
XML Prague 2018
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 8–10, 2018

XML Prague 2018 – Conference Proceedings
Copyright © 2018 Jiří Kosek

ISBN 978-80-906259-4-5 (pdf)
ISBN 978-80-906259-5-2 (ePub)

X-definition

www.xdef.czgg|ggwww.syntea.cz

AgcomprehensiblegdescriptiongofgXMLgdocuments
ThelXGdefinitionlislanlXMLldocumentlthatlcanlbelusedltoldescribelalsetloflXMLl
documents.
llllllEasyltoldesignlandltolunderstand
llllllCanlbelusedltoldescribelandltolprocesslJSONldata
llllllThelcomprehensibilityloflthelXGdefinitionlsourcelmakeslitlextremelyleasyltolcreatel
lllllllaldocumentationloflXMLlstructures.

Validation,gprocessinggorgconstruction
ThelXGdefinitionlintegrateslthelvalidationlprocessloflXMLldata)lthelprocessinglandl
thelconstructionloflalnewlXMLldocumentlGlalllinlthelsamellanguage.
llllllAnleasylwayltolfacilitatelthelmaintenancelofllargelprojects
llllllAlgenerationloflaldetailedlerrorlreport
llllllToolslforlaldynamiclerrorlprocessing

ThegJavagenvironmentginterconnectiong
ThelXGdefinitionlallowslJavalprojectslinterconnections.l
llllllItlislpossibleltolexecutelJavalmethodslandltolaccesslJavalobjects
llllllThelfeaturelxXGComponentsxlenablesltolgeneratelsourcelJavalcodelrepresentingl
llllllXMLlstructurelandltoluselitlinlJavalprogramslIinlalsimilarlwaylaslJAXB"

Connectiongtogdatabasesgandgexternalgdata
InlthelXGdefinitionlyoulcanlexecuteldatabaselstatementslIeitherlinlrelationall
databaseslorlinlXMLldatabases".lItlislpossiblelalsoltolaccesslexternalldata.

Angeasygmaintenancegofglargegprojects
AnlexcessivelcollectionlofllXGdefinitionslhaslbeenlsuccessfullylusedlinlreallprojectsl
inlwhichlveryloftenllargeldatalfileslneededltolbelprocessedlImanylGB".

X-definition

Table of Contents
General Information ... vii

Sponsors .. ix

Preface .. xi

Assisted Structured Authoring using Conditional Random Fields –
Bert Willems .. 1

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process – Steven Higgs ... 13

xqerl: XQuery 3.1 Implementation in Erlang – Zachary N. Dean 23

XML Tree Models for Efficient Copy Operations – Michael Kay 33

Using Maven with XML development projects –
Christophe Marchand and Matthieu Ricaud-Dussarget ... 49

Varieties of XML Merge: Concurrent versus Sequential –
Tejas Pradip Barhate and Nigel Whitaker ... 61

Including XML Markup in the Automated Collation of Literary Text –
Elli Bleeker, Bram Buitendijk, Ronald Haentjens Dekker, and Astrid Kulsdom 77

Multi-Layer Content Modelling to the Rescue – Erik Siegel 97

Combining graph and tree – Hans-Juergen Rennau .. 107

SML – A simpler and shorter representation of XML – Jean-François Larvoire ... 137

Can we create a real world rich Internet application using Saxon-JS? –
Pieter Masereeuw ... 157

Implementing XForms using interactive XSLT 3.0 –
O'Neil Delpratt and Debbie Lockett .. 167

Life, the Universe, and CSS Tests – Tony Graham ... 181

Form, and Content – Steven Pemberton ... 213

tokenized-to-tree – Gerrit Imsieke .. 229

v

vi

General Information

Date

February 8th, 9th and 10th, 2018

Location

University of Economics, Prague (UEP)
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, Xyleme & XML Prague, z.s.
Káťa Kabrhelová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s. & University of Economics, Prague
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Robin Berjon, The New York Times
Petr Cimprich, Xyleme
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Ari Nordström, SGMLGuru.org
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, Cornelsen GmbH
John Snelson, MarkLogic
Jeni Tennison, Open Data Institute
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://​xmlprague.cz/​about)
Faculty of Informatics and Statistics, UEP (http://​fis.vse.cz)

vii

http://xmlprague.cz/about
http://fis.vse.cz

viii

Sponsors

oXygen (http://​www.oxygenxml.com)
le-tex publishing services (http://​www.le-tex.de/​en/)
Antenna House (http://​www.antennahouse.com/)
Saxonica (http://​www.saxonica.com/)
speedata (http://​www.speedata.de/)
Syntea (http://​www.syntea.cz/)

ix

http://www.oxygenxml.com
http://www.le-tex.de/en/
http://www.antennahouse.com/
http://www.saxonica.com/
http://www.speedata.de/
http://www.syntea.cz/

x

Preface

This publication contains papers presented during the XML Prague 2018 confer-
ence.

In its thirteenth year, XML Prague is a conference on XML for developers,
markup geeks, information managers, and students. XML Prague focuses on
markup and semantic on the Web, publishing and digital books, XML technolo-
gies for Big Data and recent advances in XML technologies. The conference pro-
vides an overview of successful technologies, with a focus on real world
application versus theoretical exposition.

The conference takes place 8–10 February 2018 at the campus of University of
Economics in Prague. XML Prague 2018 is jointly organized by the non-profit
organization XML Prague, z.s. and by the Faculty of Informatics and Statistics,
University of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday runs in an unconference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday are devoted to
classical single-track format and papers from these days are published in the pro-
ceeedings. Additionally, we coordinate, support and provide space for XProc
working group meeting collocated with XML Prague.

We hope that you enjoy XML Prague 2018 – especially as this is a very special
edition – the last day of the conference is 20th anniversary of XML Recommenda-
tion publication.

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui

XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

Assisted Structured Authoring using
Conditional Random Fields

Bert Willems
FontoXML

<bert.willems@fontoxml.com>

Abstract

Authoring structured content with rich semantic markup is repetitive, time
consuming and error-prone. Many Subject Matter Experts (SMEs) struggle
with the task of applying the correct markup. This paper proposes a mecha-
nism to partially automate this using Conditional Random Fields (CRF), a
machine learning algorithm. It also proposes an architecture on how to con-
tinuously improve the CRF model in production using a feedback loop.

Keywords: XML, Conditional Random Fields, Structured Authoring,
Machine Learning

1. Introduction
With the increasing adoption of structured XML content, the amount of work
required from Subject Matter Experts (SMEs) increases. Not only are they
required to capture their knowledge as information to others, they are increas-
ingly asked, and sometimes even required, to mark up the information with the
appropriate semantic and structural metadata in the form of XML tags and attrib-
utes.

Examples of those markup tasks include:
• Structuring bibliographic references to tag authors, journal name, publisher

etc.
• Marking up tasks, not with ordered lists but with steps.
• Marking up interactive questions, like multiple choice questions.

Although WYSIWYG XML editors help to make this task as easy as possible,
the fact remains that there is additional work to be done that is often repetitive
and error-prone. FontoXML conducted multiple studies to determine whether the
effort of manual tagging affected adoption. The results showed a consistent nega-
tive effect: SMEs and their editorial colleagues are hesitant to adopting structured
authoring. In some cases this meant reverting back to their unstructured content
processes, leading to unrealized potential.

Prior implementations, like GROBID [3], apply markup automatically. This
paper proposes to introduce Machine Learning (ML) to the authoring process

1

instead. The reason for this is the inaccuracy of the state-of-the-art ML algo-
rithms: like humans, they make mistakes. Allowing SMEs to (correct and) accept
a machine provided suggestion will result in a more accurate markup. Further-
more, this approach allows for the creation of a feedback loop, allowing the
machine to improve over time.

This paper focuses on the task of structuring bibliographic citations, although
the proposed architecture scales to many of the tasks required for properly struc-
tured content.

2. Model
This section describes the model used for recognizing bibliographic citations and
extracting the relevant labels from it. The model used in this paper follows a
divide-and-conquer strategy and is made up out of two separate models: The
Citation Model and the Name Model. Partial results from the Citation Model cas-
cade into the Name model to more detailed results.

2.1. Citation Model

The goal of the Citation Model is to classify a sequence of text with tags that make
up the parts of the citation. The tags are derived from the TEI P5 vocabulary [12]
and are encoded using the IOB tagging scheme [8].

The following tags are distinguished:

• author
• orgName
• editor
• publisher
• pubPlace
• date
• idno (bibliographic identifier)
• analytic (articles, poems, etc.)
• monographic (books, single & multi volumes, etc.)
• journal
• series
• unpublished
• volume
• issue
• pages
• chapter

For example, the sequence Erickson, T. & Kellogg, W. A. "Social Translucence: An
Approach to Designing Systems that Mesh with Social Processes." In Transactions on

Assisted Structured Authoring using Conditional Random Fields

2

Computer-Human Interaction. Vol. 7, No. 1, pp 59-83. New York: ACM Press, 2000. is
tagged as1:

author Erickson, T. & Kellogg, W. A.
analytic Social Translucence: An Approach to

Designing Systems that Mesh with
Social Processes

journal Transactions on Computer-Human
Interaction

volume 7
pages 59-83
pubPlace New York
publisher ACM Press
date 2000

2.2. Name Model

The Name Model is much simpler2 compared to the Citation Model. The purpose
of the Name Model is to distinguish names in a given sequence of text. To be
more specific in the author and editor labels cascading from the Citation Model.
The tags are also encoded using the IOB tagging scheme.

The following tags are distinguished:

• forename
• middlename
• surname

For example, the sequence Erickson, T. & Kellogg, W. A. is tagged as:

surname Erickson
forename T
surname Kellogg
forename W.
middlename A.

1The IOB prefixes are combined and the outside tags are removed in the example output for brevity.
2Although the model is comparatively simple, handling names is surprisingly complex. See: http://
www.kalzumeus.com/​2010/​06/​17/​falsehoods-programmers-believe-about-names/ . The point of the
model is to learn from examples in the training data rather than manually coded rules.

Assisted Structured Authoring using Conditional Random Fields

3

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

2.3. Linear Chain Conditional Random Field

Both the Citation and the Name model are implemented using the Conditional
Random Fields (CRF) algorithm [7]. According to the research performed by
Fuchun Peng and Andrew McCallum [10], CRFs work well for extracting struc-
tured bibliographic citations from research papers, achieving good performance.
This algorithm is also used in similar implementations like GROBID and MAL-
LET [9].

To get a sense of how CRFs work, consider the sentence “I’m at home.”. Now
consider the sentence “I’m at kwaak.”. Based on both sentences one intuitively
understands that “kwaak” is some sort of location because we know that “home”
is also a location and the words appear in the same context.

CRFs take into account the context in which a word appears and some other
features like “is the text made up out of numbers?”. More precisely: an input
sequence of observed variables X represents a sequence of observations (the
words with the associated features which make up a sentence) and Y represents a
hidden (or unknown) state variable that needs to be inferred given the observa-
tions (the labels). The Yi are structured to form a chain, with an edge between
each Y(i-1) and Yi. As well as having a simple interpretation of the Yi as "labels" for
each element in the input sequence, this layout admits efficient algorithms for:
1. model training, learning the conditional distributions between the Yi and fea-

ture functions from some corpus of training data.
2. decoding, determining the probability of a given label sequence Y given X.
3. inference, determining the most likely label sequence Y given X.

For a more detailed introduction to CRFs, see An Introduction to Conditional
Random Fields for Relational Learning [11].

2.4. Implementation

For the implementation of the CRFs, an implementation based on CRFSharp [1] is
used. CRFSharp is a .NET Framework 4.0 implementation of Conditional Ran-
dom Fields written in C#. Its main algorithm is similar with CRF++ written by
Taku Kudo [6]. It encodes model parameters by L-BFGS. Moreover, it has many
significant improvements over CRF++, such as totally parallel encoding and opti-
mized memory usage. The CRFSharp implementation was modified to target
the .NET Standard 2.0 to allow cross-platform usage in .NET Core applications.

2.5. Training

In order for the CRFs to learn the desired outcomes, they must be trained first
using correctly tagged example inputs. For the training of the Citation Model, a
corpus of 439 TEI documents is used originating from the GROBID GIT reposi-

Assisted Structured Authoring using Conditional Random Fields

4

tory. The corpus contains 10.288 properly marked up bibliographic citations
(<bibl/>). 6.467 citations are used for training, while the remaining 3.821 are
used for evaluation. For the training of the Name Model, a corpus of 13 TEI docu-
ments is used originating from the GROBID GIT repository. The corpus contains
403 properly marked up names of which 370 names are used for training, and the
remaining 33 names are used for evaluation.

Both models were trained with a maximum iteration count of 1000 using L2
regularization running on 8 threads in parallel. The training of the Name Model
takes no more than a minute while training the Citation Model takes around 2,5
hours on a laptop with an Intel i7-4702HQ processor and 16GB of RAM. Training
was clearly CPU bound; the 8 logical processors were 100% utilized. Memory
usage was around 1.5 GB. Training speed can possibly be improved using the
GPU rather than the CPU. However this was not explored.

2.6. Model Evaluation

The trained models are evaluated against previously unseen examples. Both
models are scored on the overall performance of all their labels. Both models are
scored using the accuracy and F1 metrics which are common scoring metrics for
Named Entity Recognition (NER) models. The scoring is defined as:
1. Accuracy; Where TP is the number of true positives, FP is the number of false

positives, TN is the number of true negatives and FN the number of false neg-
atives. Accuracy is calculated as: �������� = �� + ���� + �� + �� + �� .

2. F1 measure; Precision, recall and F1 measure are defined as follows:��������� = ���� + �� , ������ = ���� + �� , �1 = 2 × ��������� × ��������������� + ������ .
Both models perform reasonably well on the evaluation dataset. Table 1 shows

the results of the evaluation of both models:

Table 1. Evaluation Results

Model name Accuracy F1

Citation Model 99,53% 99,72%
Name Model 99,36% 99,31%

One of the observations made during the evaluation is that the Citation Model
has a hard time predicting the correct type for the titles (analytic vs monographic
and journal vs series vs unpublished). Similarly, it has a hard time distinguishing
between author and editor. This is partly due to the local nature of CRFs; the
CRFs in this application use a context window of 4 words around the target
word. Introducing a bidirectional Long Short-Term Memory (LSTM) in combina-

Assisted Structured Authoring using Conditional Random Fields

5

tion with a CRF layer overcomes this local nature [13]. Another boost may be a
gained from introducing lexicons for journal titles etc.

2.7. XML Mapping
Mapping the extracted labels to an XML vocabulary is straightforward, see
Table 2 for a mapping between the labels and the JATS [5] & TEI vocabularies:

Table 2. Labels to XML mapping

Label JATS <mixed-citation/> TEI <bibl/>
author <name/> <author/>
orgName <collab/> <orgName/>
editor <person-group person-

group-type="editor"/>
<editor/>

publisher <publisher-name/> <publisher/>
pubPlace <publisher-loc/> <pubPlace/>
date <year/> <date/>
idno <object-id/> <idno/>
analytic <article-title/> <title level="a"/>
monographic <article-title/> <title level="m"/>
journal <source/> <title level="j"/>
series <source/> <title level="s"/>
unpublished <source/> <title level="u"/>
volume <volume/> <biblScope

unit="volume"/>
issue <issue/> <biblScope

unit="issue"/>
pages <page-range/> <biblScope

unit="pages"/>
chapter <chapter-title/> <biblScope

unit="chapter"/>

An interesting observation is that the model is not specific to a particular vocabu-
lary. This means training data can be in one vocabulary while the results of the
model are represented in another vocabulary. Also, a mix of vocabularies can be
used as training data.

Both the JATS and the TEI vocabularies have specific tags for marking up a
bibliographic citation. Both container elements allow character data and do not

Assisted Structured Authoring using Conditional Random Fields

6

impose any ordering restrictions. JATS also offers the non-mixed <element-
citation/> element which provides more structure. In case of a vocabulary that
does impose structure, the mapping can be implemented with XML Conditional
Random Fields (XCRFs) [2]. This CRF implementation predicts labels of tree
nodes instead of labels for text.

3. The Human Factor
Although the model used performs quite well, it will still make mistakes. Rather
than programmatically marking up the recognized citation in the XML docu-
ment, this paper proposes the treat them as suggestions. A user interface for the
SMEs allow them to confirm and correct the citations before marking them up in
the XML document. This section describes some of the common errors generated
by the model, a user interface to correct them and a mechanism for the system to
learn the manually made corrections.

3.1. Analysis of Model Errors

As indicated in the section Section 2.6, the Citation Model has a hard time distin-
guishing between certain labels. A further statistical analysis on the evaluation
errors proves this assumption. Table 3 contains the top 10 errors (about 60% of the
total errors):

Table 3. Evaluation Errors

Frequency Actual Expected
1 129 analytic monographic
2 60 series journal
3 45 monographic analytic
4 37 monographic Oa

5 31 analytic journal
6 29 O idno
7 18 monographic journal
8 18 journal monographic
9 18 author editor
10 18 journal author

aThe Outside label of the IOB tagging scheme, indicates absence of a label.

This table reveals three classes of issues:

Assisted Structured Authoring using Conditional Random Fields

7

1. Distinguish between related labels, for example analytic and monographic
occur in the same location. This is the cause of results 1, 2, 3, 5, 7, 8, 9, 10.

2. Distinguish whether certain characters are inside a title or not. This is the
cause of result 4.

3. Distinguish identifiers, more specifically URLs. This is the cause of result 6.
The first class of issues is caused by labels that are closely related to each

other. Intuitively it makes sense that it is hard to determine the difference
between article and book titles, even for humans. The range however is correctly
determined in all those cases. Meaning, changing the label would suffice for the
user to fix the mistake.

The second class of issues is caused by inconsistencies in the evaluation data.
Some titles include a dot while it has been omitted from others. This is solved
with a post processing rule either consistently placing the dot inside or outside
the title. Alternatively, the training data may be updated.

The third class of issues is caused by the model not understanding URLs. This
is best solved by adding a URL feature to the model and retraining it.

In conclusion, it is clear that fast majority of issues can be addressed by simply
allowing the SME to select a different, but closely related label.

3.2. User Interactions
Based on the analysis in the previous section, we can formulate one requirement:
As a SME I can correct the type of title/person in a citation. This requirement is
implemented using two UI patterns:
1. A (context) menu options to toggle between the types.
2. A form with dropdown lists to select different types.

The benefit of the first pattern is that it will also work for correcting citations
that have been manually put into the system; it works after the fact. Both context
menu options and toolbar buttons have been implemented to allow SMEs to use
their preferred method. See Figure 1 for an an example of such an UI.

The benefit of the second pattern is that it is task-specific, allowing the SME to
work with greater focus. It is implemented in its own dedicated UI component
allowing users to quickly validate the recognized results and correct where nee-
ded. This puts the SME in control. The dropdowns are populated with the alter-
natives sorted by the likelihood of the different evaluations of the model. See
Figure 2 for an an example of such an UI.

There is no need to choose between the two; they can very well be combined.

3.3. Structured Content Feedback Loop
Integrating ML models in the authoring process helps to automate some of the
repetitive tasks that are part of structured content authoring. As shown in the

Assisted Structured Authoring using Conditional Random Fields

8

analysis of the model performance, there is room for improvement. Integrating
the model in the authoring process creates an interesting opportunity to build a
feedback loop between the model and the SME.

Figure 1. A (context) menu options to toggle between the types

Figure 2. A form with dropdown lists to select different types

Assisted Structured Authoring using Conditional Random Fields

9

In order to implement such a loop, the system is expanded with a storage. The
storage holds the training data as well as the associated metadata, like date added
and user who added the training data. Each record in the training data has a
unique identifier. The system is also expanded to include a queue which holds
the identifiers of the records that have not been trained on yet. The editor applica-
tion is modified to send all XML citations to the system upon (auto)save. The sys-
tem adds the citation to the storage and enqueues it for training. At certain
intervals the system retrains the model.

The system has two modes for retraining the model:

1. Incremental retraining; reuses weights from the previously trained model.
2. Full retraining; retrains from scratch.

In both modes the updated corpus (old + new) is used for training. The incre-
mental mode is much faster but has an important limitation in the CRFSharp
implementation: it can’t handle new labels. The system therefore detects if new
labels were added and chooses the appropriate mode. Once retraining has been
completed the old model is swapped for the new model and used consecutively
for generating the improved suggestions.

Retraining the model automatically imposes some risks. For example, the
model may overfit if the SMEs have been working with one particular type of
citation for a while. Another example is that an SME (deliberately) inserts the
wrong tags throwing the model off guard. The impact of these risks hasn’t been
explored within the scope of this paper. The metadata, associated with each train-
ing record, allows after the fact filtering of records at the cost of a full retraining.

4. Conclusion and Further Work
Using Machine Learning, in this paper Conditional Random Fields, to (semi)
automatically markup citations reduces the time SMEs need to spend applying
markup manually. In cases where the model mispredicted the correct markup, in
general, the correction is just changing the predicted label. Using a specific user
interface to change those labels, SMEs stay control while still saving time.

Integrating ML into the authoring process not only saves valuable SME time,
it also allows for a Structured Content Feedback Loop to be created. This feed-
back loop continuously gathers additional training data, reviewed by the SME, to
improve the model. The improved model will in turn generate better predictions.

The CRF algorithm works reasonably well but has some limitations. One such
limitation is the context window in which it operates, which severely limits its
ability to reason on entire sentences. Another limitation is that it requires manual
feature engineering. Both limitations can be addressed by implementing a much
more powerful model based on bidirectional LSTM in combination with CRFs
[13] [4].

Assisted Structured Authoring using Conditional Random Fields

10

Bibliography
[1] Fu, Zhongkai . 2017. CRFSharp. https://github.com/zhongkaifu/CRFSharp.
[2] Gilleron, Rémi, Florent Jousse, Isabelle Tellier, and Marc Tommasi. 2006. "XML

Document Transformation with Conditional Random Fields." INEX.
[3] 2008-2017. GROBID. https://github.com/kermitt2/grobid.
[4] Huang, Zhiheng, Wei Xu, and Kai Yu. 2015. "Bidirectional LSTM-CRF Models

for Sequence Tagging." CoRR abs/1508.01991.
[5] JATS Standing Committee. 2015. Journal Article Tag Suite. https://

jats.nlm.nih.gov/.
[6] Kudo, Taku. 2017. CRF++: Yet Another CRF toolkit. https://

taku910.github.io/crfpp/.
[7] Lafferty, John D, McCallum Andrew, and Pereira Fernando. 2001. "Conditional

Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data." Proceedings of the International Conference on Machine Learning. 282–
289.

[8] Lance A. Ramshaw, Mitchell P. Marcus. 1995. "Text Chunking using
Transformation-Based Learning." ACL Third Workshop on Very Large
Corpora 82-94.

[9] McCallum, Andrew Kachites. 2002. MALLET: A Machine Learning for
Language Toolkit. http://mallet.cs.umass.edu.

[10] Peng, Fuchun, and McCallum Andrew. 2004. "Accurate Information
Extraction from Research Papers using Conditional Random Fields." HLT-
NAACL.

[11] Sutton, Charles A., and Andrew McCallum. 2012. "An Introduction to
Conditional Random Fields." Foundations and Trends in Machine Learning 4:
267-373.

[12] TEI Consortium, eds. 2017. TEI P5: Guidelines for Electronic Text Encoding
and Interchange. http://www.tei-c.org/Guidelines/P5/.

[13] Zhiheng, Huang, Xu Wei, and Yu Kay. 2015. "Bidirectional LSTM-CRF
Models for Sequence Tagging." CoRR abs/1508.01991.

Assisted Structured Authoring using Conditional Random Fields

11

https://github.com/zhongkaifu/CRFSharp
https://github.com/kermitt2/grobid
https://jats.nlm.nih.gov/
https://jats.nlm.nih.gov/
https://taku910.github.io/crfpp/
https://taku910.github.io/crfpp/
http://mallet.cs.umass.edu
http://www.tei-c.org/Guidelines/P5/

12

XML Success Story: Creating and
Integrating Collaboration Solutions to
Improve the Documentation Process

Steven Higgs
Syncro Soft

<steven_higgs@sync.ro>

Abstract

This paper discusses many of the challenges that Syncro Soft (the makers of
the Oxygen XML suite of products) faced when trying to improve the col-
laboration part of their documentation process, and provides details about
their solutions for addressing those challenges. By developing new collabo-
ration tools, refining internal processes, and integrating creative collabora-
tion solutions into existing applications, they found ways to effectively
improve the quality of their documentation, simplify various procedures,
and increase the efficiency of their entire collaboration process.

1. Introduction
Over the years, our world has become more and more reliant on mobile technolo-
gies and most companies have moved toward solutions that maximize efficiency
and productivity for all areas of their business. Of course, this also applies to the
documentation process. Over the last few years, we (Syncro Soft) have had many
users request new features that will improve their documentation process. We are
also always continually trying to improve our own process of creating and pub-
lishing documentation to make the whole process more efficient and effective.
One specific area that presents a variety of challenges is the collaboration part of
the process. Since challenges often present opportunities, we focused a lot of time
and effort over the past few years in finding solutions to make the collaboration
part of our documentation process more efficient, simple, and effective.

Every company has their own organizational structure, workflow, set of
requirements, and collaboration challenges. The process usually includes various
different types of collaborators who may not have access to the same applications
or the same level of writing skills. Every individual has their own perspective,
motivations, personality, and everyone has their own way of thinking and com-
municating. Collaboration often requires documents or messages to be sent back
and forth numerous times, and without a fluid, dynamic system in place, this can
slow down the process and decrease productivity. Many companies also have

13

personnel spread out across multiple locations and in some cases, multiple time
zones. These are just some of the many challenges that most documentation
teams, including ours, face when trying to collaborate with others throughout the
documentation process.

This paper focuses on a real world use-case of how we addressed these collab-
oration challenges by creating and integrating Oxygen products and other tools.
This use-case will show how we managed to make our collaboration process
more efficient, effective, flexible, and fluid for everyone involved in the documen-
tation workflow.

2. Customizing an Issue Tracking Application to Maximize
Collaboration Efficiency for all Departments
Most companies use some sort of issue tracking application to manage tasks,
projects, problems, etc. Every company also has its own way of managing and
tracking issues, but this is where the documentation process often begins. An
issue identifies a need for adding or editing documentation, the progress is noted
and tracked, and eventually reaches a completion status. Somewhere throughout
this process, collaboration is often needed and this is where some sort of customi-
zation can be helpful.

In our case, we use Atlassian JIRA for all of our issue tracking, project man-
agement, and Agile assessment. JIRA is highly customizable and there's a variety
of different dashboards, various ways to filter or search for issues, and we were
able to configure the workflow for each type of issue to accommodate multiple
different departments. While having the ability to adjust the workflow, track,
manage, and filter the issues are all very important, we needed it to go much fur-
ther than that to address our collaboration challenges and make our process more
efficient.

One obvious way to do this was to configure automatic notifications so that
whenever an issue progresses to a new stage, the appropriate person or depart-
ment receives some sort of notification. The issues are also configured so that cer-
tain fields are required to progress to the next stage. This ensures that all
departments have the information they need to complete their part of the process.
We also simplified and streamlined the JIRA interface by filtering certain fields,
options, and possible actions so that only the necessary information is displayed.
This not only makes the process easier and faster, but also helps to prevent mis-
takes.

Another way that we have managed to maximize the efficiency of our issue
tracking process is to integrate our development and documentation repositories
with our JIRA system. Developers use the JIRA issue number whenever they
commit a change to our Subversion repository and the Documentation team also
uses the JIRA issue number whenever they commit a change to our Git reposi-

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

14

tory. The JIRA issue then displays each commit that was made for that particular
issue number as a link and the details of the actual commit can be viewed by sim-
ply clicking the link.

Figure 1. Commit Link in JIRA

For issues that require an addition or change in the documentation, once our doc-
umentation team finishes their process and it progresses to the next phase, the
quality assurance team and original issue creator then need to proofread the
changes. When analyzing our workflow, we found that the methods used by the
various people proofreading the documents were inconsistent and sometimes
tedious. Our challenge was to find a way to streamline the process.

We already had an existing web-based visual editor called Oxygen XML Web
Author, so we integrated something we call a Web Author Review Bot that displays
documentation commits directly on the particular JIRA issue, and with this mech-
anism, clicking on the link opens the actual changed document in the web-based
visual editor where they can see the changes in the context of the entire docu-
ment. The advantages of this approach are that the person looking at the commit
can review the changes in a visual editor, make corrections or add comments
directly in the source document, commit those changes so that the documentation
team simply pulls the changes to merge them into their project, and this elimi-
nates several steps in the entire process and helps to improve accuracy and qual-
ity.

Figure 2. Web Author Review Bot Link

By creatively configuring our third-party issue tracking application and finding
ways to integrate our own existing applications, the entire workflow has been
simplified and is far more efficient for all departments. Simplifying and improv-

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

15

ing the collaboration workflow ultimately resulted in more consistency and better
documentation.

3. Developing a Collaboration Solution to Maximize Productivity
and Improve Documentation Quality
One of the biggest challenges most documentation teams face when collaborating
with developers, engineers, or other subject matter experts is that not only do
they each have a different focus and purpose for their contributions, but in many
cases they each think and communicate in very different jargons. For example, a
developer may have a very technical way of expressing a new feature they've
implemented, and while other highly technical users may understand their jar-
gon, the technical writer needs to be able to translate that into a vernacular that
not only a technical user will understand but also a common user that just wants
to know how to use the product without caring about what's “under the hood”.
This usually requires a lot of communication and collaboration between the par-
ties involved in the process and unless they happen to have the ability to collabo-
rate in person, and the time to do so, this can present quite a challenge for the
documentation team.

In our particular case, to come up with a solution for this intricate challenge,
we analyzed our workflow and found that our documentation process usually
looks something like this:
1. The developer writes and shares their notes about a new feature in JIRA (our

third-party issue tracking application) and they indicate that it needs an addi-
tion or change in the documentation.

2. The technical writer communicates with the developer to make sure the docu-
mentation requirements are understood.

3. The technical writer documents the new feature based upon the information
they have, as well as any research or testing they do themselves.

4. The technical writer sends the documentation to the developer for review.
5. The developer reviews the documents and sends their feedback to the techni-

cal writer.
6. The technical writer adjusts the documentation according to the feedback

from the developer.
7. Steps 3 through 6 might be repeated several times until the both parties are

happy with the result and perhaps other subject matter experts will become
involved in the process.

8. The technical writer finalizes the documentation and commits the changes to
the repository.

9. The quality assurance team proofreads the documentation for final approval.

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

16

Many of our developers or other people who review the documentation do
not have access to the DITA project or the same applications that the technical
writer uses, thus we found that the process was often very tedious and perhaps
the quality of the final documentation was compromised since the reviewers
couldn't accurately visualize how the final output will look. We also found that
sometimes those people involved in this process were working remotely from a
different location or worked different hours, and this made the process even more
tedious and slow.

So, the ultimate challenge was to create a solution that would achieve the fol-
lowing:
1. Provide an efficient way for documents to be passed back and forth, regard-

less of where the contributors are located.
2. Allow the reviewers to view and edit the documents in a simple interface that

is similar to what the technical writer sees without requiring them to have
access to the same projects or applications.

3. Make the process incremental and provide an intuitive way for everyone
involved to communicate throughout the process.

4. Notifies the documentation team when reviewers have added messages,
changed files, or finalized the review process.

5. Enable the documentation team to automatically merge the changes made by
the reviewers back into their documentation project.

For this solution, we decided to develop our own new product called Oxygen
Content Fusion and integrate it with our other existing products. First, we needed
an efficient way for the documentation team to send the XML documents to
reviewers. To achieve this, we integrated the new product with our existing Oxy-
gen XML Editor/Author desktop application. It contributes a built-in “Tasks Man-
ager” view where the technical writer can add documents to a task that then gets
uploaded to a server. The technical writer then shares a link to that particular task
with anyone they want to review the documents.

Next, we needed a simple mobile-friendly XML editing solution where the
reviewers wouldn't need to have access to the documentation team's DITA project
or their tools. We envisioned the reviewers only needing to have access to a
browser and we wanted them to be able to open the documents in a visual editor
that renders the XML structure exactly the same as the editor that the technical
writer uses, and where they could proofread, add comments, and make changes
directly to the source document. We already had an existing product (Oxygen
XML Web Author) that is a web-based visual editor and includes features that
fulfill all of those requirements, so all we had to do was integrate it into the new
product. When a reviewer receives the link from the technical writer, they simply
use the link to access the task in the Content Fusion interface (in any modern

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

17

browser), and they open the uploaded files in the built-in web-based visual editor
where they can make changes and add comments, We also added a default
option to force the change tracking feature to always be on so that the documen-
tation team will be able to see exactly what was changed.

Next, we wanted to provide a way for the reviewers to somehow communi-
cate with the technical writer without having to open another application. For
this part of the solution, we simply implemented a messaging mechanism within
the new product. All the collaborators that have access to the task can add mes-
sages directly in the Oxygen Content Fusion interface and it was designed to
have a very familiar look and feel, so it's very simple to use. Therefore, the con-
tributors are more likely to use the feature, which often leads to better feedback
and more efficient collaboration.

The next challenge was to implement a notification mechanism to inform the
collaborators when a new message is added and to notify the technical writer
whenever the review process progresses through the next incremental step in the
workflow. The first part was achieved by simply detecting all users who had
accessed the particular task at some point and sending a notification message to
the email address assigned to their profile. For the second part, we decided that it
was important for the technical writer to also be notified when a reviewer first
accesses a task (meaning that the review process has begun), then whenever a file
is changed (meaning that the review process has progressed another step), and
then when a reviewer finalizes the review (meaning that the review process is
finished and has progressed to a stage where the technical writer needs to act).
For these notifications, we decided to not only send an email to the technical
writer detected as the owner of the task but we also added a mechanism that
shows a notification message in Oxygen XML Editor/Author so that the technical
writer sees when the review task progresses to a new stage (or when a new mes-

Figure 3. Content Fusion Tasks Manager

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

18

sage is added) without having to stop their work or switching to another applica-
tion.

The final challenge was to find a way for the technical writer to be able to
easily and automatically merge the changes back into their project. To solve this
challenge, we used our own existing file comparison tool (diff tool). We enhanced
it so that it effectively looks for any changes between the original file, the changes
made by the reviewer, and changes made by the technical writer after the file was
uploaded. We added a visual mode so that the technical writer can view the
changes in the same mode they are used to working with and in most cases, they
can simply click an “Apply” button to automatically merge the changes into their
project, the documents are automatically opened in the editor, and since we force

Figure 4. Content Fusion Online Interface

Figure 5. Task Notifications

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

19

the change tracking feature to always be on during the review process, the techni-
cal writer can always see exactly what was changed. In rare cases where there is a
conflict, the technical writer is offered choices, such as to keep their own version
of the file or overwrite it with the changes made by the reviewer.

Figure 6. Merge Tool

By spending the time and resources to develop and integrate our own application
to enhance our collaboration process, we have effectively addressed all of the
challenges our documentation team faces when collaborating with developers or
other reviewers. It's very simple and efficient for both parties. The reviewers see
the documents in a visual XML editor that is very similar to what the technical
writer uses, the interfaces is very intuitive, and the documents are in an advanced
stage where differences in vernacular or writing styles are no longer such a chal-
lenge. The result of this has been that the documentation team tends to get better
and more precise feedback from the reviewers. As for the technical writer, they
can automatically merge the changes in seconds, the content always stays in the
same XML form, and they always see exactly what was done. The result of this
has been that the whole process is now far more efficient since numerous steps in
the review process have been eliminated and it is now easier to meet deadlines
since we have overcome challenges associated with collaborators being in multi-
ple locations or having different work schedules.

4. Integrating Collaboration Tools to Streamline the Whole
Documentation Process for all Departments
Our next challenge was to find a way to streamline the collaboration process
between the documentation team and other internal departments, including the

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

20

support team and the quality assurance department. After analyzing the work-
flow for those departments, we found that both the support and quality assur-
ance personnel often reviewed topics in various forms of documentation output
and then used a variety of means to share their feedback with the documentation
team. In many cases, we found that this triggered a process where the communi-
cation between the two departments required multiple collaborative steps and
always resulted in the documentation team making manual changes based upon
various forms of feedback. Not only did we strive to make the process more con-
sistent and streamline it by eliminating some unnecessary steps, but we also rec-
ognized that we could improve the quality and accuracy of the documentation by
finding a way to allow the support or quality assurance personnel to make
changes or offer feedback directly in the source document, again without requir-
ing them to have access to the documentation team's DITA project.

For this challenge, we needed a solution that would achieve the following:

1. Provide a simple visual editor where the support or quality assurance person-
nel could view and edit user manual topics without requiring them to have
access to the documentation team's DITA projects or applications.

2. Integrate the solution with our Git repository so that the support or quality
assurance personnel only needs to commit their changes and the documenta-
tion team would be able to easily pull those changes back into their project.

3. Make the topics accessible directly from the published output.

Again, we already had an existing product that would achieve some of the
requirements. Oxygen XML Web Author already provided an online visual editor
that's very similar to the Oxygen XML Editor/Author desktop product that the
documentation team uses. The support or quality assurance team could use Web
Author to add comments or make changes directly in the source document, and
Web Author already had a mechanism in place for integrating it with a Git repo-
sitory, so they already had the means to commit their changes.

We just needed a way to bring it all together so that the support or quality
assurance team could easily access the particular topic without needing access to
the documentation team's project. Earlier, I mentioned that we use a Web Author
Review Bot to display documentation commits directly in JIRA issues and click-
ing a link opens the document in Oxygen Web Author. This covered cases where
the collaborators needed to access the topics while progressing through stages in
the JIRA issue tracking process, but we also needed a similar mechanism when
the collaborators need to access a topic from published output.

To achieve this, we configured our online WebHelp and PDF output to include
an “Edit” link. Clicking this link opens that specific topic in Oxygen XML Web
Author where the support or quality assurance personnel can review the topic,
make changes, then commit the changes to the Git repository. The documentation

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

21

team is then notified of the pending changes and they merely need to pull the
changes to merge them into their DITA project.

Figure 7. Edit Link in Published Output

The biggest advantage is that the support or quality assurance team can make
corrections or add comments directly in the source topic rather than having to
send their suggestions for changes in some other fashion. This helps to ensure
accuracy, and thus improves the quality of our documentation and we have man-
aged to make the process very efficient by eliminating numerous steps and mak-
ing it very easy to access the content.

5. Conclusion
The number of possible solutions to refine and improve the collaboration part of
the documentation process are as complex and varied as the number of possible
challenges. By developing our own collaboration product (Oxygen Content
Fusion), creatively configuring all the applications that we use for collaboration,
integrating other existing Oxygen products (Oxygen XML Web Author, Oxygen
XML WebHelp, Oxygen XML Editor/Author) with each other, other applications
(JIRA), and our repositories (Git, Subversion), we have effectively addressed all
the challenges that we identified in trying to make our collaboration process more
efficient, effective, flexible, and fluid. Ultimately, this has resulted in effectively
improving the quality of our documentation and the productivity of everyone
involved in the collaboration process.

XML Success Story: Creating and Integrating Collaboration Solutions to
Improve the Documentation Process

22

xqerl:
XQuery 3.1 Implementation in Erlang

Zachary N. Dean
<contact@zadean.com>

Abstract

xqerl is an Open-source XQuery 3.1 processor written in the Erlang pro-
gramming language. It compiles XQuery modules into Erlang modules that
run in the Erlang virtual machine (BEAM). The goal of the xqerl project is
to allow fault-tolerant, concurrent systems to be written completely – or
almost completely – using the XQuery language. This paper will introduce
xqerl and some of its current and future features.

Keywords: XQuery, Erlang, Concurrency, Parallel Processing

1. Introduction
An evening in March 2017 the idea of building an XQuery processor with Erlang
was born. I was in between projects and out having a few drinks with friends. We
chatted about XQuery and all the interesting stuff that had been added to the 3.1
version. As the night went on I began singing the praises of Erlang and how it
could solve the worlds problems if it were just used more often. "Just look at
WhatsApp!" Of course, this was overexaggerated, but it was getting late and
seemed to make sense at least to me. "Well if it's so great why don't you make
something with it?" I heard. My response, "Fine, I'll write an XQuery processor in
Erlang!" The next morning, I started to work on it. Quickly I realized that this was
going to take a while. I already knew of the similarities in the languages. What I
later found were all the small differences that make the biggest difference. Regu-
lar expressions use a slightly different syntax, there is no concept of collations on
strings, positional predicates, the list goes on. But, after ten months of working on
the project full-time, it passes almost 99% of the QT3 tests for the features it
implements.

2. What is Erlang/OTP?
Erlang is a general-purpose programming language and runtime environment
used to build highly-available, scalable, fault-tolerant soft real-time systems. OTP
(Open Telecom Platform) refers to the numerous libraries and applications that
come with an Erlang distribution. It includes many middleware applications that
handle distribution, an internal database, and standardized parallel process han-

23

dling. Erlang was originally designed in mid-to-late 1980’s by Joe Armstrong,
Robert Virding, and Mike Williams at the Ericsson Computer Science Laboratory.
It emerged from a project attempting to find a way to make programming tele-
communication systems simpler and less error-prone. In 1998, Ericsson made the
codebase for Erlang open source.

Erlang is a "concurrency oriented" functional programming language using
the Actor Model. Its base concept is the use of very lightweight processes commu-
nicating with each other only by asynchronous message passing. Processes in this
sense should not be confused with operating system processes or threads. The
processes here are completely contained in the virtual machine and share no
memory.[1]

An interesting feature of Erlang, beyond it process model, is that is can be
compiled to native machine code. Since October 2001 the HiPE (High-Perform-
ance Erlang) compiler, a project originally from Uppsala University, is part of the
Erlang distribution [2]. Native compilation is possible on x86 and SPARC archi-
tectures. Applications that use CPU heavily, such as xqerl, can see sizable gains in
performance when compiled natively. Floating point computation can also see a
slight gain when native code is used [3]. One drawback to compiling this way is
the time it takes to compile code. Compilation times can be much longer when
done with the HiPE compiler.

3. XQuery to Erlang pipeline - Transpilation
Compiling XQuery source code with the Erlang compiler, or more accurately
transpiling XQuery to Erlang, involves many steps that are performed in a
sequence. Each step can find a set of static or typing errors and stop the rest of the
pipeline from being performed.

The steps are as follows:

• Scan/tokenize
The first step in the XQuery to Erlang compilation pipeline is the tokeniza-

tion of the input XQuery source code. There is a library in Erlang/OTP (leex)
meant to do this for most types of source code grammars but is not currently
used in xqerl for XQuery. It is however used for parsing regular expressions
and JSON documents Example A.1. LEEX uses regular expressions as macros
to tokenize the source document. Since XML tag names can also be XQuery
keywords, this form of lexical analysis was not used. It would have caused the
tokenizer to become extremely complex. Instead, a word-for-word scanner is
used that maintains a state object to infer the type of token being scanned.
This is inferred by location, looking back in the previously scanned tokens,
and looking ahead in the source document.

