
1

I’m talking today about features in the Antenna House AH Formatter. Firstly
because I work for Antenna House, but secondly because it’s the only formatter
that I know of that implements both XSL-FO and CSS.

When I was preparing this talk, I was thinking that in 20 years of presenting at
markup conferences, this is the first time that I’ve presented about a piece of
commercial software that I’m working on.

2

I had to think to myself, “Is this going to be a marketing talk?” No. Firstly
because it’s not my field, and, secondly, because I’d be dragged off the stage if
this was too much of marketing talk.

3

The other consideration, of course, is how technical should it be? Should I go
into detail about how the cogs of Antenna House AH Formatter fit together?
That’s a bit too much for half an hour, plus I’d also be stopped if I gave away too
many details.

4

The other thing that I thought about doing is that I can show you a spread that’s
produced with XSL-FO…

5

…and then I can show you a spread that’s produced with HTML and CSS (and if
I’d spent more time, they would have been pixel-perfect the same).

I could spend 25 minutes showing you those, but that would be even more
boring for you than it would be for me.

6

So I’ll just concentrate on a few features, aspects of CSS formatting that have
crossed-over to be extensions in the XSL-FO side of AH Formatter.

I’m going to talk about counter styles, which is a new CSS feature which I think is
generally useful for internationalization.

I’m also going to talk about footnotes.

7

On the XSL-FO features carried across to the CSS side of AH Formatter, I’m going
to talk about headers and footers of tables, about hyphenation properties, about
the running headers that are implemented for CSS, and also about footnotes,
since part of what was implemented for CSS was carried over to the XSL-FO side
and part of what was implemented for XSL-FO was carried over to the CSS side.

The way these are implemented, sometimes it’s the same property carried over,
and sometimes CSS and XSL-FO have different syntaxes for what is essentially the
same thing so they boil down to the same machinery inside AH Formatter to
implement this.

Anything I’m not talking about you can assume is already common to XSL-FO
and CSS.

8

How come they have so much in common to begin with?

This is the timeline for XSL-FO. The Working Group was formed in 1998, and XSL
1.0 came out in 2001, and XSL 1.1 came out in 2006.

But CSS was operating at the same time: CSS 1 was produced in 1996, and during
the time that XSL-FO was being worked on, CSS was producing CSS 2.

The XSL-FO people were required to work with the CSS people so that what they
had in common, where they expressed the same thing, had to use the same
properties. The wider W3C required that the XSL-FO people and the CSS people
work together to define the common properties. A comment from a person
there at the time was “The XSL-FO work was basically free to do anything it
wanted as long as anything that could be done in CSS was done exactly the same
way in XSL-FO.” They did work together, but it wasn’t always harmonious.

While XSL-FO was being developed, CSS had a Recommendation, and they were
working on and off on CSS 2.1, which is a rationalization of CSS 2, and if you want
to look in the XSL spec, you’ll find that there’s many references from the XSL spec
both to CSS 2 and to errata that had been raised against CSS 2, so there’s a lot of
commonality.

9

So there’s a lot of overlap between the two technologies: things like properties
for fonts, margins, the box model, borders and padding, baselines, the list goes
on…

If you take this to the CSS 3 level, there’s still a lot of commonality between CSS
modules and XSL-FO, plus other parts that either don’t relate to what XSL-FO is
targeting or have been produced since.

Antenna House started out as an XSL-FO formatter and, along the way, they
added the capability to handle CSS. As a result, they can handle almost all of
XSL-FO – you can’t, for example, do unbounded page sizes – and it handles a
large proportion of CSS, plus it has extra extensions of its own.

10

If you look in the Online Manual for AH Formatter, one of the pages is this
properties list.

If you want to work out which of these is originally XSL-FO and which are
originally CSS:

• A property that has a section number for XSL-FO and a spec reference for CSS is
one of the properties that is common to both of them.
• A property that is prefixed with ‘axf:’ for XSL-FO and prefixed with ‘-ah-’ for CSS
is an extension that Antenna House has done, usually in response to a customer
request.
• A property that is prefixed on the XSL-FO side and has a reference to a CSS spec
is something that is in CSS that has been reimplemented for XSL-FO.
• A property that has a section number reference for the XSL-FO property and a
prefix for the CSS property is something in XSL-FO that is reimplemented for CSS.

