TV? Leverage speech recognition/dictation and
handwriting recognition technologies that are available on mobile devices to
enable completely new ways of interacting with XML documents!

Keywords: XML, authoring, mobile, review, user experience

1. Introduction
When an XML-based solution is implemented the lowest impedance for communic-
ating between different processing steps is to use XML, so people try to use XML
in as many places as possible, but there are usually a few processes where using
XML is not always easy. One of these processes is the review of XML content. An-
other process is the contribution of initial content from people that are not familiar
with XML.

A traditional review process will convert the XML information to an output
format, usually PDF, and have reviewers annotate that PDF with comments, then

211

align the PDF with the XML documents that generated it to identify the places in
the XML source the comments refer to and manually act on those comments to make
the corresponding changes to the XML documents.

Figure 1. Traditional review process

This process has many steps and some of them are not automated so they not only
consume time but errors can appear at different stages. Many of the issues can be
solved by adopting a direct XML review process, where users can annotate directly
on the XML content, and add not only comments but also make changes to the
document that will be considered proposed changes. Thus, responding to a comment
by identifying the XML source the comment refers to and then updating the docu-
ment as described in the comment can be replaced with an simple action to accept
a proposed change to the document.

Contributing initial content is very much linked to the tools the users already
know and the devices he has access to. Thus initial content is contributed in whatever
format the users can use and then converted to XML to be able to enter the XML-
based solution. Usually people use Word and there is a conversion process that tries
to get from Word to XML. We can cut the conversion cost if we are able to get this
initial content in XML form.

212

XML Authoring On Mobile Devices

Figure 2. Direct XML review process

Figure 3. Non XML data conversion to XML vs XML first

When you move to an XML-based solution it is important to be able to cut costs on
the review process and to implement an XML-first system, where people can con-
tribute initial data directly in XML. We tried to address these problems and we
currently provide solutions for both the review process and for creating an XML-
first solution. However, the current solution requires the use of a laptop or a desktop
computer.

The people that perform reviews or the ones that contribute initial content are
in general external to the department that deals with the XML-based solution, so it
is difficult to control the resources available to these people. The increasing use of
mobile devices during the last years and the projections for next years show that
mobile devices are not something we can ignore (mobile devices are expected to
exceed the number of desktops this year) and the only device some of those people

213

XML Authoring On Mobile Devices

have may be a mobile one. So, if we want to be able to cut the costs and the complex-
ity of processes similar to the ones described, we need to be able to provide at least
direct XML review and simplified XML authoring on mobile devices.

2. Technology choices
Once we decided to start building a tool for XML authoring on mobile devices the
next step was to decide on what technologies that will be based on. The first decision
was if it was to be a native application or a web application.

From our experience with oXygen we found that it is great to be able to support
multiple platforms with the same code - oXygen being built in Java works on any
platform that provides a JVM. So one problem with a native solution was that we
had to build a different application for each mobile platform while a web application
will allow us to reuse the same code for all devices, as long as they support the re-
quired web technology (HTML5 and JavaScript). A web application has also other
advantages over a native application like immediate update, no app-store interfer-
ence and an important one - the fact that it will work also on desktops. A disadvant-
age will be that the access to device specific functionality will not be possible but
we it should be possible to use a hybrid application if such functionality will be
critical in the future.

Another decision point was on how much processing should be done on the
client and how much on the server. Targeting mobile devices we wanted to have
as little as possible processing on the client, in order not to drain the device battery.
This factor and the fact that we already have in Java many of the components needed
for XML authoring made us decide to prefer the server side processing to the client
processing and keep the current oXygen on the server and have only the display
part on the client side, like a remote display, thus reusing almost all of the existing
components and technology stack.

We experimented with different approaches for a rendering XML in the web
application, including:
1. Placing XML directly inside an HTML document and render it though the same

CSS that we use now
2. Using the Canvas to display the rendered XML document, similar to how it is

done inside oXygen, using a CSS parser that will provide the rendering styles
for each element

3. Render/convert the XML as/to HTML and convert the CSS used for XML to
match the converted HTML format

In the first case we hit limitations in the browser support for CSS that made it im-
possible to use this approach. For example browsers do not support the CSS attr/
2 function as specified in CSS3, where along with the first parameter that specifies
the attribute name you can specify also a second parameter that represents the at-

214

XML Authoring On Mobile Devices

tribute value type. This is used in oXygen to specify that an attribute value is a URI
and it should be a link.

In the second case we implemented all the rendering primitives that are used
in oXygen (we have a Graphics interface that is used for rendering the XML docu-
ments and the methods from this interface were implemented also based on the
HTML5 Canvas) but then we needed also the CSS parser, the layout engine, caret
management, etc. which were not easy tasks.

In the 3rd approach we converted the XML document to HTML5 and then we
modified the CSS that matched on XML to match on the converted HTML5 structure
to obtain the same rendering as the XML+CSS that we currently use. This allows us
to use the browser editing support for HTML to modify the document content.

For mobile interaction we use JQuery mobile due to existing experience - we
use this also for the mobile-friendly WebHelp transformations that we provide for
DITA and DocBook. However, other frameworks may be used as we plan to support
multiple templates for the user interface.

3. Web application architecture
Here it is a diagram showing the current architecture showing how the oXygen
existing support is reused on the server side:

Figure 4. oXygen web application architecture

Three components can be identified:
• oXygen on the server
• The HTML+JavaScript that render the document on the client side

215

XML Authoring On Mobile Devices

• Content storage that can be in the form of a CMS
oXygen on the server is a Java servlet that encapsulates the Java-based oXygen

to provide the visual editing support. It reuses the same customizations created for
the oXygen desktop that come in the form or frameworks and plugins. This allows
for example to reuse the editing support for DITA, DocBook, etc. as well as plugins
that provide access to remote repositories like the CMS connector plugins.

The server part will generate HTML5+JavaScript for an XML file that when
rendered will provide the view for that XML document. The generated HTML5
content keeps XML related information in data-* attributes. The CSS that matched
on XML is automatically converted to match on the generated HTML5 and its data-*
attributes that encode the XML information. The conversion from XML to HTML5
uses mainly div elements but sometimes it also takes advantage of specific HTML
elements, like the table element for example.

216

XML Authoring On Mobile Devices

4. Samples
We will demo XML reviewing functionality, using custom XML interfaces and full
XML editing. Here you can see some screen-shots taken on iPad:

Figure 5. A DITA topic

217

XML Authoring On Mobile Devices

Note the highlights that represent areas with associated comments as well as the
added and deleted content styled with underline and strikeout decorations.

Figure 6. A DocBook article

218

XML Authoring On Mobile Devices

Here we have a DocBook article rendered though CSS with different structure like
images and lists. Note again the comment highlights and the decorations for changed
content.

Figure 7. Review Panel showing all review comments and changes

219

XML Authoring On Mobile Devices

You can swipe right on the editing area to make the Review Panel visible. When
you swipe over a review entry the available actions are displayed so you can easily
act on a review to edit or remove a comment, accept or reject a change. Swipe left
to hide the Review Panel and return to the editor.

Figure 8. A custom XML editing interface

220

XML Authoring On Mobile Devices

Note the inline action marked with “[+]” that can be used to add a new section to
the document.

Figure 9. Enter a date value using the standard iPad date picker

Different form controls can be used to build custom interfaces that will provide access
to text and attribute values, thus making the editing simpler and removing the need

221

XML Authoring On Mobile Devices

to train users. Each form control will use the native support on each platform, thus
the user will have the same editing experience he is already used to on that device.

Figure 10. Text editing with changes recorded as tracked-changes

Here you can see the editing mode, where we have the keyboard show up and the
document contains a caret. The changes in this case are recorded as tracked changes.

222

XML Authoring On Mobile Devices

Figure 11. Inserting markup

You can insert markup either with the dedicated action or by pressing the enter key
in the virtual keyboard. That will show a popup with valid element names where
you can filter to see only the elements that match, then select one to insert in the
document.

223

XML Authoring On Mobile Devices

Figure 12. A DITA topic on a smart TV

The web editing platform works on any device supporting HTML5 and JavaScript,
in this case we have it running on a smart TV.

5. Conclusions
XML editing on mobile devices can solve some real use-cases where people that are
not XML-aware can contribute XML content using their preferred or available device
at that moment. Creating a customized user interface using form controls bind to
attribute values and inline actions reduce the training sometimes to zero - probably
this is the way further, putting more effort on the developer to customize the user
interface so that users will not have to think in terms of XML concepts but focus on
the information they want to record. There is a lot of exploration to come up with
the best possible user interface that takes advantage of specific input methods and
interaction patterns from mobile devices and this is just the start.

More generally, the web editing support for XML makes it available on any
device, not only on mobile devices and it will be interesting to see if we can get
different other applications based on XML like an XML-based blogging system or
an XML-based wiki-like system.

224

XML Authoring On Mobile Devices

AMathML Progress Report
Autumn Cuellar
Design Science, Inc.

<autumnc@dessci.com>

Abstract

In the early days of HTML, math was a heavy topic of conversation within
the HTMLWorking Group. The World Wide Web, after all, was built by sci-
entists for scientists, andmath resides at the heart of science. Displayingmath
on the Web was a tricky problem, however. Math is not an image and should
not be treated as an image. Math is text and should be an inherent part of the
document along with the paragraph text in the document, but the special
formatting required was beyond the capabilities of browsers at the time. The
problem was more than the HTML WG was equipped to handle. Thus, the
Math Working Group was formed to tackle the challenge of a math markup
language not only for display of equations on theWeb but for a standard format
for mathematics to be used within anymathematical and scientific communic-
ation. TheMathML 1.0 specification became aW3CRecommendation in 1998.
This paper will discuss the progress of MathML since.

TheMathML language has undergone twomajor revisions since the initial
MathML 1.0 specification. The latest revision, MathML 3.0, was finalized in
October 2010. For the latest version, the Math Working Group carefully
considered the needs of various groups with a stake in math communication.
For example, support for better control of automatic linebreaking/line wrapping
was added for the publishing community, who wanted rendering engines to
be able to automatically break an equation extending beyond a set column or
page width. MathML 3.0 also includes improved features for specifying ele-
mentary math notation and new support for international math. Though no
standard is ever really complete,MathML has reached maturity with the latest
specification.

Equations are rarely standalone objects. MathML is most useful when
used in conjunction with a doctype that is larger in scope, and lately the
standard has been gaining steam as a worthwhile format for encoding math-
ematics within wider standards. On the data side, scientific markup languages
such as CellML and Systems Biology Markup Language (SBML) rely on
MathML to contain the mathematics of the stored models. On the document
side, MathML has been adopted by a range of XML standards from DAISY
and NIMAS on the accessibility front to the Journal Article Tag Set (JATS)
for use in scientific journal articles to use in DITA, which is used primarily

225

for technical documentation. But perhaps the most significant milestone for
MathML has been its recent inclusion in the HTML5 and EPUB 3 standards.

Now that MathML is nearly ubiquitous as a standard, what about tool
support? Support for the MathML standards can be found in a range of ap-
plications, including authoring systems, computer algebra and other scientific
computation systems, and reading systems. Nevertheless, a couple of challenges
remain in this area. One is that where most want to see equations is in their
browser and ebook systems, but support for MathML is lagging in both
browsers and EPUB e-readers. One reason for this is that the makers of these
systems can now depend on MathJax, an open-source Javascript library for
rendering MathML in browsers. MathJax is a useful short-term solution, but
it is insufficient for a number of reasons. The other remaining challenge is
that conversion of documents in legacy formats can be difficult.

MathML has come a long way since its early days. The language has been
steadily evolving over the past 15 years and has reached a healthy maturity
in its latest version. The wider standards communities have come to recognize
the value that MathML adds as a means of communicating mathematical and
scientific information and have responded by includingMathMLwhere needed.
The next step in the evolution of MathML is the continued development of
tool support, especially native rendering in browsers and ereading systems
and conversion tools for legacy formats.

1. Introduction
MathML is the XML standard for encoding mathematical information. It's maintained
by W3C, the same organization that maintains the XML and HTML standards.
MathML was conceived in the mid-1990's during a discussion of requirements for
HTML 3. HTML, the language behind the World Wide Web (a network built by
scientists for scientists) at this time had no way to represent mathematics -- a failing
that many felt needed to be addressed. Mathematical information, after all, is as
inherently significant to a document as paragraph text. The gains that could be
made by encoding the mathematics as a natural part of the document rather than
capturing the math as images were recognized early.

However, the challenges for representing math on the web seemed too complex
to be tackled in an update to HTML. The Math working group was formally
chartered in 1997 to develop a math markup language not only for display of
equations on the Web but to provide a standard format for mathematics to be used
within any electronic mathematical and scientific communication. [1]

The first MathML specification became a W3C recommendation in 1998. This
paper reviews the progress of the MathML markup language since the MathML 1.0
recommendation, its adoption within larger standards, and the status of software
support for this mathematical language.

226

AMathML Progress Report

2. The MathML standard
Early on, the Math working group recognized that a significant challenge in
providing a standard metadata for mathematical content existed due to the symbolic
structure of mathematical notation. In certain situations, the notation of an expression
must be very precise to correctly convey the meaning of the expression. At the same
time, due to the symbolic nature of mathematics, one notation can sometimes be
used to express different ideas. If the logic is not present to distinguish whether an
expression of x(y) indicates x is a function of y or two variables being multiplied,
for a simple example, electronic communication of such an expression is meaningless.

To overcome potential ambiguity while enabling content publishers to have
precise control over math notation, the Math working group broke the MathML
language out into categories consisting of content elements, presentation elements,
and interface elements. Content MathML specifically captures the content or se-
mantics of the expression while Presentation MathML focuses on the layout of the
math. The interface markup is used to mix and link the two so that one might specify
both the unambiguous intent of the expression and the rules for the display of the
equation.

The MathML 1 specification, when it became a W3C Recommendation in 1998,
set a solid foundation for digital communication of math. Five years later, in 2003,
MathML 2 was unveiled to address requirements overlooked in the initial specific-
ation. For instance, in version 1, multi-line equations could only be expressed through
the use of tables. MathML 2 also favors certain features of Cascading Stylesheets
(CSS), which had grown more popular for applying styles to content, over its former
attributes for specifying key properties.

MathML 3 was finalized in late 2010. With MathML 3, MathML shows a new
maturity by taking into consideration the needs of various communities with a more
specialized interest in mathematics. For example, the publishing industry is better
served with improved support for automatic line breaking: for long equations that
may extend past the width of pages or columns, content providers can now specify
both a maximum width (so that the equation automatically wraps) as well as how
to indent or align subsequent lines. For the education community, MathML 3 adds
new features to support elementary math notation, such as stacked operations in-
cluding addition and substraction, long division, and repeating decimals. MathML
3 also became a truly international standard by adding support for right-to-left
languages and for notations that vary from region to region.

Most standards are ever-evolving, and I imagine the same will continue to be
true of MathML. Since the MathML 3 specification became a recommedation, there
have already been two revisions to correct errata in the specification. However,
MathML can now be considered a mature standard; the major requirements of the
different stakeholders have been met. What remains are minor questions, such as

227

AMathML Progress Report

whether styles could be applied to individual characters within a token and
whether certain operation attributes should be applied to token elements instead.

3. Adoption of MathML within other standards
MathML was never intended to be a standalone language or doctype. Mathematics
are often just a single component of larger documents and models. The power of
MathML as a communication standard has been made manifest by its uniform in-
clusion into other standards of broader scope.

Content MathML is particularly suited for use in scientific fields and has been
successfully incorporated into a number of scientific markup languages. CellML1,
a language for describing biological models at the level of the cell, uses Content
MathML for the mathematical components of the model. Systems Biology Markup
Language (SBML2) is another biological modeling markup language used for de-
scribing biological processes such as metabolism and cell signaling. SBML also relies
on Content MathML. PhysML3 is a markup language for physics that extends
OMDoc (Open Mathematical Documents), a markup language giving context to a
range of mathematics. OMDoc also requires formulae to be encoded in Content
MathML if using MathML.

Presentation MathML has seen broader acceptance as a standard for use within
document markup languages. DocBook4 and DITA5 are two popular document
XML languages often used for technical documentation, though with a wider possible
range of application. Both offer support for STEM fields with the inclusion of
MathML. The Journal Article Tag Set (JATS6), which, as its name suggests, is used
for journal articles, has also for some time provided support for MathML.

The accessibility community has widely embraced Presentation MathML. The
level of detail that MathML provides for formulae makes it an ideal candidate for
use with Accessible Technology (AT), allowing for highlighting, navigation, and
conversion to spoken text and braille. Math is a fairly visual language, but the fine-
grained control that AT software has over mathematics encoded in MathML gives
audiences with learning or vision disabilities tools for comprehending complex
expressions. For this reason, DAISY7, a standard for digital talking books; NIMAS8,

1 http://www.cellml.org/
2 http://sbml.org/Main_Page
3 https://trac.omdoc.org/OMDoc/wiki/PhysML
4 http://www.docbook.org/
5 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
6 http://jats.nlm.nih.gov/
7 http://www.daisy.org/publishers
8 http://aim.cast.org/learn/policy/federal/what_is_nimas#.Ut2VMBDnaUk

228

AMathML Progress Report

http://www.cellml.org/
http://sbml.org/Main_Page
https://trac.omdoc.org/OMDoc/wiki/PhysML
http://www.docbook.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
http://jats.nlm.nih.gov/
http://www.daisy.org/publishers
http://aim.cast.org/learn/policy/federal/what_is_nimas#.Ut2VMBDnaUk
http://www.cellml.org/
http://sbml.org/Main_Page
https://trac.omdoc.org/OMDoc/wiki/PhysML
http://www.docbook.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
http://jats.nlm.nih.gov/
http://www.daisy.org/publishers
http://aim.cast.org/learn/policy/federal/what_is_nimas#.Ut2VMBDnaUk

a textbook standard; and PDF/UA9, a specification for tagging PDF for "universal
access", all require math to be expressed as MathML.

However, arguably the most significant standards' development for STEM fields
has been the recent inclusion of Presentation MathML in HTML510 and EPUB 311.
Mathematics did not make the cut for inclusion into early versions of HTML due
to the challenges of rendering a complicated and varied language. However, through
MathML these challenges have been overcome. Thus, HTML5, which as of December
2012 is a W3C Candidate Recommendation, now includes MathML.

HTML5 has been praised for its inclusion of different content types. In previous
versions, different types of media (such as video, audio, math, and even images)
were treated as external objects, many of which required plug-ins to the browser
for the visitor to experience. The benefit of including media in the HTML is that
browsers will consistently and correctly display the content without requiring ex-
ternal software. This means, theoretically, a given page with its included media will
display the same on any platform or device.[2]

EPUB, the open standard for e-books, is maintained by the International Digital
Publishing Forum (IDPF). In version 2 of the EPUB standard, the content of the e-
book could be expressed in either of two varieties: DAISY or XHTML. DAISY, as
previously mentioned, is an independently managed standard for specifying Digital
Talking Books, mostly used for accessibility purposes. Because the DAISY standard
included MathML for specifying mathematical content, one could create a valid
EPUB file with MathML.

The DAISY version of EPUB was not widely used. In the most recent version of
the EPUB standard, IDPF eliminated the DAISY variant, based the XHTML variant
on HTML5, and endorsed inclusion of MathML as an important aspect of e-books.
Like HTML5, EPUB 3 has been lauded for taking digital content to the next level
with its support for media.

4. Tool support of MathML
As any computer language is useless without adequate tool support, while MathML
has gained popularity amongst other standards for communicating mathematical
information, it has also been receiving growing support in a wide variety of applic-
ations: computer algebra systems, graphing applications, calculators, modeling
software, assessment creation systems, educational whiteboards, etc.

Creating MathML has never been easier. Microsoft has shipped software called
the Math Input Panel12 with its Windows operating system since version 7 was re-

9 http://www.aiim.org/Research-and-Publications/Standards/Committees/PDFUA
10 http://www.w3.org/TR/html5/
11 http://idpf.org/epub/30
12 http://windows.microsoft.com/en-us/windows7/use-math-input-panel-to-write-and-correct-math-
equations

229

AMathML Progress Report

http://www.aiim.org/Research-and-Publications/Standards/Committees/PDFUA
http://www.w3.org/TR/html5/
http://idpf.org/epub/30
http://windows.microsoft.com/en-us/windows7/use-math-input-panel-to-write-and-correct-math-equations
http://www.aiim.org/Research-and-Publications/Standards/Committees/PDFUA
http://www.w3.org/TR/html5/
http://idpf.org/epub/30
http://windows.microsoft.com/en-us/windows7/use-math-input-panel-to-write-and-correct-math-equations
http://windows.microsoft.com/en-us/windows7/use-math-input-panel-to-write-and-correct-math-equations

leased in 2009. The Math Input Panel can convert handwritten math to MathML
with a fair amount of accuracy. Alternatives for other platforms are available through
Enventra's MoboMath13 and Vision Objects' MyScript14 applications.

Many computation systems such as Maple15 and Mathematica16 will import and
export MathML, sometimes giving users a wide array of options over the form the
MathML should take. For example, Mathematica allows export of a MathML string
on its own, generation of a full XHTML + MathML document, and the choice between
Presentation and Content MathML, among other options.

For document editing, most XML editing and documentation authoring systems,
including FrameMaker17, <oXygen/>18, XMetaL19, and Flare20, now include a
MathML editor or the option to add one as a plug-in. Content management systems
are now also starting to add support for equations by adding web-based MathML
editors to their systems. MathML editing components, such as Design Science's
MathFlow Components21 and WIRIS Editor22, have given application and website
developers a straightforward mode of entry into MathML creation by providing
simple APIs.

On the rendering side, one of the most popular rendering engines is MathJax23,
an open source Javascript library for rendering MathML in modern browsers.
MathJax can either convert the MathML to an HTML/CSS layout or to SVG, either
of which are formats that browsers can display effectively. A complicated issue
with displaying mathematics on unknown systems is in regards to fonts. Standard
desktop fonts do not support a wide range of mathematical characters. MathJax
gets around this issue with a font algorithm that checks first for desktop fonts,
secondly for an appropriate web font, and if none of the above will do, it can fall
back to glyphs for certain characters.