• Parsing (Extended Backus-Naur Form (EBNF) notation)

xqerl: XQuery 3.1 Implementation in Erlang

24

Once tokenized without error, the list of tokens is processed by a parser
built using the OTP library yecc. yecc is the Erlang version of Yacc (Yet
Another Compiler-Compiler) used on Unix based systems. It reads a file con-
taining the entire XQuery grammar in an Augmented Backus-Naur Form.
This form is very similar to the grammar used in the XQuery specification [4].
Each match that is found in the grammar returns a tag and each of its oper-
ands. This builds the entire query into a tree that can be traversed and trans-
formed in later stages. The following example shows two productions used in
simple arithmetic statements. The symbol before the arrow is matched sym-
bol. This is followed by the operands that have been matched out. The portion
after the colon and before the dot is what will be returned, referencing the
matched-out operands by position.

'MultiplicativeExpr' -> 'MultiplicativeExpr' '*' 'UnionExpr' :
 {multiply, '$1', '$3'}.
'AdditiveExpr' -> 'AdditiveExpr' '+' 'MultiplicativeExpr' :
 {add, '$1', '$3'}.

Using the example above, a simple query such as 1 + 2 * 4 will return the
tree:

{add, 1,
 {multiply, 2, 4}
}

A simple but complete yecc grammar file used to parse JSON is included for
reference Example A.2.

• Static analysis
The tree returned from the parser is then recursively analyzed node for

node. This is the most complex step in the transpilation pipeline.
• Each node in tree is given a static type that is inferred by its child node

types or its own type when a leaf node. Should the type not be compatible
with the expected type of the statement, a type error is raised.

• Dead branches of code, such as portions of if-then statements that can
never be reached, are removed.

• Unused global variables and functions are removed from main queries.
• Simple operations on literal values are run in place, and their return value

used instead of the original operation node. For instance, the above exam-
ple returns a tree containing only the integer 9.

• QNames are expanded based on the statically known namespaces.
After the entire tree has been analyzed, a new, simplified tree is returned.

• Optimization phase

xqerl: XQuery 3.1 Implementation in Erlang

25

Currently, there is no optimization phase. This phase would be used to
reorder statements to avoid multiple function calls for known values, inline
positional filters or completely rewrite or simplify statements. This is planned
to be implemented, at least partially, in the near future or as time* permits.

• Abstract code creation
The statically analyzed tree is then transformed into the Abstract Erlang

Format. This is a one-to-one representation of Erlang source code as an
abstract tree and is the same format that the Erlang source code scanner
would return had it read an Erlang source file. In this phase, the program flow
is kept almost identical to the original XQuery but with one major exception.
Each clause of each FLWOR statement is extracted into a local function. These
functions are then either body- or tail-recursive depending on the type of
clause.

• Compilation
The final step in the pipeline is to compile the code. The binary returned

from the compilation can be loaded on-the-fly into a running system, even if
the same module has been previously loaded.
An example of what the output from all these steps would be if it printed

Erlang source code. Comments are added for clarity:

Example 1. XQuery

for $x in (2,1,3)
let $y := -$x
order by $y
return $x

Example 2. Erlang

main() ->
 VarTup__1 = for__1(new), % for and let in one call
 % must return to sort entire variable tuple
 VarTup__2 = xqerl_flwor:orderbyclause(
 VarTup__1,
 [{fun ({_XQ__var_1, XQ__var_2}) ->
 XQ__var_2
 end,
 ascending, greatest}]),
 % call return function with entire variable tuple
 return__3(VarTup__2).

for__1(new) ->
 % internally, all types are tagged
 List = [{xqAtomicValue, 'xs:integer', 2},

xqerl: XQuery 3.1 Implementation in Erlang

26

 {xqAtomicValue, 'xs:integer', 1},
 {xqAtomicValue, 'xs:integer', 3}],
 for__1(List);

for__1([]) -> [];
for__1([XQ__var_1 | T]) ->
 % call let__2 with head of list in parameter
 % result is head of new list, tail is call to
 % for__1 with parameter tail
 [let__2({XQ__var_1}) | for__1(T)].

let__2({XQ__var_1}) ->
 XQ__var_2 = xqerl_operators:unary_minus(XQ__var_1),
 % add XQ__var_2 to the variable tuple
 {XQ__var_1, XQ__var_2}.

return__3(List) when is_list(List) ->
 % call return__3 for every T such that T is in List
 [return__3(T) || T <- List];
% extract XQ__var_1 from the variable tuple
return__3({XQ__var_1, _XQ__var_2}) -> XQ__var_1.

4. Optional Features
Only some of the optional features of XQuery have been implemented thus far.
This is due to the early stage of the project. The unimplemented features will be
implemented as time* permits. The features that have already been implemented
are the Module Feature and Higher-Order Function Feature.

Those optional features and extensions yet to be implemented are:
• Schema Aware Feature
• Typed Data Feature
• Static Typing Feature
• Serialization Feature
• Update Facility
• Full-Text

5. Data Model Conformance
As with all XQuery implementations, xqerl uses an internal XQuery and XPath
Data Model (XDM). The implemented XDM imposes some limitations on the
sizes and ranges of Schema Types and limits some functionality, such as a lack of
the Schema Awareness feature. xqerl currently uses the XML parser (xmerl) inclu-

xqerl: XQuery 3.1 Implementation in Erlang

27

ded in the Erlang distribution. xmerl is capable of parsing well-formed XML and
validating XML according to referenced DTDs.

Some limitations on ranges of data values are:

• The xs:integer type is internally represented by a bignum. Therefore, it is only
limited by available memory.

• The xs:decimal type is only limited by available memory and not specific digit
count. Internally it is represented by two integers, one for the entire value (all
digits removing the decimal point) and the other for the position of the deci-
mal point. When division takes place, the decimal value is rounded to 18 pla-
ces to avoid overflow from repeating decimals. The limitation to 18 places is
arbitrary and could be made larger.

• The types that contain a year value, xs:date, xs:dateTime, xs:gYear, and
xs:gYearMonth, are limited in that the year value can have a maximum abso-
lute value of 9999.

• xs:time and xs:dateTime types have the same limitations on their seconds val-
ues as the xs:decimal type.

• The xs:duration type and its subtypes are limited to absolute values less than
10000 years. This is to avoid durations that cannot fit into date types.

• xs:string, xs:QName, xs:anyURI and xs:NOTATION have no length limitations
other than available memory. Each is internally represented by a list of code-
points.

• xs:hexBinary and xs:base64Binary types are limited to approximately 500
megabytes on 32-bit systems and 2,000 petabytes in 64-bit systems [5].

6. Moving Forward - Future work
Currently, modules in xqerl can only be called from the shell or from Erlang code.
To allow xqerl to take advantage of the massively parallel and distributed capa-
bilities native to Erlang and to make it useable in a non-development setting, fur-
ther development is needed. Then next steps planned are to implement the
EXPath extensions [6] and RESTful Annotations [7].

Later, compiled modules will be exposed by REST endpoints. Internally, each
XQuery module or package that contains RESTXQ annotations will become a
deployable Erlang application and each endpoint will become a supervisor proc-
ess within the application. These supervisor processes will then in turn spawn
worker processes to handle each call to the endpoints asynchronously. This
loosely-coupled supervisor tree will allow for worker processes that timeout or
crash and be restarted while not effecting the integrity or stability of the running
system.

xqerl: XQuery 3.1 Implementation in Erlang

28

Another goal is to implement cost-based parallel processing within a query.
This will be added during the static phase and calculate an estimated cost of com-
plexity of each operation in the query. After a certain complexity threshold is
crossed, the next higher statement in the tree that iterates a sequence will be done
in parallel processes if possible.

Other features that may come later include native support for websockets,
additional functions for parallel processing, and connectors for popular relational
and NoSQL databases.

7. Conclusion
What started out as a "Schnapsidee", has since become a working proof-of-con-
cept with close to 100,000 lines of code. With more work and time* it could
become a feasible solution for building massively parallel XQuery solutions. So
far this project has been a self-funded, one-man-show. Contributions of any kinds
are always welcome that help this project reach its goal.

A. Appendix

Example A.1. leex file for tokenizing JSON - json_scanner.xrl
BOM = (\x{FFFE}|\x{FEFF}|\x{0000})
S = (\r|\n|\v|\t|\s)*
QM = [\x{0022}]
ESCAPE = [\x{005C}]
HEXDIG4 = ([0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f][0-9A-Fa-f])
UNESCAPED = [\x{0020}-\x{0021}\x{0023}-\x{005B}\x{005D}-\x{10FFFF}]
ESCAPED = ({ES-CAPE}\x{0022}|{ESCAPE}\x{005C}|{ESCAPE}\x{002F}|
 {ESCAPE}\x{0062}|{ESCAPE}\x{0066}|{ESCAPE}\x{006E}|
 {ESCAPE}\x{0072}|{ESCAPE}\x{0074}|
 {ESCAPE}\x{0075}{HEXDIG4})

UCHAR = ({UNESCAPED})*
CHAR = ({UNESCAPED}|{ESCAPED})*
USTRING = {QM}{UCHAR}{QM}
STRING = {QM}{CHAR}{QM}

Rules.
{USTRING} : {token,{string ,TokenLine,TokenChars }}.
{STRING} : {token,{esc_string ,TokenLine,TokenChars }}.

% values
false : {token,{false,TokenLine,false}}.
true : {token,{true,TokenLine,true}}.
null : {token,{null,TokenLine,null}}.

xqerl: XQuery 3.1 Implementation in Erlang

29

% number
[\-]?(0|([1-9][0-9]*))(\.[0-9]+)?([eE](\+|\-)?[0-9]+)? :
 {token,{number,TokenLine,TokenChars}}.
% structure
{S}\[{S} : {token,{array_begin ,TokenLine,array_begin }}.
{S}\]{S} : {token,{array_end ,TokenLine,array_end }}.
{S}\{{S} : {token,{object_begin,TokenLine,object_begin}}.
{S}\}{S} : {token,{object_end ,TokenLine,object_end }}.
{S}\:{S} : {token,{name_sep ,TokenLine,name_sep }}.
{S}\,{S} : {token,{value_sep ,TokenLine,value_sep }}.
{BOM} : skip_token.

Example A.2. yecc file for parsing JSON - json_parser.yrl

Nonterminals
 root object array value values member members.
Terminals
 false true null number string esc_string array_begin array_end
 object_begin object_end name_sep value_sep.

Rootsymbol root.

root -> object : '$1'.
root -> array : '$1'.
root -> string : val('$1').
root -> esc_string : str_val('$1').
root -> number : list_to_number(val('$1')).
root -> false : false.
root -> null : null.
root -> true : true.

object -> object_begin members object_end : {object, '$2'}.
object -> object_begin object_end : {object, []}.
array -> array_begin values array_end : {array, '$2'}.
array -> array_begin array_end : {array, []}.

members -> member value_sep members : ['$1'|'$3'].
members -> member : ['$1'].

member -> string name_sep value : {val('$1'), '$3'}.
member -> esc_string name_sep value : {str_val('$1'), '$3'}.

values -> value value_sep values : ['$1'|'$3'].
values -> value : ['$1'].

value -> false : false.

xqerl: XQuery 3.1 Implementation in Erlang

30

value -> null : null.
value -> true : true.
value -> object : '$1'.
value -> array : '$1' .
value -> number : list_to_number(val('$1')).
value -> string : val('$1').
value -> esc_string : str_val('$1').

Erlang code.

val({_,_,Token}) when hd(Token) == $" ->
 lists:reverse(tl(lists:reverse(tl(Token))));
val({_,_,Token}) ->
 Token.

str_val(Val) ->
 norm_str(val(Val)).

list_to_number(List) ->
 case catch list_to_float(List) of
 {'EXIT',_} ->
 case catch float(list_to_integer(List)) of
 {'EXIT',_} ->
 #xqAtomicValue{value = V} =
 xqerl_types:cast_as(
 #xqAtomicValue{type = 'xs:string', value = List},
 'xs:double'),
 V;
 F ->
 F
 end;
 Num ->
 Num
 end.

norm_str([]) -> [];
norm_str([$\\,$"|T]) -> [$" |norm_str(T)];
norm_str([$\\,$\\|T])-> [$\\|norm_str(T)];
norm_str([$\\,$/|T]) -> [$/|norm_str(T)];
norm_str([$\\,$b|T]) -> [$\b|norm_str(T)];
norm_str([$\\,$f|T]) -> [$\f|norm_str(T)];
norm_str([$\\,$n|T]) -> [$\n|norm_str(T)];
norm_str([$\\,$r|T]) -> [$\r|norm_str(T)];
norm_str([$\\,$t|T]) -> [$\t|norm_str(T)];
norm_str([$\\,$u,A,B,C,D|T]) ->
 [list_to_integer([A,B,C,D],16)|norm_str(T)];

xqerl: XQuery 3.1 Implementation in Erlang

31

norm_str([H|T]) ->
 [H|norm_str(T)].

Bibliography
[1] Getting Started with Erlang - User's Guide - Version 9.2: Concurrent

Programming http://erlang.org/doc/getting_started/conc_prog.html
[2] High-Performance Erlang Project https://www.it.uu.se/research/group/

hipe/
[3] K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson, T. Lindahl All you wanted

to know about the HiPE compiler (but might have been afraid to ask) http://
erlang.org/workshop/2003/paper/p36-sagonas.pdf

[4] XQuery 3.1 Grammar EBNF https://www.w3.org/TR/xquery-31/#nt-bnf
[5] Efficiency Guide - User's Guide - Version 9.2 Advanced http://erlang.org/doc/

efficiency_guide/advanced.html
[6] EXPath - Modules http://expath.org/modules
[7] RESTXQ 1.0: RESTful Annotations for XQuery http://exquery.github.io/

exquery/exquery-restxq-specification/restxq-1.0-specification.html

xqerl: XQuery 3.1 Implementation in Erlang

32

http://erlang.org/doc/getting_started/conc_prog.html
https://www.it.uu.se/research/group/hipe/
https://www.it.uu.se/research/group/hipe/
http://erlang.org/workshop/2003/paper/p36-sagonas.pdf
http://erlang.org/workshop/2003/paper/p36-sagonas.pdf
https://www.w3.org/TR/xquery-31/#nt-bnf
http://erlang.org/doc/efficiency_guide/advanced.html
http://erlang.org/doc/efficiency_guide/advanced.html
http://expath.org/modules
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html

XML Tree Models
for Efficient Copy Operations

Michael Kay
Saxonica

<mike@saxonica.com>

Abstract

A large class of XML transformations involves making fairly small changes
to a document. The functional nature of the XSLT and XQuery languages
mean that data structures must be immutable, so these operations generally
involve physically copying the whole document, including the parts that are
unchanged, which is expensive in time and memory. Although efficient
techniques are well known for avoiding these overheads with data structures
such as maps, these techniques are difficult to apply to the XDM data model
because of two closely-related features of that model: it exposes node identity
(so a copy of a node is distinguishable from the original), and it allows navi-
gation upwards in the tree (towards the root) as well as downwards. This
paper proposes mechanisms to circumvent these difficulties.

1. Introduction
 An XSL transform takes linear time
 If the input and output are almost the same.
 Though the changes you make may be local and small
 You still pay the price of transforming it all.

Many XML transformations, whether expressed in XSLT or XQuery, copy large
chunks of the input directly to the output, without change. This is typically an
expensive operation, requiring both time and memory proportional to the size of
the subtree being copied. This cost is particularly painful when a transformation
operates incrementally, making many passes over the input, each of which only
makes small changes.

For an example of such a problem, see [2]. In that paper I explored the possi-
bility of writing an XSLT optimizer in XSLT. Optimization is essentially a series of
transformations applied to an expression tree, so it is in principle a task to which
XSLT should be well-suited; but my conclusion in that paper was that it wasn't
feasible to achieve adequate performance, largely because each transformation
step involved copying the large parts of the tree that remained unchanged.
Recently in Saxonica we have been revisiting this problem (see [4]) because we

33

are interested in making the entire XSLT compiler portable across platforms, and
the classic way of achieving this is to write the compiler in its own language. This
led me to look again at the efficiency of transformations that make small changes
to a large tree.

The fact that copying a subtree is expensive is a consequence of two particular
rules in the XDM data model: (a) nodes have identity (which means that the
expression copy-of(X) is X must return false – a copy of a node is not the same
thing as the original), and (b) nodes have parents (which means that
exists(copy-of(X)/..) must return false – when a node is copied, the copy is
parentless). Any implementation of a copy operation that retains these properties
without performing a physical copy of the subtree is going to be complicated.

In the XDM data model, the maps and arrays used to represent JSON struc-
tures do not have this property. In the tree representation of JSON, there is no
way of navigating from an object to its parent; and there is no way of distinguish-
ing two copies of the same object. This means that subtrees can be shared, which
makes copying logically unnecessary (or to put it another way, producing a logi-
cal copy does not require producing a physical copy).

Saxon1 implements maps and arrays using what I will call "versioned" data
structures. (The names "immutable" and "persistent" are also used, but both
adjectives have alternative meanings, so I will avoid them). In a versioned data
structure, after any update operation, both the old and the new values are availa-
ble for further processing, yet the new value shares memory with the old for
those parts of the data that have not changed. Appendix A describes briefly how
versioned maps and arrays work. A versioned data structure for XML trees is
more difficult to achieve, because of the problems of node identity and parent
navigation.

There's no intrinsic difference between XML and JSON at the lexical level that
accounts for this deep difference between the way that XDM models the two
cases. We could explore what happens when we add parent pointers to JSON
trees, or we could explore what happens when we remove them from XML trees.
This paper does the latter.

The ability to navigate from a node to a parent (and therefore, implicitly, to its
siblings) is extremely useful, because it makes it possible to identify nodes of
interest by their context as well as their content. In [3] I showed some use cases
where XSLT 3.0 is applied to the task of transforming JSON, and the inability to
access this contextual information proved a constant obstacle, to the extent that I
concluded the easiest way to accomplish many JSON transformations was to con-
vert the data to XML, transform the XML, and then convert it back to JSON.

1Some statements made here about the Saxon product refer to code that is implemented and tested
but not yet released.

XML Tree Models for Efficient Copy Operations

34

 Now the freedom to navigate upwards and down,
 to parents, descendants, children and peers,
 Means the rule for transforming a node in your text
 Can refer to the context in which it appears.
 So if xml:lang says your paragraph's Dutch,
 This may affect formats for numbers and such,
 But to determine what language applies at each point
 You must know the container in which it is found.

In the latest incarnation of the Saxon-JS product, we are using a JSON-based
model internally to represent the interpreted expression tree, but we have found
it necessary to introduce parent pointers to allow access to context information
such as the static base URI and in-scope namespaces of an expression. This
doesn't cause any problems in this case because the expression tree, by the time
the compiler is finished with it, never changes.

Now: the main thrust of this paper is to show that providing the ability to
navigate from a node to its parent does not necessarily imply that the stored tree
needs to include parent pointers. There's another way to enable access to the
parent, which is to remember, when you get to a node, how you got there. There's
no way of getting to a node without going via its parent, so in principle you can
always retrace your steps. Knowledge of the parent can thus be part of the infor-
mation returned when a node is retrieved, even if the information is not actually
stored with the node. Equally, the identity of a node (affecting the result of the
XPath is operator) can be a function of how the node was reached: if we treat the
identity of a node as a list comprising the identities of all its ancestors, that is, a
path to the node from the root, then it does not matter if a physical subtree is
shared by several logically separate XML documents: a node can be reached by
more than one path, but it is the full path that establishes the node identity, so
such a node has multiple identities depending on how you got there. With this
insight, we can see that it should be possible to provide full XPath navigation
capability on a tree with no stored parent pointers and no built-in notion of node
identity.

The KL-tree described in section 3 is an implementation of this concept.

2. Push and Pull Processing
The semantics of XSLT 1.0 were written in terms of instructions such as
xsl:element writing nodes to the result tree: the narrative was written assuming a
push model where instructions push data to a destination. By contrast, for
XQuery and later XSLT versions, the specification uses pull language: element
constructors are expressions that return a result to their caller, namely a newly
constructed element. The pull model implies bottom-up tree construction, where

XML Tree Models for Efficient Copy Operations

35

leaf nodes are constructed first, and then grafted onto their new parents: this
inevitably involves copying the node to give it a new parent, at each level of con-
struction.

A processor that implements this literally as written is going to be very ineffi-
cient, because of the amount of tree copying needed. In practice there are a num-
ber of ways the repeated copying can be avoided:
• The implementation can use a push model internally. What happens here is

that an instruction like xsl:element starts by emitting a startElement event to
an output receiver; it then processes its child instructions (also in push mode),
and finally emits a corresponding endElement event. If the output receiver is a
serializer writing lexical XML, this approach means that the result nodes are
never actually constructed in memory at all: the processor emits a sequence of
events which are translated into lexical XML markup by the serializer. If the
output is an intermediate tree, the receiver will be a tree builder that uses the
stream of incoming events to construct an in-memory tree, but none of the
intermediate nodes will ever need to be copied. This is the approach used by
the Saxon-Java product.

• The implementation can use a bottom up model, and attempt to recognize
where leaf nodes do not need to be copied, but can instead be directly grafted
to their new parent by updating a parent pointer. This relies on being able to
recognize that the leaf node exists solely for the purpose of creating the con-
tent of the next container, and will never be used as a parentless node in its
own right. This isn't quite as effective as the push strategy, because it involves
materializing the result tree prior to serialization, but it can still perform well.
This is the approach used in Saxon-JS.

This paper suggests that a third approach might be possible, which is simply to
ensure that copying a tree of nodes is extremely fast: ideally it should cost noth-
ing. This is achieved by creating a virtual copy of the tree: a separate tree in terms
of XDM node identity, but sharing the same underlying storage as the original.
Our first attempt at this is the KL-tree, described in the next section.

3. The KL-Tree
This section describes the KL-Tree, an experimental implementation of the XML
part of the XDM data model.

The data that physically exists in memory is the K-Tree, and its nodes are
called K-nodes. Putting attributes and namespaces to one side for the moment,
we have five node kinds: documents, elements, text nodes, comments, and pro-
cessing instructions. Since comments and processing instructions behave just like
text nodes, we can ignore them for the purpose of this discussion.

So, as a first approximation, the K-tree contains:

XML Tree Models for Efficient Copy Operations

36

• Document nodes, which contain a sequence of child nodes
• Element nodes, which have a name, a sequence of child nodes, plus attributes

and namespaces
• Text nodes, which contain a string value
K-nodes do not contain enough information to enable navigation to ancestors or
siblings, or to enable sorting of nodes into document order. To achieve that, any
navigation through the K-tree returns not the K-node itself, but an L-node; an L-
node contains a reference to the K-node, plus additional information. Specifically,
the additional information in an L-node comprises a reference to its parent L-
node (with null used to indicate that the L-node is the root of the L-tree), plus the
position of the L-node among its siblings in the L-tree. With this additional infor-
mation, navigation from an L-node using any of the 13 XPath axes becomes possi-
ble, as does sorting into document order.
 Our initial invention to answer this question
 Was a tree in which nodes pointed down but not up.
 Elements reference children and text nodes;
 The link is one way: you can only descend.
 But now when a query selects a descendant,
 We remember the path for retracing our steps.
 The pointer to parent becomes now redundant
 We can find a container, whatever our depth.

The L-nodes are created on demand, when a node is retrieved in the course of
navigation, and they are garbage-collected as soon as they are no longer needed.
With a little bit of optimization, it is possible in many cases to avoid creating L-
nodes that aren't needed, for example with an XPath expression child::title,
we can arrange only to create L-nodes for those K-nodes that match the required
name.

Two L-nodes are identical (in the sense of the XPath is operator) if their
parents are identical and they have the same sibling position; so it's only root
nodes that have intrinsic identity. It doesn't matter whether the two L-nodes are
represented by the same Java object, or whether the K-nodes that they reference
are represented by the same Java object: one Java object can represent several
nodes, and several Java objects can represent the same node.

Similarly, sorting of L-nodes into document order can be achieved from
knowledge of the parent nodes and sibling positions.

4. KL-tree Performance
Appendix A summarizes the execution time of various important operations,
comparing the KL-tree implementation with Saxon's standard TinyTree imple-

XML Tree Models for Efficient Copy Operations

37

mentation as well as the more conventional LinkedTree model, and (for complete-
ness) the other tree implementation models supported by Saxon.

What these figures show is that the KL-tree is dramatically faster for one par-
ticular operation, that of grafting a tree into a new containing tree, but it is a little
bit slower than the existing TinyTree implementation for many other operations.
In particular, searching the KL tree is about 4 times slower. The KL-tree also uses
more memory. This is not because the model is intrinsically inefficient; it just fails
to reproduce some of the optimizations implemented in the TinyTree. The Tiny-
Tree achieves much of its fast search time by using arrays of data rather than
linked objects to represent nodes, and because scanning an array is faster than
following pointers in a linked list, it is hard for any implementation using linked
lists to achieve comparable performance.

Sadly, this appears to be a show-stopper as far as incorporation into Saxon is
concerned. The number of stylesheets that show an overall performance improve-
ment from the KL-tree is small, and moreover, it's difficult to recognize them by
static analysis. This means that the feature is only viable as a user-selected option,
and we know from experience that only a very small number of users who stand
to benefit from tweaking such features will actually understand the feature suffi-
ciently well to take advantage of it. If only 5% of stylesheets stand to gain, and if
only 5% of the authors of those stylesheets recognize the fact, then adding the fea-
ture will not create enough happiness in the user community to make it worth the
trouble.

So let's throw this idea out of the window for the time being (Prague being a
popular place for defenestration) and try something else. Since the TinyTree is
delivering good all-round performance, let's see if we can use that as our baseline,
and make incremental improvements.

5. The TinyTree
At this stage we need to explain the workings of the TinyTree, which is Saxon's
default tree implementation. Although the data structure has been around for
many years, and has changed very little, the only published information is the
low-level internal Javadoc https://www.saxonica.com/documentation/index.
html#!javadoc/net.sf.saxon.tree.tiny/TinyTree, plus a slightly out-of-date
blog article [1].

The data structure consists of a set of arrays, held in the TinyTree object. The
arrays are in three groups, where in each group the arrays can be considered to
represent columns in a table. Using Java arrays to represent the columns of the
table, rather than the conventional approach of using one Java object per row,
accounts for much of the space saving benefits, and also provides for fast tree
construction and navigation.

XML Tree Models for Efficient Copy Operations

38

 The TinyTree structure makes no use of pointers;
 Its content instead is arranged using vectors.
 One holds the depth, a second the node kind,
 A third holds the names, coded as numbers.
 A search for descendants will step through these vectors
 Comparing the node kind and name for a match.
 With no pointer chasing, and no string comparing,
 The search for a node is impressive to watch.

The principal table contains one row for each node other than namespace and
attribute nodes. These rows are in document order. The following information is
maintained for each node:
• the depth in the tree
• the name code
• the index of the next sibling
• two fields labelled alpha and beta, described below
• the type annotation that results from schema validation (this array is absent

for untyped trees)
• the index of the preceding sibling. This array is created lazily only when nee-

ded, the first time that the preceding-sibling axis is used for any node in this
tree.

The meaning of alpha and beta depends on the node kind. For text nodes, com-
ment nodes, and processing instructions these fields index into a string buffer
holding the text. But for element nodes, alpha is an index into the attributes table,
and beta is an offset into the namespaces table. Either of these may be set to -1 if
there are no attributes or namespaces.

A name code is an integer value that indexes into the NamePool object: it can
be used to determine the prefix, local name, or namespace URI of an element or
attribute name. Name codes enable searching for elements and attributes using
fast integer comparisons rather than string comparisons.

The attribute table holds the following information for each attribute node:
• a pointer to the attribute's parent element
• prefix
• name code
• attribute type
• attribute value
Attributes for the same element are adjacent.

The namespace table holds one entry per namespace declaration or undeclara-
tion (not one per namespace node). The following information is held:

XML Tree Models for Efficient Copy Operations

39

• a pointer to the element on which the namespace was declared or undeclared
• namespace prefix
• namespace URI
The links between elements and attributes/namespaces are all held as integer off-
sets. This reduces size, and also makes the whole structure relocatable. All navi-
gation is done by serial traversal of the arrays, using the node depth as a guide.

Saxon attempts to remember the parent of the current node while navigating
down the tree, and where this is not possible it locates the parent by searching
through the following siblings; the last sibling points back to the parent. In the
case where there is a large number of siblings, occasional parent pointers are
inserted as pseudo-nodes to reduce the length of this search.

6. Virtual Copy
Existing Saxon releases include an optimization whereby an expression of the
form

<xsl:variable name="x">
 <xsl:copy-of select="$doc//a/b/c"/>
</xsl:variable>

creates a virtual copy of the selected <c> element nodes, rather than doing a
physical copy.

Rather like an L-node in the KL-tree model, the virtual copy is a wrapper
node that points to the original node of which it is a copy. Many of the properties
of the virtual node (for example, the name, type, and string value) are identical to
the corresponding properties of the original. The mechanism can also handle
some variation, for example there is scope for the original data to be schema-
typed, while the copy is untyped. Navigating around the virtual tree is done, by
and large, by navigating around the underlying physical tree, and then wrapping
the resulting node. The main way in which the virtual copy differs from the origi-
nal (apart from having a different identity) is that XPath navigation never strays
outside the subtree that has been copied. Navigation from any node in the tree to
its ancestors stops when it hits the root of the virtual copy; navigation from the
root to siblings or parent returns an empty sequence.

Unlike the KL-tree, the virtual copy cannot be shared as a child of multiple
parents. In fact, a virtual copy is always a parentless copy of some original tree or
subtree: the original node may or may not have a parent, but the virtual copy
never has. This gives it limited usefulness. Indeed, one could argue that it is only
ever used to ameliorate code that was badly written in the first place, because it is
essentially used only to eliminate copying that was never necessary. The relevant
variable could equally well have been written as:

<xsl:variable name="x" select="$doc//a/b/c"/>

XML Tree Models for Efficient Copy Operations

40

with no copying needed.
Although this mechanism has limited usefulness in its current form, it turns

out not to be difficult to extend it. In particular, we can extend it so that:
• A virtual copy V is identified by a pair of nodes (R, P), typically in different

trees. P is referred to as the grafting host: we are effectively grafting the tree
rooted at R to a new parent P.

• V is deep-equal to R: they have isomorphic subtrees that share the same stor-
age

• The parent of V is P, which in general is not the parent of R.
When navigating V, the result of any navigation within the subtree is a wrapper
node (like the L-node described earlier) which remembers that the parent of V is
P rather than R; and any navigation that strays from the subtree (which in prac-
tice will always reduce to a call on V.getParent()) uses this information to
return to the tree containing the grafting host.

We can now look at extending the TinyTree model so that an element node in
the model (which in the normal way would be immediately followed by all its
descendant nodes in document order) can be replaced by a reference to an exter-
nal element node which is deemed to be copied at the relevant position.

So the tree representation produced by the following construct:

<xsl:variable name="x">
 <out>
 <xsl:copy-of select="$doc//a/b/c"/>
 </out>
</xsl:variable>

would contain an entry for the document node at level 0, then an entry for the
wrapper <out> element at level 1, then a number of "external element" nodes at
level 2, each containing some kind of reference to one of the selected <c> nodes.
For convenience, we'll call this the "host tree", and we'll refer to the trees contain-
ing the <c> nodes as "grafted trees". Of course, the process can be nested arbitra-
rily deep, in that grafted trees can themselves contain external element nodes to
further copied trees.

How do we navigate such a structure?
Firstly, if we are processing the descendant nodes in the outer tree in docu-

ment order, then when we hit an external element node, we have to remember
where we are on some stack, and continue by processing the descendants of the
grafted node. When we've finished scanning the grafted subtree, we pop the
stack. This part isn't too difficult.

More tricky is that when we're processing the grafted tree, we have to remem-
ber where we came from. The rules are similar to those for the current Virtual-
Copy described in the previous section, but with some key differences:

XML Tree Models for Efficient Copy Operations

41

• The parent of the root node in the grafted tree is no longer absent, it is the
parent of the external element node in the outer tree.

• Similarly, the siblings of the root node in the grafted tree are the siblings of the
external element node.

With these changes, a copy-of() operation on a TinyTree node creates a parent-
less VirtualCopy (as today), and an operation that attaches such a VirtualNode to
a new parent, in the course of building a new TinyTree, adds a reference to the
VirtualCopy. Both cases now take constant time independent of the tree size.

A minor refinement: for very small trees, for example those consisting of a sin-
gle element node with a single text node child, it may turn out to be cheaper to
perform a physical copy of the node.

Unfortunately, though, most of the implicit copying that happens during a
transformation isn't done with explicit copy-of() operations, it is done using the
recursive shallow copy implicit in the built-in template rules. So the next section
studies how we can make recursive shallow copy equally efficient.

7. Shallow Copy and the Identity Template Pattern
Returning to the original use case, stylesheets that make small changes to large
trees are often written to use a design pattern with a fallback rule that shallow-
copies an element, overridden by higher-priority rules to make specific changes.
For example, a stylesheet to delete all <Note> elements might be written like this
in XSLT 3.0:

<xsl:mode on-no-match="shallow-copy"/>
<xsl:template match="Note"/>

In earlier XSLT releases the default action would be spelled out explicitly, for
example:

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
</xsl:template>
<xsl:template match="Note"/>

The problem here is that the code is copying elements from the source tree to the
result tree one node at a time, which makes it difficult to take advantage of a fast
deep copy.

The first thing we have to do is to detect that this pattern is in use: this is
clearly easier to do with the declarative XSLT 3.0 approach. It's harder when the
identity template is written out explicitly, because there are many variations on
how it is written; however it should be possible to detect the common cases.

XML Tree Models for Efficient Copy Operations

42

When we detect that the template rules for a mode use shallow-copy as the
fallback action, with specific actions for a small number of match patterns, we can
attempt an optimization: if there is no explicit template rule for an element, or for
any of its descendants (or for their attributes, if applicable) then the element can
be deep-copied to the result, with no further processing of the subtree.
 The identity pattern in XSLT
 is troublesome mainly because you can't see
 which nodes have subtrees that don't change one jot
 and would benefit greatly from copying the lot.

If the stylesheet is schema-aware then there is potential to recognize statically that
there are some elements that will always be deep copied. Sadly, however, writing
schema-aware stylesheets seems to have remained a minority interest, so this
approach on its own won't get us very far. However, there might still be benefits
from doing a dynamic check.
Specifically, if the following situation arises dynamically:

• xsl:apply-templates selects a node N for which there is no matching tem-
plate rule

• the current mode (explicitly or implicitly) uses on-no-match="shallow-copy"
• N is a node in a TinyTree
• the instruction is evaluated in push mode
• the current output destination is a TinyTree builder
then it may be worth scanning the descendants of N to see whether any of them
matches an explicit template rule; and if not, performing a deep copy-of() opera-
tion rather than a recursive tree walk.

The approach could be further improved with a learning strategy: if (say) the
first ten nodes with a particular name M have been found to have descendants
matched by an explicit template rule, then it's probably not worth considering
this approach for any subsequent nodes named M.

An important caveat is that this tactic will never be used in the common case
where transformation results are being written directly to a serializer. The cost of
producing serialized XML will always increase with document size. The benefit
comes when a pipeline of transformation phases pass data to each other in the
form of in-memory trees (and it applies whether these transformation phases are
written as a sequence of separate XSLT stylesheet executions or as a single XSLT
execution).

8. Use in XQuery Update
In XQuery, the code for copying a tree with minor changes to selected nodes is
somewhat tedious to write: essentially, the xsl:apply-templates mechanism

XML Tree Models for Efficient Copy Operations

43

needs to be simulated with a recursive function that switches on the type of the
supplied node using a typeswitch expression, each branch typically containing a
recursive call to process child nodes using the same logic. In principle, the same
optimizations could be applied as for the XSLT shallow copy pattern; but it is
probably harder to detect this pattern in XQuery because there is more scope for
minor variation in the code.

A second way to make small changes to a document in XQuery is to use
XQuery Update. For example a query to delete all the Note elements at any level
could be simply written:

delete node //Note
The downside of this mechanism is that the updated document (with the Note
elements deleted) is not visible within the same query. Instead, some external
mechanism (perhaps XProc) is needed to insert the updating query into a pipe-
line of operations. The XQuery update specification states that modifying nodes
within a tree does not affect the node identity of other nodes: in effect, the tree
becomes mutable; except that there is no way within the XQuery language of
comparing the node identity before and after update to see whether the claim is
actually true.

If updates are to be made visible within a query, the only way to achieve this
is with the "copy-modify" expression (also known as a transform expression). An
example might be:

 copy $doc2 := $doc
 modify (delete node $doc//Note)
 return $doc2

In the sadly-abandoned 3.0 version of XQuery Update, this can be replaced with
the simpler syntax:

 $doc transform with {
 delete node .//Note
 }

The result of this expression is now a copy of the subtree rooted at $doc in which
the Note elements have been deleted. Pure functional behaviour and immutabil-
ity have been restored by constraining the in-situ modification to work on a tree
that is created as a copy of the original, where the copy becomes accessible to the
rest of the query only in its modified form.

So we are once again in the situation where the cost of making this change
depends on the size of the document, and not only on the number of nodes being
changed.

With a construct like this, however, we have a very much better chance of
exploiting a virtual copy mechanism. The first stage in evaluating this copy-mod-
ify expression is to produce a pending update list, which is a list of actions to be

XML Tree Models for Efficient Copy Operations

44

applied to the tree, together with the nodes that they affect. We can then expand
this list to include all the ancestors of affected nodes. Then, when performing the
copy operation to construct $doc2, we can implement this by means of a recursive
copy on all its children, and in the course of this recursive deep copy, any node
that is not on the expanded list of affected nodes can be virtually-copied by creat-
ing a reference to the original node in $doc.
 In XQuery Update it's easy to see
 that the modified nodes form just part of the tree.
 Thus the list of those nodes that remain unaffected
 Is readily formed, as might be expected.
 And with virtual copies of parts that stay constant
 Applying small changes takes only an instant.

This promises to be sufficiently useful that we could consider providing XSLT
syntax with the same semantics: the above example might become:

 <uxsl:update select="$doc">
 <uxsl:delete select=".//Note"/>
 </uxsl:update>

while a more complex example might be:
 <uxsl:update select="$doc">
 <uxsl:delete select=".//Note"/>
 <uxsl:rename select=".//Comment" to="Remark"/>
 <uxsl:replace-value select=".//Salary" by=". * 1.1"/>
 </uxsl:update>

The result of the uxsl:update expression would be the updated copy of $doc

References
[1] Michael Kay Saxon: Anatomy of an XSLT Processor, 2005. Article published at

IBM DeveloperWorks. Available at https://www.ibm.com/developerworks/
library/x-xslt2/

[2] Michael Kay: Writing an XSLT Optimizer in XSLT. Presented at Extreme
Markup Languages: Montréal, Canada, 2007. Available at http://
www.saxonica.com/papers/Extreme2007/EML2007Kay01.html and at
http://conferences.idealliance.org/extreme/html/2007/Kay01/
EML2007Kay01.html

[3] Michael Kay: Transforming JSON using XSLT 3.0. Presented at XML Prague,
2016. Available at http://archive.xmlprague.cz/2016/files/
xmlprague-2016-proceedings.pdf and at http://www.saxonica.com/
papers/xmlprague-2016mhk.pdf

XML Tree Models for Efficient Copy Operations

45

https://www.ibm.com/developerworks/library/x-xslt2/
https://www.ibm.com/developerworks/library/x-xslt2/
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://www.saxonica.com/papers/Extreme2007/EML2007Kay01.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://conferences.idealliance.org/extreme/html/2007/Kay01/EML2007Kay01.html
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://www.saxonica.com/papers/xmlprague-2016mhk.pdf
http://www.saxonica.com/papers/xmlprague-2016mhk.pdf

[4] John Lumley, Debbie Lockett and Michael Kay: Compiling XSLT3, in the
browser, in itself. Presented at Balisage: The Markup Conference 2017,
Washington, DC, August 1-4, 2017. In Proceedings of Balisage: The Markup
Conference 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
Available at https://doi.org/10.4242/BalisageVol19.Lumley01

[5] http://www.xml-benchmark.org

A. Measurements
This appendix gives measured timings (in milliseconds) for various operations on
various implementations of XDM trees. The measurements were made on an
experimental version of the Saxon XSLT processor; the precise measurement con-
figuration is not significant because we are only interested in the relative num-
bers. The data used was a 10Mb version of the XMark dataset[5].

The operations that we measured are as follows:
• Build: the time taken to build the tree by parsing a 10Mb source document.
• Scan: time taken to scan the tree in descendant order, sending SAX-like events

to a sink receiver that immediately discards the data.
• Graft: time taken to build a new tree consisting of a document node, a wrap-

ping element node, and a copy of the 10Mb source tree.
• Scan Grafted: time taken to scan the tree that results from the graft operation,

again sending SAX-like events to a sink receiver that immediately discards the
data.

• Search Grafted: time to execute the XPath query count(// *[@id]) (which
returns 6075 elements) on the tree that results from the graft operation.

These operations were timed with the following implementations of the XDM
tree model:
• TinyTree (old): the TinyTree as available in the released Saxon product, with-

out special support for virtual copying
• TinyTree (new): the TinyTree modified as described in this paper, to allow

grafting of a virtual copy of a subtree
• Linked Tree: the Saxon Linked Tree, a conventional tree implementation

where nodes are Java objects with pointers to children and parent nodes
• KL-Tree: the experimental KL-Tree model described in this paper
• DOM: the implementation of the W3C DOM interface packaged in the Oracle

JDK
• Domino: a hybrid tree implementation introduced in Saxon 9.8, consisting of a

DOM supported by additional indexes for fast searching

XML Tree Models for Efficient Copy Operations

46

https://doi.org/10.4242/BalisageVol19.Lumley01
http://www.xml-benchmark.org

• XOM: see https://xom.nu
• JDOM2: see https://www.jdom.org
• DOM4J: see https://dom4j.github.io
• AXIOM: see https://ws.apache.org/axiom/
Here are the measurements:

Table A.1. Measurements of various operations on various tree
implementations

Model Build Scan Graft Scan Grafted Search Grafted
TinyTree (old) 120 6.6 85 9.2 6.3
TinyTree (new) 120 7.2 0.8 6.8 7.4
LinkedTree 125 19 65 25 15
KL-Tree 118 20 0.005 20 58
DOM 133 127 216 120 37
Domino 211 51 114 56 14
XOM 184 55 197 90 42
JDOM2 133 64 164 86 30
DOM4J 134 96 188 108 205
AXIOM 145 82 158 98 127

How it was measured: using a microbenchmarking environment in Java, calling
low-level interfaces to simulate the run-time activity of an XSLT or XQuery pro-
cessor. Each test was run repeatedly for 10 seconds or more to warm up the Java
hotspot compiler; this was then repeated for another 10 seconds to get an average
execution time, and only the figures for the second run were recorded.

B. Versioned Maps and Arrays
Given a map such as

let $old := map{"a":1, "b":2, "c":3}
it is possible in XPath 3.1 to perform an operation such as

let $new := map:put($old, "b", 17)
whose result is a new map,

map{"a":1, "b":17, "c":3}
After this operation, $old still refers to the original map, while $new refers to the
new map. But the map:put() operation does not copy parts of the map that have

XML Tree Models for Efficient Copy Operations

47

not been changed: the cost of the map:put() operation is essentially independent
of the size of the map that is being modified.