11

The first of these is controlling whether to omit the header or footer when a table
breaks across a page or column.

CSS 2.1 says that a print User Agent has the option to omit them or repeat them.
This came up on the www-style@w3.org mailing list in January when someone
pointed out that it wasn’t nailed down and browsers were inconsistent. This
person was looking for a CSS property to control whether headers and footers
were repeated or not.

12

XSL-FO has had two properties controlling this since XSL 1.0: `table-omit-
header-at-break` and `table-omit-footer-at-break’.

These have just been transferred across as the XSL-FO property expressed in CSS
syntax.

13

You can see how these control whether the table headers and footers appear or
not.

This isn’t a very exciting thing unless you absolutely have to have the headers and
footers or you absolutely don’t, but it illustrates the simplest level of
reimplementing one property for another.

14

Another thing that has been implemented for XSL-FO and provided for CSS is the
hyphenation properties.

There’s a lot of properties for hyphenation in XSL-FO and there’s a lot of
properties for hyphenation in CSS. I can assure you that they didn’t implement
two separate hyphenation engines, so what’s common is the implementation.

15

What’s common is the implementation, and they had the XSL-FO implementation
before they had the CSS one.

This is one where the syntaxes differ and the allowed property values differ but
their effects are the same. In XSL-FO, it’s ‘hyphenate’ versus ‘hyphens’ in CSS, and
‘hyphenation-character’ versus ‘hyphenate-character’.

16

Another aspect where the syntaxes are completely different but the
implementation is in common is in headers and footers.

CSS currently defines 16 areas around the page where you can put strings or,
more recently, running elements. XSL-FO defines these four outer regions…

17

…where you can put almost anything by using ‘fo:static-content’ and using
‘fo:marker’ and ‘fo:retrieve-marker’ to get content from your body flow into the
headers and the footers.

18

Since they have `fo:static-content’ with ‘fo:retrieve-marker’, they’ve just reused
the same basic machinery underneath. The CSS syntax and what they’re trying to
do with it is different from XSL-FO, but it’s still the same engine underneath.

19

Another thing which would have been implemented for XSL-FO and
reimplemented for CSS is footnotes.

20

The syntaxes for declaring footnotes are obviously different. You have more
control about what you put in in the XSL-FO.

21

There’s also differences in how they think about this. In CSS, as I read the spec,
you have to define a ‘@footnote’ rule for pages where you want to allow
footnotes, whereas in XSL-FO, the ‘footnote-reference-area’ is implicit in every
‘fo:region-body’. If you have a footnote in the region-body area, it will appear in
the footnote-reference-area that will just spring to life when there’s a footnote to
put in there.

22

But this is also where I swap to the other side, where parts of CSS are
reimplemented for XSL-FO.

Something CSS can do is generate footnote numbers on the fly, because they
aren’t in your HTML, as a rule. So you have counters for keeping track of how
many footnotes you have, and you put the counter value in as the footnote
marker in the rendered footnote or the footnote call.

23

Whereas, in XSL-FO, the expectation has always been that you generate it with
XSLT, and that there’s machinery in XSLT, with ‘xsl:number’, for generating these
numbers.

There’s never been, for example, a standard facility to restart the footnote
numbers on every page, so Antenna House has implemented ‘axf:footnote-
number’ and ‘axf:footnote-number-citation’ to have the same effect as CSS rules
for putting in a number and referring to that number, and Antenna House has
implemented an extension so that you can, for example, have the classic
sequence of ‘*’, ‘†’, ‘‡’, … restarting per-page.

24

The one that I think is generally useful for internationalization and that you
should use in your CSS to begin with is the new CSS counter styles.

Broadly speaking, a counter style is a sequence of letters, numbers, or symbols
representing a numbering sequence, which is only ever counting integers.

So the CSS counter styles have names for defined algorithms of sequences of
integers, and you would use these in ‘list-style-type’ for making the markers for
your list items, and also in the ‘counter()’ and ‘counters()’ functions.

