
XML Prague 2015
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 13–15, 2015

XML Prague 2015 – Conference Proceedings
Copyright © 2015 Jiří Kosek

ISBN 978-80-260-7667-4

Table of Contents
General Information ... vii

Sponsors ... ix

Preface .. xi

Parallel Processing in the Saxon XSLT Processor – Michael Kay 1

Parallel XSLT Processing of Large Documents – Jakub Malý 15

Semantic Hybridization: Mixing RDFa and JSON-LD –
R. Alexander Miłowski ... 29

Using DocBook to Produce a Polyvalent Academic Work –
Murray Maloney, Robert J. Glushko, and R. Alexander Milowski 35

Generation of a “semantic” eBook: all you need is XML –
Vincent Gros, Jean-Claude Moissinac, and Luc Audrain .. 55

Building Security Analytics using Native XML Database – Mansi Sheth 71

Node search preceding node construction – Hans-Jürgen Rennau 87

Native XML Databases: Death or Coming of Age? –
Craig Brown, Xavier Franc, Michael Paddon, and ... 107

A Unified Approach to Design and Implement XMLWeb Applications –
Christine Vanoirbeek, Houda Chabbi Drissi, and Stéphane Sire 121

Graphical User Interface Tool for Designing Model-Based User Interfaces –
Anne Brüggemann-Klein, Lyuben Dimitrov, and Marouane Sayih 139

Survey State Model (SSM) – Jose Lloret and Nirmalie Wiratunga 159

Schematron for Information Architects – George Bina .. 179

TXSTEP – Wilhelm Ott and Tobias Ott .. 191

In-Browser XML Document Streaming –
Cyril Concolato and Emmanouil Potetsianakis .. 197

v

vi

General Information

Date
Friday, February 13th, 2015 (preconference day)
Saturday, February 14th, 2015
Sunday, February 15th, 2015

Location
University of Economics, Prague (UEP) – Vencovského aula
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee
Petr Cimprich, Xyleme
Vít Janota, Xyleme
Jirka Kosek, xmlguru.cz & University of Economics, Prague
Pavel Kroh, pavel-kroh.cz & Macness.com
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee
Robin Berjon,W3C
Petr Cimprich, Xyleme
Jim Fuller,MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Uche Ogbuji, Zepheira LLC
Adam Retter, freelance consultant
Felix Sasaki, DFKI / W3C Fellow
John Snelson,MarkLogic
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh,MarkLogic
Mohamed Zergaoui, Innovimax

Produced By
XMLPrague.cz (http://xmlprague.cz)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)
Ubiqway, s.r.o. (http://www.ubiqway.com)

vii

http://xmlprague.cz
http://fis.vse.cz
http://www.ubiqway.com

viii

Sponsors

Gold Sponsor
Mark Logic Corporation (http://www.marklogic.com)

Sponsors
oXygen (http://www.oxygenxml.com)
Mercator IT Solutions Ltd (http://www.mercatorit.com)
le-tex publishing services (http://www.le-tex.de/en/)
appsoft Technologies GmbH (http://www.xeditor.com)
Saxonica Ltd (http://www.saxonica.com)
OverStory Consulting Ltd (http://www.overstory.co.uk/)

ix

http://www.marklogic.com
http://www.oxygenxml.com
http://www.mercatorit.com
http://www.le-tex.de/en/
http://www.xeditor.com
http://www.saxonica.com
http://www.overstory.co.uk/

x

Preface

This publication contains papers presented during the XMLPrague 2015 conference.
In its tenth year, XML Prague is a conference on XML for developers, markup

geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big Data
and recent advances in XML technologies. The conference provides an overview of
successful technologies, with a focus on real world application versus theoretical
exposition.

The conference takes place 13–15 February 2015 at the campus of University of
Economics in Prague. XML Prague 2015 is jointly organized by the XML Prague
Organizing Committee and by the Faculty of Informatics and Statistics, University
of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate on-line.

The conference startswith a pre-conference daywhich provides space for various
XML community meetings in three parallel tracks. During the weekend classical
single-track format is used and papers from it are published in the proceeedings.
Additionally, we coordinate, support and provide space forW3CXSLT andXQuery
working group meetings collocated with XML Prague.

Last but not least—this year the conference celebaretes its 10th anniversary. We
have not even imagined that XML Prague one day becomes one of the largest and
the most respected XML events when we have been preparing the first conference
ten years ago.

We hope that you enjoy XML Prague 2015.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

Parallel Processing
in the Saxon XSLT Processor

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

One of the supposed benefits of using declarative languages (like XSLT) is the
potential for parallel execution, taking advantage of the multi-core processors
that are now available in commodity hardware.

This paper describes recent developments in one popular XSLT processor,
Saxon, which start to exploit this potential. It outlines the challenges in imple-
menting parallel execution, and reports on the benefits that have been observed.

1. Introduction
In recent years, increased hardware speeds have been achieved largely by packing
more processors onto a chip. To take full advantage of the processor capacity,
therefore, it is necessary to take advantage of parallelism. Languages that can exploit
parallel processing, ideally “under the hood”without involvement of the program-
mer, therefore have great appeal.

The potential for parallel execution has always been one of the justifications for
makingXSLT a purely declarative language. Declarative languages,withoutmutable
variables, give the compilermuchmore freedom to rearrange the order of execution,
including the ability to perform tasks in parallel. To take a simple example, XSLT’s
<xsl:for-each> “loop” is not actually a loop in the sense of traditional procedural
programming languages; rather it is a mapping operator: it applies a function (the
body of the <xsl:for-each> instruction) to an input sequence (the result of evaluating
the expression in the select attribute). As demonstrated by the popularity of themap-
reduce paradigm, a functionalmapping operation is an ideal candidate for parallel-
isation. While most XSLT processors today will process the selected items one by
one, in order, there has always been the freedom to process them in a different order,
or in parallel. The difficulty, of course, is to decide when this is an appropriate
strategy.

The connection between declarative languages and parallel processing is not
new. See for example [11], or [1], or [7]. For example, Chakravarty writes:

1

Declarative programming languages have long been seen as good candidates for
programming parallel computers. Their clean semantics makes them suitable for
optimizing program transformations, on the source level and during compilation.
However, researchers have found it difficult to present efficient parallel execution
models for declarative languages. Generally speaking, it appears to be impossible to
automatically identify the exact parallelism that leads to a reduction in execution
time, and the irregular access to dynamic data structures can result in considerable
overhead on distributed memory machines.

The idea of exploiting parallelism has been mooted since the earliest days of XSLT:
here for example is Eric Ray writing on the xsl-list forum on 1 Oct 2000:

The subtree processing model of XSLT seems to make it a good application for parallel
processing (i.e. using multiple CPUs to process different subtrees simultaneously).
Since many people have remarked on the inherent slowness of XSLT processors, I
wonder if anyone has succeeded in creating an XSLT processor that successfully di-
vides the work among different processors, resulting in a gain of processing speed.
Has anyone tried this? Some of the implementations are written in Java, such as
XT. Do they use multi-threading and can they take advantage of multiple CPUs?

Research attempts at parallel execution of XSLT transformations have been reported.
See for example [10], or [8] et al. A characteristic of these systems is that the entire
architecture of the processor is designed from the ground up to support parallelisa-
tion. While this can yield useful research results, there is a danger that from an en-
gineering perspective, other objectives get sacrificed.

In the commercial domain, there are high-end XSLT processors from IBM and
Intel, marketed as hardware-assisted XSLT accelerators, which may well make use
of parallel processing internally, but if so, no details are available in the public do-
main. Altova’s marketing literature for RaptorXML intriguingly claims “the engine
takes advantage of today’s ubiquitous multi-CPU computers to deliver lightning
fast processing of XML and XBRL data”; but it is hard to find any technical details
on how it does so.

This paper describes the incremental approach to parallelism adopted in the
Saxon product (see [9]). Saxon is awidely usedXSLT andXQuery processor available
in both open-source and commercial editions. Unlike some of the research vehicles
described in the literature, Saxon is not designed from the ground up for parallel
processing, and there has been no attempt tomake radical changes to its architecture
to take advantage of multi-core computers. But where opportunities for parallel
processing have presented themselves, they have been grasped, and for some
workloads they deliver substantial benefits. This paper describes how parallel
processing is used in Saxon today, and explains some of the benefits that can be
achieved, and the challenges that need to be overcome.

2

Parallel Processing in the Saxon XSLT Processor

2. Running Multiple Transformations in Parallel
The most trivial form of parallelism, which has probably been offered by all XSLT
processors since day one, is the ability to apply the same stylesheet independently
to several source documents at the same time. Although this capability is quite easy
to achieve, and is probably taken for granted bymost users, it is worth saying a few
words about it, firstly because it delivers substantial benefits, and also because it
creates a few challenges.

Clearly some workloads will benefit immensely from this approach. XSLT is
often used server-side on high-throughput web publishing platforms to render
XMLdocuments on demand intoHTML for viewing on the browser. Typically such
platforms have a small number of XML document types, with a large number of
instances of those types, and the sameXSLT stylesheets are usedwith high frequency.
In such an environment, there is considerable benefit in compiling the stylesheet to
efficient code (actual machine code or something higher level), and in executing
that code in parallel threads to meet the throughput and response time targets of
the online user community.

Saxon has always been optimized for this kind ofworkload. Perhaps excessively
so: figures published by [5] show that while Saxon’s run-time performance ranks
with the best, this is sometimes at the expense of relatively poor compile time per-
formance, which can be attributed to the amount of time spent optimizing. This is
a good strategy for this server-basedworkload, but a poor one for single-shot adhoc
processing where the cost of compiling a large family of stylesheets, such as those
used for the DITA or DocBook vocabularies, may dwarf the cost of a typical trans-
formation.

Although parallel execution of independent transformationsmay appear trivial,
it is not without its complications. Two problems in particular have been recurrent
over the years: contention, and reliability.

2.1. Contention
A very intensive operation in performing an XSLT transformation is the matching
of element and attribute names appearing in the source documentwith names used
in the stylesheet. Comparison of strings is slow, especiallywhen they include lengthy
namespace URIs. To eliminate this cost, Saxon has for many years implemented a
NamePool which maps strings to integer codes, so during execution, the string
comparisons are replaced by much faster integer comparisons. Of course, the same
mapping must be used when a stylesheet is compiled and when a source XML
document is parsed into a tree representation. But because a single compiled
stylesheet can be used to transform multiple XML documents, this means that all
the XML documents must use the same integer codes, and this means that the

3

Parallel Processing in the Saxon XSLT Processor

NamePool used to allocate these codes is a shared resource, and as such it can suffer
contention. This has been known, in some cases, to cause a significant bottleneck.

A number of techniques have been used to reduce this problem. In earlier re-
leases, all QNames were represented by integer codes, including for example the
names of variables and functions, and names in the result document. Today these
codes are used only in source documents to which XPath processing is applied. In
addition, the module that builds source documents uses caching techniques to
minimise contention: synchronized access to theNamePoolhas therefore been greatly
reduced in the common case where the vocabulary of names reaches steady state
quickly. Nevertheless, it remains a potential bottleneck. There is scope to reduce
contention further by partitioning, for example by creating one NamePool per
namespace, but this can only be a partial solution. A more radical approach has
been considered, in which there is a mapping table (one per transformation) from
integer codes used in the stylesheet to (different) integer codes used in the source
document. This indirection could noticeably reduce transformation speed, but if it
increases the scope for parallelism, it could be worthwhile. This lesson illustrates
the need to find engineering compromises between different objectives and a variety
of workloads; the danger with a research project that focuses on parallelisation to
the exclusion of all else is that it fails to achieve a balance.

Contention of course becomes even more of a problem once parallel processing
is usedwithin a single transformation. In fact, it becomes the limiting factor onwhat
can be achieved.

Another point worthmentioning here is that the need to avoid contention tends
to impose a design where stylesheet compilation and optimisation is completed
before execution starts. This way, the data structures representing the compiled
stylesheet, whatever form they take, are read-only and therefore contention-free at
execution time. However, as we have seen, there are workloads where compiling
everything before execution starts is far from optimal. In the massive stylesheets
that come with DocBook or DITA, most of the template rules define processing for
elements that rarely or never occur in a typical source document; effort spent com-
piling and optimising these template rules is wasted if they are never used. A just-
in-time compilation approach in such cases has many attractions; but it also runs
the risk of increasing contention when used in a shared workload.

2.2. Reliability
Even with the very limited form of multi-threading described in this section, there
has been a steady trickle of bugs over the years. These bugs are rare, but potentially
devastating. They often take years to discover (because the occurrence is probabil-
istic), and when they do occur they are hard to diagnose. It is often impossible to
reproduce the problem “in the lab”, that is, anywhere other than the site running
a production workload. One such bug a year is too many. We have been very fortu-

4

Parallel Processing in the Saxon XSLT Processor

nate that the users who discovered these bugs have had the technical competence
and commercial patience to take the lead in collecting the data needed to solve them.

Preventing such bugs arising is not easy (see for example [12]) Quote: “Creating
software that can be run by multiple threads concurrently is a daunting
task—dwarfed only by the act of testing that code”. Saxon is implemented in Java,
and switching to a different language is not a realistic option, given the existence
of around 250K lines of code. Even if it were an option, it’s not clear that a different
language would really help. Java offers the basic primitives needed to coordinate
multiple threads; the problem is that it offers very little in the way of tooling to en-
sure that a complex program is thread-safe. The basic discipline to ensure that
multiple executions of the same stylesheet can run concurrently is very simply
stated: code that runs at execution time must not modify the expression tree. One
can envisage tools (assisted by annotations in the code) that check such an assertion
statically, but we are not aware of any. Saxon includes about 400 classes that interact
directly with the expression tree, and if we rely on programmer discipline alone,
mistakes will occasionally happen.

(Having said this, we could do better with soak testing. We should probably
have a test where we run each of the 10,000 stylesheets in the W3C test framework
concurrently in a dozen threads for 24 hours or so, and check that each thread pro-
duces correct output. As it is, our concurrency testing is a woefully small part of
our total test programme.)

Again: if reliability is imperfect with the relatively trivial parallelism described
in this section of the paper, thenwe need to be extremely cautious about introducing
more ambitious parallelism, because reduced reliability is not a pricewe are prepared
to pay for any performance benefits.

3. Multi-threading and Streaming
While memory sizes appear astronomic compared with a few years ago, the size of
data files that peoplewant to transformgrows at a similar rate, and therewill always
be a handful of users who need to transform files that are too big to fit in physical
memory. Streamed XSLT processing, which avoids the need to build a tree repres-
entation of the source document in memory, has therefore been an increasing area
of focus in recent years. It is the main focus of XSLT 3.0 ([13]), and is a major area
for implementation work in Saxon ([4]).

Multi-threading and streaming are not orthogonal. Indeed, many of the oppor-
tunities for multi-threading become more difficult when processing has to be
streamed: it is then no longer possible, in the terms used by Eric Ray cited above,
to process different subtrees in parallel, because this relies on buffering data in
memory. (But for a counter-argument to this assertion, see the paper by JakubMalý
at this conference: [6]). However, all is not lost.

5

Parallel Processing in the Saxon XSLT Processor

The first use of multi-threading in Saxon was in fact to implement a form of
streaming. This provided a mode of processing in which the source document was
split into a sequence of subtrees, and each subtree was transformed independently
(this is still a simple and useful processingmodel that is often good enough to solve
the streaming requirement). The reason for using multi-threading was primarily to
solve a push-pull conflict in the processing pipeline: see [3] and [4]. We refer to a
software component as operating in pull modewhen it performs a sequence of read
operations to obtain its input, and as operating in push mode when it is invoked
repeatedly by a supplier of data to process data as it becomes available. A conflict
arises when two components in a pipeline both want to be in control: in this case,
an XML parser which wants to push data to the XSLT/XPath processor, and an
XPath processor which wants to pull data from the XML parser. One solution is to
run the first component (the XML parser) to completion, putting all the data in
memory, before starting execution of the second component (the XSLT processor).
This is the traditional architecture of today’s XSLT processors. An alternative solu-
tion, adopted in Saxon, is to use two threads for the two processes, passing data
from one to the other via a synchronized queue.

But although this approach breaks the document into subtrees that are processed
independently, in the current implementation they are processed sequentially rather
than in parallel. There are only two threads, one parsing and building the subtrees,
the other processing themone at a time as they become available. Itwould be difficult
to split the parsing thread into multiple threads, because it reads the input data se-
quentially. Splitting the processing thread would be easier, though it would still
need coordination to ensure that results are written to the final result tree in the
right order.

This approach has fallen into disuse in more recent releases, though it is still
used in some cases, for example in the streamed implementation of the new XSLT
3.0 <xsl:merge> instruction. The reason is that it is no longer required: the push-
pull conflict has been eliminated by rewriting the XPath engine to operate in push
mode, accepting input in the form of events triggered by the XML parser. Any
performance benefits obtained by running two threads rather than one were an in-
cidental part of the design (themain objective being to reducememory requirements).
It would of course be possible to continue running the parser and XSLT processor
in separate threads even when there is no push-pull conflict forcing this, but we
would need to make careful measurements to ensure that this actually delivered
benefits.

4. Multi-threading in Saxon Today
In the current Saxon release (9.6) there are four main ways multi-threading is used,
and they will be described in this section. In all cases, multi-threading is a feature
offered only in the Enterprise Edition of the product.

6

Parallel Processing in the Saxon XSLT Processor

4.1. The collection() function
The collection() function reads a set of input files. TheW3C specification is deliberately
vague aboutwhat constitutes a collection, because it needs to accommodate a variety
of different database architectures. Although the facility was designed to allow
searching a collection of documents held in an XML database, it is also very useful
for transforming a collection of rawdocuments held in filestore (for example, I have
a stylesheet that transforms the thousands of documentsmakingup theW3CXQuery
test suite into a set of tests suitable for testing XSLT).

By default, Saxon-EE implements the collection() function in multiple threads. A
pool of threads is allocated (we choose a number based on the number of CPUs
available, forwant of any better indicator), and the parsing of the source documents
making up the collection is distributed among these threads. The XPath expression
that invoked the collection() function receives the parsed documents in the order in
which parsing is completed.

This is a very straighforward use of multi-threading for a task that is easily dis-
tributed. There is very little scope for contention (the only shared resources being
theNamePool, discussed above, and the queue on which each parsing thread places
the parsed document on completion). Because XMLparsing cost can often dominate
transformation cost, the benefit is high, and the risks in terms of contention and
reliability are low.

There are decisions to be made about the order of results. Although W3C does
not mandate that collection results are delivered in any particular order, users may
have an expectation about the order. Another complication is that an expression
like collection()/doc is mandated to deliver results in document order, which is
somewhat arbitrary, but it cannot be assumed that this is simply the order in which
the results become available. (Smart userswill write collection()!doc to avoid any
risk of triggering a sort; but not all users are this smart, and some will deliberately
prefer a construct that works in XPath 2.0 as well as 3.0.)

In Saxon 9.6, the multi-threading of the collection() function was implemented
in the defaultCollectionURIResolver class, which is taskedwith taking aURI as input
and delivering a sequence of documents as output. There are two drawbacks to this
design. Firstly, multi-threading doesn’t work if the user substitutes their own Col-
lectionURIResolver, which is a perfectly reasonable thing to do. Secondly, the approach
is incompatible with streaming. If we want each of the documents in the collection
to be processed using streaming, then having aCollectionURIResolver that pre-builds
each document in memory scuppers this. The design has therefore been changed
for Saxon 9.7.1 XSLT 3.0 introduced a new function uri-collection() to handle this
case. In the newdesign, theCollectionURIResolver returns (synchronously) a sequence
of URIs, and the stylesheet can then process the collection either by constructing

1Anything this paper says about future releases is subject to change without notice.

7

Parallel Processing in the Saxon XSLT Processor

in-memory documents (using the collection() function) or, for example, by streaming:
the code might be written:

<xsl:for-each select="uri-collection('my-dir')"> <xsl:stream href=".">
<xsl:apply-templates mode="streaming"/> </xsl:stream> </xsl:for-each>

This change puts the responsibility for multi-threading onto the collection()
function or the <xsl:for-each> instruction respectively.

The performance benefits ofmulti-threading the collection() function can be illus-
trated by a simple experiment. The query

count(collection('shakespeare')//LINE)
took 160ms to count all the LINE elements across the corpus of Shakespeare’s

plays without multi-threading, reducing to 80ms with multi-threading enabled. In
this test, 8 threads were used.

4.2. Multiple result documents
When Saxon-EE encounters an <xsl:result-document> instruction, it starts a new
thread to process it. The original thread continues processing with the next instruc-
tion after the <xsl:result-document>. When a transformation produces multiple
result documents, they are therefore produced in parallel.

This use ofmulti-threading is considerablymore complex, becausewe nowhave
different instructions in the stylesheet executing simultaneously. It is simplified,
however, by the fact that the output of each thread is written (typically serialized
to disk) independently of the other threads, so there is no need to combine the out-
puts of different threads on completion. Nevertheless, there can be interactions
between threads. These mainly arise because of the use of lazy evaluation. The dif-
ferent threads can access the same local and global variables, which would be fine
if variables really were immutable, but internally, Saxon evaluates variables lazily
(and progressively), so access to variables needs to be synchronized. This applies
only to variables declared outside the scope of the <xsl:result-document> instruc-
tion; for variables inside its scope, each thread has its own copy. Any apparent cost
that might arise from repeated evaluation of the same variable is eliminated by
Saxon’s compile-time optimization rewrites, which use loop-lifting to extract expres-
sions from loops if their value is not dependent on the looping variables.

Another complicationwhichmight not be immediately obvious is the use of the
XSLT 3.0 try/catchmechanism to recover from dynamic errors that occur during the
execution of the <xsl:result-document> instruction. This is the only way that the
spawned thread can affect anything that happens in the original thread. Before an
<xsl:try> instruction completes, it must check that all threads spawned within its
scope have completed successfully, and if necessary, it must wait for them to com-
plete. In fact dynamic errors also need to be considered even in the absence of
try/catch instructions, because the top-level invocation of the transformation via an
API call such as transform() needs to throw an exception if any dynamic error has

8

Parallel Processing in the Saxon XSLT Processor

occurred in the transformation. Although we could make the concurrency visible
at the application level, we choose not to: the transform() method does not return
until all threads have completed, and if any thread raises a dynamic error, the call
to transform() throws an exception.

Executing multiple instructions simultaneously has various other implications
which are perhapsmundane, but worthmentioning because getting the detail right
can be a lot of effort. One such detail, for example, is the need to ensure thatmessages
produced by different threads (using <xsl:message>) are not intermingled in a log
file, at least to the extent that the output from each invocation of <xsl:message> re-
tains its integrity.

Another detail is the evaluation of the last() function: if one result document is
produced for each element in some input sequence, then it is quite possible that the
last() functionwill be calledwithin the scope of the <xsl:result-document> instruc-
tion. When last() is evaluated against a particular sequence, Saxon has a number of
strategies; if the sequence is the result of a path expression, then the path expression
will be evaluated twice, once to compute the value of last() (which is then retained
for future use), and once to retrieve the actual elements. So the various threads
handling different items in the input sequence need to co-ordinate with each other
to ensure that the cached value of last() is shared between them.

Attempting to measure the effect of this optimization, it appears that the effect
depends on how much computation is actually done within the
<xsl:result-document> instruction. In transformations that aremerely splitting the
input into multiple outputs (where the body of <xsl:result-document> is nothing
more than an <xsl:copy-of> instruction) it appears to make very little difference
to the total elapsed time. This appears to be because the transformation time is
limited by the I/O activity of reading the input, and creating and writing the serial-
ized output files. In other cases, where more intensive transformation work is in-
volved, we will often see a doubling of overall execution speed.

4.3. Multi-threaded <xsl:merge>
The new <xsl:merge> instruction in XSLT 3.0 allows pre-sorted input files to be
merged, using streaming to avoid building a tree representation of the files in
memory. An example application would be merging the transaction logs from
multiple sales outlets into a single transaction log, ordered by time-stamp.

Saxon’s implementation of <xsl:merge> uses one thread for each input file. This
allows Saxon to use SAX (push-based) parsing, as well as spreading the load over
multiple processors. There’s no intrinsic reason why several StAX (pull-based)
parsers couldn’t be instantiated in a single thread, one per input file, in which case
Saxon could pull data from each one as requiredwithout the use ofmultiple threads;
but using multiple push parsers is convenient both because of the performance be-
nefits of spreading the workload, and also because of the engineering benefits of

9

Parallel Processing in the Saxon XSLT Processor

using the same approach to parsing source documents that is used in other parts
of the product.

The design of <xsl:merge> is such that each input source delivers a sequence of
snapshots— subtrees of the source document. Each snapshot is built by the parser
(as a small in-memory tree) and is then placed on a shared queue. The <xsl:merge>
process examines these queues (one per source document) and selects the next one
for processing based on the values of the merge keys.

At this stagewe have notmade any performancemeasurements for <xsl:merge>,
either with or without streaming or parallel processing. It’s probably a feature of
minority interest: the capability is important if you need it, but not everyone does.
So it hasn’t been at the top of our list for optimization.

4.4. Multi-threaded <xsl:for-each> and <xsl:apply-templates>
The main XSLT instructions used to process a sequence of nodes from the input
tree are <xsl:for-each> and <xsl:apply-templates>. In both cases Saxon allows
the user to request multi-threading by means of a vendor extension attribute, sax-
on:threads="N". Unlike the other facilities described in this section, there is nomulti-
threading “out of the box” in this case; it is available only on request.

This facility essentially allows map-reduce applications to be written in XSLT,
with parallelism under the control of the user rather than the compiler. This is not
necessarily a disadvantage; usersmay be able to achieve better results than a system
optimizer.

This design is a cautious one. We know that a feature like this will be ignored
by 95% of users. To some extent this is our aim, because we know the feature is
dangerous. There’s a danger of bugs, but more particularly, there’s a danger of
misuse. We have no idea how many threads to allocate to such an instruction, so
we leave it to the user to decide; but we know that most users have no idea either.
Themore adventurouswill hopefully find a good design by trial and error, knowing
how to measure the effect on their particular workload. There will probably be a
fewwho see the feature, guess a number, and never test their assumptions, but such
users deserve what they get. Hopefully wewill slowly get experience and feedback
of what works well and what doesn’t, and perhaps rules of thumb will emerge that
are sufficiently sound for us to automate the process. Perhaps use of a fixed value
is the wrong approach anyway; perhaps <xsl:for-each> should allocate N-M
threads where N is the some maximum for the transformation as a whole, and M
is the number of threads currently active. Only experiment, with a variety of realistic
benchmarks, will provide the answer.

Unlike the use of multiple threads for the collection() function (multiple input
files) and the <xsl:result-document> instruction (multiple output files), its use on
<xsl:for-each> and <xsl:apply-templates> instructions creates a serious risk that
performance is degraded by the cost of interaction between the threads. These in-

10

Parallel Processing in the Saxon XSLT Processor

structions are defined by the language semantics to deliver their results in a partic-
ular order, and this means that the results of each thread must be saved in memory
and reassembled in the correct order before the instruction completes. This cost can
be significant, bearing in mind that XSLT instructions will normally stream their
results directly to the serializer, without building temporary trees in memory.
Nevertheless, one of our users has reported a reduction in the elapsed time of a
heavy transformation by a factor of three by using 8 threads in an <xsl:for-each>
instruction.

5. Futures
I have described the ways in which Saxon uses multi-threading today. What of the
future?

We need to consider developments in two categories: internal use of multi-
threading to support operations such as the collection() function or the <xsl:merge>
instruction, and language features that allow users to take advantage of multi-
threading, along the lines of the existing multi-threaded <xsl:for-each>.

In the first category, a natural candidate is amulti-threaded sort: both for explicit
<xsl:sort> elements, and for the implicit sorting that occurs when a sequence of
nodes needs to be delivered in document order. Saxon uses an implementation of
QuickSort, and this lends itself well to parallel implementation. Another candidate
might me a multi-threaded implementation of <xsl:for-each-group>.

In the second category, we will be guided by user experience with the facilities
we already provide. It may well be that the need now is not for more multi-
threading features, but for instrumentation to help users establish whether their
multi-threading strategies are proving effective. Until we getmore feedback on how
the features work in practice, I don't see us introducing more automatic multi-
threading; I can't see Saxon deciding to use multi-threading for <xsl:for-each> or
<xsl:apply-templates> without an explicit user request.

Another interesting instruction with multi-threading possibilities is the new
<xsl:fork> instruction in XSLT 3.0. This was developed for use with streaming,
and allows several actions to operate on a single pass of a streamed input document.
The current Saxon implementation is not multi-threaded (input events are passed
to each of the actions in turn, and the actions are performed sequentially. But a
multi-threaded implementation would be very natural.

6. Conclusions
In this paper I have described the facilities in the current Saxon release (specifically,
Saxon-EE 9.6) to allowmulti-threaded stylesheet execution. A fewusers are already
getting substantial benefits from the use of these features, but they are not widely
known about or understood. Hopefully this paper will help to increase awareness.

11

Parallel Processing in the Saxon XSLT Processor

What is needed now is for users to report their experiences, to experiment and report
their results, and for the product to improve in response to this feedback.

References
[1] Manuel M. T. Chakravarty. On the Massively Parallel Execution of Declarative

Programs Ph. D. Dissertation, Technische Universität Berlin, 1997. http://
www.cse.unsw.edu.au/~chak/papers/diss.ps.gz

[2] Kay, Michael. Anatomy of an XSLT Processor. Published online by IBM
DeveloperWorks https://www.ibm.com/developerworks/library/x-xslt2/

[3] Kay, Michael. You Pull, I’ll Push: On the Polarity of Pipelines. Presented at
Balisage: TheMarkup Conference 2009,Montréal, Canada, August 11 - 14, 2009.
In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on
Markup Technologies, vol. 3 (2009). doi:10.4242/BalisageVol3.Kay01. http://
www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html

[4] Kay, Michael. Streamability in Saxon. XML Prague 2014. http://
archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf

[5] Kay, Michael and Lockett, Debbie. Benchmarking XSLT Performance. XML
London 2014. http://www.saxonica.com/papers/xmllondon-2014mhk.pdf

[6] Malý, Jakub. Parallel XSLT Processing of Large Documents. XML Prague 2015.
http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf

[7] Rishiyur S. Nikhil (Bluespec) and Arvind (MIT). Making the transition from
sequential to implicit parallel programming: Part 5 Online newsletter, UBM
Electronics, Sept 2007. http://www.embedded.com/design/
mcus-processors-and-socs/4007173/
Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5

[8] A Scalable XSLT Processing Framework based on MapReduce Journal of
Computers, Vol 8, No 9 (2013), 2175-2181, Sep 2013 10.4304/jcp.8.9.2175-2181
http://www.ojs.academypublisher.com/index.php/jcp/article/view/
jcp080921752181

[9] Saxonica: XSLT and XQuery Processing http://www.saxonica.com/
[10] Tianyou Li ; Qi Zhang ; Jia Yang ; Yuanhao Sun Parallel XML Transformations

on Multi-Core Processors IEEE International Conference on e-Business
Engineering, 2007. ICEBE 2007.

[11] Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew Partridge,
and Simon L. Peyton Jones. GUM: a Portable Parallel Implementation ofHaskell
Proceedings of Programming Languages Design and Implementation,

12

Parallel Processing in the Saxon XSLT Processor

http://www.cse.unsw.edu.au/~chak/papers/diss.ps.gz
http://www.cse.unsw.edu.au/~chak/papers/diss.ps.gz
https://www.ibm.com/developerworks/library/x-xslt2/
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://www.balisage.net/Proceedings/vol3/html/Kay01/BalisageVol3-Kay01.html
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://www.saxonica.com/papers/xmllondon-2014mhk.pdf
http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.embedded.com/design/mcus-processors-and-socs/4007173/Making-the-transition-from-sequential-to-implicit-parallel-programming-Part-5
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp080921752181
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp080921752181
http://www.saxonica.com/

Philadelphia, USA, 1996. https://www.macs.hw.ac.uk/~dsg/gph/papers/ps/
gum-ifl95.ps

[12] Watts, Nick Getting Started: Testing Concurrent Java Code Online Blog, July
2011. http://thewonggei.com/2011/07/18/
getting-started-testing-concurrent-java-code/

[13] XSL Transformations (XSLT) Version 3.0. W3CWorking Draft, 2 October 2014.
Ed. Michael Kay. http://www.w3.org/TR/xslt-30

13

Parallel Processing in the Saxon XSLT Processor

https://www.macs.hw.ac.uk/~dsg/gph/papers/ps/gum-ifl95.ps
https://www.macs.hw.ac.uk/~dsg/gph/papers/ps/gum-ifl95.ps
http://thewonggei.com/2011/07/18/getting-started-testing-concurrent-java-code/
http://thewonggei.com/2011/07/18/getting-started-testing-concurrent-java-code/
http://www.w3.org/TR/xslt-30

14

Parallel XSLT Processing
of Large Documents

Jakub Malý
Barclays

<jakub@maly.cz>

Abstract

After the introduction of streaming in XSLT 3.0, new possibilities and applic-
ations for XSLT opened up. Streaming stylesheets can process documents with
bounded memory consumption, even large documents that would not fit into
memory when a non-streaming processor is used. With bounded memory
consumption and disc space de-facto unlimited (and SSD drives providing
fast access to stored data), CPU speed can become a bottleneck in many scen-
arios. However, contemporary commodity machines have 2, 4 or more CPU
cores, of which only one is usually used by present day XSLT processors (and
the CPU is therefore underutilized). In this paper, we discuss scenarios in
which optimal CPU utilization can be achieved by processing the input file
in a parallel manner. As the experiments show, such an approach can signific-
antly increase the performance (=shorten run time) of a transformation by up
to ~35% in our experimental setting.

Keywords: XSLT, parallel processing, streaming, optimization

1. Introduction
Streaming is an essential part of XSLT 3.0 [3], which in Last Call Working Draft 2
state at the time of writing this paper. The introduction of streaming has broaden
the use cases for XSLT as a technology. The transformation scenarios are no longer
limited by the size of available memory (which can be a multiple of the size of the
input document, depending on implementation). The stylesheet author can choose
to process the input in streaming manner, which will ensure a bounded memory
consumption not proportional to the size of the input. Thus, XSLT processors can
work with larger documents than before, even on common hardware. Of course,
the option of streaming comes with a price.

One thing to consider is the actual speed of processing, e.g. in the case of Saxon
[5], it is reported that streaming mode is approx. 1.2 – 1.3 times slower than non-
streaming [1]. But the real catch with streaming is that it implies limitations on the
expressions and constructions allowed in the template itself. The majority of limit-

15

ations comes from the fact that the input document is read only once and only limited
portions of it can be buffered by the processor (like the current node, its attributes
and ancestors). E.g. XPath preceding axis cannot be used in expressions, because it
would require buffering or repeated reads of the whole document by the processor.

It is up to the user to mark that streaming mode is required and to author the
templates in such away that they do not violate streamability rules [2]. The processor
checks the rules at compile time andwill not start processing if they are not satisfied.
The authors of the recommendation chose the approach of giving the user the pos-
sibility to use streaming, but he has to give up using some techniques and practices
used routinely in nonstreaming stylesheets for the benefit of bounded memory
consumption.

Processing a large document can take a significant amount of time. E.g. to run
a simple stylesheet on a 700MB input file takes about 30s on a PC with Intel i7 2.4
GHz CPUwith 4 logical cores, 8 GB of RAM and SSD. The key information for this
paper is that even though the CPU speed is the bottleneck, the CPU is not fully
utilized, because the used XSLT processor (Saxon EE 9.6, [5]) operates in single
thread in streaming mode.

In this paper, we will experiment with running the transformation in multiple
threads. We measure the gains in performance and discuss the limitations of this
approach. Aswith streaming, parallel processing puts additional restrictions on the
constructs allowed. Again, the user must sacrifice some of the flexibility and power
of the language in order to apply this approach. We describe the class of scenarios,
where parallel processing is applicable.

2. Motivation
For our examples, we will use the largest file in XML Data Repository [4] - Protein
Sequence Database, a 683 MB XML file. The basic structure of the file is depicted in
Figure 1. Basically, after some initial metadata, the document contains a long list of
ProteinEntry notes, each containing details about one protein.

16

Parallel XSLT Processing of Large Documents

Figure 1. Protein Sequence Database Structure

Fromour knowledge of the data,we can infer several key properties of the document:
1. The document has a well-defined structure (schema)
2. A major part of the content is in a sequence of nodes of certain types (we will

call these core types, in our example, there is exactly one – ProteinEntry).
3. Core types and their ancestors are not recursive.
4. Contents of core types are reasonably independent. This property is defined

vaguely, what we mean is roughly that data from one core type instance does
not reference other instances.

Now let us introduce a stylesheet to process this document. Stylesheet in Figure 2
performs a simple transformation – it preserves protein names and sequences and
discards all the rest. Note that the stylesheet is streamable.

17

Parallel XSLT Processing of Large Documents

<xsl:stylesheet version="3.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:pxsl="http://jakubmaly.cz/pxslt">
<xsl:output indent="yes" method="xml"/>
<xsl:mode name="stream" streamable="yes"/>

<xsl:template match="/ProteinDatabase" mode="#all">
<ProteinDatabase>

<xsl:apply-templates select="ProteinEntry"
mode="#current"/>

</ProteinDatabase>
</xsl:template>

<xsl:template match="/ProteinDatabase/ProteinEntry" mode="#all"
pxsl:core="yes">
<ProteinEntry id="{@id}">

<xsl:apply-templates mode="#current"/>
</ProteinEntry>

</xsl:template>

<xsl:template match="ProteinEntry/protein/name" mode="#all">
<name>

<xsl:value-of
select="replace(., '^\s*(.+?)\s*$', '$1')" />

</name>
</xsl:template>
<xsl:template match="ProteinEntry/sequence" mode="#all">

<sequence>
<xsl:value-of select="normalize-space(.)" />

</sequence>
</xsl:template>

<xsl:template match="text()" mode="#all"/>
</xsl:stylesheet>

Figure 2. Stylesheet for Protein Sequence Database

It is apparent that in our case the document could be processed in parallel – once
we get to ProteinEntry nodes, we can split the long sequence of ProteinEntry nodes
into several smaller sequences of roughly the same size and process each of these
core nodes subsequences in a separate thread as a standalone subdocument. Finally,
we concatenate the results. Attribute pxsl:core in the template for ProteinEntry de-
notes a template for a core node.

18

Parallel XSLT Processing of Large Documents

3. Experiment
Figure 3 shows how parallel processing affects performance. The tests were run on
a PCwith Intel Core i7-4500UCPUwith 2 cores, 4 logical processorswithmaximum
speed 2.4GHz, 8GB of RAM and an SSD. All times are measured when invoking
Saxon using Java API and do not include the time required to load and compile the
stylesheet. The firstmeasurement is for Saxonwithout anymodification. The second
measurement shows that our approach brings some overhead when only 1 thread
is used. Measurement with 2 threads shows the most prominent speedup (because
of 2 physical cores being available on the test machine). Running with 4 threads
shows an additional (smaller) increase in speed. Adding more threads does not
bring an improvement on our test machine (no more than 4 threads can run at the
same time), but we have every reason to assume that we would see continuously
improving results on a machine with more CPU cores when adding more threads.

Our experiment clearly shows that at least in some cases, parallel processing
can significantly speed up the transformation scenario. In the following sections,
we describe how the parallel processor works and also the constraints of our ap-
proach.

Figure 3. Parallel Processing Performance Gain

4. Parallel Processing XSLT Extension
To allow parallel processing, the user must provide additional information about
the document. This comes in the formofmarking the templates of core nodes (using
pxsl:core=yes"). The processor must the right points to split the document, in our
example these are between <ProteinEntry> and </ProteinEntry> tags. These split
points (see Figure 4) have to be found by reading the document as text (without

19

Parallel XSLT Processing of Large Documents

XML parser). To apply the XSLT template to a split sequence (in our case sequence
of ProteinEntry elements with their subtrees), the sequence must be inserted into
a proper context, in our example the nodes have to be child nodes of ProteinDatabase
element (otherwise match patterns like “/ProteinDatabase/ProteinEntry” would
not work. This is also the reason why we require core nodes to be non-recursive. If
they weren’t, the processor would not be able to infer the context (should it be /
ProteinDatabase/ProteinEntryor /ProteinDatabase/ProteinEntry/ProteinEntry?).

Figure 4.

Howcan the processor tell what context should be supplied? Either by using schema
information or from the match pattern of the core node template (match="/
ProteinDatabase/ProteinEntry" in our example). For this reason the core node
match pattern must be absolute and use only child axis with element names.

1 <ProteinEntry>
2 ...
3 <!--
4 </ProteinEntry>
5 <ProteinEntry>
6 ...
7 -->
8 </ProteinEntry>

Figure 5. Comments problem

The simple process of finding split points described above is not reliable in every
situation. Consider the piece of XML in Figure 5. If the parser starts searching for
split points on line 4, it will find the end tag and place a split point between the end
tag on line 4 and start tag on line 5. The problem of course is that those are not tags
at all, but contents of a comment node. Similar problem arises with processing in-
structions and CDATA sections. Such situations cannot be easily solved without

20

Parallel XSLT Processing of Large Documents

reading the whole document and since XML parsing can dominate transaction
processing time, it is not suitable.

A trivial solution is just to report an errorwhen a split point is accidentaly placed
inside a comment/PI/CDATA (since it always will be discovered during the parsing
later).

More involved solution would require some kind of light-weight parser and a
phase of split-point verification, which will be optimized to handle exactly this
problem. Such a parser could easily ignore some features of XML, such as schema
validation, namespaces, attributes and text nodes. Whether this would reduce the
cost of parsing enough to be actually feasible, we do not know. Another option
would be to still treat the input as linear string and only be aware of the potentially
problematic language elements, since those all also linear from the point of XML
data model.