Various data structures can be used to achieve this effect. The one that Saxon
uses is a hash trie.

To simplify the actual implementation, we can consider that for each possible
key value there is a hash code which can be viewed as a sequence of seven 5-bit
integers. A tree of depth 7 with a fan-out of 32 can then be used to locate any
value: an entry in the leaf nodes of this tree is a list of key-value pairs, where the
keys are those sharing the same hash code.

Modifying the entry for one particular key then involves replacing 7 nodes in
the hash trie, one for each level corresponding to the 7 components of the hash
code. This will always involve a replacement for the root of the tree. All nodes in
the tree other than these 7 can be shared between the old tree and the new. Modi-
fication thus has a constant cost: whether the map contains one entry or a billion,
the put() operation creates exactly 7 new nodes in the tree.

In practice the actual hash trie implementation has optimizations that reduce
the cost of handling very small maps, because these are quite common. For exam-
ple a map of less than five entries is implemented as a simple list of key-value
pairs.

A similar solution is used for arrays. In concept, an array is simply implemen-
ted as a map whose keys are integers. But because the structure needs to handle
operations other than get() and put() efficiently (notably, retrieval of entries in key
order), and because integers are not limited to 35 bits, the actual trie structure
used internally is different.

See also: Wikipedia, Persistent Data Structures, https:// en.wikipedia.org/
wiki/Persistent_data_structure

XML Tree Models for Efficient Copy Operations

48

Using Maven
with XML development projects

Christophe Marchand
Oxiane

<cmarchand@oxiane.com>
Matthieu Ricaud-Dussarget

Lefebvre Sarrut
<m.ricaud-dussarget@lefebvre-sarrut.eu>

1. Context
I'm a Java developper, since many years. I've seen and used many build systems,
from a simple document that explains how to build, to a configured build
descriptor. Most of build systems I've used are script-like systems. Maven is a
build descriptor, where all the build phases are configured, not scripted. Maven
has been used since 2009, and widely used since 2012. I've worked on many
projects where provided data was XML. Those projects where mostly Java
projects, embedding few XML technologies, as XPath and XSL. In 2015, I started a
new contract in ELS, a publishing company, where the most important part of
code were XML languages, as XSL, XQuery, XProc, RelaxNG, and so on ; they are
all familiars to you.

I've been very surprised that some projects didn't used correctly Source Con-
trol Management, that some projects where deployed on servers from a SVN
checkout, that some projects did not have unit tests, that there were no standard
way to build a project, and to deploy it on a target box.

I've started to work to define a standard way to define a project, to organize
sources, to build, to run unit tests, and to define a way to avoid code duplication.

2. Needs
We had many requirements on the development organization:

• we must ensure that code is not duplicated anywhere in our projects

• Maintaining such code properly becomes a nightmare as the time goes

• XML technologies generally have a strong ability to deal with overriding
rule (xsd, xslt, etc.): it makes possible to create common code at any level
in a logical architecture

• It helps in creating specific/generic code architecture

49

• It improves quality ; That implies a simple way to re-use existing code
• we want common code changes won't break every projects using it:

• we want to be able to separate each chunk of code, and identify each ver-
sion with no ambiquity to produce deliveries that can be identifed as deliveries
and not as source code. Let's call this an artifact

• we must be able to distinguish a stable release (an artifact we know exactly
which commit of code has produced it), from a development one (an arti-
fact that is still under development, and that may change from one day to
another)

• we must ensure that a release artifact can not be re-build: i.e. a release arti-
fact can not be modified

• when we re-use a piece of existing code, we want to reference it, through a
release artifact reference ; hence, we are sure the referenced code will never
be modified we want every artifact version being accessible from any other
project easily we need to publish build artifacts to a central repository ; this
central repository will be then used to get artifacts when needed

• we must ensure that unit tests are always successfully run before building an
artifact

• we must be able to deploy programs to target locations from the central repo-
sitory
• a "program" is usually an aggregate of many artifacts, with a shell

• last but not least, we want all these requirements to work the same way for all
our editorial languages: XSLT, XQUERY, SCHEMATRON, DTD, XSD Schema,
Relax NG, … and Java ! All programs we deploy are Java programs, either run
directly, or launch by an orchestrator. Finally, we deploy Java programs, who
run XSLT, XQuery, or other XML languages.

We also had some wishes:
• we'd like that release artifacts can only be build by a dedicated build environ-

ment ; this ensures that build command and options are always the same, and
that build is not performed locally by a developer, with special options. Well,
we'd like that release buid could be repeat in case of a massive crash.

• we'd like to deploy only compiled code
• most of language specifications define a compile process (well, static

errors, at least)
• only XSLT 3.0 has defined that a XSL can be compiled, moved, and then

run elsewhere. So, a compiled form exists, even if it is not standardized.
• other languages may defined some compile-like process,

Using Maven with XML development projects

50

• we may have some transformations to apply to source code before it can
be accepted as "compiled"

• we could define that compilation step is any operation that transform a
source code to a build code.

• we'd like to be able to generate code
• we'd like to be able to validate an XML file, as a condition to build artifact
• we'd like that developer documentation will be published on a Web server

each time a build is performed. Hence, a developer who wants to use a partic-
ular artifact is able to find the documentation of this artifact.

3. Solutions
ELS has tested various tools and frameworks to manage their project manage-
ment requirements (mainly XProject, EXPath, ant). XProject defines a project
structure, but lacks on version management. EXPath has a repository, but each
repository should be manually fed by modules ; it is widely used by XSLT and
XQuery engines, but not really suited to create Java programs that embed EXPath
modules, and is so not suited to a scalable architecture, where Java components
could be dynamically deployed on many servers. Ant allows everything, but ant
is a scripting system, and scripts should have their own unit tests, which is never
done.

The only one that satifies all requirements is Maven. But Maven does not pro-
vides plugins for a lot of tasks we need.

Maven has a standard way to build: phases lifecycle. Build has a lifecycle, and
phases are sequentially organized through this lifecycle ; one phase can not be
executed if all previous phases have not been successfully executed.

According to Maven documentation1, lifecycle phases are:
• validate
• initialize
• generate-sources
• process-sources
• generate-resources
• process-resources
• compile
• process-classes
• generate-test-sources
• process-test-sources
• generate-test-resources
• process-test-resources

1http://​maven.apache.org/​ref/​3.5.0/​maven-core/​lifecycles.html

Using Maven with XML development projects

51

http://maven.apache.org/ref/3.5.0/maven-core/lifecycles.html

• test-compile
• process-test-classes
• test
• prepare-package
• package
• pre-integration-test
• integration-test
• post-integration-test
• verify
• install
• deploy
Some phases are not in lifecycle, and do not have prerequisites:
• clean
• site
At each phase, plugins are bound. When a phase is executed, all plugins bound to
this phase are executed. If one execution fails, all the build fails. If we need to
extend maven build, we just have to declare a new plugin, and bind it to a phase.

3.1. Dependency management
We do not want to have code duplicated. We all have, in our projects, references
to other chunks of code, in other projects. We all have a copy of functx.xsl2, cop-
ied from project to project ! As there is no common mecanism to resolve those
kinds of links in XML world, the usual way to solve this is to copy the code from
source project, into other project where we need it. Others reference a GIT com-
mit from another project, and check out this commit into project. Git as such a
mecanism, but even if code is not duplicated, files are, and may be modified in
host project. We want to rely on existing code, that has been build accordingly to
our requirements, so we need to have:
• a way to store in a repository all release artifacts that have been build
• a way to reference an artifact we want to use (according to usual designation

method)
• a way to access to a resource in an artifact.
Maven has a way to uniquely identify an artifact:

(groupId:artifactId:version)
groupId represents a unique key to project, and is based on Java package naming
conventions ; artifactId represents something that is build by a maven module ; it
must be unique per groupId ; version represents the artifact version ; a version

2Priscilla Walmsley functx.xsl, http://​www.xsltfunctions.com/​xsl/​download.html

Using Maven with XML development projects

52

http://www.xsltfunctions.com/xsl/download.html

that ends with -SNAPSHOT is a snapshot, and is not strictly bound to a commit in
SCM. All other strings represent a release, which is supposed to be uniquely
bound to a sole commit in SCM.

In a Java Maven project, when using an external libray is required, it's enough
to declare a dependency in project descriptor, pom.xml. If we want to use Saxon-HE
9.8.0-7 in our artifact, we just have to declare:

<dependencies>
 <dependency>
 <groupId>net.sf.saxon</groupId>
 <artifactId>Saxon-HE</artifactId>
 <version>9.8.0-7</version>
 </dependency>
</dependencies>

When Maven builds project, Maven downloads artifacts from central repository,
copy them into a local repository, and constructs a classpath based on dependen-
cies listed in pom. Included dependencies may declare other dependencies, and a
full classpath is construct, based on the full dependency tree.

All resources in all jars declared as dependencies are accessible through stand-
ard Java resource loading mecanism:
getClass().getResource("/upper-case.xsl").

So, during build, Maven knows the location of jars pointed by dependencies ;
they all are in local repository.

We decided to reference resources in external projects via the standard Maven
dependency mecanism, and by constructing URIs that can point a resource in a
dependency. Each dependency is associated to a custom URI protocol which is its
artifactId:/. Then, the usual way to construct a path in URIs is used to point a
resource.
• if we want to reference the net.sf.saxon.Transform class in Saxon-HE

9.8.0-7 dependency, we'd construct
Saxon-HE:/net/sf/saxon/Transformer.class

• if we want to reference the file-utils.xsl in (eu.els.common:xslLibrary:
3.1.7), we'd use xslLibrary:/file-utils.xsl

As it is common to change a dependency version, version is not included in URI ;
hence, when changing a dependency version, code is not impacted.

If we declare xf-sas dependency:
<dependency>
 <groupId>eu.lefebvre-sarrut.sie.xmlFirst</groupId>
 <artifactId>xf-sas</artifactId>
 <version>3.1.7</version>
</dependency>
...we may have xsl with imports based on this URI syntax:

Using Maven with XML development projects

53

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="#all"
 version="3.0">
 <xsl:import
 href="xf-sas:/xf-sas/efl/mem2ee.alphamem.xsl"/>

At initialize Maven phase, so in very beginnning of build lifecycle, we do
use a catalogBuilder-maven-plugin3 that generates a catalog, based on dependencies
declared in pom.xml. This catalog is generated at each build, so always denotes
dependencies declaration available in project descriptor. It declares rewriteURI
and rewriteSystem entries, that maps protocols to jar locations.

The catalog includes all dependencies that do contains XML resources, but
also other dependencies, including the ones that do not concern XML processing ;
this could be filtered in a future enhancement to make catalogs lighter.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog PUBLIC
 "-//OASIS//DTD Entity Resolution XML Catalog V1.0//EN"
 "http://www.oasis-open.org/committees/entity/release/1.0/catalog.dtd">
 <catalog
 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <rewriteURI uriStartString="xsl-sas:/"
 rewritePrefix=
 "jar:file:/home/cm/.m2/repo/eu/els/xf-sas/1.2.1/xf-sas-1.2.1.jar!/"/>
 <rewriteSystem uriStartString="xsl-sas:/"
 rewritePrefix=
 "jar:file:/home/cm/.m2/repo/eu/els/xf-sas/1.2.1/xf-sas-1.2.1.jar!/"/>
</catalog>

This catalog is then used by all XML tools, including Maven plugins that do
manipulate XML files. We have choosen to have, in all projects, such a catalog,
named catalog.xml, at project's root. We can then define in oXygen, that we have
to use a catalog named ${pdu}/catalog.xml ; this allows oXygen to access all
resources we reference in our code, including resources located into jar files,
thanks to Java supporting URI like jar:file:/ path/ to/ library.jar! /
resource/to/file.xsl

Developing in oXygen is the main reason of resolving resources to jar files, as
oXygen is not maven aware, and do not loads dependency jars in project class-
path. When running in Maven, all resources are in classpath, and could be
directly access from their part-part of URI, in classpath.

3https://​github.com/​cmarchand/​maven-catalogBuilder-plugin

Using Maven with XML development projects

54

https://github.com/cmarchand/maven-catalogBuilder-plugin

This kind of resource references via URI mecanisms is quite common in XML
world, and referencing resources from external dependencies can be - and is -
generalized to all types :
• DOCTYPE definitions, references to DTD via SYSTEM declarations (we do not

use PUBLIC definitions)
• imported or included XSL
• XML schema imports, includes, redefinitions
• RelaxNG, NVDL
• XQuery import module namespace
We have choosen to use a protocol based only on artifactId:/. But catalog-
Builder-maven-plugin is able to use others patterns, based on groupId and arti-
factId, with a user-defined syntax.

3.2. Unit tests

Once dependency management solved, we tried to run unit tests each time a
build is performed. We do use XSpec as a unit test framework. When we started
this work, two XSpec Maven plugins were available: one written by Adam Retter,
one by Daisy Consortium, maintained by Romain Deltour, both open source and
available on Github.

Maven has a standard way to organize directories in a project:

 .
 └── src
 ├── main
 │ └── java
 └── test
 └── java

We decided that our XSL code will be put under src/main/xsl, and XSpec files
under src/test/xspec. So, our project structure is always :

 .
 └── src
 ├── main
 │ └── xsl
 └── test
 └── xspec

XSpec Maven Plugin looks recursively in src/test/xspec for *.xspec files. Each
file is executed, accordingly to XSpec implementation, and a report is generated.
In Maven, all generated files are generated in target/ directory. XSpec report file
are generated in target/xspec‑report. If one XSpec unit test fails, all the plugin

Using Maven with XML development projects

55

execution fails, test phase fails, and build fails. Plugin is bound to test phase, but
can also be bound to integration-tests if required.

Plugin has been largely enhanced to support catalogs, to allow to choose
which Saxon product to use to perform tests, and reporting has been changed to
be more useful. XSpec for XQuery support was not in Adam's Retter release, and
has just been added ; but XSpec for Schematron support si still a work in pro-
gress.

As far as all unit tests do not succeed, we are not able to publish a release.
XSpec Maven Plugin4 code has moved to XSpec organization, and is now

maintained by the same team that maintains XSpec. XSpec implementation is
now available as a Maven artifact, and this allows to deploy quickly XSpec cor-
rections into XSpec Maven plugin. There is still some job to do: XSpec Maven Plu-
gin is not able to run XSpec on Schematron, and JUnit reports are not generated.

3.3. Code generation
We have a grammar (RelaxNG) that has different distributions: one very strict,
the other one 'lighter'. The lighter can easily be generated from the strict one, by
applying a simple transformation. Instead of duplicating code, the strict grammar
is released as an artifact, from its source code, but the lighter is generated from
the strict one.

A new project declares a dependency on the strict grammar artifact, embeds
XSL to transform strict grammar source files. At generate-sources phase, XSL are
applied on strict source files, and this generates the 'lighter' grammar. Then gen-
erated sources are packaged, and deployed as a new artifact, with no source
duplicated, or manually modified. We are able to distribute the ligther grammar
as an artifact, without any source code, except the transformer.

We do use Maven XML Plugin5 to apply XSL on RelaxNG source code, and to
produce the 'lighter' grammar. It allows to embed Saxon as a XSLT 2.0 processor,
and supports catalogs, so no enhancement were required to use this plugin.

At this time, we do not have a framework to perform unit tests on RelaxNG,
but this could be done with other frameworks, like XMLUnit6. Job has not be
done, due to lack of resources, but this is technically possible, and could easily be
embeded in a maven plugin, bound to test phase.

Maven XML Plugin may be used to apply transformation on any XML source
document, and is very suitable for generating sources.

4https://​github.com/​xspec/​xspec-maven-plugin-1/
5http://​www.mojohaus.org/​xml-maven-plugin/
6http://​www.xmlunit.org/

Using Maven with XML development projects

56

https://github.com/xspec/xspec-maven-plugin-1/
http://www.mojohaus.org/xml-maven-plugin/
http://www.xmlunit.org/

3.4. Source code documentation

Java has a standard way to produce source code documentation: javadoc. This
system is very popular, and has been adapted to various programming lan-
guages. oXygen has defined a grammar to add documentation to XSL, xd-doc7

oXygen provides tools to generate a developer-oriented documentation, in an
HTML format ; unfortunately, this tool is not open source, and could not be used
directly. We have created a xslDoc Maven Plugin8 that generates XSL documenta-
tion. This plugin is a report plugin, and can be added to Maven site reports.
When you ask Maven to generate project's site, XSL documentation is added to
project's site.

We have also created such a plugin for XQuery documentation9, based on
xquerydoc10. XQuery documentation is also generated as a site report when plu-
gin is declared in pom.

 <reporting>
 <plugins>
 <plugin>
 <groupId>top.marchand.xml</groupId>
 <artifactId>xslDoc-maven-plugin</artifactId>
 <version>0.6</version>
 </plugin>
 <plugin>
 <groupId>top.marchand.xml</groupId>
 <artifactId>xquerydoc-maven-plugin</artifactId>
 <version>0.1</version>
 </plugin>
 </plugins>
 </reporting>

XQuery files are expected to be located in src/main/xquery.

3.5. Compiling

It’s common that distributed code files differs from source code file. We could
consider that transforming a source code file to a distributed code file is the com-
pilation, whatever transforming is. Having distributed code transform, or "obfus-
cated", guarantees that it will never be modified in production environments.
Mainly, we were interested in XSLT compilation. Thanks to XSL 3.0, we are now
able to distribute compiled XSL files.

7https://​www.oxygenxml.com/​doc/​versions/​19.1/​ug-editor/​topics/​XSLT-Stylesheet-documentation-
support.html
8https://​github.com/​cmarchand/​xslDoc-maven-plugin
9https://​github.com/​cmarchand/​xqueryDoc-maven-plugin
10https://​github.com/​xquery/​xquerydoc

Using Maven with XML development projects

57

https://www.oxygenxml.com/doc/versions/19.1/ug-editor/topics/XSLT-Stylesheet-documentation-support.html
https://www.oxygenxml.com/doc/versions/19.1/ug-editor/topics/XSLT-Stylesheet-documentation-support.html
https://github.com/cmarchand/xslDoc-maven-plugin
https://github.com/cmarchand/xqueryDoc-maven-plugin
https://github.com/xquery/xquerydoc

When compiling an XSL file that declares imports and includes, only one file
is generated, all imports and includes are merged into the one that will be run.
You have less files to distribute, and you will not forget to distribute a depend-
ency file.

Saxon-EE is able to compile XSL files. We’ve created a XslCompiler Maven
plugin11 that relies on Saxon-EE and that compiles XSL files from sources to
target/ directory. This plugin is still under evaluation, mainly for unit tests con-
siderations.

Most of Xsl files are included or imported, but never directly run. Those files
should not be compiled, i.e. should not have a distributed form ; this plugin
requires developer to declare which Xsl source files must be compiled.

We have a problem in distributing compiled files : XSpec tests source files –
uncompiled XSL files. XSpec implementation generates a XSL that includes the
XSL we want to unit-test. Then this XSL is compiled (saved or not), and run. So,
the compiled file that is tested is not the one that will be distributed.

Investigations on how to solve these problems have not been done ; but we
could think to reference compiled XSL from XSpec file – if implementation allows
it – or compiling generated XSpec XSL to a compiled form, and then running it ;
all of this require talks with Saxonica, to know what can be done or not, what we
can rely on, or not.

3.6. Packaging
Common packaging for a maven artifact is a jar file, that embeds only files from
the project. The wide majority of our projects are published as jar files into reposi-
tory manager. But these kind of jar files are not very suited to be deployed on a
server. We have projects, which are only Java projects, that embeds a XSLT pro-
cessor, a XProc processor, or gaulois-pipe, and all XML artifacts needed. Thoses
projects delivers a jar file with all dependencies included, with a main-class entry
in manifest, that allows to be run simply : java -jar full-program-1.3.7.jar.
Such a jar is autonomous, and is very easy to deploy on a server. In such a jar, all
resources from all dependencies are put in the same jar. Catalog needs to be re-
created for such a jar, as all resources are directly in classpath, and not split into
many jar files. We use rewriteURI and rewriteSystem to map all artifact based
protocols to a cp:/ protocol, cp for classpath. We have written a Java protocol
handler for this protocol, which load resources directly from classpath. This can
only be used in a JVM where the whole resources are in classpath ; when devel-
oping in oXygen, this is not true, that’s why we map protocols to dependency jar
files.

11https://​github.com/​cmarchand/​xslcompiler-maven-plugin

Using Maven with XML development projects

58

https://github.com/cmarchand/xslcompiler-maven-plugin

4. Future
Dependency management now works perfectly, and do not need enhancements
anymore. Maybe some more entries in generated catalog file, but this should be
the limit.

Documentation needs to be beautified ; mainly XSL documentation. oXygen
has really done a great job, and it’s difficult to have something as beautifull as
they produce, under a free and open source license. We still have some bugs,
mainly on components identification, with @use-when attribute.

We are not able to generate documentation for grammars : mainly XML
Schema and RelaxNG, and others like Schematron and NVDL ; we have some
ideas, but not enough resources to put them in a useful plugin.

We hope other developers will publish their libraries as Maven artifacts ;
hence, we could use them as dependencies ; today, we must put a lot of pom con-
figuration to download source files (or zip files, or anything else), package them
into an artifact, and deploy it into each local repository. It’s not very easy, and
requires Maven specialists. We would be very interested if skeleton organization,
for example, were able to provide skeleton implementation as a maven artifact.

A similar approach could be used for a gradle build. Gradle also allows to
declare a list of dependencies. It should be easy to write a plugin that generates a
catalog. But it should probably require to write as many plugins as we had to for
Maven.

Glossary

aertifact
An artifact is something that is either produced or used by a project. Examples
of artifacts produced by Maven for a project include: JARs, source and binary
distributions, WARs. Each artifact is uniquely identified by a group id and an
artifact ID which is unique within a group.

groupId
A group ID is a universally unique identifier for a project. While this is often
just the project name (eg. commons-collections), it is helpful to use a fully-
qualified package name to distinguish it from other projects with a similar
name (eg. org.apache.maven, net.sf.saxon, top.marchand.maven).

artifactId
An artifact ID is a unique identifer of an artifact within a group ID.

Using Maven with XML development projects

59

version
The version of an artifact. Usually, there are snaphsot versions, which ends
with -SNAPSHOT, and that denote a work in progress artifact ; all other version
are release, and commit how produced this version is strictly known.

dependency
A typical Java project relies on libraries to build and/or run. Those are called
“dependencies” inside Maven. Those dependencies are usually other projects’
JAR artifacts, but are referenced by the POM that describes them.

pom.xml
The file where project build is described. pom is for Project Object Model. It
defines which dependency are required, which plugins are used to build
project, and their configuration. See https://​maven.apache.org/​pom.html.

During XML Prague 2018 talk, Matthieu has made a demo based on this project :
https://​github.com/​mricaud/​xml-prague-2018-demo_myXMLproject

Using Maven with XML development projects

60

https://maven.apache.org/pom.html
https://github.com/mricaud/xml-prague-2018-demo_myXMLproject

Varieties of XML Merge:
Concurrent versus Sequential

Tejas Pradip Barhate
DeltaXML Ltd

<tejas.barhate@deltaxml.com>
Nigel Whitaker
DeltaXML Ltd

<nigel.whitaker@deltaxml.com>

Abstract

Merging the XML documents is a particularly tricky operation but is often
required to consolidate or synchronize two or more independent edit paths
or versions. As XML tools become more powerful and able to handle many
of the peculiarities of real data, so the possibility of achieving a genuine,
intelligent merge of XML data sets becomes a reality. The complexity of
XML places demands on tools to work intelligently in order to preserve the
essential structure of the original document and also represent the changes.

This paper discusses the different varieties of merge for XML. Merging
multiple derivatives of a single ancestor (concurrent merge) may be the
most obvious application, but there is also a need for a sequential merge
when a document has been passed around between two or more authors in a
sequential manner. Another important, and perhaps less well understood,
application is 'graft', where the changes between two documents or data
sets are applied to a third, different (though similar) document or data set.

There are of course similarities between these applications, but gaining
an understanding of how they differ and where each is appropriate is neces-
sary to make best use of automated processing of XML.

1. Introduction

Over the years, the XML is widely used in different fields and different merge sol-
utions were proposed. But as the size and complexity of the XML files increases,
it becomes difficult to manage the XML documents or data sets.

The need for XML Merge arises from scenarios like document reviews, con-
current changes, document revision history, or even, combining XML data sets. It
is evident that different problems exist in different usage scenarios, and there is a
need for a flexible solution, which can be adapted to different needs.

61

There are number of solutions available to merge, synchronise or combine
number of XML documents or data file into one. But this paper introduces the
merges which not only combine number of XML documents together by preserv-
ing the structure of original document but also aims to show the changes which
can be processed further.

This paper also talks about various types of XML merge use cases and dis-
cusses how these different scenarios can be represented into single intermediate
XML file which can be used to process the changes.

1.1. Background

A n-way merge algorithm has been developed to address the issues and varieties
of merge processes and use cases discussed in this paper. It is the third algorithm
developed over several years starting with [1]. As a new 'clean sheet' implementa-
tion we decided to implement n-way merge as it provides a general basis for a
number of related use-cases which we aim to describe in this paper.

2. Various type of merges
This section presents the different varieties of merge along with their similarities
and differences. They differ in terms of frame of reference, alignment and change
representation. But any change can be represented using the same format.

2.1. Concurrent Merge

Concurrent merge recombines multiple XML files with their common ancestor,
analysing their structure and running custom rules to either merge or explicitly
mark-up the differences. Its algorithms work through each of the files in turn,
examining their structure to match-up all the corresponding elements with the
original.

Once all the differences have been identified, changes are represented in a
structured intermediate delta XML file where the structure of the delta file is sim-
ilar to the ancestor. The changes can be described by three operations: modify,
add and delete. Because we can consider the ancestor version to be older than the
other edits in the merge, the concepts of add and delete are defined relative to the
ancestor version. This choice then leads to the following definitions for change
categorisation.

• add: Something that does not exist in the ancestor version. The item may be
added by one or more of the other versions.

• delete: Something that exists in the ancestor version, but is missing in one or
more of the other versions.

Varieties of XML Merge: Concurrent versus Sequential

62

2.2. Sequential Merge

The sequential merge merges one or more sequentially edited XML documents.
One of the important characteristics of the sequential merge is that there is a
clearly-defined order of editing. The order of editing provides the temporal frame
of reference and so the concepts of add and delete are defined relative to the
order of editing. This choice then leads to the following definitions for change cat-
egorisation.

• add: Something that does not exist in the previous version. When something
is added it has never been seen before.

• delete: Something that exists in the previous version, but is missing in this
version. As soon as something is deleted, then it cannot be added back again,
rather if the same item appears again then a new version is created, with no
relationship with the deleted item.

3. Concurrent Vs Sequential

3.1. Attribute: deltaxml:deltaV2

The format used for merge representation has a deltaxml:deltaV2 attribute which
contains contain a sequence of one or more 'version identifiers' joined by the '='
character or '!=' character-pair. The document versions with different content are
separated by the '!=' whereas The document versions with same content are sepa-
rated by the '=' character-pair. The versions at the certain level with same content
can be considered as equality groups. The versions within equality groups and
between equality groups (i.e. groups of versions separated with '!=') are ordered
according to an ordering sequence (order in which they were added to merge).

The one major difference between the value of deltaxml:deltaV2 attribute in
sequential and concurrent merge is the order of the versions. In sequential merge,
the versions in this attribute always occur in the order whereas in concurrent
merge they can appear in any order provided the first version in the attribute is
ancestor (if the element exists in ancestor). This conforms with the behaviour of
sequential and concurrent merge i.e. the sequential merge takes documents
which are derivatives of its previous version whereas concurrent merge takes
documents which are derived from an ancestor version.

3.2. Structure and Alignment

As mentioned in previous sections, the merge process merges the XML files, tak-
ing account of the tree structure of the files and identifying corresponding ele-
ments in the files. These corresponding elements must have the same element

Varieties of XML Merge: Concurrent versus Sequential

63

local name and namespace and should also have corresponding parent elements.
The root elements of the files must have the same local name and namespace.

We maintain the alignment at each level in the tree structure between the files
by determining the longest common subsequence of corresponding elements. The
alignment algorithm gives precedence to elements that are exactly equal over
those that have just the same element name and namespace. While merging, the
algorithm also takes into account the similarity of the text content and aligns ele-
ments based on this similarity.

The merge process accepts the inputs in some order and this order gets recor-
ded into an attribute on the root element of the merge result. For concurrent
merge, the version is first aligned with the common ancestor and this alignment
will take precedence over alignment between this version and other versions pre-
viously loaded into the merge. Whereas in sequential merge, as each successive
file is loaded into the merge, the version is aligned with the previous version.

In the following example, you will see that the three <q> elements have been
matched although the elements before and after differ.

Figure 1. Alignment

3.3. Alignment using keys
The merge can use key values to identify the corresponding elements in the
inputs. Alignment of elements with the same namespace, local name and key will
take precedence in the alignment process over other alignment criteria. Elements
with different keys will not be considered to correspond, and therefore keys can
be used to prevent elements being aligned as corresponding.

3.3.1. Ordered and Orderless

While applying keys it is significant to know if the order of element within a con-
tainer/parent element is significant or not. The document with set of instructions

Varieties of XML Merge: Concurrent versus Sequential

64

can be considered as ordered while the document having a list of information
about persons might be orderless. In the ordered comparison, the relative posi-
tion of a keyed element is important, whereas the orderless elements are mem-
bers of a set. Thus, any extracted version from the ordered merge will preserve
the order.

The following examples demonstrate the difference between ordered and
orderless keying and how they differ in concurrent and sequential merge sce-
nario. The merge algorithm internally uses 'deltaxml:key' attribute as a key as
shown in the examples below.

3.3.2. Concurrent Keying Vs Sequential Keying

Due to difference of how each version is modified in concurrent and sequential
merge, the keyed result also differs. For example, in the following example ‘q’ ele-
ment with key ‘2’ exists in version A and C. These elements align properly in con-
current merge; however they must not align in sequential merge. This results into
key duplication in the sequential result if the element with same key is deleted
and a new element with same key is added later. Its is very difficult to avoid this
situation in real life as the editor does not know what was deleted in previous
versions. However, these elements with same key can be differentiated using
their deltaxml:deltaV2 attribute.

Figure 2. Concurrent Merge Keying:

Varieties of XML Merge: Concurrent versus Sequential

65

Figure 3. Sequential Merge keying:

3.4. Example

Figure 4. Document A

Figure 5. Document B

Varieties of XML Merge: Concurrent versus Sequential

66

Figure 6. Document C (Concurrent Editing)

Version A and B will be same as above during sequential edits, however C will
differ as it will not have a deleted para by version B.

Figure 7. Document C (Sequential Editing)

The following concurrent and sequential merge results are highlighted to show
the difference between two.

Figure 8. Concurrent Merge Result

Varieties of XML Merge: Concurrent versus Sequential

67

Figure 9. Sequential Merge Result

The highlighted part in above examples shows the difference between the two
results. The first paragraph is deleted by ‘B’, so it never appears again in the
sequential merge, however it can exist in ‘C’ in the concurrent merge. Similarly, in
the last paragraph, there is text change. For the sequential merge, even though
the ‘A’ and the ‘C’ texts are same, there is a deletion in between and so it is shown
as three changes rather than a two-way change. The main purpose of the above
examples is to understand what kind of inputs we have and how we want to see
the result. It is possible to generate both concurrent and sequential merge results
from any inputs, but one of these is more likely to be the correct choice for a par-
ticular set of data. The usefulness of the result will depend on how the XML
inputs have been modified and what type of merge is applied.

3.5. Merge Analysis
The merge result accurately describes the contributions of all of the input files.
The deltaxml:deltaV2 attribute describes the which inputs contribute to the result
and whether they are identical or different subtrees at that point in the tree. If we
analyse the sequential merge, and compare it with an ordered list of the inputs to
the merge process, then the first version in deltaxml:deltaV2 adds the content and
first missing version, if any, deletes the content. So, analysing the sequential result
is simple and straight forward. However, the analysis of concurrent merge can be
harder, especially when there are more than three inputs. This is mainly because
to determine whether something has been added or deleted we need to consider

Varieties of XML Merge: Concurrent versus Sequential

68

the number of versions at the point of interest, the number of versions in the
parent and where the ancestor, or first version in the delta is present.

However, human understanding and subsequent processing is simplified if
these deltas are classified to describe the types of change which they represent.
This is achieved by adding annotations such as add, delete or modify for each
change. The following table describes the different types of changes using del-
taxml:deltaV2 where order of version is: Ancestor, A, B, C, D.

Table 1. Change Annotations

Change Type Change Representation Analysis
Modification Ancestor=A=B!=C=D All versions present, with

at least one change (repre-
sented by !=)

Addition Or Addition
and modification

B or B=C!=D Ancestor not present in
element being considered

Deletion Or Deletion and
modification

Ancestor=A=C=D or
Ancestor=A!=C=D

Ancestor is present in ele-
ment being considered
and fewer version than
parent

3.6. Concurrent Merge Rule’s Based Processing

The result of concurrent merge contains complete representations of all of the
contents in the merge inputs. However, the automatic acceptance of the changes
such as additions, deletions or modifications into a result is a common use-case
for line-based merge algorithms and similar processing is useful with the XML
based algorithms.

The motivation for developing a rule-based processing system follows from
the design of line-based merge or 'diff3' algorithms used in software version con-
trol systems. These systems typically accept non-conflicting changes, so that lines
that are changed but not in conflict are merged into the result.

The rule-based processing provides a set of rules to determine which types of
change are automatically applied. Without any user-specified processing rules
the processing engine will, by default follow the example of diff3 and process
simple add changes so that the content is added. Similarly, simple delete changes
are removed from the result and simple (leaf) modifications are applied. The pro-
cessing rules allow control over which changes are displayed to the user (for
example, for subsequent interactive checking or resolution). Another way of
thinking about the display rules is that they control which changes are not auto-
matically applied or converted.

Varieties of XML Merge: Concurrent versus Sequential

69

Figure 10. Result

The above is an example of a modification which can be rule processed. The
default action of the rule processing system would be to accept the simple
change. The corresponding output would then be:

Figure 11. Rule Processed Result

The rule based processing plays a vital role in the concurrent merge applications
described in later sections.

4. Applications

4.1. Sequential Merge Applications

4.1.1. Travelling Draft

Negotiating a written contract where each party is making changes to consecutive
versions can be a very complicated process. The usual way to do this is to track
changes but these soon become difficult to understand and there is no guarantee
that all the changes have been tracked. Therefore it is advantageous to use
sequential merge to generate a 'true' travelling draft, i.e. one that does contain all
the sequential changes. Each successive version can be added to this travelling
draft to create a record of the changes.

4.1.2. Revision History

Content Management Systems (CMS) maintain a record of each successive ver-
sion of a document. Any two versions can be compared to see what has been
changed, but it may be more useful to gain an oversight of all the changes by
using sequential merge to merge multiple versions together to see the history of

Varieties of XML Merge: Concurrent versus Sequential

70

revisions. Another advantage of constructing a sequential merge is that minor
versions can be left out to reduce the complexity.

4.2. Three Way Concurrent Merge Applications

4.2.1. Three To Two Merge
Three To Two merge is an extension of a three-way concurrent merge. The repre-
sentation of three-way conflicts is not supported by many XML editors. On the
other hand, XML editors do support two-way change tracking and this is well
understood by users. Therefore, if we could represent three-way merge conflicts
in two-way change tracking this would provide a significant and useful simplifi-
cation for users. This is possible without losing important information although
some fine detail is lost, but it is much easier for a user to understand the result.

For this operation we need assume that all non-conflicting or 'simple' changes
are accepted and changes between the ancestor (A in the diagram below) and the
two inputs being merged (B1 and C1) are not as important as the differences
between the two inputs themselves (B1 and C1).

Therefore, we can represent a conflicting change as an addition-deletion pair.
For example, if we are merging C1 into the B branch (merge of A, B1, C1 and indi-
cated with the yellow arrow, in order to generate B2) then a conflict is represented
as a deletion of the conflicting content in B1 and addition of the conflicting con-
tent in C1. This has the characteristic that if all (conflicting) changes are rejected
then we get the result of B1 unchanged where there is conflict, and if all (conflict-
ing) changes are accepted then we get the result from C1 where there is conflict.
This is simpler to explain to users, and we only need two-way change tracking to
represent this.

Varieties of XML Merge: Concurrent versus Sequential

71

The example below illustrates this. The example shows that when representing
the Three To Two result we need to consider what information is lost (we can
only represent two of the three values) and how the remaining values are used.
We lose the ancestor information in the process of conversion from a full three-
way to a two-way representation. In the example, the C1 can be considered as
'their branch' (or 'Theirs') and B1 can be considered as 'my branch' (or 'Mine').

As well as the three way case illustrated above, another limitation of track-
change systems based on XML Processing Instructions is that they typically can-
not support nested change (for example an addition with contains modification
or perhaps deletion further down the tree). Nested change is found in merge sys-
tems that are tree based and have three or more inputs. The diff3 algorithm used
in software version control systems such as a git or mercurial are based on
sequence of lines and therefore do not have to deal with nested change. Nested
change introduces interesting possibilities of change representation and also user
interfaces associated with change display and management [2].

4.2.2. Graft

Another variant for three-way concurrent merge is 'graft'. This is a way to propa-
gate changes across similar files.

Figure 12. Example

Varieties of XML Merge: Concurrent versus Sequential

72

Another term used for graft is 'cherry pick'. This comes from version control
systems where there are related branches and there is a need to cherry pick
changes made between two versions in one branch and apply these to the data in
another branch. This is not quite the same as a full three-way merge (merging two
descendants of a common ancestor), but it is similar.

An XML delta file (produced by comparing two versions) represents a set of
changes or changeset - so applying those changes to a target file is the way to per-
form a graft. So a graft executes all the relevant changes to the target file. By
default, all the 'relevant' changes are applied. 'Relevant' here means that the data
that is being changed is in the target file - if a change is made to data that does not
appear in the target file, it is ignored.

Graft is probably more applicable to XML data files than XML documents. For
example, if we have a master file with 500 names and addresses, and a subset
with just 50 of them, we can apply changes made to the master file to the subset.
In fact graft can also apply changes made in the subset to the master file. Simi-
larly, we can take a list of changes to names and phone numbers and apply that to
a related list of names, phone numbers and addresses. Or, again, the other way
round (and then of course any changes to addresses will be ignored because there
are no addresses in the target file).

It is a useful characteristic of the graft process if it can be made 'idempotent'.
This means that a second application of the graft will leave the file as it was. This
is advantageous not just because a second application may be made in error, but
it handles the situation where some of the changes defined in the changeset have
already been made in the target file.

Graft rules are subtly different from those for three-way merge. With three-
way merge there is a common ancestor, i.e. a file from which the other two files
are derived. This means we can detect the changes made in both branches and
then merge these according to some set of rules. The rules can get complicated
and there can be conflicts between the changes that have been made in the two
derived files. Graft is a bit different, because there is no common ancestor. There-
fore there is only the concept of changes made to one branch, which we want to
apply to a target. There is no concept of changes that may have been made to the
target (before we apply the graft), it is just there as a target data file. This is
important because it means that if the target contains a subset or a superset of the
data in the graft (or delta) file, this is acceptable because irrelevant changes are
simply ignored. So we can have a whole set of related data files and apply
changes made to any one to any of the others.

Varieties of XML Merge: Concurrent versus Sequential

73

Figure 13. XML Graft Example

The principle in above example is that delta- A to C contains all the changes, and
each one is applied to T1 if it makes sense. So if a change is made to an object in A
and there is a corresponding object in T1, then the change is applied. If not, the
change is ignored.

5. Conclusion
In this paper we have discussed the different types of merge along with similari-
ties and differences between them. They differ in terms of how the inputs are
revised or modified and how they are aligned. With the help of a simple example
it was demonstrated that even if the concurrent and sequential merge use the

Varieties of XML Merge: Concurrent versus Sequential

74

same format to represent the merge, the results produced are different. In addi-
tion to this, we also discussed the alignment using unique keys either to ensure
the two elements do align with each other, or to prevent two elements from align-
ing with each other.

The examples and applications of concurrent and sequential merge should
provide the useful information to make best use of automated processing of XML
by analysing and resolving the merge result. XML provides a useful representa-
tion for defining and discussing these complex merge operations.

Bibliography
[1] Robin La Fontaine Merging XML files: a new approach providing intelligent merge

of XML data sets Presented at XML Europe 2002.
[2] Nigel Whitaker Understanding Changes in n-way Merge: Use-cases and User

Interface Demonstrations DChanges '14 - 2nd International Workshop on
(Document) Changes: modeling, detection, storage and visualization.
Proceedings of the 2014 ACM Symposium on Document Engineering.

[3] Tancred Lindholm A Three-way Merge for XML Documents Proceedings of 2004
ACM symposium on Document engineering.

Varieties of XML Merge: Concurrent versus Sequential

75

76

Including XML Markup in
the Automated Collation of Literary Text

Elli Bleeker
Huygens ING

<elli.bleeker@huygens.knaw.nl>
Bram Buitendijk

Huygens ING
<bram.buitendijk@huygens.knaw.nl>

Ronald Haentjens Dekker
Huygens ING

<ronald.dekker@huygens.knaw.nl>
Astrid Kulsdom

Huygens ING
<astrid.kulsdom@huygens.knaw.nl>

1. Introduction
XML plays a key role in humanities research. Scholars use it to express their
understanding and interpretation of a text and to create textual models for fur-
ther analysis. The affordances of the XML data model allow them to structure lit-
erary texts and to capture a wide range of textual phenomena, from physical
characteristics of a historical document to the composition of a theatre play. By
adding markup to the transcription, in other words by encoding it, scholars can
make explicit their interpretation and their knowledge of a text. The encoding of
literary texts generally results in text-centric XML files that consist of text data
and XML markup elements.

The main challenge is that these encoded literary texts are neither fully
ordered nor unordered data. They can be classified as "partially ordered XML"
and require an entirely different way of parsing and processing than data-centric
XML or text-centric XML. Traversing data-centric XML is relatively easy because
it is unordered. Its structure is expressed by the schema, while the order of the
elements is irrelevant. Data-centric XML contains properties and values, for
example: when describing a person, we record their surname, first name, address
and postal code. The order in which we list these properties does not contribute
to the information: each individual statement stays true regardless of the order in
which they are listed. The structure informs the queries. In data-centric XML
queries can be exact, as in: "Give me the last name of the person living at Down-

77

ing Street number 10." If multiple persons fit the description, the order in which
they are listed in the result does not matter.

Standard text-centric XML, then, is in principle fully ordered. The value of the
data is in the content (PCDATA), not in the structure. This content is flat (or
"free") data and the order of the XML elements is crucial. Because of their fully
ordered nature, they are parsed and processed differently than data-centric XML.
Traversing text-centric XML means traversing the text from top to bottom, left to
right, in order to display it or to transform it. In contrast to data-centric XML,
queries on text-centric XML are rather inexact, because you are looking for a pat-
tern of words. When querying text, the order in which the results are returned is
relevant. This regards not only the order of the words within a result; the order of
the individual search results is crucial as well. The text fragments that match the
given patterns are listed in order of "best match".