Other popular rendering engines include JEuclid24, another open source solution,
and Design Science's MathFlow Composers25. JEuclid and the MathFlow Composers
can both be used for converting MathML to various image formats, and both of
these components have been included in a large number of composition pipelines,

13 http://enventra.com/products/mobomath/overview.htm
14 http://www.visionobjects.com/en/myscript/about-myscript/
15 http://www.maplesoft.com/products/maple/
16 http://www.wolfram.com/mathematica/
17 http://www.adobe.com/products/framemaker.html
18 http://www.oxygenxml.com/
19 http://xmetal.com/
20 http://www.madcapsoftware.com/products/flare/
21 http://www.dessci.com/en/products/mathflow/mf_components.htm
22 http://www.wiris.com/en/editor
23 www.mathjax.org
24 http://jeuclid.sourceforge.net/
25 http://www.dessci.com/en/products/mathflow/mf_components.htm

230

AMathML Progress Report

http://enventra.com/products/mobomath/overview.htm
http://www.visionobjects.com/en/myscript/about-myscript/
http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.adobe.com/products/framemaker.html
http://www.oxygenxml.com/
http://xmetal.com/
http://www.madcapsoftware.com/products/flare/
http://www.dessci.com/en/products/mathflow/mf_components.htm
http://www.wiris.com/en/editor
www.mathjax.org
http://jeuclid.sourceforge.net/
http://www.dessci.com/en/products/mathflow/mf_components.htm
http://enventra.com/products/mobomath/overview.htm
http://www.visionobjects.com/en/myscript/about-myscript/
http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://www.adobe.com/products/framemaker.html
http://www.oxygenxml.com/
http://xmetal.com/
http://www.madcapsoftware.com/products/flare/
http://www.dessci.com/en/products/mathflow/mf_components.htm
http://www.wiris.com/en/editor
www.mathjax.org
http://jeuclid.sourceforge.net/
http://www.dessci.com/en/products/mathflow/mf_components.htm

allowing for conversion of XML+MathML to a variety of other formats including
Word documents, PDF, and HTML Help files.

Tool support for MathML is growing at a steady pace, but this author can
identify a couple of areas for which there are a need for improvements. The first is
in browser and e-reader support for MathML. HTML 5 adds MathML functionality
to the standard. However, of the five major browsers (Chrome, Firefox, Internet
Explorer, Opera, and Safari), only two, Firefox and Safari, currently provide native
MathML rendering, and both of these only support a subset of the MathML specific-
ation. MathJax provides a short-term solution, but even the consortium that manages
MathJax campaigns for native MathML implementations by the major browser
vendors. When MathML is treated by the browser as a native element of the page
(as the rest of the elements are), there is a lot to gain, such as the MathML being
modifiable and queryable as a regular part of the DOM, being able to fully apply
CSS to the MathML, and faster rendering of the MathML, to name a few. Browser
vendors have their reasons for being reluctant to add support for MathML. Some
worry about code bloat and some worry about security vulnerabilities, but most
are also using MathJax's existence as an excuse to put off the MathML implementa-
tions. [3]

E-reader systems are often built on browser technology. When MathML is
rendered natively within browsers, MathML support by e-readers will soon follow.
This was the case with Apple's iBooks, which was able to leverage the work done
in WebKit for the Safari browser to enable readers to display MathML in iBook files.

Another area requiring development is conversion of legacy formats to MathML.
Some equations exist in SGML/XML documents under a proprietary math format
such as Adobe Framemaker math. In such cases, there is little support for conversion
from the propietary format to the standard MathML. Framemaker users with legacy
documents have only two choices: to develop their own conversion system or to
hire a conversion services company such as Stilo International26 or Data Conversion
Laboratory27.

Other equations exist as part of a large LATEX library. A number of projects have
attempted to convert LATEX to XML+MathML or to HTML+MathML with varying
degrees of success. The difficulty here is the long tail of LATEX macros in use. The
LATEX macros which have made the language so popular as a choice for publishing
scientific documents have also impeded its conversion to XML.

Finally, PDF documents with equations in them are notoriously difficult to
quickly bring into XML+MathML format. For plain text PDF documents, Optical
Character Recognition (OCR) software has had a decent success rate, but the special
formatting of math makes it an altogether different beast. Only the InftyReader28

26 http://www.stilo.com/
27 http://www.dclab.com/
28 http://www.inftyproject.org/en/

231

AMathML Progress Report

http://www.stilo.com/
http://www.dclab.com/
http://www.dclab.com/
http://www.inftyproject.org/en/
http://www.stilo.com/
http://www.dclab.com/
http://www.inftyproject.org/en/

OCR application is known to attempt to convert the mathematics in PDF documents
into MathML.

5. Conclusion
MathML has come a long way since its early days. The language itself has undergone
two major revisions and has reached a point of stability with features supporting
international audiences and those with a range of interest in mathematics. MathML
has received widespread acceptance from other standards communities as evidenced
by its inclusion into other standards, including those used for biological models,
physics models, and various document types. Finally, software support for MathML
has grown at a steady pace. It is now quite easy to create or generate MathML and
to display it. However, a need for browsers and e-readers to render MathML natively
still exists, and organizations with legacy content continue having difficulties con-
verting their content to XML+MathML.

Bibliography
[1] Patrick Ion. Robert Miner. 7 July 1999. Mathematical Markup Language

(MathML™) 1.01 Specification. W3C.
[2] Rossi Fernandes. 15 March 2012. What HTML5means to you29. Tech2.com India.
[3] Shankland Stephen. 5 November 2013. Google subtracts MathML from Chrome,

and anger multiplies30. CNET.

29 http://tech2.in.com/features/general/what-html5-means-to-you/290302
30 http://news.cnet.com/8301-1023_3-57610854-93/google-subtracts-mathml-from-chrome-and-anger-
multiplies/

232

AMathML Progress Report

http://tech2.in.com/features/general/what-html5-means-to-you/290302
http://news.cnet.com/8301-1023_3-57610854-93/google-subtracts-mathml-from-chrome-and-anger-multiplies/
http://news.cnet.com/8301-1023_3-57610854-93/google-subtracts-mathml-from-chrome-and-anger-multiplies/
http://tech2.in.com/features/general/what-html5-means-to-you/290302
http://news.cnet.com/8301-1023_3-57610854-93/google-subtracts-mathml-from-chrome-and-anger-multiplies/
http://news.cnet.com/8301-1023_3-57610854-93/google-subtracts-mathml-from-chrome-and-anger-multiplies/

Finalising a (small) Standard
John Lumley

jwL Research, Saxonica
<john@jwlresearch.com>

Abstract

This paper discusses issues and lessons that arose during the finalisation of a
standard (library) for XSLT/XPath/XQuery extension functions to manipulate
binary data. This process took place during 2013 in the EXPath community,
through shared (mailing-list) commenting, specification redrafting, implement-
ation experimentation and test suite development. The purpose, form and
specification of the library (which isn’t technically difficult) are described
briefly. Lessons and suggestions arising from the development are presented
in four broad categories: establishing policies, concurrent implementation and
application, using tools and declarative approaches, and pragmatic issues.
None of these lessons are new, but bear reinforcement. This work was performed
under the auspices of the EXPath community and was funded by Saxonica
Ltd.

1. Standards – let’s have plenty
Since its inception in the mid 90s, the world of XML has been governed by standards.
Originally attempting to regularise the extension of web pages, XML was developed
as a meta-syntax for markup, aimed at using a strict tree-based representation of
propertied element nodes containing sub-trees or text nodes. Very soon work started
on developing XSL as a formatted and paginated alternative to HTML for documents
with professional appearance. As we’re all well aware, the two aspects of XSL,
formatting and variable document generation, split into two orthogonal standards
- XSL-FO and XSLT. The latter developed, with XPath (and associated XQuery),
into a full declarative XML-transformational language. In most recent versions
XSLT/XPath/XQuery have become full functional programming languages, with
XML trees as central data type.

Significant work under the auspices of W3C has developed and finalised these
standards for XSLT/XPath/XQuery1 through three major versions over the past 15
years. In each case a very comprehensive specification has been developed, reviewed,
criticised and modified in cycles that are typically 3 years long and involve a few

1Whilst there are differences, for the rest of this paper, unless stated otherwise, the term XSLT or XPath
is used to refer to any of the three.

233

dozen contributors. Examples, test cases and experimental/operational implement-
ations are all used to develop and finalise the specifications, which is often followed
by a further 3 years of polishing.

Once a standard (version) has been finalised, a degree of stability should then
encourage developers of both implementations and applications to build and support
software, without the language’s syntax or semantics altering. Of course it is exactly
such full-scale use of a language that could expose shortcomings or new features
that are needed to increase utility. The art of developing standards is to anticipate
as much as is needed to get a useful and robust set of features that i) is adequate
for significant application use but ii) not too complex for implementation or applic-
ation.

In the case of XSLT, the first version (1.0) was developed very quickly, concen-
trated on defining a model for transforming XML through pull-based selection
(using XPath to select from sub-trees of the input document) or push-based case
generation, using pattern-matching templates. A minimal necessary set of functions
and instructions was also defined (e.g. count(), translate(), xsl:number) to support
necessary computation.

Whilst the functionality of XSLT 1.0 was sufficient for many initial application
purposes, additional requirements appeared slowly. Some of these could be satisfied
by interesting but somewhat complex coding techniques (such as ‘Muenchian
grouping’); others would require an extension to the language itself. In the case of
XSLT it had been anticipated that extension functions or even extension instructions
could be added to an implementation, to provide additional functionality. These
could be very application specific (my:jpg.size($uri)) or somewhat more general
(math:cosec()) and implementations were encouraged to provide support mechan-
isms for such extensions.

Over time a few common libraries of such (XPath) extension functions (but not
XSLT instructions) were developed, by mechanisms described later, in topics such
as mathematical functions, or even something as language-central as being able to
reuse generated sub-trees in XSLT. Gradually such libraries increased the firmness
of their specification and influenced some of the additional requirements for sub-
sequent versions of the main standard. A specific example is the incorporation into
XPath3.0 of mathematical (math:pow()...) and transcendental (math:sin()...) functions,
which had been developed originally by the EXSLT group[4]) as a library for XSLT1.0
operating on values of type xs:double.

1.1. Community spirit
Large standards usually grow under rigorous and well-controlled frameworks,
such as W3C, but these additions often arise from some small group of enthusiasts
identifying common ground and interest and collaborating on an informal basis.
These developments are usually a ‘community effort’ with a group of (world-dis-

234

Finalising a (small) Standard

tributed) volunteers who propose, define, refine, criticise and revise some ‘specific-
ation’ document, whilst discussing and developing implementations and tests. The
tests are usually built as large sets of small test cases, and become a key part of
proving the specification, especially when multiple implementations are checked
against them. But whilst there are varying degrees of formality in the process of
development of such specifications, all developments have some aspect of being a
social process, subject to personalities, biasses and individual interests.

These efforts sometimes succeed, sometimes they peter out, sometimes they
stall, or the effort is abandoned and a new direction chosen. The degree of formality
of such a standards effort can be variable – from simple discussions and documents,
right up to near-W3C levels of rigour. As mentioned previously, the EXSLT group
was active and influential in the period 2001-6 exploring features like mathematical
functions, dates and times and regular expressions. Several of these made their way
into the larger standards in subsequent years, though many still exist in a form of
limbo – half-finished, partially supported by one or two implementations, and used
in very few applications.

The EXPath community[1] is such a group, attempting to develop suites of rig-
orous extensions for the XPath/XQuery/XSLT world. It started in 2010 and has
perhaps a dozen or so active contributors. Early efforts include specifications for
file, http client, packaging and ZIP manipulation. The intention was to create such
suites to standards of rigour approaching those demanded by W3C for its full spe-
cifications, whilst having a more agile platform for developing new functionality.
In particular the specification documents it publishes use the same format and or-
ganisation as those of W3C2. However, until very recently none of the specifications
had stabilised enough to warrant being labelled ‘Version 1.0’, despite one of them
(File[3]) having been used extensively by a number of developers over the past few
years.

2. Fiddling with bits – Binary Module
In the summer of 2013 the author was invited by Saxonica to work on EXPath’s
Binary module[2], intended to support binary and bit-level manipulation of data
within XSLT/XPath/XQuery3. An initial draft of the module specification had been
created by Jirka Kosek (University of Economics, Prague) in the spring of 2013. Over
the next four months, the specification was revised several times, discussion on
features and criticisms were fielded through a mailing list, test suites were developed

2It operates under the W3C Community Final Specification Agreement [http://www.w3.org/community/
about/agreements/final/].
3The W3C Working Group developing XSLT had agreed such features would be useful, but were out
of scope for XSLT3.0

235

Finalising a (small) Standard

http://www.w3.org/community/about/agreements/final/
http://www.w3.org/community/about/agreements/final/
http://www.w3.org/community/about/agreements/final/

and tested. Eventually a specification (whose rigour and structure is based on those
of W3C) was finalised in early December as ‘Version 1.0’.

The module eventually ended up with a library of 26 functions, in four broad
classes – generating binary constants, basic operations of breaking, joining, extending
and searching, encoding and decoding text and numeric values and finally standard
bitwise operations.

A simple use case was finding the size of a JPEG image. Many independent in-
stances of such an extension function will have already been written in Java, but
with the facilities from the Binary module this could be written directly in XSLT:

<xsl:variable name="binary"
select="file:read-binary(@href)" as="xs:base64Binary"/>

<xsl:variable name="location"
select="bin:find($binary,0,bin:hex('FFC0'))"/>

<size width="{bin:unpack-unsigned-integer($binary,
$location+5,2,'most-significant-first')}"

height="{bin:unpack-unsigned-integer($binary,
$location+7,2,'most-significant-first')}"/>

=> <size width="377" height="327"/>

A JPEG image consists of a series of segments, starting with a marker consisting of
0xFF followed by a single byte type identifier, which is never 0x00. (0xFF in data is
byte-stuffed with a trailing 0x00, so two-byte sequences starting with 0xFF followed
by non-null always indicate start of segment.) Identifier 0xC0 denotes a Start Of
Frame segment and contains the size, number of (colour) components and sub-
sampling type of the image, all with defined byte lengths.

We need the binary of the JPEG image, which in this case we've read from a file
using file:read-binary() from the EXPath File module, but could have been web-
uploaded as base64 data. Our method is to i) find the offset location of the Start Of
Frame segment and then ii) decode the byte-positioned values for the width and
height at that location. This needs just two functions: bin:find(), which searches
for the first occurrence of a contiguous byte sequence inside another and
bin:unpack-unsigned-integer(), which returns an integer of specified length from
a range of bytes in the input.

Even the most evangelistic wouldn’t class this module as requiring ‘rocket sci-
ence’ skills to implement in an XPath processor – the Saxon implementation is a
single Java class with about 1000 (sparse) source lines4. The interest is not what this
module is really about, but how its specification is developed to consensus, what
lessons might be learned from the experience and what appear to be effective de-
cision-making processes.

4Saxon already contained a class to represent items of xs:base64Binary type, with data storage and (de-
)serialisation machinery.

236

Finalising a (small) Standard

Whilst the author had been working in software research for many many years,
and been a very heavy user of XSLT (including building large extension functions5)
in the field of document engineering for much of the last decade, he had not been
involved in the W3C or related standards activities. Being asked to work not just
on the implementation (inside a very well established software product, viz Saxon),
but also helping drive the specification itself to a ‘standard’ position would un-
doubtedly be educational. And so it proved.

The initial work covered three main areas:
• Studying the current specification and producing a modified draft in the light

of previous discussions, further comments from below and evident points of
consensus. This led to the publication of a revised draft at the end of July 2013.

• Instigating further discussion in the EXPath community to push the specification
forward. This involved summarising what appeared to be the main issues that
had been discussed beforehand and those that were apparent from my reading.
For example it was uncertain which of two different binary types, xs:hexBinary
or xs:base64Binarywould be supported or both6. These discussions were carried
out entirely through the group’s mailing list.

• Building a skeletal Java extension class to use with Saxon (including gaining
familiarity with the company’s build environment), creating a few sample test
applications, getting it all running and generating early test-sets and exercising
and testing them.

This was the bulk of the continuous work on the project, taking 10 days of effort
spread over a calendar month. However it was not the end of the affair - two more
intermediate drafts were published over the next three months, until convergence
to a version 1.0 recommendation followed at the beginning of December 2013.
During this process of refinement, which of course took place in bursts of frantic
activity and oh-so-silent lulls and involved ~100 mailing-list postings as well as
private correspondence, there were several issues to be resolved. Four of these were
significant:
• What was the main binary type to be used?
• 'Endianness' for numeric (de-)coding, including what the default should be.
• Overhauling the error code naming.
• Issues arising from access to the 'end' of data, and behaviour when arguments

are empty sequences.

5SVG-PDF converters, text-block paragraph wrappers that preserve tree isomorphism, constraint-based
layout resolvers – that sort of thing.
6xs:base64Binary was chosen – it is more efficient in serialisation, can be cast to and from xs:hexBinary
cheaply, as both are usually implemented as wrapper classes around the primary byte sequence data,
and was the de facto binary type used in the File module.

237

Finalising a (small) Standard

The following sections discuss lessons from that work, in four broad areas – concur-
rent implementation and application, establishing policies, using tools and declar-
ative approaches, and pragmatic issues.

3. Prove the specification – do it all together
A specification is a document intended to be read and understood by a human. But
it also needs to be unambiguous, with little doubt in what it is defining, since later
on applications will rely on processors behaving very closely to that specification
indeed. And to check such lack of ambiguity, a specification needs to be proven –
tested that it describes what was intended, and not have nasty surprises lurking for
the unwary, be they either those implementing processors that meet the specification
(“That operation is O(n4)”), or those writing applications (“There’s no way to check
that condition without triggering an error.”).

A specification that was purely mathematical might of course be susceptible to
being proven mathematically, but the practical and readable specifications we deal
with are not quite that rigorous. So how do we carry out such proof while the spe-
cification is being developed? Unsurprisingly I suggest techniques that these days
might be referred to as agile: i) use the computer early and often, ii) find some me-
dium-sized examples, both to illustrate and test and iii) build specification, imple-
mentation, examples and tests concurrently.

All the parts of the development – discussion, specification, implementation,
tests and applications – are related and whilst there are consequential dependencies,
some of these are circular and refining. Thus there are distinct advantages if you
can close the loops quickly, which requires progress on all almost fronts simultan-
eously.

3.1. Don’t just think – use a computer
You can attempt to build a standard purely by thought, but it really helps if you
have an idiot savant to assist and check your validity. When you have to explain all
the rules to someone who will follow them slavishly to the letter then you will cer-
tainly get useful feedback. Luckily we have such an assistant, though we have to
transcribe the rules we wish to verify into utterances in some form of programming
language they understand, and we might conceivably make errors7 in such tran-
scription.

A specification editor really should be developing a working implementation in
parallel with the specification. Not only does that give them early indications of the
complexity and size of the problems being tackled, but it also helps gain understand-
ing of what the proposed functions really mean, and with suitable examples,

7Otherwise known as bugs

238

Finalising a (small) Standard

whether there are significant shortfalls in functionality. Corner cases in input data
quickly reveal issues either in the implementation ('null pointer exception' !) or
which are unaddressed within the specification.

3.2. The power of the medium-sized example
During the development of the specification many small examples will be suggested,
and often used as notes within the specification document itself. Usually these are
to illustrate typical anticipated usage of the feature being discussed. For example:

bin:shift(bin:hex("000001"), 17) => bin:hex("020000")

appears in the Binary specification where a ‘long’ bit-shift is demonstrated – actually
this showed clearly that shifts that moved significantly across byte boundaries
($shift > 8) were supported, partly in response to a query from another imple-
menter8. Often these simple examples are added to the test suites.

But such examples don’t really show why the features being described in the
specification are useful and how they might be applied to solve useful problems.
For this we need examples that combine several different features. Obviously the
original suggesters of the standard usually have their own ideas for large applica-
tions, but to be successful in showing the initial reader how the standard features
work together, a few medium-sized examples can be very helpful.

For the Binary module, one of these medium-sized examples involved coding
and decoding long ASN.1 integers9:

<xsl:function name="bin:int-octets" as="xs:integer*">
<xsl:param name="value" as="xs:integer"/>
<xsl:sequence select="

if($value ne 0)
then (bin:int-octets($value idiv 256),$value mod 256)
else ()"/>

</xsl:function>

<xsl:function name="bin:encode-ASN-integer" as="xs:base64Binary">
<xsl:param name="int" as="xs:integer"/>
<xsl:variable name="octets" select="bin:int-octets($int)"/>
<xsl:variable name="length-octets" select="
let $l := count($octets) return (
if($l le 127) then $l
else (let $lo := bin:int-octets($l)

return (128+count($lo),$lo)))"/>
<xsl:sequence select="bin:from-octets((2,$length-octets,$octets))"/>

8Needed for example in a PDP11 emulator written in XSLT.
9Used in telecommunications, where numbers of arbitrary length are minimally encoded – but the integers
can be so long (e.g. cryptokeys) that even their byte-length values need variable-length encoding.

