
1

XML technology is very powerful, but also very limited. The more you are

aware of the power, the keener your interest in reducing the limitations. A key

problem is rooted in the very paradigm of XML, which is tree-structured

information. This leads to the challenge of combining XML tree technology with

RDF graph technology.

A brief look at what to expect. I shall start with an argument why the integration

of graph and tree is so compelling a challenge. We shall glance at SHACL, the

new schema language for RDF, and then I shall introduce you to SHAX, an

XML syntax for SHACL. In the end, I shall argue that SHAX is not only an XML

syntax for SHACL, but a data modeling language in its own right, an abstract

language which cannot only validate RDF, but also XML and JSON data.

2

The power of XML technology is based on an ingenious concept of addressing

information, XPath. It presupposes tree structure. On the one hand, this is no

problem, as trees are ubiquitous. On the other hand, we should remember that

trees are based on the containment relationship – for example, a book element

contains author elements., and containment is pretty arbitrary. Is it not the

other way around, an author should contain books? It depends on the focus of

your interest, on where you stand. Like in real life, where the tree is behind the

house, but the house is behind the tree. This means that XML structure is tied

to specific perspectives and may be not appropriate for enterprise modeling

and for enterprise data repositories. This cuts XML off from realizing its full

potential. Enters RDF, which excels in relating information without assuming

containment. The RDF model is fit for capturing the complex reality of an

enterprise, and RDF triple stores may be used as a single point of truth,

servicing a wide range of information needs. However, what you get is a

graph, and graphs are hard to understand and process. Conclusion: XML and

RDF are complementary.

3

The more you think about it, the more amazing the complementary character

of XML and RDF becomes. It is mind-boggling. There is so much promise in

combining the two intelligently.

4

What does their integration mean? Above all, two things: free transformation

between the two formats, and mutual support – one technology using

functionality offered by the other. For example, an XQuery processor might

launch SPARQL queries in order to discover relevant document URIs. But the

heart of integration is, I think, transformation. It enables us to use RDF triple

stores as a single point of truth which communicates with the world via tree-

structured messages.

5

How to approach the challenge of transformation? Let us start by exploring the

intrinsic relationship between the two. In spite of their outward differences,

XML and RDF are built on common ground - a common abstraction – which I

suggest to call an information object. It is a container of named values, which

may be atomic (like strings or numbers) or themselves containers of named

values. RDF calls the containers and their values: resources and their

properties. XML calls them elements and their child elements and attributes. I

call it an information object and its properties.

6

This perception leads immediately to a generic mapping between RDF and

XML data – a canonical transformation!

7

In theory, we are almost done: we can translate the generic mapping into

generic code, and then we have a transformation machine for XML and RDF.

But usually the result of our generic mapping will fail to meet the real world

requirement to be focussed, intuitive and elegant. Think of a message – we

want it to look purpose-built, and not like a translation of something else. As in

natural language, a translation betraying its being a translation is ugly. We

need to tweak the model, and to do so we must know exactly where to expect

what. Which is another way of saying: we need models – on both sides of the

wall.

8

On the XML side, we have XSD, which gives us what we need – a prcise

picture of the grammatical structure. With the RDF side, we have a problem.

OWL, the main modeling language of RDF, is designed for inference, not for

validation and prediction. OWL models cannot tell us exactly where to expect

what. They are not appropriate for guiding transformation.

9

Fortunately, last year a new schema language for RDF has appeared –

SHACL. Like XSD, SHACl can describe the data grammar precisely, and thus

we have two models which can be aligned. This should enable high quality

transformation of data.

10

SHACL is a W3C recommendation. The first sentence of the spec

characterizes the language as a language for describing and validating RDF

graphs.

11

The first thing to notice is that SHACL is itself an RDF vocabulary – just like

XSD is an XML vocabulary. This little model (taken from the introduction of the

spec) describes resources belonging to the RDF class „Person“. According to

the model, such resources have two properties – a social security number and

the companies the person works for. The model names the properties and

constrains their cardinality and data types. On the right-hand side you see

RDF data which belong to the Person class. They have the expected

properties, and yet they violate the shape – in one case, a regex pattern, in the

other a cardinality constraint. The model describes and validates the RDF data

exactly like an XSD describes and validates XML data. At a first and superficial

glance, SHACL is XSD for graphs.

12

But SHACL has also features similar to Schematron. So a short formular for

SHACL is XSD + Schematron for RDF.

13

Now – is SHACL a breakthrough for the integration of XML and RDF? I think it

is a significant and necessary step. At last, RDF data can be modelled in a

way which gives an exact picture where to expect what. But there are also

issues...

14

The solution to these problems might be XML – an XML syntax for SHACL,

which I call SHAX. It promises benefits which I divide into three categories. Let

us check to which degree SHAX realizes these potential benefits.

15

To get started, this slide shows a SHAX representation of the trivial SHACL

model shown before. A resource is modelled by an objectType element. Its

child elements represent the properties of the resource, after which they are

named. Their attributes specify cardinality constraints and type details. In order

to get a better impression of SHAX, let us evolve our model a little...

16

First we notice that the second property of a person does not yet specify type

information – what is the structure of a company? We introduce a second

object type describing company resources, and we let the worksFor property

element reference that type definition via an @type attribute.

17

Then we add a little grammar – our company model contains a choice of

properties. This is straightforward, using a shax:choice element, whose child

elements represent the choice branches. If a branch contains several

properties, they are wrapped in a shax:pgroup element.

18

Now we get rid of the local declaration of a simple data type – we introduce a

global data type definition which is referenced by the property element again

via @type attribute.

19

Finally, we introduce order into our model – we want the values of the

worksFor property to be an ordered list. To achieve this, we just add an

@ordered attribute to the property element.

20

For comparison, here is the SHACL code into which our SHAX model is

compiled. It think it is more difficult to read and to write, and probably more

difficult to process or generate.

21

After the example, a brief summary of SHAX – its building blocks and

advanced features. The example showed objectTypes and dataTypes. We also

saw properties, but they were locally defined within the objectType. Properties

can also be globally defined and referenced within the object types. Global

properties are equivalent to top-level element declarations in XSD.

22

SHAX can be translated into SHACL – but also into XSD and JSON Schema.

Thus SHAX can be viewed as an abstract modeling language: used to build

abstract data models which constrain structures and data types, and yet do not

presuppose a particular data representation language (XML, RDF, JSON). The

next slides give you an impression of SHAX and its translations.

23

First, once more, our little SHAX model.

24

It can be translated into this XSD

25

.... or into this JSON schema.

26

Or into this SHACL.

27

SHAX is easy to read and write. But even more easy it is to generate them –

from XSD. Thus tons of modeling work can be launched into the RDF space.

28

The translation work is accomplished by a SHAX processor. A prototype is

available at github. Disclaimer: the translation into JSON Schema is still work

in progress and will be released by the end of the month.

29

So I wonder if SHAX might be used as a pivot, a turning point where to bring

your model work in order to let it travel into a different country. Much work

ahead, to make everything as robust and comprehensive as needed, but I

think the concept has been proved. Anybody showing interest – reporting bugs

or requesting features – would help enormously.

30

In particular conceptionally, I feel that SHAX is an idea which is still in need of

other minds. Perhaps someone will join me who shares my interest in

elaborating the concept of an abstract modeling language – in connecting the

seemingly unconnected. Could this be YOU?

31

32