Since we are using streamingmode of the processor also for parallel processing,
all limitations imposed by streaming apply for parallel processing too. There are
also additional limitations. In streaming mode, ancestor nodes are available for
XPath expressions. For parallel processing, we are creating some ancestor nodes
artificially for the subdocuments (ProteinDatabase). These artificially created nodes
cannot be used to provide data. For this reason, no expressions used in the core
templates and templates invoked from them can traverse out of the core node sub-
tree.

Figure 6. Document with Intro, Core Nodes and Outro

The limitation described above can be lifted in a special case, where the data in the
document have a certain structure depicted in Figure 6. The documents has an intro
part, which is relatively small compared to the size of the document, than a sequence
of core nodes, which are all children of the same node from intro, and an outro part,
again small relative to the size of the document. Parallel processing only deals with
the core nodes section and can start after intro is processed. Because all core nodes
have the same ancestry, the processor can first process the intro part and then start
parallel processing of core nodes with the same initial context. In this case we are

21

Parallel XSLT Processing of Large Documents

not creating the initial context artificially, but using the real one, so all ancestors of
core nodes (from intro) can be accessed.

Figure 7. Core Nodes Without Common Parent

On the other hand, if the document structure resembles the one depicted in Figure 7,
where core nodes are not children of the same node, the approach described above
cannot be used (because it is no longer true that the data for the context of the core
nodes comes before all the core nodes in document order). The solution for this case
might be to choose the nodes in the pink area as core nodes.

Finally, our approach is applicable only when the input document can be read
repeatedly (unlike streaming,whichwas designedwith a requirement that the input
document can be read only once). In our case, the document is accessed by several
threads at once, each reading a different part of the document. For this reason, we
also recommend reading the input from a medium with fast random access, such
as an SSD.

5. Use Case
Wewill show another example of parallel processing large XML files. This use case
comes from a problem we solved a couple of years ago without XSLT. The input is
a file exported from a database managed by RUIAN – a Czech agency maintaining
data about cities, streets, buildings, addresses etc. RUIAN uses an XML format and
provides exports at the level of city. The export for the Czech capital Prague is a
614MB file. The file is in fact a long list of individual units (streets, buildings…) and
the taskwas to extract these into separate files. In total it is about 700k files. Figure 8
shows the speedup achieved by runningwith parallel processing – from 42minutes
to 16minutes. The stylesheet used for the transformation can be found inAppendix
A.Note that the constraints imposed by the parallel processing requirements (notably

22

Parallel XSLT Processing of Large Documents

allowing only absolute match patterns with named child steps for core nodes pat-
terns) add to the templates complexity.

Figure 8. RUIAN processing results

6. Implementation
Currently, there is no open source streaming XSLT processor available, so instead
of making the necessary changes in an XSLT processor, we created a thin wrapper
application that uses Saxon EE for the actual processing. Our parallel processor
works as follows:
1. Firstly, we identify possible points where the input document can be split. This

is implemented trivially by dividing the input file into portions of roughly the
same size and then shifting the dividing points to the beginning of the nearest
core node.

2. Each portion of the document is prefixed and suffixed with a string required to
make it into a well formed document with structure matching the structure of
the original document. For our example, this is achieved by adding the prefix
<ProteinDatabase> and suffix </ProteinDatabase> to each subsequence of
ProteinEntries. This ensures that match patterns going out of the core node
subtree, e.g. /ProteinDatabase/ProteinEntry, will continue to work.

3. Nodes created by adding prefixes and suffixes in step 2 should not affect the final
output (e.g. otherwise multiple root <ProteinDatabase> element would appear
in the final output). The experimental implementation does not deal with this
issue.

4. An instance of Saxon is used to transform each sub-document
5. All the results are concatenated to get the final result.

23

Parallel XSLT Processing of Large Documents

This is a very crude and naïve implementation used only for demonstration of
the method described in the paper. To implement the approach properly, changes
would better be made in the processor itself (most notably to avoid steps 2 and 3).

There are also limitations. Some of them we discussed earlier (no access to the
ancestors of core nodes in XPath). Another potential problem is the use of
xsl:message instruction -- the output from these needs to be treated carefully to
avoid interleaving messages from different threads.

Finally, the use of xsl:accumulator might deal unexpected (incorrect) results
due to the fact that the accumulatormight be accessed from one thread before other
nodes that trigger the accumulator and appear before the current node have been
visited. One of themotivations for accumulatorswas to support some data scenarios
in streamingmodes.Maybe the futurewill similarly bring new constructs specifically
targeting parallel scenarios.

7. Multithrading capabilities already available in Saxon EE
Saxon transformations by default usually operate in single thread. However, there
are some existing multithreading capabilities already supported by Saxon and
awailable to the user. We will address them here.

In some cases, Saxon performsmultithreading optimizationswithout any explicit
declaration from the user to do so. This is the case of collection() function used
to read a set of files from the file system. Saxon will process the collection using a
threadpool (if running on a multi-CPU system). Output to multiple files (via
<xsl:result-document>) is similarly parallelized.

In other cases, Saxon offeres multithreaded capabilities to the user, but only
when the user explicitly requests it. The developer can use vendor-prefixed
saxon:threads="N" attribute on xsl:apply-templates and xsl:for-each instructions.

It should be noted that neither of these functionalities is applicable in the use
cases described in this paper, because Saxondoes not allowmultithreadedprocessing
in streaming mode and we were targeting specifically the large documents that re-
quire streaming. If the transformed document has the properties we listed in Sec-
tion 2, but it fits into the memory, using saxon:threads on the core nodes template
will most likely be a better option than parallel processing described in this paper.

For the detailed discussion of multithreading in Saxon EE, please refer to paper
[6] in this proceedings.

8. Conclusion
In this paperwe examined the possibilities of parallel processing of XMLdocuments.
We have demonstrated a significant improvement in run times of XSLT transform-
ations (up to 35% on a common PC, expected to be even better on a multi CPU
machine) and discussed inwhich scenarios such an approach can be used. Similarly

24

Parallel XSLT Processing of Large Documents

as in the case of streaming, our approach adds additional restrictions on what con-
structs and expressions are allowed.

Bibliography
[1] Kay, Michael: Streaming in the Saxon XSLT Processor. 2014. XML Prague 2014

proceedings, p. 81. http://archive.xmlprague.cz/2014/files/
xmlprague-2014-proceedings.pdf

[2] Braaksma, Abel: XSLT 3.0 Streaming for the masses. 2014. XML Prague 2014
proceedings, p. 29. http://archive.xmlprague.cz/2014/files/
xmlprague-2014-proceedings.pdf

[3] W3C: XSL Transformations (XSLT) Version 3.0. http://www.w3.org/TR/xslt-30/
[4] XML Data Repository.http://www.cs.washington.edu/research/xmldatasets/
[5] Saxonica: Saxon EE 9.6.http://saxonica.com
[6] Kay,Michael: Parallel Processing in the SaxonXSLT Processor. 2015. XMLPrague

2015. http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf

A. RUIAN Stylesheet
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="3.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:pxsl="blinded"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:vf="urn:cz:isvs:ruian:schemas:VymennyFormatTypy:v1"
xmlns:gml="http://www.opengis.net/gml/3.2"
exclude-result-prefixes="pxsl">
<xsl:param name="output-folder" as="xs:string"

required="yes" />
<xsl:output indent="yes" />
<xsl:mode name="stream" streamable="no" />

<xsl:template match="/vf:VymennyFormat" mode="stream">
<DocumentListing>

<xsl:apply-templates select="vf:Data/*"
mode="stream" />

</DocumentListing>
</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Obce/vf:Obec">
<xsl:call-template name="doProcess" />

</xsl:template>

25

Parallel XSLT Processing of Large Documents

http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://www.w3.org/TR/xslt-30/
http://www.cs.washington.edu/research/xmldatasets/
http://saxonica.com
http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf

<xsl:template mode="stream" pxsl:core="yes"
match="/vf:VymennyFormat/vf:Data/vf:CastiObci/vf:CastObce"
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/
vf:KatastralniUzemi/vf:KatastralniUzemi">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Zsj/vf:Zsj">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Ulice/vf:Ulice">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Parcely/vf:Parcela">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/
vf:SpravniObvody/vf:SpravniObvod">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/
vf:StavebniObjekty/vf:StavebniObjekt">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/
vf:AdresniMista/vf:AdresniMisto">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Momc/vf:Momc">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template mode="stream" pxsl:core="yes"

match="/vf:VymennyFormat/vf:Data/vf:Mop/vf:Obec">
<xsl:call-template name="doProcess" />

</xsl:template>
<xsl:template name="doProcess">

<xsl:variable name="data" select="copy-of(.)" />

26

Parallel XSLT Processing of Large Documents

<xsl:variable name="identifier" select="@gml:id" />
<xsl:variable name="file" as="xs:string"

select="$output-folder || '/' || local-name(.)
|| '/' || $identifier || '.xml'"/>

<file collection="{local-name(.)}"
ruian-type="{ local-name(.) }" kod="{ $identifier }"
href="{ $file }" />

<xsl:result-document href="{ $file }">
<xsl:sequence select="."/>

</xsl:result-document>
</xsl:template>

</xsl:stylesheet>

27

Parallel XSLT Processing of Large Documents

28

Semantic Hybridization:
Mixing RDFa and JSON-LD

R. Alexander Miłowski
School of Information, University of California, Berkeley

<alex@milowski.com>

1. Overview
The popularity of JSON-LD [1] and “Web schemas” such as schema.org are in part
due to the promise of ability of “search giants” to use your information once you've
published it onto theWeb.While that promise plays into the hope of better utilization
of information for dissemination and financial gains by the publisher, there are al-
ternate motivations. One such motivation is the use of information by local con-
sumers (e.g. a Web application or widget) [3].

As a semanticWeb format, RDFa has gained some traction but JSON-LD, riding
on the “coat tails” of JSON, seems to be gaining more. The recent use of JSON-LD
as a format attached to e-mail messages within Google's gmail is a good example
[4]. In such a context, JSON-LD is amuchmore compactmechanism for transporting
triples of information.

Further, JSON-LDdoes not require that every triple be encodedusing some aspect
of HTML with RDFa [2] attributes. That is, you aren't forced to turn every triple of
information into some markup embedded within a document. As such, data that
needs to be attached to a document doesn't need to be turned into superfluous
markup and this simplifies the encoding for various producers.

That said, this doesn't mean that JSON-LD completely replaces other formats.
For example, RDFa is very good at reducing redundancy between triples and in-
formation representedwithin a document as markup and text. RDFa has the ability
to encode information in one place by judicious use of annotations via attributes.

As such, the use of JSON-LD for non-replication nicely compliments the use of
RDFa information represented within a document. This raises the question as to
how these two standards and representations can be used together andwhat positive
and negative affects this may have on the representation of information. This paper
describes an approach and attempts to enumerate the possibly synergistic outcomes
of using JSON-LD and RDFa together.

2. Hybridization
Let us presumewe have a contact personwewish to encode for usewithin anHTML
document. For ease of use, we'll use the author's contact information:

29

Alex Miłowski
alex@milowski.com
http://www.milowski.com/

School of Information
University of California, Berkeley
http://www.ischool.berkeley.edu/

We wish to produce the following set of triples regardless of representation:
@prefix s: <http://schema.org/>
<http://www.milowski.com/#alex> a s:Person ;
s:name "Alex Miłowski";
s:email "alex@milowski.com";
s:url "http://www.milowski.com/";
s:organization <_:1> .

<_:1> a s:Organization ;
s:name "University of California, Berkeley" ;
s:department <_:2> .

<_:2> a s:Organization ;
s:name "School of Information" ;
s:url "http://www.ischool.berkeley.edu/" .

2.1. RDFa Only Issues
The information in our use case can be encodedwithin anHTMLdocument as such:

<div>
<p>Alex Miłowski;

(personal e-mail)</p>
<p>School of Information;

University of California, Berkeley</p>
</div>

If we try to encode this information using RDFa without radically changing the
markup, we might start as follows:

<div vocab="http://schema.org/"
resource="http://www.milowski.com/#alex" typeof="Person">

<p>
<span resource="http://www.milowski.com/#alex"

property="name">Alex Miłowski
;
<a property="email" href="mailto:alex@milowski.com"

content="alex@milowski.com">(personal e-mail);
</p>
<p property="organization" typeof="Organization">

School of Information

30

Semantic Hybridization: Mixing RDFa and JSON-LD

(website)
;
University of California, Berkeley

</p>
</div>

Yet, given the markup structure and processing rules of RDFa, some things are not
possible or easy:
• The resource URI http://www.milowski.com/#alex for the person must be re-

peated to pickup the name of the person because the subject URI changes to the
Website due to how RDFa processes links and changes the subject to the linked
resource.

• Removing the mailto: from the e-mail address requires duplicating the e-mail
address.

• The name of the organization cannot easily be added because the organization
does not have an assigned resource URI (it is a blank node).

Fixing these issues requires restructuring and a lot more markup just to make the
RDFa properties produce the right set of triples. Such changes inmarkup represent-
ation not only change the design of the presentation but alsomay cause the publisher
confusion. The reasons for the structural changes are due to the RDFa algorithm
and assumptions it makes. As such, developers and publishers alike may find such
use of RDFa unacceptable.

2.2. JSON-LD Only Issues
The JSON-LD approach is to encode information directly in a JSON compatible
syntax that is then embedded within a script element:

<script type="application/ld+json">
{
"@context": "http://schema.org/",
"@type" : "Person",
"@id" : "http://www.milowski.com/#alex",
"name" : "Alex Miłowski",
"email" : "alex@milowski.com",
"url" : "http://www.milowski.com",
"organization" : {

"@type" : "Organization",
"name" : "University of California, Berkeley",
"department" : {

"@type" : "Organization",
"name" : "School of Information",
"url" : "http://www.ischool.berkeley.edu/"

}

31

Semantic Hybridization: Mixing RDFa and JSON-LD

}
}
</script>

The representation is a straightforward transliteration of the triples into a JSON
syntax object. The benefits to the developer and producer are direct as the informa-
tion can easily be embedded within any document. The information also does not
affect the design of other information represented within the document.

Unfortunately, there are two important negative aspects of JSON-LD:
1. The same information represented within the document must be duplicated.
2. The JSON-LD triples have no formal relationship to information elsewhere

within the document.
As such, a using application has to make a lot of assumptions to process the JSON-
LD informationwith the intent of affecting its usewithin the document and consum-
ing Web application.

2.3. Semantic Hybridization
The qualities we wish to retain of both from both RDFa annotation and JSON-LD
are:
1. Identifiable content sub-trees that encode resources.
2. Extensible annotations of contentwithout restructuring or copying information.
3. Flexible augmentation of resource annotations using straightforward encodings.
4. Ease of use with minimal intrusion into the act of publishing information.
We do so by following a simple strategy:
1. Resources that are represented by content within the regular content of a docu-

ment (e.g. displayableHTML content) are identified by an RDFa resource attrib-
ute which holds the subject URI and a typeof attribute that identifies its type.

2. Information in regular content (e.g. HTMLelements) is identified by application
of RDFa property attributes.

3. All other information not within regular content is encoded as JSON-LD using
the matching subject URIs of the typed resources in the regular content to aug-
ment the triples available from processing the RDFa.

The previous example using these rules is as follows:

<script type="application/ld+json">
{
"@context" : "http://schema.org/",
"@id" : "http://www.milowski.com/#alex",
"givenName" : "Raymond",

32

Semantic Hybridization: Mixing RDFa and JSON-LD

"otherName" : "Alexander",
"familyName" : "Miłowski",
"email" : "alex@milowski.com",
"url" : "http://www.milowski.com/",
"organization" : { "@id": "http://www.berkeley.edu/" }

}
</script>

<p vocab="http://schema.org/">

Alex Miłowski

works at

University of California, Berkeley's
<span resource="http://www.ischool.berkeley.edu/" typeof="Organization"

property="department">
School of Information

</p>

The triple graph is union of all the triples generated from processing the RDFa an-
notations and each script element with a type of text/json-ld. In the example,
the connection between the person and the organization is made in the JSON-LD.
The RDFa markup derived triples are augmented by the JSON-LD triples.

The result is an application can track the location of RDFa annotations to find
locally annotated elements. Scripts can then use the triples to augment the user in-
terface. For example, a receiving applicationmight make the information about the
person and organization available on a mouse or touch event.

3. Conclusion
The goal is to promote the durability of information while retaining identifiability,
extensibility, and flexibility that is balanced by ease of use. Either RDFa or JSON-
LD alone have their limitations. By using Semantic Hybridization, the these repres-
entations can be used together and build upon each other using each format for the
kinds of information it encodes best. The resulting documents enable encoding in-
formation to support polyvalent information resources.

The merged graph retains the locations within the markup that are the origins
of the typed subjects. The information provided within the graph by the JSON-LD
triples can be used to augment these locations and provide alternate user interfaces

33

Semantic Hybridization: Mixing RDFa and JSON-LD

or semantic inference. This allows scripting to provide an augmenteduser experience
while the information has a minimal but complete representation.

In the end, we have a document format that utilizes the best representation for
the information contained.While a processor has to process a variety of information
formats, each syntax is optimal for the producer of the information and this will
induce the behavior we want: information is encoded with triples. Such a behavior
enhances the durability of the information over the many years it will be retained.

Bibliography
[1] JSON-LD 1.0: A JSON-based Serialization for Linked Data, Manu Sporny, Dave

Longley, Gregg Kellogg, Markus Lanthaler, Niklas Lindström; http://
www.w3.org/TR/json-ld/

[2] RDFa Core 1.1, W3C, 2012-06-07, Ben Adida, Mark Birbeck, Shane McCarron,
and Ivan Herman http://www.w3.org/TR/rdfa-core/

[3] Local Knowledge for In Situ Services, R. Alexander Miłowski and Henry S.
Thompson, XML Prague 2013, 2013-02-09 http://archive.xmlprague.cz/2013/
files/xmlprague-2013-proceedings.epub

[4] Email Markup https://developers.google.com/gmail/markup/getting-started

34

Semantic Hybridization: Mixing RDFa and JSON-LD

http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/rdfa-core/
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.epub
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.epub
https://developers.google.com/gmail/markup/getting-started

Using DocBook to Produce
a Polyvalent Academic Work

Murray Maloney
Muzmo

Robert J. Glushko
UC Berkeley

R. Alexander Milowski
UC Berkeley

Abstract

Creatingmany different versions or customizations by configuring a collection
of components is a desirable goal in many domains. A single automobile pro-
duction line can support the assembly of customized variations of a car model.
Software product line engineering enables the creation of many similar software
systems from a shared set of software assets. In this article we discuss how a
collection of content elements can create a family of related texts whose different
members are generated according to configurations of variables found in the
content markup. This markup is created by the author, but anyone can create
a particular edition of the text by defining a configuration file at book-building
time, and a reader can do this interactively at reading-time bymaking selections
from a configuration control widget. We call this configurable collection of
content elements a "polyvalent" document: "Poly" means "more than one"
or "many" - "valent" means "having combining power."

There are some common challenges in all of these domains. The first is to
distinguish the components that are contained in everymanifestation, typically
called the core, base, or platform, from those that vary, typically called the
features, options, or supplements. The second is to organize the variable com-
ponents to indicate the different customizations, versions, or editions that can
be built by selectively combining optional components with the required ones.
The third challenge is to convey to the builders, users, or others who want to
use the variable components any dependencies or constraints that might exist,
since not every possible combination will be feasible or sensible.

In this paper, we examine the facility with which DocBook was coerced
into supporting a polyvalent text, and the challenges encountered.We observe
the parallels and disjunctions among the vocabularies used in book production,
the suitability of XHTML and CSS as content delivery agents, the varying

35

capabilities of current ePub3 readers, and the suitability of relying upon CSS
and JavaScript in an ePub context.

1. Introduction
This article describes the challenges and insights that emerged in the design, devel-
opment, and delivery of a book titled The Discipline of Organizing ([9]). TDO pro-
poses a transdisciplinary synthesis of ideas from library and information science,
computer science, informatics, cognitive science, business, and other disciplines
that arrange collections of resources to enable interactions with them.1

Organizing is a fundamental issue in many professional fields. However, these
fields have only limited agreement in how they approach problems of organizing
and in what they seek as their solutions. Nevertheless, despite their obvious differ-
ences, the books in libraries, the animals in zoos, weather observations in a data
repository, and digital songs on a music player are all "resources" – "things that
have value that can support goal-oriented activity" – that have been intentionally
selected and organized. Similarly, despite their obvious differences, libraries, zoos,
data repositories, andmusic collections can all be described as "organizing systems"
– each is "an intentionally arranged collection of resources and the interactions they
support."

A discipline of organizing complements the conventional disciplinary focus on
specific resource and collection types (libraries organize books, museums organize
art, business systems organize product and customer information)with a framework
that views organizing systems as existing in a multi-dimensional design space in
which different types of resources can be considered simultaneously, better exposing
the relationships and contrasts among them. There are five groups of design de-
cisions, phrased in generic language to emphasize their broad applicability: What
is being organized? Why? How much? When? By what means?

A book with the ambitious goal of defining a new discipline must be broad
enough to include all the disciplines that contribute to the "transdiscipline" that
emerges at their intersection. It must treat each contributing disciplinewith enough
depth so that the new concepts of the emergent discipline can be re-applied mean-
ingfully to discipline-specific concepts and examples.

To make TDO both broad and deep without making it bloated and hard to un-
derstand required some innovations in book design and implementation. Our key
idea was to tag the book's content by discipline, effectively creating a family of re-

1MIT Press published The Discipline of Organizing in print and ebook formats in 2013. The published
book names seventeen co-authors, led by the second author of this article, who also edited the book. The
first author of this article, one of TDO's six principal co-authors, also served as themarkup and production
editor. The third author of this article implemented interactivity in the ePub editions. O'Reilly Media
published two enhanced ebook editions in August 2014 to take greater advantage of the capabilities of
the digital medium and to make it suitable as a textbook for a more diverse set of courses.

36

Using DocBook to Produce a Polyvalent Academic Work

lated texts in which varying configurations or subsets of content tailor the book for
different courses and perspectives. We are just beginning to explore the complex
design space and tradeoffs between author, instructor, and reader contexts and the
corresponding user interfaces that are best suited to any particular design.

1.1. Content Structure
Many books, especially technical and professional ones, are designed with a core
body of content that is augmented by supplemental content of various types. The
types of supplemental content, the structures that organize it in books, and its
presentation and formatting are highly conventional (see [11], [14] for historical
perspectives, [8], [20] for design guidance).

Tables, figures, illustrations, and sidebars are often supplemental content, and
are usually constrained to appear as close as possible to the core text that mentions
them. These types of supplemental content are usually created by the author or by
people who are following the author's specifications.

Footnotes, endnotes, annotations, bibliographic citations, glossary entries, and
indexes are types of supplemental content that are also closely anchored to particular
parts of the core text. Footnotes and annotations are usually constrained to appear
on the same page as their text anchor, but the other types of content are more typic-
ally arranged at the end of larger text units like chapters or at the end of the book.
The author does not typically create some of these types of content, especially in-
dexes.

Appendixes, commentaries, reviews, and case studies are types of supplemental
content that are typically associatedmore coarselywith the book as awhole. People
other than the book author also commonly create them.

The basic contrast between core and supplemental content is a very old one but
the emergence of digital documents has enabled some new variations. Selectable
links that "transport" the reader to the linked content or that "transclude" the content
into the core text streamwere foundational concepts of hypertext proposed by ([17]).
The now familiar idea of web browser "plug-ins" or "extensions" for embedding
new digital format types into documents was anticipated by ([18]) who developed
"multivalent documents" and an extensible reading application inwhich new layers
of content and their specialized interactions and behaviors could be overlaid on the
"base" layer. Contemporary examples include the Hypothes.is2 open annotation
platform and the Lens viewer for scientific publications that allow readers to re-
arrange and focus on different parts of the article.

The goal of interdisciplinary comprehensivenesswas undermining the coherence
and comprehensibility of the TDOmanuscript. At the same time in late 2011 many
of the co-authors moved on to other jobs and projects, leaving a much smaller au-

2 http://hypothes.is

37

Using DocBook to Produce a Polyvalent Academic Work

http://hypothes.is
http://hypothes.is

thoring group led by the first two authors of this article to finish the book. This gave
us an opportunity to rethink and revise the book from end to end and to attack
rather than surrender to the breadth vs. depth challenges.

We decided to restructure the book to emphasize the transdisciplinary core of
the new discipline of organizing while preserving the disciplinary identity of the
concepts, methods, technology, and people that contributed to it. We did this by
editing each chapter to more tightly focus on transdisciplinary content, extracting
discipline-specific content into paragraph size chunks collected into a set of endnotes
at the end of each chapter.

Some of this restructuring was straightforward because it was simply making
explicit the organization of chapters and section. Many followed the "hourglass" or
"inverted pyramid" organization typical of news stories and textbooks to beginwith
an introduction and easily understood or generic examples, followed by additional
refining concepts andmore specific examples. Often the last paragraph of a section
contained the most discipline or industry-specific content, which we then moved
into an endnote.

However,most of the restructuring requiredmore thoughtful analysis to determ-
inewhether a paragraph should be considered core or supplemental.We considered
using text processing tools to calculate term frequency statistics to locate paragraphs
that contained concentrations of discipline-specific vocabulary, but these were un-
likely to work well given the small size of the text units we sought to restructure.
We instead used simpler heuristics that keyed on the occurrence of obscure words
or proper nouns like "fonds" or "Sarbanes-Oxley" as indicators of disciplinary-spe-
cific paragraphs. Nevertheless, we discovered that we often referred to discipline-
specific vocabularywhenwe proposed design patterns or introducedmore abstract
terms, so removing their first occurrences from the core text would be a mistake.
We sometimes needed to replace pronouns and indirect referralswithmore concrete
referents to fix continuity problems caused by restructuring.

When TDOwent to press in early 2013, we had factored about 24% of the chapter
text into six disciplines, which within months were further refined into ten: Library
and Information Science,Museums, Archives, Computing,Web, Cognitive Science,
Linguistics, Philosophy, Law, and Business.

1.2. Single-source Publishing
Single-source publishing promises the ability to deliver multiple forms of a given
work from a single set of source files. For our purposes, that initially meant print-
ready and hypertext formats.

By late 2012, the chapters of the book, in simpleWord documents, were nearing
completion. The front and back matter existed only notionally in the mind of the
markup editor. We wanted to publish in both print and ebook formats because we
expected it would need frequent revision to stay current. We were dissatisfied with

38

Using DocBook to Produce a Polyvalent Academic Work

Word as our source framework, partly because its glossary and indexing tools
evaded us, and partly because of our own biases toward non-proprietary, standards-
based encoding schemes. We had surveyed XML-based publishing tools and
frameworks, and had narrowed our sights on either DocBook or DITA. As a matter
of practicality, we chose DITA because Eliot Kimber had agreed to work with us to
convert our sources and adapt the standard DITA framework to produce our re-
quired output formats. We were actively preparing to produce the work using the
DITA framework in Austin, TX in early December 2012. A chance encounter at a
publishing conference presented us with a different approach.

We were fortunate to become beta testers for O'Reilly's Atlas single-source
publishing environment. Atlas enabled us to deliver print-ready copy, epub, and
mobi versions of TDO from the same XML source files, which we marked up using
the DocBook schema. DocBook contains chapters, sections, paragraphs, sidebars,
lists, figures, tables, links, citations, quotes, glossary and index terms, and other
elements needed for books and technical publications. Because it is straightforward
to transform text with this rich markup into the other formats and assign corres-
ponding style sheets to them, the first editions were essentially identical except for
the layout and formatting flexibility, search, and hyperlinking that are intrinsic to
the digital formats.

Atlas was an essential productivity boost, but we resisted the siren call of com-
plete single-sourcing. Rather than take a break during the period that the print book
wasworking its way throughmanufacturing and distribution, we decided to invest
heavily in ebook-targeted content enhancements and semantic markup that were
not used in the print version. Even before the print edition of TDO reached book-
stores in May 2013 we were well along on an enhanced ebook design that included
several dozen photos, embedded quizzes, annotation capability, and other features
that took advantage of the digital reading platform.

Atlas continued to meet our requirements for producing a second printing, but
DocBook, XHTML5, and ePub had all moved forward and Atlas was not keeping
pace with our requirements for greater interactivity. We worked with Bob Stayton
to upgrade our sources and customize the DocBook 5 framework to suit our needs.
As it turns out, the people at O'Reilly Media had been thinking that DocBook was
too complex for non-technical authors andwere about to abandon it, so our decision
turned out to be prescient in retrospect. Now that the dust is beginning to settle on
their new strategy, relying upon a simpler HTML5-based source model, we find
ourselves tempted again by the siren call of single-source publishing, we are
tempted to consider transforming ourDocBookXML toXHTML5 to rejoin theAtlas
tool chain, but only if we can do it while preserving the rich semantics we have
encoded in the former. (Wewill propose somewayswemight do this in Section 3.4.)

39

Using DocBook to Produce a Polyvalent Academic Work

1.3. Selective Inclusion by Discipline
Readers are familiar with the contrast between core and supplemental content and
somehow decide how much of the latter to read when they encounter it in a book.
However, the distinction is generally not based on disciplinary specificity, so we
could not predict how it would affect the TDO reading experience.

TDO readers understood that the disciplinary labels on each endnote could help
them decide whether to read it or not. We realized too late for the first print edition
of TDO that we could append discipline labels to the superscripts marking the note
in the core text, but we were able to do so in the ebook editions. This made it even
easier for readers to be selective about supplemental content because it made it
unnecessary to flip to the end of the chapter to determine the disciplinary focus of
the endnote.

We informally surveyed students in courses that used TDOabout how they read
the book. Some studentswith the print edition read everything in one pass, including
the endnotes by flipping back and forth to the end of the chapter. Other students
using the print edition read the core text first, and then read all the notes in a second
pass. Some students reported that they ignored notes that were in unfamiliar discip-
lines, while others said they paidmore attention to disciplines that were unfamiliar.

Tracking reading behavior is technically straightforward in digital reading en-
vironments but the most common ebook readers from Apple and Amazon are
proprietary and closed, and neither firm shares user experience data with authors
or publishers. Software that can unzip ebooks and render them in ordinary web
browsers can exploit web analytic mechanisms for tracking user events ([4]), but
will students let their instructorsmonitor how or if they read an assigned textbook?

A more systematic survey was conducted at Berkeley in the fall semester 2014,
where all students used TDO in ebook formats in a graduate course taught by the
second author of this article. This survey revealed greater likelihood to read supple-
mental content in ebooks than with print versions, but also confirmed that both the
propensity to read and disciplinary preferences for supplemental reading were
highly variable. These findings gave us more motivation to find a reading-time
customization approach, which we describe in Section 2.2.

1.4. Inclusion vs. Transclusion vs. Exclusion
We had initially hoped to employ transclusion as the mechanism for incorporating
supplemental content; readers would be alerted to its presence with a disciplinary-
specific symbol in the pagemargin, and selecting the symbolwould seamlessly insert
the content into the core text stream, perhaps subtly altering its text formatting or
font to remind the reader of its supplemental role.

However, transclusion isn't supported in any existing book reader, so we were
forced to rely on more traditional inclusion mechanisms of link following (and re-

40

Using DocBook to Produce a Polyvalent Academic Work

turn) and pop-up notes. We preferred the latter because it better maintains the
reading context, but its poor implementation forced us to rely on the former. In
particular, Apple's popular iBooks reader supports pop-ups (see Figure 1), but
doesn't allow link traversal from a pop-up note. Since most TDO endnotes contain
citations, pop-up noteswould become dead ends.We aspire to the happy comprom-
ise that presents itself in the Lucifox plug-in for Firefox (see Figure 2).

We now realize that there is a third class of design mechanisms that we need to
explore. Framing our content architecture in terms of core and supplemental content
assumes that readers are selectively incorporating additional content to a book. It
is interesting to consider starting with the complete book and enabling readers to
selectively exclude rather than include content. One possibility would be to invert
the user experiencewe imagined for transclusion, leaving amargin symbol to indic-
ate where the reader has chosen to exclude content. Or we might use the familiar
presentation conventions of reducing the font size or graying out for content that
is excluded by the filter applied by the reader.

1.5. A Family of Related Books
In its first year, TDO was adopted in whole or in part by about 20 schools for a
variety of courses in information organization, content management, collection de-
velopment, and information architecture. However, many instructors were using
only parts of TDO and asked for a simpler shorter version more suitable for under-
graduate courses, which meant we needed to further refine our classification of the
book's content.

We extended the idea of disciplinary labeling of content to identify an additional
15% of the chapter content as being focused on disciplinary-specific rather than
transdisciplinary content. This was easier this time because it was easier to evaluate
consistency and continuity when it wasn't necessary to flip back and forth between
the chapter body and its endnotes to consider whether to remove a paragraph from
the core.

During this timewe also invested in a substantial amount ofmarkup to enhance
the amount of processable semantics represented in the source text. In addition to
its structural elements, the DocBook schema contains semantic elements which we
used to identify people, organizations, locations, products, applications, abbrevi-
ations, foreign phrases, and other potentially useful semantic "nuggets" that were
mixed into the text. We invested in this semantic markup because we imagined
being able to interconnect digital versions of TDOwith other semantically described
web resources by exposing it according to the conventions for "linked data" ([3],
[1]) even if the current technology for ebooks was incapable of enabling it.

A more speculative form of semantic markup we explored was to label content
according to its rhetorical purpose and intended audience. We classified some
phrases as definitions, principles, statements, examples, parenthetical cross-refer-

41

Using DocBook to Produce a Polyvalent Academic Work

The iBooks endnotes. A build-time option injects ePub3 semantics enabling an iBooks
footnote interaction that presents the pop-up viewport. Sadly, it exhibits odd behavior
with links. Exercising an external link presents the resource in the same cramped
viewport. Exercising an internal link yields an empty viewport.

Figure 1. iBooks Popup

ences, and editorial asides; we classified some content as suitable for undergraduate,
graduate, or professional audiences. We consulted some work in rhetoric, critical
theory, and computational linguistics to create the former classification, but the
categories and their boundaries we discovered in this diverse literature are not en-
tirely consistent (see [2]).

We are currently exploring some different approaches for creating custom edi-
tions based on thismarkup.We note that there are considerable similarities between
this goal of creating a "textbook family" and that of creating a "software product
family" (see [12]; [13]). Furthermore, the techniques we propose have analogues
with conditional compilation ([5]) and visualizations that contrast core and supple-
mental content ([6]; [7]).

2. A Polyvalent Academic Text
When a person or a thing is “polyvalent,” it presents many different functions,
forms, or facets; it is adaptable; like the “Jack of all trades”. A polyvalent text is one

42

Using DocBook to Produce a Polyvalent Academic Work

The Lucifox add-on for Firefox offers hypertext cues. When hovering over any link
that is local to ePub3, this feature presents a tooltip with an excerpt from the target of
the link and invites the reader to follow the link. This feature works with footnotes,
cross-references, glossary terms, citations, and bibliography, and even for the referents
of index terms

Figure 2. Hypertext cues in Lucifox

that is transformative and can adapt to the information needs of the reader. Such
text often exhibits a dynamic quality where the user may express their information
needs via implicit or explicit methods and the flow and contents of the text changes
to represent the subset of information contained thatmatches their needs. Considered
as awhole, the polyvalent text is a superset of all the information needs of its various
consumers.

The text is written with multiple disciplines, or audiences, in mind, including
footnotes and paragraphs identified as LIS,Museums,Archives, Computer Science,
Linguistics, Cognitive Science, Business, Law, and so on.

Example 1. Paragraphs and Footnotes by Discipline

<para audience="CORE IA"><phrase role="statement">Classification
makes systems more usable when it is manifested in the arrangement
of resource descriptions or controls in user interface components
like list boxes, tabs, buttons, function menus, and structured

43

Using DocBook to Produce a Polyvalent Academic Work

lists of search results.</phrase
><footnote xml:id="endnote-394" label="394" audience="IA">

<para audience="IA">[IA] The application of classification and
organizing principles more generally to the design of
user interfaces to facilitate information access, navigation,
and use is often called <quote>Information Architecture.</quote>
See <citation xml:id="cite_Morville2006-7.1"

linkend="Morville2006">(Morville and Rosenfeld 2006)</citation>.
</para></footnote></para>

Example 2. Bibliography by Discipline

When a bibliography entry is cited only in one disciplinary endnote, and is not
mentioned in the surface text, we may choose whether to assign that entry only to
the discipline specified by its parent endnote, or rather to alsomention other discip-
lines so that the entry can appear in other editions, even though the corresponding
citation and endnotes may not also appear. Here, we have an entry that will only
appear in editions in which information architecture, computing, or the web are
selected:

<biblioentry xml:id="Morville2006" audience="IA Computing Web">
<authorgroup>
<author><personname><firstname>Peter</firstname>

<surname>Morville</surname></personname></author>
<author><personname><firstname>Louis</firstname>

<surname>Rosenfeld</surname></personname></author>
</authorgroup>
<pubdate>2006</pubdate>
<title>Information Architecture for the World Wide Web</citetitle>
<address>Sebastopol, CA</address>
<publisher<publishername>O’Reilly</publishername></publisher></biblioentry>

Some structural elements of the content are identified by user levels, including
Professional, Instructor, Graduate, and so on. These elements are used for the edition-
specific content, such as the Stop and Think exercises in the Core Concepts Edition.

Example 3. Userlevel selection

<sidebar userlevel="Professor Instructor Graduate Undergraduate"
xml:id="StopAndThink-2.4.2.1-search-engines">

<title>Stop and Think: Browsing for Books</title>
<para>How does the experience of browsing for books in a library
or bookstore compare with browsing using a search engine?
What aspects are the same or analogous in all these contexts?
What aspects are different?</para></sidebar>

44

Using DocBook to Produce a Polyvalent Academic Work

Some structural elements are identified by vocation, including Archivist, Curator,
Linguist, and so on. These are used for edition-specific content, such as the cover,
subtitle, ISBN, and so on.

Example 4. Edition-specific

<subtitle userlevel="Professional"
audience="LIS Archives Museums

Computing IA Web Law Business
CogSci Linguistics Philosophy"

>Professional Edition</subtitle>

<subtitle userlevel="Undergraduate"
audience="CORE"
>Core Concepts Edition</subtitle>

<subtitle userlevel="Librarian Archivist Curator"
audience="LIS Archives Museums"
>Academic Edition: Memory Institutions</subtitle>

<subtitle userlevel="Philosopher Linguist"
audience="CogSci Linguistics Philosophy"
>Academic Edition: Sensemaking</subtitle>

2.1. Static Multivalent Editions
Wemodified the build process we used to produce the initial ebooks to produce an
ebook that contains whatever set of disciplines is specified in a configuration file.
An XSLT script filters content based on the values assigned to AUDIENCE and
USERLEVEL attributes when we assemble books from our DocBook XML source
files.

This approach turns the source files for a book into a family of books with a
common core extended with discipline-specific content. With many disciplines the
combinatorial possibilities make this an extremely large family (with eleven discip-
line types, there are 2048 distinct combinations of zero to eleven), and even if we
apply strong reasonableness or familiarity constraints it is still easy to imaginemany
subset configurations of disciplines thatwould generate appealing custom textbooks:
• Academic Edition: Memory Institutions (LIS, Museums, Archives)
• Academic Edition: Sensemaking (Cognitive Science, Linguistics, Philosophy)
• Academic Edition: Informatics (Computing, Information Architecture, Web,

Business, Law)
• Academic Edition: InformationArchitecture (InformationArchitecture, Linguist-

ics, Web)

45

Using DocBook to Produce a Polyvalent Academic Work

However, for business and marketing reasons we decided, with our publisher, to
go to market with just two combinations that define the endpoints of possible dis-
ciplinary customization:
• Professional Edition (all disciplinary endnotes)
• CoreConcepts Edition (nodisciplinary endnotes, added Stop andThink exercises)
We expect that as more schools adopt the book for a wider range of courses and
student populations we will gain experience that might cause us to market other
combinations.

Static editions are customized for a particular set of audience and user-level
parameters by filtering content, based on profiles of DocBook 5 attribute values.
Any given content element may be a member of one or more user levels and audi-
ences. Membership in the set is primarily dependent on any one of the @audience
values being selected.

For example, two paragraphs might be tagged as @audience="Computing IA
Linguistics" and @audience="Computing Business Law". Those paragraphs will be
members of the set if any of those audience values are selected in the build config-
uration. So long as "Computing" is selected, both paragraphs will be included.

Similarly, selection of one or more user levels will restrict the set accordingly.

Example 5. Configuration Excerpt

<group xml:id="Professional"
name="Professional Edition"
ref=" professional

core lis archives museums
computing ia web law bus
cogsci ling phil"/>

<group xml:id="Undergraduate"
name="Core Concepts Edition"
ref=" undergrad core"/>

Thus, wewere able to produce a static "Professional Edition" alongside a static "Core
Concepts Edition" for undergraduates. These editions represent the two ends of the
audience spectrum: all footnotes and no footnotes. We are currently testing the
production of more nuanced editions for "Memory Institutions," "Informatics," and
"Sensemaking"

Example 6. Academic Editions

<group xml:id="Memory"
name="Academic Edition: Memory Institutions"
ref=" graduate librarian archivist curator

core lis museums archives"/>

46

Using DocBook to Produce a Polyvalent Academic Work

<group xml:id="Informatics"
name="Academic Edition: Informatics"
ref=" graduate programmer

core computing ia web bus law "/>

<group xml:id="Sensemaking"
name="Academic Edition: Sensemaking"
ref=" graduate philosopher linguist psychologist

core cogsci ling phil"/>

The “Instructor Edition” will include supplemental material, such as in-class exer-
cises, essay assignments, and typical examination questions. Because userlevel and
discipline are orthogonal axes of selection, we will be able to create static editions
that correspond to the Academic Editions, as well as dynamic polyvalent editions.