239

Finalising a (small) Standard

</xsl:function>

<xsl:function name="bin:decode-ASN-integer" as="xs:integer">
<xsl:param name="in" as="xs:base64Binary"/>
<xsl:sequence select="
let $lo := bin:unpack-unsigned-integer($in,1,1,'BE')
return (
if($lo le 127)
then bin:unpack-unsigned-integer($in,2,$lo,'BE')
else (let $lo2 := $lo - 128,

$lo3 := bin:unpack-unsigned-integer($in,2,$lo2,'BE')
return bin:unpack-unsigned-integer($in,2+$lo2,$lo3,'BE')))"

/>
</xsl:function>

which has results:
bin:encode-ASN-integer(0) => "AgA="
bin:encode-ASN-integer(1234) => "AgIE0g=="
bin:encode-ASN-integer(123456789123456789123456789123456789)
=> "Ag8XxuPAMviQRa10ZoQEXxU="

bin:encode-ASN-integer(123456789.. 900 digits... 123456789)
=> "AoIBdgaTo....EBF8V"

bin:decode-ASN-integer(xs:base64Binary("AgA=")) => 0
bin:decode-ASN-integer(xs:base64Binary("AgIE0g==")) => 1234
bin:encode-ASN-integer(xs:base64Binary("Ag8XxuPAMviQRa10ZoQEXxU="))
=> 123456789123456789123456789123456789

bin:encode-ASN-integer(xs:base64Binary("AoIBdgaTo....EBF8V"))
=> 123456789.. 900 digits... 123456789

This example not only exercised a number functions collectively, it also had the
unexpected benefit of testing issues of scale. Early tests showed that small integers
were handled correctly (the ASN.1 coding results could be checked by hand for
numbers a few digits long...). But the ASN.1 integer was designed to handle numbers
of arbitrary size and by using encode/decode combinations we could explore larger
usage. The example at 40 digits worked, showing that BigInt integer values were
no problem, but the next at 900 digits was seriously large-scale, and would involve
a variable-length data length field10. It simply worked.

The essential requirements on such examples are that they i) are sufficiently
complex that compound and possibly non-obvious combination of features are re-
quired, ii) involve a subject that should be clear enough to the average reader, iii)
small enough that the reader can mentally walk through the example and understand

10The 900-digit number requires 503 octets to encode, needing two bytes to encode the octet length,
which needs a byte to describe its length.

240

Finalising a (small) Standard

its operation11 and iv) have clear examples of invocation and result. Needless to
say, the example results contained in the specification should be generated by ma-
chine, and in addition these examples test the ability of an implementation to combine
successfully results from several parts of the specification.

In retrospect I feel that a slightly larger example would have been helpful – one
that exploited a few more of the library features in combination. The author had
worked on parts of a simple SVG-PDF generator (about 100 lines of XSLT), that
might have been useful as an appendix in the specification.

4. Fix policy early (and not too often)
Most libraries have a degree of regularity about them – certain types of function
have similar signatures, behave (and fail) in similar ways and might be expected to
share common semantics about aspects of their behaviour. Some of these can be
classed as policies that the library (and indeed other libraries and standards that
are of related forms) might impose on its members. Four particular issues which
could be considered to relate to policy arose during the course of the development:
function names, error handling (and naming), null or empty arguments and access
to the ‘edge’ of binary sequences, and versioning and future-proofing.

Such policies should also take into account other similar policies from the execu-
tion environment. For example error codes could have used the prefix-numeric style
of XSLT, but in this case a different coherent style from EXPath was used.

Getting these policies explosed and discussed early increases the awareness of
the community to the importance and consequences of these common decisions
and reduces the risk of large-scale and fundamental changes having to be made
across the specification at some late stage.

4.1. The naming of parts
Developers invoke facilities such as functions by names. For the library such a name
is some form of index that identifies which feature is requested – any set of enumer-
ations would suffice (fn1(), fn2()...). But for us humans these names should be
meaningful, making the general nature of the function being requested clear. They
should also be relatively concise, to aid both reading and writing. And if a function
has strong similarities to another function in a well-known parallel domain, then
some similar name might be attractive.

As an example, the first draft contained a function bin:binary-subsequence(),
which returned a section of some input binary data. In the final specification this
was now called bin:part(). The binary- section was dropped as the bin: already

11The reader is assumed i) fully competent in the language and ii) cognisant of common paradigms, e.g.
recursion and higher-order constructs.

241

Finalising a (small) Standard

implied it was concerned with binary data. subsequence implied strong similarity
with the XPath function of similar name, which wasn’t quite correct – the
substring() function had better parallels in the meaning, but ‘subbinary’ didn’t
quite ring true. Hence bin:part().

Often several functions have generally similar behaviour, effectively with some
parametric or type variation. The issue then is whether a single function with control
parameter(s) should be specified, or several with differing names. We chose to
define bin:binary(), bin:octal() and bin:hex() rather than a single
bin:constant($in as xs:string,$base as xs:integer), because i) meaning is
clearer, ii) there’s no need to check whether the base is supported12and iii) if a de-
veloper does need to choose programmatically between 2, 4, or 8, she can use
xsl:choose.

4.2. Errors, and how to live with them
Any useful program element can be invoked under erroneous conditions. Some
errors might be considered warnings, where graceful degradation is possible. Some
errors are comparatively trivial and a default result can be chosen. Some errors are
seriously fatal.

Some errors will be generic and likely to occur in a number of functions, such
as indexed access outside the range of some binary data. Others will be very specific
to a very small number of functions, such as the types of decoding errors that can
be encountered in creating strings from binary forms. To be effective error codes
used should be specific enough help trap different types of failure for appropriate
types of response (e.g. fatal termination, fallback, warning...) and collected into
common cases amongst the functions.

It really helps if the error codes are meaningful to the reader. Luckily during the
development, a change from prefix-numeric to textual codes was suggested for the
specifications of the EXPath community. Hence err:BINA000613 changed to
bin:octet-out-of-range as the error raised when a value beyond 8 bits was being
used as an octet.

But too many codes can swamp the definition or make error trapping in an ap-
plication unduly cumbersome. The author probably proposed too many fine-grain
error codes such as bin:index-before-start and bin:index-after-endwhich were
subsequently rationalised into the single bin:index-out-of-range. XSLT 3.0’s try/
catch supports providing more detailed information (such as what was the index
and data size) through bindings to the $err:* variables.

12Base 9 is unlikely, base 1 might just be credible. Even octal was questioned, though critics hadn't built
a PDP11 emulator in XSLT.
13A naming protocol deriving originally from W3C/QT tests

242

Finalising a (small) Standard

Some argue that when a function is being initially defined error cases should be
outlined concurrently with functionality. The declarative function catalog (see Sec-
tion 5.1) encourages that, by including a list of errors raised for each function
definition. [Currently the error codes and descriptions are included as a narrative
list within the specification body and cross-referred from the function definitions.
It might be more coherent to define those codes and their descriptions in the declar-
ative body of the catalog. Then the error codes themselves can be consulted by
other tools, for example to check that all error codes have been exercised within a
test-suite.]

4.3. Arguments ‘on the edge’
Just as the author thought the specification was completed, questions were raised
about some edge cases in accessing the ends of data, or in cases with ‘empty’ data.
The subsequent discussions (which involved a little frustration!) overturned some
of the already defined, implemented and tested error behaviour in a number of
functions. An example situation was with the function:

bin:insert-before($in as xs:base64Binary?,
$offset as xs:integer,
$extra as xs:base64Binary?) as xs:base64Binary?

whose functional summary was simply:

The bin:insert-before function inserts additional binary data at a given point
in other binary data.

This seems comparatively simple but some of its edge cases, and similar situations
in related functions, caused extensive rework until quite late in the specification.
Normal use of the function is straightforward – concatenate the first $index bytes
of $in with all the bytes of $extra, then followed by the remainder of $in after the
$indexth byte. However, the problems come when these arguments are not so ac-
commodating:
• $in is empty – this can occur in two ways: it could have no binary data (similar

to xs:string('')) or the argument could be an empty sequence, i.e. the XPath
equivalent of null.

• $extra is similarly empty.
• $index points outside any binary data of $in.
The behaviour already defined was very conservative – any access outside the strict
limits of the data of $in raised an error - even if the index pointed to just before or
just after the data of $in. Parallels with the function fn:insert-before() were not
terribly helpful, as its behaviour was liberal, and dated from earlier versions of
XSLT where error management wasn't available. Such erroneous conditions on an
index were allowed to degrade gracefully, defaulting to pointing to the appropriate

243

Finalising a (small) Standard

end. After much discussion the behaviour was modified to accommodate 'just on
the edge' values for the index and similarly on related functions, However by this
time the rework required was not trivial: extensive changes had to be made in three
places at once – the functional signature definitions, the working implementations
and the by-now-extensive test suites.

This is a case where deciding general principles early in the process (and perhaps
deliberately describing them in the specification) would have i) started discussion
about these issues early, ii) fixed significant parts of the error model before code
was written for it and iii) avoided late and repeated rework.

4.4. Future-proofing – which version am I?
Again, very late in the development process, some ‘nice-to-have’ features (such as
decoding sequences of numbers) were proposed, but then agreed to be ‘postponed
to version 1.1’. The issue arose about how we could i) define and examine which
version of the specification was supported and ii) how other future-proofing and
backwards-compatibility would be approached. Such mechanisms (required for
example with fallback options and conditional compilation in the target language)
require something beyond the strict extension library (e.g. adding cases to the re-
sponse of system-function()). In this case pragmatic considerations and perhaps
some fatigue, postponed such version identification to a later version14!

5. The declarative tool-user
As software engineers we live with Wirth’s maxim: “Algorithms + Data Structures
= Programs”, in that the design of suitable data structures can make algorithms
necessary to meet program goals more efficient, robust and flexible. A similar sen-
timent can be employed in this case – by designing declarative structures for some
parts of the specification (as opposed to narrative sections) and employing modest
tools to process these structures, we can increase the robustness and most importantly
the flexibility of the specification considerably. Some forms of late change can require
nothing more than alteration to a declaration and automatic reprocessing. To put
it another way:

Copy and Paste is not necessarily your friend

5.1. Anything to declare? – Plenty!
XSLT is at heart a declarative, rather than an imperative, language. We’re encouraged
to define statements (in a tree form) aboutwhat is true, rather than intricate formulae
to compute such information. Features such as tables, maps, archetypical (tree) data

14An interesting example of ‘self-non-reference’ ?

244

Finalising a (small) Standard

structures and the like can be used comparatively easily to define useful relationships
and can be consulted with XPath and small fragments of XSLT code. They also en-
courage definition in one place only.

For the Binary module there was a ‘function catalog’, using the format employed
for the standard XPath built-in function library15. This contains a declarative list of
functions, detailing their names, signatures, semantic summary, detailed rules of
behaviour, error conditions, examples and notes. An example entry was:

<fos:function name="insert-before" prefix="bin">
<fos:signatures>
<fos:proto name="insert-before" return-type="xs:base64Binary?">
<fos:arg name="in" type="xs:base64Binary?"/>
<fos:arg name="offset" type="xs:integer"/>
<fos:arg name="extra" type="xs:base64Binary?"/>

</fos:proto>
</fos:signatures>
<fos:summary>
<p>The <code>bin:insert-before</code> function inserts additional
binary data at a given point in other binary data.</p>

</fos:summary>
<fos:rules>
<p>Returns binary data consisting sequentially of the data from
<code>$in</code> up to and including the <code>$offset - 1</code>
octet, followed by all the data from <code>$extra</code>,
and then the remaining data from <code>$in</code>.</p>
<p>The <code>$offset</code> is zero based.</p>
<p>The value of <code>$offset</code>
<rfc2119>must</rfc2119> be a non-negative integer.</p>

<p>If the value of <code>$in</code> is the empty sequence,
the function returns an empty sequence.</p>
<p>If the value of <code>$extra</code> is the empty sequence,
the function returns <code>$in</code>.</p>
<p>If <code>$offset eq 0</code> the result is the binary
concatenation of <code>$extra</code> and <code>$in</code>,
i.e. equivalent to <code>bin:join(($extra,$in))</code>.</p>

</fos:rules>
<fos:errors>
<p><bibref ref="error.indexOutOfRange"/> is raised if
<code>$offset</code> is negative or <code>$offset</code> is
larger than the size of the binary data of <code>$in</code>.</p>

</fos:errors>
<fos:notes>

15The File module, with a genesis some 2 years earlier than Binary, contains the function definitions as
narrative text (albeit of regular form) in the specification itself. Fortunately a 70-line XLST program can
attempt some reasonable reverse-engineering.

245

Finalising a (small) Standard

<p>Note that when <code>$offset gt 0 and $offset lt
bin:size($in)</code> the function is equivalent to:</p>

<eg>bin:join((bin:part($in,0,$offset - 1),
$extra,bin:part($in,$offset)))</eg>

</fos:notes>
</fos:function>

The specification generation tools (XSLT stylesheets from W3C, with minor additions)
can generate a function definition section from such a declaration, which can be
requested from the main specification via a processing instruction (<?function
bin:insert-before?>). Thus for example the groupings and order of such functions
in the final document (or even whether the function is to be presented at all) is
separated from the actual definition of the function itself.

Whilst this declaration was originally written for use in the specification, its
utility is potentially much wider. It can provide data for an online reference (as
Saxon’s documentation does) or auto-hinting in editors. Simple XSLT tools can
collect signatures, or sets of error codes, or generate empty templates for test sets.
It can even be referenced (as a signature) from another specification that suggests
the use of the given function for some compound purpose.

5.2. Tools help you rework
Despite all the measures outlined earlier, there will always be some rework necessary.
With a bit of forethought and some very modest tools, the effort required for such
reward can be minimised and the flexibility of the development components (spec.,
tests, implementation) increased. Here is a very simple example from the test suite
whose final format will be QT3:

<expand name="binary-to-octets"
function-name="to-octets" prefix="bin">

<created by="John Lumley" on="2013-07-18"/>
<environment ref="binary"/>
<test-case>
<description>Octets from a zero-length binary</description>
<test> $FUNCTION(xs:base64Binary("")) </test>
<result>
<assert-empty/>

</result>
</test-case>
<test-case>
<description>Generate octets from a 4-length</description>
<created by="Jirka Kosek" on="2013-10-06"/>
<test> $FUNCTION($man.base) </test>
<result>
<all-of>

246

Finalising a (small) Standard

<assert-type>xs:integer*</assert-type>
<assert-deep-eq>(77,97,110)</assert-deep-eq>

</all-of>
</result>

</test-case>
...

</expand>

This will end up being expanded into test cases in QT3 format such as:
<test-case name="binary-to-octets-002">
<environment ref="binary"/>
<description>Octets from a zero-length binary</description>
<created by="Jirka Kosek" on="2013-10-06"/>
<test> bin:to-octets($man.base) </test>
<result>
<all-of>
<assert-type>xs:integer*</assert-type>
<assert-deep-eq>(77,97,110)</assert-deep-eq>

</all-of>
</result>

</test-case>

The substitutions involved are extremely trivial and perhaps a good re-factoring
editor could make the changes. But the flexibility shown here is i) the actual name
for the function can be altered in just one place, ii) common elements within the
tests (environment reference, base test name...) are defined just once. Code necessary
to achieve the expansion is simple - as all data is an XML tree, XPath accessors such
as $common[not(name() = current()/*/name())] will select all those elements in
$common (the common elements of the expand parent) that are not overridden in the
specific test-case.

There are many other cases where simple tools operating on declarative descrip-
tions can increase flexibility. In some cases it can even be worthwhile developing
a generic macro processor to assist, such as one that supports buried XSLT pull-
trees (e.g. for-each select="2,4,8">.....)

6. Be realistic – we haven’t got all day
We all like our creations to be useful. We also like them to be elegant, long-lived
and peer-respected. Paymasters like them to be robust, high-performing, patentable
and cheap. Some of these goals are invariably in conflict. We only have finite time
and resources to refine the specification, and the most effective feedback, actual
use, will only appear when real implementations are available. So we need to con-
sider priorities and focus early effort where absolutely necessary (e.g. firming core
functions), or which will be cost-effective in the medium term (interpreting declar-

247

Finalising a (small) Standard

ative representations). But some requirements may have a fundamental conflict
with other features of the application environment, such as the purity of the target
language.

6.1. Pragmatism vs Purity
Programming languages vary in their theoretical purity from ad hoc affairs, such as
BASIC or Perl, through to languages that are really frameworks of mathematical
declarations and theorems. Extensions in the forms described in this paper can lead
to tensions with the underlying semantics of the base language, especially with
those of higher theoretical purity. In the case of the binary module and XSLT/XQuery,
as the functions are totally pure (i.e. have no side-effects at all), these extensions do
not compromise the functional nature of the underlying language.

But we don’t have to stray far to find such tension appearing even in something
this innocuous. The Binary module provides no facilities to read or write binary
data to or from files – for this it relies on other libraries, most notably the EXPath
sibling File module[3] which provides three functions, file:read-binary(),
file:write-binary() and file:append-binary(). The last two of course do have
side-effects – it’s their sole purpose, to write a file in the outside world.

Now we get to the nub of the tension in this case - suppose we have a program
that is creating a PDF file from fragments of SVG16 by generating sections of binary
data for each graphics child of an svg:svg element and then appending each result
into an output document:

<xsl:template match="svg:path" mode="create-pdf" as="xs:base64Binary">...

<xsl:template match="svg:rect" mode="create-pdf" as="xs:base64Binary">...
...
<xsl:variable name="pdf" as="xs:base64Binary*">

<xsl:apply-templates select="svg:svg/*" mode="create-pdf"/>
</xsl:variable>

...
<xsl:sequence select="

for $p in $pdf.parts return file:append-binary($uri,$p)"/>

The file:append-binary() is used here to accumulate a result by parts within a
single file. But there is no requirement that the for expression evaluates for each of
its iterative values in temporal sequence (as long as the order of the result, which
in this case for each is an empty sequence, is preserved). So theoretically the order
of pieces in the output document (and hence the apparent draw order in the resulting
PDF) may not follow that of the input svg:* graphics pieces. This is a case where

16There would be more indexing required, but it illustrates the point.

248

Finalising a (small) Standard

there has to be considerable (higher-order?) early discussion on the approach to
take17.

6.2. Focus on the core
Comments such as “could we have a pattern-directed number-decoder?” are a two-
edged sword. On the positive side it shows enough of an interest from a potential
user of the library to make such a suggestion. But on the other hand it deflects focus
from the core issue – defining the fundamental functions that must be extensions,
and getting them right. These core functions operate within an environment that
has complete computational capability, so a useful approach is to sketch out how
such a ‘bell-and-whistle’ could be written as an XPath/XQuery/XSLT package using
the already-defined minimally-required functions18.

But such minimalism should be tempered with common sense. (In the extreme
for the Binary module only two core functions are absolutely necessary:
bin:to-octets() and bin:from-octets() – everything else can be computed in
XPath around sequences of bytes, but performance and readability would plummet.)
So simple convenience functions that may make code much clearer and will evidently
cost little to implement when other fundamental functions are supported should
be tolerated. For example, under non-error conditions, the function
bin:pad-left($in,$pad-length,$pad-octet) is equivalent to:

bin:join((bin:from-octets((1 to $pad-length) ! $pad-octet), $in))

This is a pretty simple substitution, but given i) that pad-left has a clearer meaning
and, more importantly, ii) all the machinery for adding byte sequences together is
required in any implementation of bin:join($parts as xs:base64Binary*), then
the support cost for bin:pad-left()will be minimal. Performance will be enhanced
too, avoiding the iteration across the repeated padding octets.

6.3. It doesn’t have to be perfect
This might sound like an anathema; after all we’re supposed to be building robust
standards. But the real objective is to get a useful specification and standard – one
that is going to be used and then perhaps further developed after substantial exper-
ience from application developers. As such there will be times when ‘enough is
enough’, and further bickering over small details may create a great deal of unne-
cessary delay and frustration. In the Binary module, after the publication of the
fourth draft and provided all the necessary core functions were sound, further fea-

17Oh dear - here we go trying to understand monads again.....
18Preferably enlist the help of the original suggester in defining and testing such a package.

249

Finalising a (small) Standard

tures or alternate ‘edge behaviours’ could always be emulated by XSLT scripts by
those keen enough19.

7. Conclusion
This paper has taken a stroll through the finalisation of a small specification/standard,
trying to extract some useful lessons. What are the most valuable to the author?
• Establish as much policy as possible early on and get it written down near the

head of the specification.
• Declare as much as you reasonably can and use the computer to generate

therefrom.
• Get several medium-sized examples and expose them to discussion and execu-

tion.
• Build a skeletal implementation from the start and use it to run examples, and

early tests.
• Build XSLT/XPath/XQuery emulations of some suggested function, using core

functionality and use it for discussion, experimentation and definition.

7.1. Acknowledgements
The author must thank several individuals in the EXPath community. Jirka Kosek
started the whole thing off, originally proposing the Binary module, drawing up
the first draft and commenting on subsequent re-drafts. Florent Georges helped
steer the whole EXPath community and gave the author much help on dealing with
its systems and tools. Many others contributed in mailing-list constructive criticism,
but Christian Grün should be singled out for the depth of his contributions and
being amongst the first to build an implementation to the specification, complete
with a separate test suite. Finally Michael Kay needs thanks for giving me the
challenge of getting a standardised binary library ready for Saxon!

7.2. Quo vadis?
Implementations of the Binary module are in the process of publication and will
hopefully find application use. From there will undoubtedly flow issues (all minor
of course!) and perhaps some suggestions for ‘Version 1.1’.

“No peace for the wicked” – the author has another module (on manipulating
files in archive format) to be finalised within the EXPath framework.....

19Packaging in XSLT3.0 will make such functional extension much easier.

250

Finalising a (small) Standard

References
[1] EXPath (: Collaboratively Defining Open Standards for Portable XPath Extensions :).

http://expath.org

[2] Binary Module 1.0. John Lumley. Jirka Kosek. EXPath Community Group.
http://expath.org/spec/binary

[3] File Module. Christian Grün. Matthias Brantner. EXPath Community Group.
http://expath.org/spec/file

[4] EXSLT. EXSLT. http://exslt.org

251

Finalising a (small) Standard

252

Publishing in Style with XML
Or, Why It’s Not XSL-FO

Liam Quin
W3C

<liam@w3.org>

Abstract

This paper reviews the status of CSS for producing books, both in print and
on screen, discusses W3C strategy and CSS Working Group practice for
moving CSS forward, and indicates some major areas of CSS strengths and
weaknesses compared to XSL-FO.

Keywords: XML, XSL, publishing, CSS

1. Introduction
The primary standard way to format an XML document has for over a decade been
to transform the document (typically using XSLT) into a format-specific vocabulary
called the Extensible Style Sheet Language Formatting Objects, XSL-FO and then
to use an XSL rendering engine to produce PDF, RTF or other formats, primarily
for print.