25

An example from CSS would be, in this case, using the predefined ‘japanese-
formal’ counter style. Because we’re doing that, instead of the literal ‘1, 2, 3, 4’
western digits, we’re getting Japanese ‘formal’ characters (or what I would have
described as ‘old-style’ Japanese) for the numbers.

26

This is reimplemented for XSL-FO using a preexisting extension called
‘axf:number-transform’, but now Antenna House has built in all the pre-defined
CSS numbering schemes.

27

A quick aside on the verbosity of the XSL-FO markup compared to the CSS.

In the paper, I said you could put anything in an ‘fo:list-item-label’, including a
table, so I had to think why on earth you would do that.

The only case that I could think of was to put a tic-tac-toe game inside the ‘fo:list-
item-label’. The verbosity is not meant to be seen because the design of XSL with
XSLT and XSL-FO is that you’re supposed to convert your vocabulary into the
Formatting Objects vocabulary, and you’re never actually supposed to work with
XSL-FO as XML. In practice, we tend to generate XSL-FO to feed into the
formatter

28

So if CSS counter styles are the best thing since sliced bread, what’s wrong with
‘format’, which has been in XSLT and XSL-FO since the beginning?

They’ve always been limited because, even in XSLT 2.0, there’s nine defined
formats and everything else in implementation-defined. So implementations can
provide many more – I work for a company that provides many more in its
formatter – but if you go beyond what the implementation defines, then you’re
stuck.

29

CSS allows you to define your own counter styles and refer to those in your
alternate stylesheet so you can provide numbers for your pages, list items, etc.

A couple of years ago, I was looking at Khmer formatting and I was put in touch
with some people in Cambodia, and their gripe at the time was that they couldn’t
do Khmer numbering in their HTML in their web browser because it just wasn’t
supported. CSS counter styles does have a counter style for Khmer, but even if it
hadn’t, they could now do their own counter styles.

So, between counter styles and hyphenation rules, you have a good start on
doing halfway-decent formatting in almost any language.

30

Of course, there’s also incompatible differences between the two technologies.
The one that I’m going to talk about now is the page selection mechanism.

In XSL-FO, you define your page masters and you define the sequence in which
they can occur. In CSS, there’s some choosing of the pages, whether it’s left or
right, etc.

31

Your XSL-FO contains ‘fo:page-sequence-master’, where you can pick alternative
page master based on whether it’s a left page or right page, etc.

32

You can do similar in CSS by saying this is the page to use for the left page, the
right page, or a blank page, etc.

33

XSL-FO has more ways to choose.

You can do things like:

• Set the maximum number of repeats.
• For the first five pages, use this one, then you have a choice for the next ten
pages, and a different set of alternatives for the next ten after that.

34

CSS formats-as-you-go, and it has a rather different mechanism where you can
make named pages – similarly to XSL-FO page masters – but the selection of
which named page to use depends on the current element that you are
formatting.

In this example from the CSS spec, tables are set to use the ‘rotated’ page, which
is in landscape mode, and the paragraph is set to use the ‘narrow’ page by
default. When this is formatted, the tables will appear on one or maybe more
landscape pages, then when it got to the paragraph, the formatter would switch
to a different named page and use a narrow page for that. Again, this is on-the-
fly and less pre-defined than in XSL-FO.

You could probably do the same with Antenna House’s nested page sequences.

35

To conclude, XSL-FO and CSS have a lot of properties in common, by design.

Some properties can be swapped between the two with minor differences, e.g.,
rename the property and let it have the same values.

Some properties are essentially the same but have different keywords.

Other things may have very different syntaxes, such as the way footnotes are put
together, but the underlying implementation can be the same.

With some things, such as page master selection, there are fundamental
differences that aren’t worth trying to reconcile.

In all of this, the thing that I have left out is “Why are the AH Formatter
developers doing this?” If this was a marketing talk, I would say that it’s “to
maximize the holistic synergies of the fundamental technologies”, but the real,
technical reason is it’s because they could.

Thank you.

36

37