Example 7. Instructor Edition

<group xml:id="Instructor"
name="Instructor Edition"
ref=" instructor

core lis archives museums
computing ia web law bus
cogsci ling phil"/>

As a tool for development, two special editions were designed for editorial and
production purposes. The Editor's Edition serves as a staging ground for newmater-
ial that is not quite ready for inclusion in the main corpus, and includes notes left
by the editors to remind each other about needed re-writes, citations, glossary
entries, and so on. TheMarkup Edition of thework includes an extra chapter, Produc-
tion Notes, written during development and used to test DocBook markup, trans-
formed into XHTML, andmanifested in print and ePub results, usingCSS to control
the presentational and behavioral characteristics.

Example 8. Editor and Markup Editions

<group xml:id="Editor"
name="Editor's Edition"
ref=" editor

core lis archives museums
markup production publishing
computing ia web law bus
cogsci ling phil"/>

<group xml:id="Markup"
name="Markup Edition"

47

Using DocBook to Produce a Polyvalent Academic Work

ref=" marker producer publisher
core lis archives museums
markup production publishing
computing ia web law bus
cogsci ling phil"/>

2.2. Dynamic Polyvalent Editions
A second approach to customization ismotivated by the reality that not all students
in a particular course have the same disciplinary backgrounds and interests, and
not all parts of a book require or permit the same pattern of disciplinary coverage.
In TDO, for example, Chapter 3 on "Resources" discusses philosophical topics about
ontology and identity like "carving nature at its joints" and "the ship of Theseus",
in contrast with Chapter 8 on "The Forms of Resource Description" that has much
more need to focus on technical architecture and implementation concerns. So it
would be desirable for disciplinary customization to be determined by the reader
in response to his preferences given a particular type of content.

To enable "reading time" or dynamic customization, we modified the build
process to convert the discipline AUDIENCE attribute into a CLASS attribute in the
generatedXHTML. The third author of this paper implemented a prototype interface
(see Figure 3 and Figure 4) that uses CSS and JavaScript to insert a list of check boxes
before each section of the book; the reader can select which disciplines to include
and exclude; the ebook dynamically re-formats accordingly by modifying the CSS
display property of the affected elements. For convenience, groupings of discipline
types that correspond to a named edition are readily chosen from a pull-down
menu; this approach allows a single product to dynamically morph itself into any
of the family members. However, its reliance on JavaScript limits its deployment
to a select few ebook readers.

Although this prototype script is sufficient for trivial demonstration, we have
had to limit its capability and utility for lack of local storage. Ideally, wewould offer
a facility to set and store user preferences to adjust the presentation of semantically-
significant elements, under different reading scenarios. A student reading a book
for the first timemaywant it all, while a student preparing for an examinationmay
prefer to see only content that relates to their field.

Example 9. Excerpt from tdo-toggle.js

TDOToggle.prototype.update = function() {
var css = "";
for (var key in this.checkboxes) {

if (!this.checkboxes[key].checked) {
css += "."+this.checkboxes[key].value+" { display: none; }\n";

}
}

48

Using DocBook to Produce a Polyvalent Academic Work

this.styleElement.innerHTML = css;
}

Screenshot of Bibliographywith Customize script activated and Sensemaking Edition
selected.

Figure 3. Sensemaking Edition

In the second of the Bibliography screenshots, we can see that a different set of
disciplines are selected and the bibliography entries correspond to the new selection.
The only entries in common are [Abel2014] and [Aristotle350BC]; the first being a
CORE entry and the second being unattributed to a specific discipline. The decision
to not attribute [Aristotle350BC] to a specific discipline was an editorial one, pur-
posely including the entry in every bibliography, in spite of the fact that the citation
is contained within a discipline-specific endnote paragraph.

3. Reflections and Directions
Wherein we reflect upon our decisions and explore our future directions.

3.1. Core vs. Supplemental
We restructured TDO into core and supplemental content relatively late in the au-
thoring process as a response to multidisciplinary bloat, and it was often necessary
to rearrange and revise paragraphs to preserve syntactic and conceptual continuity.

49

Using DocBook to Produce a Polyvalent Academic Work

Screenshot of Bibliography with Customize script activated andMemory Institutions
Edition selected.

Figure 4. Memory Institutions Edition

For example, endnotes must be anchored at the end of sentences, most often at the
end of paragraphs, and generally at the end of a section.

We concluded that it would have been much easier to write a book with this
core + supplement architecture if we had startedwith this architecture inmind. This
of course is conventional wisdom in software engineering; re-factoring is harder
than building in modularity from the outset on a more generic platform designed
to be extended with plug-in components. Nevertheless, several TDO co-authors
and instructors have proposed to add additional categories of discipline-specific
content to make the book a better fit to their courses and expertise, and we were
able to add the eleventh disciplinary category for "Information Architecture" relat-
ively late in the process of creating the 2014 editions. Ideally, we can identify "dis-
cipline editors" who are responsible for their evolution, adding new endnotes,
sidebars, or other supplemental content as required.

Example 10. Supplemental Content

<sidebar audience="IA">
<title>Information Architecture</title>
<para>...<footnote audience="IA">

<para>...</para> </footnote> </para>
</sidebar>

50

Using DocBook to Produce a Polyvalent Academic Work

3.2. User Interaction
The ePub3 platform offers many features to enable the reader to interact with an
ebook and often offers the readermechanisms bywhich the interface can bemodified
to suit the individual reader's preferences, althoughmuchdependsupon the platform
through which the reader interacts with the ebook. The reader typically has access
to a table of contents and a search interface, and often has control over some facets
of page layout. Many ePub platforms also offer helpful features that may fail to ac-
count for some sophisticated document representations.

Search facilities within appropriately encoded ePub context can and should be
more context sensitive. For starters, search results that distinguish among first use,
definitions, mentions in keyword metadata, mentions in text and titles, mentions
in a bibliography or glossary entries, and mentions in an index.

A table of contents is typically represented as a series of nesting lists with titles
and references. In print, such a list might include the titles of chapters, sections, and
even sub-sections. In electronic media there is no reason to limit the level of detail
that we provide in a table of contents, but neither is it necessary to always present
every level of the hierarchy. The ability to control presentation of the table of contents
would be especially welcome.

DocBook and ePub3 each include the concept of a bibliography, glossary, and
index; XHTMLandCSSdonot. This disjunction between the structural and elemental
components of the logical work and those of the delivered product impedes the ef-
forts of the content creator to reliably deliver utility to the consumer. We hope to
discover an appropriate set of publishing semantics to allow us to encode the
structure of academic works to enable discovery and interaction with the book, as
a book, and imbue its logical sub-components with familiar affordances.

3.3. XHTML5, CSS and JavaScript
We observe that there exist both parallels and disjunctions among the various book
production models and vocabularies employed by XHTML5, CSS, and JavaScript
in an ePub context.Mismatches among these have thwarted our attempts to produce
dictionary-style headings for the bibliography, glossary, and index.

Popular ePub3 reader platforms offer nominal author- or user-control over
presentation of paged content or text styling. We observe inconsistent application
of XHTMLandCSS features across popular reader platforms. For example, building
collapsible list structures for tables of contents, bibliographies, glossary, and index
could be achieved with universal support for the xhtml5:detail element; better yet
would be providing those semantics through CSS.

51

Using DocBook to Produce a Polyvalent Academic Work

Example 11. CSS Precedence

Polyvalent style sheets are a challenge because of the CSS precedence rules. Given
that any elementmay be attributed to one ormore disciplines, the order of stylesheet
rules affects which actions are fired. A paragraph that is attributed to IA and Web
may be labeled as one or the other, depending on the order in which they appear
in the stylesheet. In this example, Web wins because it is the latest, or most recent
declaration.

p.IA::before { content: "IA"; ...}

p.Web::before { content: "Web"; ...}

We have observed that we cannot rely on the availability of JavaScript on all reader
platforms. We expected that portable reader devices might not have JavaScript
capability; we were disappointed that the Lucifox add-on for Firefox disables em-
bedded JavaScript.

3.4. Semantic Enablement
Semantic enablement is a process that relies upon the content creator to annotate
their material with actionable semantic labels, and upon a downstream processor
to leverage those semantics for presentation to and interaction with people. The
ePub3 platform, for example, mandates that all book archives include a table of
contents that is subsequently used by the reader platform to provide a hierarchical
list of hypertext links.

We have had to limit our exploitation of semantic enablement while waiting
upon new versions of ePub3 and DocBook5. In the interim we have relied upon
DocBook's @role and XHTML's @class and @rel to signal semantics downstream.
We are now considering the application of RDFa to DocBook 5.1 sources to produce
rich XHTML documents containing hybrid meta-data stores leveraging native
XHTML5 semantics, supplemented with a surface layer of RDFa, and provisioned
with compact JSON triple stores to support JavaScript interactions.

3.5. Distributed Authoring and Publishing
Our ultimate goal is to implement a distributed authoring and publishing system
in which new content can be dynamically discovered and logically included in the
family of related books. We are exploring the application of DocBook5 annotation
and advanced hypertext features to enable two-way linking between TDO and
content created by and for the schools in which the book is being used. We are also
re-considering Atlas as single-source repository for delivery to multiple media be-

52

Using DocBook to Produce a Polyvalent Academic Work

cause of the obvious benefits of relying on a generic industrial-strength platform
rather than maintaining our own customized one.

4. Acknowledgments
We are grateful for technical assistance provided by Eliot Kimber, Bob Stayton,
Liam Quin, George Kerscher, Häkon Lie, Adam Witwer, Nellie McKesson, Fred
Chasen, and the oXygen technical support team..

Bibliography
[1] Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist:

effective modeling in RDFS and OWL. Elsevier.
[2] Bitzer, L. F. (1992). The rhetorical situation. Philosophy & rhetoric, 1-14.
[3] Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far.

International journal on semantic web and information systems, 5(3), 1-22.
[4] Chasen, F., Harnell, J., and Renold, A.J. 2014. Future Press. UnpublishedMaster's

Project, UC Berkeley School of Information.
[5] Couto, M. V., Valente, M. T., & Figueiredo, E. (2011, March). Extracting software

product lines: A case study using conditional compilation. In Software
Maintenance and Reengineering (CSMR), 2011 15th European Conference on
(pp. 191-200). IEEE.

[6] Feigenspan, J., Papendieck, P., Kästner, C., Frisch, M., & Dachselt, R.
"FeatureCommander: colorful# ifdef world." In Proceedings of the 15th
International Software Product Line Conference, Volume 2, p. 48. ACM, 2011.

[7] Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R.,
Papendieck, M., Leich, T., & Saake, G. "Do background colors improve program
comprehension in the# ifdef hell?." Empirical Software Engineering 18, no. 4
(2013): 699-745.

[8] Glushko, R. J., & McGrath, T. (2005). Document engineering. MIT Press.
[9] Glushko, R. J. (Editor) (2013). The Discipline of Organizing. MIT Press.
[10] Glushko, R. J. (Editor) (2014). The Discipline of Organizing. O'Reilly Media.
[11] Grafton, A. (1999). The footnote: A curious history. Harvard University Press.
[12] Kästner, C., Apel, S., & Kuhlemann, M. (2008, May). Granularity in software

product lines. In Proceedings of the 30th international conference on Software
engineering (pp. 311-320). ACM.

53

Using DocBook to Produce a Polyvalent Academic Work

[13] Krueger, C. (2002). Easing the transition to software mass customization. In
Software Product-Family Engineering (pp. 282-293). Springer BerlinHeidelberg.

[14] Kilgour, F. G. (1998). The evolution of the book. New York and Oxford: Oxford
University Press.

[15] Klein, J. T. (2010). A taxonomy of interdisciplinarity. In R. Frodeman, J. T. Klein
& C. Mitcham (Eds.), The Oxford Handbook of Interdisciplinarity (pp. 15-30).
Oxford: Oxford University Press.

[16] Melville, Herman. (1851). Moby Dick, or The Whale. London. Richard Bentley.
[17] Nelson, Theodor Holm. "A File Structure for the Complex, the Changing and

the Indeterminate." Proceedings of the ACM 20th National Conference (1965),
pp. 84-100

[18] Phelps, T. A., andWilensky, R. 2000. Multivalent documents. Communications
of the ACM, 43(6), 82-90

[19] Teufel, S., & Moens, M. (2002). Summarizing scientific articles: experiments
with relevance and rhetorical status. Computational linguistics, 28(4), 409-445.

[20] Williams, R. (2005). The Non-designers Design Book: Design and Typographic
Principles for the Visual Novice. Non Designer's Design Book.

54

Using DocBook to Produce a Polyvalent Academic Work

Generation of a “semantic” eBook:
all you need is XML

Vincent Gros
Hachette Livre

<vgros@hachette-livre.fr>

Jean-Claude Moissinac
Institut Mines-Télécom

<jean-claude.moissinac@telecom-paristech.fr>

Luc Audrain
Hachette Livre

<laudrain@hachette-livre.fr>

Abstract

EPUB format is the widely adopted standard compatible with modern reading
devices and tablet applications In June 2014, the minor release of EPUB, EPUB
3.0.1, allows microdata and RDFa for the semantic enrichment, in addition
to the existing semantic inflection provided by the epub:type attribute. But
producing semantic eBooks “by hand” can be time-consuming and expensive
for a publisher. Therefore we propose to think about an automated generation
based on a XML workflow, extended by inspiration of Schematron processing
with XSLT transformations driven by pipeline in XProc. We experiment this
approach to produce a French wine guide in EPUB format.

Keywords: Digital publishing, eBook, EPUB, Schematron, semantic
enrichment, XML, XProc, XSLT, workflow

1. Introduction
It used to be easy to define what a book was: a collection of pages bound inside a
cover. But in the digital age, what really is a book? Probably more than a collection
of pages.

According to Vassiliou and Rowley [9], “an eBook is a digital object with textual
and/or other content, which arises as a result of integrating the familiar concept of
a book with features that can be provided in an electronic environment. EBooks
typically have in-use features such as search and cross reference functions, hypertext
links, bookmarks, annotations, highlights,multimedia objects and interactive tools.”

55

Therefore we consider here the eBook as a package of logically structured and
formatted data semantically enhanced. In this way the information of the book and
the content are integrated: the eBook is a self-descriptive set of content. This defini-
tion is inspired by the notion of semantic-document described as a combination of
PDFs Files and ontologies by Henrik Eriksson [2].

In other words, we suppose an eBook must contain two representations:
• A representation of the logical structure of the book ;
• A representation of the informational structure of the data in the book.
Both representations can be collected at the beginning of an eBook production: in
the publishing industry, the production is mainly based on XML source files [1],
and in addition Melnik assumes in [5] that every XML document has an implicit
RDF2model. But here we consider two semantic representations depending on two
different mechanisms, which are interlaced with the human readable presentation
expressed by the layout. This is now available thanks to the last release of the EPUB
standard.

In an industrial context, a publisher can have heterogeneous source files, depend-
ing on differentDTDs or XSD Schemas. Producing every semantic eBooks as a single
operation can be time-consuming and expensive for a publisher. How can we ease
semantic EPUB generation in this context? In this paper, we give our first thoughts
about an XML workflow from XML source to semantic EPUB.

2. A French wine guide as XML input
In our experimentation,we use a French guide about French, Swiss and Luxembour-
gian wines. The information in this kind of books is extremely rich and diverse.
Within this guide, for example, every wine is described according to its character-
istics (the type, the color), the year (of the vintage), the price, etc. There is also an
evaluation of the wine (from blank to ***, if the wine is very tasty). For human
readers, these kinds of information are indicated by explicit text, by a specific picture,
or both (illustrated by the figure 1 from the 2011 edition).

2 http://www.w3.org/RDF/

56

Generation of a “semantic” eBook: all you need is XML

http://www.w3.org/RDF/
http://www.w3.org/RDF/

Figure 1. Display of a wine description (2011)

The informational structure is directly predictable by a human reader from the XML
markups chosen by the publisher (see example 1). For example, the tag PRIX stands
for the prices information3. But there are no direct hints for the logical structure of
the book (chapter, section, etc.).

Example 1. A wine description in the XML source

<VIN>
<NOMVIN>Dom. de la Linotte</NOMVIN>
<COMPLVIN>Gris</COMPLVIN>
<MILLESIM>2009</MILLESIM>
<APPREC>*</APPREC>
<CARACT>

<TYPE TYPE="1" COULEUR="2"/>
<SURFACE>1,1 ha</SURFACE>
<NBBOUT>8 500</NBBOUT>
<CUVE/>
<PRIX VALEUR="5 à 8 €"/>

</CARACT>
<TEXVIN>Les gris de Marc Laroppe ne sont plus une découverte pour les ►

lecteurs, et ils récoltent les étoiles avec une régularité confondante. […]</►
TEXVIN>

<PRODUCT CODE="24759" NOUVEAU="Non">
<DEBPROD>Marc</DEBPROD>
<INDPROD>Laroppe</INDPROD>
<Adresse>90, rue Victor-Hugo</Adresse>
<CP>54200</CP>
<INDCOMM>Bruley</INDCOMM>

3In French, ‘prix’ means ‘price’.

57

Generation of a “semantic” eBook: all you need is XML

<Tel>03 83 63 29 02</Tel>
<EMAIL>domainedelalinotte@orange.fr</EMAIL>

<VENTE/>
<HOTE PRIX="2"/>
<VISITES/>
<DEGUST/>
<HORAIRES>t.l.j. sf dim. 9h-12h 14h-18h</HORAIRES>

</PRODUCT>
</VIN>

In the next section we will describe the expected EPUB output.

3. The EPUB output or the "semantic EPUB"

Figure 2. Schema of the EPUB package

TheOpenEBook Standardwas replaced in September 2007 by theOpenPublication
Structure 2.0, which evolved into the EPUB standard (for Electronic PUBlication).
Developed by the IDPF (International Digital Publishing Forum), this format is a
standard widely adopted and compatible with modern reading devices and tablet
applications. The third major version of the EPUB standard has been published in

58

Generation of a “semantic” eBook: all you need is XML

October 2011, and is based on the Open Web Platform, mainly HTML5, CSS3,
JavaScript and SVG (figure 2).

In June 2014, the minor release of EPUB, named EPUB 3.0.14, allows microdata
[3] and RDFa [7] for semantic enrichment, in addition to the existing semantic inflec-
tion provided by the epub:type attribute. We present these mechanisms in the fol-
lowing sections.

3.1. The logical structure using epub:type
One of the limitations of the core HTML markup grammars is that it is not well
suited for defining a rich structure, because of its small set of elements.

To consider the logical structure of the book, EPUB includes a specific epub:type
attribute5

. This epub:type attribute can be attached to any element in the body of anHTML
document, and it accepts any of the terms defined in the EPUB Structural Semantics
Vocabulary6 by default, or other terms by defining a namespace.

For example, example 2 is a basic example of using the semantic inflection.

Example 2. A Content Document in EPUB using semantic inflection.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html>
<html xml:lang="en" lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml" ►
xmlns:epub="http://www.idpf.org/2007/ops">
<head>
<title title="The title of the book">The title of the book</title>
<link rel="stylesheet" href="../Style/style.css" type="text/css"/>
<meta charset="utf-8" />
</head>
<body epub:type="bodymatter">
<section epub:type="chapter">
<header>
<h1 epub:type="title">Title of the chapter</h1>
<p epub:type="subtitle">The subtitle</p>
</header>
<section>
<header>
<h1 epub:type="title">The title of the section</h1>
</header>
<p>Here is the first paragraph of the section with some texts, and a ►

4 http://idpf.org/epub/301
5Also Tips n°4 and 5 for accessibility according to Benetech, see http://diagramcenter.org/
54-9-tips-for-creating-accessible-epub-3-files.html.
6 http://www.idpf.org/epub/vocab/structure/

59

Generation of a “semantic” eBook: all you need is XML

http://idpf.org/epub/301
http://www.idpf.org/epub/vocab/structure/
http://www.idpf.org/epub/vocab/structure/
http://idpf.org/epub/301
http://diagramcenter.org/54-9-tips-for-creating-accessible-epub-3-files.html
http://diagramcenter.org/54-9-tips-for-creating-accessible-epub-3-files.html
http://www.idpf.org/epub/vocab/structure/

noteref[1]</►
a>.</p>

<p>A second paragraph here.</p>
<p>A third paragraph.</p>
<aside id="footnotes" epub:type="footnotes">
<article id="footnote-1" epub:type="footnote">
<p class="footnotes">[<a href="#footnote-1-backlink" ►

id="footnote-1-link">1] One footnote.</p>
</article>
</aside>
</section>
</section>
</body>
</html>

3.2. Semantic enrichment using RDFa
The recent release 3.0.1 of the EPUB standard allows the integration of RDFa in
Content Documents (see the Content Document specification7).

For example, a simplified RDFa description of a wine could be as in example 3
(adapted in English, and with addition of epub:type attributes):

Example 3. An HTML fragment with a RDFa description of a wine.

<section resource="http://www.gdv.fr/2011/fr/gdv/8087" typeof="gdv:wine">
<h1 property="gdv:nameWine" epub:type="title">Dom. De la Linotte<h1>
<p property="gdv:subnameWine" epub:type="subtitle">Gris</p>
<div property="gdv:vintage">2009</div>
<div property="gdv:note">*</div>
<div property="gdv:type">1</div>
<div property="gdv:color">1</div>
<div class="gdv:price">5 à 8€</div>
</section>

7 http://www.idpf.org/epub/301/spec/epub-contentdocs.html#sec-xhtml-semantic-enrichment

60

Generation of a “semantic” eBook: all you need is XML

http://www.idpf.org/epub/301/spec/epub-contentdocs.html#sec-xhtml-semantic-enrichment
http://www.idpf.org/epub/301/spec/epub-contentdocs.html#sec-xhtml-semantic-enrichment

3.3. Existing use cases

3.3.1. Interact with the book structure: pop-up footnotes

Figure 3. Pop-up footnotes in iBooks (iOS)

Since May 2012, Apple has enabled pop-up footnotes using the associated values
“noteref” and “footnote” of the epub:type attribute (figure 3).

Then, there have also been other reading systems, for example theAzardi EPUB3
reader8, which propose pop-up footnotes and other applications (for example,
center the cover when occurs anepub:type=”cover”).

3.3.2. Smart reasoning in KEereader

KEereader9 (for Knowledge Enhanced eReader) is aweb reading systemdeveloped
by Eric Freese. In addition to current reading system features, KEereader provides
a smart search functionality based on RDFa markup into the eBooks content. A
natural language query parser allows users to ask on the concepts.

8 http://www.infogridpacific.com/blog/igp-blog-20120115-epubtype-properties.html
9 http://www.keereader.com

61

Generation of a “semantic” eBook: all you need is XML

http://www.infogridpacific.com/blog/igp-blog-20120115-epubtype-properties.html
http://www.infogridpacific.com/blog/igp-blog-20120115-epubtype-properties.html
http://www.keereader.com
http://www.infogridpacific.com/blog/igp-blog-20120115-epubtype-properties.html
http://www.keereader.com

Figure 4. Example of an eBook with knowledge marks (example from
semanticweb.com)

4. Our approach

4.1. The workflow
The DiVA project was developed at Uppsala University Library and considers the
electronic version of a document as the core for multiple output and enhancement
of metadata [6]. Our approach is very similar.

Introduce XML into the production process at an early stage can make it the
basis of the entire productionworkflow. The figure 6 represents our simplifiedXML
workflow. In this case, an XML-tagged book is used as the basis of the print and
the eBook production. At the bottom,we added an extension to generate a semantic
eBook.

We introduce 3 important steps:
• In collaboration with the publisher, a person which can be seen as a Knowledge

Engineer considers the validation files (in our work, DTDs or XSD Schemas) to
define the mapping rules;

• These Mapping Rules will be used as a base for the generation engine;
• The Generation Engine is the automatic process based on the XML source file,

themapping and the composition rules in order to generate the semantic eBook.

4.2. The mapping rules
Written by the Knowledge Engineer, themapping rules are set to enable both logical
structure and semantic enrichment into the EPUB output.

The format used for these rules must distinguish the rules two types (structural
and semantic), in order to let theGeneration Engine generate the output accordingly.

The most basic rules directly concern an XML element but others can depend
on complex patterns. An element can also be the base of several rules.

Actually we consider 3 components:

62

Generation of a “semantic” eBook: all you need is XML

Figure 5. The natural query box (use in the Steve Jobs biography)

• The tag itself;
• Its DOM position; this can be done using XPath ;
• A simple reference to a notable pattern: the first characters of the content of the

element, the number of element, etc. This can also be done using XPath.
According to the semantic enrichment, concepts or properties of a concept are
defined from the XML source. For example, the VIN element applies to the concept
gdv:Wine10

, and its child NOMVIN applies to the property gdv:nameWine.
The elements of the logical structure of the book are also indicated the sameway

from the XML source. For example, the VIN element applies to the section level and
NOMVIN is the title of the section.

The mechanisms from the mapping rules to the generation engine are inspired
by the Schematron framework and will be exposed in the next section.

10‘gdv’ is the prefix of the wines guide’s namespace.

63

Generation of a “semantic” eBook: all you need is XML

Figure 6. Schema of the extended XML workflow

5. The "Schematron flavor"

5.1. Introduction
The ISO Schematron is a language and toolkit for making assertions about the
presence or absence of patterns in XML documents [8]. It can be used instead of
DTDs or XSD Schemas or to complement them. Schematron is a validation frame-
work, not a generation language. But one of the Schematron strengths is that it is
easily implementable using XSL Transformations. It is suitable for use in an XML
Pipeline (for example the W3C XProc11 pipelining language or Apache Ant12).

The core syntax is simple, based on pattern elements which contains rule de-
pending on a specific context, usually expressed in XPath. Every rule can contain
mixed assert or report elements depending on the test location (also in XPath).

The choice of the Schematron syntax to express semantic rules is first based on
the fact that the syntax is relatively simple and human-readable. Rick Jelliffe also
wrote about Schematron in [4]: “Its target uses are for software engineering requiring
document validation, for scholarly research over patterns in graph-structured data,

11 http://www.w3.org/TR/xproc/
12 http://ant.apache.org/

64

Generation of a “semantic” eBook: all you need is XML

http://www.w3.org/TR/xproc/
http://ant.apache.org/
http://www.w3.org/TR/xproc/
http://ant.apache.org/

for automatic creation of external markup, and to aid accessibility of documents for
people with disabilities”.

A classic Schematron process does not augment the information set of an XML
document. But as an experimentation, we define a specific Schematron profile to
write our mapping rules. There are some unused or underused attributes in which
we can put information for the generation

5.2. From Schematron to our approach
Some implementation of Schematron is based on meta-XSLT (XSLT that generates
XSLTs), that is the case for the leading Schematron implementation made by Rick
Jelliffe called Skeleton13. We can draw our implementation from the Skeleton XSLT
process, as shown in the figure 6. The generation engine applies the meta-XSLT on
the mapping rules (in a Schematron file) to build a generation’s XSLT. Then this
resulting XSLT is applied on the XML source to generate the content documents of
the EPUB package (a folder of resources which can be zipped in an EPUB file).

5.3. From Schematron rules to mapping rules
The Schematron rules are used by the meta-XSLT to build XSLT fragments. First,
We present the correspondences between Schematron and the resulting XSLT in
the table 1. The assert and report elements are interpreted simply onto XSLT
conditional blocks, whose test is specified by the test attribute of both Schematron
elements. All rule elements within a single pattern share the same mode, specified
by the name of the pattern element, and also define an xsl:template block.

The process of ourmeta-XSLT is quite different than the Schematron one, because
the output is not a validation report, but a set of files that constitute the same content
than the source. That said, Schematron elements in a mapping file also correspond
to XSLT blocks. For example, the assert element define a property of a concept (in
the concepts mode corresponding to the informational structure) or a structural
book element. Both logical and informational representations apply mechanisms
as shown in the table 2 and the table 3.

6. Discussion
A first sample14was made in EPUB3 format without semantic enrichment. We use
it to do a visual inspection and to confirm the complete readability of the EPUB.

That said, the integration of the tool EpubCheck at the end of the process confirms
that the output semantic EPUB is well-formed. Also, we’ve extend the XML log

13 http://www.schematron.com/implementation.html
14 https://code.google.com/p/epub-samples/wiki/SamplesListing#GhV-oeb-page.epub

65

Generation of a “semantic” eBook: all you need is XML

http://www.schematron.com/implementation.html
https://code.google.com/p/epub-samples/wiki/SamplesListing#GhV-oeb-page.epub
http://www.schematron.com/implementation.html
https://code.google.com/p/epub-samples/wiki/SamplesListing#GhV-oeb-page.epub

Figure 7. Comparison schema between Schematron process and our generation
process

option of this tool (which is open-source) to provide some information: themetadata,
the number of character and the list of the epub:type attributes.

The result is a semantic EPUB, but not a “full” semantic EPUB. We can have in-
formation which requires normalization, for example the opening times of a wine
domain, like “t.l.j. sf dim. 9h-12h 14h-18h” (see figure 1 and example 1), which
means ‘open daily except Sunday, from 9am to noon and 2pm to 6pm’.

Also, the content semantic is based on our own vocabulary, but could reuse
well-known vocabularies like FOAF15 or schema.org.

15 http://www.foaf-project.org/

66

Generation of a “semantic” eBook: all you need is XML

http://www.foaf-project.org/
http://www.foaf-project.org/

Table 1. Implementation of core Schematron elements into XSLT

XSLTSchematron Schema
Choose
<xsl:choose>
<xsl:when test="XPATH"/>
<xsl:otherwise>message</xsl:otherwise>
</xsl:choose>

Assert
<sch:assert test="XPATH">message</sch:assert>

If
<xsl:if test="XPATH">
message

</xsl:if>

Report
<sch:report test="XPATH">message</sch:report>

Template
<xsl:template match="XPATH"

mode="NAME-OF-PATTERN">
<!-- xsl:if and/or xsl:choose here -->

</xsl:template>

Rule
<sch:rule context="XPATH">
<!-- asserts and/or reports here -->

</sch:rule>

Pattern
<xsl:apply-templates mode="NAME-OF-PATTERN"/>

Pattern
<sch:pattern name="NAME-OF-PATTERN">
<!-- rules here -->

</sch:pattern>

Table 2. Implementation of our Schematronmapping element intoXSLT (concepts
mode)

XSLTSchematron Schema
TemplateAssert
<xsl:template match="..." mode="concepts">
<!-- @property -->

</xsl:template>

<sch:assert test="XPATH">message</sch:assert>

TemplateRule
<xsl:template match="XPATH" mode="concepts">
<!-- @resource and @typeof -->

<sch:rule context="XPATH"
role="NAME-OF-CONCEPT">

<!-- xsl:if and/or xsl:choose here -->
</xsl:template>

<!-- asserts here -->
</sch:rule>

PatternPattern
<xsl:apply-templates mode="concepts"/><sch:pattern name="concepts">

<!-- rules here -->
</sch:pattern>

67

Generation of a “semantic” eBook: all you need is XML

Table 3. Implementation of our Schematron mapping element into XSLT (book
mode)

XSLTSchematron Schema
TemplateAssert
<xsl:template match="..." mode="book">
<!-- structural item without structural

<sch:assert test="XPATH">message</sch:assert>

descendants -->
</xsl:template>

TemplateRule
<xsl:template match="XPATH" mode="book">
<!-- structural item -->

<sch:rule context="XPATH"
role="NAME-OF-STRUCTURAL-ITEM">

<!-- xsl:if and/or xsl:choose here -->
</xsl:template>

<!-- asserts here -->
</sch:rule>

PatternPattern
<xsl:apply-templates mode="book"/><sch:pattern name="book">

<!-- rules here -->
</sch:pattern>

7. Conclusion
In this paper, we proposed to consider the semantic eBook as the result of all the
information existing in an XML-tagged book source: it contains the data and their
meaning if available, and the logical structure of the book. In the vision of different
and heterogeneous XML sources, we consider an approach in which a Knowledge
Engineer defines the Semantic Rules in order to automatically generate the semantic
eBook. We applied this approach with Schematron syntax for rules and XSLTs to
show the relevance of this approach. The output is an EPUB file which contains all
the structural semantic and the content semantic defined in the Schematron schema.

By this approach, an eBook is awhole logical and semantic entity. The next steps
of this work are first to improve this approach by more complex rules, and also to
think about the use of all the semantics provided in the semantic eBook.

Bibliography
[1] Barron, D. (1989). Why use sgml? Electronic publishing, vol. 2, 3–24.
[2] Eriksson, H. (2007). The semantic-document approach to combining documents

and ontologies. Int. J. Hum.-Comput. Stud. 65, 7, pages 624-639.
[3] Hickson, I. (2012). HTMLMicrodata. W3CWorking Draft. http://www.w3.org/

TR/2012/WD-microdata-20121025/

68

Generation of a “semantic” eBook: all you need is XML

http://www.w3.org/TR/2012/WD-microdata-20121025/
http://www.w3.org/TR/2012/WD-microdata-20121025/

[4] Jelliffe, R. (2002). The Schematron Assertion Language 1.6. Academia Sinica
Computing Centre.

[5] Melnik, S. (1999). Bridging the gap between XML and RDF. Université de
Stanford. http://infolab.stanford.edu/~melnik/rdf/fusion.html

[6] Müller, E, Sandgren, F., Andersson, S., Klosa, U., Hansson, P. (2005). DiVA
Publishing System. The Community Source Development Approach. In
Proceedings of the 9th International Conference on Electronic Publishing, ELPUB
2005, Leuven-Heverlee, Belgique, 23-27.

[7] Sporny M. (2013). HTML+RDFa 1.1. Support for RDFa in HTML4 and HTML5.
W3CRecommendation. http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

[8] Van der Vlist, E. (2007). Schematron. O’Reilly.
[9] Vassiliou, M., Rowley, J. (2008). Progressing the definition of “e-book”. Library

Hi Tech, vol. 26, num. 3, 355-368.

69

Generation of a “semantic” eBook: all you need is XML

http://infolab.stanford.edu/~melnik/rdf/fusion.html
http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

70

Building Security Analytics
using Native XML Database

Mansi Sheth
Veracode

<msheth@veracode.com>

Abstract

The trove of ever-expanding metadata we are collecting on a daily basis, poses
us with the challenge of mining information out of this data-store, to help
drive our business analytics solutions. Most non-destructive format of these
metadata is in XML formats, so it became crucial to use a technology, which
provides sophisticated support for XML specific query technologies. This paper
will discuss how Veracode is using Native XMLDatabases(NxD) tool BaseX,
to solve various use cases across multiple departments. It will discuss in depth,
how its incorporated, its architecture and eco-system. It will also touch base
on lessons learned along the way, including approaches which were tried and
didn't work so well.

1. Introduction
As a SaaS security static binary analysis company,we analyze binary code ofworld's
largest organizations. To help secure thembetterwe collect various kinds ofmetadata
about each applicationwe analyze. Some examples of thesemetadata are third party
api/frameworks/libraries usage patterns for each client application, detected entry
points, scan qualitymetrics etc. All these across different languages and technologies.
Amount ofmetadata currently persisted per application averages at around 100MB
and we scan on an average around 200 applications per day. To add to this, there
are ideas needed to be implemented, data sources to be utilized which will just add
data to this BigData store.

Being able to observe what customers are doing with application development
is one of themajor differentiators of a SaaS service.We envisioned building a security
analytics system, by feeding it data from these metadata sources, would help us
fuel in evidence-based answer, making us more proactive and innovative.

Enumerating a few straightforward situations, where we could transform Big
Data into actionable insights are:
• With new languages and frameworks surfacing every day, we are constantly

pushed to be able to find security vulnerabilities resulting from usage of these
new technologies. By having a data store of their usage patterns across our clients

71

and also out in the industry, product managers can gain predictive insights on
our product strategies, resulting in optimized offerings.

• As part of security research, we routinely do a deep dive on control and taint
flow on various languages and frameworks. Some of these could be gargantuan
in nature. It would be much more directed approach, to know what parts of a
particular language or framework is being used most extensively and prioritize
our research accordingly. This approach guarantees, covering maximum breath
of framework across our customers in our initial offering of respective framework
support.

• Routinely, we come across, new zero day vulnerabilities or an insecured api
being exploited in wild. With data and tools, to mine such vulnerable api usage
across our clients, it becomes easier isolate vulnerable clients from among hun-
dreds of them, alert and protect them promptly.

Due to the complexity of enterprise applications, binaries we scan are often deeply
nested (archives contained within archives and so on), till we reach the files we
need to parse for information. Further, all applications have different levels of
nesting. This nature of our metadata, we chose to store in XML format as opposed
to any other formats like json, text, csv etc. XML structure also gives us advantage
of using various advanced query and transformation technologies like XPATH,
XQUERY etc, with support acrossmostmodern programming languages. Addition-
ally, with many different kinds if metadata, they are persisted in different schema.
With XML representation, data retrieval in such varied format becomes trivial.

After analyzing and trying a few rudimentary approaches to extracting required
data, it became clear we needed to have a systemwhich could handle such gigantic
amounts of data, and return results in timely fashion, a.k.awithinminutes or couple
of hour and not days.

This paper discusses, by means of examples some sample XML metadata and
gains an appreciation for the need to use various advanced XML technologies
(XPATH, XQUERY etc) for extracting data efficiently. Further, it briefs about various
technologies analyzed and/or tried, but didn't work, lessons learned on the way.
Finally, it talks in detail about how Native XML Database tool BaseX is being used,
its architecture and eco-system, demonstrating how some of the above use cases
are being executed concluding with some statistics.

This paper talks about approaches towards data mining and analysis, which is
yet mostly in Proof Of Concept phase. There are lot of performance optimizations,
enhancements and security infrastructure which needs to be employed. It just tries
to focus on the core technology and how well it works for our security analytics
needs.

72

Building Security Analytics using Native XML Database

2. What is these metadata and what do we do with it ?
To put this discussion in persceptive, will describe one of our example metadata
structure.

2.1. Metadata Structure
One of the biggest client application artifact, we are persisting currently is output
of our home grown tool "Binary Miner". Main responsibility of "Binary Miner", is
to capture exact 3rd party API being used; uptill function level from client binaries.

For example, consider sample struts project struts-blank.war1, exploded in eclipse:

Figure 1. struts-blank.war exploded in eclipse, to depict output of binary artifact
miner tool.

Binary miner tool, will inspect every binary file typically inside deeply nested
archives (.ear -> .war -> .jar -> .class is a very common topology) and extract api
usage information from .class, .xml, .jsp etc files. Additionally, it will extract inform-
ation like compiler version used to compile each class file, inheritance information,
external function calls etc. It will also, extract configured attributes from framework
configuration files like servlet and filter classes, action classes etc.

1 https://archive.apache.org/dist/struts/examples/struts2-blank-2.0.1.war

73

Building Security Analytics using Native XML Database

https://archive.apache.org/dist/struts/examples/struts2-blank-2.0.1.war
https://archive.apache.org/dist/struts/examples/struts2-blank-2.0.1.war

Snapshot output of running binary miner tool on struts-blank.war is as under:
<Archives>
<archive name="struts2-blank-2.0.1.war">
<class major="0" minor="0" name="example.HelloWorld.jsp" />
<class major="0" minor="0" name="example.Login.jsp" />
<class major="0" minor="0" name="example.Menu.jsp" />
<class major="0" minor="0" name="example.Missing.jsp" />
<class major="0" minor="0" name="example.Register.jsp" />
<class major="0" minor="0" name="example.Welcome.jsp" />
<class major="0" minor="0" name=".index.html" />
<class major="0" minor="0" name="WEB-INF.applicationContext.xml" />
<class major="49" minor="0" name="example.ExampleSupport">
<inheritance name="com.opensymphony.xwork2.ActionSupport" />
<function modifier="public" name="<init>">
<apiCalls name="com.opensymphony.xwork2.ActionSupport:<init>" />

</function>
</class>
<class major="49" minor="0" name="example.HelloWorld">
<inheritance name="example.ExampleSupport" />
<function modifier="public" name="<init>">
<apiCalls name="example.ExampleSupport:<init>" />

</function>
<function modifier="public" name="execute">
<apiCalls name="example.HelloWorld:getText" />
<apiCalls name="example.HelloWorld:setMessage" />

</function>
</class>
<class major="0" minor="0" name="WEB-INF/classes/►

example.Login-validation.xml" />
<class major="49" minor="0" name="example.Login">
<inheritance name="example.ExampleSupport" />
<function modifier="restricted" name="isInvalid" />
<function modifier="public" name="<init>">
<apiCalls name="example.ExampleSupport:<init>" />

</function>
<function modifier="public" name="execute">
<apiCalls name="example.Login:getUsername" />
<apiCalls name="example.Login:isInvalid" />
<apiCalls name="example.Login:getPassword" />
<apiCalls name="example.Login:isInvalid" />

</function>
</class>
.
.
.

74

Building Security Analytics using Native XML Database

<class major="0" minor="0" name=".WEB-INF/classes/struts.properties" />
<class major="0" minor="0" name="WEB-INF/classes.struts.xml" />
<archive name="WEB-INF/lib/commons-collections-3.1.jar">
</archive>
<archive name="WEB-INF/lib/commons-logging-1.0.4.jar">
</archive>
<archive name="WEB-INF/lib/freemarker-2.3.4.jar" />
<archive name="WEB-INF/lib/ognl-2.6.7.jar" />
<archive name="WEB-INF/lib/spring-aop-1.2.8.jar" />
<archive name="WEB-INF/lib/spring-beans-1.2.8.jar" />
<archive name="WEB-INF/lib/spring-context-1.2.8.jar" />
<archive name="WEB-INF/lib/spring-core-1.2.8.jar" />
<archive name="WEB-INF/lib/spring-web-1.2.8.jar" />
<archive name="WEB-INF/lib/struts2-api-2.0.1.jar">
</archive>
<archive name="WEB-INF/lib/struts2-core-2.0.1.jar">
</archive>
<archive name="WEB-INF/lib/xwork-2.0-beta-1.jar">
</archive>
<class major="0" minor="0" name="WEB-INF/src/java/►

example.Login-validation.xml"/>
<class major="0" minor="0" name=".WEB-INF/src/java/example/►

package.properties"/>
<class major="0" minor="0" name=".WEB-INF/src/java/example/►

package_es.properties"/>
<class major="0" minor="0" name="WEB-INF/src/java.example.xml">
<function modifier="restricted" name="action/@name">
<apiCalls name="HelloWorld" />
<apiCalls name="Login!*" />
<apiCalls name="*" />

</function>
</class>
<class major="0" minor="0" name=".WEB-INF/src/java/struts.properties" />
<class major="0" minor="0" name="WEB-INF/src/java.struts.xml" />
<class major="0" minor="0" name="WEB-INF.web.xml">
<function modifier="restricted" name="filter-class">
<apiCalls name="org.apache.struts2.dispatcher.FilterDispatcher" />

</function>
</class>
.
.
.