There are several XSL-FO rendering engines, both proprietary and open source.
XSL-FO usage has been increasing over the past three to five years, at least as
measured by support forum activity and conference attendance, and this increase
appears to be largely as a result of publishers moving to the XML single-source
multiple-output way of working: the publishers need to produce both printed books
and ebooks.

At the same time that usage of software based on the XSL-FO specification has
been increased, energy to enhance the specification dissipated. Rendering systems
based on XSL-FO continue to be developed and evolve, but W3C in 2013 ceased
formal development of the XSL-FO specification because of a lack of participation.
This state of affairs might seem strange, but may indicate that a competing techno-
logy has started to come of age.

This paper gives an overview of the use of Cascading Stylesheets (CSS) to format
XML documents for print, describes some commonly encountered difficult areas,
and discusses W3C’s position and what work is being done to help CSS take on the
work that XSL-FO had been doing.

253

2. Not Your Grandma’s CSS
Many people in the XML community (some of whom were previously, or are still,
people in the SGML community) first met CSS many years ago, perhaps when the
authors had the idea that if the stylesheet specified red text and the user preferred
blue, the colour used should actually be purple. In 1995 CSS was intended as a very
simple mechanism for styling text in a Web browser. By 1998 it had become more
sophisticated and powerful, although the authors still seemed not to understand
much about basic typography. But it was enough that most of XSL-FO is defined
in terms of CSS properties applied to text.

If your knowledge of CSS predates 2010 or so, you should be prepared for
something very different today.

3. Not Your Aunt Tillie’s CSS
Although CSS was designed for simplicity, CSS for print is not by any useful stretch
of the imagination simple. The specifications themselves (there are more than sixty
documents that form CSS today) are complex and interact in ways that are difficult
to understand. Production CSS stylesheets tend to be long and cumbersome, and
can be difficult to write and to debug. hundreds or even thousands of lines of CSS
is not an unheard-of size. One reviewer of a draft of this paper had 370 CSS style
rules containing 986 separate properties and said “most of that is probably not
used,” but that was for relatively simple books and not (for example) aircraft
manuals. Aunt Tillie, a hypothetical figure used in the Open Source community to
represent a user who is not particularly computer-literate, would have a hard time
learning CSS for print.

If you are considering moving to CSS from XSL-FO, you should be aware that
although the CSS page model is simpler, there is more overall complexity. It is
easier to hire staff who know enough to be dangerous with CSS than with XSL-FO
but much harder to hire experts in producing print with CSS. You need to hire
someone who can learn, who can debug problems, and who can listen to the docu-
ment designers, and not expect to be up and running in a single day (or week).

There are a great many resources for learning CSS for Web design. There are
some resources for learning CSS for EPUB 3, and there is at least one book in pre-
paration for people producing books from CSS, but today there are more resources
for learning XSL-FO. Unfortunately, the XSL-FO specification, although very clear
and well-written, is complex and difficult to understand,. People today, often more
familiar with HTML, JavaScript and CSS than with XML or XSL, find CSS more in-
viting to learn. Even the mythical Aunt Tillie won’t argue with motivation.

254

Publishing in Style with XML

4. Moving from XSL-FO: The Models
An XSL-FO document has two main parts, which can be (and often are) interleaved:
the definitions, including “page masters,” and the actual text. The text is an XML
document in which every element is in the XSL-FO vocabulary and has explicit CSS
styles: fo:inline font-weight="bold".

In CSS the document is in XHTML (you can apply CSS to arbitrary XML in
principle but in practice it had better not be too arbitrary, and sticking to XHTML
puts you back in documented, charted waters); the stylesheet is in a syntax inspired
by languages like C and AWK, languages which also inspired Java and JavaScript
and feel comfortable and familiar to most programmers today.

5. Sample Difficulties
This section describes some difficulties one might encounter when moving from an
XSL-FO perspective on formatting to using CSS-based products. Although such a
list cannot be exhaustive it can be illustrative. The examples have been chosen to
try to show how different ways of thinking are needed, how different classes of
problem emerge, and how some XSL-FO functionality is not yet available.

6. Pages

6.1. Defining And Numbering Pages
XSL-FO has a “page master” model in which you define a template to be instantiated
for each page; the template contains “regions” into which the content will flow. CSS
does not have page templates. There are page rules, but these are very limited. Ex-
ample 1 shows how a simple page rule can define a paper size.

Example 1. Defining a Page

@page {
width: 21cm;
height: 29.7cm;
/* can also just say A4 or letter,
* but the list of possible names is short */

}

6.2. Areas Within a page
A page in CSS has sixteen named areas surrounding it that are used for running
headers and footers on the top and sides. This is more than XSL-FO’s simple page

255

Publishing in Style with XML

master, but the formatting of these page areas is not precisely defined and it is not
currently possible to have multiple flows on the same page.

The CSS page regions have names like top-left and bottom-right. Example 2
shows one way to number pages. The “page” counter is automatically incremented
at the start of each page, and does not need to be declared; user-defined counters
are also available, and the sanity of the stylesheet writer depends on declaring those
counters and initializing them to zero. The example also gives a simple example of
“inheritance”: the page size is defined in a general rule for every page and then
specialized rules for left (verso) and right (recto) pages are defined which are said
to “inherit” properties from the general page rule.

Example 2. Page Areas

@page {
width: 21cm;
height: 29.7cm;

}
@page:left {

@top-left {
content: "Page " counter(page);

}
}
@page:right {

@top-right {
content: "Page " counter(page);

}
}

As with XSL-FO, page definition proliferation is a problem, since you end up with
left, right, blank and first variants of page definitions for prelims, table of contents,
introduction, chapter, appendix, foldout, and so on and on. Use of a pre-processor
can mitigate this, but whereas XSL-FO is designed for use with XSLT, there is no
standard preprocessor for CSS, and most or all of the existing ones seem to be aimed
primarily at on-screen scrolling use rather than print or paged media use. This
situation is changing.

The author of this paper has experimented with CSS preprocessors written in
XSLT, but they are rather specialized tools.

A common difficulty with page numbering in CSS is that when an element
switches to a new page rule or resets a chapter or page counter the footer on the
page with the transition might have the new page number but in the old (previous
section’s) format. A way around this seems to be to nest elements: put an HTML
div element around each section element to separate the page break from the page
style transition.

256

Publishing in Style with XML

6.3. Static Page Content
In XSL-FO if you want some text to appear on every page you put it in the page
master. In CSS you can’t do this: the text has to come from an element in the docu-
ment. You can supply a background image for each page using a stylesheet, but
you often need more.

Currently the solution is to take an element from the document and arrange for
it to have fixed positioning, which is taken (arbitrarily) to mean that it should appear
on every page until the content of its containing element has been exhausted.

You can also use the content of an element in a running header or footer, but
today if you do that the element is deleted from the main content, so if it’s a title
that should appear in the document you have to duplicate it.

Finally, you can save the content of an element in a string and use that in a
running header or footer; in that case, arbitrarily, the element is not deleted from
the main flow, but of course contained markup is not carried through into the run-
ning header.

7. After the first page
The lack of page templates (currently) in CSS means that formatting has to be asso-
ciated with elements in the document. To some extent that’s also true in XSL-FO,
and the clearest comparison is thus between the HTML document and the FO doc-
ument, even though it was not the intention of the XSL Working Group that FO
documents be shared or authored directly. In this comparison we see that items
such as a table of contents would in the XSL-FO case be generated (often by XSLT)
but in the HTML case would have to be part of the document. The most common
answer here is to generate the XHTML with XSLT from an XHTML or other XML
master document. The formatting examples in this section, then, assume that either
you’re willing to put format-specific details into your XHTML or you’re generating
the XHTML from another document. An emerging possibility is using JavaScript
to generate a table of contents; JavaScript support in commercial print-quality CSS
formatters is still very new and experimental at the time of writing, however.

7.1. Tables of Contents
It might seem reasonable that different presentations of a document have different
tables of contents. A book for study might have a fully detailed table of contents,
with annotations about each section, and a book intended for casual reading (or a
cheaper edition saving money by having fewer pages) might have a simpler table
of contents.

257

Publishing in Style with XML

Example 3. XHTML for Table of Contents

<ul class="toc">
Chapter 1
Chapter 2

Markup for a table of contents typically treats each entry in the table of contents as
a list item in an HTML list; CSS is then used to disable the list behaviour of the
bullets and indents; CSS can be used to insert dot leaders for an old-fashioned (or
corporate) appearance, although there is no straight-forward way to control the
spacing or size of the leaders.

Example 4. CSS for Table of Contents

ul.toc {
list-style: none;
display: block; /* as opposed to list */

}

ul.toc li {
list-style: none;
display: block; /* as opposed to list-item */

}

ul.toc li a {
/* don't want blue underlined links */
color: black;
text-decoration: none;

}

ul.toc lia a:after {
/* after the "a" element comes the dot leader and page */
content: " " leader(dotted) " " target-counter(attr(href, url), page);

}

This idea of changing an HTML list to be something else vaguely list-like is very
widespread in the HTML world, and, remarkably, is not considered tag abuse. Some
people might say that a table of contents is an “ordered list” although in an interact-
ive environment a reader might want to see it sorted by chapter title rather than by
page. A table of contents is a presentation of a set of relationships.

258

Publishing in Style with XML

7.2. Units and Expressions
In XSL-FO every value is really an expression, so to allow for a 2pt border you can
write width="3in - 2pt". With CSS that’s a syntax error because values are not
expressions.

Luckily, CSS has added calc(), a function that takes a simple expression language
so you can now write calc(3in - 2pt); watch that you need spaces around the subtrac-
tion sign, as in XPath.

7.3. Selectors and Specific Gravity
Once you have more than a few hundred lines of CSS you are almost certain to run
into a common problem: you add a new style rule and an old one stops working,
or the new rule is ignored, or it doesn’t do what you expected.

The reason is that CSS chooses themost specific selector expression when determ-
ining which style rule to apply. Worse, multiple style rules can be combined auto-
matically by the CSS renderer to format a single element. The intent was two-fold:
to support a sort of object-oriented inheritance that makes style sheets smaller and
easier to manage (as shown in the @page example), and also to allow end users to
write their own CSS to override aspects of remote Web sites they don’t like. The
attempt largely failed on both counts. Most users do not write their own style sheets
(Web browsers are in the process of removing the menu items to give users access
to adding their own styles, as it’s so rarely used). The inheritance turns out to be
confusing enough that people are more likely these days to use a CSS preprocessor
to manage it, although it can still be helpful when used with care.

If inheritance in CSS was not all it was hyped to be, no matter: many technologies
have been over-hyped. But we are left now with the problem that adding a new
stylesheet rule can affect others in ways that are hard to predict. Unfortunately there
is no way to override specificness of a selector, nothing like priority="6" with
XSLT.

People working on CSS for print have communicated to me that working out
exactly which style rules are being applied and why takes up a significant amount
of their time. it may therefore be worth noting that the most effective debugging
tool the author has found for this situation is to open the document in the Chromium
Web browser (or any Webkit-based browser) and to use the Inspect Element feature;
the resulting window shows which CSS selectors and rules contributed to the styling
of the element instance in question. Although Chromium does not at the time of
writing support paged media CSS properties, it does still show them in its debugger.
The Firefox debugger is less useful in this regard at the time of writing, but the im-
portant point is to try opening the HTML file, with its CSS for print, in a Web
browser, and, even though it won’t look good, use the Web debugging tools.

259

Publishing in Style with XML

7.4. Baseline Positioning and Boxes
Neither XSL-FO nor CSS guarantee exact positioning of text baselines. You can po-
sition a box, but the position of the baseline relative to the edge of the box depends
on the actual font used, and that’s up to the formatter.

For print use, we can usually control the font that is being used and, perhaps
through trial and error, determined the distance from the baseline of the text to the
bottom (or top) of the CSS content box. On the Web you can’t do that: a user might
have Web fonts turned off, or might have specified their own fonts. For the purpose
of this paper, we are considering primarily printed applications and formatting to
PDF, so fonts are a known quantity. However, CSS still cannot reliably align text
in two adjacent columns of text by baseline, resulting in a distracting untidiness at
the foot of the columns and, potentially, show-through in print.

7.5. Indexes
An index at the back of the book (the correct English plural is indexes; indices are
constructs found in mathematics) is an important tool for readers. Established con-
ventions help readers use an index effectively. Formatting in index requires col-
lapsing ranges of page numbers, something that cannot be done until after pagina-
tion.

CSS does not currently have sufficient mechanisms for making such an index;
XSL-FO has fairly sophisticated support for it. There have been some experiments
in proprietary tools such as PrinceXML, and we may expect to see advances in this
area soon.

7.6. Tables
Although HTML tables could in principle repeat headers and footers on each page,
in practice the support is vestigial; XSL-FO tables are much more robust than HTML
tables today. CSS also does not treat table notes differently from regular footnotes,
a requirement in much military and engineering publication work.

8. Why so Glum?
When people move from one technology to another there’s a learning curve; new
things can seem difficult and require unfamiliar thought patterns. This paper has
given some examples to try and illustrate how an XSL-FO user will need to change
the way they think about formatting, at least a little, to work with CSS. But there
are also strengths in CSS.

260

Publishing in Style with XML

8.1. Sharing Styles
Since many print publications today must also be made available as electronic books
and often Web sites, being able to share the formatting can considerably reduce
costs and time to market. Even where there are differences in the way certain ele-
ments (such as images or large tables) are handled, there is likely to be a large
commonality of style in everything from cross references through to superscripts.
Web sites and most newer digital book formats use HTML and CSS, so using HTML
and CSS for the printed book makes sense in such an environment.

It should be noted that the author of this paper is not advocating the use of
HTML for archival content or for working with complex publications. An XML
format that models the information directly should be used where possible; some
publishers are also using a highly constrained HTML vocabulary such as HTMLBook,
with added metadata, alhough it remains to be seen how well this approach will
stand up to the needs of archivists.

8.2. Sharing Style Rules
The inheritance feature of CSS mentioned earlier can be difficult to work with if
you are not familiar with CSS, and can cause surprises even years later, but it can
also help to support significant reductions in complexity. As with many program-
ming tools, CSS cascading and HTML class attributes should be used with some
care and understanding; they can be more powerful than XSLT attribute sets and
XSL-FO inheritance because of the way individual properties can be overridden all
the way up the inheritance chain, but in that sense “goto” is more powerful than
“while”. CSS inheritance is powerful and useful when used well.

8.3. Rapid Development
The ability to preview results in a Web browser, and to use the Element Inspector
to change style properties temporarily, is very powerful. Although similar environ-
ments have existed for SGML and XML stylesheet systems in the past they are not
widely available today.

8.4. The In crowd
There can be no doubt that CSS is attracting many more resources and developers
than XSL-FO today. Use the right tool for the job, but if either tool will do, use the
one that’s going to be maintained into the future.

261

Publishing in Style with XML

8.5. Communicating with the Young and Hip
Web designers, wither young or old, must through necessity have at least a working
knowledge of CSS in both its strengths and its weaknesses. Since it would be hard
to graduate any sort of graphic design course today without at least some exposure
to Web design, using CSS means you have a common language with the designer,
and also means you are likely to be able to do the things the designer wants and
that you won’t be asked to do things you can’t do.

9. W3C and CSS for Publishing
The W3C staff have taken an initiative to try to get more people from the world of
professional publishing involved with the CSS Working Group, and any other rel-
evant areas. To this end a new Publishing Activity has been formed, and a Digital
Publishing Interest Group has started, co-chaired by Marcus Gyling from IDPF, the
organization responsible for the EPUB specification widely used in digital books.

9.1. The W3C Publishing Activity
The W3C Publishing Activity was launched officially in the Summer of 2013. It
provides a focus for W3C’s work with the professional publishing community, and
will also be where academic publishing and other publishing-related topics are
discussed.

9.2. The Digital Publishing Interest Group
Within the Digital Publishing Activity, the Digital Publishing Interest Group is a
W3C Member-only group gathering requirements for standardization. Several
publishers are participating, as well as industry experts, digital book vendors, ac-
cessibility and internationalization experts and others. They are working actively
on a document describing Western (Latin-script) typographic requirements from a
professional digital publishing perspective, so that the CSS Working Group, and
any other Working Groups as appropriate, can have a reference that’s focused on
providing the information they need. The scope is roughly comparable to the Japan-
ese Layout Requirement Document that has already been produced.

The Interest Group also has a close relationship with IDPF, the organization re-
sponsible for the EPUB specification widely used in digital book readers.

9.3. Working With CSS
The Digital Publishing Interest Group includes expertise in a wide range of areas,
and is working closely with the CSS Working Group to suggest, emphasize and

262

Publishing in Style with XML

prioritize features; the Generated Content and Paged Media CSS draft now has a
new editor who is also active in the Interest Group, and that document is moving
forward rapidly.

The CSS Working Group itself has been very receptive to the input from the
publishing community (both for ebooks and for print); this is a major step forward
in itself, and bodes well for the future of CSS in publishing.

10. Conclusions
Cascading Style Sheets have come a long way in the past few years, and when used
with a suitable print formatter are now a credible way to produce printed content.
CSS is still along way behind XSL-FO for print, although of course it is a long way
ahead for Web development and interactive work, and does have many features
not present in XSL-FO. Work is ongoing at W3C to bring CSS to the level of XSL-
FO and beyond for print work. Today, most Web browsers do not have good support
for “paged media” and separate rendering engines are needed for good quality (or
acceptable) print; whether this will change remains to be seen.

263

Publishing in Style with XML

264

Formatting from XML
Tony Graham

Mentea
<tgraham@mentea.net>

Abstract

Formatting from XML is in freefall. On one hand, XSL-FO standardisation
quietly died even as XSL-FO usage is on the increase, while on the other hand,
CSS is moving to standardise properties for paginated media yet its pagination
spec has been forked and Liam Quin, XML Activity Lead at W3C, says “I
hope that CSS catches up with XSL-FO over the next two or three years.”
[28] Recently, the W3C also created a Digital Publishing Interest Group [14]
that, starting from a wide-ranging mission as “a forum for experts in the di-
gital publishing ecosystem of electronic journals, magazines, news, or book
publishing (authors, creators, publishers, news organizations, booksellers,
accessibility and internationalization specialists, etc.)... to align the existing
formats and technologies (e.g., for electronic books) with those used by the
Open Web Platform”, has narrowed its formatting focus to books [23] and is
“currently focused on getting more publishing companies to join” [22]. So if
you are not a publishing company, you are not looking to represent your data
in HTML5, or you need more than CSS or XSL-FO can currently provide
[24], then you are out of luck, or out of standards-based solutions, for the im-
mediate future.

1. Comparing XSL-FO and CSS efforts
The XML Print and Page Layout WG [33] shut up shop sometime in 2012. The WG's
page was updated in November 2012 to state “This WOrking [sic] Group is no
longer active, because of insufficient participation. The specifications are no longer
maintained." and the WG's charter expired in January 2013 without any attempt to
have it renewed. In October 2013, Liam Quin stated about the WG, “We were down
to three people in Working Group teleconference calls, and that was on a good day.”
[29] The XPPL WG charter [34] stated “To be successful, the XML Layout and Print
Working Group is expected to have 6 or more active participants for its duration...
to consume two hours per week for each participant, with more time being highly
desirable.” In contrast, the current draft of the next charter [8] for the CSS WG states
“To be successful, the group is expected to have 10 or more active participants for
its duration... to consume one work day per week for each participant; two days
per week for editors.”

265

For quite some time before it was shuttered, the XPPL WG had no representation
from commercial formatter vendors, but nor does the CSS WG even now. However,
since CSS has been operating in public for several years, it's not been necessary for
the two principal CSS formatter vendors – Prince and Antenna House – be W3C
members to follow the work. Even so, Prince has effectively had a proxy in the CSS
WG since Håkon Wium Lie of Opera Software is also a director of Prince, and An-
tenna House has in the past contracted an CSS WG member to develop a CSS
module spec in which they were particularly interested. However, from the per-
spective of the CSS WG, and particularly its chairs, the fact that the main vendors
are not members of the WG raises concerns about patent policy and slowness of the
communication process [13].

For a long time, the main CSS module for print publications was “Generated
Content for Paged Media” (GCPM) [9], which covered running headers and footers,
leaders, cross-references, footnotes, and other aspects of styling book-like content.
It is largely the work of its editor, Håkon Wium Lie. The CSS WG resolved at a face-
to-face meeting in September 2013 to move parts of GCPM to other specs, including
parts to a new “Page Floats” spec, and publish the remainder as a new Working
Draft. However, before any new drafts were published, Håkon Wium Lie announced
in October 2013 that the GCPM and Page Floats specs had moved to WHATWG
[32] under the names “Books” and “Figures”. In a CSS WG telecon two days later
[10], Håkon stated that moving to WHATWG provided “the atmosphere to work
more easily” and also that he would “set off, write spec, write tests, and come back
in January.” Since then, the CSS WG resolved to appoint David Cramer of Hachette
Livre as editor of GCPM [11], so there's now potentially two versions of the specs.
As of 19 January 2014, “Books” and “Figures” were last updated on 15 January 2014
and 6 January 2014, respectively, while the W3C versions have not been updated
since late September 2013.

2. W3C Digital Publishing Interest Group
The DPUBIG has the stated mission “to provide a forum for experts in the digital
publishing ecosystem of electronic journals, magazines, news, or book publishing
(authors, creators, publishers, news organizations, booksellers, accessibility and
internationalization specialists, etc.) for technical discussions, gathering use cases
and requirements to align the existing formats and technologies (e.g., for electronic
books) with those used by the Open Web Platform.”, but as stated in the abstract,
they have reduced their current scope to books and are focusing on getting more
publishing companies to join the IG, which for most publishers means they need
to first join the W3C.

The DPUBIG currently divides its work into eight task forces:
• Latinreq (includes typesetting)

266

Formatting from XML

• Page DOM
• Metadata
• Behavioral Adaption
• Annotation
• MathML, STEM
• Security
• Accessibility
• Bridging Offline and Online
The DPUBIG is due to present the first draft of its technical issues to other W3C
Groups in January 2014. Since the work is now divided into task forces in a way
unanticipated in the charter, the completeness or otherwise of the work will vary
across task forces.