Texts in the humanities, be they literary or historical or scholarly, are neither
fully ordered nor unordered. For instance, a written text may contain internal var-
iation in the form of revisions or additions in the margin. These variants are on
the same level in the XML tree: they have the same rank and between them order
is irrelevant. So while the text data is fully ordered, at the points in the text where
variation occurs the file is unordered. Within the markup elements, however, the
text data is again fully ordered. This combination of fully ordered and unordered
makes text-centric XML of literary texts extremely challenging to parse and proc-
ess in a satisfactory manner. At the same time it is paramount we confront these
challenges, because it will provide us with a more realistic model of text, which in
turn promotes better and original forms of research.

In the practice of literary text research XML files are often processed as plain
text, which conveniently removes the need to tackle issues like overlap on a pro-
grammatic level. Since the structure of a tree can hold more information than
plain text, the loss of information is inevitable. This concession is generally accep-
ted, because the focus of literary text research is primarily on text and less on its
structural features.

However, we propose a hypergraph data structure to process text-centric
XML files. This approach removes the need to process text-centric XML files as
plain text [and it discards the distinction between first class and second class
objects]. At the same time it allows us to actually make use of the structural infor-
mation represented by the XML markup. The scholarly knowledge contained by
the XML markup, then, can be employed to improve (the outcome of) the pro-
cessing.

The hypergraph data structure supports different forms of document model-
ling and processing.The present paper takes as point of departure an especially
complex phenomenon, i.e. textual variation, and demonstrates in a step-by-step
manner how a tool based on a hypergraph data model can address several chal-
lenges related to capturing textual variation in an XML environment.

Including XML Markup in the Automated Collation of Literary Text

78

The paper is organised as follows. First, we give a brief account of what it
means to study literary text and text variation in a computational environment,
and we outline some familiar and less-familiar issues that arise during text mod-
elling. We expand upon the idea that text isn't linear and on the concept of colla-
tion, i.e. the comparison of text versions, which constitutes an important part of
the study of textual variation. While it occurs in many different forms, textual
variation can be divided into two main categories: multiple paths through a text,
and variation in the textual structure. A tool that examines textual variation in an
inclusive way therefore needs to be able to deal with variation in both categories.
Section 3 begins with a detailed description of the hypergraph model for textual
variation followed by a presentation of the tool HyperCollate. It provides a num-
ber of instances of variation in order and variation in structure and shows how
they are processed by HyperCollate. In conclusion we reflect upon the implica-
tions of such a tool for our definition of "text" and the study thereof, and we
argue that the hypergraph allows us to fully deploy XML's potential for textual
research.

2. Background

2.1. Context: Computational Philology
The modelling of textual objects and textual collections has become a fundamen-
tal feature of computational humanities research (cf. McCarty 2004; Van Hulle
2016; Bleeker 2017). The present discussion takes place against the backdrop of
manuscript studies, a field that presents fertile ground for multidisciplinary
research. The methodologies and approaches related to this kind of research can
be grouped together under the label of "computational philology". The creation of
formal models has proven to be a highly useful intellectual tool for textual schol-
ars and philologists who are compelled to express their notions and understand-
ings in a structural, systematic way. At the same time, the complexity of historical
texts presents original and complex puzzles for computer and information scien-
tists.

This is certainly true in the case of the modern manuscript dating from early
20th century, which has been described as "complicated web of interwoven and
overlapping relationships of elements and structures" (Vanhoutte 2007, "Elec-
tronic Textual Editing: Prose Fiction and Modern Manuscripts: Limitations and
Possibilities of Text-Encoding for Electronic Editions"). The key question is how to
capture, represent, and analyse these features.

The widespread use of XML within the humanities community has given
scholars a powerful tool to express their interpretation and knowledge of a text.
As indicated above, the representation of a manuscript text in the XML data
model facilitates the study, representation, and analysis and, ideally, promotes

Including XML Markup in the Automated Collation of Literary Text

79

interoperability and data exchange. Yet the XML data model also presents a num-
ber of challenges for the modelling and processing of humanities texts. A com-
plete overview of these issues and proposed solutions is not within the scope of
this paper; others have done so elsewhere (e.g. S-McQ & Huitfeldt 2000; De Rose
2004; Piez 2008, 2014).

The present paper focuses on two crucial properties of humanities text. First,
text is non-linear but the order in which XML elements occur is significant. Sec-
ond, its structure often carries implicit semantic meaning that is only partially
expressed by an associated schema. If we want to model humanities text in a way
that promotes further research, we need to accommodate and anticipate these
properties. The non-linearity implies that there exist multiple "paths" through the
text; the fact that a structure reflects a certain perspective implies that different
texts may have different structures.1

The following sections explore to what extend these properties are represen-
ted in existing models of text.

2.2. Modelling Properties of Text

One of the most widely used tools for text modelling in the humanities is the TEI
Guidelines: a set of extensive recommendations for the transcription and encod-
ing of literary texts created by the TEI (Text Encoding Initiative). Since the TEI
Guidelines are developed by the text editing community, they are considered to
be the "de facto standard for text encoding" which makes TEI-XML the "lingua
franca of current scholarly editions" (Andrews 2013; Pierazzo 2015, 30; Van Zun-
dert 2016, 2015). Although TEI concentrates primarily on functional aspects of
text (chapters, paragraphs, named entities, etc), TEI-XML tags can have semantic
meaning. For instance, a fragment of textual data wrapped in the XML-TEI ele-
ment <add> implies that the transcriber considers those sequences of characters
as an addition. The exact meaning of the tag, though, may vary depending on the
understanding of the transcriber and the goal of the transcription. Markup, then,
provides a way to express a view or a perspective on a text; the use of the specific
tags and thus the structure of the XML file is clarified in the associated schema.

In order to comply with the diversity of textual models and scholarly con-
cepts, the TEI Guidelines are flexible: they provide a number of TEI schemata and
also allow for schema customisation. This particular feature gives scholars a
means to express the idiosyncratic characteristics of literary text and to capture a
wide variety of textual phenomena by creating their own set of tags. Incidentally,

1Additionally, there may be different structures within one text. In XML these additional structures
are expressed with milestone elements in order to avoid the well-known issue of overlapping hierar-
chies. The TAG data model does support this feature, but it is not within the scope of the present arti-
cle, which focuses on comparing structures between different XML files. See [ref] for an introduction
to the TAG data model and how it deals with different challenges for humanities text modelling.

Including XML Markup in the Automated Collation of Literary Text

80

this particular feature also hinders reusability and exchange of data - a complica-
tion that may be solved by linking the transcription to existing ontologies (cf.
Eide 2009) but that is a different discussion altogether. In short, we can say that,
together with the associated schemata, the TEI-XML markup reflects a set of
scholarly choices and theoretical concepts related to text. From here on forward,
the term "TEI text" is used here when referring to text-centric XML of literary
texts.

2.2.1. Multiple Paths

The non-linearity of TEI texts is best illustrated with a case study. Figure 1 shows
a fragment from an authorial manuscript from Mary Wollstonecraft Shelley's
Frankenstein followed by a simplified TEI-XML encoding of the inscriptions on
the manuscript.

Figure 1. MS. Abinger c.57, fol. 85r (fragment).

<TEI>
 <text>
 <s>I wished to soothe him
 <lb/>yet could<add>can</add>
 I tell<add>console</add>
 <add>one</add> so infinitely miserable
 <lb/>whose mind continually dwelled on horrors
 <lb/>so destitute of every hope of consolation
 to live -<add>?</add>
 oh no - the only joy</s>
 </text>
</TEI>

Here, the deleted and added words are tagged with a and <add> element
respectively. The parent <s> signifies a sentence and the <lb/>s signal the start of a
new line on the manuscript. Together, these markup elements reflect the scholars
analysis of the manuscript text and the inline revisions.

Note that the order of the words in the transcription is the result of the schol-
ar’s interpretation of the manuscript. To be more precise: the difference between

Including XML Markup in the Automated Collation of Literary Text

81

could<add>can</add> and <add>can</add>could is mean-
ingful for the transcriber because it implies a chronological order. In some cases,
for instance when the author has manually corrected their typescript, the chrono-
logical order in which the revisions are made is clear enough. Yet with complex
manuscripts this temporal aspect is not always evident and, thus, the transcrip-
tion reflects a scholarly interpretation.

The manuscript fragment in figure 1 contains what can be called "intradocu-
mentary variation", that is, textual variation within one text. Conventionally west-
ern scripts are read from left to right, so the linear order in which the characters
are placed represents the order of reading. Intradocumentary variation, on the
other hand, implies that there are different orders - or "paths" - through the text.
In the transcription of figure 1, the first path starts by the element; the sec-
ond path is indicated by the <add> element. Both paths join after the closing </
add> tag. It's important to realise that these paths are located on the same level in
the XML tree, so the order in which they are processed by a parser is arbitrary.

In other words, intradocumentary variation, such as additions, corrections,
and deletions imply multiple "paths through" or orders of the text. The text is no
longer a linear sequence of tokens, but rather a linear graph that is partially
ordered: the path through the text splits in two directions and rejoins at a later
point.

Plain text, on the other hand, is fully ordered. Hence, as said, the processing of
TEI texts as plain-text characters implies that partially ordered data is trans-
formed into fully ordered data. In some cases, the markup can be discarded with-
out much consequence for the order of the text data, for instance in case of named
entity tags. With regard to the fragment of figure 1, however, taking out the XML
elements and flattening the text data results in a nonsensical sentence:

I wished to soothe him yet could can I tell console one so infinitely ►
miserable

If the XML elements including their textual content are removed, we get a
similarly illogical result:

I wish to soothe him yet I so infinitely
miserable

Without the markup we lose the start and end indicators of the different
paths, because plain text characters are, by definition, placed in one linear order.

Preparing TEI-XML transcriptions for processing thus necessitates the selec-
tion of certain markup elements and the text data they contain. It may be clear
that with complex authorial manuscripts containing multiple and <add>
elements, like Wollstonecraft's Frankenstein, this selection process is not straight-
forward. Furthermore, structural markup like <s> and <lb/> arguably carries val-

Including XML Markup in the Automated Collation of Literary Text

82

uable intelligence as well, even if ignoring these elements doesn't immediately
impede the flow or legibility of the text.

2.2.2. Structure

The structure of text-centric XML files has been the topic of ongoing research. It is
well-known that the textual objects in the XML tree are organised as a single-
ordered hierarchy (OHCO; see also Coombs et al. 1987; DeRose et al. 1990; Renear
et al. 1996). Some textual features are more naturally represented in XML's tree
model than others, but with the aid of workarounds it is perfectly possible for
scholars to encode all information about intradocumentary variation that is rela-
tive or important according to the conceptual model they follow. Proposing an
alternative to XML, therefore, would bypass the widespread use of XML in the
humanities community.

However, it is worthwhile to take a closer look at the way TEI texts currently
model textual structures and what that implies for processing. It may be clear that
a document's structure reflects a specific perspective or view on the text. That is,
the structure of a text that is studied from a material or bibliographic perspective
will most likely be different than the structure of the same text when examined
from a temporal perspective. The different perspectives are reflected in the selec-
tion of elements as well as the tagging of text data. In the monohierarchical data
model of XML, a TEI text contains but one structure. Any additional structures
are represented with <milestone>s or empty elements.

2.3. Analysis Through Collation

TEI texts can be analysed in many ways and for many different research purpo-
ses. This paper focuses on a widely used scholarly primitive to analyse text: colla-
tion. Collation at its most basic level means the comparison of two or more texts
(literally "placing side by side"). The outcome of this comparison presents an
overview of the variance between a number of text versions ("witnesses"). In gen-
eral, texts are collated for three different reasons:
• to track the transmission of a text;
• to get as close as possible to the original text;
• to establish a critical or final text. This could also mean the generation of a list

of variants and/or a critical apparatus.
Comparing a high number of witnesses is a tiresome and error-prone activity

for humans, making it an ideal candidate for automation. To this end, several col-
lation tools have been developed over the past decades. It is not within the scope
of this paper to present a full discussion of the different methods these tools
employ, but it suffices to say that they focus on comparing strings of plain text

Including XML Markup in the Automated Collation of Literary Text

83

and therefore do not address the characteristics of TEI text as discussed above.
2The consequences of transforming TEI text to plain text have been outlined in
sections 2.2.1 and 2.2.2 already; the following section takes a closer look at the
implications of that processing method.

2.3.1. Collation and Multiple Paths

Figure 2 shows again a fragment from the authorial manuscripts of Frankenstein;
figure 3 shows a different version of the same sentence. A simple TEI-XML tran-
scription is presented below the respective fragments.

Figure 2. Witness 1 (fragment of MS. Abinger c.57, fol. 85r).

Transcription Witness 1:
<TEI>
 <p>
 <s>& himself corrected <add>and augmented</add> them</s>
 </p>
</TEI>

In Witness 1 the textual data has one parent <s> and the addition is encoded with
an <add> element. The <add> element, then, represents the start of intradocumen-
tary variation, i.e. the diversion of two paths.

Figure 3. Witness 2 (fragment of MS. Abinger c.58, fol. 22r).

Transcription Witness 2:
<TEI>
 <p>

2See Bleeker 2017 for a more extensive discussion of existing approaches to automated collation. Fur-
thermore, a short overview of historic approaches to collation is also available in a Jupyter Notebook,
created for the DiXiT workshop 'Code and Collation'. The workshop material is available as Jupyter
Notebook, see http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/
INTRO.ipynb

Including XML Markup in the Automated Collation of Literary Text

84

 <s>and then himself corrected and augmented them</s>
 </p>
</TEI>

Witness 2 has a similar structure, but the addition is now part of the running text.
In other words, there is but one path through the text of this witness. Together,
these witnesses illustrate that variation within one text can be related to other text
versions.

However, a conventional collation program, that focuses on plain text data
only, discards all information about the multiple paths in Witness 1:

Figure 4. Output of collation between Witness 1 en Witness 2, rendered as
variant graph

The collation result is visualised as a variant graph, a commonly used data struc-
ture to store and represent textual variation. Like any graph, a variant graph con-
sists of nodes and edges. The nodes represent textual content and the edges are
directed and represent the order in which the text should be read (i.e. following
the directed edges, from left to right or from top to bottom in a vertical represen-
tation). Every edge contains a label, a so-called "siglum", that refers to the witness
or witnesses. Here, the siglum "W1" refers to Witness 1 and "W2" refers to Wit-
ness 2. By following a siglum through the variant graph, the reader can read the
text of the associated witness. The text data is segmented based on the transition
between alignment and variation: aligned text is placed in the same node.

The collation result represented in figure 4 does not include the temporal
aspect of the writing process that is represented by the addition in Witness 1. As a
consequence, the result doesn't communicate that literary text develops in stages,
nor does it convey how the stages of one witness can be related to other wit-
nesses.

The current automated collation tools are schema-independent: they collate
character strings and necessitate a selective approach where only (parts of) tex-
tual data is collated. In order to compare witnesses that each have multiple paths
through the text, the collation tool needs to understand and recognise markup
elements that indicate the start and the end of the path. To take the example
above, the tool needs to know that the <add> tag represents the start of a path,
and that the </add> tag represents the end of a path and thus the end of the intra-
documentary variation. This implies that the tool must be "schema-aware".

Including XML Markup in the Automated Collation of Literary Text

85

2.3.2. Collation and Structure

The way regular automated collation tools deal with the structure of TEI texts is
best represented by a new example. Figure 5 and figure 6 present two manuscript
fragments that contain have more or less the same text but with a different struc-
ture.

Figure 5. Witness 1 (fragment of MS. Abinger c.57, fol. 85r).

A relatively simple example already reveals that a particularly small revision
results in a structural change:

The sentence first reads "...so destitute of every hope of consolation to live - oh
no - the only joy...". A simplified XML-TEI encoding of the sentences would look
as follows:

<TEI>
 <text>
 <s>so destitute of every hope of consolation to live - oh no - ►
the only joy</s>
 </text>
</TEI>
in which the textual data has one parent <s/>. Another witness contains more

or less the same text, but split up in two separate sentences (figure 6):

Figure 6. Witness 2 (fragment of MS. Abinger c.58, fol. 22r).

which results in the following TEI-XML encoding:
<TEI>
 <text>
 <s>so destitute of every hope of consolation to live?</s> <s>Oh ►
no!</s>
 </text>
</TEI>
Apart from the change to capitals and some punctuation marks the textual

data has remained the same, but is now divided over two parent <s> elements. A

Including XML Markup in the Automated Collation of Literary Text

86

standard collation tool that looks at text data only, would not spot this difference
in structure:

Figure 7. Output of collation of Witness 1 and Witness 2, rendered as a variant
graph

It is, of course, also possible that a word changed at the same time as the markup
changed. Simply prioritising structure over text data would therefore not result in
the desired outcome either. For that reason, we created a new algorithm that pro-
cesses TEI texts with multiple paths and compares the witnesses on a structural
as well as a textual level. Using a hypergraph data model, HyperCollate is able to
process TEI texts in an inclusive manner that significantly improves the collation
result.

3. Approach

3.1. Context

In order to better understand the approach of HyperCollate, it is worthwhile to
briefly explore how it relates to existing collation algorithms. We take the open
source collation tool CollateX as point of departure.3

Section 2.3 already mentioned that, in general, collation tools strip the TEI text
of its markup. After converting the XML file into plain text, CollateX subse-
quently tokenises the string of characters on whitespace and punctuation, and
collates the strings using the global alignment algorithm of Needleman-Wunsch.
Needleman-Wunsch is a well-known algorithm to align two sequences of objects
against each other.4In the case of TEI text, these objects are characters or tokens.
Each sequence is linear in nature, this means that at every position in the
sequence there is only one object. Now the goal of alignment is to find the small-
est amount of changes to turn one sequence into the other.

The collation result is then stored internally as a variant graph. It can visual-
ised in different ways, depending on the preference of the user. The strengths of

3See https://collatex.net/docs
4See Needleman and Wunsch 1970 and https://​en.wikipedia.org/​wiki/​Needleman
%E2%80%93Wunsch_algorithm

Including XML Markup in the Automated Collation of Literary Text

87

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

the variation graph are focus and simplicity: once users understand how it should
be read it is relatively easy to present variation between witnesses. A disadvant-
age of the variant graph is that it only stores plain text and variance between wit-
nesses: additions and deletions within a single witness, and structural differences
between witnesses are are ignored (see section 2.3). Note that a variant graph is
partially ordered: places of variation, on the same rank, do not have an order.
This is different from the tree model behind OHCO that is, as said, fully ordered.

In the case of more than two witnesses, the current version of CollateX makes
use of "progressive alignment", meaning it doesn't compare all witnesses at the
same time. Instead, it first compares two witnesses, stores the result of that com-
parison in a so-called variant graph and then progressively compares another
witness against that graph, at every turn merging the result of that comparison
into the graph until all witnesses are merged.

As mentioned in section 2, it is clear that dealing with partially ordered XML
poses a number of challenges. In short, it is a challenging combination of fully
ordered text data with a structure that, at the points in the text where variation
occurs, is unordered. As a consequence, there exist multiple "paths" through the
text that all need to be taken into account during the collation process. Further-
more, the fact that a structure reflects a certain perspective implies that different
texts may have different structures, which needs to be addressed as well.

3.2. modelling (HG)

HyperCollate uses a directed property hypergraph data model to store the wit-
ness data and the result of the collation. All graphs consist of nodes and edges.
The nodes represent objects and the edges connect the nodes to one another. In
commonly used graph models, such as a directed acyclic graph (DAG), graph
edges connect one node to one another node in the graph. In a hypergraph, con-
versely, edges are hyperedges. Hyperedges connect one or more nodes with each
other. Standard edges are undirected, that is, the relation that an edge between
two nodes applies in both directions. If there is an edge between node A and
node B, A is associated with B, as well as B with A. Directed hyperedges contain
an order. A directed hyperedge points from one node to another. A directed
hyperedge connects one node, "the head", to multiple (one or more) nodes, the
"tail". A property graph is a kind of graph were extra information in the form of
properties can be stored on the nodes and edges. For example, every node has a
type property.

The hypergraph model for textual variation consists of the following node
types:

• Text nodes; a single text node contains a piece of textual content. All the text
nodes together represent the full text of the set of witnesses.

Including XML Markup in the Automated Collation of Literary Text

88

• Markup nodes; the markup nodes contain all the information associated with
the markup; such as the tag name and the attributes contained in the original
XML TEI files.

• EmptyText node; these are text nodes with empty content, meant as targets for
markup nodes that represent milestone elements from the original XML TEI
files.

• Start and end nodes; these are a special kind of EmptyText nodes; they denote
the beginning and end of the text and facilitate traversing the hypergraph and
allow for variation that occurs at the beginning and end of witnesses to be
recorded.

The hypergraph model for textual variation consists of the following edge
types:

• Text to text directed edges; these connect one text node to another and in that
manner store the order of the text. Note that one text node can have multiple
outgoing edges. Multiple outgoing edges are used in the case of textual varia-
tion. See for more information section 3.1.2 The edges contain sigli informa-
tion as a property to indicate with witnesses they are associated.

• Markup to text directed hyperedges; these connect one markup node to one or
more text nodes. The hyperedges are labeled with the sigli of the witnesses
involved as a property.

3.2.1. Multiple Paths

The hypergraph for variation is an evolved model based on the variant graph (see
section 2.3). To tackle the first requirement, i.e. processing texts with multiple
paths, we release the constraint that at every point of variation in the graph every
witness may occur only once. Now, in case of intradocumentary variation in wit-
ness N, the siglum N will occur multiple times at the same rank in the graph. It is
import to note, that just like in the case of intradocumentary variation, there is no
ordering in the variation at the same rank. We do, however, keep track of whether
each of the variants is an addition or a deletion. This information can be used e.g.
for visualisation purposes.

An empty variant hypergraph consists of only one start node and one end
node, connected by a directed edge from the start node to the end node.

In a variant hypergraph text the textual content is segmented into text nodes,
the nodes are as large as possible without a change in markup occurring between
two consecutive text nodes. A simple text without markup is thus recorded in
three nodes: one start node, one text node containing the textual content, and one
end node. A directed edge connects the start node to the text node. Another direc-
ted edge connects the text node to the end node.

Including XML Markup in the Automated Collation of Literary Text

89

In order to encode textual variation, the textual content is segmented into sev-
eral nodes. The segmentation takes place at the transition between aligned pieces
of text and variation, and vice versa. Each text node has one or more incoming
and outgoing directed edge. Every edge has a property on it indicating which
witness this edge belongs to. It is thus possible to traverse the hypergraph start-
ing at the start node, walking over the text nodes and following the edges labeled
with the witness siglum to the end node. For every witness there is always a fully
connected path through the hypergraph from the start node to the end node. Tex-
tual variation is stored as a node at the beginning of the variation with multiple
outgoing directed edges. In the case of variation between witnesses, the sigli on
the outgoing edges have to be unique and a siglum can not be repeated. In the
case of intradocumentary variation, the same siglum will be repeated.

3.2.2. Structure

The second requirement is to store markup in the data model. Similar to the
OHCO model, markup is stored in its own nodes. We added a new type of node,
specifically aimed at markup, in addition to the text node types. The markup
nodes store the tag name and the attributes involved. Note that, just like in
OHCO, for every combination of open and end tags only one markup node is
added to the hypergraph. Now the text nodes and the markup nodes are connec-
ted to one and other through the use of directed hyperedges. The edges point
from the markup node to the text nodes. Just like in the variant graph every
hyperedge has sigli attached to it.

In contrast to the variant graph, text nodes are not only segmented based on
textual variation/non variation. In the variant hypergraph model the segmenta-
tion of the text nodes is also based on markup variation. The segments contain as
large a piece of text as possible, within the constrains that there may be no change
in markup or textual content or punctuation between witnesses for that segment.

3.3. Analysis through collation: HyperCollate
The nature of TEI texts entails that the textual content should either be treated
equal to the structure of the file, or that it be given priority. In previous experi-
ments we found that only giving priority to text data did not always give satisfac-
tory results. In TEI texts containing a significant amount of markup, collation
results improved when text and markup were considered as equally important.
Furthermore the current automated collation tools are schema-independent: they
collate character strings and necessitate a selective approach: only (parts of) tex-
tual data is collated. If the collation tool needs to take the markup into account for
the collation, it needs to understand and recognise markup elements. In other
words: it needs to be schema-aware.

HyperCollate operates in four main steps:

Including XML Markup in the Automated Collation of Literary Text

90

1. Converting the XML tree of all of the witnesses into a hypergraph for each
one.

2. Align two hypergraphs

3. Merge the two hypergraphs into one.

4. Repeat steps 2 and 3 for the remaining witnesses in case of more than 2 wit-
nesses.

5. Visualise or export the resulting hypergraph.

There are two reasons for HyperCollate’s first main step: converting the TEI
XML witnesses into the hypergraph model before the alignment. Firstly, convert-
ing all the witnesses to graphs before alignment makes the alignment process
uniform, especially for progressive alignment. For progressive alignment, or col-
lating more than two witnesses, we take the result of the previous collation,
which is a graph, and collate the next witness into it. If we would not convert the
first two witnesses to a graph structure before alignment, the alignment problem
would be different for the first two witnesses as opposed to the rest: the first two
witnesses would present us with a tree to tree alignment problem, while the
remaining witnesses would pose graph to tree collation problems.

Secondly, and perhaps most importantly, the variant hypergraph represents
textual variation in a more accurate and explicit manner. After the conversion
process every markup node in the TEI XML source is represented by one markup
node in the resulting variant hypergraph. In an XML tree structure the markup
elements are on top level, the text elements are at the bottom (so-called "leaf
nodes"). In the hypergraph model for variation, however, the text elements are at
the centre of the model and the relationship between text nodes and markup
nodes is expressed by hyperedges. Now that every witness we want to collate is
converted into a hypergraph, the witnesses can be aligned (step 2 of HyperCol-
late’s operation process). The goal is to align the nodes of the two hypergraphs in
such a way that we find the smallest possible amount of changes needed to
change one hypergraph into the other: we want to find the largest amount of
nodes that are "aligned".

The HyperCollate algorithm is a global alignment algorithm that is inspired
by Needleman-Wunsch. It extends the Needleman-Wunsch algorithm in three
ways:

• Instead of aligning two sequences of tokens as before, HyperCollate aligns
two sequences of matches. Due to this, HyperCollate uses four edit operations
(skip next match of sequence 1, skip next match of sequence 2, align next
match of sequence 1, align next match of sequence 2) instead of three (add/
remove the next token from sequence 1, add/remove the next token from
sequence 2, align/replace the next token sequence 1 and 2). By aligning

Including XML Markup in the Automated Collation of Literary Text

91

matches rather than tokens we deal with the fact that the variant hypergraph
is partially ordered;

• Whereas Needleman-Wunsch uses one type of object in the sequence, Hyper-
Collate uses two object types: one for text and one for markup tags open and
close events. By having two types of matches (one for markup; one for text)
we treat text and markup with equal priority during the alignment;

• Finally, after the initial alignment pass which aligns all content, HyperCollate
performs a second alignment pass where it distinguishes between changes in
markup and changes in text. This refinement pass improves the alignment
quality by aligning the text of both witnesses separately from aligning the
markup of both witnesses.
Based on the aligned nodes we can merge the two witness hypergraphs into a

new hypergraph that contains the same information. All the nodes that are not
aligned are unique to one of the two hypergraphs; all the nodes that are aligned
can be reduced from two to one, with labels on the edges indicating which node
is part of which hypergraph. The resulting merged hypergraph can be visualised
or exported.

Going back to the example mentioned in section 2.3.2 provides us with the fol-
lowing two witnesses, simplified for reasons of brevity and clarity:

<TEI>
 <p>
 <s>and then himself corrected and augmented them</s>
 </p>
</TEI>
<TEI>
 <p>
 <s>& himself corrected <add>and augmented</add> them</s>
 </p>
</TEI>

Using HyperCollate to align and merge these witnesses results in a variant hyper-
graph which can be visualised as follows:

Including XML Markup in the Automated Collation of Literary Text

92

Figure 8. Variant hypergraph showing the different paths throught the text.

Going back to the example mentioned in section 2.3.2, given the following two
witnesses, simplified for reasons of brevity and clarity:

Witness Vol2 (fragment fol. 85r):

Including XML Markup in the Automated Collation of Literary Text

93

<TEI>
 <text>
 <s>to live - oh no - the only joy</s>
 </text>
</TEI>

Witness Vol3 (fragment fol. 22r)

<TEI>
 <text>
 <s>to live?</s> <s>Oh no - the only joy</s>
 </text>
</TEI>

the resulting variant hypergraph looks like this:

Figure 9. Variant hypergraph showing the difference in structure between the
two witnesses.

Including XML Markup in the Automated Collation of Literary Text

94

4. Conclusion
XML is a key instrument in the modelling and processing of texts for the humani-
ties. The encoding of a text is influenced by the perspective of the scholar, ensur-
ing that TEI-XML encoded texts contain the scholar's critical analysis of the text,
its revision, its modes of production, etc. This kind of TEI-XML file we define as
text-centric XML of literary texts: partially ordered data files that, due to their
dual nature, pose a number of challenges for traversing, parsing, and processing.
We argue that by using a hypergraph data structure it is possible to model and
process TEI texts. Furthermore, we demonstrate how the hypergraph can be used
to model partially ordered data, in particular by describing how it processes texts
that contain multiple paths and variation between structures. This entails a
departure from the prevailing idea of processing text as a linear sequence or a
tree.

The hypergraph data structure supports different forms of document model-
ling and processing, but we focus on the modelling of textual variation. Collation
is a frequently used method to analyse text and textual variation, and forms an
exemplary vehicle to illustrate the implementation of a hypergraph model for
text. We present HyperCollate, a collation tool that uses the TEI-XML markup to
produce a collation result that accurately reflects the scholarly knowledge and
understanding of text. HyperCollate accepts (TEI-encoded) XML files and uses
information that is stored in these files to significantly improve the result of the
analysis. Partially ordered data is especially challenging for algorithms, because
an algorithm cannot simply either ignore or apply order everywhere, but needs
to decide on a case to case basis whether the order is important or not. HyperCol-
late uses domain-specific knowledge to handle this problem. It results in an
exhaustive representation of the variance within and between different versions
of a literary work, thus allowing scholars to better analyse the dynamic nature of
text. Consequently, the approach makes optimal use of the potential of the XML
data model for textual research.

Including XML Markup in the Automated Collation of Literary Text

95

96

Multi-Layer Content Modelling
to the Rescue

Erik Siegel
<erik@xatapult.nl>

1. Summary
There are companies, for instance educational publishers, that have lots of con-
tent for a multitude of different products. These products share some content
aspects but unfortunately also differ wildly in things like structure, metadata and
mark-up. From an information modelling perspective, a different model would
be required for each of them.
Different models would mean different schemas, authoring tool configura-

tions and publishing tool-chains. A huge investment and hard to maintain. A way
to circumvent this is by introducing multi-layer content modelling:
• You start off with a base content model that is flexible enough to cater for the

needs of all the products. This could be a standard like Docbook or DITA or
something bespoke.

• On top of that you add a second layer of modelling to cater for the product
differences. This layer must be able to describe and validate the product spe-
cific contents, but also guide authoring tools and other software in doing the
right, product specific, thing.

2. Setting the stage
Most of my customers are educational publishers and they have a content model-
ling problem. All of them have many product families which are similar in nature
but very different in details. Let’s have a look at some examples.

Here is a page from a secondary education book. The publisher made it look
attractive and playful, but we, as XML geeks, can see the underlying structure.

97

Of course this must not only be published as a book. Multi-channel publishing is
a must, so we will have to be able to translate this to the screen and make the
questions truly interactive.

Now have a look at this, same publishing company, different product:

And here are some screens from an online application:

Multi-Layer Content Modelling to the Rescue

98

An additional problem is that the volume of content an educational publisher has
to produce and maintain is high. To cover everything for the Dutch secondary
education school-system, a publisher would need to publish roughly 450 different
books (over 60,000 pages!) accompanied by approximately 150 different
(sub)websites with support material and exercises.

Therefore, a suitable content solution would have to deal with:
• High volume
• Different product families with different structural models and varying

markup demands
• Complex interactions and other data structures
• Multiple output channels (print, web, e books, PDF, etc.)
However, solutions with different models for different product families are way
too expensive. The total costs for maintaining every model, configuring editors
and other tool-chain components will go through the roof. The situation will
probably become unmanageable very soon. You'll also end up with content in
silos. Not what you want.

3. Multi-layer content modelling
A possible solution for the situation described is to layer the content model:
• You start off with a base content-model that is flexible and wide enough for all

your content. This could be something existing like DITA or Docbook or
something bespoke.

For this base content-model you can use all the tricks in the XML book to
make sure your content is conformant: DTDs, Schemas, Schematron, etc.

Multi-Layer Content Modelling to the Rescue

99

• On top of that you layer another content-model that limits the possibilities of
the first layer to exactly what is needed for a certain product family.

For this you don’t use the standard XML validation tool-set but create a
definition in what we might call a “Domain Specific Validation Language” or
DSVL.

This approach will probably sound familiar to you. Layering validation is not an
original idea. Here are some examples where this is done also:
• DITA specializations
• RelaxNG customizations
• Schematron in general
• Epischemas (described in a talk by Gerrit Imsieke1 at XML Prague 2017)
Now these are all technically based languages. They say something about the
XML structure in terms of … XML structure (elements, attributes, etc.). What we
wanted was a much more functional and domain driven approach to make the
creation of definitions as easy as possible.

4. Implementation
To make this a bit more concrete, let’s look at an actual implementation of this
idea that I did for one of my customers, Infinitas Learning, a group of educational
publishers with companies in Belgium, Sweden and The Netherlands.

4.1. The base content model
The content model used is a bespoke one. It shamelessly steals ideas from other
standards like DITA, TEI and QTI. For instance maps for holding smaller pieces
of content together. It also incorporates complete sub-standards, like MathML for
equations. The model is supported by an extensive schema, Schematron rules,
examples and written documentation.

Creating a bespoke content model will probably raise some eyebrows but we
had good functional and technical reasons for it. One of them was the introduc-
tion of the second validation layer, the model was designed with this in mind.

There are a number of aspects of this content model I would like to use for
illustration purposes:
• Structure: Instead of this:

<chapter>
 …
 <subsection1>
 …

1 http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e4133

Multi-Layer Content Modelling to the Rescue

100

http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e4133
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e4133

 <subsection2>
 …
 </subsection2>
 </subsection1>
</chapter>

We do this:
<section class=”chapter”>
 …
 <section class=”subsection1”>
 …
 <section class=”subsection2”>
 …
 </section>
 <section>
</section>

• Markup: Instead of this:
<h1>A <i>header</i> that is bold</h1>

We do this:
<p clas=”header1”>A <em class=”italic”>header that is
 <em class=”bold”>bold</p>

• Metadata: Metadata properties are modelled as name/value pairs. Properties
are always bundled in metadata-sets. The content-model is orthogonal
towards metadata: You can bind a metadata-set to any element in the con-
tents.

So, for instance, assume there is a metadata-set for interactions called
interaction-info, with properties like nr-of-retries, score, etc. You can
bind an instance of this metadata-set to an actual interaction in your content.
That would look like this:

<multiple-choice-interaction id="mc-1">
 …
</multiple-choice-interaction>

<metadata-set about-idrefs="mc-1" class="interaction-info">
 <properties>
 <property property-name="nr-of-retries">
 <value>2</value>
 </property>
 <property property-name=”score”>
 <value>6.5</value>
 </property>
 </properties>
</metadata-set>

Multi-Layer Content Modelling to the Rescue

101

4.2. Second layer validation

Back to the multi-layer content-modelling. If we split the validation in two layers,
what would be done on each of them?

Table 1. Examples of two-layered validation

What Base layer Second layer
Structure • Any section structure

to any depth
• Any class

• Define the section
classes that can be
used.

• Define how sections
with these classes can
be nested.

• Limit the number of
occurrences of sections
with a certain class.

Markup • Limited number of
elements

• Any class

• Depending on where
you are in the docu-
ment, limit class usage
and nesting

Metadata • Metadata-sets can be
attached to elements
in the contents

• Any property, any
value type

• Define what is in a spe-
cific metadata-set
(properties, value
types, nr. of occurren-
ces, etc.).

• Define to which ele-
ments you can bind a
specific metadata-set.

For the implementation of the second layer validation, a so-called DSVL (Domain
Specific Validation Language) was created with the following properties:

• It is not a generic validation language. The syntax of the DSVL is based on the
base layer syntax. For the DSVL to function properly, the content must be
valid to the base layer first.

• The DSVL serves many masters:

• Of course validation of the XML

• Configuration of the editor, which adapts itself to the definitions in the
DSVL

Multi-Layer Content Modelling to the Rescue

102

• The publication tool-chain that looks in the DSVL to find out what it must
do with a particular piece of content

• The content specialist. Creation of a DSVL definition should be relatively
easy and straightforward.

• It has limited functionality. To avoid an overly complex DSVL language, we
abstained from trying to define every little nitty-gritty detail.

As an example, let's express the examples from the previous section in our DSVL:
• Structure: what we would like to express are things like class-names, nesting,

occurrences, etc. In our implementation:
<section-definition class="chapter" max-occurs=”10”>
 …
 <section-definition class="subsection1">
 …
 <section-definition class="subsection2" min-occurs=”0”>
 …
 </section-definition>
 </section-definition>
</section-definition>

• Markup: The DSVL must define allowed class-names. We also had the
requirement to be able to limit the number of words in an element. In our
implementation:

<element-definition element-names="p" class="header1" word-count-
max="15"/>
<element-definition element-names="em" class="italic"/>
<element-definition element-names="em" class="bold"/>

• Metadata: for the definition of a metadata-set we would like to know its class-
name, the properties it contains, the property data types, etc. In our imple-
mentation:

<metadata-set-definition class="interaction-info">
 <properties-definition>
 <property-definition property-name="nr-of-retries">
 <value-definition datatype="integer"/>
 </property-definition>
 <property-definition property-name="score">
 <value-definition datatype="double"/>
 </property-definition>
 </properties-definition>
</metadata-set-definition>

Now this is not about the choices we made for this XML. Illustrated here is the
nature of this “Domain Specific Validation Language”. It does not define element
structures or attributes in general. Instead it defines content-structures on a very

Multi-Layer Content Modelling to the Rescue

103

specific and targeted semantic level: How does the structure look like, what meta-
data is to be used. It’s about the content for a specific product family in much
more familiar terms than an XML Schema does.

5. Usage

Now having such a DSVL is fine, but if you can’t use it, it’s of no help at all. So
what did we do with it?

• We used it, of course, for validation:

• Content is validated first against the base layer. This involves schema and
Schematron checks.

• When this checks out ok, the content is run through the second layer XSLT
stylesheet (about 2000 lines). This tells you whether the content is valid
according to the DSVL and, if requested, generates a report with the spe-
cifics of the validation errors.

Such a stylesheet turned out to be an important thing to have, espe-
cially in the beginning when your authoring tools are still being developed
and you hand-craft most of the example content. And also later, to check
the results of the authoring tools.

• We added editors that handled the base layer content-model but could adapt
themselves to the DSVL. For structure we created a custom editor. For con-
tents we choose Fonto XML and with the help of Fonto we made it DSVL
aware. It now only shows what is allowed according to the DSVL definitions.
Toolbars, context menus and metadata forms adapt themselves automagical.

Multi-Layer Content Modelling to the Rescue

104

• We created publication tool-chains (based on XProc) that adapt themselves
according to information in the second layer definitions:

One thing I’ve mentioned in the introduction but not touched upon yet is re-use.
Yes, having different second layer content models for different products does cre-
ate silos. However, we have gained quite a lot by basing everything on the same
first layer content model. The walls between the silos became much thinner and
transforming from one usage to the other is, thanks to the shared base model,
much easier.

Multi-Layer Content Modelling to the Rescue

105

6. Lesson and takeaways

Now what can we take away from all this and what are important lessons
learned:

• The idea worked! We could cater for the differences in content between prod-
uct families and still use the same underlying basic model and the same tools
and tool-chain.

• The language you use for your second-layer modelling must be a true DSVL.
It is important that it “talks” about the contents in terms key users (in our case
publishers and editors) understand.

Now of course we didn’t expect the key users to be able to make up all this
XML themselves, we had to train some specialists to do exactly that. But being
able to talk about this in familiar terms was very useful.

• Don’t over-engineer the DSVL. It is very tempting to go for being able to
define every possible structure and exception. And before you know it you
have re-invented XML Schema or RelaxNG…

Try to find a balanced middle ground between defining everything and
language simplicity.

As a side-note: We had some complicated rules that would have been
extremely hard to model in the DSVL but were simple to explain in written
instructions based on what the DSVL could already provide as guidance.

• On the other hand, don’t under-engineer the DSVL. For instance, in our
design it turned out that we had to repeat the same blocks of definitions over
and over again which is never a good idea. A little bit of abstraction and type
definitions might be necessary.

• Taking the previous two together we get to the obvious open door: Allow for
refactoring of the DSVL design (or better: any design) in your project.

• You absolutely need a way to check whether your content conforms to the
DSVL, so you’ll have to write software for that.

7. Conclusion

Multi-layered content modelling can be a useful solution when you have lots of
product families to support with different content models. It allows you to cus-
tomize things more easily and will decrease the necessary cost for the tool chain.

Multi-Layer Content Modelling to the Rescue

106

Combining graph and tree: writing
SHAX, obtaining SHACL, XSD and more

Hans-Juergen Rennau
parsQube GmbH

<hrennau@yahoo.de>

Abstract

The Shapes Constraint Language (SHACL) is a data modeling language for
describing and validating RDF data. This paper introduces SHAX, which is
an XML syntax for SHACL. SHAX documents are easy to write and
understand. They cannot only be translated into executable SHACL, but
also into XSD describing XML data equivalent to the RDF data constrained
by the SHACL model. Similarly, SHAX can be translated into JSON
Schema describing a JSON representation of the data. SHAX may thus be
viewed as an abstract data modeling language, which does not prescribe a
concrete representation language (RDF, XML, JSON, …), but can be trans-
lated into concrete models validating concrete model instances.

Keywords: RDF, XML, SHACL, SHAX, XSD, JSON Schema, data
modeling, data validation

1. Introduction
RDF ([7], [8]) defines a unified view of information which enables the integration
of wildly heterogenous data sources into a uniform graph of RDF nodes. A simi-
lar quality has XML. If understood as a data model and technology, rather than a
syntax, it can translate tree-structured documents irrespective of the domain of
information, the vocabulary used and even the media type (XML, HTML, JSON,
CSV, …) into a uniform forest of XDM nodes. Thus both, RDF and XML, offer us
the translation of heterogeneous information landscapes into homogeneous
spaces of nodes, amenable to powerful tools for addressing, navigating and trans-
forming the contents of these spaces. In spite of the similarities, though, both
technologies have different and complementary key strengths, and an integration
of RDF and XML technologies is a very promising goal.

A key aspect of integration is how we think about and model RDF data and
XML data. Integration might be built upon a careful alignment of these concepts
and models, but we must acknowledge a serious mismatch between the major
data modeling languages used to describe RDF (RDFS [9] and OWL [5], [6]) and
XML data (XSD [16]), respectively. RDF languages are designed for inferencing,

107

and XML modeling concentrates on data validation. The differences do not only
pose technical problems, they also reflect quite different mindsets prevailing in
the RDF and XML communities.