</archive>
</Archives>

75

Building Security Analytics using Native XML Database

If we map the exploded files of struts-blank application with the above output, we
can see how individual elements are enumerated in the output. For example, com-
piled version of "Login.class" file is mined for all its function definitions and all api
calls within it. Similarly, tool is configured to extract properties from configuration
files. Some of the properties extracted in above example is filter-class defined in
web.xml and action elements from struts configuration files.

Seldom real world applications are this simple. They would typically be much
bigger and have a relatively much more nested structure making representation in
hierarchical structured data like XMLmost viable choice. Advanced XML querying
technologies (XPATH, XQUERY, XSLT) are supported in most of the modern lan-
guages, making it much easier to use out of box tools for mining and building an
analytic solution.

We started persisting, above discussedmetadata across few different enterprise
languages. This resulted in GBs of data being persisted on a weekly basis, making
our requirements to have a highly scalable solution and retrieving results within a
reasonable time frame, almost a must have requirement.

2.2. Common Use cases
Results for some of the most fundamental queries needed by various groups in the
company are enlisted below:
• List of all classes and functions within package xyz.abc used across all applica-

tions
• List of all applications using an insecured function call (for example f_insecured())

from package abc.xyz.pqr
• Create a prevalence chart. This should give a snapshot of configured namespaces

and its prevalence across entire client base.

3. Data mining approaches tried and didn't work
Very quickly, we solved the problem of persisting these valuablemetadata spanning
across different schema. Soon, enough we started getting constrained to simplistic
analyses because of the sheer volumes of data.

There has been an explosion of technologies available to deal with the challenge
of data mining. There were a few approaches for extracting information, which we
prototyped or brainstormed before we considered Native XML Databases. This
should give few chuckles, to practitioners out of our war stories and know how to
avoid similar approaches.
• Batch Processing Metadata XML Files:

First and most rudimentary approach tried, was run some XPATH against
all metadata files. We did this by creating a lxml based python script, which

76

Building Security Analytics using Native XML Database

takes XMLfile andXPATHas input and results from input file, by apply XPATH
on that file.. Below is a code snippet:

from lxml import etree
from optparse import OptionParser
import sys

def evaluate_xpath(self):
try:

tree = etree.parse(self.xml_file)
for each_element in tree.xpath(self.xpath):

print each_element
except:

print "Error in xpath"

Next, create a bash script file, which will run XPATH against all metadata files.
python ~/Documents/bin/evaluateXml.py -x xml_file1.xml -p '<xpath>'
python ~/Documents/bin/evaluateXml.py -x xml_file2.xml -p '<xpath>'
python ~/Documents/bin/evaluateXml.py -x xml_file3.xml -p '<xpath>'
python ~/Documents/bin/evaluateXml.py -x xml_file4.xml -p '<xpath>'
python ~/Documents/bin/evaluateXml.py -x xml_file5.xml -p '<xpath>'
.
.
.

Pros:
• When result set was smaller, post processing it was much manageable,

making results useable.
Cons:
• Number and size of metadata files grew exponentially very quickly, making

this approach unfeasible.
• Took more than an hour for results, which we got within couple of minutes

thru using Native XML Databases. Making a strong case,we needed to deal
with a solution, which didn't parse XML files for every single query.

• Relational Database
We started inserting all above API call information in a relational database

and tried to query it.
Pros:

• When no of records in the database, were within the magnitude of millions,
and we needed basic api call sites information, this approach worked.

Cons:
• As no of records in a relational table grew, query started taking hours for

relatively smaller resultset to return.

77

Building Security Analytics using Native XML Database

• While, it helped getting thru few of our use cases, it destructedXML's original
hierarchical structured format. Thismade, retrieving any result sets involving
nested structure of an enterprise application impossible. For e.g. tracing
packaging structure of an application.

• Hadoop and its eco-system:
Due to inherent features of hadoop to aidwith distributed processing of large

data sets and also its associationwith BigData, hadoop and its ecosystembecame
a natural choice to explore.

Exploring hadoop topologies and technologies around it, found using
Apache's Mahout and Apache Pig to be a good candidate to solve XML pro-
cessing, taking advantage of distributed and scalability features of hdfs file
system. However, both these technologies, at it core were treating XML files as
flat streams of data and retrieving data based on external configurations of start
and end tags.

Basic pseudo code of this approach is shown in below listing. We tried by
customizing XMLInputFilter class of Apache Mahout library.

public class XmlInputFormat extends TextInputFormat {
public static final String START_TAG_KEY = "<class>";
public static final String END_TAG_KEY = "</class>";

public static class XmlRecordReader extends
RecordReader<LongWritable, Text> {
// initialization code
.
.

@Override
public boolean nextKeyValue() throws IOException, ►

InterruptedException {
// stream file and position cursor between start and end tag.

}

.

.

.

@Override
public Text getCurrentValue() throws IOException, ►

InterruptedException {
// using some helper functions around file pointer position, ►

return

78

Building Security Analytics using Native XML Database

// the queried value.

}
}

}

Pros:
• By using hadoop's hdfs file system, could have taken advantage of scalability

and distributed features for processing humongous amounts of data.
Cons:
• For basic single node conditioned query, it might have worked. But once,

we had multiple hierarchical nodes as conditions (classes within jar files,
which may or may not be under ear/ or war) in our query above code would
have been more cluttered, making it soon unmanageable.

• Couldn't take advantage of any of XML querying technologies like XPATH
or FLWOR, since at its core XML files would still be treated as unstructured
text data and processing is based using file streaming.

• Multi-node advantagewould still be lost, with not taking advantage of parsed
XML files and using it in its native format.

• Hadoop, AVRO and HIVE:
Next, we explored Apache AVRO serialization system. We investigated,

while importing XML artifacts, parse and convert it into AVRO format. Once,
we have XML files represented in AVRO format, we can create required
schemas for data retrieval.We could useApacheHIVE, Pig or traditionalmapper
reducer to retrieve data.

Pros:
• This approach looked promising, since it didn’t parse thousands of huge

XML files, for every single query. Making data retrieval in reasonable time
frame.

• Advantage of usingHadoop eco-system giving us advantages of distributed
processing and flexibility of advanced technology usage of Pig, Hive and
Map Reduce for data retrieval and analysis.

Cons:
• While, promising it still had some data loss, with AVRO schema representa-

tion, raising doubts if all our current and future use cases would be satisfied.
• Not taking advantage of XML querying techniques, and learning curve of

yet another SQL-like querying technology.
• Various NoSQL Databases:

This was more of an exploratory exercise, with studying different kinds of
NoSql databases and database products under each category. Found, Document
oriented NoSQL category of databases, might be most suited for our needs.

79

Building Security Analytics using Native XML Database

However, while digging deeper realized, these databases, would be best suited
for json representation. It could store data as xml's native format (strings or text),
but if we need to use these stored records as XML and use any kind of basic
XML querying technology, it would be parsed for every single query. This
quickly dismissedmost of theNoSQL category of databases, expect XMLoriented
Databases.

After considering and exploring above technologies and options, weighing advant-
ages and disadvantages of each approach, we had a clear idea of what features we
needed for our security analytic solutions.
• To gain maximum performance gain, parsed xml files are being used for every

single query.
• Utilize existing XML technologies for querying
• Resultsets would most often be in millions. Such a data retrieval should be

manageable andwithin reasonable time frame ofminutes and not hours or days.
• Scalable
• REST interface, for easier usage.
We explored various document-oriented NoSQL databases, which handles data in
XML format. There are mainly 2 major category of XML Databases:
• XML Enabled: Here, data may be mapped as XML to underlying traditional

data-stores, but needn't be stored asXML structure.Again leading to our previous
concerns.

• Native XML Database: The internal model of such databases depends on XML
and uses XML documents as the fundamental unit of storage. These databases
are optimized for storage (taking into consideration, data layout, indexing etc)
and retrieval (query support, access control, transaction etc) of XML databases.

After this exercise of exploring best options for our data mining and interpretation
needs, we decided Native XML Databases (NXD) might be our most promising
choice.

4. Native XML Databases
After comparing few Native XML Databases, found BaseX to be easiest to use. The
winning features of BaseXwere its powerful XQUERY processor and a light weight
footprint. Also, access to stored database resources and to the XQuery engine via
REST made any kind of extension extremely easy.

Our current deployment ecosystem around using Native XML Database is as
under:

80

Building Security Analytics using Native XML Database

Figure 2. BaseX eco-system at Veracode

Steps performed in reaching to a point of mining results using BaseX eco-system
were:
• Collect all metadata files under a single directory "BI Output Dir" (Metadata

XML Files). These would be all files with various metadata from different data
sources, various languages/technologies, different schema etc.

• Import XML documents using an import script "Import Script", into BaseX DB.
This import script is written using BaseX's java language bindings to execute
BaseX DB commands. In BaseX, each DB has limit on no of nodes, but not on no
of documents managed across all its DBs. Also, with BaseX, we essentially have
no limit on no of databases, as long as they all are under directory $DBPATH;
configured in baseX configuration files. We could easily scale using symlinks
when current drive space falls short. Keeping this limitations inmind, configured
a limit of 50 documents per database. After all required files are imported, this
script also creates attribute index across all databases.

• Once, we have our BaseXDB populated, created a few generic XQUERY scripts.
XQUERY examples are discussed in below sub-section "Sample XQUERY
Scripts"

81

Building Security Analytics using Native XML Database

• Enabled REST services and configured default web server based on settings
discussed in BaseX Web Application2

• XQUERYfiles located on the server, could be evaluated by using "run" operation
thru GET request as shown in below example.

curl -ig 'http://<host>:<port>/rest?run=<some_xquery_script>.xq&n=<xpath>'

In above example, "some_xquery.xq" file is located under $WEBPATH directory
configured in baseX configuration file. Above GET request, passes external
binding parameter to "some_query.xq", which runs xpath against the all documents
in all databases under BaseX DB, and returns result set.

• To get ease access to this information, to every one in the company, including
individuals who are not very xpath/xquery savvy, we developed a simple web
applicationwhich conceives aboveRESTAPI calls and renders requested inform-
ation.

4.1. Sample XQUERY Scripts
After analyzing ourmost commonuse cases, devised a fewgeneral purposeXQUERY
scripts whichwill adhere tomost of our uses. These XQUERY scripts binds external
query parameters supplied by user, generates dynamic queries from these external
parameters, runs it against the against the all documents in all databases under
BaseX DB and return results accordingly.

Some of these queries are discussed below:
• (: get_query.xq script :)

(: external binding parameter, to be entered as "n" variable :)
declare variable $n as xs:string external;

declare option output:item-separator "
";
(: Each element would be in new line :)

(: Run input query, on every XML document in every Database:)
for $db in db:list()

(: Assign dynamic variables to generate query, to be used in eval :)
let $query := "declare variable $db external; "

|| "db:open($db)" || $n
return xquery:eval($query,map { 'db': $db, 'query': $n })

Above XQUERY script will execute user controlled input XPATH, run that
XPATHagainst every document in all databases, collect and send the result back
to the user. Similarly, we have XQUERY scriptwhichwill return document name
where XPATH matches a node etc. We call these XQUERY scripts thru REST
interface as under:

2 http://docs.basex.org/wiki/Web_Application

82

Building Security Analytics using Native XML Database

http://docs.basex.org/wiki/Web_Application
http://docs.basex.org/wiki/Web_Application

curl -ig 'http://localhost:8984/rest?run=get_query.xq&n=
/Archives/*/descendant::class/►
descendant::apiCalls[contains(@name,"javax.servlet.http")]
/@name/string()'

Above query is expected to return all api calls within javax.servlet.http
namespace, in every document in all databases, effectively giving us all call sites
used from this namespace across all our customer binaries. This is invaluable
data point in prioritizing our efforts for supporting a new framework.

• On a very similar line, we have XQUERY script which will gives us no of docu-
ments across all databases, where a particular namespace is being used.

The script is as under:
(: external binding parameter, to be entered as "n" variable :)
declare variable $n as xs:string external;
declare option output:item-separator "
"; (: Each element would be in ►
new line :)

let $singlequote := "'"

(: Dynamic XPATH query, for $n namespace :)
let $cmd :=

concat("/Archives/*/descendant::class[not(starts-with(@name,",
$singlequote,$n,$singlequote,"))]/►

descendant::*[starts-with(@name,",
$singlequote,$n,$singlequote,")]")

let $apiPath :=
for $db in db:list()
let $query :=
"declare variable $db external; " ||
"db:open($db)" || $cmd

(: Execute above XPATH on every document in all databases.
This query returns matching nodes. :)
return xquery:eval($query,

map { 'db': $db, 'query': $cmd })

let $clients :=
for $elem in $apiPath
return db:path($elem) (: $clients holds file name of all documents with ►
above nodes:)

(: Return count of no of distinct file names, with matching nodes.:)
return concat($n," ",count(distinct-values($clients)))

Above script takes a namespace (for e.g. javax.servlet.http) as input and gives
no of documents across all databases, where a hit was found, giving us exact no

83

Building Security Analytics using Native XML Database

of customers using a particular namespace. This helps us collect prevalence data
for each namespace which essentially means for each framework. For e.g. We
can find out if Struts is more predominant over Spring MVC and so on and so
forth.

5. Statistics
We ran a couple of experiments, with different approaches tried and using BaseX
ecosystemdiscussed above on different hardware configurations, using same query.
Below is the observation:

Table 1. Statistics of mining data using different approaches and hardware
configurations

ResultSetAmount of
time taken

Data-
base
size

Mining ApproachHardware Specifications

NA1 Hour, 45
mins

43 GBPython Automator
script

MacBook Pro, 16 GB RAM, 2.7
GHz Intel Core i7, SSD

1.3 million re-
cords

< 6 mins43 GBBaseX eco-system
thru REST

MacBook Pro, 16 GB RAM, 2.7
GHz Intel Core i7, SSD

1.3 million re-
cords

< 5 mins43 GBBaseX eco-system
thru REST

Amazon EC2 instance, 32 GB
RAM

5.3 million re-
cords

21 mins154 GBBaseX eco-system
thru REST

Amazon EC2 instance, 32 GB
RAM

11 million re-
cords

42 minutes310 GBBaseX eco-system
thru REST

Amazon EC2 instance, 32 GB
RAM

16 million re-
cords

64 minutes450 GBBaseX eco-system
thru REST

Amazon EC2 instance, 32 GB
RAM

We were psyched with the possibility of this sheer size of data being processed
within an hour.

6. Conclusions
Our ability to collect data from various data sources, has significantly out-paced
our capability to process, analyze, store or do any kind of predictive analysis on
these datasets. Using right tool for datamining fromproliferation of tools is exceed-
ingly important, to explore the unbounded potential of BigData.

Parts of our BigData could be best represented in XML structure. This paper
advocates Native XML Databases, as one of the most pragmatic option for XML
data storing andmining for our use cases, due to its inherent nature of being optim-

84

Building Security Analytics using Native XML Database

ized for storing and retrieving XML structured data. In this work, we talk in detail
about our concrete experiences of how using NXD we could build our security
analytic solution for predictive analysis, incidence response, framework security
research etc.

We also discuss, our journey of finding the right approach and lessons learned
along the way. From the huge taxonomy of BigData mining tools and technologies,
we realized most of these were treating XML structured data as either flat streams
of data or needed to be canonicalized for alternative representations like SQL or
json, and not being exclusively optimized for XML structures. We sincerely hope
this paper helps others researching approaches of data mining and information
analysis, specially if BigData is represented in XML data stores.

None of the work described here would have been possible without the support
and encouragement of Veracode management and specially security research team
members here at Veracode.Many thanks to BaseXUser group, specially to Christian
Grun for his constant and timely guidance. I would also like to thank XMLPrague
committee for the invitation to write and present this paper.

Bibliography
[1] BaseX Official Web Site http://basex.org/home
[2] XQUERY Priscilla Walmsley O'Reilly Media
[3] Efficient processing of large and complex XMLdocuments inHadoop Sujoe Bose

Hadoop Summit 2013
[4] List of NoSQL Databases: http://nosql-database.org
[5] Data base ranking: http://db-engines.com/en/ranking
[6]Mining Big Data: Current Status, and forecast to the Future Wei Fan Albert Bifet

http://www.sigkdd.org/sites/default/files/issues/14-2-2012-12/V14-02-01-Fan.pdf
[7] Scaling Big Data Mining Infrastructure: The Twitter Experience Jimmy Lin

Dmitriy Ryaboy http://lintool.github.io/MapReduce-course-2013s/material/
Lin_Ryaboy_2012.pdf

[8] Lecture 40 - XML Databases Dr.S.Srinath https://www.youtube.com/
watch?v=GhvZMspVCbI

[9] UsingMap andReduce forQueryingDistributedXMLData Lukas Lewandowski
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/Lewandowski12.pdf

85

Building Security Analytics using Native XML Database

http://basex.org/home
http://nosql-database.org
http://db-engines.com/en/ranking
http://www.sigkdd.org/sites/default/files/issues/14-2-2012-12/V14-02-01-Fan.pdf
http://lintool.github.io/MapReduce-course-2013s/material/Lin_Ryaboy_2012.pdf
http://lintool.github.io/MapReduce-course-2013s/material/Lin_Ryaboy_2012.pdf
https://www.youtube.com/watch?v=GhvZMspVCbI
https://www.youtube.com/watch?v=GhvZMspVCbI
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/Lewandowski12.pdf

86

Node search preceding node construction:
XQuery inviting non-XML technologies

Hans-Jürgen Rennau
Traveltainment GmbH
<hrennau@yahoo.de>

Abstract

We propose an approach how to complement XPath navigation with a node
search which does not require node construction. Node search is based on a
set of external properties (a “p-face”) which a node may assume in the context
of a node collection. Being external, these properties can be retrieved without
node construction, and being stored outside the nodes they can be maintained
and queried by non-XML technologies, e.g. relational and NOSQL databases.
A small set of concepts, carefully aligned with the XQuery data model, allows
the seamless integration of various non-XML technologies driving node selec-
tion, without introducing any dependencies of XQuery code on any particular
technology. A first implementation of the concepts is presented.

Keywords: XML, XPath, XQuery, XML infospace

1. Introduction
XPath navigation is based on node properties (document-uri, node-name, parent,
children, attributes, typed-value, …). If the documents have not already been
translated into an internal representation (e.g. by loading them into an XML data-
base), access to node properties requires the parsing of document text into node
trees, which is a very expensive operation. The consequence is a severe scaling
problem, as you quickly run out of availablememory and available time.Navigation
requires node construction, and there is no general concept of a search as an operation
to be distinguished from navigation and possibly preceding node construction.

The W3C data models of XML (infoset [2], XDM [7]) do not recognize entities
"above" the single document. True, XPath and XQuery ([4], [5]) take into account
the existence of collections, which are sequences of nodes. A collection may have a
URI or be assigned the status of being the “default collection”, but is has no proper-
ties apart from that.

If we recognize collections as entities in their own right, we can use them as
contextwithin which to associate member nodes with additional, collection-scoped
properties. For example, documents representing logged eventsmight be associated

87

with a property “timestamp”. A collection might thus associate its member nodes
with additional properties in the same way as a map associates its entries with a
map key. And such additional properties serve the same purpose as map keys: to
enable a selection among the contained units which does not require inspection of
the units themselves. As the additional node properties are conferred by – and
scoped to - the containing collection, let us call them external properties. Each external
property has a name and a value. The value may echo document contents literally
(be a copy of the value found in a particular attribute or element), be derived from
document contents (e.g. counts and existence flags), or be independent of contents
(e.g. the timestamp of document receipt). Excepting the last case, a property value
can be viewed as the value of an XQuery expression evaluated in the context of the
node in question.

External properties are stored outside the node itself, and property access does
not require node construction. The external properties which a collection confers
to its member nodes can thus be used to filter the collection without constructing
any member nodes. This setup means a potential gain in efficiency, as in some
scenarios the amount of node construction may be reduced drastically. Consider
this document:

<resources>
<r uri="file:/a/b/c1" t="2014-02-05T08:16:48" status="green"/>
<r uri="file:/a/b/c2" t="2014-02-06T13:09:03" status="red"/>
<r uri="file:/a/b/c3" t="2014-02-06T13:11:51" status="green"/>
…

</resources>

It can be interpreted as the definition of a collectionwhich associates XMLdocuments
– identified by their URI – with two external properties named t and status. The
first might be the document creation time, and the second some kind of processing
status. The creation time has perhaps been extracted from a particular location
within the document, and the status has perhaps been determined by applying an
XQuery expression to document contents. If an intended processing concerns only
those resources whose creation time is after 2014-02-05 and whose status is “red”,
a very simple processing of the <resources> element ($rs) will yield the required
input, without accessing any resources not needed:

$rs/r[@t ge "2014-02-06"][@status eq "red"]/@uri/doc(.)

The example used an XML document to represent a collection conferring external
properties to itsmember nodes. If we constrain external properties to be name/value
pairs and values to be atomic sequences, other technologies may be used as well,
e.g. relational or NOSQL databases. Such technologies may be leveraged when fil-
tering the node collection in order to restrict node construction to those members
actually required by the processing.

88

Node search preceding node construction

This paper explores the concept of a node search based on external node prop-
erties. The goal is a new XPath function offering node search, which is generic and
yet enables the hidden integration of non-XML technologies into the operation of
node search. We report a first implementation of the new concepts which is part of
an open source framework for the development of XQuery command-line tools [6].

2. Basic concepts
First we introduce several basic concepts found useful in the design of a generic
node search API which can be implemented using non-XML technologies.

2.1. external property
A mapping of a node to a property name and a property value. The name is con-
strained to be an NCName, the value is a sequence of atomic items, which may be
empty. Themapping is defined in the context of a particular node collection. Differ-
ent collections can associate the same nodewith different sets of external properties.

2.2. p-face
All external properties of a given node, conferred to it by a given node collection.
Within a p-face, property names are unique. A p-face can therefore also be viewed
as a collection-scoped mapping of names (= property names) to atomic sequences
(= property values).

2.3. p-model
A specification how the nodes of a collection aremapped to their p-faces. A possible
form is a set of property names associated with XQuery expressions, implying that
the property value is the atomized result of evaluating the expression in the context
of the node in question. Another form is a single XQuery expression resulting in a
map of property names and values. A third form declines the possibility to derive
the p-face fromnode contents and stipulates that a p-face is set fromwithout, added
to the nodewhen it is inserted into the collection. The first two formsmay also allow
additional properties with unpredictable values and possibly also unpredictable
names.

Note: amore formal definition of the p-modelmight be achieved by introducing
the concept of a node insertion function and representing the p-model as a function
argument.

89

Node search preceding node construction

2.4. node descriptor
A string from which a node can be constructed. A node descriptor may be the seri-
alized node content, a URI or some other, proprietary kind of pointer providing
node access.

2.5. p-node
Entity of information containing a node descriptor and a p-face.

2.6. p-collection
A sequence of p-nodes. By implication, also a sorted mapping of nodes to p-faces.

2.7. p-test
A condition imposed on an external property, defined in terms of (1) a property
name, (2) a test value, (3) an operator relating property value and test value (e.g. =,
<, >, …). A test value is a sequence of one or more atomic items. Example of a p-test,
represented as text:

creationDate > 2013-12-31

2.8. p-filter
A condition imposed on a p-face, defined in terms of one ormore p-tests and logical
operators “and”, “or”, “not”. Example of a p-face, represented as text:

creationDate > 2013-12-31 && status = green

2.9. node search
The operation of applying a p-filter to a p-collection. The result consists of those
collection members whose p-face matches the p-filter.

3. Node search API
The new search API which we propose consists of a single XPath function
filteredCollection. The input identifies a p-collection and specifies a p-filter. The
output is the sequence of nodes contained by the p-collection and matching the p-
filter. The p-collection is identified by a URI, and the p-filter can be supplied either
as a structured representation (a <pfilter> element), or as an equivalent filter
descriptor string. Informally, the function can be presented with two different sig-
natures:

90

Node search preceding node construction

node()* filteredCollection($pcollection as xs:anyURI,
$pfilter as element(pc:pfilter)?)

node()* filteredCollection($pcollection as xs:anyURI,
$pfilter as xs:string?)

Formally, there is only one signature whose second parameter is typed as item()?.
The structured representation is an element tree composed of elements repres-

enting p-tests (<p>) and logical operations (<and>, <or>, <not>). Example:
<pfilter xmlns="http://www.infospace.org/pcollection">

<and>
<p name="status" value="green,closed" sep=";"/>
<or>

<p name="date" op=">" value="2013-12-31"/>
<p name="supplier" op="~" value="X*"/>

</or>
</and>

</pfilter>

Besides the obvious operators (=, !=, <, <=, >, >=) there is a further operator (~) which
represents pattern matching. If a test value comprises several items, they can be al-
ternatively represented as a concatenated string (accompanied by attribute @sep
which specifies the item separator) or by placing each item in an <item> child element
of the <p> element.

Every filter element can be represented by an equivalent descriptor string com-
posed of name/operator/value triples and logical operators (&&, ||, not). Parentheses
are used for controlling operator precedence and for delimiting a sequence of comma-
separated test value items. Example:

status = (green,closed) && (date > 2013-12-31 || supplier ~ X*)

It is important to note that the function signature is generic: it avoids any dependency
on the technologies involved in the internal representation of the collection, the fil-
tering operation and the construction of selected nodes. The nodesmay be construc-
ted by parsing files, but theymay also be obtained by parsing strings retrieved from
a database (relational or NOSQL), or perhaps they are retrieved as nodes from an
XMLdatabase. Likewise, the association between nodes and their external properties
may be represented by XML structures, by relational tables, by NOSQL documents
or yet in different ways. It is the function implementation which must handle the
involved artifacts appropriately.

4. Node management API
The new node search API requires the definition and maintenance of p-collections.
Key operations are:
• the creation of p-collections (instantiating artifacts)

91

Node search preceding node construction

• the loading of nodes into these collections (including their external properties)
• the removal of nodes from these collections
• the deletion of p-collections
Like node search, node management should be supported by a generic API which
hides any implementation details and in particular the technologies actually used.
We postpone the formal definition of this API to a later section, as it requires some
further conceptualizations which we shall introduce first.

5. To bridge the gap
The concept of p-faced collections is based on the abstract notion of name/value
pairs and their association with nodes, avoiding any assumptions about the imple-
mentation – the artifacts used to represent these pairs and associations. While it is
not difficult to design a particular implementation, this would amount to an applic-
ation-level solution only, because we still lack concepts how to integrate alternative
implementations into a single and coherent model. We face a certain gap between
the abstract notion of p-faced collections and any concrete implementation approach,
a lack of terms which would allow us to speak about those implementations in a
unified way. To bridge this gap, we propose three further concepts: NCAT (node
catalog), denoting the artifact(s) which represent the collection contents; NCAT
model, the information required to manage and use those artifacts; and NODL doc-
ument (Node cOllection Description Language), a machine-readable description of
a p-collection, including its p-model and its NCAT model.

5.1. NCAT
The artifact (or set of artifacts) used to represent a p-faced collection is called an
NCAT (node catalog). Examples of an NCAT are an XML file, a set of relational
database tables and a NOSQL database.

Software implementing the filtering of a p-collectionmust access the NCAT and
apply to it operations of selection and retrieval. This presupposes information about
the NCAT. Such information can be conceptualized as the NCAT model.

5.2. NCAT model
A p-collection has a logical structure which can be summarized as a sequence of
entries containing a node and its external properties. An NCAT model defines a
pattern how tomap this logical structure to a technology-dependent representation
(an NCAT). The model also specifies the configuration data required in order to
manage and filter the NCAT. An example of such configuration data might be the
connection data of a relational database which harbours the NCAT. It should also
be noted that themodelmaydefine dependencies on the p-model, that is, the names

92

Node search preceding node construction

and types of external properties used within the p-collection. An example would
be a dependency of the number and names of relational tables to be used, and of
the names and types of their columns.

5.3. NODL
Software tasked with filtering or managing a p-collection deals with its NCAT and
must be supplied with information about it. The information should be received in
a standardized and machine-readable form, which is a NODL document (Node
cOllectionDescription Language). ANODL specifies theNCATmodel and supplies
any configuration data which it defines. A NODL also includes a description of the
p-model, as details of the NCAT may depend on the number, names and types of
external properties.

Note. The term NODL was chosen in order to stress the conceptual analogy to
WSDL and WADL.

6. NODL documents
A NODL has the following general structure:

<nodl xmlns="http://www.infospace.org/pcollection">
<collection>…
<pface>…
<nodeDescriptor>…
<ncat>…

</nodl>

6.1. The <collection> element
Attributes of the <collection> element supply general information about the p-
collection:
• @name - a collection name
• @uri - a collection URI
• @format - a list of formats in which collection members may be delivered
• @doc - a short description

6.2. The <pface> element
The <pface> element supplies the p-model. Each <property> child element defines
an external property in terms of a name, a data type including cardinality, an op-
tional length constraint and an XQuery expression yielding the property value.
Some examples:

93

Node search preceding node construction

<property name="cr" type="xs:dateTime"
expr="ShoppingCart/@CreationDate"/>

<property name="bookingID" type="xs:string*" maxLength="40"
expr="//BookingId"/>

<property name="travellerCount" type="xs:integer"
expr="//Travellers/count(Traveller)"/>

The <pface> element can also have an <anyProperty> child element. When present,
it signals that nodes may have additional external properties with unpredictable
names and values.

6.3. The <nodeDescriptor> element
The <nodeDescriptor> element specifies how theNCAT represents collection nodes
– as URI, as serialized node text, or as a non-URI accessor string.

6.4. The <ncat> element
The <ncat> element identifies theNCATmodel and provides its configuration data.
The element has a single child element whose name and contents depend on the
NCATmodel used. Currently, two NCATmodels are supported, so that the <ncat>
element contains either an <xmlNcat> or a <sqlNcat> element. The contents of these
elements are described in the following section.

7. First NCAT models
This section summarizes first versions of two NCATmodels, defining the structure
of NCATs based on XML documents and relational databases, respectively.

7.1. The XML NCAT model
The model defines the structure of an NCAT implemented as an XML document.
The model is best illustrated by a little example of such an NCAT:

<pnodes xmlns="http://www.infospace.org/pcollection" name="scarts"
uri="" formats="xml" nodeDescriptor="uri" count="32048">

<pnode node_uri="..." t="2014-11-13T12:29:56" sID="02Z9ROU5">
<tourOp>AB</tourOp>
<check>

<item>Address</item>
<item>DoubleBook</item>
<item>WatchList</item>

</check>
</pnode>
<pnode node_uri="..." ...>...</pnode>

94

Node search preceding node construction

<pnode node_uri="..." ...>...</pnode>
...

</pnodes>

The NCAT is implemented by a <pnodes> element containing <pnode> elements
which represent the collection nodes. Every <pnode> element has a @node_uri attrib-
ute providing a URI which can be resolved to the node in question. The external
properties are represented by further attributes and/or child elements with names
equal to the property name. The first entry of theNCAT shown above thus represents
a nodewhich has four external properties: t, sID, toupOp and check. A single-valued
property is represented by either an attribute or a child elementwith simple content.
Amultiple-valued property is represented by a child elementwhich has one <item>
child per value item.

Note that a program processing such an NCAT cannot predict whether to find
the property values in attributes or elements. This does not mean any ambiguity,
as property names are unique within each p-face. Given a p-node $pnode, the fol-
lowing expression retrieves the value of property foo reliably:

$pnode/(@foo, foo[not(item)], foo/item)

If the filtering of p-nodes resulted in a sequence $pnodes of selected p-nodes, the
following expression returns the selected nodes themselves:

$pnodes/@node_uri/doc(resolve-uri(., base-uri(..)))

7.1.1. Configuration data

Configuration data specify the document URI of the NCAT document and, option-
ally, the names of properties which should always be stored as elements, rather
than attributes. By default, single-valued properties are stored as attributes.

7.1.2. NODL representation

When the XML NCAT model is used, it is represented by an <xmlNcat> element
with empty content, amandatory@documentURI attribute and an optional @asElems
attribute. The latter contains awhitespace-separated list of property names or name
patterns. Example:

<xmlNcat documentURI="/ncats/xsds.ncat" asElems="*remark* airport"/>

Note. The current version of the XML NCAT model does not support any other
representation of the node than by URI. This restriction does not apply to the SQL
NCATmodel, because it canmakemuch sense to store serialized documentswithin
the NCAT itself if it is a database.

95

Node search preceding node construction

7.2. The SQL NCAT model

Disclaimer
The model as described and implemented has only been used with MySQL
databases, version 5.6. An extension enabling its use with other database
systems is planned.

The NCAT is implemented by a set of tables harboured by a single database. Given
a p-model, the following tables are used (where ${cname} denotes the collection
name found at $nodl/collection/@name):

The main table, containing the node descriptor (e.g. node
URI) and all single-valued properties.

${cname}_ncat

One such table is used for every property $pname whose
cardinality allows multiple values.

${cname}_ncat_${pname}

This table is only used if the p-model allows properties
with arbitrary names and values (thus if $nodl/pface/
anyProperty exists).

${cname}_ncat___dyn

The main table ${cname}_ncat contains the following columns:

an integer primary key identifying the nodenkey
the node URI (only if $nodl/nodeDescriptor/@kind = ‘uri’)node_uri
the serialized node (only if $nodl/nodeDescriptor/@kind = ‘text’)node_text
the node accessor (only if $nodl/nodeDescriptor/@kind = ‘ac-
cessor’)

node_access

for every property $pnamewhose cardinality precludesmultiple
values: the property value

${pname}

If one of the columns node_uri or node_access exists, it is associated with an index
enforcing unique values. Every column $pname (which represents a single-valued
property) is associated with an index whose length is the minimum of the length
constraint found in the p-model ($nodl/pface/property[@name eq $pname]/
@maxLength) and the value 200.

Every table ${cname}_ncat_${pname} represents a multiple-valued property
$pname. It has these columns:

a foreign key referencing the nkey column in the main tablenkey
an integer primary keypkey

96

Node search preceding node construction

the value of an item of property $pname${pname}

The column $pname is associated with an index whose length is the minimum of
the length constraint found in the p-model and the value 200.

The table ${cname}_ncat__dyn is used only if the p-model admits arbitrary
property names. It has the following columns:

a foreign key referencing the nkey column in the main tablenkey
an integer primary keypkey
a property namepname
a property value itempvalue

The columns pname and pvalue are both associated with an index whose length is
100 and 200, respectively.

7.2.1. Configuration data

Configuration data specify the RDBMS, the database connection (host, user name,
password) and the database name.

7.2.2. NODL representation

When the SQLNCATmodel is used, it is represented by an <sqlNcat> elementwith
empty content and the following attributes: @rdbms, @rdbmsVersion, @host, @user,
@password, @db. Example:

<sqlNcat rdbms="MySQL" rdbmsVersion="5.6" host="localhost"
user="guest" password="guest123" db="pcol"/>

8. First implementation
This section summarizes a first implementation of the concepts introduced in this
paper. The implementation is part of ttools [6], an open source framework for the
development of XQuery command-line tools.

Like the framework as a whole, the implementation of p-collections is pure
XQuery – no changes of the XQuery processor code were made. Support for the
SQL NCAT model currently requires use of the BaseX processor [1], as access to
relational databases is implementedusing the BaseX extension functions sql:connect
and sql:execute. Support for other processors offering equivalent extension func-
tions will be added shortly.

97

Node search preceding node construction

8.1. Node search API
Applications developedwith ttools have access to the function filteredCollection
discussed in section Node search API. Example code:

tt:filteredCollection($nodl, "airport=(DUS,CGN) && lowcost=true")

Assuming that $nodl is a <nodl> element node, the function call returns all nodes
found in the collection described by $nodl andwhich have within this collection an
external property airportwith a value equal “DUS” or “CGN” and also an external
property lowcost with a value true. If $nodl uses an XML NCAT model, both of
the following entries would contribute nodes to the result:

<pnode node_uri="…" lowcost="true" airport="DUS"/>
<pnode node_uri="…" lowcost="true">

<airport>
<item>DUS</item>
<item>FRA</item>

</airport>
</pnode>

If $nodl uses an SQL NCAT model, the matching entries would be determined by
a SQL select command with a where clause referencing a lowcost and an airport
column. The details of the command text depend on the collection name and on the
cardinalities of the external properties (implied by $nodl/pface/property/@type).
Assuming that the collection name is offers, lowcost is single-valued and airport
is multiple-valued, the following command would be used behind the scenes:

SELECT node_uri FROM offers_ncat AS t1
LEFT JOIN offers_ncat_airport AS t2 ON t1.nkey = t2.nkey
WHERE `lowcost` = 'true' and `airport` in ('DUS', 'CGN')

8.2. Input parameter type docSEARCH
Using the ttools framework, application code does not receive external variables
as supplied by the invocation, but the results of a pre-processing which the frame-
work applies to the input. A ttools based application has one single external variable
(named request), which represents the tool invocation and which is parsed into an
operation name and a set of named input parameters. Here comes an example of a
request value, invoking an operation called typeReport and supplying two input
parameters, comp and xsds:

typeReport?comp=ctype, xsds=/projects/xsd/*.xsd

The pre-processing is controlled by annotations contained by the XQuerymodules,
which associate parameter names with a type and possibly further information.
Application code retrieves a parameter by passing its name to a getParam function,
and it receives a value constructed from the input text (a substring of the external

98

Node search preceding node construction

variable request) in accordance with the type annotation. Given the following an-
notations:

<operation name="typeReport">
<param name="xsds" type="docDFD"/>
<param name="comp" type="xs:string">

</operation>

the application could retrieve the parameter values like this:
let $comp as xs:string := tt:getParam($request, "comp")
let $xsds as document-node()* := tt:getParam($request, "xsds")

Note that the delivered value of parameter xsds is a sequence of document nodes,
whereas the supplied value consists of a file name pattern. The transformation of
supplied parameter text to delivered parameter value is controlled by the type an-
notation (docDFD).

ttools’ support for p-collections is reflected by the parameter type docSEARCH
which is available for use in parameter annotations. Supplied parameter values
must consist of a URI and a p-filter, separated by a question mark:

nodlURI?pfilter

The delivered value is the sequence of document nodes obtained by applying the
p-filter to the p-collection defined by the NODL document found at the specified
URI. For example, given these annotations:

<operation name="typeReport">
<param name="xsds" type="docSEARCH"
<param name="comp" type="xs:string"/>

</operation>

and the following invocation:
typeReport?comp=ctype, xsds=/nodls/xsds.nodl?ctype~*lang*

the application codewould receive the filtered p-collection implied by the parameter
value:

let $xsds as document-node()* := tt:getParam($request, "xsds")

Note that the application code does not even call tt:filteredCollection – the
parameter value is delivered as the filtered collection specified, to know: the sequence
of all documents which are contained by the p-collection defined by the NODL
found at /nodls/xsds.nodl andwhich have an external property ctypewith a value
containing the string “lang”.

99

Node search preceding node construction

8.3. Node management API
Applications developed with ttools have access to a node management API con-
sisting of the following functions:

tt:createNcat ($nodl as element(pc:nodl))
tt:feedNcat ($nodl as element(pc:nodl), $nodes as node()*)
tt:feedNcat ($nodl as element(pc:nodl), $dirFilter as xs:string+)
tt:copyNcat ($nodl as element(pc:nodl), $pfilter as element(pc:pfilter)?,

$toNodl as element(pc:nodl)
tt:deleteNcat ($nodl as element(pc:nodl))

Preconditions for their use are:
1. The applicationwas created using a flavour parameter set to basex79 or basex80
2. The supplied NODL document uses either an XML NCAT model or an SQL

NCAT model
3. If the NODL uses an SQL NCAT model:

a. the RDBMS MySQL is installed (version >= 5.6)
b. the official JDBC driver for MySQL (MySQL Connector/J) has been down-

loaded and placed in the lib directory of the BaseX installation
Function tt:feedNcat can be supplied with directory filters, which are strings with
a ttools-defined syntax. Using directory filters, onemay specify complex filters on
file system contents in a very conciseway, specifying directorieswhich are searched
recursively or shallowly, positive and/or negative file name patterns and optional
constraints controlling the inclusion/exclusion of subdirectories encountered during
recursive search.

9. A small sample application
This section describes the creation of a small sample application which illustrates
the use of p-collections. Let us assumewewant to create a command-line toolwhich
offers various reports about XSD documents specified by the command-line call.
Our application will support the possibility to specify the input XSDs as a filtered
p-collection. The actual reporting is kept trivial to avoid distraction from the main
point, which is the use of p-collections.

After downloading the ttools framework from [6], we use it to create a com-
mand-line application named xspy. Its first version shall have a single module of
application code (items.mod.xq) and support a single operation tns. The operation
will report the target namespaces found in a set of XSDs.

Having installed ttools in a directory /ttools, we want to create an initial ver-
sion of our new application in a directory /apps/xspy. We achieve this with the
following call:

100

Node search preceding node construction

basex -b "request=new?dir=/apps/xspy,mod=items,ops=tns, flavor=basex79"
/ttools/ttools.xq

The call creates the application directory and fills it with XQuerymodules supplied
by the framework, as well as a generated first version of the application module
items.mod.xq.