Somewhat separately to the work of the IG members, the W3C conducted three
Digital Publishing Workshops – February 2013 in New York [15], June 2013 in Tokyo
[16], and September 2013 in Paris [27] – that were open to anybody submitting a
position paper.

As can be seen from their titles, many of the task forces are specific to electronic
books, with really only 'Latinreq' being directly applicable to the page layout aspects
of both electronic and dead-tree publishing.

'Latinreq', short for “Requirements for Latin Text Layout and Pagination”, “de-
scribes requirements for pagination and layout of books in latin languages, based
on the tradition of print book design and composition.” [23] It is inspired by “Re-
quirements for Japanese Text Layout” [21] produced for Japanese.

The DPUBIG itself is not chartered to produce Recommendations, but, rather,
it is to work with other W3C Working Groups “to ensure that the requirements of
this particular community are met”, so Latinreq is meant mainly as input for the
CSS WG. Dave Cramer of Hachette Livre is the Latinreq task force leader, editor of
the document, and editor of the CSS GCPM spec, so there should be good cooperation
between the DPUBIG and the CSS WG in this matter.

As of 19 January 2014, the Latinreq draft still contains many sections that are
just a heading with no other content, but it also has had content added in several
sections since the first draft of this paper in early December 2013. The document
currently mostly features examples only from narrative texts and includes, for ex-
ample, a section on optimising the number of pages in a book to be some multiple
of eight, sixteen, or thirty-two pages resulting from the binding process.

The current draft also contains several examples of how to use CSS to achieve
effects such as running heads. These are due to be removed, but the description of
a running head containing the author name, the page number, and an ornament as
“quite complex” and needing proprietary extensions illustrates the difference in
expectations for CSS pagination compared to XSL-FO pagination.

267

Formatting from XML

3. Can you typeset a book with CSS?
That is the title of the talk [2] by Bert Bos, co-inventor of CSS [1], at the 'eBooks &
i18n' workshop in Tokyo in June 2013. His assessment is that, no, you can't, or at
least not at present. The rest of his presentation covered features that would need
to be added to CSS, but provided no timetable for when they would be done. Portions
of his concluding summary included:
• It is not possible to make books or e-books with standard CSS
• CSS isn't even up to the level of XSL-FO 1 yet.
• Adding [extensions] to CSS is going to take time
Bert is collecting his own “List of CSS features required for paged media” [3] that
has been updated several times in recent months.

Dave Cramer, in his presentation [6] at the 'Publishing and the Open Web Plat-
form' workshop in September 2013 concluded with a list of things that he'd like to
see, some of which are already familiar to XSL-FO users:
• Control over pagination and line-breaking
• minimum/optimum/maximum, “break line here!”
• Styling content in margin boxes
• Apply new named pages without page-breaks
• Automation of pagination
• XPath-strength CSS selectors
as well as some that aren't.

4. Can you typeset every book with XSL-FO?
No [24]. Even if the XPPL WG had delivered on all of the XSL-FO 2.0 Requirements
[23] it still wouldn't be possible to handle every possible book design.

The problem isn't so much that you can't typeset every book with XSL-FO, it's
that you can't use open standards1 to typeset ever more complex books – or have
better ways to typeset books – until such time as CSS catches up and passes what
you can currently do with XSL-FO.

As noted above, a running head containing the author name, the page number,
and an ornament is seen as “quite complex” for CSS, and Bert Bos's Tokyo
presentation discusses how something as simple as an equation in a running header
is beyond CSS at present, so Liam Quin's “over the next two or three years” may
be politely optimistic.

However, there doesn't seem to be any alternative to having to wait – patiently
or impatiently – for CSS to catch up:

1Though there's always LaTeX [17].

268

Formatting from XML

• The XPPL WG would only be rechartered if there were several dues-paying
W3C members willing to provide the majority of the members and task them
to do the work and implement the result, but even then it would be difficult to
restart the WG in the face of the W3C's emphasis on the Open Web Platform
[25] and its running a questionaire on the branding of, not the technology of,
CSS [7].

• The Print and Page Layout Community Group [26] at the W3C would be the
next-best place to advance XSL-FO, especially since it has permission [30] to host
its own version of the XSL-FO spec and ambitions about other things to work
on [28], but it has few members and even fewer active contributors, and not even
the periodic rumblings about XSL-FO 2.0 on the XSL-List [31] bring new mem-
bers. Even if the CG did produce a new spec, it would need a functioning WG
to take the spec to Recommendation level, which would also require multiple
interoperable implementations.

The impatient approach, therefore, would be to engage with the DPUBIG and the
CSS WG to help advance their specs and the CSS implementations of their specs.
The XSL-FO processor vendors are moving to also support CSS. Some may do it by
mapping CSS to XSL-FO 'under the hood' [5], but as the models diverge and CSS
incorporates grids, arbitrary shapes, and other features, it will require more than
simply mapping CSS to XSL 1.1.

5. Effect on transformations
XSLT started out as the means for transforming arbitrary XML into the XSL
Formatting Objects vocabulary. The CSS model, on the other hand, does not re-order
content. Even when CSS can do everything you can do with XSL-FO, formatting of
arbitrary XML will still require some sort of transformation to re-order, duplicate,
or modify content for display.

Bert Bos, in his position paper for the September 2013 workshop [4] notes:

CSS does not support document transformations, such as those provided by XSLT.
That is to keep CSS easy to understand and use, and to better support WYSIWYG
editing of documents. But even so, it could in theory do much more than it does now.

but he may currently be largely alone in thinking that CSS could do with a trans-
formation capability.

If there was a transformation language for CSS, it would not be based on XPath
since the W3C is “moving from XPath to Selectors W3C-wide” [12], yet Jirka Kosek
had trouble [12] getting acceptance of a proposal to add a CSS selector for selecting

269

Formatting from XML

attributes2 for use with ITS [20], and no success in proposing that CSS selectors be
extended to be able to select all (XDM) node types.

If CSS does get a transformation capability but remains unable to select all node
types and unable to use complex predicates or other XPath features, then users of
arbitrary XML would have to use a XSLT-CSS hybrid or use a XSLT preprocessor
as part of formatting their documents.

Bibliography
[1] Bert Bos. http://www.w3.org/People/#bbos
[2] Bos, Bert, Can you typeset a book with CSS?. http://www.w3.org/Talks/2013/

0604-CSS-Tokyo/
[3] Bos, Bert, List of CSS features required for paged media. http://www.w3.org/

Style/2013/paged-media-tasks
[4] The limits of “single-source publishing” with XML and CSS. http://www.w3.org/

2012/12/global-publisher/statements-of-interest/18-bert-bos-0020.html
[5] Re: [xsl] xsl 2.0?. http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/

archives/201311/msg00010.html
[6] The Exotic World of Trade Publishing Part One: Culture and Workflow. http://

www.w3.org/2012/12/global-publisher/slides/Day2/P1-w3c-paris-hachette.pdf,
slide 48

[7] CSS Branding. https://www.w3.org/2002/09/wbs/1/cssbranding/
[8] Cascading Style Sheets (CSS) Working Group Charter. http://www.w3.org/Style/

2013/css-charter
[9] CSS Generated Content for Paged Media Module. http://www.w3.org/TR/

css3-gcpm/
[10] Minutes Telecon 2013-10-16. http://lists.w3.org/Archives/Public/www-style/

2013Oct/0460.html
[11] Minutes TPAC F2F 2013-11-10 Sun I: Agenda, GCPM, Canvas and Video and

CSS Image, and Device Pixel Ratio. http://lists.w3.org/Archives/Public/
www-style/2013Nov/0349.html

[12] Minutes TPAC F2F 2013-11-11 Mon I: display: none on Fragmentainers, Selecting
Attributes. http://lists.w3.org/Archives/Public/www-style/2013Nov/0358.html

2Some of the support may have been to “take the few small steps necessary to kill most remaining uses
of XPath.” [12]

270

Formatting from XML

http://www.w3.org/People/#bbos
http://www.w3.org/Talks/2013/0604-CSS-Tokyo/
http://www.w3.org/Talks/2013/0604-CSS-Tokyo/
http://www.w3.org/Style/2013/paged-media-tasks
http://www.w3.org/Style/2013/paged-media-tasks
http://www.w3.org/2012/12/global-publisher/statements-of-interest/18-bert-bos-0020.html
http://www.w3.org/2012/12/global-publisher/statements-of-interest/18-bert-bos-0020.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00010.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00010.html
http://www.w3.org/2012/12/global-publisher/slides/Day2/P1-w3c-paris-hachette.pdf
http://www.w3.org/2012/12/global-publisher/slides/Day2/P1-w3c-paris-hachette.pdf
https://www.w3.org/2002/09/wbs/1/cssbranding/
http://www.w3.org/Style/2013/css-charter
http://www.w3.org/Style/2013/css-charter
http://www.w3.org/TR/css3-gcpm/
http://www.w3.org/TR/css3-gcpm/
http://lists.w3.org/Archives/Public/www-style/2013Oct/0460.html
http://lists.w3.org/Archives/Public/www-style/2013Oct/0460.html
http://lists.w3.org/Archives/Public/www-style/2013Nov/0349.html
http://lists.w3.org/Archives/Public/www-style/2013Nov/0349.html
http://lists.w3.org/Archives/Public/www-style/2013Nov/0358.html

[13] Minutes Paris F2F 2013-09-12 III: GCPM. http://lists.w3.org/Archives/Public/
www-style/2013Sep/0876.html

[14] Digital Publishing Interest Group. http://www.w3.org/dpub/IG/wiki/Main_Page
[15] eBooks: Great Expectations for Web Standards. http://www.w3.org/2012/08/

electronic-books/
[16] eBooks & i18n: Richer Internationalization for eBooks. https://www.w3.org/

2013/06/ebooks/
[17] Re: [xsl] xsl 2.0?. http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/

archives/201311/msg00038.html
[18] Example 5 - Copyfitting by adjusting 'font-size'. http://www.w3.org/community/

ppl/wiki/
FOPRunXSLTExt#Example_5_-_Copyfitting_by_adjusting_.27font-size.27

[19] Bals, Klaas, Extensible Stylesheet Language (XSL) Requirements Version 2.0.
http://www.w3.org/TR/xslfo20-req/

[20] Internationalization Tag Set (ITS) Version 2.0. http://www.w3.org/TR/its20/
[21] Requirements for Japanese Text Layout. http://www.w3.org/TR/jlreq/
[22] Private email from W3C staff contact to author and

group-digipub-chairs@w3.org, 13 November 2013
[23] Requirements for Latin Text Layout and Pagination. http://w3c.github.io/

dpub-pagination/
[24] Re: [xml-dev] Re: XML As Fall Guy. http://markmail.org/message/

ytp7z2dge6jhz6n7
[25] Open Web Platform. http://www.w3.org/wiki/Open_Web_Platform
[26] Print and Page Layout Community Group. http://www.w3.org/community/

ppl/
[27] Publishing and the Open Web Platform. http://www.w3.org/2012/12/

global-publisher/
[28] Re: [xsl] xsl 2.0?. http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/

archives/201311/msg00014.html
[29] Re: [xsl] xsl 2.0? http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/

archives/201310/msg00152.html
[30] Re: Prerequisites for modifying XSL 2.0 spec or producing API. http://

lists.w3.org/Archives/Public/public-ppl/2013Feb/0046.html
[31] xsl 2.0?. http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/

201310/msg00150.html

271

Formatting from XML

http://lists.w3.org/Archives/Public/www-style/2013Sep/0876.html
http://lists.w3.org/Archives/Public/www-style/2013Sep/0876.html
http://www.w3.org/dpub/IG/wiki/Main_Page
http://www.w3.org/2012/08/electronic-books/
http://www.w3.org/2012/08/electronic-books/
https://www.w3.org/2013/06/ebooks/
https://www.w3.org/2013/06/ebooks/
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00038.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00038.html
http://www.w3.org/community/ppl/wiki/FOPRunXSLTExt#Example_5_-_Copyfitting_by_adjusting_.27font-size.27
http://www.w3.org/community/ppl/wiki/FOPRunXSLTExt#Example_5_-_Copyfitting_by_adjusting_.27font-size.27
http://www.w3.org/community/ppl/wiki/FOPRunXSLTExt#Example_5_-_Copyfitting_by_adjusting_.27font-size.27
http://www.w3.org/TR/xslfo20-req/
http://www.w3.org/TR/its20/
http://www.w3.org/TR/jlreq/
http://w3c.github.io/dpub-pagination/
http://w3c.github.io/dpub-pagination/
http://markmail.org/message/ytp7z2dge6jhz6n7
http://markmail.org/message/ytp7z2dge6jhz6n7
http://www.w3.org/wiki/Open_Web_Platform
http://www.w3.org/community/ppl/
http://www.w3.org/community/ppl/
http://www.w3.org/2012/12/global-publisher/
http://www.w3.org/2012/12/global-publisher/
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00014.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201311/msg00014.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201310/msg00152.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201310/msg00152.html
http://lists.w3.org/Archives/Public/public-ppl/2013Feb/0046.html
http://lists.w3.org/Archives/Public/public-ppl/2013Feb/0046.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201310/msg00150.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201310/msg00150.html

[32] CSS Books & CSS Figures. http://blog.whatwg.org/css-books-css-figures
[33] XML Print and Page Layout Working Group. http://www.w3.org/XML/XPPL/
[34] XML Print and Page Layout Working Group Charter. http://www.w3.org/XML/

2010/10/xslfo-charter

272

Formatting from XML

http://blog.whatwg.org/css-books-css-figures
http://www.w3.org/XML/XPPL/
http://www.w3.org/XML/2010/10/xslfo-charter
http://www.w3.org/XML/2010/10/xslfo-charter

ProXist - XProc Processes in eXist
Ari Nordström

<ari.nordstrom@gmail.com>

Abstract

ProX is an abstraction layer around XProc pipelines, an XML-based blueprint
that lists any processes built around XProc pipelines in a system, including
the pipelines themselves, any input they might accept (XSLT, schemas, etc),
as well as any configuration options the pipelines accept when run. When
narrowed down to an instance, ProX describes a specific process with a specific
pipeline and a specific configuration. For example, a generic print publishing
process might allow choosing between several related pipelines that can use
different XSLTs configured with different input parameters and other options,
which need to be narrowed down to an instance with all of the choices made.

The ProX instance XML can then be used to generate a script that runs
the selected process, configuring it and the resources used with any runtime
values.

ProXist is a ProX implementation for eXist, run using a wrapper XQuery
and accompanying pipelines. The wrapper preprocesses its input and presents
the ProX blueprint to a user in an XForm, allowing the user to make choices
and narrow the ProX blueprint down to an instance that, when saved, is used
to generate an XQuery that runs the child pipeline represented by the selected
process and configuration.

1. Intro

1.1. What Is ProX?
ProX is an attempt to define an XML-based abstraction layer around XML processing
with XProc. While XProc is XML, running XProc pipelines using an actual engine
involves a lot more, usually batch or shell scripts that configure the engine and
whatever inputs and options, etc, that the pipeline defines, which is something of
a pain. Offering the resulting configuration options to an end user in a GUI is difficult
at best and a nightmare for any conscientious developer.

Enter ProX. an XML-based abstraction layer that lists all those configuration
options, putting the XProc in a context. The XML is made available to a user of a
document management system so she can select and configure pipelines and
whatever options they have, as defined by the ProX XML, and save the configured

273

process as a ProX instance that is used to generate a shell script with the configura-
tions and any runtime values included. This script then runs the configured pipeline,
greatly simplifying handling the process.

ProX is probably best regarded as a blueprint that lists all available processes in
the system, their associated pipelines, the command lines that configure these
pipelines, including any available input files used by the pipelines and the paramet-
ers used to configure the inputs. It's a description of what is possible and the choices
that need to be made before there can be a specific pipeline to run.

Let's say that one process is about delivering documents to an end user and an-
other about reviewing said documentation in-house. Both of these would result in
both print or online publishing (and more) but using slightly different options, for
change bars, comments, etc, and while these are run with XProc pipelines, the pro-
cesses have to be configured first. It's a top-down logic where selecting a process
limits the available pipelines to those listed inside that process, choosing a pipeline
limits the available command lines to those defined for that pipeline, and so on,
like this:

Figure 1. ProX Logic

The above image attempts to explain the available selections and what they might
result in. In this case, a web-based delivery process and pipeline, and its command

274

ProXist - XProc Processes in eXist

line options, is selected. All of the above is defined in an XML blueprint that adheres
to the ProX Relax NG schema. The structure looks like this:

Figure 2. ProX Structure

The ProX blueprint lists one or more processes, each of which includes one or more
pipelines. Each pipeline will also list command line options with any and all files
used by the pipelines, from XSLT to schemas to images to everything else. As many
such files are actually groups of related files (an XSLT stylesheet is very frequently
a package comprising several modules), the ProX schema allows listing each and
every module, in context, clearly indicating where it belongs.

The command line groups include configuration options (such as XSLT paramet-
ers or XProc options, engine configuration, and basically anything else that an XProc
engine might expose to the command line).

The ProX blueprint also lists any runtime values required by a pipeline input
or output port, etc. For example, the delivery process for print and web publishing
requires an input XML file or files (if modular), usually a named output, and so on.

Here's a ProX instance. Note that it needs to be processed, replacing URNs with
their corresponding URLs, before it can be used to generate a script. It is a complete
example of a specific ProX process, however.

<processes>
<process id="id-pdf-process">
<metadata id="metadata-2013-4-9-16-53-8-39562387-">
<title id="title-2013-4-9-16-53-8-39562387-">Print Publishing</title>
<description id="description-2013-4-9-16-53-8-39562387-">
<p id="p-2013-4-9-16-53-8-39562387-">Print publishing for COSML documents</p>

</description>
</metadata>
<pipelines id="pipelines-2013-4-9-16-53-8-39562387-">

<!-- PDF Pipeline -->
<pipeline id="id-pipeline-pdf-1">
<metadata id="metadata-2013-4-9-16-53-8-39562387-1">

275

ProXist - XProc Processes in eXist

<title id="title-2013-4-9-16-53-8-39562387-1">Publish PDF</title>
<description id="description-2013-4-9-16-53-8-39562387-1">
<p id="p-2013-4-9-16-53-8-39562387-1">Normalizes, validates and converts a COSML
document to PDF</p>

</description>
</metadata>
<script xmlns:xlink="http://www.w3.org/1999/xlink" type="pkg"
id="script-2013-4-9-16-53-8-39562387-"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-xproc-pdf"
xlink:title=" XProc Pipeline for Normalize, Validate and PDF

Normalizes, validates and publishes in PDF a COSML document "/>
<cmdlines id="cmdlines-2013-4-9-16-53-8-39562387-">

<!-- COSML Internal XSL -->
<cmdline id="id-cmdline-cos-internal-pdf">
<metadata id="metadata-2013-4-9-16-53-8-39562387-2">
<title id="title-2013-4-9-16-53-8-39562387-2">COS Internal Template</title>
<description id="description-2013-4-9-16-53-8-39562387-2">
<p id="p-2013-4-9-16-53-8-39562387-2">Configures the pipeline for the "COS Internal"

template</p>
</description>

</metadata>
<engine-config>
<config xmlns:xlink="http://www.w3.org/1999/xlink" type="pkg"
xlink:href="#id-conf-calabash"/>

</engine-config>
<inputs id="inputs-2013-4-9-16-53-8-39562387-">
<input choice="no" id="input-2013-4-9-16-53-8-39562387-">
<port id="port-2013-4-9-16-53-8-39562387-">document</port>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="external"
input-type="doc-root" xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-"
mimetype="application/xml">DOCUMENT-PLACEHOLDER</value>

</input>
<input choice="no" id="input-2013-4-9-16-53-8-39562387-1">
<port id="port-2013-4-9-16-53-8-39562387-1">stylesheet</port>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="pkg"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-xslfo-cosml"
xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-1"
xlink:title=" XSL-FO Package for COSML PDF Converts COSML

documents to XSL-FO format for COS PDF layout "/>
<params id="params-2013-4-9-16-53-8-39562387-">
<!-- Index generation -->

<!-- XEP Extensions -->
<param choice="no" id="param-2013-4-9-16-53-8-39562387-1">
<port id="port-2013-4-9-16-53-8-39562387-3">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-1">xep.extensions</name>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="string"
xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-3">0</value>

</param>
<!-- XSL-FO Bookmark Generation -->

<!-- TOC Generation -->

<!-- TOC Depth -->
<param choice="yes" ctype="list1" id="param-2013-4-9-16-53-8-2385485-2"
group="value-2013-7-10-16-53-8-764625737-3">
<port id="port-2013-7-10-16-34-8-9283444-4">xslt-params</port>

276

ProXist - XProc Processes in eXist

<name id="name-2013-7-10-16-50-3-1946564-2">toc.depth</name>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="string"
xlink:type="simple" id="value-2013-7-10-16-53-8-764625737-4">2</value>

<value id="value-13-07-10-12345-1" type="string">1</value>
<value id="value-13-07-10-12345-2" type="string">3</value>

</param>
</params>

</input>
<input choice="no" id="input-2013-4-9-16-53-8-39562387-2">
<port id="port-2013-4-9-16-53-8-39562387-5">stylesheet-norm</port>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="pkg"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-normalize"
xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-5"
xlink:title=" Normalize XSLT Stylesheet for applics filtering

and module normalization for COSML documents "
/>

</input>
</inputs>
<options id="options-2013-4-9-16-53-8-39562387-">
<option choice="no" id="option-2013-4-9-16-53-8-39562387-">
<name id="name-2013-4-9-16-53-8-39562387-3">pdf</name>
<value xmlns:xlink="http://www.w3.org/1999/xlink" type="external"
output-type="primary" mimetype="application/pdf" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-6">PDF-PLACEHOLDER.pdf</value>