A new situation has been created by the recent standardization of the Shapes
Constraint Language (SHACL, [10]), which is an RDF data modeling and valida-
tion language. This paper attempts to identify new possibilities and takes a step
towards using them. It introduces SHAX (SHAcl+Xml), which is essentially an
XML syntax for SHACL, but might also be regarded as a new and very simple
data modeling language which can be translated into both, SHACL and XSD, and
thus target RDF and XML data alike. SHAX models are simple to write and to
understand, and they may narrow the gap between RDF and XML both concep-
tually and technically. In particular, they can provide a platform on which to
build model-driven translations between RDF graphs and XML trees.

2. RDF and XML: one overarching abstraction

Integration of RDF and XML can be inspired by a clear perception of their essen-
tial relationship. At first sight, RDF seems to take a totally unique and “lonely”
view of information, reducing it to the atomic unit of a triple: subject, predicate,
object. However, when grouping these primary units by subject resource, a secon-
dary unit emerges, which is an entity and its properties. Similarly, a complex
XML element can be viewed as an entity enclosing information content. Both,
properties and content amount to an itemized description of the entity. Through
the equating of properties and content items, one approaches an overarching
abstraction: an information object. A brief, informal account follows:

• Object abstraction
• An object is a set of properties
• A property has a name and one or more values
• A property value is either a data value or an object value

• XML view
• Object = complex-typed element
• Property = attribute or child element
• Property name = attribute or child element name
• Property data value = attribute or a simple-typed child element
• Property object value = complex-typed child element

• RDF view
• Object = IRI or blank node
• Property = predicate
• Property name = predicate IRI
• Property data value = a literal
• Property object value = IRI or blank node

Combining graph and tree

108

Compared to XML, RDF is marked by key strengths. It captures information in an
impartial way: RDF predicates do not presuppose that the subject is “larger”,
more general or more interesting than the object. XML represents a partial view,
as the containment relationship is arbitrarily directed (does a book contain
authors or an author books?), usually reflecting an application-based perspective.

A second aspect is the amphibian nature of RDF: while it allows to perceive a
solid structure composed of objects (see above), RDF data is at the same time a
mere collection of triples, without any primary structure whatsoever. It is like a
liquid of information, and this implies a huge benefit: RDF graphs can be merged.
Finally, RDF is a natural representation of complex graphs (where anything can be
related to anything), and such graphs are a natural representation of most non-
trivial systems.

XML, however, has unrivalled power of its own. Tree structure is a natural
response of the human mind to complexity, as it enables the perception of a
coherent whole. It allows a switching between alternative levels of detail. Due to
the “spatial” organisation of tree content, navigation can be expressed with
superb elegance (XPath). Leveraging this navigation engine, the transformation of
trees into all kinds of artifacts – including graphs – is accomplished with amazing
ease (XQuery, XSLT).

RDF and XML functioning in cooperation may be regarded as a technological
dream team. RDF excels as the organisation of “potentially useful information”;
XML excels as the organisation of “ready-for-use” information. How to combine
these fundamental strengths? Ultimately, both technologies are about shaping
and processing datasets. If datasets can be viewed as instances of data models,
the integration of RDF and XML might leverage the knowledge pent up in these
models. What is clearly called for is model-driven approaches.

3. RDF and XML: the challenge of integration
The integration of RDF and XML – or, more generally, graph and tree technology
- has many interesting aspects. For example, if RDF data describe XML resources
in terms of various metadata, XML navigation of a document forest (e.g. the inter-
net) might be supported by SPARQL queries mapping conditions on resource
metadata to resource URIs.

Distributed software components communicate via messages, which are usu-
ally tree-structured datasets. If the information required by a software component
is RDF-based, the typical task at hand is thus the transformation of RDF graph
data into an XML or JSON tree. Inversely, if an update of RDF data is necessary
and the data is supplied by messages, the transformation of trees into graph data
is required.

Remembering the appropriateness of RDF to serve as an unbiased representa-
tion of “potentially useful information”, the translation of RDF data into a ready-

Combining graph and tree

109

for-use form inspires great interest. For the purpose of this paper, we concentrate
on the transformation of trees into graphs and of graphs into trees. Such transfor-
mation can always be accomplished by custom code. But given the close relation-
ship between the RDF and XML models (argued in the previous section),
transformation should be facilitated by standards or products. Table 1 compiles
some approaches to the transformation between RDF and XML data.

Table 1. Standards and products supporting the transformation between RDF
and XML data. T2G = „tree to graph“, G2T = „graph to tree“.

Name Kind Direction Remark
RDFa W3C recom-

mendation
T2G Defines markup used for embedding RDF

triples in HTML and XML content
GRDDL W3C recom-

mendation
T2G Defines the identification of a transforma-

tion resource (e.g. XSLT) to be used for
extracting RDF triples from HTML or XML
content

JSON-
LD

W3C recom-
mendation

T2G, G2T Defines the flexible representation of RDF
data by JSON trees, thus transformations in
both directions

NIEM Industry stand-
ard

T2G Defines the equivalence of NIEM XML data
with a set of RDF triples

SWP Commercial
product

G2T A framework for creating HTML and XML
content containing and controlled by RDF
data

GraphQ
L

OpenSource
product

G2T Not concerned with RDF and XML, but
with abstract representations of graphs and
trees: defines the flexible transformation of
graphs into trees

It is interesting to note that - apart from GraphQL ([1]) - none of these approaches
builds on a data model describing the graph data in terms of type definitions that
might be aligned with the building blocks of trees. Equally interesting is the fact
that GraphQL is not concerned with RDF and XML data, but with a data source
described by an abstract type system and a data target described by an abstract
tree model. These observations have an explanation: before SHACL, there was no
standardized data modeling language fit for supporting the transformation from/
into graph data.

The advent of SHACL creates new possibilites. For the first time, integration
might leverage an RDF data modeling language which can be aligned with an

Combining graph and tree

110

XML data modeling language - perhaps enabling the alignment of RDF data
model components with XML data model components.

4. A short introduction to SHACL
The W3C recommendation ([10]) introduces SHACL as a “language for describ-
ing and validating RDF graphs.” It is defined as an RDF vocabulary which can be
used to describe data structures, data types and business rules. The key abstrac-
tions are constraints and shapes. A constraint is a condition which particular RDF
nodes must meet. A shape is a set of constraints, which jointly must be adhered to.
A shape can be thought of as a type, which may be a simple data type or an object
type for resources with properties.

Let us consider a very simple example and try to model RDF data describing
flight bookings. We decide that a flight booking is represented by a resource
belonging to the RDF class e:FlightBooking. We want to introduce several con-
straints: a flight booking has …

• exactly one e:BookingDate property, which is a date
• exactly one e:BookingID property, which is a string with length >= 12 and <=

40
• an optional e:BookingChannel, which is an integer
• one or more e:OperatingAirlines, resources (IRIs or blank nodes) which

have …
• exactly one e:AirlineCode property, which is a string of two uppercase
letters

• exactly one e:AirlineName property, which is a string

This model is a fit for the following RDF graph, represented in Turtle syntax:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix e: <http://example.org/ns/model#> .
@prefix o: <http://example.org/ns/objects#> .

o:FB101 a e:FlightBooking ;
 e:BookingChannel 2 ;
 e:BookingDate "2017-12-31"^^xsd:date ;
 e:BookingID "123456789XYZ" ;
 e:OperatingAirline o:AL902 , o:AL901 .

o:AL902 e:AirlineCode "KL" ;
 e:AirlineName "KLM - Royal Dutch Airlines" .

o:AL901 e:AirlineCode "LH" ;
 e:AirlineName "Lufthansa" .

Combining graph and tree

111

The graph can be validated with a SHACL model, which is itself an RDF graph.
Here comes a SHACL model encoding the description given above, represented
in Turtle syntax.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix e: <http://example.org/ns/model#> .

object types
============
e:FlightBookingType
 a sh:NodeShape ;
 sh:targetClass e:FlightBooking ;
 sh:property [
 sh:path e:BookingID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:BookingIDType ;
] ;
 sh:property [
 sh:path e:BookingDate ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:date ;
] ;
 sh:property [
 sh:path e:BookingChannel ;
 sh:maxCount 1 ;
 sh:datatype xsd:integer ;
] ;
 sh:property [
 sh:path e:OperatingAirline ;
 sh:minCount 1 ;
 sh:node e:AirlineType ;
] .

e:AirlineType
 a sh:NodeShape ;
 sh:property [
 sh:path e:AirlineCode ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:AirlineCodeType ;
] ;
 sh:property [
 sh:path e:AirlineName ;
 sh:maxCount 1 ;

Combining graph and tree

112

 sh:datatype xsd:string ;
] .

data types
==========
e:BookingIDType
 a sh:NodeShape ;
 sh:datatype xsd:string ;
 sh:minLength 12 ;
 sh:maxLength 40 .

e:AirlineCodeType
 a sh:NodeShape ;
 sh:datatype xsd:string ;
 sh:pattern "^[A-Z]{2}$" .

This structure can be read as follows: e:FlightBookingType is a shape modeling
the members of a particular RDF class (e:FlightBooking), and each sh:property
[…] statement describes a mandatory or optional property of those resources,
with a property name identified by sh:path:

e:FlightBookingType
 a sh:NodeShape ;
 sh:targetClass e:FlightBooking ;
 sh:property [sh:path: e:BookingID ; …];
 sh:property [sh:path: e:BookingDate ; …];
 sh:property [sh:path: e:BookingChannel ; …];
 sh:property [sh:path: e:OperatingAirline ; …];>

Further settings within the sh:property[…] statements constrain the property in
terms of cardinality and value type, e.g.:

sh:property [
 sh:path e:BookingDate ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:date ;
] ;>

constrains the e:BookingDate property to have exactly one value which is a date.
The example demonstrated capabilities which are similar to those of the XSD

language. XSD describes data structure in terms of element contents (attributes and
child elements), whereas SHACL describes data structure in terms of resource
properties (data and object properties). XSD constrains content items in terms of
name, cardinality and a type which is either a simple data type or a model of
(nested) element contents. SHACL constrains properties in terms of name, cardin-

Combining graph and tree

113

ality and a type which is either a simple data type or a model of (nested) resource
properties.

Accepting the analogy between element contents and resource properties, one
realizes that most capabilities of XSD can be expressed in SHACL. But SHACL
has still more to offer. First, it supports constraints targeting pairs of properties –
e.g. stating that the value of one property must be less than the value of another
property. SHACL also allows the construction of complex constraints which are a
logical combination of other constraints (sh:and, sh:or, sh:not, sh:xone). A prop-
erty can for example be described as either a string or one of several alternative
object types.

SHACL models can describe “virtual” properties, which do not correspond to
a simple property IRI, but are defined as a property path expression. The follow-
ing are a few examples:

sh:path (ex:address ex:street)
sh:path [sh:inversePath ex:parent]
sh:path [sh:alternativePath (ex:father ex:mother)]
sh:path (ex:reads [sh:zeroOrMorePath ex:cites])

Perhaps most importantly, SHACL supports the use of SPARQL queries for
expressing constraints of virtually unlimited complexity and specificity. Such
expressions could be used to capture XSD features not explicitly supported (like
choice groups, identity constraints and XSD 1.1 assertions), as well as arbitrary
business rules which are typically validated by Schematron models.

To summarize, SHACL combines the capabilities of XSD and Schematron.
Besides, it allows the construction of complex constraints and supports virtual
properties.

5. SHAX – motivation
The SHACL language enables a modeling of RDF data which makes them under-
standable for anyone familiar with data modeling, not requiring a deep under-
standing of RDF. Such models facilitate the development of applications
processing or creating RDF data. Apart from this mental level, SHACL-based val-
idation enables elaborate guarantees of data quality, which may reduce code com-
plexity.

How to use these potential benefits in practice? Several problems must be
overcome:

• SHACL is defined as an RDF vocabulary, but only few IT professionals are
familiar with RDF

• Tool support for processing RDF data is rather limited – transformation of
SHACL data into other artifacts tends to be difficult

Combining graph and tree

114

• A grammar-oriented data model - describing structured content in terms of a
simple and generic content model – is not always straightforward to express
because:
• Choice groups require convoluted constructs (combining sh:xone, sh:not

and sh:and)
• The description of a single property may be spread over several

sh:property statements
These difficulties might be overcome by an XML representation of SHACL models.
It offers a simple tree structure which is trivial to write and read. An XML repre-
sentation can be translated into object oriented structures (e.g. via JAXB [2]) or
directly processed by powerful processing and transformation languages
(XQuery [15] and XSLT [17]). The convolutions sometimes required to express
basic grammatical constructs (choice groups and properties-as-building-blocks)
can be hidden behind the façade of a straightforward expression of intent.

The promise of an XML representation goes beyond this simplification of
writing, reading and processing of SHACL models. It may pave the way for
abstract data models, which define data structures and data types, but refrain from
prescribing the representation language, in particular RDF versus non-RDF
expression like XML or JSON. This possibility could be realized by transforming
the XML representation of a SHACL model alternatively into a SHACL model
(applicable to RDF data) or an instance of a non-RDF data modeling language,
like XSD ([16]) or JSON Schema ([3]), which describes a non-RDF representation
of RDF content.

If the XML representation is designed to increase the abstraction level of a
SHACL model, a single XML source might be used to generate alternative
SHACL styles. An example is the use of local versus global shapes, comparable to
XSD styles preferring local versus global types. Last but not least, an XML repre-
sentation might prove a convenient platform for augmenting model components
with metadata – for example metadata specifying a data source for constructing
the item, or a data destination for dispatching the item.

The remainder of this paper introduces SHAX (= SHAcl+Xml), which can be
regarded as an XML representation of (some core parts of) the SHACL language,
or, alternatively, as a new data modeling language which may be translated into
SHACL, XSD and JSON Schema.

6. SHAX – introductory examples
A SHAX model describes object types in terms of their properties. The following
SHAX model describes a single object type (e:FlightBookingType) which repre-
sents a flight booking:

<shax:model defaultCard="1"
 xmlns:shax="http://shax.org" xmlns:e="http://example.org/"

Combining graph and tree

115

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- object types
 ============ -->
 <shax:objectType name="e:FlightBookingType" class="e:FlightBooking">
 <e:BookingID type="e:BookingIDType"/>
 <e:BookingDate type="xsd:date"/>
 <e:BookingChannel card="?" type="xsd:integer"/>
 </shax:objectType>

 <!-- data types
 ========== -->
 <shax:dataType name="e:BookingIDType"
 base="xsd:string" minLen="12" maxLen="40"/>
</shax:model>

Flight bookings have three properties:
• A BookingID, which is a string with a length between 12 and 40 characters
• A BookingDate, which is an instance of xsd:date
• A BookingChannel, which is an instance of xsd:integer
The BookingChannel is optional (@card="?"), and the other properties are manda-
tory (@defaultCard="1"). The model is matched by the following RDF data:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix e: <http://example.org/ns/model#> .
@prefix o: <http://example.org/ns/objects#> .

o:FB101 a e:FlightBooking ;
 e:BookingChannel 2 ;
 e:BookingDate "2017-12-31"^^xsd:date ;
 e:BookingID "123456789XYZ" .>

After downloading the SHAX processor from github ([14]), we can translate our
SHAX model into a SHACL model. The command line call:

 shax "shacl?shax=flightBooking01.shax"
produces the following model:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix e: <http://example.org/ns/model#> .

object types
============
e:FlightBookingType
 a sh:NodeShape ;

Combining graph and tree

116

 sh:targetClass e:FlightBooking ;
 sh:property [
 sh:path e:BookingID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:BookingIDType ;
] ;
 sh:property [
 sh:path e:BookingDate ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:date ;
] ;
 sh:property [
 sh:path e:BookingChannel ;
 sh:maxCount 1 ;
 sh:datatype xsd:integer ;
] .

data types
==========
e:BookingIDType
 a sh:NodeShape ;
 sh:datatype xsd:string ;
 sh:minLength 12 ;
 sh:maxLength 40 .>

In order to see this model at work, we launch the “SHACL playground”
(http://shacl.org) in a browser and copy model and instance data into the
areas labeled “Shapes Graph” and “Data Graph”. Using the “Update” buttons
beneath both areas, we observe that the data are valid against the model. We also
observe how various manipulations of instance data or the model cause valida-
tion errors (see area “Validation Report”, where any error reports appear).

Having seen that our SHAX model can be compiled into a functional SHACL
model, we proceed to extend our model, adding a property OperatingAirline.
This is an object property, as the property values are objects which have their own
properties: a mandatory code (two uppercase letters) and an optional name
(string). Here comes the new version:

<shax:model defaultCard="1"
 xmlns:shax="http://shax.org/ns/model"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:e="http://example.org/ns/model">

 <!-- object types
 ============ -->

Combining graph and tree

117

 <shax:objectType name="e:FlightBookingType" class="e:FlightBooking">
 <e:BookingID type="e:BookingIDType"/>
 <e:BookingDate type="xsd:date"/>
 <e:BookingChannel card="?" type="xsd:integer"/>
 <e:OperatingAirline card="+" type="e:AirlineType"/>
 </shax:objectType>

 <shax:objectType name="e:AirlineType">
 <e:AirlineCode type="e:AirlineCodeType"/>
 <e:AirlineName card="?" type="xsd:string"/>
 </shax:objectType>

 <!-- data types
 ========== -->
 <shax:dataType name="e:BookingIDType"
 base="xsd:string" minLen="12" maxLen="40"/>
 <shax:dataType name="e:AirlineCodeType"
 base="xsd:string" pattern="^[A-Z]{2}$"/>

</shax:model>

Note the cardinality constraint (@card="+"), which means “one or more” values.
In the final step we add a Customer property:

<shax:model defaultCard="1"
 xmlns:shax="http://shax.org/ns/model"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:e="http://example.org/ns/model">

 <!-- properties
 ========== -->
 <shax:property name="e:FlightBooking" type="e:FlightBookingType"/>

 <!-- object types
 ============ -->
 <shax:objectType name="e:FlightBookingType" class="e:FlightBooking">
 <e:BookingID type="e:BookingIDType"/>
 <e:BookingDate type="xsd:date"/>
 <e:BookingChannel card="?" type="xsd:integer"/>
 <e:OperatingAirline card="+" type="e:AirlineType"/>
 <e:Customer type="e:CustomerType"/>
 </shax:objectType>

 <shax:objectType name="e:AirlineType" class="e:Airline">
 <e:AirlineCode type="e:AirlineCodeType"/>
 <e:AirlineName card="?" type="xsd:string"/>
 </shax:objectType>

Combining graph and tree

118

 <shax:objectType name="e:CustomerType" class="e:Customer">
 <e:LastName type="xs:string"/>
 <e:FirstName type="xs:string"/>
 <shax:choice>
 <e:PassportNumber type="xsd:string"/>
 <shax:pgroup>
 <e:LoyaltyProgramCode type="e:LoyaltyProgramCodeType"/>
 <e:LoyaltyProgramMemberID type="xsd:integer"/>
 </shax:pgroup>
 </shax:choice>
 </shax:objectType>

 <!-- data types
 ========== -->
 <shax:dataType name="e:BookingIDType"
 base="xsd:string" minLen="12" maxLen="40"/>
 <shax:dataType name="e:AirlineCodeType"
 base="xsd:string" pattern="^[A-Z]{2}$"/>
 <shax:dataType name="e:LoyaltyProgramCodeType"
 base="xsd:integer" min="1" max="999"/>
</shax:model>

Here comes a conforming RDF graph, this time represented in JSON-LD:

{
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "e": "http://example.org/ns/model#",
 "o": "http://example.org/ns/objects#"
 },
 "@graph": [
 {
 "@id": "o:FB101",
 "@type": "e:FlightBooking",
 "e:BookingID": "123456789XYZ",
 "e:BookingDate": {"@value": "2017-12-31", "@type": "xsd:date"},
 "e:BookingChannel": 2,
 "e:OperatingAirline": [
 {
 "@id": "o:AL901",
 "e:AirlineCode": "LH",
 "e:AirlineName": "Lufthansa"
 },
 {
 "@id": "o:AL902",
 "e:AirlineCode": "KL",

Combining graph and tree

119

 "e:AirlineName": "KLM - Royal Dutch Airlines"
 }
],
 "e:Customer": {
 "e:LastName": "Perez",
 "e:FirstName": "Deborah",
 "e:LoyaltyProgramCode": 800,
 "e:LoyaltyProgramMemberID": 81557
 }
 }
]
}

The SHAX model is translated into a SHACL model which is more than three
times as long (see Appendix A). Note that the SHACL model does implement the
choice group structure (see the sh:xone element), but it does not make this struc-
ture explicit.

To summarize, this section demonstrated various features of SHAX models,
including object and data types, cardinality constraints and the grammatical
structure of a choice group. The next section gives a more systematic overview of
the SHAX language.

7. SHAX – building blocks
A SHAX model is represented by a shax:model element which contains various
kinds of top-level model components:
• shax:objectType – defines an object type
• shax:dataType – defines a data type
• shax:property – defines a property which can be referenced by object types
Models can import other models, using shax:import elements.

7.1. Element shax:model
A SHAX model is represented by a shax:model element. It contains elements
importing other models (shax:import), as well as elements representing top-level
model components. The shax:model element has an optional @defaultCard attrib-
ute which sets a default value for cardinality constraints (@card attributes, see
below). In the absence of an @defaultCard attribute, the default cardinality is
“exactly one”. Note that a SHAX model does not have a target namespace.

7.2. Element shax:objectType
An object type is a named model of resources. Above all, it is a description of the
properties which adhering resources may have. Besides, the model can constrain

Combining graph and tree

120

the resources to belong to one or more (RDF) classes and to have a certain node
kind (IRI or blank node). For example:

<shax:objectType name="e:BookingType" class="e:Booking" nodeKind="IRI">…
The possible properties of an object are described by property declarations, which
are represented by elements named after the property in question. The @card
attribute expresses a cardinality constraint (?, *, +, i, i-j), and the @type attribute
constrains the property values to have a particular object or data type. A data
type may be a built-in type (if from the XSD namespace) or a model-defined data
type (see below, shax:dataType). For example:

<shax:objectType name="e:BookingType" class="e:Booking" nodeKind="IRI">
 <e:BookingID type="e:BookingIDType"/>
 <e:BookingDate type="xsd:date"/>
 <e:BookingChannel card="?" type="xsd:integer"/>
</shax:objectType>

Note that the order of property declarations is significant information. An object
type can extend another one, which means that the property declarations of the
extended type can be thought of as preceding the properties of the extending
type. For example:

<shax:objectType name="e:FlightBookingType" extends"e:BookingType">
 <e:OperatingAirline card="+" type="e:AirlineType"/>
</shax:objectType>

A property declaration may also be a reference to a globally defined property.
Reference is implicit, recognized by the absence of a @type attribute. The object or
data type of the property is specified by the referenced property declaration:

<shax:objectType name="e:FlightBookingType" extends"e:BookingType">
 <e:OperatingAirline card="+"/>
</shax:objectType>
 …
<shax:property name="e:OperatingAirline" type="e:AirlineType"/>

Note that property references can be used for defining extension points, descri-
bed below. An object model may include choices of properties, represented by a
shax:choice element with one child element per alternative. An alternative is
either a single property or a group of properties (wrapped in a shax:pgroup ele-
ment). Choices can be nested. For example:

<shax:choice>
 <e:PassportNumber type="xsd:string"/>
 <shax:pgroup>
 <e:LoyaltyProgramCode type="e:LoyaltyProgramCodeType"/>
 <shax:choice>
 <e:LoyaltyProgramMemberID type="xsd:integer"/>

Combining graph and tree

121

 <e:PreliminaryMemberID type="xsd:string"/>
 <shax:choice>
 </shax:pgroup>
</shax:choice>

7.3. Element shax:property
A shax:property element defines a property in a global way, independent of the
object type which uses it. The declaration specifies a property name (@name) and
a value type (@type), which is the IRI of an object or data type. An optional @sub-
stitutes attribute specifies the names of one or more (global) properties which the
given property may substitute. This means that references to the specified proper-
ties are also matched by properties adhering to the substituting property declara-
tion. Note the constraint that the substituting property declaration must have a
type which extends or restricts the types of all substitutable property declara-
tions.

Substitution can be used to define extension points, a property representing a
logical choice between the property itself and all other property declarations that
are able to substitute it. For example:

<shax:objectType name="e:FlightBookingType" extends"e:BookingType">
 <e:Airline card="+"/>
</shax:objectType>
 …
<shax:property name="e:Airline" type="e:AirlineType"/>
<shax:property name="e:OperatingAirline" type="e:AirlineType"
 substitutes="e:Airline"/>
<shax:property name="e:MarketingAirline" type="e:MarketingAirlineType"
 substitutes="e:Airline"/>
 …
<shax:objectType name="e:MarketingAirlineType" extends="e:AirlineType">…

7.4. Element shax:dataType
A data type is a set of constraints applicable to data values. The concept of a data
type follows the approach taken by XSD:
• A data type is either atomic, or a list type, or a union type
• An atomic type associates a base type with constraints, called facets
• A list type describes an ordered sequence of atomic items (in RDF represented

as rdf:List)
• A union type is defined as a choice between two or more data types
A data type is represented by a shax:dataType element. An atomic type has a
@base attribute specifying the base type, and most facets are specified by attrib-
utes (@pattern, @len, @minLen, @maxLen, @min, @minEx, @max, @maxEx). The

Combining graph and tree

122

enumeration facet, which specifies a list of all possible values, is represented by
shax:value child elements. Examples:

<shax:dataType name="e:AirlineCodeType"
 base="xsd:string" pattern="^[A-Z]{2}$"/>

<shax:dataType name="e:GenderType" base="xsd:string">
 <shax:value>male</shax:value>
 <shax:value>female</shax:value>
</shax:dataType/>

A list type definition specifies the item type with an @itemType attribute; optional
@minSize, @maxSize and @size attributes constrain the number of list items. A
union type definition specifies the alternative types with a @memberTypes attrib-
ute. Examples:

<shax:dataType name="e:AirlineCodesType"
 itemType="xsd:AirlineCodeType"
 minSize="1">

<shax:dataType name="e:ExtendedCurrencyType"
 memberTypes="xsd:CurrencyCodeType xsd:int">

8. Translation into concrete data modeling languages
SHAX can be used for constructing abstract data models – models defining struc-
tures of information content, but not prescribing the data format of concrete rep-
resentations. In order to allow validation of data against a SHAX model, data can
be represented in different formats:
• RDF (any serialization)
• XML
• JSON
For each of these formats, a SHAX model can be translated into an appropriate
data validation language (SHACL, XSD, JSON Schema). Note that these transla-
tions may involve a certain loss of information. The sequence of properties, for
example, is not preserved when translating into JSON Schema, and when trans-
lating into SHACL, although it is preserved as information (using sh:order), it
loses its impact on validation. Another example is property pair constraints (e.g.
@shax:lessThan) which are only preserved when translating into SHACL.

8.1. SHAX into SHACL
The translation into a SHACL model can be performed in two different styles.
These styles are similar to the XSD styles using only global types (“flat” style) or
only local types (“deep” style):

Combining graph and tree

123

• Flat – every SHAX type reference (@type) is translated into a sh:node con-
straint

• Deep – every SHAX type reference is replaced by the constraints defined by
the referenced type

The flat style ensures a well-modularized SHACL model. A disadvantage con-
cerns the error messages in case of validation errors, which are less specific. Mes-
sages from flat/deep SHACL:

sh:resultMessage "Value does not have shape e:BookingIDType" ;
sh:resultMessage "Value has less than 12 characters" ;

8.2. SHAX into XSD

The XSD(s) obtained from a SHAX model describe XML documents which are a
canonical representation of a model instance. The definition of this representation
(not formally specified here) has been inspired by the definition of XML/RDF
equivalence described in the NIEM Naming and Design Rules ([4], section 5.6).
Key points are the mapping of property IRIs to element names and the represen-
tation of resource IRIs by dedicated attributes (@shax:IRI). The following listing
shows an XML representation of the RDF data shown above (Model instance,
RDF).

<e:FlightBooking xmlns:shax="http://shax.org/ns/model"
 xmlns:e="http://example.org/ns/model"
 xmlns:o="http://example.org/ns/objects"
 shax:IRI="o:FB101">
 <e:BookingID>123456789XYZ</e:BookingID>
 <e:BookingDate>2017-12-31</e:BookingDate>
 <e:OperatingAirline shax:IRI="o:AL901">
 <e:AirlineCode>LH</e:AirlineCode>
 <e:AirlineName>Lufthansa</e:AirlineName>
 </e:OperatingAirline>
 <e:OperatingAirline shax:IRI="o:AL902">
 <e:AirlineCode>KL</e:AirlineCode>
 <e:AirlineName>KLM - Royal Dutch Airlines</e:AirlineName>
 </e:OperatingAirline>
 <e:Customer>
 <e:LastName>Perez</e:LastName>
 <e:FirstName>Deborah</e:FirstName>
 <e:LoyaltyProgramCode>800</e:LoyaltyProgramCode>
 <e:LoyaltyProgramMemberID>81557</e:LoyaltyProgramMemberID>
 </e:Customer>
</e:FlightBooking>

The translation of SHAX into XSD is straightforward:

Combining graph and tree

124

• shax:dataType is translated into xs:simpleType
• shax:objectType is translated into xs:complexType
• shax:property is translated into xs:element, which is top-level
• Property elements are translated into xs:element defined within complex

type definitions; the element declaration has an @type or @ref attribute,
dependent on whether or not the property element has a @type attribute

See appendix (Appendix B) for a listing of the XSD obtained for the SHAX model
described above (SHAX model example).

8.3. SHAX into JSON Schema
The JSON Schema obtained describes JSON documents which are a straightfor-
ward representation of a model instance. A somewhat primitive style is assumed
which ignores namespaces and uses only local names. Investigation of an
advanced representation model using JSON-LD is a work in progress. See appen-
dix (Appendix C) for the JSON Schema obtained from the SHAX model described
above (SHAX model example).

9. SHAX - implementation
A SHAX processor accomplishes the translation of SHAX models into SHACL,
XSD and JSON Schema models. An implementation of a SHAX processor is avail-
able on github (https://github.com/hrennau/shax). The processor is provided
as a command line tool. Example calls:

shax shacl?shax=airportSystem.shax
shax xsd?shax=airportSystem.shax
shax jschema?shax=airportSystem.shax

10. Prospect: SHAX for RDF-XML integration
Any transformation of RDF data into XML documents can be accomplished by
custom code. However, in situations where source and/or target data are descri-
bed by data models, it would be unsatisfactory if custom code were the only
option. A model-driven alternative might define a way how available descrip-
tions of source or target structures can control the transformation and thus signif-
icantly reduce the effort. A detailed investigation of such possibilities is beyond
the scope of this paper, but an example is sketched. The general goal is to enable
transformation implemented in a declarative way, that is, modeling the transfor-
mation, rather than coding it.

A transformation of RDF data into an XML representation might be defined in
terms of an EFRUG model, which expresses transformation as the successive
application of operations to RDF source data. The operations have a generic defi-

Combining graph and tree

125

nition and respond to model facts in a configurable way. Starting with a root
resource to be transformed …
• EF – expand and filter the resource properties recursively, ignoring irrelevant

properties and expanding object property values by a nested representation of
their own property values

• R – rename the properties, starting with a canonical translation into a quali-
fied name and replacing those qualified names which are not satisfactory

• U – unwrap nodes, removing inner nodes and connecting their parent nodes
to their child nodes, where simplification is desirable

• G – group nodes by introducing intermediate nodes which wrap subsets of
related siblings, where additional structure is desirable

Note that the key step is a filtered iteration over properties, combined with recur-
sive expansion of object properties. It is easy to implement such an iteration,
given a graph model expressed in SHAX, and it should not be difficult to render
the filtering configurable, perhaps using whitelists and blacklists of regular
expressions.

11. Discussion
The SHAX language as described in this paper is only a preliminary version serv-
ing as a proof of concept. It focuses on a subset of the SHACL language which
enables the definition of a traditional object type system, as this subset is key for
aligning RDF models and tree models like XSD. Future work should strive for a
steady increase of the supported capabilities of SHACL. It is to be hoped that the
simplicity and clarity of the SHAX language will be preserved in the process.

We regard the SHACL language as an important advance, which makes the
introduction of an abstract data modeling language possible – a language capable
of describing graph and tree encoded information. Key aspects of this language
are the definition of equivalence between RDF and non-RDF representations, and
the transformation of the abstract model into concrete, validating models for each
major representation language.

The greatest problem ahead may not be a technical one, but a cultural one: to
arouse in both communities, RDF and XML, an awareness of how complemen-
tary their technologies are, of how incomplete they are without each other.

A. SHACL model obtained from SHAX
The following listing shows the result of translating a SHAX model into SHACL.

Tip: You can experiment with this model here: http://shacl.org
• SHAX source model - see: SHAX model example

Combining graph and tree

126

• Model instance, RDF - see: Model instance, RDF

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
@prefix e: <http://example.org/ns/model#> .

object types
============
e:FlightBookingType
 a sh:NodeShape ;
 sh:targetClass e:FlightBooking ;
 sh:property [
 sh:path e:BookingID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:BookingIDType ;
] ;
 sh:property [
 sh:path e:BookingDate ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:date ;
] ;
 sh:property [
 sh:path e:BookingChannel ;
 sh:maxCount 1 ;
 sh:datatype xsd:integer ;
] ;
 sh:property [
 sh:path e:OperatingAirline ;
 sh:minCount 1 ;
 sh:node e:AirlineType ;
] ;
 sh:property [
 sh:path e:Customer ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:CustomerType ;
] .

e:AirlineType
 a sh:NodeShape ;
 sh:targetClass e:Airline ;
 sh:property [
 sh:path e:AirlineCode ;

Combining graph and tree

127

 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:AirlineCodeType ;
] ;
 sh:property [
 sh:path e:AirlineName ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
] .

e:CustomerType
 a sh:NodeShape ;
 sh:targetClass e:Customer ;
 sh:property [
 sh:path e:LastName ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xs:string ;
] ;
 sh:property [
 sh:path e:FirstName ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xs:string ;
] ;
 sh:xone (
 [
 a sh:NodeShape ;
 sh:not
 [
 a sh:NodeShape ;
 sh:or (
 [
 sh:path e:LoyaltyProgramCode ;
 sh:minCount 1 ;
]
 [
 sh:path e:LoyaltyProgramMemberID ;
 sh:minCount 1 ;
]
) ;
] ;
 sh:property [
 sh:path e:PassportNumber ;
 sh:minCount 1 ;
 sh:maxCount 1 ;

Combining graph and tree

128

 sh:datatype xsd:string ;
] ;
]
 [
 a sh:NodeShape ;
 sh:not
 [
 sh:path e:PassportNumber ;
 sh:minCount 1 ;
] ;
 sh:property [
 sh:path e:LoyaltyProgramCode ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:node e:LoyaltyProgramCodeType ;
] ;
 sh:property [
 sh:path e:LoyaltyProgramMemberID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:integer ;
] ;
]
) .

data types
==========
e:BookingIDType
 a sh:NodeShape ;
 sh:datatype xsd:string ;
 sh:minLength 12 ;
 sh:maxLength 40 .

e:AirlineCodeType
 a sh:NodeShape ;
 sh:datatype xsd:string ;
 sh:pattern "^[A-Z]{2}$" .

e:LoyaltyProgramCodeType
 a sh:NodeShape ;
 sh:datatype xsd:integer ;
 sh:minInclusive 1 ;
 sh:maxInclusive 999 .

B. XSD model obtained from SHAX
The following listing shows the result of translating a SHAX model into XSD.

Combining graph and tree

129

• SHAX source model - see: SHAX model example
• Model instance, RDF - see: Model instance, RDF
• Model instance, XML - see: Model instance, XML

<xs:schema xmlns:shax="http://shax.org/ns/model"
 xmlns:e="http://example.org/ns/model"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.org/ns/model"
 elementFormDefault="qualified">
 <xs:import namespace="http://shax.org/ns/model"
 schemaLocation="shax.xsd"/>
 <xs:element name="FlightBooking" type="e:FlightBookingType"/>
 <xs:complexType name="FlightBookingType">
 <xs:complexContent>
 <xs:extension base="shax:objectBaseType">
 <xs:sequence>
 <xs:element name="BookingID" type="e:BookingIDType"/>
 <xs:element name="BookingDate" type="xs:date"/>
 <xs:element name="BookingChannel" minOccurs="0"
 type="xs:integer"/>
 <xs:element name="OperatingAirline" maxOccurs="unbounded"
 type="e:AirlineType"/>
 <xs:element name="Customer" type="e:CustomerType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="AirlineType">
 <xs:complexContent>
 <xs:extension base="shax:objectBaseType">
 <xs:sequence>
 <xs:element name="AirlineCode" type="e:AirlineCodeType"/>
 <xs:element name="AirlineName" minOccurs="0" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="CustomerType">
 <xs:complexContent>
 <xs:extension base="shax:objectBaseType">
 <xs:sequence>
 <xs:element name="LastName" type="xs:string"/>
 <xs:element name="FirstName" type="xs:string"/>
 <xs:choice>
 <xs:element name="PassportNumber" type="xs:string"/>
 <xs:sequence>
 <xs:element name="LoyaltyProgramCode"

Combining graph and tree

130

 type="e:LoyaltyProgramCodeType"/>
 <xs:element name="LoyaltyProgramMemberID"
 type="xs:integer"/>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="BookingIDType">
 <xs:restriction base="xs:string">
 <xs:minLength value="12"/>
 <xs:maxLength value="40"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="AirlineCodeType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[A-Z]{2}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="LoyaltyProgramCodeType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="999"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

C. JSON Schema model obtained from SHAX
The following listing shows the result of translating a SHAX model into JSON
schema.

Tip: You can experiment with this schema here: https://
www.jsonschemavalidator.net/
• SHAX source model - see: SHAX model example
• Model instance, RDF - see: Model instance, RDF

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "type":"object",
 "properties":{
 "FlightBooking":{
 "type":"object",
 "properties":{
 "IRI":{

Combining graph and tree

131

https://www.jsonschemavalidator.net/
https://www.jsonschemavalidator.net/

 "$ref":"#/definitions/xs:anyURI"
 },
 "BookingID":{
 "$ref":"#/definitions/a:BookingIDType"
 },
 "BookingDate":{
 "$ref":"#/definitions/xs:date"
 },
 "BookingChannel":{
 "$ref":"#/definitions/xs:integer"
 },
 "OperatingAirline":{
 "type":"array",
 "minItems":1,
 "maxItems":999,
 "items":{
 "type":"object",
 "properties":{
 "IRI":{
 "$ref":"#/definitions/xs:anyURI"
 },
 "AirlineCode":{
 "$ref":"#/definitions/a:AirlineCodeType"
 },
 "AirlineName":{
 "$ref":"#/definitions/xs:string"
 }
 },
 "additionalProperties":false
 }
 },
 "Customer":{
 "type":"object",
 "properties":{
 "IRI":{
 "$ref":"#/definitions/xs:anyURI"
 },
 "LastName":{
 "$ref":"#/definitions/xs:string"
 },
 "FirstName":{
 "$ref":"#/definitions/xs:string"
 },
 "PassportNumber":{
 "$ref":"#/definitions/xs:string"
 },

Combining graph and tree

132

 "LoyaltyProgramCode":{
 "$ref":"#/definitions/a:LoyaltyProgramCodeType"
 },
 "LoyaltyProgramMemberID":{
 "$ref":"#/definitions/xs:integer"
 }
 },
 "additionalProperties":false,
 "required":[
 "LastName",
 "FirstName"
],
 "oneOf":[
 {
 "required":[
 "PassportNumber"
]
 },
 {
 "required":[
 "LoyaltyProgramCode",
 "LoyaltyProgramMemberID"
]
 }
]
 }
 },
 "additionalProperties":false,
 "required":[
 "BookingID",
 "BookingDate",
 "OperatingAirline",
 "Customer"
]
 }
 },
 "definitions":{
 "a:AirlineCodeType":{
 "type":"string",
 "pattern":"^[A-Z]{2}$"
 },
 "a:BookingIDType":{
 "type":"string",
 "minLength":12,
 "maxLength":40
 },

Combining graph and tree

133

 "a:LoyaltyProgramCodeType":{
 "type":"integer",
 "minimum":1,
 "maximum":999
 },
 "xs:anyURI":{
 "type":"string"
 },
 "xs:date":{
 "type":"string"
 },
 "xs:integer":{
 "type":"integer"
 },
 "xs:string":{
 "type":"string"
 }
 }
}

Bibliography
[1] GraphQL. 2017. Facebook Inc.. http://graphql.org/
[2] Java Architecture for XML Binding (JAXB). 2017. Java Community Process.

https://jcp.org/en/jsr/detail?id=222
[3] JSON Schema Validation: A Vocabulary for Structural Validation of JSON. 2017.

Internet Engineering Task Force. http://json-schema.org/latest/json-
schema-validation.html

[4] National Information Exchange Model Naming and Design Rules (Version 4.0). 2017.
NIEM Program Management Office (PMO). https://reference.niem.gov/
niem/specification/naming-and-design-rules/4.0rc1/niem-
ndr-4.0rc1.html

[5] OWL 2 Web Ontology Language Primer (Second Edition). 2012. World Wide Web
Consortium (W3C). https://www.w3.org/TR/owl2-primer/

[6] OWL 2 Web Ontology Language Quick Reference Guide (Second Edition). 2012.
World Wide Web Consortium (W3C). https://www.w3.org/TR/owl-quick-
reference/

[7] RDF 1.1 Concepts and Abstract Syntax. 2014. World Wide Web Consortium
(W3C). https://www.w3.org/TR/rdf11-concepts/

[8] RDF 1.1 Primer. 2014. World Wide Web Consortium (W3C). https://
www.w3.org/TR/rdf11-primer/

Combining graph and tree

134

[9] RDF Schema 1.1. 2014. World Wide Web Consortium (W3C). https://
www.w3.org/TR/rdf-schema/

[10] Shapes Constraint Language (SHACL). 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/shacl/

[11] SHACL Advanced Features. 2017. World Wide Web Consortium (W3C).
https://www.w3.org/TR/shacl-af/

[12] SHACL JavaScript Extensions. 2017. World Wide Web Consortium (W3C).
https://www.w3.org/TR/shacl-js/

[13] SHACL and OWL Compared. Holger Knublauch. 2017. World Wide Web
Consortium (W3C). https://www.w3.org/TR/shacl-js/

[14] A SHAX processor, transforming SHAX models into SHACL, XSD and JSON
Schema.. Hans-Juergen Rennau. 2018. https://github.com/hrennau/shax

[15] XQuery 3.1: An XML Query Language. 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/xquery-31/

[16] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. 2012.
World Wide Web Consortium (W3C). https://www.w3.org/TR/
xmlschema11-1/

[17] XSL Transformations (XSLT) Version 3.0. 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/xslt/

Combining graph and tree

135

136

SML – A simpler and shorter
representation of XML

Jean-François Larvoire
Hewlett Packard Enterprise
<jf.larvoire@hpe.com>

Abstract

When XML is used for encoding structured data, one of the things people
most often complain about is that XML is more verbose, and harder to read
by humans, than most alternatives. This may even cause some of them to
abandon XML altogether.