What we shall do now is:
1. create a p-collection containing XSDs, which are associated with a useful set of

external properties
2. write some application code producing a simple report on target namespaces
3. invoke the application, supplying it with a filtered p-collection
In order to create a p-collection containing XSDs, we first create a NODL document
similar to the following:

<nodl xmlns="http://www.infospace.org/pcollection">
<collection name="xsds" uri="" formats="xml" doc="A collection of XSDs."/>
<pface>
<property name="tns" type="xs:string?" maxLength="100"

expr="//xs:schema/@targetNamespace"/>
<property name="stype" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:simpleType[@name]/@name"/>
<property name="ctype" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:complexType[@name]/@name"/>
<property name="elem" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:element/@name"/>
<property name="att" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:attribute/@name"/>
<property name="group" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:group/@name"/>
<property name="agroup" type="xs:string*" maxLength="100"

expr="//xs:schema/xs:attributeGroup/@name"/>
<property name="enum" type="xs:string*" maxLength="100"

expr="//xs:enumeration/@value"/>
<anyProperty/>

</pface>
<nodeDescriptor kind="uri"/>
<ncat>

<sqlNcat rdbms="MySQL" rdbmsVersion="5.6" host="localhost"
user="guest" password="guest123" db="pcol"/>

</ncat>
</nodl>

The p-collection will thus support the following external properties:
• tns – the target namespace
• stype – the names of contained simple type definitions
• ctype – the names of contained complex type definitions

101

Node search preceding node construction

• elem – the names of contained global element declarations
• att – the names of contained global attribute declarations
• group – the names of contained model group definitions
• agroup – the names of contained attribute group definitions
• enum – the values of contained enumeration values
Due to the <sqlNcat> element, the NCAT will be created in the form of relational
tables inserted into a database pcol. Note that the table names are implied by the
collection name (xsds) and the names of those external properties which may be
multiple-valued (including all properties whose type has an occurrence indicator
‘*’ or ‘+’) .

The NCAT is created by the following builtin operation of our new application:
basex -b request=_createNcat?nodl=/nodls/xsds.nodl /apps/xspy/xspy.xq

Nowwefill theNCATwith all XSDs found in or under the directory /xsds/niem-2.1:
basex -b "request=_feedNcat?nodl=/nodls/xsds.nodl,

dirs=|/xsds/niem-2.1/*.xsd" /apps/xspy/xspy.xq

While the feed proceeds, we may observe how the MySQL tables are filled:
mysql –uguest –pguest123
mysql>use pcol
mysql>select node_uri from xsds_ncat;
=>
+--+
| node_uri |
+--+
| file:/xsds/niem-2.1/ansi-nist/2.0/ansi-nist.xsd |
| file:/xsds/niem-2.1/ansi_d20/2.0/ansi_d20.xsd |
| file:/xsds/niem-2.1/apco/2.1/apco.xsd |
...
+--+

mysql> select stype from xsds_ncat_stype;
=>
+---+
| stype |
+---+
| AccidentSeverityCodeSimpleType |
| AlarmAcknowledgementCodeSimpleType |
| AlarmDescriptionCodeSimpleType |
| AlarmEventCategoryCodeSimpleType |
| AlarmEventLocationCategoryCodeSimpleType |
...
+---+

102

Node search preceding node construction

Nowwe write some application code. We edit the generated function f:tns so that
it returns a simple target namespace report: listing all target namespaces encountered
in the input XSDs, and for each namespace the document URIs of all XSDs using
it. We replace the generated dummy version of function f:tns by the following
code:

declare function f:tns($request as element()) as element() {
let $docs := tt:getParams($request, 'fdocs')
let $tns :=

for $xsd in $docs
group by $tns := $xsd/xs:schema/@targetNamespace
let $uris :=

for $uri in $xsd/document-uri(.)
order by lower-case($uri)
return <xsd uri="{$uri}"/>

order by lower-case($tns)
return <tns uri="{$tns}">{$uris}</tns>

return
<z:tns countDocs="{count($docs)}">{$tns}</z:tns>

};

Note that the filtered XSDs are obtained simply by retrieving the input parameter
fdocs:

let $docs := tt:getParams($request, 'fdocs')

This is explained by the fact that the generated annotations (which we neither
changed not removed) declare the operation to have a parameter fdocs of type
docSEARCH:

<operation name="tns" type="node()" func="tns">
<param name="fdocs" type="docSEARCH*" sep="SC" pgroup="input"/>
...

The remainder of the function body creates a list of target namespaces found in the
filtered collection. After these changes, the call

basex -b request=tns?fdocs=/nodls/xsds.nodl?stype~*country*
/apps/xspy/xspy.xq

produces a report of all target namespaces containing simple type definitions with
a name matching *country*:

<z:tns xmlns:z="http://www.ttools/org/sql/ns/xquery-functions" countDocs="5">
<tns uri="http://niem.gov/niem/domains/jxdm/4.1">
<xsd uri="file:///C:/xsds/niem-2.1/domains/jxdm/4.1/jxdm.xsd"/>

</tns>
<tns uri="http://niem.gov/niem/domains/screening/2.1">
<xsd uri="file:///C:/xsds/niem-2.1/domains/screening/2.1/screening.xsd"/>

</tns>

103

Node search preceding node construction

<tns uri="http://niem.gov/niem/fips_10-4/2.0">
<xsd uri="file:///C:/xsds/niem-2.1/fips_10-4/2.0/fips_10-4.xsd"/>

</tns>
<tns uri="http://niem.gov/niem/iso_3166/2.0">
<xsd uri="file:///C:/xsds/niem-2.1/iso_3166/2.0/iso_3166.xsd"/>

</tns>
<tns uri="urn:oasis:names:tc:ciq:xal:3">
<xsd uri="file:///C:/xsds/niem-2.1/external/have/1.0/xAL-types.xsd"/>

</tns>
</z:tns>

Note that to produce this report, only the five documents which are reported are
parsed. Behind the scenes, their selection is accomplished by the following SQL
query:

SELECT node_uri FROM xsds_ncat AS t1
LEFT JOIN xsds_ncat_stype AS t2 ON t1.nkey = t2.nkey
WHERE `stype` LIKE '%country%'

Also note that calling the application, we specified the p-collection by supplying
its NODL. The NODL encapsulates all implementation details, of which we need not
be aware in order to use the collection. To complete this little tutorial, we create a
copy of the NODL (xsds2.nodl), in which we replace the <sqlNcat> element by an
<xmlNcat> element:

<ncat>
<xmlNcat documentURI="/ncats/xsds.ncat"/>

</ncat>

We create and populate the XML based NCAT exactly as we created the SQL based
NCAT:

basex -b "request=_createNcat?nodl=/nodls/xsds2.nodl" /apps/xspy/xspy.xq
basex -b "request=_feedNcat?nodl=/nodls/xsds2.nodl,

dirs=|xsds/niem-2.1/*.xsd" /apps/xspy/xspy.xq

Using the new NODL instead of the previous one, we obtain the same results, al-
though now behind the scenes the documents are selected by evaluating the XML
based NCAT.

10. Discussion
Thiswork attempted to prove the concept of p-collections as away of complementing
XPath navigation with a node search which does not require node construction. In
many scenarios, the use of XML databases seems to be a better alternative, mainly
as the stored documents can be selected in a “deep” way which may respond to
anything found anywhere within the documents, and in an “open” way as there is
no limit to the possibilities of defining conditions. These are in fact the very strengths

104

Node search preceding node construction

of XPath and XQuery, and in comparison the filtering of p-collections appears
somewhat primitive, limited to the “flat” set of external properties and to the com-
bination of atomic property tests via the logical operations of and, or and not.

Nevertheless, we believe that p-collections bear some promise.Major advantages
are:
• non-XML technologies can be leveraged (and all their power, maturity and

scalability)
• the possibilities of adding further technologies are not limited
• technology choices are on the level of single collections – for any collection the

best fit can be used
• XQuery code using p-collections is independent of technology choices
• p-collections are simple to manage thanks to a generic node management API
The use of p-collections thus allows something which could be called “distributed
technologies” and which, in spite of its severe limitations, may seriously compete,
in specific scenarios, with the “monolithic” alternative of working with a particular
XML database system, no matter how powerful.

The current version of the concepts constrains the names of external properties
to be NCNames. We refrained from admitting QNames, rather than NCNames, as
theywould introduce a certain increase of complexity - how to represent them eleg-
antly in non-XML resources and queries? But should the step yet be taken, external
properties could be RDF triples, and the potential of this perspective remains to be
explored.

Bibliography
[1] BaseX: XML database and XQuery processor. http://basex.org
[2] Cowan, John & Tobin R., eds. XML Information Set (Second Edition). W3C

Recommendation 4 February 2004. http://www.w3.org/TR/xml-infoset/
[3] Rennau,Hans-Jürgen. "XQuery topic tools - concept, user interface, development

framework." Presented at Balisage: The Markup Conference 2014, Washington,
DC, August 5 - 8, 2014. In Proceedings of Balisage: TheMarkupConference 2014.
Balisage Series on Markup Technologies, vol. 13 (2014). doi:
10.4242/BalisageVol13.Rennau01.http://www.balisage.net/Proceedings/vol8/
html/Rennau01/BalisageVol8-Rennau01.html.

[4] Robie, Jonathan et al, eds. XMLPath Language (XPath) 3.0W3CRecommendation
8 April 2014. http://www.w3.org/TR/xpath-30/

[5] Robie, Jonathan et al, eds. XQuery 3.0: An XML Query Language. W3C
Recommendation 8 April 2014. http://www.w3.org/TR/xquery-30/

105

Node search preceding node construction

http://basex.org
http://www.w3.org/TR/xml-infoset/
http://www.balisage.net/Proceedings/vol8/html/Rennau01/BalisageVol8-Rennau01.html
http://www.balisage.net/Proceedings/vol8/html/Rennau01/BalisageVol8-Rennau01.html
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xquery-30/

[6] Topic tools - a lightweight framework for developing powerful command-line
tools with XQuery. https://github.com/hrennau/TopicTools

[7] Walsh, Norman et al, eds. XQuery and XPath Data Model (3.0). W3C
Recommendation 8 April 2014. http://www.w3.org/TR/xpath-datamodel/

106

Node search preceding node construction

https://github.com/hrennau/TopicTools
http://www.w3.org/TR/xpath-datamodel/

Native XML Databases:
Death or Coming of Age?

Craig Brown
<cmb@qti.qualcomm.com>

Xavier Franc
<xfranc@qti.qualcomm.com>

Michael Paddon
<mwp@qti.qualcomm.com>

Abstract

Back in the early 2000s Native XML Databases (NXDbs) promised a bright
future. Today, adoption falls short of those promises and some have even sug-
gested that the technology is in decline. We analyze this "trough of disillusion-
ment" with reference to the Gartner Hype Cycle and compare it to the history
of relational databases.

Despite the slowmaturation of NXDbs, XML itself is nowwell established
and here to stay. The need for repository systems able to store and query large
document collections is likely to increase as ever more XML data is generated.
XML is an important technology in the field of publishing and digital preser-
vation, and is especially effective when it comes to handling a mix of text and
data.

Native XML Databases might represent only a niche market, but may
prove to be irreplaceable in some applications.

To illustrate this, we present a use case in which an NXDb turned out to
be a good solution for a massive data warehouse problem.Why other solutions
fell short is discussed, as well as the specific features that made the product
we selected, the Qualcomm® Qizx™ database1, suitable. To conclude, we
provide our thoughts about which features are desirable or even possibly indis-
pensable in an NXDb from the perspective of making native XML Databases
more attractive to application designers.

Keywords: XML, database, query optimization, scalability

1QualcommQizx is a product of Qualcomm Technologies, Inc. Qualcomm is a trademark of Qualcomm
Incorporated, registered in the United States and other countries. Qizx is a trademark of Qualcomm In-
corporated. All trademarks of Qualcomm Incorporated are used with permission.

107

1. Where are all the XML Databases?
Native XMLDatabases (NXDbs) were a hot topic 10-15 years ago. Many believe the
buzz peaked around 2003-2004. The use case seemed as obvious then as now: “if
you havemore than a handful of XMLdocuments that you need to store, you should
store them in a native XML Database” [7]. And yet as of 2014, we have not seen
mainstream adoption of the technology.

W3C standards development has continued slowly and steadily, however, and
important standards such as XQuery Update [2] were only completed in the past 5
years.

The number of published research papers in the NXDb field appears to have
steadily decreased since the last decade. However research into non-relational
databases continues to bloom, and many of the fundamental results are directly
applicable to NXDbs. This suggests that the term “NoSQL” may have displaced
“NXDb” in grant applications but that current research continues to be relevant to
XML Databases.

The number of available NXDb products reached a peak of about 40 at the end
of the last decade, and some are no longer maintained or commercially available
[7]. Bourret's website has listed no new products over the preceding 5 years. An
informal survey by the authors suggests there are currently a few actively developed
open-source products and a handful of commercial offerings.

RDBMS vendors have quickly reacted to the threat of NXDbs by offering XML
extensions in their products, typically as an "XML column" feature. This has blurred
the distinction between relational and XML Databases, and created uncertainty in
the market about the benefits of purely native XML technologies. To date, this has
been effective at defending themarket share of incumbent products against potential
disruption.

The very expression "XML Database" has nearly disappeared from marketing
literature, in favor of "NoSQL". The ongoing investment in the NoSQL field points
to continuing and growing demand for non-relational data models (key/value,
document-oriented, graph) and yet XML Databases do not seem to benefit from
this trend.

A perception exists that NXDbs lack maturity for use by enterprises. There is a
kernel of truth to this: relational database products are decades old and contain
many more features than the first generation of XML Databases. Of course, they
also contain much more legacy technical debt. As XML offerings mature, more en-
terprise-ready features may be expected.

There is nowell-known theory about how tomodel data in a non-relationalway.
Some relational database architects shy away from XML to represent data in new
applications since there are fewgood examples to emulate. The presence of hierarchy
and the lack of traditional schema normalization also can seem unsettling. This is
a chicken and egg problem that we last saw in the 1980s. One of the authors recalls

108

Native XML Databases: Death or Coming of Age?

when developers were wary of the newfangled relational databases versus tried
and trusted raw ISAM files.

XML standards are often regarded as too complex. Some enterprises and de-
velopers are slow to embrace radically new technologies. Adoption of XQuery [1]
is a good example. As a functional language, it is relatively difficult for a programmer
from an imperative background to pick up. Nevertheless, there are benefits to be
realized once that learning curve has been climbed. For instance, the natural com-
posability of XQuery functions allows the easy creation of domain specific query
languages in a way that might not be obvious to an imperative programmer.

JSONhas takenmuch of the focus away fromXMLwhen it comes to representing
semi-structured data. JSON is perceived as much lighter and easier to master, espe-
cially in web environments. However, XML already has many of the components
that enterprises will demand long term such as standardized schema/query/up-
date/processing languages, which JSON still lacks.

2. Are we in the "Trough of Disillusionment"?
According to the Gartner Hype Cycle [6], after reaching the “Peak of Inflated Ex-
pectations,” the visibility of new technologies frequently goes through a “Trough
of Disillusionment” before possibly scaling the “Slope of Enlightenment” ormatur-
ation phase.

The history of relational databases is instructive: the first paper was written in
1969, lots of research and investment occurred through the 1970s; finally credible
products emerged, starting around the early 1980s. The market went on to mature,
and by the early 1990s many early entrants had retired their products [8]. The sur-
vivors of this shakeout enjoyed strong growth from themid 1990s onwards. Looked
at through this lens, XML databases are still very young. If the past is a guide, one
would expect credible products to be emerging sometime this decade. XML Data-
bases might only now be starting up Gartner's slope of enlightenment. If that is the
case, then one would expect a future phase of mass adoption.

Obviously the NXDb situation is not exactly the same, since RDBMS had no in-
cumbent to challenge at the time, but this observation confirms that the actual pace
of adoption of a new technology can be much slower than initially imagined by its
proponents.

This begs the question:whywould anyone choose anNXDbover the alternatives?
Some key indicators that an NXDb may be the most suitable platform are:
• Where XML is used as representation in the first place.
• Data where the schema is significantly evolving over time.
• Information merged from multiple, disparate sources (with schema evolution

being common here, too).
• Complex hierarchical relationships in data.

109

Native XML Databases: Death or Coming of Age?

The authors encountered a use case exhibiting all of these characteristics.We present
it as an example of the sorts of problems that we believe will drive NXDb adoption
in the future, and recount our experiences in building a solution.

3. Use Case: a World Patent Database
It is common for an inventor (or the company they work for) to apply for patents
to protect the fruits of their research.

An inventionmay only be patented if (amongst other criteria) it is novel. Anyone
applying for a patent is therefore likely, at some point, to consider searching through
existing patents (and related publications) to see if prior art exists. But there are
millions of active patents nowadays, andwithout effective tools that task can become
extremely time-consuming and costly.

This is a quintessential big data problem. There is an enormous amount of in-
formation available in a vast number of documents published by patent offices
around the world. Some is textual. Some is structural. While simplistic key word
searches are applicable to this data, modern machine learning techniques (e.g.
clustering and classification) are also valuable. Our use case essentially consists of
a massive document warehouse that must be queried in many different ways, not
all of which are foreseeable. Some of these queries are made by humans looking for
a small result set. Others are made by machines and may return extraordinary
amounts of data.

Patents (and related documents such as published filings) are extremely hier-
archical, and exhibit an evolving schema. XML is a natural format for their repres-
entation, transmission and storage, and we were not surprised to discover this was
indeed common practice. Figure 1 depicts some structure from a sample document,
from which a sense of the schema may be inferred. Since representation is a solved
problem, our challenge reduces to effectively storing, correctly indexing and effi-
ciently querying a huge corpus of complex XML documents.

How large? If one takes all the published patents and filings from just three
patent offices (USPTO, EPOandWIPO/PCT) there are nearly 20million documents.
That's over 2.5 terabytes of data (about 125 kilobytes per document on average) and
growing fast. Over 850,000 new or updated documents are issued per month.

How big is 2.5 terabytes? Merely to copy from hard disk to hard disk (at circa
100Mb/s) takes about 7 hours; In our tests, parsing thatmuchXML in order to extract
fields took days on a contemporary CPU.

All patent documents use a common schema in principle, but there are variations
according to time and originating office. This schema defines about 200 elements
and 50 attributes and includesMathML. From time to time new elements are added.
Any solution must deal gracefully with this change, including in updates to old
documents.

110

Native XML Databases: Death or Coming of Age?

The types of queries that must be supported for our use case are:
• Large batch queries for statistics and machine learning.
• Small queries generated by interactive user interfaces (with many concurrent

users).
• Custom ad hoc queries for data exploration. Such queries can be complex with

multiple conditions and constraints.

Figure 1. A patent document sample (styled view with some nodes folded)

4. The Journey to an NXDb
In order to find a solution for our use case, we embarked on a journey in which we
experimented with many different database technologies. It was this process that
eventually led us to NXDbs, and in particular Qizx, as a viable solution.

111

Native XML Databases: Death or Coming of Age?

4.1. Key/Value stores: the joins killed us
Key/Value stores basically offer to retrieve some application-defined data (value)
from a key. It is often also possible to scan keys matching a particular condition.
Some KVS allow retrieval by content, using secondary indexes.

There are quite a few key/value storage systems available. From the perspective
of the difficulties we encountered, they are all essentially similar as the root cause
is an “impedance mismatch” between the primitives and the problem to be solved.
• The simplest approach is that the key is a field of interest inside a document and

the value is a reference (DocId) to a document. We discuss in the next section
what it takes to extract and maintain 'fields of interest'.

• In all cases, it is necessary to create key/value tables ahead to time to support
all possible queries. As a consequence custom queries are impractical on large
data sets.

• Due to rudimentary query primitives, most joinsmust be done by business logic:
this is time consuming to implement, error prone, and inefficient (much data
has to be read and conveyed from storage to client).

• Most joins or constraint checks (e.g structure based) require pulling and parsing
entire documents: this is terribly slow. Extracting specific parts of documents is
also cumbersome.

• No free text search: necessity to add a third-party full-text engine.
• Some sort of structure index could have been implemented as key/values. Then

we would have built a kind of native XML database!

4.2. Relational Databases: schema maintenance killed us
Using aRelationalDBMS seemed a viable approach, building on amature technology
and query language. Mapping XML nodes to a relational schema requires data to
be decomposed into tables and fields. This process is generally called shredding.

Some databases can automatically perform the decomposition task, based on a
XML schema:
• The problem here is to have an up-to-date schema.
• Automatic shredding is notoriously slow.
• The resulting relational schema is quite complex. Writing queries against such

a complex schema is really hard.
• We could just have used an “XML column” in a relational database. In that case

however, indexing of our content would have been limited or non-existent, and
querying would be impractical beyond a point.

112

Native XML Databases: Death or Coming of Age?

Alternatively, it is possible to define a partial relational schema: thismeans defining
entities (or types) of interest in the XML document (e.g. patent, inventor, claim),
and for each entity, defining named properties as a function of the contents.
• Defining a complete relational schema is an enormous challenge, that requires

hundreds of tables and thousands of constraints.
• Without automatic shredding, custom code is required to parse documents, ex-

tract and index fields: this is expensive and error prone.
• There is always a new type or field that has not been seen yet: that induces a

Sisyphean task of continual rewrites of database schema, parse/store software
with days/weeks of reloading.

4.3. Full-text search engine with non-text fields
Many full-text search engines offer the possibility of handling several "Fields"which
can even have non-text value types like numbers or dates. A typical example is
Lucene. An example of this approach applied to patents is Google Patents2. It offers
a limited search interface with links providing a kind of drill-down functionality.

As with relational databases, each document has to be decomposed into a set of
fields.
• Each change in the field-set implies rescanning all the documents and re-indexing,

a task usually requiring several days of processing.
• It is unwieldy or impossible to deal with entities in the document that do not

decompose cleanly into flat fields.
• We lose the ability to leverage hierarchy in any but the most basic ways. Often

this is very important. We might want to query all the names in a patent filing.
Tomorrow, we might want just the inventors' names. The relative position of
elements carries important information.

4.4. Other non-XML systems
We also considered a NoSQL document-oriented database such as MongoDB, as it
can handle semi-structured data in the form of JSON.

However there was a major issue: JSON cannot represent XML with mixed
content.

4.5. Native XML Databases
Storing XML documents directly as XML, being able to retrieve the documents in
their original form, then querying this data using a powerful and standardized

2 http://patent.google.com

113

Native XML Databases: Death or Coming of Age?

http://patent.google.com
http://patent.google.com

query language (XQuery), seemed anatural andpromisingway to solve our problem.
But the devil was in the details.

To determine which NXDbs were suitable to our problem, we ran a set of trials.
Open-source productswere examined initially, since by nature they have eval-

uation versions without limitations.
The problems we encountered fell in several categories:

• Stability: several products terminated with software crashes or data corruption
issues under intense upload strain. Durability was fundamental to us since it
can take weeks to import really large datasets.

• Scalability: we encountered two classes of problem as the database grew large:
• Update performance dropped off severely. A slowdecay in speed is naturally

expected (typically 1/log(n)) sincemany algorithms involvedhave a n×log(n)
complexity at best. But in some trials we observed such a rapid fall in per-
formance that it became clear that wewould be unable to update documents
as fast as they were being produced.

• Some internal limit was reached: for example in one trial the database could
not store more than 4 billion nodes (232).

• Query speed: this was always going to be amajor challenge for a multi-terabyte
document corpus. We observed that many products became unable to return
queries fast enough for our needswhen our collection grewbeyond a fewmillion
documents. In some cases, this may have been improved by defining a number
of custom indexes - but that would have created an ongoing issue of future ad
hoc queries requiring new indexes.

Our trials led us to conclude that, at that time, none of the open source candidates
were a good fit for our use case. Different products had different pros and cons, but
none met our exact needs. We note that many of these products have continued to
rapidly mature in the 2-3 years since our study. The reader is encouraged to run
their own trials for their own use cases.

We then began to assess commercial offerings. A key requirement for us was to
avoid proprietary query languages and consequential vendor lock-in.

4.6. Finally, Qizx
Qizx was one of the commercial offerings we chose to trial. Qizx is an NXDb with
several interesting features that was initially developed by a small European com-
pany, and has since been acquired by Qualcomm Technologies, Inc.

Qizx is a lightweight product, in the sense that it has a focused feature set, is
parsimonious with resources and runs fast. It has good documentation, tools to
make evaluation easy, and transparent licensing. In addition it has the following
particular characteristics:

114

Native XML Databases: Death or Coming of Age?

• Stability and Scalability: Qizx is able to run for more than one week ingesting 2
terabytes of XML.

• Automatic indexing: There is no need to define ad hoc indexes in order for new
queries to be executed efficiently. Qizx creates all necessary indexes and uses
them transparently. We found that this feature is a game-changer.

• Fast, standard queries: Without requiring any particular effort, except writing
good XQuery, Qizx has excellent response times against large collections. It
supports XQuery Full-Text and XQuery Update.

• Application-specific key-value properties (basic data or XML fragments) can be
attached to documents, and used for querying. This support formetadatamakes
it possible to perform pre-computation on documents and store the results
without touching the original data.

• Data type conversion: During the storing/indexing phase, Qizx automatically
recognizes basic types such as numbers and dates in attribute or element content,
and indexes them both in text form and in the recognized type. For example an
element such as <item price='1.0'/> can be found by a query such as
//item[@price = 1] (numeric value) as quickly as //item[@price = '1.0'] (text
value).

Qizx turned out to be an excellent fit for our use case.

5. Reflections
Our journey provided us first-hand experience as to why a native XML database
can be a superior solution for handling a massive XML corpus with complex struc-
ture. We also discovered just how difficult it was to find the right technology for
our needs despite there being quite a few options to choose from. Thatmight explain
why some give up andwrite off native XML solutions! That nearly happened to us,
but we are pleased that we persisted.

Along theway,we learned a lot aboutwhatmightmake anNXDbmore attractive
to an application architect.

Automatic indexing
The problem with most non-XML technologies is that they require re-scanning of
the entire dataset in order to extract the new fields or to build new specialized in-
dexes, a process that can take days of computation in our case. This is not only very
costly, it can be Sisyphean at development time. It can also imply database downtime
if such changes are required during the production phase.

Storing in XML form provides the benefit that all data is available for query and
that no data is lost in the translation phase. But this is not sufficient: If new special-
ized indexes have to be defined because of new queries then some of the benefit is

115

Native XML Databases: Death or Coming of Age?

lost, because adding new indexes also requires a re-indexing phase where all the
data present in the database has to be scanned. The cost is likely smaller than res-
canning data from source XML, but it is still significant.

Therefore it appears that the feature 'automatic indexing' is fundamental: it
means "store and index" once, then execute all the queries needed without any
other overhead. If in addition the queries run fast, then the benefit over other solu-
tions is tremendous.

Actually there are already several NXDbs that support such a feature in some
way. In our opinion, all native XML Databases should support some form of this
feature, because 1) XMLmakes it possible and 2) without this feature, a native XML
Database is much less useful.

Use of XML Schema (or not)
XML Schema can be used in several ways:
• For validating documents on creation or update. This is obviously a desirable

feature.
• For determining the data type of element or attribute content. But this is a rather

heavy approach for users. Requiring a schema in order to determine the types
of pieces of XML data is also somewhat at odds with the "self-describing"
promise of XML.

• To optimize queries. This idea has been advocated since the beginnings of
XQuery. We believe that it is of limited effectiveness:
• It is highly complex, and indeed it has never been implemented as far as we

know.
• It requires a correct association between document and schema, without

version issues. This is error prone and expensive to manage for database
users.

In contrast, optimizationmethods that use the knowledge of the actual structure
of documents, inferred from the data and without need for a schema have been
proposed [4][5].

The next version of Qizxwill implement this type of optimization and deliver
significant speedups. Our preliminary testing suggests a 2 to 10 times speedup
in typical cases.

Fast queries
XML Databases should be optimized for fast querying, not for massive updating,
because they are likely to be used for applicationswhere data does not changemuch
but rather is accumulated (historical data, publications, logs).

116

Native XML Databases: Death or Coming of Age?

Ideally, an XML Database supporting automatic indexing should be able to
compile and optimize any standard XQuery using the automatic indexes and then
return results at optimal speed.

In practice, this is not always possible. Some queries cannot be optimized. In
addition XQuery is a rich and complex language that makes optimization difficult.

For example, a direct exploitation of automatic indexes inQizx allows optimizing
a query such as:

//inventor[.//name = 'John Smith']

But if the inventor name in the database has not the exact specified form, the query
will fail. So we can rewrite it like this:

//inventor[normalized-name(.) = 'john smith']

where normalized-name() is some function that returns a normalized form of the
name of an inventor. It can be as simple as lowercase() ormore complex (the inventor
name can also appear as a pair of elements first-name, last-name).

Unfortunately, the query compiler in Qizx currently cannot fully optimize this
query using indexes only. Therefore it must back off on the predicate and optimize
only //inventor, which is much slower on a large database.

It is interesting to notice that automatic indexes offer great possibilities of optim-
izations:
• For example it is possible to apply the function to all index keys and find

those that match the normalized name, then merge the corresponding results.
It can be costly, but if it is done once and cached in a map, then subsequent
queries will execute much faster.

• By building specialized indexes derived from basic indexes, at much lower cost.

Full-text search
Because it is the nature of XML to mix text and data, it seems very natural and
useful to offer full-text searches on XML documents.

Full-text capabilities have been standardized in XQuery some years after the
core language. The XQuery Full-Text standard [3] offers a very rich set of features,
but strangely lacks an essential functionality: how to quickly get theNmost relevant
documents or nodes for a given full-text query (provided by any full-text search
engine).

This can be expressed in XQuery:
subsequence(for $hit score $score in ...full-text-query...

order by $score descending
return $hit,
1, N)

117

Native XML Databases: Death or Coming of Age?

Yet this is not only embarrassingly cumbersome, but also quite difficult to optimize
by a database system.

The only solution for XML Database implementers is to resort to proprietary
functions. It seems very desirable to define a standard function that would do the
same thing in a simple way.

Faceted search
Another capability that is very useful for real applications but has no support yet
in XQuery standards is faceted search.

There are many definitions of faceted search (and amyriad patents around it...),
but here is an outline of this feature, applicable to XML Databases:
1. A faceted search returns an Entity, which is typically an XML element; for ex-

ample an entity would be patent, inventor, claim, legal-event...
2. For each Entity type, a set of Facets is defined. Facets are properties of the entity

that can be used either for searching or for sorting.
Each facet has a name and is computed from the Entity, for example as a re-

lative path, but more generally by any function.
The value can be transformed for presentation to a search user: for example

dates can be mapped to a set of months or years.
3. A search specifies an Entity type and a subset of facets with values (or more

generally with predicates on values). Other facets can be used for sorting the
results.

Search can also be combined with full-text search and sorted by relevance.
4. For each facet not used in the search, the search function computes the distinct

values of that facet over the result set with occurrence counts.
The facet values can be presented to a user in order to "drill down" by using

particular facet values to refine the search.
Standardizing faceted search for XML represents a fairly significant step forward
that we believe the XML community can collaborate to achieve.

6. Conclusions
In conclusion, we believe that there is a strong argument to make that NXDbs have
been languishing in theGartner “TroughofDisillusionment” for some time.However
relevant research has continued and the surviving products have continued to ma-
ture. In the experience of the authors, NXDbs now outperform competing technolo-
gies when used in their areas of strength.

Our trials suggest that productswhich support automatic indexing and effective
query optimization are the most likely to be attractive to application architects.
Simple and efficient full-text search and faceted search are also highly desirable.

118

Native XML Databases: Death or Coming of Age?

Productswith these featureswill arguably bewell placed to take advantage of future
market growth.

Bibliography
[1] XQuery 3.0: An XML Query Language. W3C Recommendation, 08 April 2014.

http://www.w3.org/TR/xquery-30/
[2] XQuery Update Facility 1.0. W3C Recommendation, 17 March 2011. http://

www.w3.org/TR/2011/REC-xquery-update-10-20110317/
[3] XQuery and XPath Full Text 1.0. W3C Recommendation, 17 March 2011. http://

www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
[4] DataGuides: Enabling Query Formulation and Optimization in Semistructured

Databases. Roy Goldman , Jennifer Widom - Stanford University 1997
[5] Faster path indexes for search in XMLdataNils Grimsmo,NorwegianUniversity

of Science and Technology, Trondheim. 2007 - ISBN: 978-1-920682-56-9
[6] Gartner Hype Cycle. http://www.gartner.com/technology/research/

methodologies/hype-cycle.jsp
[7] XML and Databases, R.Bourret. http://www.rpbourret.com/index.htm
[8] Timeline of Database History. http://quickbase.intuit.com/articles/

timeline-of-database-history

119

Native XML Databases: Death or Coming of Age?

http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.rpbourret.com/index.htm
http://quickbase.intuit.com/articles/timeline-of-database-history
http://quickbase.intuit.com/articles/timeline-of-database-history

120

A Unified Approach to Design and
Implement data-centric and

document-centric XMLWeb Applications
Christine Vanoirbeek

<christine.vanoirbeek@epfl.ch>
Houda Chabbi Drissi

<Houda.Chabbi@hefr.ch>
Stéphane Sire

<s.sire@oppidoc.fr>

Abstract

The paper addresses the development of XML-based web applications that in-
differently deal with structured document-centric or data-centric information.
It focuses on a fundamental aspect – the validation of information – that
provides substantial benefits at two levels: (i) the enhancement for the de-
velopers to design and implement error-free applications and (ii) the capacity
for the end users to provide information that meets the requirements of the
underlying application information model. The paper proposes an approach
based on RELAX NG and Schematron. It also describes an implementation
of the validation process in the eXist-db database environment using the Op-
pidum XQuery development framework.

Keywords:XMLWebApplication, Document-centric andData-centric
information, Information validation

1. Introduction
Document-centric and data-centric applications are still mostly considered in oppos-
ition; we argue in favor of a uniform « reconciling » XML representation of both
types of information to build Web-based information management applications.

Modeling document or datawith an XML approach raises a number of questions
that are inherent to the nature of information conveyed by those two types of in-
formation and the way to design appropriate models that take into consideration
their respective specificities. Despite the apparent opposition, we believe that it
exists a lot of applications where data and document-oriented XML information
are intrinsically tied and can undoubtedly take mutual benefit from a uniform
modeling approach.

121

For historical reasons, document-centric information often refers to structured
documents (potentially constrained by a DTD as initially promoted by SGML), i.e.
a structured content produced by an author in the purpose of publication. It also
generally evokes a single piece of information that has a paper counterpart. In this
sense, a so-called XML document-centric content exhibits a number of specific fea-
tures.

The features are essentially the following ones:
• The order of elements is important;
• The structure is quite irregular and results in XML trees that are not balanced;
• The granularity is potentially very high (as for examples, a paragraph that takes

into account the structure of a bibliographic reference or the insertion of hyper-
links);

• Mixed content is frequently used.
However, the perception of a structured document has changed over the time. Ini-
tially designed for publishing purposes, structured documents are increasingly
considered as pieces of data within global information systems. XML schemas are
progressively used to define document models; they introduce new concepts such
as data types that do not exist inDTDs. Such documents are designed andproduced
in a way that facilitates automatic processing operations on them.

Data-centric information refers to XML content most often generated from rela-
tional databases and produced by applications. It commonly represents data collec-
tions with complex structures that mainly content non textual data. The adoption
of XML to deal with data has been essentiallymotivated by the stack of technologies
brought by the document markup approach to facilitate exchange of information
or to produce views on XML data flows by mean of XSLT (a typical example being
the production of HTML content or PDF documents) but also to query and manip-
ulate XML data flows using XQuery.

Data-centric information presents the main following features:
• The order of elements is not important;
• The XML trees are quite balanced with repetitive structures;
• No use of mixed content.
Nowadays, more and more complex Web applications deal with both data-centric
and document-centric information, such as enterprise intranet solutions. This cat-
egory of applications relies on a strongmodeling of information stored in databases
in order to provide the expected functionality.

One way to address the development of such applications would be to use a
relational model for the data-centric part and an XML model for the document-
centric part. This seems, at a first glance, a good idea since new generations of rela-
tional databases (which implements the standard SQL2006) are XML-enabled.
However, jointly using the twomodels, systematically raises a fundamental problem

122

A Unified Approach to Design and Implement XML Web Applications

for the designer. How to guarantee the consistency between the potentially duplic-
ated information in the two representations?

We argue in favor of using the XML model to encompass, in a unified way, the
modeling of document-centric and data-centric information as awide range of data
structures, including those of the relational and object database models, can be de-
scribed with the XML format [1].

The paper is organized as follows. First, the paper introduces a motivational
example in the purpose of emphasizing the benefits that could be taken from an
XML unifying approach. Second, it discusses modeling issues to tackle both docu-
ment-centric and data-centric information. Third, it describes an approach based
on the combined use of RELAXNG and Schematron. Forth, it presents the technical
solution implemented in the eXistdb environment. Finally, the paper concludes
with perspectives for future works.

2. Motivational example
As a typical example, let us consider an application dedicated to the management
of research projects (such as European projects). During the preparation step, the
partners of a projectwill work on the elaboration of the proposal i.e. the preparation
of a document describing the project. Theywill also provide of a set of administrative
data.

The description of the project contains purely document-centric information,
such as the description of the project objectives, the classical description of the state
of the art, the biography of key partners, etc.

The specification of workpackages of the project is more data-centric but espe-
cially well adapted to a hierarchical representation; each workpackage contains a
title, a global description, a number of tasks, each of them potentially subdivided
into sub-tasks and finally a list of deliverables. Each task consists in a description,
a list of involved partners, a start and end time. The description of theworkpackage
itself is clearly document-centric information.

The set of administrative data is purely data-centric information. It consists in
a list of records gathering information about organizations and individuals, such
as addresses, contacts, emails, etc.

Adopting anXMLapproach to represent the purelydocument-centric information
is simple common sense. The XML approach is particularly well adapted for pub-
lishing purposes or exploitation of information through dynamic views in a browser.
For instance, once the project accepted, information about partners could be auto-
matically made available on the website of the project.

Adopting an XML approach to address the representation of a workpackage
makes sense for three main reasons: (i) its hierarchical structure is well adapted to
XML (while possibly but less appropriately represented with a relational model),
(ii) themodeling of textual parts is obvious and (iii) precisely structuring the content

123

A Unified Approach to Design and Implement XML Web Applications

allows to generate derived views (such as a Gantt chart or a table summarizing the
list of deliverables), avoiding information redundancy in the document.

Adopting a relational approach to represent administrative details is quite nat-
ural. No need of hierarchy as the information is flat and can be easily stored into
relations. Using the foreign key, we can link all the information together.

The implementation of a an application such as a project management raises a
number of questions in terms of the database to be used for storing, managing and
querying the mentioned different kinds of information.

Three main options are available:
• The use of a relational database
• The use of an XML-enabled relational database
• The use of an XML native database (XND)
Use of a relational database

Many research, since 2001 [4], has been done around the techniques (of shredding
or mapping) to be used to store XML documents into a relational database. Let us
note, that the challenge is not only how to store the hierarchical structure, but also
how to allow the execution of XQuery queries and XUpdate in an optimized way.
The fact is, that each XMLquery has to be translated into a SQL query. The relational
optimizers are not always aware about the XML structure and then produce poor
schedule plans[7]. This is why the new generation of XML-enabled relational data-
bases uses native XML storage and dedicated indexes have been introduced (as in
oracle).

Use of an XML-enabled database
Using anXML-enabled relational database (implementing the SQL2006 standard)

seems, at a first glance, a good idea. It allows to use a relational model for the data-
centric part and an XML model for the document-centric part.

However, which mechanism should be used to maintain consistency between
potentially duplicated instances of information? For instance, what would be the
impact on the application development if the phone number of a key partner
changes? An answer to this problem can be to duplicate the information and create
triggers to maintain the consistency.

What about the normalization of such a relational schema? First normal form is
no longer guaranteed as the XML type attributes are not atomic.

Whatever mechanism is used to address this problem, we can already note the
following points:
• When querying these relational schemas,we use the SQL/XML. So,we canwrite

a query which mix between a pure relational query (SQL) and a XQuery query.
So we need to know the two languages. And let us note that even though
SQL/XML is a standard, it is not used in all XML-enabled DBMS.

124

A Unified Approach to Design and Implement XML Web Applications

• The SQL/XML standard does not support the FTQuery part of the XQuery lan-
guage, which is important in the applications that we address.

Use of an XML native database
Using an XND is the third option. We explain in the next section why such

databases are fully adapted to represent both document-centric and data-centric
information. XNDs use XMLdocuments as unit of storage - of course not necessarily
stored as text files - and often provide the concept of collection, a logical model for
grouping and/or repeating documents. Moreover the XQuery language allows the
development of complete web applications.

Our objective is to provide the developer of a Web application with the possib-
ility to validate the entire database against a global XML model of its application.
The goal is to facilitate - and accelerate - the development process by detecting
harmful XQuery code. The decomposition of the data model of the application into
collections and resources complicates somehow thematching against a global XML
model, since there may be several decompositions for a given XML model. This is
an issue we will address in the rest of the article.

3. Modeling issues
From a conceptual point of view, a number of issues are to be discussed about the
potential offered by the main existing languages (XML Schema, RELAX NG and
Schematron) to constrain XML content. DTDs are obviously discarded as they do
not support data typing. The following considerations aim at justifying our proposal
to use RELAX NG and Schematron [8].

3.1. Specification of content type
Content type is of major concern to jointly address processing of both document-
centric and data-centric information. Regarding atomic values (the XML text nodes),
it is important to potentially consider some of them as processable units of inform-
ation. It seems obvious for data-centric informationwhere atomic values are intended
to store field-like information that will be processed by an application. But it is also
true for enhancing processing of a document-centric content. A typical example
could be themodeling of a cooking recipe; it is by nature a highly document-oriented
content but typing information about the number of persons it concerns as well as
the quantity of requested ingredients would allow, for instance, to automatically
generate a list of ingredients to be bought accordingly to a varying number of per-
sons.