</option>
</options>

</cmdline>

<!-- COSML Formal XSL -->
</cmdlines>

</pipeline>
</pipelines>

<!-- Packages for Print -->
<packages xml:base="file:///e:/SGML/DTD/Cassis/Process-XML/"
id="packages-2013-4-9-16-53-8-39562387-">

<!-- XProc Normalize, Validate, XSLFO Pipeline Package -->
<package id="id-xproc-pdf">
<metadata id="metadata-2013-4-9-16-53-8-39562387-4">
<title id="title-2013-4-9-16-53-8-39562387-4">XProc Pipeline for Normalize, Validate and

PDF</title>
<description id="description-2013-4-9-16-53-8-39562387-4">
<p id="p-2013-4-9-16-53-8-39562387-4">Normalizes, validates and publishes in PDF a COSML

document</p>
</description>

</metadata>
<!-- publish-cosml-pdf.xpl -->
<locator xmlns:xlink="http://www.w3.org/1999/xlink" type="main"
xlink:href="urn:x-cassis:r1:cos:00002715:sv-SE:0.1"
id="locator-2013-4-10-10-32-24-12830403-"/>

</package>

<!-- COSML Internal XSL-FO Package -->
<package id="id-xslfo-cosml">
<metadata id="metadata-2013-4-9-16-53-8-39562387-5">
<title id="title-2013-4-9-16-53-8-39562387-5">XSL-FO Package for COSML PDF</title>

277

ProXist - XProc Processes in eXist

<description id="description-2013-4-9-16-53-8-39562387-5">
<p id="p-2013-4-9-16-53-8-39562387-5">Converts COSML documents to XSL-FO format for COS

PDF layout</p>
</description>

</metadata>

<!-- Stylesheet parameters -->
<params id="params-2013-4-9-16-53-8-39562387-1">
<!-- Index generation -->
<param id="param-2013-4-9-16-53-8-39562387-3">
<port id="port-2013-4-9-16-53-8-39562387-9">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-5">generate.index</name>
<value type="string" id="value-2013-4-9-16-53-8-39562387-11">0</value>

</param>
<!-- XEP Extensions -->
<param id="param-2013-4-9-16-53-8-39562387-4">
<port id="port-2013-4-9-16-53-8-39562387-10">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-6">xep.extensions</name>
<value type="string" id="value-2013-4-9-16-53-8-39562387-12">0</value>

</param>
<!-- XSL-FO Bookmark Generation -->
<param id="param-2013-4-9-16-53-8-39562387-5">
<port id="port-2013-4-9-16-53-8-39562387-11">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-7">xslfo.bookmarks</name>
<value type="string" id="value-2013-4-9-16-53-8-39562387-13">1</value>

</param>
</params>

<!-- XSLT -->
<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000232:sv-SE:0.6" xlink:title="COS Internal XSLT"
type="main" id="locator-2013-4-9-16-53-8-39562387-1"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000074:sv-SE:0.11"
id="locator-2013-4-9-16-53-8-39562387-2"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000059:sv-SE:0.2"
id="locator-2013-4-9-16-53-8-39562387-3"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000070:sv-SE:0.15"
id="locator-2013-4-9-16-53-8-39562387-4" xlink:title="Layout"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000876:sv-SE:0.2"
id="locator-2013-4-9-16-53-8-39562387-5" xlink:title="bookmarks.xsl"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000075:sv-SE:0.17"
id="locator-2013-4-9-16-53-8-39562387-6"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000072:sv-SE:0.10"
id="locator-2013-4-9-16-53-8-39562387-7" xlink:title="meta-data.xsl"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000078:sv-SE:0.9"
id="locator-2013-4-9-16-53-8-39562387-8" xlink:title="TOC"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000062:sv-SE:0.9"
id="locator-2013-4-9-16-53-8-39562387-9"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000233:sv-SE:0.8"

278

ProXist - XProc Processes in eXist

id="locator-2013-4-9-16-53-8-39562387-10"/>
<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000061:sv-SE:0.29"
id="locator-2013-4-9-16-53-8-39562387-11"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000065:sv-SE:0.6"
id="locator-2013-4-9-16-53-8-39562387-12"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000071:sv-SE:0.6"
id="locator-2013-4-9-16-53-8-39562387-13"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000077:sv-SE:0.6"
id="locator-2013-4-9-16-53-8-39562387-14"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000079:sv-SE:0.7"
id="locator-2013-4-9-16-53-8-39562387-15"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000060:sv-SE:0.7"
id="locator-2013-4-9-16-53-8-39562387-16"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000064:sv-SE:0.8"
id="locator-2013-4-9-16-53-8-39562387-17"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000066:sv-SE:0.2"
id="locator-2013-4-9-16-53-8-39562387-18"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000069:sv-SE:0.3"
id="locator-2013-4-9-16-53-8-39562387-19"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000063:sv-SE:0.3"
id="locator-2013-4-9-16-53-8-39562387-20"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000785:sv-SE:0.6"
id="locator-2013-4-9-16-53-8-39562387-21"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000076:sv-SE:0.10" type="aux" xlink:title="Strings"
id="locator-2013-4-9-16-53-8-39562387-22"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000230:sv-SE:0.1" type="aux"
id="locator-2013-4-9-16-53-8-39562387-23"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000426:sv-SE:0.1" type="aux"
id="locator-2013-4-9-16-53-8-39562387-24" xlink:title="tux.jpg"/>

</package>
</packages>

</process>
<packages id="packages-2013-4-9-16-53-8-39562387-1">

<!-- XSLT for Normalizing COSML -->
<package id="id-normalize" type="xslt">
<metadata id="metadata-2013-4-9-16-53-8-39562387-9">
<title id="title-2013-4-9-16-53-8-39562387-9">Normalize XSLT</title>
<description id="description-2013-4-9-16-53-8-39562387-9">
<p id="p-2013-4-9-16-53-8-39562387-9">Stylesheet for applics filtering and module
normalization for COSML documents</p>

</description>
</metadata>
<!-- No parameters required. -->

279

ProXist - XProc Processes in eXist

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00000073:sv-SE:0.4"
id="locator-2013-4-9-16-53-8-39562387-26" type="main" xlink:title="Normalize XSLT"/>

</package>

<!-- Calabash Engine Configuration File -->
<package id="id-conf-calabash">
<metadata id="metadata-2013-5-2-21-40-30-37001288-">
<title id="title-2013-5-2-21-40-30-37001288-">Calabash Configuration</title>
<description id="description-2013-5-2-21-40-30-37001288-">
<p id="p-2013-5-2-21-40-30-37001288-">Configures Calabash</p>

</description>
</metadata>
<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002745:sv-SE:0.1" type="main" id="id-loc-calabash-config"
/>

</package>

<!-- Wrapper ProX Resources -->
<package id="id-wrapper-resources">
<metadata id="metadata-2013-5-2-21-40-30-37001288-1">
<title id="title-2013-5-2-21-40-30-37001288-1">Wrapper Pipeline Processing</title>
<description id="description-2013-5-2-21-40-30-37001288-1">
<p id="p-2013-5-2-21-40-30-37001288-1">These files are used for running the wrapper
pipeline.</p>

</description>
</metadata>
<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002735:sv-SE:0.1" id="id-wrapper-xpl"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002732:sv-SE:0.1" id="id-prox-fix"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002733:sv-SE:0.1" id="id-urn2url"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002731:sv-SE:0.1" id="id-prox2bat"/>

<locator xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="urn:x-cassis:r1:cos:00002734:sv-SE:0.1" id="id-prox2shell-config"/>

</package>

<!-- XForms -->
<package id="id-xform">
<metadata>
<title>ProX XForms Package</title>
<description>
<p>XForms for selecting and configuring a process, based on a ProX blueprint.</p>

</description>
</metadata>
<locator xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="urn:prox:xform:0.1"
type="main" id="id-loc-xform"/>

</package>
</packages>

</processes>

A few things of note, above:

280

ProXist - XProc Processes in eXist

• Elements with @type="pkg" pinpoint their resources using a fragment identifier
link to a package element, elsewhere in the file; the package then references the
actual files, using locator elements. The script element near the top, for example,
points out the XProc pipeline package, and the value[@type="pkg"] elements in
input elements identify XSLT packages. The actual XProc script is referenced
from inside that package.

This has the advantage of grouping any related resources so that the whole
group may be referenced by the ProX process: Note, for example, the long list
of locators referencing the XSLT stylesheet modules for the XSL-FO package.
The locators include URN-based links to specific versions of the stylesheet modules
but the package that groups them is used to ensure that these versions work
together.

• Elements with @type="external", on the other hand, identify runtime values.
For example, there is an input/value[@type="external"] for the input XML and
an option/value[@type="external"] for a named output for this particular
process.

• Packages are grouped inside specific processes and immediately below the root
processes. This is a convention indicating that in the former case, the package(s)
may only be used by that process while the latter allows them to be used
everywhere.

ProX is modular, so a process may reuse packages, command lines, etc, from other
processes, and the whole thing can, of course, be edited using the same XML tools
as the XML processed by the system that uses ProX.

The idea is to convert the blueprint to a GUI from which the user can make se-
lections and then save the result as a ProX instance. Here's a simple XForm that
narrows the available choices:

Figure 3. ProX XForm

The above selects first an appropriate process, then any pipelines made available
for the process, and finally any “output options” (basically command line configur-
ations) for the selected pipeline.

281

ProXist - XProc Processes in eXist

The “output options” here group XSLT parameters for the pipeline1, presented
to the user like this:

Figure 4. ProX Output Options

Here, the XForm exposes2 parameters for an XSL-FO stylesheet.
<params id="params-2013-4-9-16-53-8-39562387-">

<!-- XEP Extensions -->
<param
choice="no"
id="param-2013-4-9-16-53-8-39562387-1">
<port id="port-2013-4-9-16-53-8-39562387-3"
>xslt-params</port>

<name id="name-2013-4-9-16-53-8-39562387-1"
>xep.extensions</name>

<value
xmlns:xlink="http://www.w3.org/1999/xlink"
type="string" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-3">0</value>

</param>

<!-- TOC Generation -->
<param choice="yes" ctype="list1"
id="param-2013-4-9-16-53-8-2385485-2"
group="value-2013-7-10-16-53-8-764625737-3">
<port id="port-2013-7-10-16-34-8-9283444-4"
>xslt-params</port>

<name id="name-2013-7-10-16-50-3-1946564-2">toc.depth</name>
<value xmlns:xlink="http://www.w3.org/1999/xlink"
type="string" xlink:type="simple"

1While a pipeline can use more than one set of XSLT stylesheets, these are hidden in this abstraction.
The user is only aware of the different output configurations, including both XSLT and whatever para-
meters they use.
2Only the parameters that the author of the ProX blueprint wants to make available are in fact made
available. These might vary, depending on the user's permissions or something else. Several different
ProX blueprints may be used by a single system.

282

ProXist - XProc Processes in eXist

id="value-2013-7-10-16-53-8-764625737-4">2</value>
<value id="value-13-07-10-12345-1" type="string">1</value>
<value id="value-13-07-10-12345-2" type="string">3</value>

</param>
</params>

Some notes:
• @ctype indicates the type of parameter, used by the XForm that displays the

parameters to the user.
• @choice indicates if the parameter is configurable.
• @group is an IDREF to a related parameter and indicates a dependency to that

parameter. For example, a parameter may be used to set the table of contents
depth, but it is useless if another parameter has turned off the TOC generation.
The first parameter needs to include a group IDREF to the second so only relevant
options are made available when configuring a ProX blueprint.

With every choice made, the user can save the XForm and produce a ProX instance.
The instance is a single process, with every choice made, and is then converted to
a shell script (or, in the case of this paper, an XQuery) that runs the selected process
and pipeline.

The above very briefly describes a ProX demo implementation, first shown at
Balisage 2013 (see [2]). The demo runs a wrapper XProc pipeline that preprocesses
the ProX blueprint, makes it available via an Apache server and XSLT Forms, allow-
ing configuration in an XForm, postprocesses the saved ProX instance, and eventually
generates a shell script that runs the selected child process. This results in a PDF or
an XHTML file, depending on the choices made.

While fun, the demo is crude and full of bizarre limitations, including some
imposed by XProc (for example, the XProc spec does not specify any way to wait
for user input, causing problems when opening an XForm) and others by the fact
that it's really just a demo on an Apache server, with the XML, XSLT and XProc in
a htdocs subfolder and the demo and the XSLT Forms implementation in a subfolder
to that. Better would be to use something more mature, with built-in XML handling,
XSLT, XProc, etc... something like eXist.

2. ProXist
ProXist, then, is a ProX implementation for eXist. At the time of this writing, it is a
work in progress, with some limitations but also some promise.

In the Balisage demo, the ProX wrapper is simply a pipeline that a) allows the
user configure a ProX blueprint using an XForm, narrowing it down to a ProX in-
stance, b) generates a shell script for the child pipeline with runtime values inserted,
and c) runs the child pipeline using the generated shell script. This, I figured, would
be straight-forward to translate to eXist, generating an XQuery instead of a shell

283

ProXist - XProc Processes in eXist

script, but until recently, the Calabash extension module would only allow two in-
puts to the xmlcalabash:process function3, namely an output URI and the pipeline
URI.

Luckily, Jim Fuller who wrote the extension, graciously offered to help, adding
options and bindings to the module, and I am now more or less back on track.

2.1. ProX Wrapper Process
A ProX wrapper process basically involves the following:

Figure 5. ProXis Wrapper process

Here's what happens:
1. First, we point out an input XML file and parse it for any linked resources, XML

and otherwise. The linked XML also have to be parsed for more XML and other
resources, until there's no more XML (or other resources) to be parsed.

2. The linked resource URIs are listed in an XML file, resource-map.xml, that also
lists other resources (XProc scripts, XSLT, etc) needed by ProX, including the
ProX blueprint to be used and and any runtime or “target” values that might
be needed as specified by the ProX blueprint (for example, the output PDF file

3This had me thinking about ways to avoid writing inputs and options to my pipelines. This is not un-
complicated and involves an XQuery-based wrapper that inserts any required inputs, options, etc, directly
into the child pipelines and then runs them without any external options.

284

ProXist - XProc Processes in eXist

needs to be named if the process needs to produce a PDF). The resource map is
used as a lookup table for the ProX processes.

Note
resource-map.xml is generated using an XSLT stylesheet applied on the
input XML, the ProX blueprint and a resource map template. The latter
is a ProX resource list generated from the ProX blueprint's package lists.

3. The ProX XForm is updated with a URL to the ProX blueprint, used as input
data, and a URL that names the ProX instance that will result. The XForm is then
opened and the wrapper process now pauses to wait for the user's saved selec-
tions.

4. The user makes choices in the XForm (selects a process, pipeline, and output
options according to the blueprint), and thereby defines a ProX instance.

5. The wrapper pipeline resumes operations when the ProX instance is saved; the
pipeline waits for a change to the ProX instance URI.

6. The next step(s) may postprocess both the ProX instance (with any missing
runtime values) and the input XML files (with, for example, temporary URLs
to linked resources).

Note
In the Balisage demo, the resources used by both the input XML and ProX
(XML, XSLT, XProc, etc) were all linked to using URNs rather than URLs,
as evident in the above examples. The URNs were replaced with the URLs
listed in resource-map.xml in a postprocessing XSLT step.

7. With the postprocessing done, the ProX instance (input values, options, etc) is
used as an input to an XSLT that generates an XQuery.

8. The XQuery is saved and its permissions and ownership are changed to allow
it to be run.

9. The wrapper runs the child pipeline using the generated XQuery.
10. The results from the child pipeline are postprocessed. For example, as noted in

Section 3, the PDF generation step takes place after the wrapper finishes.

2.2. The ProX Blueprint
The ProX blueprint that resulted in the example instance, above, looks like this in
a shortened form:

<?xml-model href="http://localhost:8080/exist/rest/db/work/system/prox/relaxng/processes.rnc" ►
type="application/relax-ng-compact-syntax"?>
<processes

285

ProXist - XProc Processes in eXist

xmlns:xlink="http://www.w3.org/1999/xlink"
id="processes-2013-4-9-16-53-8-39562387-">

<!-- Print Publishing Process -->
<process id="id-pdf-process">
<metadata id="metadata-2013-4-9-16-53-8-39562387-">
<title id="title-2013-4-9-16-53-8-39562387-">Print Publishing</title>
<description id="description-2013-4-9-16-53-8-39562387-">
<p id="p-2013-4-9-16-53-8-39562387-">Print publishing for COSML documents</p>

</description>
</metadata>
<pipelines id="pipelines-2013-4-9-16-53-8-39562387-">

<!-- PDF Pipeline -->
<pipeline id="id-pipeline-pdf-1">
<metadata id="metadata-2013-4-9-16-53-8-39562387-1">
<title id="title-2013-4-9-16-53-8-39562387-1">Publish PDF</title>
<description id="description-2013-4-9-16-53-8-39562387-1">
<p id="p-2013-4-9-16-53-8-39562387-1">Normalizes, validates
and converts a COSML document to PDF</p>

</description>
</metadata>
<script type="pkg" id="script-2013-4-9-16-53-8-39562387-"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-xproc-pdf"
xlink:title=" XProc Pipeline for Normalize, Validate and PDF
Normalizes, validates and publishes in PDF a COSML document "/>

<cmdlines id="cmdlines-2013-4-9-16-53-8-39562387-">

<!-- COSML Internal XSL -->
<cmdline id="id-cmdline-cos-internal-pdf">
<metadata id="metadata-2013-4-9-16-53-8-39562387-2">
<title id="title-2013-4-9-16-53-8-39562387-2">COS Internal
Template</title>

<description id="description-2013-4-9-16-53-8-39562387-2">
<p id="p-2013-4-9-16-53-8-39562387-2">Configures the pipeline for
the "COS Internal" template</p>

</description>
</metadata>
<engine-config>
<config type="pkg" xlink:href="#id-conf-calabash"/>

</engine-config>
<inputs id="inputs-2013-4-9-16-53-8-39562387-">
<input choice="no" id="input-2013-4-9-16-53-8-39562387-">
<port id="port-2013-4-9-16-53-8-39562387-">document</port>
<value type="external" input-type="doc-root" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-" mimetype="application/xml"
>DOCUMENT-PLACEHOLDER</value>

</input>
<input choice="no" id="input-2013-4-9-16-53-8-39562387-1">
<port id="port-2013-4-9-16-53-8-39562387-1">stylesheet</port>
<value type="pkg"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-xslfo-cosml"
xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-1"
xlink:title=" XSL-FO Package for COSML PDF Converts COSML documents
to XSL-FO format for COS PDF layout "/>

<params id="params-2013-4-9-16-53-8-39562387-">
<!-- Index generation -->
<param choice="yes" ctype="boolean"

286

ProXist - XProc Processes in eXist

id="param-2013-4-9-16-53-8-39562387-">
<port id="port-2013-4-9-16-53-8-39562387-2"
>xslt-params</port>

<name id="name-2013-4-9-16-53-8-39562387-"
>generate.index</name>

<value type="string" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-2">false</value>

</param>
<!-- XEP Extensions -->
<param choice="no" id="param-2013-4-9-16-53-8-39562387-1">
<port id="port-2013-4-9-16-53-8-39562387-3"
>xslt-params</port>

<name id="name-2013-4-9-16-53-8-39562387-1"
>xep.extensions</name>

<value type="string" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-3">0</value>

</param>
<!-- XSL-FO Bookmark Generation -->
<param choice="yes" ctype="boolean"
id="param-2013-4-9-16-53-8-39562387-2">
<port id="port-2013-4-9-16-53-8-39562387-4"
>xslt-params</port>

<name id="name-2013-4-9-16-53-8-39562387-2"
>xslfo.bookmarks</name>

<value type="string" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-4">true</value>

</param>
<!-- TOC Generation -->
<param choice="yes" ctype="boolean"
id="param-2013-4-9-16-53-8-39514778-2">
<port id="port-2013-4-9-16-53-8-9653444-4"
>xslt-params</port>

<name id="name-2013-4-9-16-53-8-1928364-2">create.toc</name>
<value type="string" xlink:type="simple"
id="value-2013-7-10-16-53-8-764625737-3">true</value>

</param>
<!-- TOC Depth -->
<param choice="yes" ctype="list1"
id="param-2013-4-9-16-53-8-2385485-2"
group="value-2013-7-10-16-53-8-764625737-3">
<port id="port-2013-7-10-16-34-8-9283444-4"
>xslt-params</port>

<name id="name-2013-7-10-16-50-3-1946564-2">toc.depth</name>
<value type="string" xlink:type="simple"
id="value-2013-7-10-16-53-8-764625737-4">2</value>

<value id="value-13-07-10-12345-1" type="string">1</value>
<value id="value-13-07-10-12345-2" type="string">3</value>

</param>
</params>

</input>
<input choice="no" id="input-2013-4-9-16-53-8-39562387-2">
<port id="port-2013-4-9-16-53-8-39562387-5">stylesheet-norm</port>
<value type="pkg"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.1#id-normalize"
xlink:type="simple" id="value-2013-4-9-16-53-8-39562387-5"
xlink:title=" Normalize XSLT Stylesheet for applics filtering
and module normalization for COSML documents "

/>

287

ProXist - XProc Processes in eXist

</input>
</inputs>
<options id="options-2013-4-9-16-53-8-39562387-">
<option choice="no" id="option-2013-4-9-16-53-8-39562387-">
<name id="name-2013-4-9-16-53-8-39562387-3">pdf</name>
<value type="external" output-type="primary"
mimetype="application/pdf" xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-6"
>PDF-PLACEHOLDER.pdf</value>

</option>
</options>

</cmdline>

<!-- COSML Formal XSL -->
<cmdline id="id-cmdline-cos-formal-pdf">
...