Many alternatives to XML have actually been designed to specifically
address this issue. Some are indeed better, being both simple and more pow-
erful. But I think that creating new standards for this reason is missing the
point. XML and JSON now dominate the structured data interchanges, and
they're not going to be displaced any time soon, even by better alternatives.

Instead, this paper proposes a Simplified representation of XML (SML
for short), that is strictly equivalent to XML. Strictly equivalent in the
sense that any XML file can be converted to SML, then back into XML, and
be binary equal to the initial file. And these SML data files are smaller, and
much easier to read and edit by mere humans.

A Tcl script called sml.tcl is available for easily testing that concept, by
converting files back and forth between the XML and SML formats. I've
been using it advantageously for several years as part of my job. Every time
I have to review an unknown XML file, I convert it to SML and open it in a
plain text editor. It's arguably even easier to read than JSON. Then, if
changes are needed, I make these changes in the SML text, and convert the
result back to XML.

Recently, I verified that the full libxml2 test suite can be successfully
converted to SML and back, with no change.

Also I'm working on a libxml2 fork that can parse both XML and SML,
and output either one at will. A demonstrator is available on GitHub,
including a C XML↔SML conversion program called x2s.exe that's 20
times faster than the Tcl script.

Other qualities:
- SML files are noticeably smaller than XML files. Using this format

directly for storage or data transfer protocols saves space and network band-

137

width. This does not require rewriting any XML data creation/consumption
routine, but just to insert XML↔SML conversion routines in the pipeline.

- SML is a nice format for serializing and reviewing small file system
trees contents, for example the Linux /proc/fs trees.

Limitations:
- The simplification is considerable for structured data trees, but less so

for mixed content cases, like in XHTML, DocBook, etc. Although all such
mixed files can also be successfully converted to SML and back, the SML
version may actually be more complex than the original XML. This is espe-
cially the case for XHTML files with markup peppered randomly all over the
text. On the other hand, well formatted DocBook converts rather well.

Note: I'm aware that another data format called SML was proposed in
1999. The proposal here has no relationship at all with the other one from
1999. If this homonymy proves to be a problem, I'm open to any suggestion
as to a better name.

Keywords: XML, SML, Markup, Serialization, Serialization formats

1. Introduction
I started thinking about alternative views into XML files many years ago because
of a personal itch: I needed to repeatedly tweak a complex XML configuration file
for a Linux Heartbeat cluster in the lab. No DTDs available. No specialized XML
editors installed on that machine. Editing the file using a plain text editor was
painful every time.

Why had it to be so? XML is a text format that was supposed to be designed
for easy manual edition by humans. And XML proponents actually list this fea-
ture as an advantage of XML. Yet XML tags are so verbose that it is a pain to man-
ually review and edit anything but trivial XML files. The numerous XML editors
available are a relief, but do not resolve the fundamental problem of XML verbo-
sity when it comes to simply reading the file. (Actually I think their very existence
is proof that XML has a problem!)

In the absence of a solution, I avoided using XML for my own projects as
much as I could, and kept looking at alternatives, in the hope that one of them
would eventually replace XML as the new data exchange standard.

1.1. Alternatives to XML

1.1.1. Distinct syntaxes

Many other people have complained about XML unfriendly syntax too, and
many have proposed alternatives. Simply search "XML alternatives" of the Web

SML – A simpler and shorter representation of XML

138

and you'll find plenty! (One of which was actually called SML too! No resem-
blance to this one).

A few important ones are:
• ASN.1 XER (XML Encoding Rules) [1] - ASN.1 is widely used in the telecom

industry. XER is ASN.1 converted to XML.
Pro: Powerful. XER documents compatible with XML document model.
Con: Complex. Simpler alternatives now widespread.

• JSON JavaScript Object Notation [4] - The most popular of the alternatives
now, by far.

Pro: Powerful and simple. Easy to use, with I/O libraries available for most
languages.

Con: Not adapted for mixed content cases.
• Google Protocol Buffers [8] - Used internally by Google for all structured data

transfers.
Pro: Simple syntax. Compiler for generating compact and fast binary

encodings for wire transfers.
Con: Even Google seems to prefer JSON for public end-user APIs.

And many other proposals [2], with varying levels of success. Old and new exam-
ples:
• YAML Ain't Markup Language [21] - A human readable serialization lan-

guage, inspired by Internet Mail syntax.
• {mark} [6] - A JSON+XML synthesis, announced in Jan. 2018.

Pro: A simple and very readable syntax. All JSON and XML features,
allowing to replace either without missing anything.

Con: Incompatible with both.

1.1.2. Subsets of XML

Others have also attempted to “fix” XML by keeping only a subset of XML. The
W3C themselves have made a such a proposal, called Simple XML [9]. The Wiki-
pedia page for that same (?) proposal [10]) goes much further, by abandoning
attributes. Although this does make the tree structure simpler, this definitely does
not make the document more readable. MicroXML [7] discussed further down is
also in this category, abandoning declarations and processing instructions.

1.2. Alternative representations of XML

1.2.1. Binary representation

Several groups have proposed binary representations of XML, including one that
has been officially endorsed by the W3C:

SML – A simpler and shorter representation of XML

139

• Efficient XML Interchange (EXI) Format 1.0 [3]
These methods address a different problem, which is finding the smallest and
most efficient way to transfer XML data. Yet they prove one thing, which is that
alternative representations of XML are possible and practical.

1.2.2. JSON representation

• MicroXML [7] - A subset of XML, that can be presented using a JSON syntax.
Pro: Brings attributes to standard JSON.
Con: The JSON version is longer than both SML and XML. No declarations

nor processing instructions.
• The XSLT xml-to-json function [19] is part of a scheme allowing to convert

JSON to a subset of XML, and that XML back to JSON. But it cannot convert
any XML, only an XML representation of JSON.

That XML-to-JSON back conversion can also be done using an XSLT style
sheet.

This XSLT json-to-xml and xml-to-json scheme is basically the inverse of
MicroXML:

Table 1.

MicroXML XML → JSON representation of XML → XML
XSLT

scheme
JSON → XML representation of JSON → JSON

Yet neither proposal can ensure full compatibility between JSON and XML.

1.3. Birth of the SML concept

At the same time I had these problems with the XML configuration files for
Heartbeat, I was writing Tcl scripts for managing Lustre file systems on that clus-
ter. The instances of my scripts on every node were exchanging increasingly big
Tcl structures (As strings, embedded in network packets), for synchronizing their
action. And I kept finding this both convenient, and easy to program and debug.
(i.e. Review the structures exchanged when something went wrong!)

And then I began to think that the two problems were linked: XML is nothing
more than a textual presentation of a structured tree of data. A Tcl program or a
Tcl data structure is also a textual presentation of a structured tree of data. And
the essence of XML is not its <tagged><blocks>, but rather its logical structure
with a tree of elements, attributes, and content blocks with other embedded ele-
ments inside. In other words its DOM (Document Object Model).

SML – A simpler and shorter representation of XML

140

All programs written in C, Java, Tcl, PHP, etc, share a common simple syntax
for representing program trees {based on {nested blocks} surrounded by paren-
theses}, which is much easier to read by humans than the <tagged><blocks> used
by XML</blocks></tagged>. The Tcl language has the simplest syntax in that fam-
ily, with a grammar with just a dozen rules, and punctuation marks optional in
simple cases. This makes it particularly easy to read and parse. And its one-
instruction-per-line standard (Like Python or Go) is a natural match to all canoni-
cally formatted XML data files with one element per line.

Instead of reinventing a new data structure presentation language, it should
be possible to convert XML into an equivalent Tcl-like format, while preserving
all the elements, attributes, and data structures.

This defined a new problem: Find a text format inspired by Tcl, which is sim-
pler than XML, yet is strictly equivalent to it. Equivalent in the mathematical
sense that any XML file can be converted to that simpler format, then back into
XML with no change whatsoever.

Non-goals: Do not try to generate valid Tcl syntax at all. The result is actually
incompatible with Tcl in general.

1.4. The SML Solution
Keep the XML DOM tree model with elements made of a tag, optional attributes,
and an optional data block, but use a simpler text representation based on the
syntax of the C family languages.

The basic idea is that XML and SML elements correspond to each other like
this:
• XML elements: <tag attribute="value" ...>contents</tag>
• SML elements: tag attribute="value" ... {contents}
But the devil lies in the details, and it took a while to find a set of rules that would
cover all XML syntax cases, allow fully reversible conversions, optimize the read-
ability of real-world files, and remain reasonably simple. After experimenting
with a number of alternatives, I arrived at the set of rules defined further down,
which give good results on real-world documents.

SML – A simpler and shorter representation of XML

141

Example 2. Another example in XSLT:

XSLT (from the XSLT 3.0 spec) SML (generated by the sml script)
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="3.0"
 expand-text="yes">

 <xsl:strip-space elements="PERSONAE"/>

 <xsl:template match="PERSONAE">
 <html>
 <head>
 <title>The Cast of {@PLAY}</title>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="TITLE">
 <h1>{.}</h1>
 </xsl:template>

 <xsl:template match="PERSONA">
 <p>{.}</p>
 </xsl:template>

</xsl:stylesheet>

xsl:stylesheet\
 xmlns:xsl="http://www.w3.org/1999/XSL/►
Transform"\
 version="3.0"\
 expand-text="yes" {

 xsl:strip-space elements="PERSONAE"

 xsl:template match="PERSONAE" {
 html {
 head {
 title "The Cast of {@PLAY}"
 }
 body {
 xsl:apply-templates
 }
 }
 }

 xsl:template match="TITLE" {
 h1 "{.}"
 }

 xsl:template match="PERSONA" {
 p {b "{.}"}
 }

}

Example 1. Example extracted from a Google Earth file:

XML (from a Google Earth .kml file) SML (generated by the sml script)
<?xml version="1.0" encoding="UTF-8"?>
<kml>
 <Folder>
 <name>Sites in the Alps</name>
 <open>1</open>
 <Folder>
 <name>Drome</name>
 <visibility>0</visibility>
 <Placemark>
 <description>Take off</description>
 <name>Mont Rachas</name>
 <LookAt>
 <longitude>5.0116666667</longitude>
 <latitude>44.8355</latitude>
 <range>4000</range>
 <tilt>45</tilt>
 <heading>0</heading>
 </LookAt>
 </Placemark>
 </Folder>
 </Folder>
</kml>

?xml version="1.0" encoding="UTF-8"
kml {
 Folder {
 name "Sites in the Alps"
 open 1
 Folder {
 name Drome
 visibility 0
 Placemark {
 description "Take off"
 name "Mont Rachas"
 LookAt {
 longitude 5.0116666667
 latitude 44.8355
 range 4000
 tilt 45
 heading 0
 }
 }
 }
 }
}

The difference in readability should be immediately obvious!

SML – A simpler and shorter representation of XML

142

Example 3. Another example in XML Schema:

Union datatype examp. (from the 1.1 spec) SML (generated by the sml script)
<attributeGroup name="occurs">
 <attribute name="minOccurs"
 type="nonNegativeInteger"
 use="optional" default="1"/>
 <attribute name="maxOccurs"
 use="optional" default="1">
 <simpleType>
 <union>
 <simpleType>
 <restriction base='nonNegativeInteger'/>
 </simpleType>
 <simpleType>
 <restriction base='string'>
 <enumeration value='unbounded'/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
</attributeGroup>

attributeGroup name="occurs" {
 attribute name="minOccurs"\
 type="nonNegativeInteger"\
 use="optional" default="1"
 attribute name="maxOccurs"\
 use="optional" default="1" {
 simpleType {
 union {
 simpleType {
 restriction base='nonNegativeInteger'
 }
 simpleType {
 restriction base='string' {
 enumeration value='unbounded'
 }
 }
 }
 }
 }
}

2. SML Syntax rules
(Note: This is not a BNF grammar, but rather a list of principles, that allow to suc-
cessfully convert XML ↔ SML.)

2.1. Elements
• Elements normally end at the end of the line.
• They continue on the next line if there's a trailing '\'.
• They also continue if there's an open "quotes" or {curly braces} block.
• Multiple elements on the same line must be separated by a ';'.

2.2. Attributes
• The syntax for attributes is the same as for XML. Including the rules for using

quotes and escape chars. (And so is different from SML's text elements quot-
ing syntax, which allows quoting any text with ' & ".)

• There must be at least one space between the last attribute and the beginning
of the content data.

2.3. Content data
• The content data are normally inside a {curly braces} block.
• The content text is between "quotes". Escape '\' and '"' with a '\'.

SML – A simpler and shorter representation of XML

143

• If there are no further child elements embedded in contents (i.e. it's only text),
the braces can be omitted.

• Furthermore, if the text does not contain blanks, '"', '=', ';', '#', '{', '}', '<', '>', nor a
trailing '\', the quotes around the text can be omitted too. (i.e. If the text can-
not be confused with an attribute or a comment or any kind of SML markup.)

2.4. Other types of markup
All use the same rules as the elements for juxtaposition and continuation.
• This is a ?Processing instruction . (The final '?' in XML is removed in SML.)
• This is a !Declaration . (Ex: a !doctype definition)
• This is a #-- Comment block, ending with two dashes -- .
• Simplified case for a # One-line comment .
• This is a <[[Cdata section]]> . An optional new line, immediately following

the opening <[[, is discarded if present.
• Non significant spaces in closing tags are noted with a second set of curly bra-

ces immediately following the content data block. Ex: tag {content}{ }.

2.5. Heuristics for XML↔SML conversion
• Spaces/tabs/new lines are preserved.
• The sml program adds one space after the end of the element definition (i.e.

after the last attribute and optional trailing spaces inside the element head),
before the beginning of the data block. This considerably improves the reada-
bility of the sml output. Then it removes it when converting SML back to
XML. An SML file is invalid without that space anyway.

• Empty data blocks (i.e. Blocks containing just spaces) encoding: Use {} for
multi-line blocks, and "" for single-line ones.

• Unquoted attribute values are accepted, in an attempt to be compatible with
HTML-style attributes, which do occur in poorly-written XML files.

2.6. Syntax rules discussion
XML files without mixed data usually contain a hierarchy of outer elements
embedded within each other with no text. Then the terminal elements (the inner-
most elements) contain just text.
• SML elements normally end at the end of the line. A natural match for canonically
formatted XML files, with one XML terminal element per line.

• They continue on the next line if there's a trailing '\'. Same rule as for Tcl, and
many other programming languages.

SML – A simpler and shorter representation of XML

144

• They also continue if there's an open "quotes" or {curly braces} block. This is a major
advantage of the Tcl syntax, allowing to minimize the syntactic glue charac-
ters.

• Multiple elements on the same line must be separated by a ';'. Again, the same as
Tcl.

• The syntax for attributes is the same as for XML: name="value" with value
between 'single' or "double" quotes, and using references (like & , < ,
> , ' , ") to escape the special characters in values. I considered
using Tcl's quoting rules instead. But this made the conversion program more
complex, and did not make the SML more readable. (Actually it made it less
readable, making it more difficult to read long lists of attributes.) Most real-
world attribute values will look exactly the same as the equivalent Tcl string
anyway. TDL [13] proposes an interesting alternative: Write attributes as func-
tions named options, with a dash: -name value Pro: Easier to parse in Tcl.
Con: Less intuitive to people who don't know Tcl. Con: Makes it more difficult
to deal with HTML-like attributes that have no value.

• The content data are normally inside a {curly braces} block. Braces in the content text
must be escaped by a '\'. Same as Tcl {blocks}. Works well for XML outer ele-
ments containing inner elements.

• If there are no further child elements embedded in contents (i.e. only text), the braces
can be omitted. A major readability improvement. The quoting rules for the text
ensure that the text content cannot be confused with an additional attribute.

• The quotes around text can be omitted if the text does not contain blanks, '"', '=', ';',
'#', '{', '}', '<', '>', nor a trailing '\', and if there are no other elements at the same
tree depth. (i.e. It cannot be confused with an attribute or a comment or any kind of
SML markup.) Maximizes readability by removing all extra characters around
simple values. Possible alternative: In the cases where text and elements are
mixed at the same tree depth (Like in XHTML, DocBook, etc), use a pseudo
element tag like !text or just @ (But not #text which would look like a com-
ment) to flag it. This would allow extending the SML syntax to support ele-
ment names with spaces. See the "show script" section below for a useful
application of that.

• This is a ?Processing instruction . This is a !Declaration . (Ex: A !doctype defini-
tion) Both are treated like XML empty elements, with a name beginning with
an '?' or a '!'. All contents are preserved, except for the final ?> and > respec-
tively. Add a '\' at the end of lines if the element continues on the following
lines.

• Simplified case for a # One-line comment . Same as for Tcl, and many other
scripting languages.

SML – A simpler and shorter representation of XML

145

• This is a #-- Comment block -- . I considered using other syntaxes, like <#
Multi-line comment #> in PowerShell. But this was barely more concise, and
this created problems to deal with the -- sequence in SML (not valid in an
XML comment), or the #> sequence in XML (not valid in an SML comment in
that case) In fine, the simplest was to stick to the -- delimiters like in XML.

• This is a <[[CDATA section]]> Like for comment blocks, sticking to the XML
termination sequence proved to be the easiest option. Any other type of
delimiter would have required complex escaping rules, in case that delimiter
appears in the CDATA itself. The possibility of having adjacent CDATA sec-
tions would have made these rules even more complex. By symmetry, I used
<[[for the opening sequence. Note that the CDATA]]> end markers cannot
be confused with the]]> end markers at the end of some complex !declara-
tions, because those ones become]] after the final '>' is removed in SML. An
optional new line, immediately following the opening <[[, is discarded. This makes it
easy to view multiple lines of CDATA. The first line will begin on the first col-
umn, like all the others. Gotcha: That additional new line must be inserted if
the CDATA begins with an initial new line. Else the initial new line would be
lost during the conversion back to XML. Possible alternative: I experimented
with simpler alternatives in other programs. One is the indented block, used
in the show.tcl script described further down:

Preceding content{
 This is a sample CDATA with an XML <tag>
}Following content

Here, the rule is that all CDATA block contents are indented by two more
spaces than the previous line. The first '}' at the same indentation as the open-
ing '{' sign marks the end the CDATA. The CDATA begins after the new line
following the opening '{' (So this new line is not optional here), and ends
before the final new line before the closing '}'. Pro: More lightweight syntax,
more in the spirit of Tcl. Pro: Looks better in deep trees, as multi-line CDATA
blocks are indented like the rest. Con: Adds numerous spaces, and makes the
CDATA block weight more in bytes. Con: Made the sml conversion program
more complex and slower. Variation on the same theme: Particular case of a
CDATA section that makes up the whole content of an element: Instead of
encoding this content block with double parenthesis {{\n CDATA\n}}, it'd be
written ={\n CDATA\n}

3. SML characteristics

3.1. SML files size
An interesting side benefit of the conversion is that the total size of the converted
files is 12% smaller than the original XML files. (Tested on a 1MB set of real files

SML – A simpler and shorter representation of XML

146

gathered at work.) Among big files, that reduction goes from 4% for a file with
lots of large CDATA elements, to 17% for a file with deeply nested elements.

Even after zipping the two full sets of samples, the SML files archive is 2%
smaller than the XML files archive. Not much I admit, but this would help Micro-
soft alleviate the Office documents bloat. ☺

As for XML compression, many dedicated compressors are available (Ex: [14],
[18]). Obviously they give better results than SML. But just as obviously the com-
pressed files are unreadable by humans!

Reductions are much better on xml documents using name spaces. For exam-
ple on the sample SOAP envelope from the SOAP 1.2 specification, the gain is
30%. Transporting SOAP messages in their SML form instead of XML would
yield huge network bandwidth gains! (In case somebody wants to revive SOAP!
☺)

3.2. Effect on mixed content

As mentioned already, mixed content files can be successfully converted to SML
and back. But when there's a mix of text and markup on the same line the SML
version is not much simpler to read than the XML one.

Example 4. In a simple XHTML example…

Formatted
text

A line of text with bold and bold+italic parts. Size

XHTML <p>A line of text with bold and <i>bold+italic</i>
parts.</p>

68

SML p {"A line of text with"; b {"bold and"; i bold+italic}; "parts"} 65

… the SML version is indeed a bit shorter. Yet I find it already more difficult to
understand than the original XML.

Example 5. But with a little more complex text and formatting …

Formatted
text

By definition, "1mm = 1000µm." Size

XHTML <p style="color:blue">By definition, "1mm =
1000µm."</p>

69

SML p style="color:blue" {"By definition, \"";b "1mm =
1000µm.";"\""}

71

SML – A simpler and shorter representation of XML

147

… the SML size is actually longer (71 characters instead of 69 for the XML), and
the SML quoting rules become confusing, to the point of making it hard for
humans to distinguish the text, markup, and attributes.

With even more complex mixed content XML, the tendency continues, and SML
becomes ever bigger and harder to read for humans.

On the other hand, when the mixed content is formatted and indented as can-
onic XML (with at most one element per line), then the conversion yields rela-
tively simple SML, with a significantly smaller size. For example, at some stage,
this very article was saved as a 64,309 bytes DocBook XML file. Then sml.tcl could
convert this XML to a 59,422 bytes SML file, still very agreeable to read.

3.3. Comparison with other data serialization formats
(Note: The two columns may overflow when printed. Best viewed on screen as
HTML.)

3.3.1. SML versus XML

SML XML
root {
 # One-line comment
 #-- Long comment
 spanning 2 lines --
 empty
 number type="real" 3.14
 word yes
 sentence "Hello XML world"
 sub1 {"with mixed text"
 sub2 "and inner elements"
 "and" ;sub3; ;sub4 more
 }
 <[[SML <==> XML]]>
}

<root>
 <!-- One-line comment -->
 <!-- Long comment
 spanning 2 lines -->
 <empty/>
 <number type="real">3.14</number>
 <word>yes</word>
 <sentence>Hello XML world</sentence>
 <sub1>with mixed text
 <sub2>and inner elements</sub2>
 and <sub3/> <sub4>more</sub4>
 </sub1>
 <![CDATA[SML <==> XML]]>
</root>

SML – A simpler and shorter representation of XML

148

3.3.2. SML versus MicroXML presented as JSON

SML MicroXML presented as JSON
root {
 # One-line comment
 #-- Long comment
 spanning 2 lines --
 empty
 number type="real" 3.14
 word yes
 sentence "Hello XML world"
 sub1 {"with mixed text"
 sub2 "and inner elements"
 "and" ;sub3; ;sub4 more
 }
 <[[SML <==> XML]]>
}

["root", {}, [

 (Note: There are no comments in JSON)

 ["empty", {}, []],
 ["number", {"type":"real"}, ["3.14"]],
 ["word", {}, ["yes"]],
 ["sentence", {}, ["Hello XML world"]],
 ["sub1", {}, ["with mixed text",
 ["sub2", {}, ["and inner elements"]],
 "and", ["sub3", {}, []], ["sub4", ►
{}, ["more"]]
]],
 " SML <==> XML "
]]

3.3.3. SML versus {mark}

SML {mark}
root {
 # One-line comment
 #-- Long comment
 spanning 2 lines --
 empty
 number type="real" 3.14
 word yes
 sentence "Hello XML world"
 sub1 {"with mixed text"
 sub2 "and inner elements"
 "and" ;sub3; ;sub4 more
 }
 <[[SML <==> XML]]>
}

{root
 // One-line comment
 /* Long comment
 spanning 2 lines */
 {empty}
 {number type:"real" 3.14}
 {word "yes"}
 {sentence "Hello XML world"}
 {sub1 "with mixed text"
 {sub2 "and inner elements"}
 "and" {sub3} {sub4 "more"}
 }
 " SML <==> XML "
}

4. The sml.tcl conversion script

4.1. Presentation
A well tested XML↔SML conversion program, called sml.tcl, is open-sourced
and available at the URL: https://​github.com/​JFLarvoire/​SysToolsLib/​blob/​master/
Tcl/​sml.tcl

It works in any system with a Tcl interpreter. (Standard in Linux: Just rename
the script as sml and make it executable. In Windows, a free Tcl interpreter is
available at http://​www.activestate.com/​activetcl ; For recommendations on how

SML – A simpler and shorter representation of XML

149

https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/sml.tcl
https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/sml.tcl
http://www.activestate.com/activetcl

to best configure it, see https://​github.com/​JFLarvoire/​SysToolsLib/​tree/​master/
Tcl.)

It is able to convert any XML file to SML, then back into XML, with the final
XML files binary equal to the originals. The script is usable in a pipe. It auto-
detects if the input is XML or SML, and outputs the other representation. Use sml
-? or sml –h to display the help screen.

A simple glance at the contents of the SML files will show, as in the Google
Earth example above, that the “useful” information is much easier to find. The
eye is not distracted anymore by the noise of useless end tags and brackets.

4.2. Test methodology
I've first tested it on a large number of sample XML files from various sources at
work, totaling about 1 MB.

And of course I've been using it regularly for several years.
More recently, I've tested it successfully with all the libxml2 (http://

xmlsoft.org/) test cases. The only exceptions are the test files encoded in exotic
(for me) text encodings like EBCDIC or UTF-16. This is a limitation of the sml.tcl
script, but in no way a limitation of the SML syntax. The script works fine with
ASCII and UTF-8, and I don't plan to add support for anything else.

In both cases the testing relies on a self-test routine in the script, triggered by
using the sml -t option.

sml -t converts all files of types {*.xml *.xhtml *.xsl *.xsd *.xaml *.kml *.gml}
in the current directory to sml, then converts the sml file to xml, then compares
each final xml file to the initial one. Any problem during one of the conversions,
or if the final file does not match byte-for-byte the initial one, is reported. And in
the end it displays statistics about the number of files tested, etc.

There's an option to change the list of file types to test, if desired.
sml -t -r does the same recursively in all subdirectories.

4.3. Performance
The file has about 3000 lines of code, half of which are an independent debugging
library.

The only issue is performance: It converts about 10 KB/s of data on a 2 GHz
machine. This is perfectly fine for small XML files, but can be cumbersome with
very large files. Rewriting it in C and optimizing the lowest I/O routines should
be able to increase performance by orders of magnitude. I've begun to do that
with the libxml2 library.

SML – A simpler and shorter representation of XML

150

https://github.com/JFLarvoire/SysToolsLib/tree/master/Tcl
https://github.com/JFLarvoire/SysToolsLib/tree/master/Tcl
http://xmlsoft.org/
http://xmlsoft.org/

4.4. Known limitations

• As explained above, only ASCII (+ 8-bit supersets) and UTF8 text encodings
are supported now.

• The converted files use the local operating system line endings (\n or \r or \r
\n). So if the initial XML file was encoded with line endings for another oper-
ating system, converting it to SML then back will not be binary equal to the
initial file. But it will still be logically equal, as the XML spec states that all line
endings are equivalent to \n.

5. Support for SML in the libxml2 library

5.1. Presentation

I started work on a fork of the libxml2 library that can parse both XML and SML,
and optionally output SML.

This fork is available on GitHub at https://​github.com/​JFLarvoire/​libxml2.
Note that this is still a demonstrator with limited capabilities:

• It can parse well formed SML, but not yet declarations, processing instruc-
tions, etc. (Hopefully done by February)

• It can save DOM trees as SML. But it cannot yet write SML directly using the
write APIs. Nor can it save HTML documents as SML.

• I have not tested any of the SAX APIs, so they probably do not work for SML.
• Of course all XML parsing, processing, and output capabilities are unchanged.
• A program called x2s.c reads either XML or SML, and outputs the other one.
Thanks to the equivalence between XML and SML, the changes are very small rel-
ative to the (huge) size of the library. Also note that half of the changes are
actually debug instrumentation, which do not need to be retained in the final ver-
sion.

Preliminary results show that x2s.exe is about 20 times faster than sml.tcl for
converting large XML files to SML.

5.2. Non binary-reversibility

One noticeable result is that x2s.exe cannot convert XML files to SML, then back to
XML, and yield files that are binary identical to the original one in all cases like
sml.tcl does. This is due to a limitation of the libxml2 design, which does not
record non-significant white spaces in markup. To allow binary compatibility,
we'd need to add an option to parse a new kind of DOM node, recording that
kind of non-significant spaces.

SML – A simpler and shorter representation of XML

151

https://github.com/JFLarvoire/libxml2

5.3. Issues with the xmlWriter APIs

I've started work on the xmlWriter module, and found one limitation: It will not
always generate optimal SML (that is remove the {} or "" when possible) due to
limitations of the current API. The reason is that the write APIs separate the
opening of an element, the generation of its content, and the closing of the ele-
ment. (Except for the special case of an empty element.) This does not allow to
know when an element is opened if it'll contain just text (allowing to avoid using
{}), or sub-elements (requiring the use of {}).

I see two ways to work around that limitation (actually not mutually exclu-
sive):

• Add a new API function xmlTextWriterWriteElementAndItsText (+the Format
and VFormat variants) Advantage: This would be usable with both XML and
SML, and fix common cases. Drawback: This would still not fix the case of ele-
ments having attributes, etc. We'd need many new functions to cover all cases.

• Cache every new element in a temporary DOM sub-tree, then once complete,
write that sub-tree. Advantage: This fixes all cases without requiring any
change to the write API. Drawback: We lose the performance advantage of the
write APIs.

6. Other scripts

6.1. The show script

This script allows serializing a whole file system tree as SML (And thus indirectly
as XML).

Open-sourced and available at: https://​github.com/​JFLarvoire/​SysToolsLib/
blob/​master/​Tcl/​show.tcl

The principle is that each file or directory is an SML element. Directories con-
tain inner elements that represent files and subdirectories. File contents are dis-
played as text if possible, else are dumped in hexadecimal.

It also has options for generating several alternative experimental SML for-
mats, which have helped convince me which was the most readable solution.

The show script has two major modes of operation:

• A simplified mode, which is not fully SML-compatible, but produces the
shortest output, easiest to read. (This is the default mode of operation)

This mode is particularly convenient for reviewing the content of Linux
virtual file systems, like /proc/fs.

• A strict mode, which produces a fully SML-compatible output, at the cost of a
heavier output.

SML – A simpler and shorter representation of XML

152

https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/show.tcl
https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/show.tcl

The textual output can be (in theory) used to recreate the complete file sys-
tem.

6.2. The spath script
This script does not exist, but this section is a thought experiment that gives some
insight on the power of the SML concept.

Think of this as the reverse of the previous section: show.tcl was showing a file
system as an XML text tree; here we're going to manage an SML or XML text tree
as a file system.

I had made another script called xpath.tcl3, which makes it easy to use XPATH
to view the contents of XML files, or extract data from them. This script does
nothing fancy. All it does is to pretend the XML file represents a file system, and
allow accessing its contents using Unix-style commands like cat or ls. XML ele-
ments are considered as directories, and attributes as files. The content data for a
terminal element is considered as an unnamed file. Examples:

xpath sites.kml ls /kml/Folder/Folder
lists all inner elements as directories, and attributes as files.
xpath sites.kml cat /kml/Folder/Folder/name
Displays attribute values, or the text content for elements. Here it outputs

"Drome".
The idea here is to write an spath.tcl script that does the same for SML data

instead of XML.
Supporting all features of XPATH would be difficult, as xpath.tcl uses Tcl's

TclDOM package to do the real work with XPATH transforms. But in the short
term, it's possible to get the same functionality using a one-line spath shell script:

sml | xpath %* (%* for Windows cmd, or $* for Unix bash)
1) This example shows the power of having a data format that is equivalent to

XML.
2) Notice how this works nicely with the output of the show.tcl script above

running in simplified mode: show.tcl captures the contents of a real file system,
where files are normally displayed with the cat PATHNAME command. Then spath
allows extracting the contents of individual files from that SML file using spath
cat PATHNAME. The PATHNAME is the same. Gotcha: Unfortunately this does not
work with file names that are not XML tag compliant, for example if they contain
spaces, or begin with a digit, etc. A possible addition to XML 2.0 maybe? ☺

7. Next Steps
• Call to action: Download the tools, and try with them with your XML data.

Please send me (with [SML] in the email subject) feedback about the SML syn-

3 https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/xpath.tcl

SML – A simpler and shorter representation of XML

153

https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/xpath.tcl
https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/xpath.tcl

tax, and the possible alternatives. Is there any error or inconsistency that
remains, preventing full XML compatibility in some case? And please report
any problem with the tools themselves as issues in their respective GitHub
area.

• Continue work to improve SML parsing and generation as an option to the
libxml2 library, or any other similar XML management library. Anybody inter-
ested in participating?

• If interest grows, work with interested people to freeze a standard.
• Any project which stores data as XML files, even zipped like in MS Office, will

save space and increase ease of use by using the SML format instead. What
about yours?

• The savings potential is even better in XML-based network protocols, such as
SOAP. Adapting existing XML-based protocols to use SML instead is easy,
and will significantly increase bandwidth. Creating new ad hoc SML-based
protocols would be easy too, and packet analysis would be much easier!

• Any new project which does not know what data format to use, could get an
easy-to-use format by adopting this SML format, while ensuring compatibility
with XML-compatible-only tools, should the need arise.

Bibliography
[1] ITU XML encoding rules (XER) for ASN.1: http://asn1.elibel.tm.fr/xml/

xer.htm
[2] Wikipedia Comparison of data serialization formats: https://

en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
[3] W3C Efficient XML Interchange (EXI) Format 1.0 specification: https://

www.w3.org/TR/2014/REC-exi-20140211
[4] Introducing JSON (JavaScript Object Notation): https://www.json.org/, and

ECMA The JSON Data Interchange Syntax: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[5] J.F. Larvoire libxml2 fork supporting SML XML↔SML conversion script:
https://github.com/JFLarvoire/libxml2

[6] Henry Luo {mark} presentation: https://mark.js.org/
[7] W3C MicroXML Community Group: https://www.w3.org/community/

microxml/
[8] Google Protocol Buffers: https://developers.google.com/protocol-

buffers/, and Google Open Source Blog: http://google-
opensource.blogspot.fr/2008/07/protocol-buffers-googles-data.html

SML – A simpler and shorter representation of XML

154

http://asn1.elibel.tm.fr/xml/xer.htm
http://asn1.elibel.tm.fr/xml/xer.htm
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://www.w3.org/TR/2014/REC-exi-20140211
https://www.w3.org/TR/2014/REC-exi-20140211
https://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://github.com/JFLarvoire/libxml2
https://mark.js.org/
https://www.w3.org/community/microxml/
https://www.w3.org/community/microxml/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://google-opensource.blogspot.fr/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.fr/2008/07/protocol-buffers-googles-data.html

[9] W3C Simple XML: http://www.w3.org/XML/simple-XML.html
[10] Wikipedia Simple XML: http://en.wikipedia.org/wiki/Simple_XML

(Apparently unrelated to the previous one, despite the link)
[11] J.F. Larvoire sml.tcl XML↔SML conversion script: https://github.com/

JFLarvoire/SysToolsLib/blob/master/Tcl/sml.tcl
[12] Tcl wiki XML links page: http://wiki.tcl.tk/1740
[13] Tcl wiki - Lars Hellström TDL proposal: http://wiki.tcl.tk/25681
[14] Open Mobile Alliance WBXML - WirelessBinary XML Content Format

Specification: http://www.openmobilealliance.org/tech/affiliates/wap/
wap-192-wbxml-20010725-a.pdf

[15] W3C Extensible Markup Language (XML) 1.0 specification: http://
www.w3.org/TR/xml/

[16] Paul T A list of XML alternatives proposals: http://www.pault.com/
xmlalternatives.html (Dead link), and On Data Languages: http://
www.pault.com/data-languages.html

[17] James Cheney XML compression bibliography: http://
xmlppm.sourceforge.net/paper/node9.html

[18] James Cheney Compressing XML with Multiplexed Hierarchical PPM Models:
http://xmlppm.sourceforge.net/paper/paper.html

[19] W3C XSLT xml-to-json function: https://www.w3.org/TR/xslt-30/#func-
xml-to-json

[20] Tcl wiki xmlgen presentation: http://wiki.tcl.tk/5976?redir=3210
[21] yaml.org YAML Ain't Markup Language: http://yaml.org/

SML – A simpler and shorter representation of XML

155

http://www.w3.org/XML/simple-XML.html
http://en.wikipedia.org/wiki/Simple_XML
https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/sml.tcl
https://github.com/JFLarvoire/SysToolsLib/blob/master/Tcl/sml.tcl
http://wiki.tcl.tk/1740
http://wiki.tcl.tk/25681
http://www.openmobilealliance.org/tech/affiliates/wap/wap-192-wbxml-20010725-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-192-wbxml-20010725-a.pdf
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.pault.com/xmlalternatives.html
http://www.pault.com/xmlalternatives.html
http://www.pault.com/data-languages.html
http://www.pault.com/data-languages.html
http://xmlppm.sourceforge.net/paper/node9.html
http://xmlppm.sourceforge.net/paper/node9.html
http://xmlppm.sourceforge.net/paper/paper.html
https://www.w3.org/TR/xslt-30/#func-xml-to-json
https://www.w3.org/TR/xslt-30/#func-xml-to-json
http://wiki.tcl.tk/5976?redir=3210
http://yaml.org/

156

Can we create a real world rich Internet
application using Saxon-JS?

Pieter Masereeuw
<pieter@masereeuw.nl>

Abstract

This paper describes how Saxon-JS1 techniques can be used in creating a
rich internet application as a front end for dictionary lookup. The main pur-
pose of the text is to demonstrate, by means of some examples, how easy it is
to avoid JavaScript, almost entirely, in favour of Saxon-JS' implementation
of XSLT - in the author's humble opinion being the web's best program-
ming language. Apart from that, it will discuss some difficulties that were
encountered while writing the application, plus their solutions - if any.

1. The challenge
In its long history, the Institute for the Dutch language (Instituut voor de Neder-
landse taal - INT) has created many scientific dictionaries describing Dutch
vocabulary, many of them of impressive size, as can be seen in the table below.

Table 1. Dictionaries made available in the application created by the INT

Dictionary Date range # Entries # Citations
Dictionary of old Dutch (oudnederlands
woordenboek)

A.D. 500 -
A.D. 1200

8954 ≈ 30000

Dictionary of early medieval Dutch (vroeg-
middelnederlands woordenboek)

A.D. 1200 -
A.D. 1300

≈ 25000 ≈ 26000

Dictionary of medieval Dutch (middel-
nederlands woordenboek)

A.D. 1250 -
A.D. 1550

≈ 75000 ≈ 400000

Dictionary of the Dutch language (woor-
denboek der Nederlandse taal)a

A.D. 1500 -
A.D. 1976

≈ 400000 ≈ 1700000

Dictionary of the Frisian language (wurd-
boek fan de Fryske taal)b

A.D. 1800 -
A.D. 1975

≈ 118000 n/a

aBeing the world's largest dictionary, the printed edition consists of 43 volumes having a total length
of three meters. Work on it took 134 years.
bThe printed version consists of 25 volumes.

1http://​www.saxonica.com/​saxon-js/​index.xml

157

http://www.saxonica.com/saxon-js/index.xml

Figure 1. Just a few volumes of the world's largest dictionary

Originally being printed books, these dictionaries are nowadays also available as
a web application.

The dictionaries can all be consulted simultaneously by means of an internet
application, called GTB (geïntegreerde taalbank, integrated language bank).
Unfortunately, this application was developed using Flash2. For obvious reasons,
a new application had to be created and it was decided to jump ahead of current
JavaScript-based solutions in order to see whether XSLT could serve as the web's
programming language of the future.

2. About Saxon-JS

The use of XSLT in the browser has been discussed by Debbie Lockett and
Michael Kay at the 2016 Balisage conference3.

Saxon-JS was designed to be an XSLT 3.0 implementation that can be used as a
programming language for creating interactive web pages. It can do many things
without JavaScript, but both languages can also live in perfect harmony and use
of each other's benefits. Also, popular frameworks such as JQuery and those
based on it, can stay in place, if necessary.

In order to use XSLT in the browser, you need to compile your stylesheet with
Saxon-EE (the Enterprise Edition of the popular XSLT engine4). After that, the
compiled stylesheet must be referenced from a web page, using a tiny piece of

2Generated by OpenLaszlo, which is a discontinued open source platform for the development and
delivery of rich Internet applications (source: Wikipedia).
3Lockett, Debbie, and Michael Kay. “Saxon-JS: XSLT 3.0 in the Browser.” Presented at Balisage: The
Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup
Conference 2016. Balisage Series on Markup Technologies, vol. 17 (2016). DOI: 10.4242/Balisage-
Vol17.Lockett01 (http://​www.balisage.net/​Proceedings/​vol17/​html/​Lockett01/​BalisageVol17-
Lockett01.html).
4The Oxygen XML Editor comes with Saxon-EE and has a facility to easily compile stylesheets with it.

Can we create a real world rich Internet application using Saxon-JS?

158

http://www.balisage.net/Proceedings/vol17/html/Lockett01/BalisageVol17-Lockett01.html
http://www.balisage.net/Proceedings/vol17/html/Lockett01/BalisageVol17-Lockett01.html

JSON. The Saxon-JS runtime itself is written in JavaScript and does not need a
paid license.

3. About the application
The new GTB application uses the popular Bootstrap5 library as basis of its front
end design. One of the benefits of using Bootstrap is its excellent set of CSS defi-
nitions in combination with JQuery and normal JavaScript.

The application can be viewed here: http://​gtb.ivdnt.org 6. Using Bootstrap
speeds up the development process by providing easy CSS and JavaScript facili-
ties for a responsive website with a modern look. As a matter fact, in our case,
Bootstrap is almost exclusively used for its CSS definitions and not for its Java-
Script routines - this might have been possible, but our intention was to create a
front end application that would minimize the use of JavaScript as much as possi-
ble.

4. Modifying the current document by event response
The normal way in which a rich client operates, is by modifying the HTML docu-
ment that is presented in the browser. Typical actions are adding text, HTML ele-
ments and attributes.

Programmers who are familiar with XSLT may wonder how the language can
support user interactions, such as mouse clicks and keyboard events. The answer
is that Saxon-JS has extended XSLT template modes to correspond with Java-
Script events.

For example, the JavaScript onclick event corresponds with the Saxon-JS
mode ixsl:onclick.

Furthermore, instead of generating a new document, Saxon-JS is capable of
modifying the current document in the browser window, by manipulating attrib-
utes and by adding content using an extended behaviour of the xsl:result-
document construct.

5. Hiding and showing content
The following code snippet shows how to select a tab in response to a mouse
event (in order to show search results). If a click (mode="ixsl:onclick") occurs
on the search button, it tracks the HTML <div> element that represents the tab
and then adds, in the do-search template, the Bootstrap value active to the class

5Bootstrap is an open source toolkit for developing with HTML, CSS, and JavaScript; http://
getbootstrap.com/.
6That should be the url at the time of the XML Prague 2018 conference. If, heaven forbid, the Flash
application is still displayed, please refer to http://​gtb.ivdnt.org/​search/.

Can we create a real world rich Internet application using Saxon-JS?

159

http://gtb.ivdnt.org
http://getbootstrap.com/
http://getbootstrap.com/
http://gtb.ivdnt.org/search/

attribute of that <div>, but removes it from the sibling <div> elements (being the
other tabs). Adding attributes is done by using the extension instruction
ixsl:set-attribute.