Adopting the W3C XML Schema predefined datatypes is suitable for a wide
variety of applications. UsingRELAXNG is a reasonable choice to avoid dependance
on a specific datatypes system as the requirements of applications may evolve over
time and, maybe, necessitates the use of another datatypes system.

125

A Unified Approach to Design and Implement XML Web Applications

An important issue concerns mixed content that is often presented as a typical
feature of document-centric information. Mixed content is a reminiscence of SGML
and has been introduced to accommodate representation of structured document
content at a period of time where either memory or storage occupation were more
important than nowadays. For compatibility reasons, this concept has been main-
tained in XML. As a consequence, allowing character data to be interspersed with
tagged elements unfortunately complicates the implementation of API provided to
deal with XML content [3].

We promote to discard the use of mixed content to better capture the structure
of XML content and to enhance its processing in the framework ofWeb applications
that target a unified structural approach to avoid redundancy between document-
centric and data-centric content.

As an example, let us consider the description of the objectives of a research
project. It is clearly a document-centric element that contains, among other things,
a number of paragraphs. We propose the following representation of a paragraph.

Example 1. The content model of a paragraph

<Parag>
<Fragment>The project addresses </Fragment>
<Fragment FragmentKind="important">the development

of Web applications </Fragment>
<Fragment>based on XML technologies.

Information about standards is available on the </Fragment>
<Link>
<LinkText>W3C</LinkText>
<LinkRef>http://www.w3.org/</LinkRef>

</Link>
<Fragment> site.</Fragment>

</Parag>

The content model of a paragraph does not include any pseudo-element; each of
its sub-elements being limited to either a Fragment or a Link. A Fragment may op-
tionally have a FragmentKind attribute that is used in rendering purposes. In our
model, Fragment elements are of string type (and not token type) as the leading
and trailing spaces should not be removed.

Our position about mixed content is of course tied to the authoring capabilities
offered to the final users for providing XML content [9]. This issue is addressed in
Section 5.

A potential rendering of the paragraph of Example 1 is illustrated in Figure 1.

126

A Unified Approach to Design and Implement XML Web Applications

Figure 1. Rendering of a paragraph in a browser

Specifying the definition of compound elements pleads in favor of RELAX NG for
two main reasons: (i) the named pattern approach is much more flexible than XML
Schema approach - it is important in terms of design - and (ii) the constructors
proposed by RELAX NG are perfectly adapted to model either document-centric
or data-centric content.

Document-centric content organization relies on the use of 3 main constructors
(inherited from SGML): the sequence, the choice and the aggregate constructors.
RELAX NG proposes the two first ones and the interleave constructor is more
powerful that the aggregate constructor proposed in SGML.

Data-centric content relies on the extensive use of unordered content. Surpris-
ingly, XML Schema offers very weak support in this respect. By default, ordering
elements is the default option when designing a schema; the all constructor is very
restrictive.

3.2. Constraining content
Both document-centric and data-centric approaches require the expression of con-
straints for guaranteeing that information is structured in such a way that it can be
processed by an application, the goal being to provide the functionality satisfying
at the same time editing, rendering and computing issues. Let us consider the cat-
egories of these constraints and how they stand in the two paradigms.

3.3. Mandatory information
Information may be mandatory in the document-centric world for two reasons: in
a editorial purpose (as an example, a section without title does not make sense) or
in a computing purpose (as an example, the absence of of number of persons in a
cooking recipewill impact the safe use of a function that provides the list of ingredi-
ents to be bought). The content mandatory constraint is a well-known concept in
the data-centric world.

Making elements mandatory is a point that may be addressed by RELAX NG
aswell as XML Schema but a related important issue is to guarantee that an element
satisfies a content model that is conforming the expected processable format. This
may be achieved by specifying constraints on the content, an issue that may be ad-
dressed by using, for instance, the potential offered by the W3C XML Schema
datatypes. Once again, this issue is in strong relation with authoring capabilities

127

A Unified Approach to Design and Implement XML Web Applications

offered to the final users but also to the designers of an application who need to be
provided with appropriate means to express such constraints.

3.4. Uniqueness and referential integrity
In the document-centricworld, references to unique elementswere initially intended
to express cross references in a document (such as references to a section in a docu-
ment or reference to a figure). In this purpose, the SGML DTDs introduced the
concept of ID and IDREF, based on the use of attributes to express such constraints.
This concept has been retained by XML Schema that also extents the possibilities
through the mechanism of key and keyref reflecting a more relational database
oriented view. One of the the main difference is the scope of the identifier.

However key and keyref mechanism presents certain limitations that can be
avoided by using the assertionmechanism introduced in XMLSchema 1.1 [2]. Using
assertions, keyref are essentially expressed with XPath expressions. It reinforces
our approach which consists in specifying such constraints via Schematron rules.

3.5. Cardinality constraints
A conceptualmodel of data usually specifies cardinality constraints indicating how
to limit the number of entity occurrences that are associated in a relationship. Using
a relational database, cardinalities 0-1, 1-1, 1-N and N-N can be directly represented
by the paradigm of primary keys and foreign keys. But, all the other cardinalities
can not be directly expressed by the relational structure.

Adopting the XMLmodel as the nativeway tomodel information, the cardinality
constraints may be expressed by the combined use of composition relations and
specification of occurrences. XML schema - but not RELAXNG - allows to be more
precise and to explicitly indicateminimumandmaximumvalues for element occur-
rences. For instance, it could be used for limiting the number of topic keywords
occurrence in a paper if is requested by a publisher.

Jointly using RELAX NG and Schematron provides the advantage to benefit
from amore expressiveway to specify composition of elements and to define precise
cardinality constraints by mean of Schematron rules.

In summary, our approach consists in describing the data structurewith RELAX
NG - potentially associated with an external data types system, such as the XML
Schemadata types - and in expressing any other type of constraintswith Schematron
rules.

128

A Unified Approach to Design and Implement XML Web Applications

4. Modeling approach based on RELAX NG and Schematron
In this section, we present our approach to design the XMLmodel of a Web applic-
ation targeted to be implemented in a XND. Let us consider our motivational ex-
ample, introduced at Section 2, to illustrate our approach on a concrete case.

4.1. Modeling the structure of a research proposal with RELAX NG
The graphical view of the RELAX NG schema shown on Figure 2 illustrates the
global structure that could be adopted to model the information processed by a
project management (PM)Web application. Our simplified PM application gathers
(i) information about several projects, each of them having an Id, a Name and con-
taining the description of the Proposal and (ii) information about Partners; a list
of Person potentially involved in one or more projects.

Figure 2. Global schema of the PM application

The description of the objectives of the project is purely document-centric and
matches the model illustrated in Figure 3 that proposes a simple content model to
represent textual data composed of either Title, Paragraph or List elements. The
content model for a Paragraph is the one presented in Section 3.

Figure 3. Content model of textual data

The model of a WorkPackage is illustrated in Figure 4. It emphasizes the fact that it
contains interleaved relations between document-centric information and data-
centric information.

129

A Unified Approach to Design and Implement XML Web Applications

Figure 4. Content model of a workpackage

Finally, information about a Person is a purely data-centric information.

4.2. Annotation of the RELAX NG Schema
Annotating the RELAX NG Schema is twofold. It aims at providing the developer
with the possibility to clearly distinguish between the design of the conceptual
model of information to be processed by an application but also aims at providing
specification about the physical layer.

In a XND, the physical layer mostly concerns the issue of grouping XML docu-
ments into collections; it is not independent from the conceptual model. Our ap-
proach consists in providing the developer with the possibility to annotate the
global schema of its application - the conceptual model - by specifying the way to
organize the information into collections and documents.

In this purpose, our proposal is to enhance the RELAXNG schemawith annota-
tions (making use of a dedicated namespace prefixed as ide) to specify which ele-
ments are to be stored as documents in the database. The extract of an annotated
schema shown in Example 2 illustrates this mechanism. In that case the
collection-name annotation tells that the developer's choice is to store information
about each project individually in a specific XMLdocument in a partners collection,
while shewants to store information about all the persons in a single XMLdocument
called persons.xml.

Example 2. Global schema with annotations

<element name="Partners" ide:store="collection" ide:collection-name="partners">
<element name="Persons" ide:store="resource" ide:resource-name="persons">
<zeroOrMore>
<element name="Person">
<element name="Id">

130

A Unified Approach to Design and Implement XML Web Applications

<ref name="IdType"/>
</element>
<element name="Name">
<ref name="PersonNameType"/>

</element>
<element name="Address">
<ref name="AddressType"/>

</element>
</element>

</zeroOrMore>
</element>

</element>

The annotations can be exploited to generate all the RELAX NG sub-schemas to be
used to check an XML document against its appropriate sub-schema. This can be
done, for instance, by using anXSLT transformation thatwewill describe in Section 5
which makes use of another store attribute annotation.

4.3. Specifying constraints with Schematron
The following Schematron rules provide examples of constraints that can be checked
in the context of our example.

They reflect the unicity and referential constraints but also illustrate an applica-
tion specific constraint; for example, the fact that managers of projects limits the
involvement of persons in no more than 3 tasks.

Example 3. Specifying contraints with Schematron

<schema xmlns="http://www.ascc.net/xml/schematron">
<pattern name="unicity-constraints">
<rule context="PM">
<assert test="count(distinct-values(.//Project/Id))

= count(.//Project/Id) ">Duplicate Ids for projects</assert>
</rule>
<rule context="WorkPackages">
<assert test="count(distinct-values(WorkPackage/No))

= count(WorkPackage/No)">Duplicate No for workpackage</►
assert>

</rule>
<rule context="Tasks">
<assert test="count(distinct-values(Task/No))

= count(Task/No)">Duplicate Id for tasks</assert>
</rule>
<rule context="Persons">
<assert test="count(distinct-values(Person/Id))

= count(Person/Id)">Duplicate Id for persons</assert>

131

A Unified Approach to Design and Implement XML Web Applications

</rule>
</pattern>
<pattern name="referential-integrity">
<rule context="WorkPackage">
<assert test="ResponsibleRef = ancestor::PM/Persons/Person/Id">Reference ►

to unknown ResponsibleRef</assert>
<assert test="Tasks/Task/InvolvedPersons/InvolvedPersonRef

= ancestor::PM/Persons/Person/Id">Reference to unknown ►
InvolvedPersonRef</assert>

</rule>
</pattern>
<pattern name="application-specific-constraints">
<rule context="Project">
<assert test="count(distinct-values(.//Tasks/Task//InvolvedPersonRef)) ►

<=3">A person cannot be involved in more than 3 tasks</assert>
</rule>

</pattern>
</schema>

5. Implementation
This section describes an implementation of our approach in order to provide the
developer with validation tools to check the data consistency of an application
during the development step.

Our work relies on the use of Oppidum [6], a ligthweight MVC development
framework that takes benefit of a full stack of XML technologies to query,manipulate
and provide views in a browser of XML information stored in the eXistdb XML
native database. The companions of Oppidum are AXEL and AXEL Forms [5], two
JavaScript libraries that offer the users the capability to equally author, in a browser,
document or data-oriented XML information that conform to a model.

5.1. Developing the validation mechanism
The Oppidum framework is intended to build Web applications relying on a
RESTful approach. For that purpose the application must be entirely defined in
terms of actions on resources. This is achieved by defining declaratively each action
in a mapping file.

To experiment our mechanism, we implemented an action called
generate-all-schema. It is defined in ourmapping file as shownonExample 4. This
code indicates, in the MVC paradigm, which model to use (the model is always an
XQuery script) andwhich view applies (the view is anXSLT transformationworking
on the result of the XQuery script).

132

A Unified Approach to Design and Implement XML Web Applications

Example 4. Mapping entry for activating the generation of sub-schema

<action name="generate-all-schema">
<model src="modules/ide/generate-all-schema.xql"/>
<view src="modules/ide/display.xsl"/>

</action>

The generate-all-schema XQuery script shown as Example 4 generates all the re-
quested sub-schemas and stores them in the database for further use by the de-
veloper. It uses conventional locations in the database, for instance to be integrated
in an IDE to propose easy access to validation serviceswhile developing and testing
the application. It relies on annotations included in the global schema of the applic-
ation. The input and output collection paths are encoded in variables in the global
namespace. The generation of sub-schemas is achieved by invoking an XSLT
transformation shown as Example 6. That transformation generates one sub-schema
for each element annotated as ide:store="resource" in the global schema. The set
of definitions of the RELAX NG schema are factorized in a resource called
definitions.rng.

Example 5. XQuery script to generate and store sub-schemas from the global
schema of the application

declare function local:gen-definitions-for-writing ($grammar as element()) {
<grammar xmlns="http://relaxng.org/ns/structure/1.0" datatypeLibrary="http:/►

/www.w3.org/2001/XMLSchema-datatypes">
{ for $d in $grammar//define return $d }

</grammar>
};

declare function local:store-grammars ($grammars as element()) {
<Root xmlns="http://relaxng.org/ns/structure/1.0">
{
for $g in $grammars/grammar return
let $filename := concat(string ($g/@name), '.rng')
let $schema :=
<grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<include href="definitions.rng"/>
{ $g/start }

</grammar>
return
xmldb:store($globals:schema-collection, $filename, $schema)

}
</Root>

};

let $global-schema := fn:doc($globals:global-schema-resource)

133

A Unified Approach to Design and Implement XML Web Applications

let $global-transfo := fn:doc($globals:generate-all-schema-transfo)
let $all-schemas := transform:transform ($global-schema, $global-transfo, ())
return (
xmldb:store($globals:schema-collection, "definitions.rng", ►

local:gen-definitions-for-writing($all-schemas//Definitions),
local:store-grammars($all-schemas//Grammars)
)

By convention, the global schema of an application is stored in a sub-collection
named schema, this collection being itself stored in a collection named validation.
The generated sub-schemas are stored in the schema collection. The Schematron
rules are stored in a sub-collection of validation named rules.

Example 6. XSLT transformation to generate the sub-schemas from the global
schema based on annotations

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ►
xmlns:ide="http://oppidum.com/ide" version="2.0">
<xsl:output method="xml"/>

<xsl:template match="/">
<Root>
<Grammars>
<xsl:apply-templates select="//*[local-name() = 'element'][@ide:store ►

='resource']"/>
</Grammars>
<Definitions>
<grammar xmlns="http://relaxng.org/ns/structure/1.0" ►

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<xsl:apply-templates select="//*[local-name() = 'define']"/>

</grammar>
</Definitions>

</Root>
</xsl:template>

<xsl:template match="*[local-name() ='element'][@ide:store = 'resource']">
<grammar xmlns="http://relaxng.org/ns/structure/1.0" ►

name="{@ide:resource-name}" datatypeLibrary="http://www.w3.org/2001/►
XMLSchema-datatypes">

<start>
<element name="{@name}">
<xsl:apply-templates select="child::*[not(attribute::ide:store)]"/>

</element>
</start>

</grammar>
</xsl:template>

134

A Unified Approach to Design and Implement XML Web Applications

<xsl:template match="*[local-name() ►
='oneOrMore'][parent::*[attribute::ide:store]][child::*[attribute::ide:store]]"/>

<xsl:template match="*[local-name() ►
='zeroOrMore'][parent::*[attribute::ide:store]][child::*[attribute::ide:store]]"/►
>

<xsl:template match="*[local-name() = 'define']">
<xsl:copy-of select="."/>

</xsl:template>

<xsl:template match="*">
<xsl:element name="{local-name()}" namespace="http://relaxng.org/ns/►

structure/1.0">
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="*"/>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Running the generate-all-schemaXQuery script, using pm.rng as the global schema
of the application, will generate and store three documents in the schema collection:
definitions.rng, project.rng and persons.rng. The Example 5 shows a correspond-
ing extract of the annotated global schema where the store attribute defines the
sub-schemas architecture.

As a result, the possibility is given to the developer to validate the data contained
in the database by using the validation functions available in the eXist-db environ-
ment to check data consistency either against RELAX NG schema or Schematron
rules.

The Example 2 also shows other annotations related to the physical implement-
ation of the data model as a collection (collection-name attribute) or as a single
document resource (resource-name) which has been discussed in Section 4. That
information is used to offer validation services anchored on the sub-schemas.

5.2. Authoring issues
The development of XMLWeb applications relying on the validation of both docu-
ment-centric and data-centric content need to be sustained by intuitive authoring
facilities for end users to populate the database

The AXEL and AXEL Forms JavaScript libraries have been developed in this
purpose; jointly used they provide powerful capabilities to indifferently author
document-centric and data-centric content in the browser.

135

A Unified Approach to Design and Implement XML Web Applications

Let us consider, as an example, the proposed user interface shown in Figure 5
to edit information about a workpackage. This editing interface contains fields (as
usual in forms) to provide factual data such as the workpackage number and title.
It also allows to edit, in a "document-oriented"way the description of theworkpack-
age. In that sense the produced XML content will fit our model for representing
document-centric information such asmodeled in the RELAXNG schemapresented
in Section 4.

Figure 5. Editing a workpackage

6. Conclusion
The paper has addressed the issue of the design and implementation of XMLWeb
based applicationswith amodeling approach that conciliates document-centric and
data-centric information. It relies on the adoption of RELAX NG and Schematron
to explicitly distinguish between the structural aspects of information and the
definition of constraints. It has presented a method to support the developer in
designing a unique global schema for an application while validating the database
content in a decentralized way during the development process.

The work currently performed about validation is intended to be augmented
and integrated in the - currently under construction - Integrated Development En-
vironment of the Oppidum framework.

The process of annotating the global schema of an application is currently under
investigation to address other potentialities to be offered to a developer using the
Oppidum framework.

The first one is to use the annotated schema to automatically build the structure
of collections in the database for a given application. This is more challenging as it
may appear since, for instance, the information to be stored about an application
does not only consist in XML resources. In our example of project management, we

136

A Unified Approach to Design and Implement XML Web Applications

could consider, for instance, to store appendices in any format or pictures of persons
in order to publish a project website.

The second one addresses the issue of generating document editing templates
to be used by AXEL and AXEL Forms. Our goal is firstly to reduce the extra work
needed to create templates that match the constraints on data, and secondly to
guarantee the consistency between the global schema of the application and the
control checking performed client-side on user's data inputwhen using these librar-
ies.

Bibliography
[1] SergeAbiteboul – IoanaManolescu – Philippe Rigaux –Marie-Christine Rousset

– Pierre Senellart: Web Data Management. Cambridge University Press 2011
[2] Anne Brüggemann-Klein – Mustapha Maalej – Marouane Sayih: XML Schema

Identity Constraints Revisited. proceedings of XML Prague 2014, pp 123-145,
2014

[3] Catherine Pugin: Integrated Modeling and Transformation for semi-structured
Documents. PhD Thesis, University of Fribourg, Switzerland, 2009

[4] Jayavel Shanmugasundaram and all.: A General Technique for Querying XML
Documents using a Relational Database System. ACM SIGMOD, Volume 30,
Issue 3, September 2001 Pages 20 - 26

[5] Stéphane Sire: AXEL and AXEL Forms. http://www.oppidoc.fr/en/technologies
[6] Stéphane Sire – Christine Vanoirbeek: Small Data in the Large with Oppidum.

proceedings of XML London 2013, pp. 69-79, 2013
[7] Igor Tatarinov and all.: Storing and Querying Ordered XML Using a Relational

Database System. ACM SIGMOD’2002, June 4-6, Madison, Wisconsin, USA
[8] Eric van der Vlist: Relax NG, compared.

http://www.xml.com/pub/a/2002/01/23/relaxng.html
[9] Christine Vanoirbeek – Vincent Quint – Stéphane Sire – Cécile Roisin: A

Lightweight Framework forAuthoringMultimediaContent on theWeb. journal
Multimedia Tools and Applications, 2012.

137

A Unified Approach to Design and Implement XML Web Applications

PhD Thesis, University of Fribourg, Switzerland, 2009

138

Graphical User Interface Tool
forDesigningModel-BasedUser Interfaces

with UIML
Anne Brüggemann-Klein

Technische Universität München
<brueggem@in.tum.de>

Lyuben Dimitrov
Technische Universität München

<dimitrov@in.tum.de>
Marouane Sayih

Technische Universität München
<sayih@in.tum.de>

Abstract

Graphical user interfaces can be designed using various types of editors. Almost
all types are based on one of the following two principles: What You See is
What You Mean (WYSIWYM) or What You See is What You Get (WYSI-
WYG). The WYSIWYG tools are the most sophisticated ones and are usually
constrained to concrete platforms or formats. On the other hand, WYSIWYM
editors come with a presentation neutral way of capturing the semantics of
the content, rather than the exact presentation. This principle provides a sig-
nificant advantage when authoring XML-based user interface documents in
terms of device and platform independence. TheWYSIWYMparadigm allevi-
ates the stress of exactly displaying the information that is being conveyed,
and thus does not require maintaining precise formatting between the Editing
View and the Final Result.

In this paper we present a graphical user interface editor based on the
WYSIWYMprinciple for designingmodel-based user interfaces with the User
Interface Markup Language (UIML) as a modeling language, XSLT for
transformation and XForms for presentation. We provide a proof of concept
and show the applicability of using XML technologies for designing graphical
user interfaces for End-user Development.

Keywords:User InterfaceMarkupLanguage, Graphical User Interface
(GUI), WYSIWYM, XML technology

139

1. Introduction
Graphical user interfaces (GUI), as their name suggests, form a visual interface
between user and computer by which the user is capable of communicating with
the systemusing various interactionmethods (e.g. reading,writing, clicking,moving
and etc.). The development of graphical user interfaces has a considerable value
and potential in the field of web engineering and especially in designing large and
complex platforms with high demands on usability. Also an important aspect in
software development and particularly in the field of web engineering is the capab-
ility to involve users or clients at an early stage of the development: The graphical
user interface can form a common language between users and developers.

Several related XML technologies such as XForms, XAML, and XUL, have been
designed to support different activities across the lifecycle of graphical user interface
development. These technologies allow developers to design and implement GUIs
effectively. Besides, there exist some tools that provide an easy way to model UI
with these languages. One such XML language is the User Interface Markup Lan-
guage (UIML) which is used to describe requirements, design and implement user
interfaces.Our researchunit EngineeringPublishingTechnologyGroup (EPT-Group)
at the Technical University München (TUM) has worked with numerous XML
technologies related toXML-basedweb applicationdevelopment [BMS14-1] [BMS14-
2] [BMS14-3] [Kuh14], where these XML technologies are used throughout most or
all stages of the application development process. Our research groupwill continue
to use other instruments and languages in this area of research. Part of the quest is
to base the development processes on XML technologies rather than just the final
systems.

In this paper, we present a graphical UI editor named uimlBuddy for creating
graphical user interfacesmodeledwithXML technologies.Almost all types of editors,
especially graphical editors, are based on one of the following two principles:
WYSIWYG or WYSIWYM. Although, the most popular way of editing documents
is to use tools based on the concept ofWYSIWYG, we use theWYSIWYMprinciple.
This principle is still a visual representation but lifts off the requirement that the
view between editing the GUI and presenting the GUI in the system are strictly
identical: Editing view has to express a less strict formatting and focus on capturing
the semantics and the intention of how the systemGUI should work. This principle
is better suited for organizing UI in web-based platforms, because we cannot guar-
antee that the UI created by the editor depicts the final UI (i.e., XForms, XHTML)
in all browsers and across all devices (different screen sizes, form factors, etc.). Thus,
in terms of platform and device independence, the WYSIWYMworks in our favor,
since it puts emphasis on the actual information being conveyed, instead of the
precise formatting.

The proposed UIML editor was implemented in Java by Lyuben Dimitrov as
part of his Master thesis project. The goal for this editor is to present an easy and

140

Graphical User Interface Tool for Designing Model-Based User Interfaces

straightforward way to create valid and well formatted UIML documents. Our ob-
jective is to demonstrate that UIML provides a practical mechanism for describing
and representing user interface and to facilitate the usage of UIML for end user
development.

The remainder of the paper is organized into five sections as follows: In the
section called “User InterfaceMarkup Language (UIML)”, we give a short overview
of the UIML Language that can be used to provide an XML representation of any
user Interface. In the sections called “Proposed modifications in the MIM and the
UIML”and“MIMmodel according toUIMLspecifications”,we explain the proposed
simplifications in theMeta InterfaceModel (MIM) to facilitate the uimlBuddy proof
of concept implementation. In the section called “The concept of uimlBuddy”, we
describe the concept of the editor. In the section called “The Editor uimlBuddy”,
we explain what are the features and operations offered by the uimlBuddy editor.
Finally, in the section called “Conclusion and future work”, we draw some conclu-
sions and raise ideas for future work.

2. Model-based User Interface Development
Model-basedUser InterfaceDevelopment or as it is commonly referred to asModel-
drivenUser InterfaceDevelopment (MDUID) is a concept that first emerged around
the 1980s [Mye95]. Main motivation factor that led to MDUID is that creation of
user interfaces became a tedious, time consuming and costly task [MRo00]. De-
velopers and designers of UI have to consider several important aspects in the cre-
ation of UIs. Most notable of them are related to:
• The vast proliferation of new devices available on the market nowadays.
• Support for different platforms and environments eachwith its own constraints.
• Abundance of programming languages, libraries and frameworks for develop-

ment of UI.
• The gap between end users with respect to their backgrounds, age, preferences

and skills.
Several frameworks exist which try to reduce the development effort by targeting
thesemultiple contexts andmultiple targets. One of them is the CameleonReference
Framework (CRF), which is a meta architecture decomposing the process of UI
design into several different components [CRF09] as seen in Figure 1:

141

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 1. The Cameleon Reference Framework [CRF09]

The framework includes several different levels of abstraction:
• Task level reflects the chain of tasks that need to be carried out in a concrete order

to achieve the desired user interaction result.
• TheAbstract User Interface (AUI) describes theUI in terms of abstract interaction

objects that are independent of any platform or modality.
• The Concrete User Interface (CUI) describes the user interface with concrete in-

teraction objects that are modality dependent, but independent in terms of
platform.

• The Final User Interface (FUI) is now platform-dependent source code that can
be represented in any language (HTML, Java). The FUI layer is the final result
with which the user interacts.

Transformations from one level of abstraction to another can be performed in both
directions (forward and reverse engineering) [CRF09].

2.1. User Interface Markup Language (UIML)
The UIML language is an XML-based language for defining and describing user
interfaces in declarative terms and abstract form. It is supported and standardized
by the Organization for the Advancement of Structured Information Standards
(OASIS). In the field of Software Engineering, it is widely accepted that the user
interface should be decoupled from the logic. The UIML is modeled by the Meta-
Interface Model (MIM), which divides the user interface into three different com-
ponents: presentation, interface, and logic. These components are defined according
to [Pha00] as:
• The logic component gives user interface a canonical way to communicate with

an application.

142

Graphical User Interface Tool for Designing Model-Based User Interfaces

• The presentation component allows the user interface to be displayed independ-
ently of the underlying platform.

• The interface component offers the interaction between the user and the applic-
ation.

As a consequence, the user interface can be reused across multiple applications
while preserving its consistency. Furthermore, this decoupling allows developing
the UI and the logic separately.

Improving on earlymodels, theMIM subdivides the <interface> component into
four additional subcomponents: structure, style, content, and behavior. Take a look
at the UIML skeleton below:

<?xml version="1.0"?>
<uiml>
<interface>
<structure> …
<part id="…" class="…"/>
</structure>
<style> … </style>
<content> … </content>
<behavior> … </behavior>
</interface>
<peers>
<presentation/>
<logic/>
<peers>

</uiml>

• Structure: defines the physical organization of the UI. Each <structure> contains
different <part> elements, where each part represents a concrete UI element.
Each part is also associated to a certain “class” that denotes the type ofUI element
(e.g. label, button, etc.).

• Style: specifies the appearance of the elements (e.g. text, color, size).
• Content: specifies the content of each part (if any) such as string literals, images

and etc. Useful when you want to further abstract away the UI by not binding
it to static content. For example a UI in both English and German can be practic-
ally reused just by providing content for the German language.

• Behavior: specifies the actions that are triggered under special circumstances
(button click).

The <logic> element is responsible for linking the concrete final UI vocabulary with
the final Logic and each element in the interface component. The <presentation>
element either defines the mappings to names of classes of the concrete UI toolkit
(Java AWT, XHTML, etc.) or it points to an external file where this vocabulary is
defined. This concrete UI metaphor is linked with an abstract UIML part element

143

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 2. Meta-Interface Model [UIML4]

for the final UI. The Logic is also an external file, where the behavior of each part
element is matched with the concrete software implementation for the final target
platform. The advantages of this are that the Interface component stays abstract
(i.e., free of any concrete implementation details), while the presentation and logic
components can be substituted for different platforms and target UIs.

In order to obtain the FUI, theUIMLdocument has to be transformed. Our target
language is XForms and we have decided to use XSL Transformations that render
theUIML into XForms. If we have to relate this approach to the Cameleon Reference
Framework, it would look like this:

The actual process of transforming an UIML document into the final platform
is divided into several steps, as shown in Figure 4below:
1. TheUIMLdocument is processedwith the customXSLTTransformations,where

each individual part is handled by a different XSL template that assigns its cor-
responding style, behavior and content. The UIML document can be regarded
as the Abstract User Interface (AUI).

2. After the transformation, we produce an XForms document with a declarative
model containing data types, instances, data submission parameters, and other
declarations, if required. The View layer contains the interface controls that were
matched and transformed in Step 1 via XSLT. This is regarded as the Concrete
User Interface (CUI). Additionally, references to CSS and necessary JavaScript
files are added and used later on in styling the resulting HTML element).

3. Since browsers do not natively support XForms, the resulting CUI has to be
transformed once again with the help of an XForms implementation of choice
(e.g., orbeonForms, betterFORMS or XLSTForms).

4. Finally, the HTML is generated by the XForms implementation and the HTML
elements are displayed and styled according to the CSS stylesheets provided in
Step 2. This is regarded as the Final User Interface (FUI).

144

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 3. Our approach with respect to CRF

Figure 4. UIML Transformation Process

Theundertaken approach of stylingUIMLdocuments has its benefits anddrawbacks.
The main disadvantage is that it requires a prior knowledge of the available CSS
styles. On the other hand, the main advantage is that the XSLs can be edited to ref-
erence any style sheet in the final UI including an absolute URL that points to a re-
mote CSS file. Thismeans that the styling is completely decoupled from the process,
but the uimlBuddy editor provides the option to directly specify the styles while

145

Graphical User Interface Tool for Designing Model-Based User Interfaces

modeling the UI. In this way, the user is free to use any modern CSS framework of
his/her choice with flexible updates and improvements.

2.2. Proposed Modifications to the MIM and UIML
In this section, we explain modifications we applied to UIML and the MIM and
why we propose them. The underlying reason for the modifications is the desire to
simplify and facilitate the XSL Transformation scenarios and subsequently, the
uimlBuddy editor implementation. In brief, the original Meta-Information Model
assumed by UIML is modified such that we don’t use the 'peers' element with its
sub elements. The second change is related to the way of mapping style, content
and behavior to structure elements.We have simplified it down to the use of a single
unique id attribute. And last but not least, we are getting rid of the idea of precedence
in UIML. These modifications are explained in detail in the next section.

2.2.1. Modifications to the Meta-Interface Model

The MIM Model in Figure 2 shows another element called “peers“ in addition to
the logic and presentation elements. This “peers“ element specifies the widgets in
the target platform and themethods in scripts, programs, or objects in the application
logic, which are associated with the user interface [Pha00].

In Figure 5, we have two different presentations – one for Java and one forHTML
(only one presentation is used at the same time with the Interface element). Let’s
assume that we have a part button defined in the Structure element. In the Java
Presentation, this part would bemapped as a “JButton“ if we use Java Swing, while
in the HTML Presentation it would be mapped as <input type=“button“>. Besides,
in the Behavior element, each rule has a condition, such as “ButtonPressed“. In the
Java presentation, this would be mapped to “ActionListener.actionPerformed“,
while in theHTMLPresentation themappingwill be to “onClick“. The Logic element
will map to an exact namewith the external application logic. To paraphrase, it acts
as the glue between the UI and application logic in the resulting final application.
In otherwords, in the Behavior element, after a condition ismet, an event is triggered
(such as “onClick“) and an “action“ is taken. This action contains a call with the
name of the method in the external application logic.

Since we decided to use XSLT to transform an UIML document into an XForms
document, for the sake of the proof of concept, we target only one specific FUI.
Thus, we exclude the <peers> element and its subelements: <presentation> and
<logic>. In our scenario, the <presentation> of XForms is defined within the very
XSLT files. The logic element maps to exact method names that are present in the
“behavior“ (under the “call“ elements) to the application logic, which is external of
the UIML document as shown in Figure 2. If we eliminate that mapping and use
the method name from the “behavior” call element in the XSL transformation dir-

146

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 5. UIML Presentations

ectly, we can simplify thewriting/generation ofUIMLdocuments and the transform-
ation scenarios themselves. The disadvantage of this technique is that if another
platform should be considered, a new XSLT will have to be constructed to map to
a new vocabulary. Furthermore, the current state of the XSLT files does not support
all different types of UI metaphors. If a new UI control is included at a later stage,
this implies new XSLT templates have to be further created in order to support the
new control.

The proposed modifications in the MIM are shown in Figure 6:

Figure 6. Modified MI Model

2.2.2. Modifications to UIML Specification

Since we focus on the Interface element, we propose two changes to the UIML
specification that simplify the XSLT scenarios from developer’s perspective and
also make the resulting UIML document more concise and easy to read and under-
stand. We demonstrate that in the next two subsections.

147

Graphical User Interface Tool for Designing Model-Based User Interfaces

2.2.2.1. Style, Content and Behavior Mapping

The following example illustrates how the style, content and behavior of each part
is distributed across the interface component:

<structure>
<part id=“affirmativeChoice“ class=“Button“/>
<part id=“negativeChoice“ class=“Button“/>
</structure>
<style>
<property part-name=“affirmativeChoice“
name=“backgroundColor“>green</property>
<property part-name=“affirmativeChoice“ name=“label“>
<reference constant-name=“affirmativeLabel“/>
</property>
<property part-name=“negativeChoice“
name=“backgroundColor“>red</property>
<property part-name=“negativeChoice“ name=“label“>
<reference constant-name=“negativeLabel“/>
</property>
</style>
<content>
<constant id=“affirmativeLabel“ value=“Yes“/>
<constant id=“negativeLabel“ value=“No“/>
</content>

As shown in the above code listing, there are two parts – each has a unique “id“.
The <property> elements match the corresponding <part> element’s id with the
“part-name“ attribute. Furthermore, the “label“ property element contains a <refer-
ence> element that refers to the “id“ of another <constant> element. This way of
combining information for a single part element is not really requiredwhen compil-
ing UIML documents with XSL Transformations. We propose to change all sub
element references only to a single, unique “id“ attribute and also eliminate the
<reference> element inside the <property> element (in otherwords,match the content
directly according to <part> “id“ attribute).

The above example can be simplified to the following script:
<structure>
<part id=“affirmativeChoice“ class=“Button“/>
<part id=“negativeChoice“ class=“Button“/>
</structure>
<style>
<property id=“affirmativeChoice“
name=“backgroundColor“>green</property>
<property id=“negativeChoice“
name=“backgroundColor“>red</property>

</style>

148

Graphical User Interface Tool for Designing Model-Based User Interfaces

<content>
<constant id=“affirmativeChoice“ label=“Yes“/>
<constant id=“negativeChoice“ label=“No“/>
</content>

To sum up the changes:
1. The only way to map <part> elements to its styles, contents and behavior is by

using their attribute “id“.
2. Content elements are no longer referenced from Style elements. The <reference>

elements are eliminated. Instead, we directly target the content by the unique
“id“.

3. Attribute names in a Content element are specifically targeted to what they
represent. For example, if the content is Label, the <constant> element would
have a “label“ attribute name, if it were an Image, the <constant> elementwould
have a “source“ (or image path) attribute name.
Overall, this modification is targeted more at simplifying the XSLT matching

rules than the uimlBuddy editor implementation. If further UI elements are added
to the XLS Transformations, the effort to create the transformation scenarios will
be reduced. Nevertheless, in the notion of XHTML and XForms documents, the re-
quired UIML document is shorter and simpler to read and write. This lowers the
high threshold of Model-based User Interface Development (MBUID) for new de-
signers and developers. Besides, parsing an already existing document and visually
rendering it in the editor uimlBuddy is simplified which can lead to a better tool
that increases the ceiling of the MBUID approach.

2.2.2.2. Style precedence

According to the UIMLCommittee Draft version 4.0, styles, contents and behaviors
can be either nested into a structure part or referenced from external interface sub
elements. It is important to distinguish between those different styles, because they
can have different precedence and order of execution. This modification aims to
handle the precedence and conflict resolution issues. The following example con-
siders this issue:

<?xml version=“1.0“?>
<uiml>
<interface>
<structure>
…
<part id=“Button1“ class=“Button“>
<style>
<property name=“backgroundColor“>blue</property>
</style>
…

149

Graphical User Interface Tool for Designing Model-Based User Interfaces

</structure>
<style>
<property id=“Button1“ name=“backgroundColor“>
orange</property>
<property id=“name_input“ name=“backgroundColor“>
yellow</property>

</style>
</interface>
</uiml>

Here, Button1 part is given three different colors – blue, orange and yellow. A
rendering or interpreting engine must resolve this conflict by following some pre-
cedence rules ordered from highest to lowest priority:
• <property> elements nested inside the <part>
• <property> elements with a valid part-name attribute located in a separate style

section
• <property> elements with a valid part-class attribute
The XSLT Specifications [Kay07] already have other rules to handle styling issue.
These are the XSLT rules, which apply in order:
• Templates in the primary style sheet have higher precedence than the imported

templates.
• Templates with a higher value in their “priority“ attribute have higher preced-

ence, while templateswithout a priority attribute are assigned a default priority.
• Templates with more specific patterns take precedence.
For example, suppose we have the following style sheets:
• Stylesheet A imports stylesheets B and C in that order;
• Stylesheet B imports stylesheet D;
• Stylesheet C imports stylesheet E.
Then the order of import precedence (lowest first) is D, B, E, C, A. If the previous
three steps leave more than one template in consideration, it would be considered
as an error, but XSLT processors can recover by defaulting to the last one in the file.

But to achieve the precedence implied by nesting in UIML, XSLT files would
require duplication of the matching rules in the main style sheet and then in the
imported stylesheets, which is code repetition.We decided to further simplify them
by using only one way. We choose to use references with valid id attributes in sep-
arate style, content and behavior sections and disallow nesting styles, contents and
behaviors in the structure parts. However, when using the uimlBuddy editor, it is
not necessary for the user to concern about such possible scenarios or under-
stand/knowhow theUIMLdocument iswritten. Overall, the idea of having different
ways of mapping the style, content and behavior is very useful in the context of
using UIML documents at runtime. If another UIML rendering engine were to be

150

Graphical User Interface Tool for Designing Model-Based User Interfaces

created outside of XSLT, it would make perfect sense to support it with or without
an editor.

3. The Concept of the Editor uimlBuddy
The main concept of the editor uimlBuddy is to allow non-professionals in XML
related languages and userswho have no technical background to create validUIML
and XForms documents. We refer to these users as domain experts. These domain
experts are not required towrite the UIML code in order tomodel the user interface,
but rather use the editor and only to fill the mandatory and necessary properties of
the UIML elements in a user-friendly manner, e.g. via popups windows and dialog
boxes. Besides, this category of users can access the generated UIML source code
as well as the final resulting XHTML document containing the XForms output.

Additionally, the editor allows tomanually editing the XSLT fileswhich perform
the transformations to XForms and the CSS files responsible for styling the final UI.
We call users who access these functionalities the developers. The developer can
dive into the XSLT files into a window separate from the typical graphical editor.
They can modify the actual transformations for both the developer and domain
experts later on and performmodifications to the CSS files, which can be altered or
completely substituted by different ones.

The final XForms result is obtained after matching the UIML document with
specifically created XSL transformation scenarios. These scenarios link the UIML
document to an XSL file, which does the actual transformation and outputs a docu-
ment of XHTML type.

3.1. The Editor uimlBuddy
Themain goal of the editor is to retain simplicity at aminimum,where it is sufficient
enough to assist the user in creating user interfaces written in UIML. Thus, we de-
cided to exclude features such as XML validation, XML tree representations and
etc., in order to focus on the key feature – modeling UI. Furthermore, in order to
facilitate this End-User Development, the application uses common UI look and
feel. Next, were going briefly through some of the main features of the editor.

3.1.1. Main Application Window

The user interacts via several panels, namely a panel for inserting new elements
(left expandable control), a panel for the graphical representation of the document
and last but not least, a panel for reviewing the generated UIML code. There are
also amenu bar and a toolbarwhich consist of a buttons setwith commonapplication
functionalities.

151

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 7. uimlBuddy User Access

3.1.2. GameX Main Application Window

To illustrate the functionalities of the editor, we create a portion of the GameX
[BMS14-3] user interface using the editor as an example. We start with the top bar
menu as shown in the screenshot of the game:

3.1.3. Working with the Editor

In order to insert an element, the user selects an item from the left expandable
panel, which is divided into three subcategories – Layouts, Controls and Miscel-
laneous. Immediately upon selection, the user is presented with a dialog where the
required input per element needs to be inserted. Due to the WYSIWYM nature of
the editor, the user does not need to input properties such as size and colors (they
are predefined). The top menu bar in the GameX has a horizontal orientation, thus
the first thing we are going to insert in our UIML document is a horizontal layout
that will contain all other elements inside it:

152

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 8. Main Application Window

Figure 9. GameX Main Application Window

153

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 10. Inserting a Horizontal Layout

Once the layout is inserted, everything contained inside will be laid out in a hori-
zontal fashion. The users can also nest layouts inside one another in order to create
more complex UI.