</cmdline>
</cmdlines>

</pipeline>
</pipelines>

<!-- Packages for Print -->
<packages xml:base="file:///e:/SGML/DTD/Cassis/Process-XML/"
id="packages-2013-4-9-16-53-8-39562387-">

<!-- XProc Normalize, Validate, XSLFO Pipeline Package -->
<package id="id-xproc-pdf">
<metadata id="metadata-2013-4-9-16-53-8-39562387-4">
<title id="title-2013-4-9-16-53-8-39562387-4">XProc Pipeline for Normalize,
Validate and PDF</title>

<description id="description-2013-4-9-16-53-8-39562387-4">
<p id="p-2013-4-9-16-53-8-39562387-4">Normalizes, validates and publishes in
PDF a COSML document</p>

</description>
</metadata>
<!-- publish-cosml-pdf.xpl -->
<locator type="main" xlink:href="urn:x-cassis:r1:cos:00002715:sv-SE:0.1"
id="locator-2013-4-10-10-32-24-12830403-"/>

</package>

<!-- COSML Internal XSL-FO Package -->
<package id="id-xslfo-cosml">
<metadata id="metadata-2013-4-9-16-53-8-39562387-5">
<title id="title-2013-4-9-16-53-8-39562387-5">XSL-FO Package for COSML
PDF</title>

<description id="description-2013-4-9-16-53-8-39562387-5">
<p id="p-2013-4-9-16-53-8-39562387-5">Converts COSML documents to XSL-FO
format for COS PDF layout</p>

</description>
</metadata>

<!-- Stylesheet parameters -->
<params id="params-2013-4-9-16-53-8-39562387-1">
<!-- Index generation -->
<param id="param-2013-4-9-16-53-8-39562387-3">
<port id="port-2013-4-9-16-53-8-39562387-9">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-5">generate.index</name>

288

ProXist - XProc Processes in eXist

<value type="string" id="value-2013-4-9-16-53-8-39562387-11">0</value>
</param>
<!-- XEP Extensions -->
<param id="param-2013-4-9-16-53-8-39562387-4">
<port id="port-2013-4-9-16-53-8-39562387-10">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-6">xep.extensions</name>
<value type="string" id="value-2013-4-9-16-53-8-39562387-12">0</value>

</param>
<!-- XSL-FO Bookmark Generation -->
<param id="param-2013-4-9-16-53-8-39562387-5">
<port id="port-2013-4-9-16-53-8-39562387-11">xslt-params</port>
<name id="name-2013-4-9-16-53-8-39562387-7">xslfo.bookmarks</name>
<value type="string" id="value-2013-4-9-16-53-8-39562387-13">1</value>

</param>
</params>

<!-- XSLT -->
<locator xlink:href="urn:x-cassis:r1:cos:00000232:sv-SE:0.6"
xlink:title="COS Internal XSLT" type="main"
id="locator-2013-4-9-16-53-8-39562387-1"/>

...
</package>

</packages>
</process>

<!-- Wep PublishingProcess -->
<process id="id-web-process">
<metadata id="metadata-2013-4-9-16-53-8-39562387-6">
...

</metadata>
<pipelines id="pipelines-2013-4-9-16-53-8-39562387-1">

<!-- Pipeline for HTML -->
<pipeline id="id-pipeline-web-1">
<metadata id="metadata-2013-4-9-16-53-8-39562387-7">
...

</metadata>
<script id="script-2013-4-9-16-53-8-39562387-1"
xlink:href="urn:x-cassis:r1:cos:00002712:sv-SE:0.6#package-2013-5-19-11-12-49-71312191-1"
xlink:title="XProc COSML2XHTMLNormalises, validates and converts COSML to XHTML."
type="pkg"/>

<cmdlines id="cmdlines-2013-4-9-16-53-8-39562387-1">

<!-- Single-file HTML Config -->
<cmdline id="id-cmdline-single-file-HTML-1">
...

</cmdline>
</cmdlines>

</pipeline>
</pipelines>

<!-- Web Publishing Packages -->
<packages>

<!-- XProc for COSML to XHTML -->
<package id="package-2013-5-19-11-12-49-71312191-1">
...

</package>

289

ProXist - XProc Processes in eXist

<!-- XSLT for COSML to XHTML -->
<package id="package-2013-5-19-11-12-49-71312191-">
...

</package>
</packages>

</process>

<!-- Content Validation Process -->
<process id="process-2013-5-19-11-12-49-71312191-">
<metadata>
...

</metadata>

<!-- Content Validation Pipelines -->
<pipelines>

<!-- Xref Check Pipeline -->
<pipeline id="pipeline-2013-5-19-11-12-49-71312191-">
...

</pipeline>
</pipelines>
<packages>

<!-- XProc for Xref Check -->
<package id="package-2013-5-19-11-12-49-71312191-3">
...

</package>

<!-- XSLT for Xref Check -->
<package id="package-2013-5-19-11-12-49-71312191-2">
...

</package>
</packages>

</process>

<packages id="packages-2013-4-9-16-53-8-39562387-1">

<!-- XSLT for Normalizing COSML -->
<package id="id-normalize" type="xslt">
...

</package>

<!-- Calabash Engine Configuration File -->
<package id="id-conf-calabash">
...

</package>

<!-- Wrapper ProX Resources -->
<package id="id-wrapper-resources">
...

</package>

<!-- XForms -->
<package id="id-xform">
...

290

ProXist - XProc Processes in eXist

</packages>
</processes>

As explained above, the above lists a number of processes, each of which contains
one or more pipelines that in turn include one or more command line (cmdline)
option lists defining the required (and allowed) bindings for Calabash. Note that
the pipeline identifies the XProc scripts using fragment IDs to packages that group
the locators to the actual files.

2.3. Resource Map
The resource map XML is just a long list of mapped resources, XML, ProX and
otherwise, used as a lookup table when running the processes defined in the ProX
blueprint. It is generated using an XSLT stylesheet immediately after selecting the
input XML and lists the selected input, any target output(s), and all resources used
by ProX and its allowed child processes4.

Here's an example resource map in a somewhat shortened form:
<resource-map>

<!-- Source Modules Listed here -->
<docs>

<doc id="">

<!-- Root document from Process Manager confguration -->
<!-- ProX instance needs this value -->
<!-- //*/@type=''external' and //*/@input-type='doc-root' -->
<root>
<resource>
<urn>urn:testroot</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/test-root.xml</url>
<type>doc-root</type>
<prox-id>value-2013-4-9-16-53-8-39562387-</prox-id>
<prox-id>id-html-docroot</prox-id>

</resource>
</root>

<!-- All modules linked from root or its descendants -->
<!-- XML, images, etc -->
<modules>
<resource>
<urn>urn:image1</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/image3.jpg</url>
<type>jpg</type>

</resource>
<resource>
<urn>urn:inset1</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/inset1.xml</url>
<type>xml</type>

4Many of the resources are fixed, determined statically, as they have been uploaded and defined long
before a specific process is run.

291

ProXist - XProc Processes in eXist

</resource>
<resource>
<urn>urn:inset2</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/inset2.xml</url>
<type>xml</type>

</resource>
<resource>
<urn>urn:inset3</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/inset3.xml</url>
<type>xml</type>

</resource>
<resource>
<urn>urn:inset4</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/inset4.xml</url>
<type>xml</type>

</resource>
<resource>
<urn>urn:block-inset1</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/block-inset1.xml</url>
<type>xml</type>

</resource>
</modules>

</doc>
</docs>

<!-- Runtime targets -->
<!-- Should use xmldb:exist for most -->
<!-- Do they need http or webdav variants? -->
<targets>
<resource>
<urn>URN-FOR-OUTPUT</urn>
<url>xmldb:exist:///db/work/docs/test/my-pdf-internal-file.pdf</url>
<type>primary</type>
<prox-id>value-2013-4-9-16-53-8-39562387-6</prox-id>

</resource>
<resource>
<urn>URN2-FOR-OUTPUT</urn>
<url>xmldb:exist:///db/work/docs/test/my-pdf-formal-file.pdf</url>
<type>primary</type>
<prox-id>value-2013-4-9-16-53-8-39562387-10</prox-id>

</resource>
<resource>
<urn>URN-FOR-XREF-XHTML-LOG</urn>
<url>xmldb:exist:///db/work/docs/test/my-xref-check.htm</url>
<type>primary</type>
<prox-id>id-value-xref-htm</prox-id>

</resource>
<resource>
<urn>URN-FOR-FILES-LIST-XML</urn>
<url>xmldb:exist:///db/work/docs/test/files.xml</url>
<type>fixed</type>
<prox-id>files</prox-id>

</resource>
<resource>
<urn>URN-FOR-HTM-OUT</urn>
<url>xmldb:exist:///db/work/docs/test/my-xhtml-out.htm</url>
<type>primary</type>

292

ProXist - XProc Processes in eXist

<prox-id>id-htm-out</prox-id>
</resource>
<resource>
<urn>URN-FOR-NORMALIZED-HTML</urn>
<url>xmldb:exist///db/work/docs/test/normalized-for-debug.xml</url>
<type>secondary</type>
<prox-id>id-normalized-html</prox-id>

</resource>
</targets>

<!-- ProX blueprint and saved instance(s) -->
<prox>
<!-- Blueprint used to get instance is here -->
<blueprints>
<resource id="id-prox-blueprint">
<urn>URN-OF-PROX-BLUEPRINT</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/xml/prox-blueprint.xml</url>
<!--<url>file://prox-blueprint.xml</url>-->
<type/>
<prox-id/>

</resource>
</blueprints>

<!-- Saved ProX instances -->
<!-- Input to wrapper pipeline -->
<instances>
<resource id="id-prox-saved-instance">
<urn>URN-OF-SAVED-PROX-INSTANCE</urn>
<url>xmldb:exist:///db/work/docs/test/prox-instance.xml</url>
<!-- Insert file URI here for local testing -->
<type/>
<prox-id/>

</resource>
</instances>

</prox>

<!-- Resources used by ProX Processes -->
<prox-resources>

<!-- PDF Publishing XProc -->
<package>
<name>XProc Pipeline for Normalize, Validate and PDF</name>
<resources>
<resource>
<urn>urn:x-cassis:r1:cos:00002715:sv-SE:0.1</urn>
<url>xmldb:exist:///db/work/system/cosml/xproc/publish-cosml-pdf.xpl</url>
<prox-id>locator-2013-4-10-10-32-24-12830403-</prox-id>

</resource>
</resources>

</package>

<!-- PDF Publishing XSL-FO, Internal -->
<package>
<name>XSL-FO Package for COSML PDF</name>
<resources>
<resource>
<urn>urn:x-cassis:r1:cos:00000232:sv-SE:0.6</urn>
<url>http://localhost:8080/exist/rest/db/work/system/cosml/fo/cos-fo-internal.xsl</url>

293

ProXist - XProc Processes in eXist

<prox-id>locator-2013-4-9-16-53-8-39562387-1</prox-id>
</resource>
<resource>
<urn>urn:x-cassis:r1:cos:00000074:sv-SE:0.11</urn>
<url>http://localhost:8080/exist/rest/db/work/system/cosml/fo/param.xsl</url>
<prox-id>locator-2013-4-9-16-53-8-39562387-2</prox-id>

</resource>
...

</resources>
</package>

<!-- XHTML Publishing XProc -->
<package>
<name>XProc COSML2XHTML</name>
...

</package>

<!-- XHTML Publishing XSLT -->
<package>
<name>COSML XHTML XSLT</name>
...

</package>

<!-- Xref Check XProc -->
<package>
<name>XProc Xref Check</name>
...

</package>

<!-- Xref Check XSLT -->
<package>
<name>XSLT Xref Check</name>
...

</package>

<!-- Standard Normalize XSLT for Publishing -->
<package>
<name>Normalize XSLT</name>
...

</package>

<!-- Calabash Engine Configuration -->
<package>
<name>Calabash Configuration</name>
...

</package>
</prox-resources>

<!-- Wrapper stuff -->
<wrapper-pipeline>

<!-- Wrapper Pipeline Resources -->
<package>
<name>Wrapper Pipeline Processing</name>
<resources>
<!-- Wrapper Pipeline -->

294

ProXist - XProc Processes in eXist

<resource>
<urn>urn:x-cassis:r1:cos:00002735:sv-SE:0.1</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/prox-wrapper.xpl</url>
<prox-id>id-wrapper-xpl</prox-id>

</resource>
<!-- ProX Instance Update -->
<resource>
<urn>urn:x-cassis:r1:cos:00002732:sv-SE:0.1</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/xslt/prox-fix.xsl</url>
<prox-id>id-prox-fix</prox-id>

</resource>
<!-- URN2URL for XML Input -->
<resource>
<urn>urn:x-cassis:r1:cos:00002733:sv-SE:0.1</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/xslt/urn2url.xsl</url>
<prox-id>id-urn2url</prox-id>

</resource>
<!-- ProX Instance Conversion to Shell Script -->
<resource>
<urn>urn:x-cassis:r1:cos:00002731:sv-SE:0.1</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/xslt/prox2shell.xsl</url>
<prox-id>id-prox2shell</prox-id>

</resource>
<!-- ProX Instance Conversion to XQ -->
<resource>
<urn>urn:x-cassis:r1:cos:00012731:sv-SE:0.1</urn>
<url>http://localhost:8080/exist/rest/db/work/system/prox/xslt/prox2xq.xsl</url>
<prox-id>id-prox2xq</prox-id>

</resource>
<!-- Engine parameters required by ProX to Shell Script conversion -->
<resource>
<urn>urn:x-cassis:r1:cos:00002734:sv-SE:0.1</urn>

<url>http://localhost:8080/exist/rest/db/work/system/prox/xml/prox2shell-config.xml</url>
<prox-id>id-prox2shell-config</prox-id>

</resource>
</resources>

</package>

<!-- XForm for ProX Process Configuration -->
<package>
<name>ProX XForm</name>
<resources>
<!-- XForm for proX Blueprint Handling -->
<resource>
<urn>urn:prox:xform:0.1</urn>
<url>http://localhost:8080/exist/rest/db/apps/prox-xform.xml</url>
<prox-id>id-loc-xform</prox-id>

</resource>
</resources>

</package>
</wrapper-pipeline>

</resource-map>

Some notes:
• The input XML document, defined in doc/root/resource, includes several

prox-id elements:

295

ProXist - XProc Processes in eXist

<resource>
<urn>urn:testroot</urn>
<url>http://localhost:8080/exist/rest/db/work/docs/pdftest/test-root.xml</►

url>
<type>doc-root</type>
<prox-id>value-2013-4-9-16-53-8-39562387-</prox-id>
<prox-id>id-html-docroot</prox-id>

</resource>

Each prox-id identifies the input binding for a child ProX process, that is, an
input binding in an XProc pipeline defined in the ProX blueprint, such as the
following (note the matching @id in the value element:

<input
choice="no"
id="input-2013-4-9-16-53-8-39562387-">
<port
id="port-2013-4-9-16-53-8-39562387-">document</port>

<value
type="external"
input-type="doc-root"
xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-"
mimetype="application/xml">DOCUMENT-PLACEHOLDER</value>

</input>

• The targets structure lists named output targets for the child process5. The target
names are generated by an XSLT stylesheet, based on the input XML name and
how they are defined in the ProX blueprint. The primary output retains the file-
name but with a new file suffix based on the output's MIME type, also defined
in the blueprint. Here's an example of such a binding in the blueprint:

<option
choice="no"
id="option-2013-4-9-16-53-8-39562387-">
<name
id="name-2013-4-9-16-53-8-39562387-3">pdf</name>

<value
type="external"
output-type="primary"
mimetype="application/pdf"
xlink:type="simple"
id="value-2013-4-9-16-53-8-39562387-6">PDF-PLACEHOLDER.pdf</value>

</option>

5Note that the wrapper, for example, might require additional runtime values, for example, the ProX
instance.

296

ProXist - XProc Processes in eXist

This option might result in the following target:
<resource>
<urn>URN-FOR-OUTPUT</urn>
<url>xmldb:exist:///db/work/docs/test/test-root.pdf</url>
<type>primary</type>
<prox-id>value-2013-4-9-16-53-8-39562387-6</prox-id>

</resource>

• The ProX definitions are listed in prox. Currently, it lists one blueprint, used as
the data for the XForm, and one instance, the XML that results when saving the
XForm.

• The resources used by ProX processes are listed in prox-resources. These include
any XSLT, FO, XProc, etc.

• The ProX wrapper resources are listed in wrapper-pipeline. These include the
wrapper XProc, the XForm, etc.

But most importantly: currently, any URI used by a pipeline to save something in
eXist must be given as an xmldb:exist URI, due to the unfortunate Calabash URI
handling problem, described above.

2.4. Running ProX in eXist
My first XQuery wrapper for running ProX in eXist was just something that ran the
wrapper XProc:

query version "3.0";
let $result := xmlcalabash:process("xmldb:exist:///db/work/docs/xproc/►
WRAP-2.xpl",
("-imap=http://localhost:8080/exist/rest/db/work/system/common/xml/►
resource-map.xml",
"-oresult=-"),
("normalized=xmldb:exist:///db/work/docs/test/test.xml"))
return

$result

In other words, simply something that invoked the wrapper XProc, using the re-
source map as its only input. When toying with eXist's web development capabilities
in its eXide editor, however, I realised that there is no need to create one, unified
wrapper. We still need to do the following, but we don't need to do them as a single
process:
1. Select an input XML file.
2. Generate a resource map lookup table for ProX, based on the input and a “re-

source map template” that lists the resources that aren't determined at runtime.

297

ProXist - XProc Processes in eXist

3. Start the XForm used to configure ProX with (presenting the configuration op-
tions available in the ProX blueprint) and save a configured instance that de-
scribes a single ProX child process.

4. Run the configured child ProX process and handle results.
Better to present each of these on an HTML page in eXist, like this:
1. Select an input file. This involves an XForm and a simple XQuery for listing files

in the DB and filtering out those that aren't XML or have the wrong root element
for further processing. With apologies for the crudeness of my test XForm:

Figure 6. Select Input XML

The XForm fetches its data using something like this:
let $xml := collection(concat('/db/work/','docs'))

return <data>

{
for $doc in ($xml)
order by base-uri($doc)

return

if (contains(base-uri($doc),'.xml') and local-name($doc/*)='cos')
then <item>

298

ProXist - XProc Processes in eXist

<string>{tokenize(base-uri($doc),'/')[last()]} - root XML, ►
({base-uri($doc)})</string>

<value>{base-uri($doc)}</value>
<type>root</type>

</item>
else if (contains(base-uri($doc),'.xml') and local-name($doc/*)!='cos')

then <item>
<string>{tokenize(base-uri($doc),'/')[last()]} ►

({tokenize(base-uri($doc),'\.')[last()]} XML module, {base-uri($doc)})</►
string>

<value>{base-uri($doc)}</value>
<type>xmlmodules</type>

</item>
else (<item>
<string>{tokenize(base-uri($doc),'/')[last()]} ►

({tokenize(base-uri($doc),'\.')[last()]} module, {base-uri($doc)})</string>
<value>{base-uri($doc)}</value>
<type>other</type>

</item>)
}

</data>

2. When hitting Process selected resource, an XQuery runs the XSLT to generate
resource-map.xml and save it where it can be found by the next step (configuring
the XForm). Here's a test:

let $files := request:get-data()

for $file in tokenize($files//value,' ')

(: We only allow root XML as input :)
let $input := if ((contains($file,'.xml') and local-name(doc($file)/►

*)='cos'))
then $file
else ""

let $filename := tokenize($file,'/')[last()]

let $parameters := <parameters><param name="root-xml" value="{$file}"/></►
parameters>

let $result := if ($input !='') then
(transform:transform(doc($file),'http:localhost:8080/exist/rest/db/►

system/cosml/xslt/doc-resources.xsl', $parameters))
else ""

return if ($result!='')

299

ProXist - XProc Processes in eXist

then xmldb:store("xmldb:exist:///db/work/docs/►
test",$resource-map,$result) (:$result:)

else ""

3. An additional XQuery then runs the ProX XForm, using the generated resource
map as input.

Note
If the first two steps are skipped, the last available resource-map.xml is
used instead or, if there is none available, the user warned and the process
interrupted.

Figure 7. The ProXXForm

4. The Save saves the configured ProX instance and runs the ProX wrapper XProc.

2.5. The Wrapper Pipeline
The Balisage version of ProX ran with a wrapper XProc script that configured and
ran the XForm, updated the ProX instance that resulted with runtime values, post-
processed the input XML files, converted the ProX instance to a shell script to run
the child process with, and ran that shell script. Published output resulted.

The ProXist version also uses a wrapper XProc, but leaves the preprocessing
before and including the XForm to XQueries and an eXist web app, described above.
Also, as the wrapper XProc steps are run exclusively in eXist rather than on a file
system, some of them are XQueries6 invoked form the XProc.

The following is the wrapper XProc as it appears at the time of this writing. It
works but still invokes the XForm by running a new profile of the browser rather
than in an XQuery as described in Section 2.4. This is both cumbersome and unne-
cessary, but the XQuery was not finished in time for the XML Prague paper deadline.

6A prime example is the snippet required to change the ownership and permissions of the XQuery that
is generated from the ProX instance.

300

ProXist - XProc Processes in eXist

Also, as the current Calabash seems to have problems with URI handling, the
XProc wrapper cannot currently produce a PDF; this also needs to be handled by
an XQuery7, relying on eXist's FO processor integration.

<p:declare-step
xmlns:c="http://www.w3.org/ns/xproc-step"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:cx="http://xmlcalabash.com/ns/extensions"
xmlns:xf="http://www.w3.org/2002/xforms"
name="main"
version="1.0">

<!-- Wrapper XProc for ProX
Requires resource map file as an input. -->

<!-- Inputs -->

<!-- Resource map document -->
<!-- Contains all URN/URL for XSLT, XPL, XML modules, targets, etc -->
<p:input port="map" sequence="true"/>

<!-- Global XSLT params -->
<p:input port="xsltparams" kind="parameter"/>

<!-- Outputs -->
<p:output port="result" sequence="true">
<p:pipe port="result" step="med"/>

</p:output>

<!-- Extension steps -->
<p:import href="http://xmlcalabash.com/extension/steps/library-1.0.xpl"/>

<!-- ProX Blueprint URL -->
<p:variable
name="prox-blueprint"
select="//prox/blueprints/resource[@id='id-prox-blueprint']/url/normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- ProX XForm Target Instance URL (webdav) -->
<p:variable
name="target-prox-instance"
select="//prox/instances/resource[@id='id-prox-xform-target-instance']/url/►

normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- ProX XForm Target Instance URL (xmldb) -->
<p:variable
name="xmldb-target-prox-instance"
select="//prox/instances/resource[@id='id-prox-xform-xmldb-instance']/url/►

7Either in the XQuery wrapper or by changing the PDF publishing pipeline to only produce FO and
then handling that FO in the generated XQuery instead. The latter option seems to be the more likely
one, as I write this.