Please note that the ixsl prefix refers to the Saxon-JS namespace and that
identifiers with the ivdnt prefix have been defined elsewhere in the application7.
Their definitions are not shown here for brevity's sake.

Example 1. ixsl:onclick and ixsl:set-attribute
<xsl:template match="button[@name eq 'do-search']" mode="ixsl:onclick">
 <xsl:variable name="tabdiv" as="element(div)" select=" … "/>

 <xsl:call-template name="ivdnt:do-search">
 <xsl:with-param name="tabdiv" select="$tabdiv"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="ivdnt:do-search">
 <xsl:param name="tabdiv" as="element(div)" required="yes"/>
 <!-- Deactivate all tabs but activate $tabdiv: -->
 <xsl:for-each select="$tabdiv/../div">
 <xsl:variable name="class-without-active" as="attribute(class)"
 select="ivdnt:remove-class-value(@class, 'active')"/>
 <ixsl:set-attribute name="class"
 select="ivdnt:add-class-values($class-without-active,
 if (. is $tabdiv) then ('active') else ())"/>
 </xsl:for-each>

 <!-- Start the search: -->

 <!-- … code removed for brevity … -->
</xsl:template>

6. Interfacing with JavaScript
Although many operations can be done by means of the facilities offered by
Saxon-JS, there are things that still need to be done the traditional way. In most
cases, this concerns effects beyond the modification of the document shown in the
browser window.

For this situation, it is possible to call JavaScript from XSLT.
Typically, an XPath expression in the special namespace for JavaScript (js pre-

fix) makes it possible to call user-defined JavaScript functions. Alternatively, the
ixsl:call() function can be used.

7The institute recently changed its preferred acronym to INT; the ivdnt XML prefixes show the earlier
convention.

Can we create a real world rich Internet application using Saxon-JS?

160

The following two snippets illustrate this; the function ivdnt:always-
false() is a function that always returns false() by doing a silly comparison,
thus preventing the output of ixsl:call() becoming part of the resulting
sequence8. The third parameter passed to ixsl:call() is an array with parame-
ters for the JavaScript focus() function. In this case, there are none.

Example 2. Calling a function for a JavaScript object

<xsl:sequence
 select="ixsl:call($textbox, 'focus', [])[ivdnt:always-false()]"/>

Example 3. Calling a user-defined JavaScript function

<xsl:sequence
 select="js:openNewWindow($url)[ivdnt:always-false()]"/>

7. Global storage - maintaining history
One of the features of the original Flash application was a facility to remember
earlier queries made by the user. In order to accommodate this, some form of
global browser storage is needed. Since users can use specific tabs for the queries,
it will be convenient to associate the query history with each distinct tab.

Saxon-JS allows you to store anything as a property of a JavaScript object, and
HTML DOM elements are such objects.

In order to remember the queries, the application will maintain an XML list
structure containing XML representations of each submitted query. This list is
stored as a JavaScript property at the <div> corresponding to the current tab.

Creating an XML structure for the submitted query is as simple as XSLT can
be: just use <xsl:apply-templates/ >, which will eventually transform HTML
<input> and <select> elements into an XML representation. The following snip-
pet shows this.

Example 4. A function to create a representation of HTML input elements

<xsl:function name="ivdnt:get-inputs-and-selects"
 as="element(inputs-and-selects)">
 <xsl:param name="tabdiv" as="element(div)"/>
 <inputs-and-selects>
 <xsl:apply-templates
 select="$tabdiv//*[self::input | self::select]"
 mode="ivdnt:inputs-and-selects"/>

8This is needed in order to fool the optimizer of the Saxon compiler. The silly comparison checks if the
current date equals the date on which the author was born (Saxon has no clue). Passing false()
directly would cause the optimizer to forget about the instruction altogether, so no call would be
made at all.

Can we create a real world rich Internet application using Saxon-JS?

161

 </inputs-and-selects>
</xsl:function>

In order to add a new representation to an existing list, the stored JavaScript
object is retrieved using Saxon-JS' ixsl:get() function, by passing the JavaScript
object/DOM element and the property name as parameters. After that, the new
query representation is added to that list and stored using <ixsl:set-property>.
This is exactly what the following named template does.

Example 5. Storing and retrieving global data

<xsl:template name="ivdnt:store-inputs-and-selects">
 <xsl:param name="tabdiv" as="element(div)"/>

 <!-- Retrieve existing lists: -->
 <xsl:variable name="existing" as="element(inputs-and-selects)*"
 select="ixsl:get($tabdiv, 'prop-inputs-and-selects-list')/*"/>

 <!-- Calculate new list: -->
 <xsl:variable name="new"
 as="element(inputs-and-selects)"
 select="ivdnt:get-inputs-and-selects($tabdiv)"/>

 <!-- Join existing and new list: -->
 <xsl:variable name="new-list"
 as="element(inputs-and-selects-list)">
 <inputs-and-selects-list>
 <xsl:copy-of select="$existing"/>
 <xsl:copy-of select="$new"/>
 </inputs-and-selects-list>
 </xsl:variable>

 <!-- Store the result: -->
 <ixsl:set-property name="prop-inputs-and-selects-list"
 select="$new-list" object="$tabdiv"/>
</xsl:template>

When the user requests the list of earlier queries, presenting such a list is, again,
simply a matter of passing the stored list to <xsl:apply-templates>, this time in
a special mode with the purpose of generating user-friendly query descriptions.
Finally, the representations can be used to reset all user interface elements in the
current tab to the values they had at the time of the selected query.

Can we create a real world rich Internet application using Saxon-JS?

162

Obviously, manipulating global data spoils XSLT's feature of being a purely
functional language without side effects. Below (Section 8.2) we will see some of
the consequences.

8. Displaying search results
The most important facility of the application is of course to show the output of
dictionary queries. As with all Internet applications, the application should not
block the browser during a network operation; at the same time, a visual effect is
required to inform the user that a lengthy operation is going on. And evidently,
there must be a way to render the results (which are returned by the server in
XML format) in the appropriate browser tab.

8.1. Preventing the application from freezing
Seeing that is was only intended to replace the GTB application's front end and
leave the back end unmodified, the rest-like URL's of the old program had to be
re-used. In order to prevent an application from freezing during network opera-
tions, Saxon-JS offers the <ixsl:schedule-action> extension, which schedules
execution of a named template to take place as soon as the document pointed to
by some URL has been loaded9.

The following code fragment illustrates this.

Example 6. Asynchronous template call

<xsl:template name="ivdnt:show-results">
 <xsl:param name="url" as="xs:string" required="yes"/>
 <xsl:param name="tabdiv" as="element(div)" required="yes"/>

 <!-- Deactivate $tabdiv, show visual wait effects. -->

 <!-- … code removed for brevity … -->

 <ixsl:schedule-action document="{$url}">
 <xsl:call-template name="ivdnt:render-results">
 <!-- … parameters removed for brevity … -->
 </xsl:call-template>
 </ixsl:schedule-action>
</xsl:template>

After the XML search result has been loaded, it is converted to HTML in the nor-
mal XSLT way and inserted in a designated place in the HTML document of the

9An alternative way of using <ixsl:schedule-action> is to call a named template after a given delay,
which can be useful to create animation.

Can we create a real world rich Internet application using Saxon-JS?

163

application. For this, one can use the Saxon-JS extension of the <xsl:result-
document> instruction by specifying a specific value for its method attribute and
designating the target position by means of an id-reference, as seen in the next
example10.

Example 7. Showing the result document

<xsl:template name="ivdnt:render-results">
 <xsl:param name="url" as="xs:string" required="yes"/>
 <xsl:param name="tabdiv" as="xs:element(div)" required="yes"/>

 <xsl:result-document href="#resultarea" method="ixsl:replace-
content">
 <xsl:apply-templates select="doc($url)" mode="render-results"/>
 </xsl:result-document>

 <!-- Switch to result tab and hide visual wait effects. -->

 <!-- … code removed for brevity … -->
</xsl:template>

8.2. The order in which things happen

Since XSLT is, in its normal use, a language without side effects, evaluation of
expressions can theoretically be done in any order, even parallelly. The normal,
not-clientside, Saxon software, uses a technique called lazy evaluation11, which
means that the order of evaluation may be different from what is written in the
stylesheet.

Now that XSLT side effects are in place, this proves to be somewhat cumber-
some in some situations. In the preceding examples with the asynchronous tem-
plate call, you may notice that things need to be done in a strict order:

1. Show a deactivation effect, such as a spinning icon.

2. Display the calculated result document.

3. Switch to the result tab and cancel the deactivation effect.

An early version of Saxon-JS applied the same lazy evaluation rules as its normal
counterpart, spoiling the required visual effects. Fortunately, Saxonica was quick
in fixing this issue.

10One may wonder whether the scheduled template starts running after the document has been loa-
ded, or after all templates have been applied to it. The answer is probably the first. The current appli-
cation is fast enough for this not to cause any problems, and furthermore, the user interface is only
refreshed after the entire operation.
11Message by Michael Kay (Saxonica) on Saxonica's issue tracker for Saxon-JS.

Can we create a real world rich Internet application using Saxon-JS?

164

9. Creating reusable components - an auto complete facility
One of the nice facilities of the original Flash application was auto complete. As the
user typed in a textbox, suggestions were being presented on the basis of the dic-
tionaries currently selected.

In the JavaScript world, adding such a facility is a matter of downloading a
component of your choice and then modifying some call-back method to accom-
modate your own application rules.

Being a new technology, Saxon-JS evidently does not yet have such ready-to-
deploy components. Therefore, it had to be written from scratch in XSLT, which
proved to be less hard than anticipated. Preferably this should be a general pur-
pose component, so an attempt was made to ensure that XSLT's <xsl:import>
mechanism could be put to use for any specializations that may be needed12.

10. When it is good to still have access to JavaScript
There are some situations where the use of JavaScript is still required. The situa-
tions that were encountered are:

• setting focus to some input element;

• calling third-party software, such as Google analytics;

• dealing with HTTP headers;

• global browser behaviour, such as opening a new window;

There is even one problem for which a solution has yet to be found:

• the option for users to cancel an asynchronous request (<ixsl:schedule-
action>) if it takes too long.

11. Performance
Although no formal front end performance tests were carried out, it is safe to say
that Saxon-JS performs very well. One of the most lengthy and complicated oper-
ations is the part that has to store or retrieve earlier queries (as mentioned above).
This routine has to go over all the input elements in a given area in order to con-
vert them to or from an internal XML data structure. In fact, even on a nine years
old netbook, using this part of the software causes no observable delay. Therefore,
we may conclude that Saxon-JS' performance seems to be adequate and very
probably even better than that.

12One can wonder if the <xsl:import> mechanism is as powerful as JavaScript's call-backs. While the
last operate on objects, <xsl:import> works more statically. Probably higher order functions can offer
a more robust solution. For the moment, the current solution is powerful and easy enough.

Can we create a real world rich Internet application using Saxon-JS?

165

12. Conclusions
The Institute for the Dutch language is quite happy with the new, non-Flash, ver-
sion of its application. And so, the conclusion is: yes, we can create a real world
rich Internet application using Saxon-JS.

The choice of a programming language depends, of course, on several factors.
Personal preference plays an important role. When compared to JavaScript and
frameworks that are based on it, XSLT and Saxon-JS offer the following benefits:
• Ease of use: although XML, and therefore XSLT, can be rather verbose, this is

not necessarily a bad thing for a programming language. It is for this reason,
for instance, that many people like Java better than Perl. In this respect, it
seems safe to say that XSLT is better readable than JavaScript, which is often
rather terse (albeit admittedly very powerful at the same time).

• Compiling a language, as done in the case of Saxon-JS, prevents many errors
before a program is actually run.

• When reusing modules, name clashes are easily prevented by using namespa-
ces.

• <xsl:import> provides a means for the specialization of standard compo-
nents that is powerful enough for everyday use.
All-in-all, Saxon-JS makes XSLT in the browser a great success.

Can we create a real world rich Internet application using Saxon-JS?

166

Implementing XForms
using interactive XSLT 3.0

O'Neil Delpratt
Saxonica

<oneil@saxonica.com>
Debbie Lockett

Saxonica
<debbie@saxonica.com>

Abstract

In this paper, we discuss our experiences in developing Saxon-Forms, a new
partial XForms implementation for browsers using "interactive" XSLT 3.0,
and suggest some benefits of this implementation over others. Firstly we
describe the mechanics of the implementation - how XForms features such
as actions are implemented using the interactive XSLT extensions available
with Saxon-JS, to update form data in the (X)HTML page, and handle user
input using event handling templates. Secondly we discuss how Saxon-
Forms can be used, namely by integrating it into the client-side XSLT of a
web application, and examples of the advantages of this architecture. As a
motivation and use case we use Saxon-Forms in our in-house license tool
application.

Keywords: XML, XSLT, XPath, XForms, Saxon, Saxon-JS

1. Introduction

1.1. Use-case: License Tool application

The motivation for developing Saxon-Forms was a specific use case - namely a
project to improve our in-house license tool application (a form-based application
for managing and generating licenses). The application used XForms [1] in the
browser (using XSLTForms [2]) in the front-end, with server-side XSLT (and Java)
processing in the back-end. The project was motivated first, by business needs to
improve functionality in an in-house application that has slowly become unmain-
tainable, and secondly, by the fact that we wanted to improve the capability of
Saxon-JS [3] to handle real-world applications with both front-end and back-end
processing. We felt that using the technology for an in-house application would
be the best way to discover what product enhancements were needed.

167

The license tool architecture redesign is discussed in detail in [4], where the
focus is on the redistribution of XSLT processing, by using Saxon-JS in the
browser for client-side XSLT. In this paper, our focus is another part of the
project: the use of XForms. Rather than using existing implementations of
XForms which run in the browser (such as XSLTForms), alongside the client-side
of the application which is written in interactive XSLT [5] [6] and runs in Saxon-
JS, we set out to work towards a new implementation of XForms 1.1 which would
also run in Saxon-JS. This would allow us to better integrate the use of XForms
into the client-side application, as well as being a further exercise in (and demon-
stration of) using interactive XSLT and Saxon-JS.

The screenshot in figure [fig.1] shows the edit page form of new our license
tool application, rendered by Saxon-Forms.

Figure 1. The edit page of the license tool application

1.2. XForms
Forms are a common feature of interactive web applications, allowing users to
enter data for submission. HTML forms can be generated in many ways: some

Implementing XForms using interactive XSLT 3.0

168

sites serve up form pages from servers using languages such as PHP, JSP, ASP, etc.
where the form submission and validation is handled on the server or via Ajax
techniques. One of the greatest shortcomings of HTML forms is that the combina-
tion of presentation and the content is cumbersome and chaotic to manage.
XForms was designed as a direct replacement for HTML forms to address these
problems and to do much more. In XForms the presentation and content are sep-
arate, and more complicated forms can be authored using form model and con-
troller logic.

Using XForms, a form consists of a section that describes what the form does,
called the XForms model (contained in an xforms:model element, where the
xforms prefix is used for elements in the XForms http:// www.w3.org/ 2002/
xforms namespace), and another section that describes how the form is to be pre-
sented. The model contains the instance (in an xforms:instance element) holding
the underlying data of the form in an XML structure, model item properties describ-
ing declarative validation information for constraining values (in xforms:bind
elements), and details for form data submission (in xforms:submission ele-
ments). The presentational part of a form contains XForms form controls (such as
input, select, and textarea elements) which act as a direct point of user interac-
tion, and can provide read/write access to the instance data. Typically form con-
trols will bind to instance data nodes (as defined by an XPath expression in the
ref attribute). Note that instance data is only presented to the user when such a
binding to a form control exists; and individual form controls are only included
in the user interface if the instance data node is relevant (as defined using a
relevant attribute on an xforms:bind element). Actions defining event responses
are specified on form controls using action elements, such as xforms:action and
xforms:setvalue.

For a form-based application such as the license tool, XForms is the right
choice. As described, it allows for data processing and validation in the form, and
of course we want to use XML technologies and maintain our data in XML!

We decided to write a new implementation of XForms to use in our license
tool, rather than using existing implementations which run in the browser,
because we could see the potential for better integration of XForms into a web
application which uses Saxon-JS technologies. As well as being able to use new
XSLT 3.0 features, the use of Saxon-JS technologies for our new XForms imple-
mentation provides the opportunity to do more at the boundary between the
XForms form and the containing application. For example in our license tool, the
application logic allows parsing of structured input pasted into a text field. That's
beyond the capability of XForms itself, but it can be done in XSLT, and can be
integrated into what is predominantly a form-based application. So it's not just
XForms; it's XForms integrated into declarative client-side applications.

Implementing XForms using interactive XSLT 3.0

169

1.3. XSLT 3.0 and interactive XSLT in the browser with Saxon-JS

Saxon-JS is an XSLT run-time which executes an SEF (stylesheet export file), the
compiled form of an XSLT stylesheet generated using Saxon-EE. The Saxon-
Forms XSLT stylesheet module is designed to be imported into the client-side
XSLT stylesheet of a web application, which is exported to SEF for use with
Saxon-JS. Details of how the use of XForms (via Saxon-Forms) can be integrated
into the application stylesheet will be covered later. In this section, we briefly
highlight the features of Saxon-JS which make it a good fit for implementing
XForms:
1. XSLT 3.0 [7] (including XPath maps and dynamic evaluation)
2. Interactive XSLT - for browser event handling
3. Using global JavaScript variables and functions

In Saxon-Forms, we use a number of new XSLT 3.0 features, such as XPath
maps and arrays (e.g. for actions and bindings), and dynamic evaluation of XPath
with xsl:evaluate [8] (e.g. for XForms binding references for form controls). For
further details see Section 2. Another feature of Saxon-JS which is crucial to
Saxon-Forms is interactive XSLT, used to implement the dynamic interactive
functionality of XForms. The interactive XSLT extensions available with Saxon-JS
allow rich interactive web applications to be written directly in XSLT. Event han-
dling templates can respond to user input; and trigger template rules to modify
the content of the HTML page.

Furthermore, using the ixsl:schedule-action instruction with the http-
request attribute, HTTP requests can be made, and the responses handled. See
the submission example in Section 3.2 for further information on how this can be
used in the integration of XForms in an application.

A few parts of the XForms implementation are done using JavaScript rather
than XSLT. Using Saxon-JS, global JavaScript variables and functions are accessi-
ble within the XSLT stylesheet as functions in the http:// saxonica.com/ ns/
globalJS namespace, or using the ixsl:call() function. Script elements can be
inserted into the HTML page using interactive XSLT, providing global JavaScript
functions to be used later. Global JavaScript variables are very useful as mutable
objects, for example we use a JavaScript variable to hold the XForms instance as a
node, this can then be easily accessed and changed to process the form interac-
tion.

2. XForms implementation
The main work of our XForms implementation can be split into two parts, that we
will refer to as initialization and interaction handling. Initialization consists of trans-
forming the presentational part of an XForms form, to render this using HTML to

Implementing XForms using interactive XSLT 3.0

170

correctly display the form in a browser; as well as setting up various structures
which hold the details of the form (the model item properties, etc.), to be used
internally by the implementation. Interaction handling involves acting on user
interaction with form controls, to update the XForms instance and form display
accordingly, and handling user submission which means submitting the instance
to a server. In Section 2.1 we describe how we implement these two areas, using
interactive XSLT 3.0. In the early stages of development, we referred to the
XSLTForms implementation (which is based on XSLT 1.0 to compile XForms to
(X)HTML and JavaScript) for ideas on how to get started, but using XSLT 3.0 and
interactive XSLT provides many new ways of doing things and so our implemen-
tation is really written from scratch.

Following this, we briefly discuss the XForms coverage of the Saxon-Forms
implementation, to give an idea of how much of the XForms specification is
implemented.

2.1. Overview of how Saxon-Forms works

Initialization
XForms is designed to be integrated into other markup languages, e.g.

(X)HTML. For use with Saxon-Forms, a form is supplied as an XML document,
containing the XForms model and presentational part. This XForms form docu-
ment is supplied via the main entry template rule of the stylesheet, named
"xformsjs-main", as a template parameter. Further template parameters can be
used to also supply XML instance data, and details of where the form is to appear
in the HTML page (by giving the id of an HTML div element into which the ren-
dered form will be inserted).

The result of Saxon-Forms initialization should be that the form is rendered
using HTML, and inserted into the HTML page as directed. Behind the scenes,
various variables have also been initialized for internal use, and these are held in
the JavaScript global space, using a script element (with id="xforms-cache")
which is inserted into the HTML head. The script also includes corresponding
JavaScript set/get functions for these variables. (When such functions are called
from the Saxon-Forms XSLT stylesheet, e.g. using ixsl:call(), Saxon-JS will
convert the XML items supplied as parameters into JavaScript, and convert the
results back the other way, as described in [6]. Below we generally just refer to the
XML types.) We cache the following variables relating to the current XForms
document:

• the XForms document itself, as a node, required if we need to reset the form

• the instance in its initial state, as a node

• the instance, a node which is updated as a user interacts with the form

Implementing XForms using interactive XSLT 3.0

171

• actions map, a JSON object whose keys are unique identifiers for each action
defined in the form, and the corresponding value is an XPath map which
holds the details of the actions

• relevant attributes map, an XPath map which maps instance nodes to XPath
expressions, taken from the ref and relevant attributes on xforms:bind ele-
ments, for example:

map{"Document/Options/MaintenanceDate": "../MaintenanceDateSelected='true'",
 "Document/Options/UpgradeDate": "../UpgradeDateSelected='true'", ...}

• pending updates list, an XPath map which keeps a record of updates for
instance nodes which are not bound to form controls

Meanwhile, Saxon-Forms converts XForms form controls to equivalent (X)HTML
form control elements (inputs, drop-down lists, textareas, etc.), populated with
any bound data from the instance, and which are embellished with additional
attributes containing references for use internally. For example:

<xforms:input incremental="true"
 ref="Document/Shipment/Order/MaintenanceDays">
 <xforms:action ev:event="xforms-value-changed">
 <xforms:setvalue ref="../../../Options/MaintenanceDate"
 value="if(xs:integer(.) > 0) then
 xs:date(../../../Options/StartDate) +
 xs:dayTimeDuration(concat('P',.,'D'))
 else xs:date(../../../Options/StartDate) +
 xs:dayTimeDuration(concat('-','P',abs(xs:integer(.)),'D'))"/>
 <xforms:setvalue
 ref="../../../Options/Updated">true</xforms:setvalue>
 </xforms:action>
</xforms:input>

Will be converted to:
<input data-element="MaintenanceDays" data-constraint="number(.) ge 0"
 data-action="d26aApDhDa"
 type="text" value="30"
 data-ref="Document/Shipment/Order/MaintenanceDays"/>

Here, in the Saxon-Forms template rule which matches the xforms:input control
we get the string value from the ref attribute, which defines the binding to an
instance node, and use this XPath expression in two ways. Firstly, we call the
XSLT 3.0 xsl:evaluate instruction to dynamically evaluate the XPath expression,
to obtain the relevant data value from the instance. This will be used to populate
the corresponding HTML form input element. Secondly, the ref attribute XPath
expression is copied into a data-ref attribute added to the input element, to pre-
serve the binding to the instance node. For each group of action elements in an
XForms form control we add an entry to the actions map in the "xforms-cache"

Implementing XForms using interactive XSLT 3.0

172

script element. For this actions map entry, the key will be a unique identifier,
and the value is an XPath map containing all the details of the actions (e.g. from
the xforms:setvalue elements, etc.) In this example, we add an entry to the
actions map object with key "d26aApDhDa", and value:

map{"@ref": "Document/Shipment/Order/MaintenanceDays",
 "@event": "xforms-value-changed",
 "setvalue": [map{"@value": "if(xs:integer(.) > 0) then ...",
 "ref": "../../../Options/MaintenanceDate"},
 map{"value": "true",
 "ref":"../../../Options/Updated"}]}

Then, as in the example above, we use the data-action attribute to link the input
element to its relevant entry in the actions map. The conversion, and binding
preservation, of other XForms form control elements is achieved in a similar way.

Interaction handling
Interactive XSLT event handling templates are used to handle user interac-

tions with the form, such as data input in a form field or the click of a button. The
event handling templates correspond to onchange and onclick events. In figure
[fig.2] we illustrate the general pipeline of the processes involved when a user
interacts with the form. In this example the template rule with
mode="ixsl:onchange" and match="input" is triggered when a user makes a
change in an input box. Here the trigger of the template rule can only happen if
the input form control has one or more actions associated with it.

Firstly, we fetch the instance XML for the form and update it with any changes
made in the form controls which are not already in the instance. Secondly, we use
the value in the data-action attribute on the input element to get the associated
actions from the actions map. Recall that these associated actions are represented
in an XPath map. So we use XPath map functions to extract the details for these
actions (e.g. details for setvalue, add or delete) which are then executed. For
actions which update instance nodes that are bound to form controls we first
update the associated form control. Otherwise, for actions which update instance
nodes which are not bound to a form control, we add the changes to the pending
updates list.

Thirdly, after all actions have been executed we again update the instance
XML (applying the updates in the pending updates list, and picking up changes
within form controls) to maintain consistency between the data currently held in
the form controls and the instance itself. The final stage is to execute the relevant
properties tests for instance nodes (as defined in the relevant attributes map), to
determine whether the form controls that they bind to should be included in the
rendered form. The corresponding HTML form controls are hidden and revealed
by setting the display style property (using the ixsl:set-property interactive
XSLT extension instruction) to "none" or "inline" respectively.

Implementing XForms using interactive XSLT 3.0

173

As well as handling changes to form data, the other key user interaction that
needs to be handled is submission. However, the XForms submission element is
not yet fully implemented in Saxon-Forms. One reason for this is that submission
is one of the features where it is desirable, and possible, for more to be done from
the application stylesheet, than could be done by a direct implementation of
XForms submission. For instance, in our license tool, we use event handling tem-
plates (for onclick events on submit buttons) to override the XForms implementa-
tion for submission, in order to handle this processing and integrate handling of
the server response. Further details follow in Section 3.

2.2. Coverage of the XForms Specification
Saxon-Forms is a partial implementation of the XForms 1.1 specification. The
focus was on implementing the parts required to get the license tool application
working. But of course it is our intention that the implementation is general

Figure 2. Action handling pipeline diagram

Implementing XForms using interactive XSLT 3.0

174

enough for wider use (either used in a standalone way or as a component in an
application), and has the potential to be extended for full XForms conformance.
Here we summarise the main parts of the XForms specification that are imple-
mented in Saxon-Forms, but note that in all cases (except XPath expressions)
there is more which is not implemented:
• Document structure: Saxon-Forms currently supports just one model and one

instance. In the document structure we represent the model element, which
consists of the instance, bind and submission elements. This includes the
type, required, constraint and relevant model item properties.

• XPath expressions in XForms: The specification [1] states "XForms uses XPath to
address instance data nodes in binding expressions, to express constraints,
and to specify calculations". Saxon-Forms is conformant to the support of
XPath since Saxon-JS supports nearly all of XPath 3.1.

• XForms Function Library: XForms 1.1 defines a number of functions, of which
Saxon-Forms currently only implements index() and avg(). These are imple-
mented using stylesheet functions, which are then available in the static con-
text for calls on xsl:evaluate. Other XForms functions could be implemented
in the same way.

• Core Form Controls: Saxon-Forms implements the input, textarea and
select1 form control elements. Of the common support elements (child ele-
ments of the form controls), the label and hint elements are implemented. Of
the container form controls (used for combining form controls), only the
repeat element is implemented.

• XForms Actions: Saxon-Forms implements the action, setvalue, insert and
delete elements.

3. Integrating Saxon-Forms into applications

3.1. Standard integration

Saxon-Forms includes a Saxon-JS stylesheet providing generic XSLT 3.0 code to
implement the XForms specification. This can be integrated with application-spe-
cific XSLT 3.0 code. Thus, the Saxon-Forms stylesheet module can either be
imported into a containing XSLT stylesheet (for the client-side of a web applica-
tion), or used directly. In either case, to run in Saxon-JS, the stylesheet must first
be exported to SEF using Saxon-EE. This can then be run from within an HTML
page: as with all Saxon-JS applications, first Saxon-JS is loaded in a script element,
and then the SEF can be executed using a JavaScript call to
SaxonJS.transform(). An XForms document is supplied to Saxon-Forms either
as a file or as a document node, along with the optional XForms instance data.

Implementing XForms using interactive XSLT 3.0

175

If the Saxon-Forms stylesheet is to be used directly, then the XForms docu-
ment can be supplied as the source to the transform, as in the example below:

<script>
 window.onload = function () {
 SaxonJS.transform({
 "stylesheetLocation": "saxon-xforms.sef.xml",
 "sourceLocation": "sampleBookingForm.xml"
 })
 }
</script>

Alternatively, when the Saxon-Forms stylesheet module is imported into the cli-
ent-side XSLT stylesheet of a web application (e.g. sample-app.xsl), this can be
run as follows:

<script>
 window.onload = function () {
 SaxonJS.transform({
 "stylesheetLocation": "sample-app.sef.xml",
 "initialTemplate": "main"
 })
 }
</script>

And in this case, the XForms document can be supplied at the point that the entry
template "xformsjs-main" of Saxon-Forms is called in the sample-app stylesheet:

<xsl:template name="call-saxon-forms">
 <xsl:call-template name="xformsjs-main" >
 <xsl:with-param name="xforms-doc" select="doc($bookingForm)"/>
 <xsl:with-param name="xFormsId" select="'xForm'"/>
 </xsl:call-template>
</xsl:template>

Here the xFormsId parameter gives the id of a div element in the HTML page
where the form is to be inserted; the default is "xForm".

3.2. Integration with application logic

Saxon-Forms is more than just another XForms implementation for the browser,
because it allows for form enrichment from application logic in the application
stylesheet in which it is integrated. In this section we will present some examples
of this:
1. Parsing structured text from a form input textarea, to XML.
2. Overriding submission.
3. Using user defined functions in XPath expressions in the XForm.

Implementing XForms using interactive XSLT 3.0

176

Example 1. Parsing input from form textareas

This has proved very useful in our license tool. License orders are often received
by email using structured text of a standard form (e.g. for purchases from the
online shop, and for evaluation license requests). Because the text is structured, it
can be processed using XSLT to extract the data and convert it into XML format.
So this parsing can be done in the application stylesheet.

So, a user copies the structured text from an email and inputs it into the tex-
tarea of a form in the tool. When the "Parse" button is clicked, this is handled by
event handling templates in the application stylesheet which capture the text
string and process it to produce some XML output. This XML is then supplied as
the instance for another XForms form (in fact, the edit page form, as shown in
[fig.1]).

Example 2. Submission

The XForms implementation for submission can be overridden from the applica-
tion stylesheet, to allow further logic to be added to specify the exact form of the
submitted data, and the way a response is handled. For example in the license
tool stylesheet, we have event handling templates for onclick events on submit
buttons to handle this processing. The updated instance is obtained from the
global JavaScript variable (using the procedure in the Saxon-Forms submission
implementation), and this is submitted for server side processing using the inter-
active XSLT mechanism for asynchronous HTTP messages, i.e. using the
ixsl:schedule-action instruction with the http-request attribute. The value of
the http-request attribute is an XPath map which defines the HTTP request to
be made (e.g. specifying method, URI destination, body and media-type). When
it returns, the HTTP response is processed by the template specified within the
ixsl:schedule-action instruction (it has one xsl:call-template child); the
HTTP response is also represented as an XPath map, and this is provided as the
context item to the named template. For instance, this allows feedback from the
response to then be returned to the user within the HTML page.

Example 3. User defined functions

Stylesheet functions defined in the application stylesheet can be used in XPath
expressions in the XForms document. The only requirement is that the saxon-
xforms.xsl stylesheet must include a namespace declaration binding the prefix
used in the form to the namespace of the stylesheet function.

For example, the following stylesheet function is defined in our license tool
application stylesheet, to obtain product price data from another XML document:

<xsl:function name="f:productCodeToPrice" as="xs:integer">
 <xsl:param name="productCode" as="xs:string"/>
 <xsl:variable name="products" select="doc($productsDoc)//Product"/>

Implementing XForms using interactive XSLT 3.0

177

 <xsl:value-of select="xs:integer($products[@code = $productCode]/►
@price)"/>
</xsl:function>

This function can then be used in the XPath expressions in the value attribute of a
xforms:setvalue instruction in the XForm document, to calculate the order part
value from the price and quantity (where parts of an order are grouped by prod-
uct code).

4. Conclusion
In this paper we have presented a new XForms implementation, Saxon-Forms,
which makes use of interactive XSLT 3.0 to realize the initialization and process-
ing model of XForms. This project had three goals:

• Firstly, our aim was to explore how XForms and client-side XSLT could coexist
to build applications with rich client-side functionality as well as access to
server-side functions.

• Secondly, to develop the beginnings of a new XForms implementation taking
advantage of the Saxon-JS technology, and able to integrate with Saxon-JS
applications.

• Thirdly, to use this technology platform to re-engineer the in-house Saxon
license tool application.

Our achievements so far against these goals are:

1. We have demonstrated that a forms-based application can be usefully aug-
mented with additional functionality implemented in XSLT 3.0, for example
parsing and validation of complex input fields, and access to reference data-
sets.

2. We have shown that many of the technical features of the Saxon-JS technology,
such as the ability to handle interactive user input using template rules, the
ability to issue asynchronous HTTP requests and process the results, and the
ability to dynamically evaluate XPath expressions, can be exploited as under-
pinnings to a client-side XForms implementation.

3. We have rewritten the Saxon license tool application with many new features,
with 90% of the code now being in either client-side or server-side XSLT,
reducing the Java to a small number of extension functions handling crypto-
graphic signing of licenses.

Further work taking this technology forwards to a fully compliant XForms imple-
mentation will depend on user feedback.

Implementing XForms using interactive XSLT 3.0

178

5. Acknowledgements
Many thanks to Michael Kay and Alain Couthures for helpful comments for
improving this paper, and Saxon-Forms itself.

Bibliography
[1] XForms 1.1 Specification. W3C Recommendation. 20 October 2009. John Boyer.

W3C. https://www.w3.org/TR/xforms11
[2] XSLTForms. Alain Couthures. http://www.agencexml.com/xsltforms
[3] Saxon-JS: XSLT 3.0 in the Browser. Balisage: The Markup Conference 2016. Debbie
Lockett and Michael Kay. http://www.balisage.net/Proceedings/vol17/
html/Lockett01/BalisageVol17-Lockett01.html

[4] Distributing XSLT Processing between Client and Server. O'Neil Delpratt and
Debbie Lockett. XML London. June, 2017. London, UK. http://
xmllondon.com/2017/xmllondon-2017-proceedings.pdf#page=8

[5] Interactive XSLT in the browser. Balisage: The Markup Conference 2013. O'Neil
Delpratt and Michael Kay. https://www.balisage.net/Proceedings/vol10/
html/Delpratt01/BalisageVol10-Delpratt01.html

[6] Interactive XSLT extensions specification. Saxonica. http://www.saxonica.com/
saxon-js/documentation/index.html#!ixsl-extension

[7] XSL Transformations (XSLT) Version 3.0. W3C Recommendation. 7 February 2017.
Michael Kay. W3C. https://www.w3.org/TR/xslt-30

[8] XPath 3.1 in the Browser. John Lumley, Debbie Lockett, and Michael Kay. XML
Prague. February, 2017. Prague, Czech Republic. http://archive.xmlprague.cz/
2017/files/xmlprague-2017-proceedings.pdf#page=13.

Implementing XForms using interactive XSLT 3.0

179

180

Life, the Universe, and CSS Tests
Tony Graham

Antenna House, Inc.
<tony@antennahouse.com>

Abstract

The W3C CSS Working Group maintains a CSS test suite already com-
posed of more than 17,000 tests and growing constantly. Tracking the
results of running such a large number of tests on a PDF formatter is more
than anyone could or should want to do by hand. The system needs to track
when a test’s result changes so that the changes can be verified and the test’s
status updated. Finding differences is not the same as checking correctness.
An in-house system for running the tests and tracking their results has been
implemented as an eXist-db app. Is it a masterpiece of agile development, or
an example of creeping featurism?

1. Introduction
“That’s right,” shouted Vroomfondel, “we demand rigidly defined areas of doubt
and uncertainty!”

—The Hitchhiker’s Guide to the Galaxy, Douglas Adams

This paper describes an internal project to develop a system for:

• Running the CSS WG test suite of more than 17,000 tests on AH Formatter;

• Producing PDF output; and

• Recording the status of the test results.

Just as importantly, the system needs to track whenever a test’s result changes
so that the changes can be verified and the test’s status updated.

Finding differences is not the same as checking correctness. The first time that
you look at a test’s result, you can (hopefully) tell if it is right or wrong. If the
result changes, either because of changes in the formatter or because of changes
in the test itself, you need to look at it again since:

• The result could still be right;

• The result could still be wrong;

• The result could change from right to wrong; or, more preferably,

• The result could change from wrong to right.

181

2. Origins
In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad
move.

—The Restaurant at the End of the Universe, Douglas Adams

The current system has multiple origins or predecessors:

• Antenna House Regression Testing System (AHRTS) – Software for compar-
ing two PDFs or images – or two whole directories containing PDFs or images
– and producing an overview report and plus individual reports for each pair
of files with differences.

• Customized AHRTS reports – Modifications and additions made to the
default stylesheets for generating PDF of AHRTS reports from XML source.

• CSS Working Group test results – The CSS WG have their own format for
recording the status of a browser’s results for the CSS WG tests.

• SVG and MathML test results – Previous company-internal tests of formatting
of both SVG and MathML had their results recorded in a manually-main-
tained HTML file.

• XSL 1.0 Candidate Recommendation test results – The XML format for record-
ing a test’s result allowed recording both an indication of the result’s state plus
a comment about the test result.

• eXist-db demo application – The current eXist-db app started out by copying
and modifying the demo app provided with eXist-db 3.0.0.

2.1. Antenna House Regression Testing System (AHRTS)

Out of the box, AHRTS [2] makes a pixel-by-pixel, visual comparison of the dif-
ferences between the PDF (or image) files in a ‘base’ directory against the same-
named files in a ‘new’ directory. It produces an overview PDF report listing the
state of each test file plus an individual PDF report for each test file with differen-
ces. Each individual PDF report contains some data about the ‘base’ and ‘new’
test files plus, for each page with differences, a page showing: the ‘base’ page; a
composite of the ‘base’ and ‘new’ pages with the differences highlighted; and the
‘new’ page.

AHRTS can be run from a GUI or through the command line. As Figure 1
shows, its additional inputs are an ‘ahrts.properties’ file for controlling the opera-
tion plus the XSLT stylesheets for the overview and individual reports.

Life, the Universe, and CSS Tests

182

Figure 1. AHRTS block diagram

Figure 2 shows part of an AHRTS overview report with its indications of which
files showed differences.

Figure 2. AHRTS overview report (detail)

Figure 3 shows one page from an individual report. The same page from the
‘base’ and ‘new’ files are shown on the left and right panels, respectively. The cen-
ter panel is an overlay of the ‘base’ and ‘new’ pages with their differences high-
lighted.

Life, the Universe, and CSS Tests

183

Figure 3. AHRTS individual report differences page

Figure 4 illustrates the overlaying of the ‘base’ and ‘new’ results and the high-
lighting of their differences.

Figure 4. AHRTS difference reporting

2.2. Customized AHRTS Reports
When I started working with AHRTS, it was to check the effect of my changes to
XSL-FO processing. I didn’t want to look through pages of results to spot the ones
with differences, so I used AHRTS and I used the Jenkins Continuous Integration
Server to automate the running of both the formatter and AHRTS.

AHRTS generates its listing of differences as an XML file, and its PDF reports
are produced by using XSLT to generate XSL-FO that is formatted using a built-in
version of AH Formatter. Since the presentation aspects come from the XSLT, I
also made an alternative XSLT stylesheet that groups tests by their results. From
there, it wasn’t much more effort to add counts of each result type.

Figure 5 shows a portion of the overview report produced using the ‘alterna-
tive’ stylesheet that is included with AHRTS 1.4.

Life, the Universe, and CSS Tests

184

Figure 5. Alternate AHRTS overview report (detail)

With AHRTS 1.4, it’s now possible to include metadata from the ‘base’ and ‘new’
PDFs in the individual report, as Figure 5 shows.

Figure 6. Alternate AHRTS individual report (detail)

The XSLT stylesheet can be set in the AHRTS GUI’s ‘Settings’ tab, in the AHRTS
properties file, or on the AHRTS command line.

2.3. CSS Test Suite Results

When it was time to check the CSS features defined in some of the newer CSS
modules that were stable enough to be implemented, we looked again at how the
CSS WG reports its results.

The CSS WG has a comprehensive test suite of about 17,000 test files (and
growing) and has at least two test harnesses for looking at tests in a browser and
reporting results. The test harnesses obviously aren’t unusable when producing
PDF.

Figure 7 is a screenshot of a page from the main CSS test harness in action.
The buttons for selecting the status of the test result are highlighted.

Life, the Universe, and CSS Tests

185

Figure 7. CSS test harness

The CSS WG reports test results as one of five categories [1]:

pass Test passes

fail Test fails

na Test does not apply

invalid Test is invalid

? Can’t tell or don’t know

Since I was already using Jenkins to run both AH Formatter and AHRTS,
rather than adding or writing yet another application, I wanted a simple way to
use Jenkins to collect CSS test results. I made a version of the XSLT for individual
reports that added a set of links, one for each CSS test result state plus a sixth that
just copies the test’s PDF file. Each link triggers the same ‘testresult’ Jenkins job
but provides different parameters, most noticeably the parameter indicating the
test result state.

Figure 8 shows a portion of an individual AHRTS report with the links for the
test results highlighted.

Life, the Universe, and CSS Tests

186

Figure 8. AHRTS individual report with CSS result links

The ‘testresult’ Jenkins job simply runs an Ant task that appends the supplied
parameter values as a new line in a log file and also copies the test’s PDF to the
test job’s ‘base’ directory1. The next run of the AHRTS job uses the log file infor-
mation to display the test’s state alongside the indication of whether the current
result is the same as the base. And, since I already had similar plumbing for
counting tests with differences, the summary report also showed counts of the
reports with each state.

Figure 9 shows a portion of an overview report showing both counts of the
differences found by AHRTS and counts for each test result state.

Figure 9. AHRTS overview report with CSS status (detail)

2.3.1. Localization

Along the way, I also implemented some localization functions in XSLT to make it
easy to generate AHRTS reports in Japanese for use by colleagues in Japan. Fig-
ure 10 shows a similar portion of an overview report localized for Japanese.

1Ant works the same on both Linux and Windows, so using Ant avoids having to write both a Linux-
specific and a Windows-specific version of the same script.

Life, the Universe, and CSS Tests

187

Figure 10. Japanese AHRTS overview report with CSS status (detail)

AHRTS is written in Scala, and it uses Java property files in either textual or XML
format for run-time lookup of localized strings. AHRTS’s XML property localiza-
tion files are installed with AHRTS, so it was easy to write XSLT that would work
with them.