Next, we would like to insert an image button, as part of the menu.

Figure 11. Inserting an Image Button

The above dialog is presented when user selects to insert an Image Button. The ID
field is used tomap the style, content and behavior for this particular image button.
The source field contains the path where the image file is located and last but not
least, the onClick field denotes the method that will be executed when an onClick
event on this button occurs. The domain expert does not provide the actual logic
in the onClick event to support that user interaction, but rather specifies only the
name of the method or function that will be implemented by a developer in a con-
crete implementation language depending on the platform and device.

We need total of five such buttons and one drop downmenu for selecting towns
for our example from Figure 9.

The final result looks like this in the editor:

154

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 12. Final Result for TOP Menu bar Example

Now we are ready to transform the UIML document into an XForms document.
For that purpose we use the “wrench” icon button on the toolbar.

3.1.4. Final Result

The final XForms result, obtained via the XSL files contained within the editor, is
then rendered in the browser:

Figure 14. Final Result Rendered in the Browser via XSLTForms

This last step ismanual and requires the user to save the result of the transformation
to a new file that is then opened with an XForms implementation of choice.

155

Graphical User Interface Tool for Designing Model-Based User Interfaces

Figure 13. Transformed UIML Document into XForms Document

4. Conclusion and Future Work
The main challenge was to develop the environment that allows people to create
their own UIs without any XML knowledge [EUD06]. End-User Development is a
set of techniques and methods that allow users without professional background
to create or modify a software artifact. At the same time, the editor allows profes-
sional users to modify the XSL transformations performed in background and the
Cascading Style Sheets governing the appearance of the final UIs.

The editor allows the users to create both UIML and XForms documents. In
other words, the end usermight only create and save the UIML documents without
transforming them to XForms (or transforming them at a later stage). The actual
transformation is concealed from the end user, hiding away the additional complex-
ity.

The uimlBuddy editor is still a proof of concept, meaning that its functionality
is limited and not all types of UI controls and interactions are supported yet.
Moreover, additional work is required to further facilitate the End-User Develop-
ment, more precisely; additional user-aiding concepts such as code highlighting,
tips and hints.

Our approach and editor can theoretically support all kinds and forms of user
interfaces. UIML was also created with that intention in mind. At the same time,

156

Graphical User Interface Tool for Designing Model-Based User Interfaces

the current state of the XSL transformations and the uimlBuddy editor tend to be
more suited towards form-based and grid-based user interfaces. In oder to support
a diversity of graphical user interfaces,we need to support additional types of layouts
that are more flexible.

Another step forward is the ability of the editor to support multi-modal devel-
opment in the future. For that purpose additional functionality has to be created
that will support the linking towards different interface models, or task models.
Additionally, support for adaptive and plastic UI, as concepts related to adapting
to varying context, could be considered as a future path for extending out approach.

Furthermore, in this paperwedemonstrated the use ofUIMLwithout the <peers>
tag – a significant part of theMeta-InformationModel. That being said, the <peers>
tag and its subelements can be reintroduced at a later stage and thus allowmodeling
of user interfaces for more concrete platforms other than XForms and XHTML.

In this paper, we presented a WYSIWYM editor for the User Interface Markup
Language (UIML). The editor is able to create UIs and transform them via XSLT to
XForms,which is our concrete target platform. Additionally, we presentedmodific-
ations to the latest specifications ofUIMLand the underlyingMIMmodel to facilitate
the proof of concept of end user development with UIML.

Bibliography
[1] Further references: UIML, GameX, Event-Based Programming, Cameleon

Reference Framework, End-User Development, User Interface Software Tools,
Graphical User Interface Programming.

[2] Anne Brüggemann-Klein, Mustapha Maalej, Marouane Sayih. XML Schema
Identity Constraints Revisited. XMLPrague 2014, 2014. available from
http://www.xmlprague.cz/sessions2014/#xsd.

[3] Anne Brüggemann-Klein,MustaphaMaalej,Marouane Sayih. Identity Constraints
for XML . Balisage 2014, 2014. available from
http://www.balisage.net/Proceedings/vol13/html/Maalej01/BalisageVol13-Maalej01.html.
doi:10.4242/BalisageVol13.Maalej01.

[4] Marouane Sayih, Martin Kuhn, Anne Brüggemann-Klein. GameX - Event-Based
Programming with XML Technology . Balisage 2014, 2014. available from
http://www.balisage.net/Proceedings/vol13/html/Bruggemann-Klein01/BalisageVol13-Bruggemann-Klein01.html.
doi:10.4242/BalisageVol13.Bruggemann-Klein01.

[5] Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L.,
Paternò, F., Santoro, C., Souchon, N., Thevenin, D., Vanderdonckt, J. The
CAMELEON Reference Framework. available from
http://giove.isti.cnr.it/projects/cameleon.html.

157

Graphical User Interface Tool for Designing Model-Based User Interfaces

[6]Michael Kay.XSLTransformations (XSLT) Version 2.0,W3C, 2007, Conflict Resolution
for Template Rules . available from http://www.w3.org/TR/xslt20/#conflict.

[7] Martin Kuhn. Lerning Systemic Thinking: Design and Implementation of a Browser
Game based on XML Technology. Master Thesis, TU München, 2014.

[8] Henry Lieberman, Fabio Paterno, Markus Klann, Volker Wulf. End-User
Development: AnEmergingParadigm. Human-Computer Interaction Series, Volume
9. Springer 2006. pp. 1-8.

[9] Mustapha Maalej, Anne Brüggemann-Klein. Generating Schema-Aware XML
Editors in XForms . Balisage 2013, 2013. available from
http://www.balisage.net/Proceedings/vol11/html/Bruggemann-Klein01/BalisageVol11-Bruggemann-Klein01.html.
doi:10.4242/BalisageVol11.Bruggemann-Klein01.

[10] Brad A. Myers. Graphical User Interface Programming. chapter 48 of Computer
ScienceHandbook -- Second Edition. Allen B. Tucker, editor in chief. Boca Raton,
FL: Chapman & Hall/CRC Press, Inc., 2004. pp. 48-1 - 48-29.

[11] Brad A. Myers. User Interface Software Tools. ACM Transactions on
Computer-human Interaction, Vol. 2, No. 1, March, 1995. pp 64-103.

[12] Brad A. Myers, Mary Beth Rosson. Survey on User Interface Programming. Proc.
of the 10th Annual CHI Conference on Human Factors in Computing Systems,
2000. pp. 195-202.

[13] Constantinus Phanouriou. UIML: A Device-Independent User Interface Markup
Language. PhD Thesis, Virginia Polytechnic Institute and State University, 2000.

[14] UIML4.0 specification. available from
http://docs.oasis-open.org/uiml/v4.0/uiml-4.0.pdf, 2009.

158

Graphical User Interface Tool for Designing Model-Based User Interfaces

Survey State Model (SSM)
XML Authoring of electronic questionnaires

Jose Lloret
The Robert Gordon University

<j.m.lloret-perez@rgu.ac.uk>
Nirmalie Wiratunga

The Robert Gordon University
<n.wiratunga@rgu.ac.uk>

Abstract

Computer Assisted Interviewing (CAI) systems use questionnaires as the in-
struments to conduct survey research. XML constitutes a formal way to rep-
resent the features of questionnaires which include content coverage, person-
alisation aspects and importantly routing functionalities. In this paper we
conduct a comparative analysis on different XML approaches to questionnaire
modelling. Our findings suggest that existing language formalism are more
likely to cover content coverage but often fail to model routing aspects.

In particular the popular hierarchical approach to modelling routing
functionality has one or more draw backs along the lines of ability to facilitate
questionnaire logic validation, ease of understanding by domain experts and
flexibility to enable refinements to questionnaires.

Accordingly we introduce the Survey State Model (SSM) XML language
based on a state-transition model to address these shortcomings. We present
our results from testing SSM on a sample of real-world surveys from Pexel
Research Services in the UK. We use the distribution of SSM's vocabulary
on this sample to demonstrate SSM's applicability and its coverage of ques-
tionnaire constructs and effective routing support.

Keywords: XML, XSD, SCH, authoring, survey, questionnaire, CAI,
hierarchical model, state-transition model

1. Introduction
Surveys are the systematic collection of information from individuals or organiza-
tions to address research and business objectives [1]. Questionnaires are one of the
instruments of surveys utilised to collect data considered as structured interviews.

The Computer Assisted Interviewing (CAI) systems allow the design, collection,
management, analysis and reporting of surveys through computers and they should

159

have a specification language addressed to describe every feature presented in
questionnaires.

XMLwas designed to represent structured documents and as suchmay be used
to formally represent every requirement from questionnaires. These requirements
are imposed by the designers of surveyswhodecide the order inwhich the questions
are shown to the respondent as well as the possibility to be asked or not based on
respondent previous answers. The use of XML to describe questionnaire's specific-
ation may reduce the need of programmers to implement questions order as well
as complicated logical decisions since the creation of intuitive interfaces can generate
questionnaire's requirements easily in XML. Also, the exchangeability inherent in
XML allows the design of questionnaires be circulated among different Computer
Assisted Interviewing (CAI) systems without hardware or software restrictions.

Pexel Research Services carries out a large number of surveys through telephone
every year based on client's specification. As such they use a Computer Assisted
Interviewing (CAI) solution to conduct surveys but they are keen to consider altern-
ative solutions which may offer commercial advantages over existing systems.

The rest of this paper is structured as follows: Section 2 explains what question-
naires are and the features that may appear on them. Section 3 reviews the different
approaches based on XML aimed to represent questionnaires. Section 4 present the
desired criteria when modelling routing of questionnaires and explains the most
popular approach used to model the routing of questionnaires. Section 5 presents
our alternative solution to describe surveys based on state-transitionmodel inwhich
XML examples are provided. Finally, Section 6 summarizes the results obtained
after testing our approach based on real surveys provided by Pexel Research services.

2. Electronic questionnaires
A questionnaire is one of the instruments of surveys to collect information from
people or organizations. A paper questionnaire contains a set of questions addressed
to the interviewees and instructions for interviewers which allow skipping over
questions or even directly jumping to the end of the questionnaire [4] based on in-
terviewee responses.

Table 1. Paper questionnaire

INF1. This is an example survey to demonstrate the features that can appear in
electronic questionnaires.
Q1. How often do you use your car?

160

Survey State Model (SSM)

01. Never GOTO END
02. Almost never GOTO END
03. Occasionally/SometimesGOTO END
04. Amost every time
05. Every time
Q2.Which brands are you aware of? [FIRST SPONTANEOUSMENTION]
01. A
02. B
03. C
04. D
05. E
06. F
07. G
08. H
99. Don't knowGOTO END
Q3.Which brands are you aware of? [OTHERSPONTANEOUSMENTIONSQ2]
Q4. Using a scale 1 to 5 where; 5=essential, 4=very important, 3=quite important,
2=relatively unimportant and 1=not at all important. How important are the follow-
ing safety features when you want to buy a car?
01. Stable body shell
02. Pre-tensioned and load-limited seatbelts
03. Good head restraints
04. Seat-mounted side airbags
05. Side curtain airbags
06. Knee airbags
[IF 'F' IS SELECTED IN Q2 OR Q3 OTHERWISE GOTO END]
Q5. How many cars have you had or have of F brand?
[REPEAT Q6a FOR EACH CAR]

Q6a.Were you satisfied of the safety features?

01. Yes
02. No
03. Don't remember

161

Survey State Model (SSM)

[IF SATISFIED FOR EVERY CAR OF 'F']
INF2. We are happy that you always like our safety features and we hope you
consider us again for future purchases.
END. THANKS AND CLOSE

Generally a questionnaire is divided into sections where the presence of intro
sentences to introduce or end a section becomes important to locate the respondent.
This example includes an outer section for INF1, Q1, Q2, Q3, Q4, Q5, INF2 and an
inner section for Q6a.

Table 1 presents a small questionnaire that nevertheless demonstrates a variety
of common constructs ranging from simple to complex semantics. Themost common
types of questions are single-response, multiple-response and open-ended (e.g. Q1, Q3,
Q5 respectively). Whilst grid (e.g. Q4), unlike the common constructs differs in the
manner inwhich a respondent chooses the responses and remainsmore cognitively
demanding on the interviewee [6].

The instructions, in bold font, are normally needed to manage questionnaire
routing according to responses from the interviewee. There are three such routing
constructs in this example:
• skip feature attached over responses in Q1 or Q2, known as unconditional skips,

as well as conditional skips linked in the Q5.
• filter constructs, based on a logical expression involving the responses to one or

more questions. They are represented using if-then-else statement, for instance
the instructions attached over Q5, INF2.

• loop feature, allowing the execution of a part of the questionnaire a number of
times. The instruction over Q6a permits the execution of that question as many
times as the respondent had/has cars of F brand.

In addition to the constructs discussed above there are several additional features
in electronic questionnaires that are not present in paper questionnaires:
• Pipingwhich allows the retrieval of an answer from a previous question as part

of the text for another or the automatic generation of responses based on a ex-
pression (e.g. Q3 responses are generated automatically according to the re-
sponses non-selected in Q2).

• Computation that constitutes the execution of an arithmetical expression and its
assignment over a variable referenced. Usually it is used to communicate data
among sections. For example, after Q6a, if the respondent was satisfiedwith the
safety features, the addition and assignament over a variable could be used in
the logical expression preceding INF2.

• Check which involves the satisfaction of a logical expression notifying the re-
spondent to solve the inconsistency if it is not fulfilled. For instance, imagine a

162

Survey State Model (SSM)

scenario in which it was asked: "Qx. do you use a car to go working?" and the
respondent replied yes, after it was asked "Qy. how much do spend on petrol?"
and the respondent answered zero. This construct might create a logical expres-
sion "check Qy is greather that cero if Qx is yes" warning or stopping the flow of
the questionnaire until the inconsistency was solved.

3. Related work
A Computer Assisted Interviewing (CAI) system should have a specification lan-
guage addressed to describe the features of questionnaires at a much higher level
than a programming language in which these constructs will eventually be manip-
ulated. As such, the authoring languages Computer-Assisted Survey Execution
System (CASES) [7] and BLAISE [8] provide this level of abstract language specific-
ation covering a substantial number of questionnaire constructs. However they each
use a proprietary representation language which constrains its adoption and wide
scale usage.

In more recent work XML based formal representation of questionnaires has
increased in popularity. Table 2 summarizes for each language in the literature the
set of questionnaire features that are being addressed. First, contentwhich contains
the possible types of questions that may appear over questionnaires as well as how
these may be grouped. Secondly, routing which eliminates the need to follow
questionnaire intructions manually. Usually, the routing is described through
boolean expressions (e.g. skip, filter, loop and check) but may use arithmetical ex-
pressions (e.g. computation) to guide the respondent through the questionnaire
and finally personalise to adapt the survey to the respondent and to create dynamic
adaptation of content at run-time. In this category, protecting a respondent's privacy
through the randomising of responses to a question to reduce bias evasive responses
[15], or rotating constructs are examples widely used in surveys.

The content category iswell represented in each language explored because they
cover the three type of questions most used (single, multiple and open) as well as
section. However, Survey Interchange Standard (Triple-S) [2] and Questionnaire
Definition Language (QDL) [9] do not contain intro questions and none of them
provide the possibility to represent grid questions. Despite the fact that grid could
be replaced through several single ormultiple questions,we have decided to include
this construct as a new question type because it is widely used and covered by Az-
zara in the design of questionnaires [1].

The routing is partially covered in Survey Interchange Standard (Triple-S) in
the form of simple filters based on logical question (e.g. question with Yes/No an-
swers). Simple Survey System (SSS) and StructuredQuestionnaire BuildingLanguage
(SQBL) offer filter and loop constructs but they do not implement the skip feature.
This could be because this feature can be reversed and use filters instead [3] or be-
cause a questionnaire designed without skip constructs is easier to modify, share

163

Survey State Model (SSM)

Table 2. Features of electronic surveys

QDLSQBLSSSTriple-SFeatureCategory
✓✓✓✓Section

Content

✗✓✓✗Intro
✓✓✓✓Single-re-

sponse
✓✓✓✓Multiple-

response
✓✓✓✓O p e n -

ended
✗✗✗✗Grid
✓✗✗✗Skip

Routing

✓✓✓✗Filter
✓✓✓✗Loop
✓✗✗✗Check
✓✗✓✗Computa-

tion
✗Partial✗✗Piping

Personal-
isation ✗Partial✗✗Random-

ising
✗✗✗✗Rotating

and understand [10]. In regard to Questionnaire Definition Language (QDL), it is
the only candidate able to represent every routing feature, however its expressions
are typed in infix mode involving the use of parenthesis that result in complicated
expressions that are prone to error and harder to process.

The personalisation features are only partially covered by Structured Question-
naire Building Language (SQBL) although it is less able to generate automatic re-
sponses from previous answers to single/ multiple questions and does not offer
random order or rotating of responses to a question.

There are different ways to model the routing that questionnaires follow like
flowcharts or the use of graph theory principles but the hierarchical model is the
most popular among the languages that we have explored.

The hierarchicalmodel is the approachused to describe the flowof questionnaires
in Simple Survey System (SSS) and Structured Questionnaire Building Language
(SQBL) and we have studied them in order to address the following questions:
• Does the hierarchical model lend itself to questionnaire design?

164

Survey State Model (SSM)

• How can features in a questionnaire be represented in an XML authoring lan-
guage?

Other language approaches such as Survey Interchange Standard (Triple-S) is not
considered in our comparative analysis because it does not offer a modelling ap-
proach or in the case of Questionnaire Definition Language (QDL) which is not
supported any longer.

4. Hierarchical routing model
A language for questionnaire should provide a means to express both content fea-
tures as well as vocabulary to express the routing of questionnaires. The latter is
particularly challenging as it requires the modelling of sophisticated logic which
dynamically impacts the relevance of questions given one or more responses to
previous questions.

So what are the criteria that must be considered when creating a representation
to model question routing?
• pre-test: A pre-test is a formal review of a questionnaire [5] aimed at discovering

problematic questions and rewriting them to improve understanding. This is
expected to lead to improved collection of responses. For instance in a pre-test
one would expect to discover any logical inconsistencies in the routing. Thus, a
model in which testing does not become cumbersome is beneficial.

• matching design-model: The designers of questionnaires specify routing through
skip constructs or filters and having a model to support both features should be
useful in many questionnaire design projects [13].

• adaptability: It is frequent to introduce changes after the questionnaire implement-
ation in the Computer Assisted Interviewing (CAI) system, so a model in which
the changes are easy to make would be desirable.

There are variety ofmodelling approaches that have been proposed for questionnaire
routing management. Flow-charts which are used in programming languages not
surprisingly has also been used to develop and understand questionnaires [11].
Accordingly the applicability of graph theoretic relationships has been studied by
Fagan and Greenberg [14] in the context of questionnaires with particular focus on
modelling skip logic that allows skipping over questions based on responses to
previous questions. Generally questions, can be modelled as vertices, and skip
constructs, modelled as edges that direct the source and destination questions.
However, to the best of our knowledge such approaches tomodelling routing beha-
viour have not been developed in to a formal XML representation.

A more promising approach to routing behaviour modelling can be seen in the
hierarchical model, used in Simple Survey System (SSS) and Structured Question-
naire Building Language (SQBL) (see Figure 1). Here boxes represent questions and
filters are diamonds. The logic behind this approach is a tree that presents advantages

165

Survey State Model (SSM)

like: each question has one and only one path to determine its reachability. The
tracing through directed edges between parent-child relationships also allows to
determine all circumstances under which a question can be executed [10].

In particular the hierarchical model enables easy pre-testing of a questionnaire
as it allows exploration of one or more paths from the start node to any selected
end node. For instance, in order to test Q4 isolated, four previous questions must
be reached (INF1, Q1, Q2, Q3) and three filters have to be true.

In regard tomatching design-model, this alternative does not offer skip features
which requires the negation of the logic when questionnaires are described using
these constructs. Despite the fact that questionnaires could be described using filters
only, the designers of questionnaires are usually non-programmers and they con-
tinue to use skips. This means that although the hierarchical model can be used to
model routing behaviour; expecting designers to interpret any skip logic as filters
is likely to be demanding. For example, the unconditional skips attached over the
responses 01, 02, 03 of Q1 represented with a filter would be NOT(Q1 EQ '01' OR
Q1 EQ '02' OR Q1 EQ '03) then Q2 else END.

Concerning the adaptability to changes, imagine a simple modification of the
survey example in the Table 1 to introduce a new skip over the response 04 (Almost
every time) in Q1. This scenario would require another filter to determine whether
this response was selected or not as well as the duplication of the question Q4 since
the other Q4 modelled is not directly reachable due to the logic inherited from a
tree.

5. Survey State Model (SSM) solution
We propose a state-transition based modelling approach to better address the
routing requirements involving pre-testing, designing and adaptability criteria.

The state-transition model, depicted in Figure 2, describes the questionnaire
presented in Table 1. This model contains various types of states that are linked
through transitions to form state-models. This approach has a set of initial states
addressed to decide what state is executed first (e.g. filled circle pointing to INF1
or Q6a) as well as a group of states indicating the ending and represented by filled
circleswith awhite outline. Each state-model includes a set of variables representing
different types of question (e.g. Q1, Q2, Q3, Q4, Q5, Q6a are variableswhich describe
questions and their values stored) or fields used for computations constructs (e.g.
SATISFIED describing an integer number of cars in which the respondent is happy
with the safety features). Every transition connects a source with a target state and
allows the description of every possible route through the questionnaire. Transtions
with decision states involving a source is depicted as diamond. Such nodes are se-
lected when a boolean expression is satisfied. We propose the use of Reverse Polish
Notation (RPN) [16] for all expressions involving variables and any constants that
appear in our state model. This approach is considered faster than infix or prefix

166

Survey State Model (SSM)

Figure 1. Hierarchical model

notations because the expressions do not need parenthesis and fewer operations
are required to solve the expressions. There are several expressions implemented
in the example like [Q1, '01', IS_SEL, Q1, '02', IS_SEL, OR, Q1, '03', IS_SEL, OR] ad-
dressed to decide whether ending the questionnaire or continuining with Q2.

167

Survey State Model (SSM)

Figure 2. State-transition model

168

Survey State Model (SSM)

Accordingly we formalise the state-transtion model that is applied to question-
naire routing as follows:

(1)M = 〈Q, V , T , I , E〉

where,

1. Q ≠ ∅ is a finite set of states. These states are: simple, composite, if-then-else,
for, check, computation and sink.

2. V is the set of variables. Every variable V may be accessed at every non-sink
state q ∈ Q .

3. T is a finite set of transitions.

A transition t ∈ T is represented as q→
[c]
q' , where {q, q'} ∈ Q and c is a boolean

expression involving variables of V and/or constants. The absence of c is inter-
preted to true.

4. I ⊂ Q is the set of initial or source states. These states determine which state is
the first to be reached for a state-model defined.

5. E ⊂ Q is the set of end states. These states determine which state is the last to
be reached for a state-model defined.

5.1. States of Survey State Model (SSM)
In addition to meeting the routing criteria discussed in the previous section, a
questionnairemodelling language should also have a good coverage of the different
types of questionnaire routing logic. In the proposed Survey StateModel (SSM) this
translates to the different types of states that can be modelled. These are discussed
next with reference to the question types illustrated in Figure 2. Additionally, each
state explained endswith anXML code according to SSMXMLauthoring language.
• Simple state is responsible for retrieving the content of the variable (i.e. the

definition of the question aswell as the response stored, if any). This state allows
retrieving one or more variables simultaneously which means the Computer
Assisted Interviewing (CAI) system should present on the screen every variable
referenced. For instance, Q1 state references the single-response variable Q1.

<state id="Q1">
<variable ref="Q1"/>
<transition target="p0"/> <!-- p0 is the decision state

after Q1 -->
</state>

169

Survey State Model (SSM)

• Composite state permits to switch and reuse the state-model referenced. It could
be seen as functions in structured programming in which the code under that
function is executed. For instance, the block 1 is called as many times as the
range defined after Q5 is true.

<state id="c1"> <!-- c1 is the state pointed by the
transition RANGE[0, Q5, 1]-->

<include statemodel="block1"/>
</state>

• If-then-else state represents the filter and skip features of questionnaires. It is
composed of a boolean expression in Reverse PolishNotation (RPN) and permits
describing two transitions then and else for true and false result of the expression
respectively. For instance, the diamond betweenQ1 andQ2 implements the logic
for the unconditional skips attached over the responses of Q1. Due to the trans-
ition principle of this approach there is no difference between skip or filter. The
next XML example code decides whether skipping to the END of the question-
naire or continuing with the Q2. The expression in Reverse Polish Notation
(RPN) is [Q1, '01', IS_SEL, Q1, '02', IS_SEL, OR, Q1, '03', IS_SEL, OR] witch is
translated to five binary expressions because the operators IS_SEL andOR expect
two operands.

<state id="p0">
<if>

<condition>
<binary>

<binary>
<binary>

<variable ref="Q1"/>
<constant type="string" value="01"/>
<operator name="IS_SEL"/>

</binary>
<binary>

<variable ref="Q1"/>
<constant type="string" value="02"/>
<operator name="IS_SEL"/>

</binary>
<operator name="OR"/>

</binary>
<binary>

<variable ref="Q1"/>
<constant type="string" value="03"/>
<operator name="IS_SEL"/>

</binary>
<operator name="OR"/>

</binary>

170

Survey State Model (SSM)

</condition>
<then>

<transition target="sink0"/>
</then>
<else>

<transition target="Q2"/>
</else>

</if>
</state>

• For state matches with the loop feature of surveys and has two transitions, one
for the true and another for the false result of the boolean expression. This state
has start, end and step elements to define the boundaries of the range expression.
For example, the diamond after Q5 starts at 0, ends at the number stored in Q5
and increments in steps of 1. A true result switches to the second state-model
(e.g. block 1) whereas the false jumps to other state (e.g. the if-then-else state
pointing to INF2).

<state id="p4">
<for>

<field ref="p4_iterator"/>
<in>

<range>
<start><constant type="string" value="0"/></start>
<end><variable ref="Q5"/></end>
<step><constant type="string" value="1"/></step>

</range>
</in>
<transition target="c1"/><!-- c1 is the composite

state which includes
block1 -->

</for>
<transition target="p5"/><!-- p5 is the decision state

[Q5, SATISFIED, EQ] -->
</state>

• Check state defines a boolean expression inwhich the true result shows amessage
(warning or error) notifying to the respondent the trigger of an inconsistency.
The error message is aimed to stop the execution of the state-model until the
conflict is solved. The next XML code describes a expression to test whether Qy
is greather than zero or not. A true result should show the label "A car cannot
run without fuel" in warning mode.

<state id="py">
<check type="warning">

<condition>
<binary>

171

Survey State Model (SSM)

<variable ref="Qy"/>
<constant type="integer" value="0"/>
<operator name="GT"/>

</binary>
</condition>
<label lang="en">A car cannot run without fuel</label>

</check>
<transition target="pz"/>

</state>

• Computation state permits defining an arithmetical expression. For instance, the
state after Q6a, named as SATISFIED, describes an arithmetical operation of in-
crementing the variable by one. The use of this state allows referencing variables
out of the scope of an state-model like SATISFIED variable referenced in the if-
then-else state pointing to INF2 in the block 0.

<state id="p1">
<computation ref="SATISFIED">

<assignment>
<unary>

<variable ref="SATISFIED"/>
<operator name="INC"/>

</unary>
</assignment>

</computation>
<transition target="sink0"/> <!-- sink0 is the sink state

(filled circle with a white
outline)

</state>

• Sink state is aimed to describe the ending of the state-model. For example, the
two state-models, Block 0 and Block 1, contain sink states indicating that no
more states are reached after them. As the reader may appreciate, there are no
transitions going out from them.

<state id="sink0">
<sink/>

</state>

Finally, the start state is a property which determines the first state to execute in the
set of states from a state-model. As such, the following XML code describes the
source state for block 0 and block 1 respectively.

<statemodel id="block0">
<start id="INF1"/>
<state id="INF">...</state>
...
...

172

Survey State Model (SSM)

...
</statemodel>
<statemodel id="block1">

<start id="Q6a"/>
<state id="Q6a">...</state>
...
...
...

</statemodel>

5.2. Validation of questionnaires
Survey StateModel (SSM)XML language implements a two-steps validation process
to determine whether an XML document describing a questionnaire is correct or
not (see Figure 3). Both steps take as input theXML document to be validated against
a set of rules defined in a formal way to express syntax and/or semantics.

The first step checks the structure, form and syntax in XML Schema Definition
(XSD). For instance, "A section contains a set of questions and these may be intro, single-
response, multiple-response, open or grid.". This processmay finishwith "yes" involving
that the document should be passed to the second step or "no" which reports a
JavaScript Object Notation (JSON) document with the errors. If the errors are not
fatal the process carries on until the end of the file is detected, otherwise the process
stops checking at the line where the error was raised.

The second step examines the relationships among elements through Schematron
(SCH). For example, "Every transition's target must be a defined state in the statemodel".
Similarly, when a non valid XML file is encountered the process ends by commu-
nicating the errors through a JavaScript Object Notation (JSON) file. This process
is not able to differentiate between fatal and non-fatal so every error raised is repor-
ted.

6. Results
In order to test Survey State Model (SSM) XML authoring language coverage and
to know the relevance of every feature of questionnaires we used it to model a set
of 15 questionnaire that were sampled by Pexel Research Services Ltd. In particular
we studied the frequency distribution of SSM vocabulary over this sample of
questionnaires. Figure 4 shows the distribution of SSM vocabulary applied to a
sample of 14 test questionnaires sorted by decreasing order of frequency. The graph
includes SSMconstructs relating to content constructs (section, intro, single,multiple,
open, grid), routing behaviour (skip, filter, loop, check, computation) and personal-
isation constructs (piping, randomise, rotate). It was encouraging to us that all
questionnaires in the sample were represented using SSM. Apart from the check
and computation constructs, every other feature was included in them.

173

Survey State Model (SSM)

Figure 3. CAI validation process for SSM

Firstly, for the content category, may be affirmed that single-response has the
most significant frequencywhereas grid question,which unexpectedly has resulted
in the lowest important in terms of question types.

Secondly, for the routing classification, the skip feature is frequently most used
in our sample of questionnaires even though it is normally best avoided in conven-
tional programming languages [12]. Whilst it is true that programmatically it can
lead to non-elegant code constructs, here we conclude that it remains an important
feature of questionnaires and so should ideally be facilitated by the underlying
language of questionnaires. Computation feature,without any frequency at all, was
expected some significance since it becomes essential when a section requires data
from other section, however the absence of check does not constitute any surprise
since it is a rare feature over questionnaires.

Finally, for the personalising grouping, the three features are presented in the
sample tested andpiping constitutes themost used specially for generating responses
whereas randomising or rotating were less popular.

174

Survey State Model (SSM)

Figure 4. Real surveys frequencies

7. Conclusions
The use of XML to manage the representation of questionnaires for Computer As-
sisted Interviewing (CAI) systems is not new. We have conducted a detailed com-
parison of commonly used XML languages in terms of coverage of questionnaire
constructs to facilitate representation of content and routing functionality.

Our findings suggest that all existing formalisms to modelling the routing task
falls short in terms of one ormore of the three key criteria: pre-test, matching design-
model and adaptability to changes; similarly none of them covers all constructs that
are to be expected in questionnaires.

Accordingly to address this problem we have introduced Survey State Model
(SSM) XML language which uses a state-transition model to represent routing. Fi-
nally, our results from testing SSMon a set of real-world large-scale surveys suggest
that the state-transition model is not only able to represent a wider range of ques-
tionnaire constructs but also lends itself to addressing the challenges of the routing
task.

The authors would like to thank Bruce Leslie, technical Director of Pexel Research
Services, for giving his expertise at every stage of this survey research as well as for
selecting the variety of real-world survey samples. Also, we wish to thank to Pexel
Research Services because without the funding provided by the company, the re-
search paper would not have been possible.

175

Survey State Model (SSM)

Bibliography
[1] Carey V. Azzara. Questionnaire design for business research. Tate Publishing &

Enterprises, LLC.
[2] Laurance Gerrard, Keith Hughes, Steve Jenkins, Ed Ross, and Geoff Wright.

Triple-S XML, The Survey Interchange Standard. ASC.
[3] Albert D. Bethke. Representing Procedural Logic in XML. Journal of Software,

Vol. 3, No. 2. February 2008.
[4] Jelke Bethlehem. The routing structure of questionnaires. Internation Journal of

Market Research, Vol. 42, No. 1. 2000.
[5] IBMCorporation Software Group. The hows and whys of survey research. October

2012.
[6] Tim Bock. Market Research. http://mktresearch.org/wiki/Main_Page .
[7] University of California at Berkeley. Computer-Assisted Survey Execution System.

http://cases.berkeley.edu/ .
[8] Statistics Netherlands. Blaise, Survey software for professionals. http://

www.blaise.com/ .
[9] Jelke Bethlehem and Anco Hundepool. On the Documentation and Analysis of

Electronic Questionnaires. Statistics Netherlands. 2002.
[10] Samuel Spencer. A case against the Skip Statement. 2012.
[11] Thomas B. Jabine. Flow Charts: A Tool for Developing and Understanding Survey

Questionnaires. Journal of Official Statistics. Vol. 1, No. 2. 1985.
[12] Edsger W. Dijkstra. A Case against the GO TO Statement. ACM 11 (1968), 3:

147-148.. 1968.
[13] Irvin Katz, GeorgeMason, Linda Stinson, and Frederick Conrad. Questionnaire

designers versus instrument authors: Bottlenecks in the development of
computer-administered questionnaires.

[14] Jim Fagan and Brian V. Greenberg. Using graph theory to analyze skip patterns in
questionnaires. Statistical Research Division Bureau of the Census Washington,
D.C.. 1988.

[15] Stanley L. Warner. Randomized Response: A Survey Technique for Eliminating
Evasive Answer Bias. Journal of the American Statistical Association. Vol. 60,
No. 309. 1965.

[16] BobBrown. PostfixNotationMini-Lecture. http://bbrown.spsu.edu/web_lectures/
postfix/ .

176

Survey State Model (SSM)

http://mktresearch.org/wiki/Main_Page
http://cases.berkeley.edu/
http://www.blaise.com/
http://www.blaise.com/
http://bbrown.spsu.edu/web_lectures/postfix/
http://bbrown.spsu.edu/web_lectures/postfix/

Glossary

Computer Assisted Interviewing (CAI)

Survey Interchange Standard (Triple-S)

Questionnaire Definition Language (QDL)

Simple Survey System (SSS)

Structured Questionnaire Building Language (SQBL)

Survey State Model (SSM)

Computer-Assisted Survey Execution System (CASES)

XML Schema Definition (XSD)

Schematron (SCH)

JavaScript Object Notation (JSON)

Reverse Polish Notation (RPN)

177

Survey State Model (SSM)

178

Schematron for Information Architects
George Bina
Syncro Soft

<george@oxygenxml.com>

Abstract

Schematron is a different kind of XML schema language, it focuses not on the
grammar of the document but on different rules the structure and the content
should follow. It is used successfully in the industry to enforce business rules
onXMLdocuments. Although it contains only 21 elements and a few attributes
many people that do not have a technical background will be intimidated by
the thought of learning Schematron.

"Information architect" is an emerging profession in the XML information
domain that defines a role responsible for the overall structure of the informa-
tion models. Such a person should try to achieve consistent writing styles,
structures, and reuse decisions and communicate and enforce the information
model to information developers. While information architects will be able
understand the business needs they will not necessarily be experts on XSLT,
XPath, Schematron and other XML technologies.

As one of the missions of an information architect is to enforce an inform-
ationmodel and the use of a consistent structure and style, we can immediately
infer that Schematron will be a great tool to master, but we cannot expect these
people to become experts in Schematron. During many years of experience
with Schematron I discovered that if we follow a set of best practice rules we
canmake Schematron accessible to anyone, thus enabling information architects
to express business rules that will govern the XML information created by
XML authors.

We can structure Schematron rules to enable people that are not
Schematron experts to create business rules in an easy way and we can take
this idea further and build the business rules as part of a style guide, thus
single sourcing the prose and the rules to automatically enforce the prose of
the style guide. These ideas are materialized as an open source project on Git-
Hub.

Keywords: XML, Schematron, business rules, validation

179

1. Introduction
There are somany technologies these days aroundXML - there are at least 5 schema
languages (DTD, XML Schema, Relax NG, Schematron, NVDL), at least 3 main
processing languages (XSLT, XQuery, XProc), most of these with multiple versions,
etc. and it is very difficult to keep up with everything.

Many times I find myself planning to learn a new technology but never getting
the time to actually look into that and learn it, so I remain familiar with that techno-
logy, have some idea of what it can do but that is all. Usually, once I get the time
and start to learn a new technology, after a few a-ha moments I amwondering why
I did not lean that earlier. I think I am not alone and this happens to all of us.

In our busy world it becomes important to lower the entry barrier for any tech-
nology, so people can be able to use it sooner, without investing much of their time
initially and then, as they discover how that technology can help them, they will
be willing to invest more time to learn and master it. We try to find this low entry
point for Schematron, to get people to use Schematron right away.

2. Business rules
Business Rules are constraints that are not generic enough to be part of a standard
but they are relevant for a project or an organization.Here there are some examples:
• do not scale images dynamically in the XML source
• make sure list items do not end with a ";" character
• make sure the number ofwords in a short description stayswithin some specific

limits
The business rules are usually enforced before the content goes to the application
so they sit between validation and application processing. The border is not very
clearly defined, some rules can be implemented in the validation layer, especially
if we use a customized schema for our project or organization or moved into the
application layer if there is no business rules layer available.

One of the main roles for Schematron is to specify this type of checks, so
Schematron schemas usually act as the business rules layer between document
validation and application.

3. Information architects
One of the information architect role is to identify and specify the business rules
that the information should follow. Usually this is documented in some prose form
but the question is, how canwemake sure thatwhat iswritten in the prose is actually
enforced? And one answer to this is to implement what the prose says as business

180

Schematron for Information Architects

rules in Schematron. Thuswe should be able to automatically apply the Schematron
checks against a document and determine if there is any check that fails.

If the information architect identifies and documents the business rules it will
be great if he can also write the corresponding Schematron checks that implement
those business rules. Thus when he modifies a rule he can also update the
Schematron check that implements that rule. We cannot expect however, to have
all information architects become Schematron experts over night so we need to
think of a way that will allow them to define Schematron rules with aminimal level
of Schematron knowledge.

4. Schematron
Schematron is one of the 5 standards that specify schema languages for XML. It is
not focused on defining the structure of the documents, like the grammar-based
schema languages (DTD, XML Schema and Relax NG) but rather to check different
patterns in the documents.

Schematron was invented by Rick Jelliffe in 1999 and since 2006 it is an ISO/IEC
standard being part 3 of ISO/IEC 19757 – DSDL (Document Schema Definition
Language) Part 3, called "Rule-based validation".

The reference implementation for Schematron is called Skeleton and it is an
XSLT based implementation, the Schematron schema being translated to an XSLT
script that when applied on the XML document will provide the Schematron valid-
ation result.

Alongwith being tuned for expressing business rules, one of themain advantage
of using Schematron is that the error messages are defined by the schema author
so they can be written in a language that the writer of the document will easily un-
derstand, in contrast with the more generic validation messages provided by a
validation against a grammar based schema language.

Usual use cases for Schematron include:
• provide error messages that writers/authors can easily understand
• check rules that cannot be specified in the DTD or XML schema
• check for common mistakes
• controlled values - check against an external data source
• integrity checks across multiple files
• style guide integration
• checks for targeting a specific deliverable, for example if you want to publish

for mobile devices

181

Schematron for Information Architects

5. Simple use of Schematron
During the last years I presented Schematron at many events, introducing this
technology to different users, usually not very technical users. Doing this I received
interesting feedback from participants and that feedback pointed positively to the
use of abstract patterns.

A specific check is implemented in Schematron as a pattern that contains a set
of rules, fromwhich only onewill be activated, depending on the context. Each rule
contains a number of assertions and reports that are verified in the rule context. To
be able to reuse pattern definitions for similar checks, Schematron introduced the
notion of abstract patterns,where the pattern definition can contain someparameters
that will be provided with specific values whenever the abstract pattern will be in-
stantiated for an actual use. Now, the complexity of the check remains in the abstract
pattern definition, while the instantiation of the pattern is very simple, it just points
to the abstract pattern name and provides values for its parameters.

Example 1. A Schematron abstract pattern and its instantiations

<pattern id="restrictWords" abstract="true">
<title>
Check the number of words to be within certain limits

</title>
<p>This pattern allows to check that the number of words in an
element fits between a lower and an upper limit and instructs
the user to stay within thse limits.</p>

<p>As parameters we have <emph>parentElement</emph> that
specifies the element containing the text to be checked,
<emph>minWords</emph> and <emph>maxWords</emph> that specify
the minimum and maximum number of words, respectively.</p>

<rule context="$parentElement">
<let name="words"

value="count(tokenize(normalize-space(.), ' '))"/>
<assert test="$words <= $maxWords" role="warn"

sqf:fix="restrictWords_setNew"> It is recommended to
not exceed <value-of select="'$maxWords '"/> words! You
have <value-of select="$words"/> <value-of
select="if ($words=1) then ' word' else ' words'"/>.

</assert>
<assert test="$words >= $minWords" role="warn"

sqf:fix="restrictWords_setNew"> It is recommended to
have at least <value-of select="'$minWords '"/> words! You
have <value-of select="$words"/> <value-of
select="if ($words=1) then ' word' else ' words'"/>.