301

ProXist - XProc Processes in eXist

normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- ProX Saved Instance URL (rest) -->
<p:variable
name="saved-prox-instance"
select="//prox/instances/resource[@id='id-prox-saved-instance']/url/normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- XForm URL -->
<p:variable
name="xform-url"
select="//wrapper-pipeline//resource[prox-id='id-loc-xform']/url/normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- prox2shell config URL -->
<p:variable
name="prox2shell-config"
select="//wrapper-pipeline//resource[prox-id='id-prox2shell-config']/url/normalize-space(text())">
<p:pipe port="map" step="main"/>

</p:variable>

<!-- Temp URL -->
<p:variable name="tmp-url" select="'xmldb:exist:///db/work/docs/test/'">
<!-- substring-before(base-uri(/*),tokenize(base-uri(.),'/')[last()]) -->
<!--<p:pipe port="map" step="main"/>-->
<!-- Should use base URI of a target output (ensures writable collection) -->

</p:variable>

<!-- OS ('osx', 'win', 'linux', 'exist' allowed) -->
<p:variable name="os" select="'exist'"/>

<!-- Open ProX Blueprint in Browser -->
<!-- Opens with an XForms profile in order

to start a separate browser instance -->
<p:choose name="browse">
<!-- Linux -->
<p:when test="$os='linux'">
<p:exec command="/usr/bin/iceweasel">
<p:input port="source">
<p:empty/>

</p:input>
<p:with-option
name="args"
select="concat('-P "XForms" -no-remote ',$xform-url)"/>

</p:exec>
<p:sink/>

</p:when>

<!-- eXist -->
<p:when test="$os='exist'">
<p:exec command="/usr/bin/iceweasel">
<p:input port="source">

302

ProXist - XProc Processes in eXist

<p:empty/>
</p:input>
<!-- Add variable ref to the following? -->
<p:with-option
name="args"
select="concat('-P "xforms" -no-remote ','http://localhost:8080/exist/rest/db/►

apps/form.xq?form=prox-xform.xml')"/>
</p:exec>
<cx:wait-for-update pause-after="3">
<!-- Needs to monitor webdav URI of ProX instance, changed by XForm -->
<p:with-option name="href" select="$target-prox-instance"/>

</cx:wait-for-update>
<p:sink/>

</p:when>
</p:choose>

<!-- Insert runtime values to ProX instance -->
<p:xslt name="prox-urn2url" cx:depends-on="browse">
<!-- Input source is ProX instance saved by XForm -->
<p:input
port="source"
select="doc(//prox/instances/resource[@id='id-prox-saved-instance']/url/►

normalize-space(text()))">
<p:pipe port="map" step="main"/>

</p:input>
<p:input
port="stylesheet"
select="doc(//wrapper-pipeline/package/resources/resource[prox-id='id-prox-fix']/url/►

normalize-space(text()))">
<p:pipe port="map" step="main"/>

</p:input>
<p:with-param name="map-url" select="base-uri()">
<p:pipe port="map" step="main"/>

</p:with-param>
</p:xslt>

<p:identity name="id">
<p:input port="source"/>

</p:identity>

<!-- Store ProX instance with URLs -->
<p:store name="save-prox" cx:depends-on="id">
<p:with-option
name="href"
select="'xmldb:exist:///db/work/docs/test/tmp-prox-instance.xml'"/>

</p:store>

<!-- Convert instance to XQ -->
<p:xslt name="xsltbat" cx:depends-on="id">
<p:input port="source">
<p:pipe port="result" step="id"/>

</p:input>
<p:input
port="stylesheet"
select="doc(//wrapper-pipeline/package/resources/resource[prox-id='id-prox2xq']/url/►

normalize-space(text()))">
<p:pipe port="map" step="main"/>

</p:input>

303

ProXist - XProc Processes in eXist

<p:with-param name="map-url" select="base-uri()">
<p:pipe port="map" step="main"/>

</p:with-param>
</p:xslt>

<p:store
name="save-xq"
cx:depends-on="xsltbat"
media-type="text/plain"
method="text">
<p:with-option
name="href"
select="'xmldb:exist:///db/work/docs/test/out.xq'"/>

</p:store>

<p:xquery name="xq">
<p:input port="source">
<p:pipe port="result" step="xsltbat"/>

</p:input>
<p:input port="query">
<!-- Change permissions, group and owner -->
<p:data
href="http://localhost:8080/exist/rest/db/work/docs/xq/chown-test.xq"
content-type="text/plain"/>

</p:input>
</p:xquery>

<p:xquery name="run-xq">
<p:input port="query">
<!-- Run generated XQuery -->
<p:data
href="http://localhost:8080/exist/rest/db/work/docs/test/out.xq"
content-type="text/plain"/>

</p:input>
</p:xquery>

<p:sink/>

<!-- Return Results -->
<p:identity name="med">
<p:input port="source">
<p:inline>
<p>Success!</p>

</p:inline>
</p:input>

</p:identity>
</p:declare-step>

Some notes:
• While the above example includes OS-dependent steps, they are no longer

needed. Also, the XForm does not actually need to be opened in a separate
browser instance, as there is a cx:wait-for-update that pauses the pipeline while
monitoring a change to the ProX instance URL.

304

ProXist - XProc Processes in eXist

• The wrapper concludes with two XQueries. The first invokes a helper XQuery8

that changes the file ownership and permissions of the XQuery that was gener-
ated from the ProX instance by a previous step, and the second runs that gener-
ated XQuery.

Note
While this arrangement works, there may be advantages to placing these
two steps in the wrapper XQuery, running them after the wrapper XProc
has finished. Most importantly, it is far easier to handle the child process
results there rather than in an XProc that for now is something of a foreign
entity inside eXist.

2.6. Processing before Running the Child Process
Some processing to both the input XML and the ProX components is required before
the XQuery for the child process can be generated and run:
• Before running the XForm, it needs a URI to the ProX blueprint, to be used as

input, and a temporary ProX instance URI for, to be used as output.
• The ProX instance saved by the XForm needs to be updated with runtime values

for the input XML and any outputs before it can be used as the input for gener-
ating the child process XQuery. The runtime values are fetched from the resource
map XML.

• The input XML may need to be processed, for example, replacing URLs with
URNs in links.

Note
All these steps require an input resource map XML file, to be used as a lookup
table. See Section 2.3.

2.7. Generating an XQuery to Run a Child Process
An XQuery for running a child pipeline looks something like this (the example is
a test for a child process producing PDF output; this particular test currently only
produces the FO, not the converted PDF) :

xquery version "3.0";
let $result := xmlcalabash:process("xmldb:exist:///db/work/docs/xproc/►
publish-cosml-pdf-TEST.xpl",
("-istylesheet=http://localhost:8080/exist/rest/db/work/system/cosml/fo/►

8Including this directly in the wrapper XProc does not work, likely because of the permissions the XProc
runs with.

305

ProXist - XProc Processes in eXist

cos-fo-internal.xsl",
"-istylesheet-norm=http://localhost:8080/exist/rest/db/work/system/cosml/xslt/►
normalize-2.xsl",
"-idocument=http://localhost:8080/exist/rest/db/work/docs/pdftest/►
test-root.xml"),
("normalized=xmldb:exist:///db/work/docs/test/test.xml",
"pdf=xmldb:exist:///db/work/docs/test/out.pdf"))
return

$result

The above child process requires a root XML input file, two XSLT stylesheets (one
for normalising the XML into a single file, the other for converting the normalised
XML to FO), an option for saving the normalised XML for debugging and finally a
named PDF output filename. Given a ProX instance as input, the above is easily
produced with an XSLT stylesheet 9.

The generated XQuery is saved to a temporary collection. Its permissions are
then changed using a p:xquery step referencing a stored XQuery. This allows the
generated XQuery to be run by the next XProc step, another p:xquery step.

3. Limitations, Hacks and Additions
Some limitations and some solutions:
• The demo wrapper used a p:exec to start a browser and open the XForm URL

in the operating system's command line. This did pause the wrapper pipeline
until the browser was closed, allowing the user to make choices and save the XForm,
IF the browser was not already open in which case the wrapper wouldn't under-
stand that it was supposed to pause.

Norm Walsh was present at the demo and wrote an extension to Calabash,
cx:wait-for-update, that pauses a pipeline until a URI changes, before the day
was over. This very neatly solves the pause for user input problem as the wrapper
pipeline now only has to monitor the ProX instance URI for changes.

• The XML Calabash eXist extension module now works with the currently latest
XML Calabash (1.0.16-94 as of this writing) and accepts XProc options, inputs
and other bindings as defined by Calabash, with some quirks and limitations10.

• At the time of this writing, a Calabash URI handling bug is imposing some
limitations to my child pipeline processes. The p:xsl-formatter step, for example,
appears to require that file: is used in @href, which, for now, means that the
resulting PDF cannot be saved in eXist from a pipeline; currently, the Calabash

9It would probably be just as easy to write the wrapper ProX process in XQuery, limiting the use of
XProc to the child processes. The solution presented here is the continuation of the author's earlier work,
indicating his preferences rather than an objectively preferred way.
10For example, input bindings need to be sequences, and only one output port is allowed.

306

ProXist - XProc Processes in eXist

module and eXist require xmldb:exist:. An “outside” XQuery for the FO to
PDF conversion, and a subsequent save, is required.

• This, on the other hand, causes a problem because that outside step needs to
identify what it receives from the previous step. This, at the time of this writing,
I cannot yet do.

Note
The demo ProX implementation left all of the child processing to the child
pipeline, which is far easier because the wrapper does not need to know
what it processes, it just needs to pass on the user's choices and the runtime
values to the child. This, of course, is what I would prefer to happen in
eXist as well.

4. What's Next?
While ProXist does work at the time of this writing, there are fixes and improvements
to be made, both in time for the conference and later:
• The wrapper XQuery that initiates and runs the ProX wrapper process needs to

be updated to handle selecting the input XML, running the XSLT that generates
the resource map XML, updating, opening and saving the XForm, and only then
running the wrapper XProc pipeline. See Section 2.4.

• ProXist needs to be packaged properly. eXist includes a terrific web application
development and packaging kit, which vastly simplifies both packaging it and
writing the wrapper XQuery (as well as other resources) itself.

• The XProc pipelines, ProX and child processes alike, currently include very little
in the way of error handling and logging, which is something that needs to be
remedied

• The ProX Relax NG schema is somewhat inconsistent in its use of repeating and
common semantics, and there are problems with how bindings are declared.
For example, currently identifying target (runtime) bindings is cumbersome
because of how their IDs are defined; two different pipelines cannot share the
same basic output binding because the output values use ID attributes to
identify them.

5. Some Final Words
My deepest and most heartfelt gratitude must go to to Jim Fuller who took pity to
my code-impaired self and added the missing options and Calabash bindings to
his eXist Calabash module. He also discovered bugs in Calabash's handling of URIs
in the in- and output bindings, and fixed them, too.

307

ProXist - XProc Processes in eXist

My thanks also to Norm Walsh, who listened to my Balisage talk about ProX
and wrote the cx:wait-for-update extension step for Calabash before I was done.
Not sure if it means I was boring or interesting and afraid to ask.

And thanks also to my boss who allowed me to open-source all of ProX.
Finally, both ProXist and Prox the Balisage edition are available on Github (see

[5]). While I'm aware of the fact that what's there now is a chaotic mess, I hope to
bring some order to it all in time for the conference. Perhaps even document it.

Bibliography
[1] Using XML to Implement XML, Ari Nordström

http://www.balisage.net/Proceedings/vol8/html/Nordstrom01/BalisageVol8-Nordstrom01.html
[2] ProX: XML for interfacing with XML for processing XML (and an XForm to go

with it)
http://www.balisage.net/Proceedings/vol11/html/Nordstrom02/BalisageVol11-Nordstrom02.html

[3] XProc: An XML Pipeline Language, Recommendation
http://www.w3.org/TR/xproc/

[4] XML Calabash http://xmlcalabash.com/
[5] ProX on Github https://github.com/sgmlguru

308

ProXist - XProc Processes in eXist

Jiří Kosek (ed.)

XML Prague 2014
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and XEP.

1st edition

Prague 2014

ISBN 978-80-260-5712-3

	XML Prague 2014
	Table of Contents
	General Information
	Sponsors
	Preface
	Distributed Extensibility: Finally Done Right?
	1. Introduction
	2. XML Namespaces
	3. Web Components
	4. XML Components?
	5. Conclusion

	The web needs “XML: The Good Parts”
	1. Introduction
	2. Death of a browser technology
	3. Custom elements reincarnated
	4. Enable mix and match
	5. Using XHTML imports
	6. Templates will drive the web
	7. Powered by queries
	8. Taking advantage of XPath
	9. To the benefit of everyone
	10. Design for developers
	11. Instantly add interactivity
	12. Automatically optimizing performance
	13. Brought to you by Frameless
	14. Conclusion
	Bibliography

	In Consideration of improvements to XProc
	1. Introduction
	2. Necessary enhancements
	2.1. Allow attribute value templates
	2.2. Align with XPath 3.0 technologies
	2.3. Allow arbitrary XDM values in variables
	2.4. Add explicit flow handling
	2.5. Simplify parameters
	2.6. Integrate non-XML documents into pipelines
	2.7. Support a variety of syntactic simplifications

	3. Additional enhancements
	3.1. Associate arbitrary metadata with documents
	3.2. Support steps with a dynamic number of ports
	3.3. Provide improved status information
	3.4. Provide a mechanism for importing user-defined functions
	3.5. Enhance try/catch
	3.6. Consider using XDM everywhere
	3.7. Simplify p:viewport and allow it to have multiple outputs
	3.8. Provide a way to specify the base URI of a document

	XSLT 3.0 Streaming for the masses
	1. Disclaimer
	2. Errata and updates
	3. A brief history of streaming
	4. Why streaming?
	4.1. Input data size
	4.2. Streamed input
	4.3. Output streaming
	4.4. Unparsed text input streaming

	5. XSLT 3.0 streaming basics
	5.1. Guaranteed streamability
	5.2. How to find out whether your processor supports streamability
	5.2.1. How non-streaming processors deal with streamability

	5.3. How to initiate streaming
	5.3.1. Using xsl:stream to initiate streaming
	5.3.2. Using xsl:mode to initiate streaming
	5.3.3. Using xsl:merge to initiate streaming
	5.3.4. Using fn:unparsed-text-lines to initiate unparsed text streaming
	5.3.5. Other means of initiating or using streaming

	6. Rules of thumb for streaming with XSLT 3.0
	6.1. Rule 1: each template rule can have a maximum of one downward expression
	6.1.1. What are downward expressions?

	6.2. Rule 2: each construct can have a maximum of one downward expression
	6.3. Rule 3: Use motionless expressions where possible
	6.4. Rule 4: You can move up the tree, but never down again
	6.5. Rule 5: You cannot store a reference to a node
	6.5.1. A note on global variables and streaming

	6.6. Rule 6: Break out of streaming abundantly
	6.7. Rule 7: Understand streamable patterns
	6.8. Rule 8: Templates must be grounded
	6.9. Rule 9: Use motionless filters
	6.10. Rule 10: Master xsl:fork

	7. Follow the arrow
	7.1. Start of streaming analysis
	7.2. Streaming of templates and sequence constructors
	7.3. Streaming of patterns
	7.4. Flowchats for determining general streamability
	7.5. Flowcharts for determining adjusted sweep S' and potentially consuming operands
	7.6. Flowcharts for determining combined posture and type determined usage
	7.7. Flowcharts for determining streamability of instructions
	7.8. Flowcharts for determining streamability of selective specific instructions
	7.8.1. Streamability of xsl:apply-templates and xsl:call-templates
	7.8.2. Streamability of xsl:fork
	7.8.3. Streamability of xsl:map, xsl:stream, xsl:try and xsl:iterate
	7.8.4. Streamability of xsl:for-each and xsl:for-each-group
	7.8.5. Streamability of xsl:merge

	7.9. Flowcharts for determining streamability of expressions
	7.10. Flowcharts for determining streamabiity of axis steps
	7.11. Flowcharts for determining streamabiity of functions

	Bibliography

	Streaming in the Saxon XSLT Processor
	1. Introduction
	2. Streamability
	2.1. The W3C Streamability Rules
	2.2. Visualising the Streamability Rules
	2.3. Implementation of the Streamability Rules in Saxon

	3. Run-time execution
	3.1. Example of Push-based Expression Implementation
	3.2. Why not pull?

	4. Constructing the Push Pipeline
	5. Early exit, and error handling
	6. Conclusions
	References

	XFormsUnit: the Framework to Test Them All
	1. What XForms Unit is
	2. A native XForms test suite framework
	3. Limitations
	4. XForms flavours

	XSLT 3.0 Testbed
	1. Timing
	2. JATS
	3. Goals
	4. Non-goals
	5. Results so far
	6. Map of functions compared to xsl:attribute-set
	6.1. Discussion

	7. Idioms
	7.1. XSLT 1.0
	7.2. XSLT 2.0
	7.3. XSLT 3.0

	8. Stylesheet License
	9. Conclusion
	Bibliography

	XML Schema Identity Constraints Revisited
	1. Introduction
	2. XML Schema's concepts for identity constraints: key
	3. Propagating index tables upwards
	4. XML Schema's concepts for identity constraints: Referencing keys
	5. Conclusions and further work
	6. Acknowledgement
	Bibliography
	A. Appendix: Listing

	Data and Documents, Together Again
	1. Introduction
	2. The document model, with triples as special guest.
	3. Mixing triple queries and document searches
	3.1. Document security to change access to structured data.
	3.2. Document search to constrain query to subset of corpus.
	3.3. Document updates to maintain data state.

	4. My content accompanies data I can query.
	4.1. RDF Data Embedded in (or extracted from) Content
	4.2. Content describes the data.
	4.3. Document contains statistics about other data.
	4.4. Commonalities

	5. An example – Rule-based inference
	6. Another Example: Data pipelines
	7. Databinding into Structured Context
	8. Concluding
	Bibliography

	Scientific Computing in the Open Web Platform
	1. Science and the Open Web Platform
	2. Scientific Data Sets
	3. Changing the Paradigm
	4. The PAN Methodology
	5. Mesonet.info Example
	6. Computing on the Open Web Platform
	6.1. Data Access Methods
	6.2. Data Navigation via APIs
	6.3. Computing on the OWP
	6.3.1. Map / Reduce
	6.3.2. Barnes Interpolation

	7. Conclusion
	Bibliography

	RESTful API Description Language (RADL)
	1. Introduction
	2. The REST Architectural Style
	3. REST APIs must be hypertext-driven
	4. RADL - a hypertext-driven REST API description
	5. Using RADL Descriptions
	A. RADL Schema
	B. Schema for embedded XHTML
	C. Schema for embedded DocBook
	D. RADL schema
	E. Complete Maps Example
	Bibliography

	XML Authoring On Mobile Devices
	1. Introduction
	2. Technology choices
	3. Web application architecture
	4. Samples
	5. Conclusions

	A MathML Progress Report
	1. Introduction
	2. The MathML standard
	3. Adoption of MathML within other standards
	4. Tool support of MathML
	5. Conclusion
	Bibliography

	Finalising a (small) Standard
	1. Standards – let’s have plenty
	1.1. Community spirit

	2. Fiddling with bits – Binary Module
	3. Prove the specification – do it all together
	3.1. Don’t just think – use a computer
	3.2. The power of the medium-sized example

	4. Fix policy early (and not too often)
	4.1. The naming of parts
	4.2. Errors, and how to live with them
	4.3. Arguments ‘on the edge’
	4.4. Future-proofing – which version am I?

	5. The declarative tool-user
	5.1. Anything to declare? – Plenty!
	5.2. Tools help you rework

	6. Be realistic – we haven’t got all day
	6.1. Pragmatism vs Purity
	6.2. Focus on the core
	6.3. It doesn’t have to be perfect

	7. Conclusion
	7.1. Acknowledgements
	7.2. Quo vadis?

	References

	Publishing in Style with XML
	1. Introduction
	2. Not Your Grandma’s CSS
	3. Not Your Aunt Tillie’s CSS
	4. Moving from XSL-FO: The Models
	5. Sample Difficulties
	6. Pages
	6.1. Defining And Numbering Pages
	6.2. Areas Within a page
	6.3. Static Page Content

	7. After the first page
	7.1. Tables of Contents
	7.2. Units and Expressions
	7.3. Selectors and Specific Gravity
	7.4. Baseline Positioning and Boxes
	7.5. Indexes
	7.6. Tables

	8. Why so Glum?
	8.1. Sharing Styles
	8.2. Sharing Style Rules
	8.3. Rapid Development
	8.4. The In crowd
	8.5. Communicating with the Young and Hip

	9. W3C and CSS for Publishing
	9.1. The W3C Publishing Activity
	9.2. The Digital Publishing Interest Group
	9.3. Working With CSS

	10. Conclusions

	Formatting from XML
	1. Comparing XSL-FO and CSS efforts
	2. W3C Digital Publishing Interest Group
	3. Can you typeset a book with CSS?
	4. Can you typeset every book with XSL-FO?
	5. Effect on transformations
	Bibliography

	ProXist - XProc Processes in eXist
	1. Intro
	1.1. What Is ProX?

	2. ProXist
	2.1. ProX Wrapper Process
	2.2. The ProX Blueprint
	2.3. Resource Map
	2.4. Running ProX in eXist
	2.5. The Wrapper Pipeline
	2.6. Processing before Running the Child Process
	2.7. Generating an XQuery to Run a Child Process

	3. Limitations, Hacks and Additions
	4. What's Next?
	5. Some Final Words
	Bibliography