</assert>

182

Schematron for Information Architects

</rule>
</pattern>

<pattern is-a="restrictWords" id="restrictDesctription">
<param name="parentElement" value="shortdesc"/>
<param name="minWords" value="3"/>
<param name="maxWords" value="50"/>

</pattern>

<pattern is-a="restrictWords" id="restrictAbstract">
<param name="parentElement" value="abstract"/>
<param name="minWords" value="10"/>
<param name="maxWords" value="100"/>

</pattern>

As can be seen in the example, the instantiations done by the restrictDesctription
and restrictAbstract patterns are very simple, their complexity derives only from
the semantics of the expected parameters, the user only needs to provide an element
name and two numbers that will represent the minimum and maximum number
of words to be present in that element. Anyone can learn the syntax for this in a few
minutes and then they can create specific patterns by instantiating the available
abstract patterns.

If we structure the use of Schematron by defining a library containing a set of
abstract patterns that implement generic rules, thenwe can create actual Schematron
schemas just by instantiating those generic patterns by referring to a pattern name
and specifying values for its parameters. We can define this as a best practice and
that will split the roles of using Schematron in 3 parts:
1. schematron developer

• defines a library of abstract patterns
• needs to know Schematron

2. information architect
• instantiates abstract patterns to define business rules
• needs to know only what rules are available and their parameters

3. document writer/author
• will be notified as he/she changes the document, as soon as an check fails
The information architect will identify business rules and will try to enforce

themautomaticallywith Schematron. For that hewill look into the library of available
generic rules to see if there is an abstract pattern that can be used to implement that
business rule. If such a pattern exists then he will just use it, otherwise he will make
a request for a new abstract pattern and define its generic processing and what
parameters should be provided. The Schematron developerwill implement the new
abstract pattern and when that is ready the information architect will be able to use

183

Schematron for Information Architects

it to implement the business rules. The document writer role remains the same, he
will just observe different notification messages that will identify potential issues
in the created information content.

The abstract patterns can be self documenting, we can use annotations with
enough information to describe the use cases for each generic rule and themeaning
of the expected parameters.

6. Integrating Schematron rules within a style guide
As an information architect identifies different rules and documents them in prose
as part of a style guide (guidelines, best practices, etc.) he will be able to instantiate
also generic patterns (assuming we have a library of abstract patterns as described
in the previous section) to implement an automatic enforcement of the prose of the
style guide. This, however, keeps the prose and the rules separated and they may
easily get out of sync.

If we look again at the instantiations of abstract patterns, we have in fact very
little information there and we should be able to easily encode that directly in the
style guide, if that uses a structured format like DITA, DocBook, etc. This will allow
us to single source the prose and the automatic checks in the same document, thus
reducing the cases when they get out of sync.

Because the style guide encodes all the information for a pattern instantiation it
means thatwe can process the style guide source and create the Schematron schema
containing the pattern instantiations.

To enable a better authoring experience, we can customize the editing environ-
ment to be aware of this specific encoding andmake it easier to insert new business
rules and provide a specific rendering for them.

7. Implementation
These ideas are implemented in an open source project calledDynamic Information
Model (DIM). This project provides one possible implementation of these ideas
based on a DITA encoded style guide, but other implementation may provide sim-
ilar support for DocBook or any other structuredmarkup that can be used to define
the style guide.

The DIM project was initiated by Syncro Soft and Comtech Services and it is
made available under Apache 2.0 license on GitHub at http://www.githug.com/
oxygenxml/dim.

It contains a starter DITA style guide donated by Comqtech Services, defined
as a DITA map and a set of topics. Schematron patterns that instantiate abstract
patterns from a library are encoded using data lists (dl elements) placed in a section
marked for a specific audience attribute. An XSLT script is used to extract the actual
Schematron schema from the DITA source.

184

Schematron for Information Architects

http://www.githug.com/oxygenxml/dim
http://www.githug.com/oxygenxml/dim

In addition to these, a customization of the oXygen XMLEditor editing environ-
ment is provided to offer a visual editor to easily create new patterns and discover
what each pattern does and what each parameter represents.

7.1. Encoding Schematron patterns in DITA
There are multiple possibilities to encode an instantiation of an abstract pattern in
DITA. They fall mainly in two parts - you either define specialized DITA markup
or define a specific pattern of existingmarkup to encode the information.Wedecided
to use the second approach to make it easy to specify Schematron patterns in any
DITA document, thus we do not have a requirement for the style guide topics to
be only from a specific set of specialized topic types.

We use a data list to specify the abstract pattern instantiations, we specify the
parameters and their values using the data term and data definition, respectively
and we specify the name of the abstract pattern using the data definition head. To
identify the data lists that hold Schematron pattern instantiations we require them
to be placed in a section marked with an audience attribute set to the value
"styleguide". Thus, the pattern instantiation:

<pattern is-a="restrictWords">
<param name="parentElement" value="shortdesc"/>
<param name="minWords" value="3"/>
<param name="maxWords" value="50"/>

</pattern>

will be encoded in DITA as:
<section audience="rules">
<dl>
<dlhead>
<dthd>Rule</dthd><ddhd>restrictWords</ddhd>

</dlhead>
<dlentry><dt>parentElement</dt><dd>shortdesc</dd></dlentry>
<dlentry><dt>minWords</dt><dd>3</dd></dlentry>
<dlentry><dt>maxWords</dt><dd>50</dd></dlentry>

</dl>
</section>

Having the patterns defined in sections marked with an audience profiling at-
tribute allows us to easily exclude or include these sections when we publish the
style guide.

7.2. Extracting Schematron from DITA sources
An XSLT script is provided that when applied on a DITA map that represents the
style guide will follow all maps and topics referred in the style guide and will

185

Schematron for Information Architects

identify all the data lists that represent encoded abstract pattern instantiations
converting them to the schematron patterns.

The XSLT scriptwill also read the Schematron library and it will generate include
statements for all the abstract patterns defined in the library.

7.3. Schematron library of abstract patterns
The Schematron library can be organized either as one file per abstract pattern or
we can groupmultiple patterns in the same schema file. The later approach however
will require using an experimental functionality to allow inclusion of a specific
element from a Schematron schema using a fragment identifier in the URL that will
point to the ID of the to be included element. We took the second approach taking
into account that this functionality is already supported in the Skeleton implement-
ation and that it makes it easier for processing to access the patterns from the same
file rather than looking for multiple files in a folder.

Example 2. Including an abstract pattern

<include href="library.sch#restrictWords"/>

restrictWord is the ID of an abstract pattern defined in the library.sch file.
In order to make the abstract patterns self documenting, they can be annotated

with information to contain a title and a description that will help a user understand
which use cases that pattern can solve andwhat parameters are available. To enable
automatic processing of the abstract patterns we annotated each parameter using
elements in a specific namespace. These annotations allow for easy detection of
what parameters are available for each abstract pattern. Such a detection is also
possiblewithout these annotations but itmay bemore difficult ifwe take into account
that abstract parameters andvariables have the same representation ($parameterName)
and that may appear also in a string literal, etc. As these abstract patterns are added
exactly with the scope of being used also by people without a lot of technical
knowledge, it seems reasonable to explicitly define the expected parameters and
document their meaning to enable creating a better user interface for users that will
instantiate them.

Example 3. Parameters annotation

For the restrictWords pattern we have the following annotation to describe the
abstract pattern parameters and their semantics:

<parameters xmlns="http://oxygenxml.com/ns/schematron/params">
<parameter>
<name>parentElement</name>
<desc>

186

Schematron for Information Architects

Specifies the element who's word number should be counted.
</desc>

</parameter>
<parameter>
<name>minWords</name>
<desc>
Specifies the minimum number of words that is accepted.

</desc>
</parameter>
<parameter>
<name>maxWords</name>
<desc>
Specifies the maximum number of words that is accepted.

</desc>
</parameter>

</parameters>

7.4. Easy creation of rules
To allow encoding pattern instantiations easily in DITA, we provide also a visual
interface that will lookup all the generic rules from the library (the set of available
abstract patterns) and present them to the user to choose the one hewants to instan-
tiate. Here we can take advantage of the annotation information to present the title
and the description. A filter is provided to allow finding a generic rule when we
have a large number of rules - the filter is applied on the name and also on the an-
notations provided for the abstract pattern.

187

Schematron for Information Architects

Figure 1. The dialog that helps selecting a business rule

The result of selecting a generic rule will be an XML fragment that represents the
data list encoding of the pattern instantiation, pointing to the abstract pattern we
want to instantiate and containing also the names of the possible parameters already
filled in. The user can then just fill in values for each parameter to create a specific
rule.

Figure 2. The visual rendering of a business rule (abstract pattern instantiation)

The UI actions use the oXygen API to insert the XML fragment that encodes the
pattern in DITA but a similar API can be used also to create such actions for other
XML tools.

188

Schematron for Information Architects

8. Deliverables
The main result we are interested in is the Schematron schema that implements the
rules defined in the style guide. However, the style guide itself is also a deliverable
and it can be published in different formats. The Schematron rules and the style
guide are dynamically linked, each reported issue will link to the style guide topic
that contained the abstract pattern instantiation corresponding to the schematron
pattern that generated that issue.

Figure 3. Schematron reported issue and the URL to the style guide it points to

This reported issue points to the style guide topic that contains the abstract pattern
instantiations as well as the prose that triggered that business rule

9. Conclusions and future work
By defining a library of abstract patterns we enable people to use Schematron in a
very simpleway - just instantiate the available generic rules by providing parameters
to them, thus lowering the entry barrier for non technical people to start using
Schematron. Taking this one step further and defining the patterns inside a style
guide, together with helper actions to easily identify available generic rules and to
insert the corresponding encoding of the Schematron pattern in the style guide
helps to lower the barrier even more and to single source the style guide and the
rules that enforce it on documents.

An interesting approach toDITA encoded Schematron patternswill be to imple-
ment a custom URL scheme that will return the Schematron rules when the style
guidemap is accessed though thatURL scheme, thus removing the need for conver-
sion to Schematron.Another possibilitywill be to extend the Schematron implement-
ation and extract the Schematron rules from DITA in a way similar to how the

189

Schematron for Information Architects

Figure 4. Style guide entry containing the prose the business rule implements

Skeleton implementation extracts embedded Schematron rules from XML Schema
and Relax NG schemas.

We plan to create a comprehensive library of abstract patterns that will be gen-
erally available as part of the DIM project trying to decrease the cases when an in-
formation architect will need to ask the Schematron developer to create a new ab-
stract pattern (generic rule). Those patterns will be used to instantiate rules in the
style guide included in the DIM project.

In interesting development on top of Schematron is the quick fixes support ini-
tiated by Nico Kutscherauer. Quick fixes are actions that the user can select to solve
a reported problem. We can extend the abstract patters to include also quick fixes
actions and thus the authors will be able to select a possible fix to the reported
problem.

Bibliography
[1] Information technology -- Document Schema Definition Language (DSDL) -- Part 3:

Rule-based validation -- Schematron.
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip.

[2] The Dynamic Information Model project. Comtech Services. Syncro Soft.
http://www.github.com/oxygenxml/dim.

[3] Schematron Quick Fixes. Nico Kutscherauer.
http://www.schematron-quickfix.com/index.html.

190

Schematron for Information Architects

TXSTEP – an integrated XML-based
scripting language

for scholarly text data processing
Wilhelm Ott

University of Tuebingen
<wilhelm.ott@uni-tuebingen.de>

Tobias Ott
pagina publication technologies ltd.

<tobias.ott@pagina-tuebingen.de>

1. Introduction
With TXSTEP, we present and put up to discussion a preliminary version of a new,
powerful XML-based tool for scholarly research in the text-based humanities. Its
architecture is based onmore than 40 years of experience in supporting humanities
projects at the University of Tübingen and beyond.

The purpose of TXSTEP is not to provide another toolbox containing ready-made
solutions for pre-defined problems. Of course, tools like these are adequate formany
purposes; but we see no urgency to add a further one to the existing packages of
this kind.

In fact, TXSTEP has been designed as a high performing scripting environment
for the serious humanities scholar and other professionals in text data processing
who face problems not easily solvable by XSLT or other means. TXSTEP gives them
complete control over every detail of the data processing part of their projects.

TXSTEPs architecture is based on the Tübingen System of Text Processing tools,
TUSTEP, whose current version is the result of more than 40 years of experience in
supporting humanities projects at the University of Tübingen and beyond.

2. Humanities software: basic requirements
Software for serious humanities research has to have certain basic qualities:
• it must be easy to handle, so that the scholar who is an expert in his field, but

not in programming or computer science, can use it safely;
• it must be flexible enough to be adapted to the special requirements of each

project, be it a philological analysis of a text or the preparation of a critical edition;
• it should support not only single phases of a project, but all its stages and steps,

including (for an editorial project) a first transcription of the sources and the

191

collation of the transcribed texts, the evaluation of the variant readings, the
constitution of the edition text and the critical apparatus, up to (and even beyond)
the preparation of the final publication of text, apparatuses, and indexes.

TXSTEP tries to satisfy these somewhat contradicting requirements by taking into
account the fundamental operations necessary for the scholarly processing of textual
data, and by providing a separate programmodule for each of these basic functions.

3. The solution: 1. Modularity
These modules may be combined almost arbitrarily: each module reads from and
writes to a single basic file structure. This allows to combine these modules like
Unix filters in arbitrary ways, giving the system the flexibility which is required for
scholarly research and which allows to perform work not explicitely foreseen by
the developers.

Where necessary, the single modules can be adapted to special requirements by
the user, who may change default parameters (e.g. for providing a sort key for a
non-latin alphabet) or provide additional ones (e.g. for the omission of the definite
article in the sort key for titles in bibliographic records).

How limited the scope of the single modules is, may be illustrated by the fact
that, for example, there is no dedicated program for generating an alphabetical
word list. For this purpose, the user who wants to prepare a script for this purpose,
e.g. for an index to a greek text, has to combine the module for text decomposition
(for which he has to provide the parameters defining the single elements and the
sort keys), the SORT module, and the module which reduces identical or partially
identical records contained in the sorted file to single index entries, and adds - when
required - informations like frequency counts and/or references to the source text.
For more complex tasks, like the preparation of a lemmatized concordance, other
modules may intervene.

The modules provided by TXSTEP include:
• collation of different versions of a text; output of the differences in a synoptic

list (for eye inspection) and for automatic processing in a file showing an appro-
priate structure;

• text correction and enhancement not only by an interactive editor, but also in
batch mode, e.g. by means of correction instructions prepared beforehand (by
manual transcription, or by program, e.g. the collation module);

• decomposing texts into elements (e.g. word forms) according to rules provided
by the user;

• building logical entities (e.g. bibliographic records) consisting of more than one
element or line of text;

192

TXSTEP

• sorting such elements or entities according to the sort keys provided by the
preparatorymodules, accounting also for non-latin alphabetical rules and other
sorting criteria;

• preparing indexes by generating entries from the sorted elements;
• transforming textual data by selecting records or elements, by replacing strings

or text parts, by rearranging, complementing or abbreviating text parts, by
making explicit numerical information implicitely contained in a text;

• integrating external information into a file by means of acronyms;
• updating crossreferences;
• converting textual data fromTUSTEPfiles into file formats used by other systems

(e.g. for statistical analysis or for electronic publication) and vice versa.
As the output of any one of these modules may serve as input to any other module,
the range of research problems for which this systemmay be helpful is quite wide.

In fact, TUSTEP, the Tübingen Systemof Text Processig tools, has been developed
along these lines. It has long been known as a very powerful set of tools for the
processing, analysis and publication of texts, meeting the requirements of scholarly
research. It has been and still is successfully used for many humanities projects in
the German speaking part of the world, as may be checked by visiting
www.tustep.org.

4. The solution: 2. XML interface to an established text processing
and analysis suite
At the same time, TUSTEP is said to have a very steep learning curve due to an
unfamiliar command-line based user interface, due to a proprietary syntax, and
due to the fact that the documentation is avaliable in German only.

TXSTEP breaks down these barriers to the usability of these tools for the growing
e-humanities community: it makes them available in a user-friendly XML-syntax,
allowing beginners and advancedprogrammers to utilize thewhole scope of TUSTEP
services in a modern, established scripting environment.

The benefits are obvious: support of an open standard,widespreaddissemination,
programming in everyXML-editor, syntax highlighting, code completion and intel-
ligible APIs.

193

TXSTEP

Figure 1. Comparing two (xml-)sources with TXSTEP, generating a diff-file as
output

Compared to the original TUSTEP command language, TXSTEP
• offers an up-to-date and established syntax
• allows to draft respective scripts using the same XML-editor as when writing

XSLT or other XML based scripts
• lets you enjoy the typical benefits of working with an XML editor, like content

completion, highlighting, showing annotations, and, of course, verifying your
code

• offers - to a certain degree - a self teaching environment by commenting on the
scope of every step.

• helps to avoid many syntactical errors, even compared to the original TUSTEP
scripting environment.

One of the features of TXSTEP is its capability to process almost all forms of textual
data, whether this being XML-data or plain text files. Therefore, even if textual data
have to be processed in the first place in order to gain, for example, TEI-data or to
enhance the markup of insufficiently tagged XML data, TXSTEP is at its place.

In an early stage of its development, TXSTEP has been subjected to a closer ex-
amination by Michael Sperberg-McQueen regarding its overall goal and design,
the syntax and structure of the XML command language, including details of

194

TXSTEP

naming and style, operating system dependencies, and its positioning within the
XML software ecosystem.His critics and proposals - and his very encouraging final
remarks - have been very helpful for the further work on the system in the past
three years.

Since then, thework on the project resulted in an operational version of TXSTEP
which already contains the most important features of all the modules of TUSTEP
listed above.

One of the features of TXSTEP is its capability to process almost all forms of
textual data, whether this being XML-data or plain text files. Therefore, even if
textual data have to be processed in the first place in order to gain, for example,
TEI-data or to enhance the markup of insufficiently tagged XML data, TXSTEP is
at its place.

The proposed paper will include a short demo of TXSTEPs functionality,
showing solutions also for taskswhich can not easily be performed by existingXML
tools.

TUSTEP and TXSTEP are open source software under the Revised BSD License
and are available for download from www.tustep.org

195

TXSTEP

196

In-Browser XML Document Streaming
Cyril Concolato

Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI
<cyril.concolato@telecom-paristech.fr>

Emmanouil Potetsianakis
Institut Mines-Télécom; Telecom ParisTech; CNRS LTCI
<emmanouil.potetsianakis@telecom-paristech.fr>

Abstract

Through the past few years, in-browser streaming of audiovisual content has
become a commodity. Due to the diverse nature of possible audiovisual applic-
ations, there is often a need for accompanying descriptors and other metadata,
such as semantic annotations, captions, etc. The metadata need to be sent in
a timely fashion along with the multimedia content. The use of XML in such
cases is common, and the usual approach for in-browser transmission of such
data is via AJAX. Even though AJAX can be sufficient for many services,
there is consideration for few offline or live scenarios. With MP4Box and
MP4Box.js we are able to synchronously stream and consume XML and
multimedia data, packaged in MP4 containers, with a standard browser. Ac-
companying XML documents can be transmitted as a whole, or progressively
(in fragments). In this paper, we define the use-cases for this technology,
analyze the requirements and present the mechanisms of MP4Box and
MP4Box.js for XML end-to-end transmission inside the browser.

Keywords: XML, Streaming, Multimedia

1. Introduction
With the bloomofHTML5 and its <video> and <audio> tags, audiovisual (A/V) content
transmission and presentation has become an essential functionality of the modern
browser. In 2013, IP video traffic accounted for the 66% of the total internet traffic,
and this number is expected to reach 79% by 2018, according to CISCO [1]. This
growth affects XML technologies, since an important use of XML is for storingmedia
information, subtitles, lyrics and other audiovisual content enhancements. The
aforementioned complementary XML documents have to be transmitted and pro-
cessed in-browser - synchronously with the main A/V content. However, such a
technology, with support for both online (live and on-demand) and offline content,
is yet to be widely spread.

197

Using the <video> element allows easy integration of A/V content, with common
web technologies such as HTML, CSS and Javascript. Specifically in the case of
Javascript, HTML5 defines an API consisting of Methods, Properties and Events,
aiming at A/V content control. However, there are several ways to deliver the actual
media to the client. As a result, the transmission of the accompanying XML docu-
ments and their proper handling on the receiving end becomes challenging.

In this paperwe propose an end-to-end approach for streamingXMLdocuments
in the browser. The multimedia content along with the accompanying XML docu-
ment(s) are packaged in aMP4 container. Then, they are transmitted synchronously,
and the received content is made available by the browser to the web application,
either live, or for offline consumption.

Synchronized In-Browser XML streaming can be applied to a plethora of use
cases. From common scenarios such as subtitling and vector graphic enhancements,
tomore exotic, such as distributedKinect-based applications formultimedia control
[2] or digital puppetry [3].

In Section 2, we present some past and current trends in XML streaming. Fol-
lowed in Section 3 by a description of our proposal for packaging XML inMP4 files.
Then in Section 4 and Section 5, we detail the implementation of the packaging
process with MP4Box, and the extraction mechanism in MP4Box.js, respectively.
Finally in Section 6, we conclude this paper and reveal our current work on the
topic.

2. Related Work
TheRemote Events for XML [4]W3CDraftwas producedwith the purpose ofDOM
events transmission. The syntax defined could have been used for document
streaming, besides the fact that itwas focused onDOMtree enhancements.However,
it did not include any notions of media synchronization or packaging. In the end,
the draft was dropped due to legal implications.

Niedermeier et. al. developed a technique for compression and streaming of
XML Data [6]. This schema-aware method is part of the MPEG-7 standard. XML
documents are run through a binary encoding algorithmand the resulting fragments
are transmitted. It also includes a text-encoding method. MPEG-7 streams can be
stored inMP4 containers. But neither of the stream formats is deployed in browsers
yet.

Apple HTTP Live Streaming (HLS) uses MPEG-2 Transport Streams (TS) for
media packaging and ID3 Tags for metadata [5]. However, the metadata is not in
an XML format, nor easily extractable within a browser. The WebVTT format also
used by HLS for subtitles could facilitate timed XML data delivery, but WebVTT
cannot be packaged in a singleMPEG-2 TS filewith the A/V content, making offline
processing and content distribution difficult.

198

In-Browser XML Document Streaming

A web development paradigm that can be used for in-browser metadata is
Asynchronous JavaScript and XML (AJAX). More specifically, in the Comet model
of AJAX, a persistent connection is established between the server and the client.
By using the open request made for the connection, it is up to the server to set the
event to commence the data transfer (Long-Polling technique).When the server has
available data, the client receives a Push Notification. Even though AJAX has some
advantages comparing to the other alternatives, it can only be used for online services
(not for offline). Our implementation on the other hand, is suitable for any consump-
tion mode - even offline.

3. The Mechanism
Asmentioned in Section 1, theXMLdocuments are packagedwith the accompanying
media file(s) in an MP4 container (the process is detailed in Section 4). Then, the
client browser is responsible for requesting the MP4 file from the server. The play-
back can be achieved via Simple Streaming, inwhichwe have a ProgressiveDownload
of the file, and it is the use-case of plain <video> tag. Alternatively, we can have Ad-
aptive Streaming by utilizing the extra functionalities provided by the use of Media
Source Extensions (MSE).

In respect to these media delivery methods, there are two ways XML data can
be streamed:
• One XML document per time (or time range). In this scenario, an entire XML docu-

ment is timely delivered, for consumptionwithin a time range of the audiovisual
content. This method can introduce some latency with sizable files, since it re-
quires the browser to fetch thewhole XMLdocument in order to use it, or it may
cause some overhead if the XMLdocuments are repetitive. However, it is simple
and applicable tomany use cases. An example usage is the carriage of [9] subtitles
in MP4 files.

• OneXMLSection (of a document) per time (or time range). In this scenario, fragments
of an XML document are coupled with a time range of the audiovisual content.
Fragments are delivered progressively, removing the latency of the previous
approach, but requiring a progressive consumption of the XML data. In partic-
ular, since the reception of the XML document is continuous and in fragments,
we cannot have a balanced XML at a given time. To remove the overhead of the
previous approach, common data is delivered upfront in a document header.
Finally, seeking into the document stream can be more complex than with the
previous scenario. It is only possible at positions in the document that require
only the header information and nothing between the header and the current
position. Such position is called a Random Access Point (RAP). The storage in
MP4 permits indications on where the RAPs are located in the stream, thus -in
conjunction with the header stored specifically- allowing seeking.

199

In-Browser XML Document Streaming

Both of the aforementioned delivery methods can be realized with our platform,
which is composed of two parts, and detailed below:
• a server side packaging solution (MP4Box)
• a client side browser tool (MP4Box.js)

3.1. MP4Box
In order to provide a complete end-to-end XML streaming solution, MP4Box can
be used for the packaging of the A/V and XML content in MP4 containers (on the
server side). MP4Box is part of the GPAC multimedia framework [8].

An example of XML document streaming would be Timed Text Markup Lan-
guage (TTML) subtitling [9]. In live scenarios, with real-time subtitle editing, several
XML documents can be packed in the A/V stream. For such cases, Timed Text sup-
port was added to the ISO Base Media File Format (ISOBMFF) MPEG-4 Part 30.

MP4Box achieves any XML stream integration, in a similar with TTMLmanner,
by using NHML descriptor files as follows:

MP4Box -add test_file.nhml:lang=en media_file.mp4

The NHML file details the integration of the XML documents in the MP4 track.
For the commandmentioned before, we can use a file as the one shown in Figure 1.

<?xml version="1.0" encoding="UTF-8" ?>
<NHNTStream version="1.0" timeScale="1000" trackID="1"

mediaType="meta" mediaSubType="metx"
xml_namespace="http://example.namespace.org">

<NHNTSample DTS="0" isRAP="yes" mediaFile="first.xml"/>
<NHNTSample DTS="10000" isRAP="yes" mediaFile="second.xml"/>
<NHNTSample DTS="20000" isRAP="yes" mediaFile="last.xml" duration="10000"/>

</NHNTStream>

Figure 1. Sample NHML file for packaging of multiple documents

With the above specifics, the metadata is inserted in an MP4 track with ID "1". This
track will contain media of type 'meta' (i.e. metadata) and subtype 'metx' (i.e. in
XML format). With this 'metx' configuration, we have one XML document per
sample, as indicated in Figure 2, with here 3 samplesmade of 3 different documents.
Other supported mediaTypes for XML packaging are shown in Table 1. The
'xml_namespace', is the namespace of the packaged XML document. The start time
(measured in timeScale units) of each sample is is given by the DTS attribute, set to
0 for the first one. If multiple samples are used, for each sample, the DTS difference
between two consecutive samples is used to compute its duration, but the last sample
should have the duration attribute set. All samples are marked as RAP since they
contain a self-contained XML document.

200

In-Browser XML Document Streaming

Figure 2. Streaming of multiple XML documents

Table 1. XML-suitable mediaTypes and mediaSubTypes

UsageDefinitionmediaSub-
Type

media-
Type

One XML document per
sample

XML Metadatametx

meta
XML documents and frag-

ments
Text (including XML)

Metadata
mett

One XML document per
sample

XML Subtitlestpp

subt
XML documents and frag-

ments
Text (including XML) Sub-

title
sbtt

XML documents and frag-
ments

Text (including XML)
Stream

stxttext

NHMLalso considers the fragmentedpackaging of aXMLdocument, for progressive
consumption (Figure 3). The desired fragments are defined either in terms of docu-
ment element tags (referenced by their "id" or "xml:id" attributes), or sample position
and size. For the tag approach, the 'xmlFrom' field indicates the location of the first
tag to copy from the document, while 'xmlTo' the last one. Alternatively, if we want
to define the fragment in position and size, 'dataLength' defines its size, and 'me-
diaOffset' the position of the first byte. The 'isRAP' field is used to specify if a frag-
ment is suitable for RAP. In order to achieve seeking with RAPs, the header of the
documentmust be declared. Figure 4, shows an example use ofNHML for progress-
ive XML streaming, using XML elements (tags) selection.

201

In-Browser XML Document Streaming

Figure 3. Progressive streaming of single XML document

<?xml version="1.0" encoding="UTF-8" ?>
<NHNTStream version="1.0" timeScale="1000" trackID="1"

mediaType="meta" mediaSubType="mett"
mediaFile="document.xml" headerEnd="elt1.start"/>

<NHNTSample DTS="0" isRAP="yes" xmlFrom="elt1.start" xmlTo="elt1.end"/>
<NHNTSample DTS="1000" isRAP="no" xmlFrom="elt1.end" xmlTo="elt3.end"/>
<NHNTSample DTS="2000" isRAP="yes" xmlFrom="elt3.end" xmlTo="elt10.end"/>

</NHNTStream>

Figure 4. Sample NHML file for fragmented packaging

3.2. MP4Box.js
In order to achieve the proposedXMLdocument transmissionmethod, on the client
side, we developed a tool that is able to extract the accompanying data from the
MP4 container. Since the XML fetching happens inside the browser,MP4Box.jswas
developed in javascript. This way, it can be integrated in any web application.

MP4Box.js decouples the accompanying XML documents from the A/V stream
and utilizes the <track> HTML element to synchronize (and possibly render) the
data. The <track> element is used inside the <video> or <audio> tag, as a child element,
and holds timed text data. The pre-defined data types that <track> can host are set
in the "kind" attribute, which can take values of: subtitles, captions, descriptions,
chapters or metadata. Metadata is a special case, since there is no predefined ren-
dering and accompanying scripts can utilize the data as desired, by using cue events
for synchronization.

An example usage of MP4Box.js setup in order to parse XML samples is shown
in Figure 5. An MP4Box instance is created and with setExtractionOptions, its
parameters are the track "id" and the "user" parameter for the onSample callback -
typically a TextTrack object. The "options" parameter is used to define if the sample

202

In-Browser XML Document Streaming

array should start with a RAP sample and the total number of samples to receive
for the callback. In turn, onSample returns an Array of samples, for track with "id",
when called by "user".

mp4box = new MP4Box();
mp4box.setExtractionOptions(id, aTextTrack, options);
mp4box.onSamples = function (id, user, samples) {
var sample;
var parser;

for(var i in samples) {
sample = samples[i];
if(samples.description.type === "metx") {
parser = new XMLSubtitlein4Parser();
var sampleDocument = parser.parseSample(sample).document;
user.addCue(transformDocToCue(sample, sampleDocument));

}
else if(sample. description.type == "mett") {
parser = new Textin4Parser();
var sampleText = parser.parseString(sample);
user.addCue(transformTextToCue(sample, sampleText));

}
}

}

Figure 5. MP4Box.js code extract

Each sample that is extracted from the stream contains the XML data and the
packaging information (timestamps, isRAP, etc) - set with MP4Box via the NHML
descriptors. The actual XML data is stored in the field "data" of the sample, as an
ArrayBuffer. Figure 6 shows the extracted first sample (XMLdocument), as defined
in Figure 1.

{
"track_id":1,
"description": [Box],
"is_rap":true,
"timescale":1000,
"dts":0,
"cts":0,
"duration":1000,
"size":41,
"data": [ArrayBuffer]

}

Figure 6. JSON representation of a sample

203

In-Browser XML Document Streaming

A screenshot of a webpage containing information on the available tracks of a mp4
file is in Figure 7. MP4Box.js is used to extract the details of one video track and
five tracks with XML data - one for each mediaSubType. More information on the
usage and features of MP4Box.js can be found at the github repository of GPAC1.

Figure 7. Stream info output of MP4Box.js

4. Conclusion and Future Work
In this paper we have presented the mechanisms of MP4Box and MP4Box.js. An
end-to-end solution for XML document streaming inside the browser. We have ex-
plained the process of packaging inmp4 containers on the distribution side, as well
as the XML data extraction mechanism for the client.

In the futurewe plan on adding support for specific XML senarios, such as SVG.
SVG files can be currently transmitted as a whole inside an MP4 file. However,
there is consideration for progressive streaming of SVG files [10]. In that case, a
fragmented file can be progressively transported and rendered.

1 https://github.com/gpac/mp4box.js/

204

In-Browser XML Document Streaming

https://github.com/gpac/mp4box.js/
https://github.com/gpac/mp4box.js/

Bibliography
[1] Cisco Visual Networking Index: Cisco Visual Networking Index: Global Mobile

Data Traffic Forecast Update, 2013-2018. 2014. http://www.cisco.com/c/en/us/
solutions/service-provider/visual-networking-index-vni/index.html

[2] Potetsianakis, E.; Ksylakis, E.; Triantafyllidis, G.: A Kinect-based framework for
better user experience in real-time audiovisual content manipulation.
Telecommunications and Multimedia (TEMU), 2014 International Conference
on , vol., no., pp.238,242, 28-30 July 2014. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6917767&isnumber=6917722

[3] Alberto Pacheco: Digital Puppet Ver. 0.4. 2014. http://podcast.itch.edu.mx/
marioneta/index.v4.waves.html

[4] Berjon, Robin: Remote Events for XML (REX) 1.0. Working Draft, 2006, W3C.
http://www.w3.org/TR/rex/

[5] R. Pantos: HTTP Live Streaming. Internet Draft, 2014, IETF. http://tools.ietf.org/
html/draft-pantos-http-live-streaming-14/

[6] Niedermeier, U., Heuer, J., Hutter, A., Stechele, W., Kaup, A.: An MPEG-7 tool
for compression and streaming of XML data. In Multimedia and Expo, 2002.
ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 1, pp.
521-524). IEEE.

[7] Colwell Aaron, et. al.: Media Source Extensions. Candidate Recommendation,
17 July 2014, W3C http://www.w3.org/TR/2014/CR-media-source-20140717

[8] Le Feuvre, Jean and Concolato, Cyril and Moissinac, Jean-Claude: GPAC: Open
SourceMultimedia Framework. Proceedings of the 15th International Conference
on Multimedia. MULTIMEDIA ’07. New York, NY, USA: ACM, 2007, pp.
1009–1012 http://doi.acm.org/10.1145/1291233.1291452

[9] Adams,Glenn: TimedTextMarkupLanguage 1. Recommendation, 24 September
2013, W3C. http://www.w3.org/TR/ttaf1-dfxp/

[10] Concolato, Cyril: SVG Streaming. Editor's Draft, 04 June 2013, W3C. http://
www.w3.org/SVG/modules/streaming/

205

In-Browser XML Document Streaming

http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6917767&isnumber=6917722
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6917767&isnumber=6917722
http://podcast.itch.edu.mx/marioneta/index.v4.waves.html
http://podcast.itch.edu.mx/marioneta/index.v4.waves.html
http://www.w3.org/TR/rex/
http://tools.ietf.org/html/draft-pantos-http-live-streaming-14/
http://tools.ietf.org/html/draft-pantos-http-live-streaming-14/
http://www.w3.org/TR/2014/CR-media-source-20140717
http://doi.acm.org/10.1145/1291233.1291452
http://www.w3.org/TR/ttaf1-dfxp/
http://www.w3.org/SVG/modules/streaming/
http://www.w3.org/SVG/modules/streaming/

206

Jiří Kosek (ed.)

XML Prague 2015
Conference Proceedings

Published by
Ing. Jiří Kosek
Filipka 326

463 23 Oldřichov v Hájích
Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and XEP.

1st edition

Prague 2015

ISBN 978-80-260-7667-4

	XML Prague 2015
	Table of Contents
	General Information
	Sponsors
	Preface
	Parallel Processing in the Saxon XSLT Processor
	1. Introduction
	2. Running Multiple Transformations in Parallel
	2.1. Contention
	2.2. Reliability

	3. Multi-threading and Streaming
	4. Multi-threading in Saxon Today
	4.1. The collection() function
	4.2. Multiple result documents
	4.3. Multi-threaded <xsl:merge>
	4.4. Multi-threaded <xsl:for-each> and <xsl:apply-templates>

	5. Futures
	6. Conclusions
	References

	Parallel XSLT Processing of Large Documents
	1. Introduction
	2. Motivation
	3. Experiment
	4. Parallel Processing XSLT Extension
	5. Use Case
	6. Implementation
	7. Multithrading capabilities already available in Saxon EE
	8. Conclusion
	Bibliography
	A. RUIAN Stylesheet

	Semantic Hybridization: Mixing RDFa and JSON-LD
	1. Overview
	2. Hybridization
	2.1. RDFa Only Issues
	2.2. JSON-LD Only Issues
	2.3. Semantic Hybridization

	3. Conclusion
	Bibliography

	Using DocBook to Produce a Polyvalent Academic Work
	1. Introduction
	1.1. Content Structure
	1.2. Single-source Publishing
	1.3. Selective Inclusion by Discipline
	1.4. Inclusion vs. Transclusion vs. Exclusion
	1.5. A Family of Related Books

	2. A Polyvalent Academic Text
	2.1. Static Multivalent Editions
	2.2. Dynamic Polyvalent Editions

	3. Reflections and Directions
	3.1. Core vs. Supplemental
	3.2. User Interaction
	3.3. XHTML5, CSS and JavaScript
	3.4. Semantic Enablement
	3.5. Distributed Authoring and Publishing

	4. Acknowledgments
	Bibliography

	Generation of a “semantic” eBook: all you need is XML
	1. Introduction
	2. A French wine guide as XML input
	3. The EPUB output or the "semantic EPUB"
	3.1. The logical structure using epub:type
	3.2. Semantic enrichment using RDFa
	3.3. Existing use cases
	3.3.1. Interact with the book structure: pop-up footnotes
	3.3.2. Smart reasoning in KEereader

	4. Our approach
	4.1. The workflow
	4.2. The mapping rules

	5. The "Schematron flavor"
	5.1. Introduction
	5.2. From Schematron to our approach
	5.3. From Schematron rules to mapping rules

	6. Discussion
	7. Conclusion
	Bibliography

	Building Security Analytics using Native XML Database
	1. Introduction
	2. What is these metadata and what do we do with it ?
	2.1. Metadata Structure
	2.2. Common Use cases

	3. Data mining approaches tried and didn't work
	4. Native XML Databases
	4.1. Sample XQUERY Scripts

	5. Statistics
	6. Conclusions
	Bibliography

	Node search preceding node construction: XQuery inviting non-XML technologies
	1. Introduction
	2. Basic concepts
	2.1. external property
	2.2. p-face
	2.3. p-model
	2.4. node descriptor
	2.5. p-node
	2.6. p-collection
	2.7. p-test
	2.8. p-filter
	2.9. node search

	3. Node search API
	4. Node management API
	5. To bridge the gap
	5.1. NCAT
	5.2. NCAT model
	5.3. NODL

	6. NODL documents
	6.1. The <collection> element
	6.2. The <pface> element
	6.3. The <nodeDescriptor> element
	6.4. The <ncat> element

	7. First NCAT models
	7.1. The XML NCAT model
	7.1.1. Configuration data
	7.1.2. NODL representation

	7.2. The SQL NCAT model
	7.2.1. Configuration data
	7.2.2. NODL representation

	8. First implementation
	8.1. Node search API
	8.2. Input parameter type docSEARCH
	8.3. Node management API

	9. A small sample application
	10. Discussion
	Bibliography

	Native XML Databases: Death or Coming of Age?
	1. Where are all the XML Databases?
	2. Are we in the "Trough of Disillusionment"?
	3. Use Case: a World Patent Database
	4. The Journey to an NXDb
	4.1. Key/Value stores: the joins killed us
	4.2. Relational Databases: schema maintenance killed us
	4.3. Full-text search engine with non-text fields
	4.4. Other non-XML systems
	4.5. Native XML Databases
	4.6. Finally, Qizx

	5. Reflections
	6. Conclusions
	Bibliography

	A Unified Approach to Design and Implement data-centric and document-centric XML Web Applications
	1. Introduction
	2. Motivational example
	3. Modeling issues
	3.1. Specification of content type
	3.2. Constraining content
	3.3. Mandatory information
	3.4. Uniqueness and referential integrity
	3.5. Cardinality constraints

	4. Modeling approach based on RELAX NG and Schematron
	4.1. Modeling the structure of a research proposal with RELAX NG
	4.2. Annotation of the RELAX NG Schema
	4.3. Specifying constraints with Schematron

	5. Implementation
	5.1. Developing the validation mechanism
	5.2. Authoring issues

	6. Conclusion
	Bibliography

	Graphical User Interface Tool for Designing Model-Based User Interfaces with UIML
	1. Introduction
	2. Model-based User Interface Development
	2.1. User Interface Markup Language (UIML)
	2.2. Proposed Modifications to the MIM and UIML
	2.2.1. Modifications to the Meta-Interface Model
	2.2.2. Modifications to UIML Specification
	2.2.2.1. Style, Content and Behavior Mapping
	2.2.2.2. Style precedence

	3. The Concept of the Editor uimlBuddy
	3.1. The Editor uimlBuddy
	3.1.1. Main Application Window
	3.1.2. GameX Main Application Window
	3.1.3. Working with the Editor
	3.1.4. Final Result

	4. Conclusion and Future Work
	Bibliography

	Survey State Model (SSM)
	1. Introduction
	2. Electronic questionnaires
	3. Related work
	4. Hierarchical routing model
	5. Survey State Model (SSM) solution
	5.1. States of Survey State Model (SSM)
	5.2. Validation of questionnaires

	6. Results
	7. Conclusions
	Bibliography
	Glossary

	Schematron for Information Architects
	1. Introduction
	2. Business rules
	3. Information architects
	4. Schematron
	5. Simple use of Schematron
	6. Integrating Schematron rules within a style guide
	7. Implementation
	7.1. Encoding Schematron patterns in DITA
	7.2. Extracting Schematron from DITA sources
	7.3. Schematron library of abstract patterns
	7.4. Easy creation of rules

	8. Deliverables
	9. Conclusions and future work
	Bibliography

	TXSTEP – an integrated XML-based scripting language for scholarly text data processing
	1. Introduction
	2. Humanities software: basic requirements
	3. The solution: 1. Modularity
	4. The solution: 2. XML interface to an established text processing and analysis suite

	In-Browser XML Document Streaming
	1. Introduction
	2. Related Work
	3. The Mechanism
	3.1. MP4Box
	3.2. MP4Box.js

	4. Conclusion and Future Work
	Bibliography