The localization XSLT functions support lookup of fixed strings:
<fo:block>
 <xsl:value-of select="axf:l10n('Test set: ')" />
 <xsl:value-of select="overview/@test-set" />
</fo:block>

which can be subverted to look up data in addition to the text that appears in the
formatted output:

<fo:simple-page-master
 master-name="report-page"
 page-height="{axf:l10n('-page-height')}"
 page-width="{axf:l10n('-page-width')}">
It also supports positional parameters for when the sentence structure differs

between languages:
<xsl:copy-of
 select="axf:l10n('Page %1 of %2',
 ($fo-page-number,
 $fo-page-number-citation-last))" />

2.4. HTML Report
However, and there’s always a ‘however’, I was now told that my colleagues in
Japan wanted an HTML report. Producing an HTML version of the current over-
view report was a straightforward reworking of parts of the existing XSL-FO
stylesheet. The HTML stylesheet reused some of the existing XSLT modules that

Life, the Universe, and CSS Tests

188

are more concerned with logic than with presentation. I was then told that they
wanted a report in a format similar to that which had been used previously when
testing SVG and MathML support, and they provided a copy of their current CSS
test results.

Figure 11 shows a portion of the HTML report being produced by staff in
Japan.

Figure 11. Manually produced HTML report (detail)

Their report just recorded the state of the test as ‘OK’ or ‘NG’ (No Good). The real
‘however’, however, was the possible additional comment about the test, issue
number, and status of the issue’s resolution.

Adding the extra fields to the PDF for an individual report was straightfor-
ward: instead of using just links, the test results were captured using an Acrobat
form.

So far, so good, but this had four problems:

• I couldn’t find a PDF reader for Linux that would submit the form, so had to
use Acrobat Reader on Windows.

• Acrobat would store every HTTP response from Jenkins in a different tempo-
rary file, and, for every response, Acrobat would pop-up a dialog box asking
permission to open the file. Acrobat Reader could be made to trust remote
sites, but apparently it can’t be set to trust local files.

• Acrobat also views filling in the form as a change to the file, so it wasn’t possi-
ble to close the file without Acrobat prompting to save the ‘changed’ file. I’ve
since been advised of a way to stop this, but by then I had already moved on
to using eXist-db.

Life, the Universe, and CSS Tests

189

• Acrobat could submit the form to Jenkins, and Jenkins could pass ASCII data
to Ant okay, but Japanese text in the comment field was garbled in a way that
I couldn’t decipher.
The encoding issue was the killer issue. It completely ruled out Jenkins for col-

lecting test results, even though Jenkins was still wanted for compiling the code
and running the tests. Collecting test results in a text file had always been a tem-
porary solution. The intention had always been to move to using an XML data-
base once the data was complex enough to justify doing so. The data still wasn’t
particularly complex, but the need to preserve the Japanese text made a good rea-
son to change.

2.5. eXist-db

So the project moved to using eXist-db [5]. I chose eXist-db partly because I was
more familiar with it than with BaseX, but also because I’d had more contact with
the eXist-db developers so I knew who to ask if I had problems. I did have prob-
lems, but eXist-db has an active and helpful mailing list as well as developers
who respond quickly to GitHub issues.

My approach to developing the eXist-db code was initially to copy and mod-
ify one of eXist-db’s demo apps. This worked, but the eXist-db documentation has
evolved over time, and older documentation advises separate XQuery modules in
the ‘modules’ collection, whereas newer documentation favors (almost) all
XQuery code for the app in a single ‘modules/app.xql’ file.

Figure 12. App ‘About’ page and default page for a new application

Life, the Universe, and CSS Tests

190

The initial attempt to use eXist-db was by inserting a link to the eXist-db ‘app’ in
the PDF of an individual test result. I had also tried making eXist-db return a 206
HTTP response code and no response body (to avoid one of the problems with
Acrobat) but I couldn’t get that to work.

3. eXist-db Application

Share and enjoy!
—Sirius Cybernetics Corporation motto

An XML database could solve the problem of how to store the data about the
tests, but that didn’t solve the rest of the problems with the form in the PDF file.
The usability breakthrough came when, instead of putting the form in the PDF, I
put the PDF inside the form and created an eXist-db ‘app’ for reviewing test
results in a web browser.

Figure 13 shows the first version of an individual report served from eXist-db,
and Figure 14 shows a more recent version of an individual report.

Figure 13. Initial individual result page (reduced)

Life, the Universe, and CSS Tests

191

Figure 14. Later individual result page (reduced)

3.1. Loading

A sequence of Jenkins jobs runs AH Formatter on the CSS tests then runs AHRTS
to compare the latest result with a set of ‘base’ PDF files. The Jenkins job that runs
AHRTS also uploads the AHRTS-generated XML files to eXist-db.

The XML for the overview report begins:

<overview date="2017-05-05T20:36:42.638+01:00"
 overview-report-title="Vxx-ref-70-ahrts-csswg-test-pdf #252"
 test-set="reports">
 <compare name="WOFF2-UserAgent=Tests=xhtml1=available-001.xht"
 module="WOFF2-UserAgent"
 missing-input-file="false" error-detected="false"
 individual-report-unicode-safe-filename-pdf=
 "000000001_97421a4c.pdf"
 fatal-error="false" difference-detected="true"

Life, the Universe, and CSS Tests

192

 individual-report-pdf=
"report-WOFF2-UserAgent=Tests=xhtml1=available-001.xht-97421a4c.pdf">
 <warn name="pdf-annotation">どちらの PDFにも注釈タグが含まれています。
 タグは、レポートに埋め込まれた PDFには表示されませんが、比較に含まれます。
</warn>
 </compare>
This XML is augmented before being uploaded to eXist-db to add the log from

AH Formatter and to pre-compute some values.
The individual PDF files from AHRTS are also uploaded into the database.

Storing PDF is arguably not a good use for an XML database, but it is much sim-
pler than storing the PDFs elsewhere on the application server and then using
URL rewriting to access them. My colleagues in Japan operate their own eXist-db
instance, which was set up for them by their IT support staff with whom I have
no contact. Since no-one in the Japan office had used eXist-db before, keeping the
database installation as simple as possible is, for the moment, more important
than shaving a few milliseconds off the time to serve a two-page PDF file.

3.2. Summary view
It is straightforward to use XQuery to generate a summary page from the over-
view XML. Early versions of the application generated a single HTML page with
results for every test. Following a request by my colleagues in Japan, more recent
versions present one module at a time, as shown in Figure 15:

Figure 15. Summary page

In theory, every top-level directory in the CSS tests corresponds to a same-named
CSS Recommendation or Working Draft. In practice, some of the directory names
differ from the short name of the module they test. Also, CSS 2.1 has nearly
10,000 tests, so the subdirectories of the CSS2 directory – CSS2/ colors, CSS2/
fonts, and so on – are treated as separate modules just to keep things more man-
ageable2.

Life, the Universe, and CSS Tests

193

3.3. Individual test results
A sample testresults.xml file containing the information recorded about the
results of a single test is shown below:

<testresult date="20170630"
 ahf-version="AH Formatter Vx.x A0 for Linux64 : x.x.0.29482
(2017/06/27 09:25JST)">
 <d2/>
 <g4>OK</g4>
 <comment>r28137：NG（Letters of the "Don't Panic" aren't friendly
enough.） r29557：OK</comment>
 <issue>12345</issue>
</testresult>
The format of the XML was determined, firstly, by the information that was

already being recorded by my colleagues in Japan (see Section 2.4) and, secondly,
by needing a simple, ‘XForms-able’ form for the XML. eXist-db ships with two
XForms implementations [6] – XSLTForms, which works client-side, and better-
FORM, which works server-side. Indeed, the template XForms instance existed
before the first results could be added to the database.

Once the XML format was decided, two simple XSLT stylesheets were written
to convert the pre-existing log file and HTML results into testresult.xml files
that were then uploaded to eXist-db to bring the database up-to-date.

3.4. Fatal Attraction
Files with fatal errors are sometimes the most interesting tests. However, they’re
rather less interesting if you don’t know why they failed, and are totally uninter-
esting if you don’t know that they exist.

AHRTS compares PDF output from AH Formatter, but it has nothing to work
with if AH formatter aborts with a fatal error because of a problem in its source.
Reporting files with fatal errors to eXist-db and including the logs from all tests
required more interdependency between Jenkins jobs and between Jenkins and
eXist-db.

Firstly, the Jenkins job that runs the formatter had to be modified to save the
formatter’s log. Secondly, the Jenkins job that runs AHRTS was modified to add
XSLT transforms that augment the AHRTS overview XML to add compare ele-
ments for tests with fatal errors and add log elements to (almost) every compare.

The first attempt at saving the formatter log saved the log from the entire test
suite as one file and used XSLT to split the text when adding log elements to the
overview XML. However, some of the tests generated control characters in the log
– for example, the "\f" in \format is a hexadecimal character reference that pro-

2With 1,332 CSS2/borders tests and 1,119 CSS2/tables tests, ‘manageable’ is a relative term.

Life, the Universe, and CSS Tests

194

duces a literal Ctrl-o in the log. That could be handled by switching the XSLT pro-
cessing to use XML 1.1, which allows control codes in the form , etc. The
literal control code wasn’t a problem for the unparsed-text() function, but even
the unparsed-text() function and XML 1.1 couldn’t cope with an unpaired Sur-
rogate Pair character code. To avoid a problem with one file affecting all logs, the
current processing: saves the log from each test as a separate log file; prepends
and appends markup to each log to make the log text be in a CDATA section in a
log element; then accesses the XML logs from XSLT by using collection(). Tests
with fatal errors now show up in the eXist-db app. All except a handful of test
results also have the log from running the test.

Making changes to the XML before uploading it to eXist-db is a slippery
slope. The same Jenkins job now also runs more XSLT to group the compare ele-
ments by module and to pre-compute and annotate the compare elements with
the result of a per-compare calculation that was previously done on-the-fly in
eXist-db.3

3.5. Import and Export
As stated above, my colleagues in Japan also operate their own eXist-db instance
with their own copy of the app. The Japan office maintains the master copy of the
test results, so it was necessary to add a way to export results from my database
for import into their database. eXist-db has XQuery functions for reading and
writing Zip files [7], so this was quite easy.

3.5.1. Export

The web page for selecting the module or modules to export, and the date range
of results from those modules, is shown below.

3I had previously tried the same sort of grouping and pre-calculation after uploading by using a trig-
ger in eXist-db [8]. The trigger worked with eXist-db on Linux but not with eXist-db on Windows, so I
did not continue with it.

Life, the Universe, and CSS Tests

195

Figure 16. Export page

Clicking ‘Next’ takes you to a page where you can review your selection before
generating the Zip file to be downloaded. eXist-db provides a
compression:zip() function that takes a sequence of sources to zip. The sources
can either be an URI referring to a resource in the database or an entry element
for adding content to the Zip file on-the-fly. The exported Zip file contains the test
results plus manifests of what is being exported so that a person can make sense
of what’s in each Zip file. In principle, multiple export Zip files can be unzipped
into one directory with no overlap of their metadata files (other than export.xml)
and the sum of the test results can then be uploaded manually using, e.g., eXist-
db’s Java client. In practice, no-one has had to do that, since the import facility has
yet to cause a problem.

let $job as xs:string := request:get-parameter("job", ()),
 $start-date as xs:string :=
 request:get-parameter("start-date", ()),
 $end-date as xs:string :=
 request:get-parameter("end-date", ()),
 $modules as xs:string+ :=
 request:get-parameter("modules", ()),
 $all-modules as xs:string* :=
 request:get-parameter("all-modules", ()),
 $comment as xs:string? :=
 request:get-parameter("comment", ()),
...
 $tests-list-entry-name as xs:string :=
 concat("tests-", $basename, ".txt"),
 $tests-list-entry as element(entry) :=
 <entry name="{$tests-list-entry-name}"
 type="text" method="deflate">{
 string-join(($tests, ""), "
")

Life, the Universe, and CSS Tests

196

 }</entry>,
 $export-entry as element(entry) :=
 <entry name="export.xml" type="xml" method="store">
 <export
 version="{$export-format-version}"
 job="{$job}"
 start-date="{$start-date}"
 end-date="{$end-date}"
 modules="{$modules-list-entry-name}"
 tests="{$tests-list-entry-name}"
 comment="{$comment-entry-name}"
 /></entry>,
 $testresults as xs:anyURI* :=
 for $test in $tests return
 xs:anyURI(concat($compare-output-base-uri,
 $test,
 '/testresult.xml')),
 $version-entry as element(entry) :=
 <entry name="version.txt" type="text"
 method="deflate">{$export-format-version}</entry>,
 $zip-name as xs:string := concat($basename, ".zip"),
 $zip := compression:zip(($export-entry,
 $version-entry,
 $comment-entry,
 $modules-list-entry,
 $tests-list-entry,
 $testresults),
 true(),
 concat($ahrts-data-home, $job))
return (
 response:set-header("Content-Disposition",
 concat("attachment; filename=",
 $zip-name)),
 response:stream-binary($zip, "application/zip", $zip-name)
)

An example export.xml file is below:

<export version="0.1" job="Vxx-ref-70-ahrts-csswg-test-pdf"
start-date="20160101" end-date="20170506"
modules="modules-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-
styles-3-20160101-20170506.txt"
tests="tests-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-styles-
3-20160101-20170506.txt"
comment="comment-Vxx-ref-70-ahrts-csswg-test-pdf-css-counter-
styles-3-20160101-20170506.txt"/>

Life, the Universe, and CSS Tests

197

3.5.2. Import

The web page for selecting an export Zip file to import is shown below:

Figure 17. Import form

The only difficulty with importing test results is knowing what to do when the
imported data has a result for a test that already has a result in the database. The
form offers four alternatives:
Replace A result in the imported data replaces an existing result.
Keep Do not import a result for which there is an existing result.
Newest Use the newer of the imported or existing result for a test. When both

have the date, keep the existing result.
Cancel Import the results from the import Zip file only if it has no duplicates

with existing results.
Importing a zip file also shows a summary of the imported data and the result

of any merges:

Figure 18. Import check page (detail)

Life, the Universe, and CSS Tests

198

eXist-db also makes it easy to unzip files. The compression:unzip() function
takes function arguments that are used, firstly, to filter out Zip-file entries that are
not to be extracted – in this case, the export.xml and textual metadata files – and,
secondly, to do the actual storing of extracted resources. Since the app shows a
summary of the imported data and the result of any merges, this second function
simply returns information about the resource. This information is to generate the
table of results and is then reused to control the storing of the data.

declare function
local:filter($path as xs:string,
 $data-type as xs:string,
 $param as item()*) as xs:boolean {
 if ($path eq 'export.xml' or ends-with($path, '.txt'))
 then false()
 else true()
};

declare function
local:lookup($path as xs:string,
 $data-type as xs:string,
 $data as item()?,
 $param as item()*) {
 let $job as xs:string := $param[1],
 $merging as xs:string := $param[2],
 $existing-path as xs:string :=
 concat($ahrts-data-home, $job, '/', $path),
 $existing as document-node()? :=
 if (doc-available($existing-path))
 then doc($existing-path)
 else (),
 $action as xs:string :=
 if (exists($existing))
 then if ($merging eq 'replace')
 then 'replace'
 else if ($merging eq 'keep')
 then 'keep'
 else if ($merging eq 'newest')
 then if ($data/testresult/@date/string() >
 $existing/testresult/@date/string())
 then 'newest-replace'
 else 'newest-keep'
 else if ($merging eq 'cancel')
 then 'conflict'
 else 'error'
 else 'new'
 return

Life, the Universe, and CSS Tests

199

 [$path, $action, $data, $existing]
};

declare function
local:import-zip($file as element(file),
 $job as xs:string,
 $merging as xs:string) as item()* {
 let $filter :=
 function-lookup(QName('http://www.w3.org/2005/xquery-
local-functions',
 'filter'), 3),
 $list := function-lookup(QName('http://www.w3.org/2005/
xquery-local-functions','lookup'), 4),
 $results as array(*)* :=
 compression:unzip($file, $filter, (), $list,
 ($job, $merging)),
 $html := local:results-to-html($results),
 $conflict as xs:boolean :=
 some $result in $results
 satisfies $result(2) = 'conflict'
 return
 (...,
 if ($conflict)
 then local:alert("Conflicts between imported and
existing test results. Cannot continue")
 else (<p>{local:store-results($job, $results)}</p>,
 local:success("Inserted " ||
 count($results[?2 = 'new']) ||
 " results."),
 local:success("Replaced " ||
 count($results[?2 =
 ('replace', 'newest-replace')]) ||
 " results."))
)
};

3.6. Running Jenkins from eXist-db
The eXist-db app copies a test’s PDF output to the appropriate AHRTS ‘base’
directory using the same ‘testresult’ Jenkins job that was used back when updat-
ing was done using links in the AHRTS individual report PDF files. This, too, is
straightforward since the eXist-db app can make a HTTP request to Jenkins to
remotely trigger execution of the Jenkins job.

(: Get Jenkins to copy the 'new' PDF to the 'base' PDF directory :)
declare function common:jenkins-update($job as xs:string,
 $test as xs:string) {

Life, the Universe, and CSS Tests

200

let $config-uri := concat($common:ahrts-data-home, $job,
 '/jenkins-config.xml'),
 $config as element(jenkins-config)? :=
 if (doc-available($config-uri))
 then doc($config-uri)/jenkins-config
 else ()
 return
 if (exists($config))
 then let $external-destination :=
 concat('http://', $config/host, ':',
 $config/port, '/job/',
 $config/updatejob, '/buildWithParameters'),
 $copy-uri :=
 concat($external-destination,
 '?',
 'RESULT=copy&PDFDIR=',
 encode-for-uri($config/pdfdir),
 '&TESTNAME=',
 encode-for-uri($config/testname),
 '&EDITION=',
 encode-for-uri($config/edition),
 '&VERSION=',
 encode-for-uri($config/version),
 '&NEWPDF=',
 encode-for-uri($test),
 '.pdf'),
 $get := httpclient:get($copy-uri, false(), ())
 return $copy-uri
 else ()
};

3.7. XForms or Bootstrap?
"Wait a minute," shouted Ford Prefect. "Wait a minute!"

He leaped to his feet and demanded silence. After a while he got it, or at least
the best silence he could hope for under the circumstances: the circumstances were
that the bagpiper was spontaneously composing a national anthem.

"Do we have to have the piper?" demanded Ford.
"Oh yes," said the Captain, "we’ve given him a grant."

—The Restaurant at the End of the Universe, Douglas Adams

When developing an XML project that uses a web browser, it’s hard to avoid
thinking that you should use XForms. eXist-db ships with two XForms imple-
mentations, and so the first versions of the eXist-db dutifully used XForms for
collecting input. However, eXist-db also ships with the Bootstrap, which is the
HTML, CSS, and JavaScript framework that provides the look-and-feel of a large

Life, the Universe, and CSS Tests

201

proportion of sites on the Web. Two of the three provided templates for an eXist-
db app install Bootstrap in the new app, and, as shown in Figure 12, the current
app’s pages that do not need forms do use the Bootstrap-based eXist-db design.
eXist-db also provides an "HTML Templating Module" [10] that makes it easy to
generate HTML pages, but none of the XForms examples in the documentation
use it.

Bootstrap can also style HTML forms [11]. Partly to provide a consistent ‘look’
for the app, but mostly because the XForms pages looked dated compared to the
Bootstrap pages, all but one of the original XForms in the app have been replaced
by HTML forms that are styled using Bootstrap. Can you pick which of the pre-
ceding screen shots uses an XForm?4

It is possible to achieve a ‘mostly-Bootstrap’ appearance by combining Boot-
strap classes for structural elements with XForms markup for the form fields, for
example:

<div class="form-group">
 <label class="col-xs-2 col-sm-2 control-label">Import
File</label>
 <div class="col-sm-10">
 <xf:upload id="upload1" ref="file"
 mediatype="application/x-zip-compressed"
 accept="application/x-zip-compressed">
 <xf:filename ref="@filename"/>
 <xf:mediatype ref="@mediatype"/>
 <xf:size ref="@size"/>
 </xf:upload>
 Select
the test results export file to import.
 </div>
</div>

but the end result is still unsatisfactory since some parts of the form don’t quite
line up correctly and some aspects of the styling, such as the appearance of the
buttons, can’t be worked around, as shown in the following figure.

Figure 19. Bootstrap and XForms ‘Import’ buttons

4It’s Figure 17. It still uses an XForm since I had trouble when submitting an uploaded file plus other
parameters to eXist-db.

Life, the Universe, and CSS Tests

202

3.8. HTML Templating

The HTML templating mechanism [10] is separate from Bootstrap. It provides a
convenient mechanism for generating HTML pages since:
• The bones of a class of pages can be provided by a single structural template

HTML file.
• An individual HTML page contains the HTML markup for just the part of the

template – e.g., a div in the body – that are specific to that page.
• That HTML markup can include data-* attributes to specify XQuery func-

tions and function parameters. The result of an XQuery function can replace
or be wrapped by the markup in the HTML file. Alternatively, the XQuery
function can add values to an XQuery map that is available to all XQuery
functions that are called for elements nested within the current HTML ele-
ment.

• The framework also handles HTML parameters, which means less house-
keeping code in your XQuery.
The theory, from the documentation, is that:

Ideally people should be able to look at the HTML view of an application and mod-
ify its look and feel without knowing XQuery. The application logic - written in
XQuery - should be kept separate. Likewise, the XQuery developer should only
deal with the minimal amount of HTML which is generated dynamically.

My practice, however, has tended towards putting a minimum in the HTML:
<div xmlns="http://www.w3.org/1999/xhtml"
 data-template="templates:surround"
 data-template-with="templates/report-page.html"
 data-template-at="content">
 <div class="col-md-12" data-template="app:individual">
 <div class="row">
 <div class="col-xs-10 col-sm-10">
 <h1 data-template="app:individual-title">Generated page</h1>
</div>
<div class="col-xs-2 col-sm-2">

</div>
 </div>
 <div data-template="app:individual-form"/>
 <div data-template="app:individual-nav"/>
 <div data-template="app:individual-pdf"/>
 <div data-template="app:individual-log"/>
 </div>
</div>

Life, the Universe, and CSS Tests

203

and doing more in the XQuery:

(: Populate $model for an individual page. :)
declare
 %templates:wrap
function app:individual($node as node(),
 $model as map(*),
 $job as xs:string,
 $test as xs:string) {
 let $report as element(report)? :=
 doc(concat($app:data-home, $job, '/compareOutput/',
 $test, '/base_vs_new.xml'))/report,
 $result := $report/analysis/result,
 $base as xs:string? :=
 $result/inputfile[@version = 'base']/string(),
 $new as xs:string? :=
 $result/inputfile[@version = 'new']/string(),
 $compare :=
 doc(concat($app:ahrts-data-home, $job,
 '/reports/digest_vs_reports.xml'))
 /overview/compare[@name eq $test],
 $prev as xs:string? :=
 $compare/preceding-sibling::compare[1]/@name/string(),
 $next as xs:string? :=
 $compare/following-sibling::compare[1]/@name/string(),
 $pdf as xs:string? :=
 $compare/@individual-report-pdf/string(),
 $log as element(log)? := $compare/log
 return
 map { "report" := $report,
 "compare" := $compare,
 "prev" := $prev,
 "next" := $next,
 "pdf" := $pdf,
 "log" := $log }
};

(: Page title for an individual page. :)
declare function
app:individual-title($node as node(),
 $model as map(*),
 $job as xs:string,
 $test as xs:string?) {
 let $report := $model("report")
 return
 (<h1 class="main-title"><a href="index.html"
>{$config:expath-descriptor/expath:title/text()}</h1>,

Life, the Universe, and CSS Tests

204

 <h3 class="report-title">
 {
 if (exists($report))
 then $report/@overview-report-title/string()
 else $job
 }
 </h3>,
 if (exists($test))
 then <h2>{translate($test, '=^', '//')}</h2>
 else ())
};
I find that the templating mechanism works quite well and is easy to use once

you get the hang of it. One problem, however, is that the keys of the map entries
are not validated, so a typo where the key is defined or anywhere where it is ref-
erenced can lead to a mysterious empty sequence simply because the keys don’t
match.

3.9. ‘=’ in file names

AHRTS can currently only compare files in two directories, and it does not look
into subdirectories. Most test suites – including the CSS test suite – have files
arranged in subdirectories. To get around this difference, the Jenkins job that runs
the formatter would write the PDFs to file names where ‘=’ (which does not
appear in any test file names) was used in place of the directory separator. This
worked fine before eXist-db was used. However, ‘=’ needs to be escaped in
parameters in URLs, and using ‘=’ in file names exposed multiple bugs in eXist-
db. For example, collections with names containing ‘=’ can’t be opened in the
eXide editor’s ‘Manage’ interface, and the only way found for deleting them is by
using eXist-db’s Java interface.

To their credit, the eXist-db developers responded quickly to the initial bug
reports, but fixing them all will take time. It was simply more reliable to just use a
different separator character sequence, but doing that required a lot of renaming
of files on Jenkins’s file system and renaming resources in eXist-db. Since the PDF
files with ‘=’ in their file names couldn’t be renamed programmatically, the collec-
tion that contained them had to be deleted and a whole new set of PDFs uploa-
ded.

3.10. CSS Tests now Web Platform Tests

In the first half of 2017, the CSS Working Group migrated their tests from their
own GitHub repository to being under a subdirectory of the Web Platform Tests
project. Several of the modules were renamed during the migration, so it was nec-
essary to migrate the corresponding test results to new URIs to match.

Life, the Universe, and CSS Tests

205

It is unlikely that export files from before the changeover will ever be needed
again but, just to make sure that nothing is lost, the code for importing test results
now handles both old file names containing ‘=’ and old, pre-WPT module names
and maps them to current usage.

3.11. Localization
The practical upshot of this is that if you stick a Babel fish in your ear you can
instantly understand anything said to you in any form of language.

—Hitchhiker’s Guide to the Galaxy, Douglas Adams

The current ‘app’ is almost completely localized for both English and Japanese.
Some localization into English was necessary because the ‘D2’ states were initially
only provided as Japanese text. Some of the localizations into Japanese were rol-
led back at the request of my colleagues in Japan because they found the English
easier to understand than the notionally equivalent nouns and verbs that I
plucked from an online English–Japanese dictionary.

eXist-db has a localization library [12] that uses files with a format that is very
similar to Java XML property files.

<catalogue xml:lang="ja">
 <msg key="Comment">コメント</msg>
 <msg key="Date">日</msg>
 <msg key="Diff">相違</msg>
 <msg key="Issue">発行</msg>
 <msg key="Test">テスト</msg>
</catalogue>

Localizations are applied using i18n:text elements in a mechanism similar to
the HTML templating mechanism:

<tr>
 <th><i18n:text key="Test">Test</i18n:text></th>
 <th><i18n:text key="Diff">Diff</i18n:text></th>
 <th>D2</th>
 <th>G4</th>
 <th><i18n:text key="Comment">Comment</i18n:text></th>
 <th><i18n:text key="Issue">Issue</i18n:text></th>
 <th><i18n:text key="Date">Date</i18n:text></th>
</tr>

This works well enough, but language selection (in my opinion) is not straightfor-
ward, and the standard library does not provide the option of selecting the lan-
guage from the browser’s Accept-Language header. At present, the app uses its
own version of the i18n library that is based on a version [13] by Wolfgang Meier,
one of the eXist-db developers. This version can use either the Accept-Language
header or a language setting configured in the app.

Life, the Universe, and CSS Tests

206

Using elements to handle localization isn't helpful for localizing attribute val-
ues. The functions provided for use from XQuery require specifying both the
path to the localization files and the current language, plus repeating the text in
the i18n:text element’s content and its key attribute seemed redundant. I made
some convenience functions that: wrap the regular i18n processing; operate on
both text and attribute values; get the localization files’ path and language from
the app’s configuration; and require only one copy of the text being localized. For
example:

<input type="text" class="form-control" name="issue" id="issue"
 placeholder="{common:i18n-text('Issue numbers')}"
 value="{$testresult/issue/string()}" accesskey="i"/>

No method has yet been found to localize the messages popped up by the Better-
Forms XForms implementation.

3.12. Dashboard
As stated previously, the mass of tests is divided into modules to make the work
more manageable. Information about the modules and their relative priorities
was initially maintained as a wiki page, but that was later migrated to a spread-
sheet. When my colleagues in Japan wanted to also see the priorities in the eXist-
db app, I both added a mechanism to paste tab-delimited text from the priorities
spreadsheet into the app and provided a dashboard summarizing the results for
each module and each priority level.

Over time, however, my colleagues in Japan have requested additional infor-
mation on the dashboard for combinations of test result status values that are use-
ful to them, as shown in Figure 20.

And despite their being the impetus for dividing the summary view by mod-
ule, they also requested views of all tests with particular status combinations, as
shown in Figure 21.

4. Variations
One of the troublesome circumstances was the Plural nature of this Galactic Sec-
tor, where the possible continually interfered with the probable.

—Mostly Harmless, Douglas Adams

Two local variations have been developed: testing a local fork of the AH Format-
ter code and checking XSL-FO test results.

4.1. Testing an AH Formatter fork
When a local fork of the AH Formatter code has changes that are not yet in the
main AH Formatter code base, the local fork can produce output that is different

Life, the Universe, and CSS Tests

207

from the output of the main AH Formatter code base. The output can also change
as changes are made in the local fork. The current output from the fork need to be
checked against both the previous output from the fork and the current output
from the main code.

Each job in the eXist-db app can be configured to refer to a ‘reference’ job. The
individual result pages for each test in that job will also show the AHRTS indi-
vidual report PDF for the corresponding test in the ‘reference’ job. This allows the

Figure 20. Dashboard

Figure 21. New summary views

Life, the Universe, and CSS Tests

208

results from testing the fork to be compared against the corresponding results
from testing the main code. It also allows the results from testing the main code
to be compared against the results from testing the current public release of AH
Formatter.

4.2. Testing XSL-FO
Using the combination of Jenkins, AHRTS, and eXist-db to run AH Formatter on
XSL-FO tests and make the results available for review is almost the same as
when testing CSS. The only differences are:
• The XSL-FO tests do not have the same ‘module’ structure.

The XSL-FO tests are arranged into demodata and testdata directories
that each have multiple subdirectories under them. The Jenkins configuration
for jobs that run XSL-FO tests simply use a different XSLT file when grouping
the compare elements by module. The XSLT file imports the same XSLT files
that are used when processing CSS test results and overrides the single XSLT
function that handles the grouping into modules.

<xsl:import href="ahrts-prep-for-xmldb.xsl" />

<!-- ahf:compare-module($compare as element(compare)) as xs:string?
 Returns the module name to use for $compare. Used when
 grouping <compare> into <module>. -->
<xsl:function name="ahf:compare-module" as="xs:string?">
 <xsl:param name="compare" as="element(compare)" />

 <xsl:sequence
 select="string-join(tokenize($compare/@name,
 $directory-separator-regex)
 [position() <= 2],
 $directory-separator)" />
</xsl:function>

• XSL-FO test results are not categorized by stability level.
The per-job setting in the eXist-db app allow a job to be configured as an

‘XSL-FO’ or ‘CSS’ job. The summary and dashboard pages for XSL-FO jobs do
not show the stability information that is shown for CSS jobs.

5. Conclusion
So long, and thanks for all the fish.

—So Long, and Thanks for All the Fish, Douglas Adams

Feedback from colleagues in Japan has been uniformly positive. The effort
required to correct problems and fill in comments is about the same as for the
previous HTML form, but the advantages that they stated include:

Life, the Universe, and CSS Tests

209

• Using AHRTS for automatically identifying changed test results is a big
advantage.

• Managing the tests is much more effective than with the HTML report.
• Having the test result status, comment, AHRTS report, and AH Formatter log

on one page is useful.
• The extra functionality added during the course of the project has made it

even more useful.
• The system has saved time and effort.

Developing a system for checking the results from 17,000 CSS tests has had a
few twists and turns, but the current implementation as an eXist-db app fits the
requirements as they have developed over time, is proving useful, and has made
the task much easier.

Bibliography
[1] https://​lists.w3.org/​Archives/​Public/​public-css-testsuite/​2010Aug/​0020.html,

Implementation Report Template for CSS2.1 Test Suite
[2] https://​www.antennahouse.com/​antenna1/​antenna-house-regression-testing-
system/, Antenna House Regression Testing System

[3] https://​www.w3.org/​Style/​XSL/​TestSuite/​tools/​testsuite.dtd, XSL 1.0 Test Suite
DTD

[4] https://​www.w3.org/​Style/​XSL/​TestSuite/​index.html, XSL 1.0 Test Suite
[5] http://​exist-db.org/​exist/​apps/​homepage/​index.html, eXist-db
[6] http://​exist-db.org/​exist/​apps/​doc/​xforms.xml, eXist-db ‘XForms Introduction’
[7] http://​exist-db.org/​exist/​apps/​fundocs/​view.html?uri=http://​exist-db.org/
xquery/
compression&location=java:org.exist.xquery.modules.compression.Compressi
onModule, eXist-db Compression module

[8] http://​exist-db.org/​exist/​apps/​doc/​triggers.xml, eXist-db "Configuring
Database Triggers"

[9] http://​getbootstrap.com/, Bootstrap
[10] http://​exist-db.org/​exist/​apps/​doc/​templating.xml, eXist-db "HTML

Templating Module"
[11] http://​getbootstrap.com/​css/​#​forms, Bootstrap Forms
[12] http://​exist-db.org/​exist/​apps/​demo/​examples/​special/​i18n-docs.html, eXist

i18n XQuery Module Documentation

Life, the Universe, and CSS Tests

210

https://lists.w3.org/Archives/Public/public-css-testsuite/2010Aug/0020.html
https://www.antennahouse.com/antenna1/antenna-house-regression-testing-system/
https://www.antennahouse.com/antenna1/antenna-house-regression-testing-system/
https://www.w3.org/Style/XSL/TestSuite/tools/testsuite.dtd
https://www.w3.org/Style/XSL/TestSuite/index.html
http://exist-db.org/exist/apps/homepage/index.html
http://exist-db.org/exist/apps/doc/xforms.xml
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/compression&location=java:org.exist.xquery.modules.compression.CompressionModule
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/compression&location=java:org.exist.xquery.modules.compression.CompressionModule
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/compression&location=java:org.exist.xquery.modules.compression.CompressionModule
http://exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/compression&location=java:org.exist.xquery.modules.compression.CompressionModule
http://exist-db.org/exist/apps/doc/triggers.xml
http://getbootstrap.com/
http://exist-db.org/exist/apps/doc/templating.xml
http://getbootstrap.com/css/#forms
http://exist-db.org/exist/apps/demo/examples/special/i18n-docs.html

[13] http://​markmail.org/​message/​l7x6bfyyg3ohwlna, Re: [Exist-open] I18n and
'Accept-Language' header?

Life, the Universe, and CSS Tests

211

http://markmail.org/message/l7x6bfyyg3ohwlna

212

Form, and Content
Data-Driven Forms

Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Because of the legacy of paper-based forms, modern computer-based forms
are often seen as static data-collection applications, with rows of rectangular
boxes for collecting specific pieces of data. However, they have far more
opportunities for being dynamic, checking data for consistency, leaving out
fields for non-relevant data, and changing structure and detail to match the
data-filling flow. Furthermore, data is no longer limited to pure textual
input, but can be entered using any method that is available on a computer.

While classically it is the form that drives the data produced, this paper
examines how forms can be data-driven, for structure, for presentation, and
for execution, and proposes that our view of forms have been severely
impaired by the paper-based legacy.

Keywords: XML, XForms, Forms, Data-driven

1. Introduction
Throughout history, when new technologies have been introduced, there has
been a tendency for them to imitate the old technologies they are repalcing before
they iterate to their proper embodiment.

For instance, the first printed books looked like hand-written manuscripts, by
using a typeface that imitated handwritten text, making them much harder to
read than necessary; the first cars looked like horse-drawn carts without the
horse, partly because that was what people could make at the time, but also
because horse-drawn carts were what they were seen to be replacing — looking
back from a modern perpective it is astonishing how long it took for anyone to
have the bright idea of actually enclosing the driver in a space protected from the
elements; and modern computer applications (such as agendas) often imitate
their real-life counterparts in excruciating detail.

Digital forms have in a similar way long been held back by the history of
paper-based form-filling. In the early days of the Web, in this author's experience,
many managers required their online forms to be identical to their paper-based
equivalents, even though this meant not being able to use facilities that would
otherwise have made them much easier to use.

213

As online production and usage matures, so has the online form-filling experi-
ence improved. There are now a small number of standardised form develop-
ment languages. However, form development is often still largely based around
the static idea of the form filling experience, for example [2].

It is time to move up a level of abstraction. Forms are about data collection,
and traditionally the shape of the form drives the shape of the data. This paper
investigates how the data can drive the form, and shows that things that we
might not traditionally see as forms can be viewed as data collection.

1.1. XForms

XForms [4], [5] is an XML-based markup language, originally designed only for
traditional-style forms, but in later iterations generalised to more widely-applica-
ble usage.

A principle feature of the language is its separation of data and associated
data description from the actual controls used to display and enter the data. This
separation of concerns can be compared to the separation of content and styling
done with style sheets, and has similar advantages, making the data more tracta-
ble, and facilitating reuse.

The data in XForms is contained in a model that consists of any number of
XML instances, which can be loaded from external sources, along with descrip-
tions of properties and relationships that nodes in the data may have.

Controls in the user interface are then bound to data nodes using XPath
expressions [3]. For instance:

<input ref="cc-number" label="Credit card number"/>

An example data property is relevance. As a simple example, the credit-card
number to be input can be marked in the model as being relevant only if the
method of payment is by credit card:

<bind ref="cc-number" relevant="../payment-method = 'credit'"/>

Controls bound to values that are not relevant, as well as controls bound to ele-
ments that are simply not present in the instance data, are disabled: they are not
visible to the user, and they can't be used for input. As will be seen, this is an
essential element of data-driven forms.

XForms is a W3C standard; a new version, 2.0, is in preparation [6], and some
facilities of XForms 2.0 are used in the examples that follow.

This paper presents three case studies of the use of data-driven forms: one of
data-driven structure, one of data-driven presentation, and the last of data-driven
execution.

Form, and Content

214

1.2. What is a Form?
A traditional form is no more than a method of data-collection, taking input from
a user and storing it somewhere. Computer-based forms however are becoming
steadily more dynamic, for instance, partially filling in an address based on the
entry of a postcode, or calculating the final amount based on what you have
ordered, the taxes, and the delivery costs. Clearly, modern forms deal with input
from a user, but do calculation and output as well. Is a log-in dialogue box a
form? Yes, it is. Is a widget asking you to move a pointer on a map to indicate the
location you want to share a form? It can be so construed. As forms become more
and more dynamic, the distinction between 'form' and 'application' becomes
steadily more nebulous. This paper consequently uses a liberal definition of what
constitutes a form.

2. Data-driven Structure: A Questionnaire
The first case study is a classic data-collection form. It is based on one produced
for an Internet community, for identifying potential improvements for the inter-
net. It has a short introduction, gives the user a choice of three options, and then
reveals a small number of questions, based on the choice. (The actual production
form was more complex, but for the sake of exposition, it has been compressed
here to the essence).

Something like this:

Before making choice After making choice

2.1. The Static Version
Since this is a classic style of form, in the most obvious and direct —static—
approach, the controls could look like this, where the user makes a choice:

Please help us discover problems and solutions that would improve our processes.

Form, and Content

215

<select1 ref="choice">
 <label>How can you help?</label>
 <item><label>You know a problem that needs to be fixed</label>
 <value>problem</value></item>
 <item><label>You know a 'solution' that doesn't work</label>
 <value>failure</value></item>
 <item><label>You have a prediction about a future possible failure</label>
 <value>prediction</value></item>
</select1>

and as a result of the choice, one of the options is displayed:
<switch ref="choice">

 <case name=""/> <!-- Until a choice is made, nothing is displayed -->

 <case name="problem">
 <group ref="problem">
 <label>You know a problem that needs to be fixed</label>
 <textarea ref="problem"><label>What problem do you see?</label></textarea>
 <textarea ref="solution"><label>Can you propose a solution?</label></textarea>
 </group>
 </case>

 <case name="failure">
 <group ref="failure">
 <label>You know a 'solution' that doesn't work</label>
 <textarea ref="problem">
 <label>What 'solution' will fail or cause trouble?</label>
 </textarea>
 <textarea ref="solution"><label>Can you propose a fix?</label></textarea>
 </group>
 </case>

 <case name="prediction">
 <group ref="prediction">
 <label>You have a prediction about a future possible failure</label>
 <textarea ref="problem"><label>What is your scenario?</label></textarea>
 <select1 ref="likely">
 <label>How likely is this scenario?</label>
 <item><label>High</label><value>1</value></item>
 <item><label>Medium</label><value>2</value></item>
 <item><label>Low</label><value>3</value></item>
 </select1>
 <textarea ref="who"><label>Who should address these issues?</label></textarea>
 <textarea ref="solution"><label>Can you propose a solution?</label></textarea>
 </group>
 </case>
</switch>

<submit><label>Submit</label></submit>

This uses the following structure for the data; for any one answer, only the values
for the selected case would get filled in:

<data>
 <choice/>
 <problem>

Form, and Content

216

 <problem/>
 <solution/>
 </problem>
 <failure>
 <problem/>
 <solution/>
 </failure>
 <prediction>
 <problem/>
 <likely/>
 <who/>
 <solution/>
 </prediction>
</data>

2.2. Making the Form Multi-lingual

One of the early decisions was to make the form multi-lingual. This involved cre-
ating an instance that contained all the labels and other texts:

<instance id="m">
 <messages xmlns="" lang="en">
 <intro>Please help us discover problems and solutions that would
 improve our processes.</intro>
 ...
 </messages>
</instance>

and in the body of the form:

<output ref="instance('m')/intro"/>
For the select1, the messages:

<choice>
 <label>How can you help?</label>
 <item value="problem">You know a problem that needs to be fixed</item>
 <item value="failure">You know a 'solution' that doesn't work</item>
 <item value="prediction">You have a prediction about
 a future possible failure</item>
</choice>

with the control now reading:

<select1 ref="choice">
 <label ref="instance('m')/choice/label"/>
 <itemset ref="instance('m')/choice/item">
 <label ref="."/>
 <value ref="@value"/>

Form, and Content

217

 </itemset>
</select1>

And for the groups within the cases, the messages:
<problem>
 <label>You know a problem that needs to be fixed</label>
 <problem>What problem do you see?</problem>
 <solution>Can you propose a solution?</solution>
</problem>

And the controls:
<group ref="problem">
 <label ref="instance('m')/problem/label"/>
 <textarea ref="problem">
 <label ref="instance('m')/problem/problem"/></textarea>
 <textarea ref="solution">
 <label ref="instance('m')/problem/solution"/></textarea>
</group>

and similar for the other two cases.

2.3. Generalising
As a result of this change, it was obvious how similar the three cases were. The
third has a little extra detail, but otherwise they are nearly identical. If the data is
changed to reflect these similarities, like this:

<data>
 <choice/>
 <answer choice="problem">
 <problem/>
 <solution/>
 </answer>
 <answer choice="failure">
 <problem/>
 <solution/>
 </answer>
 <answer choice="prediction">
 <problem/>
 <likely/>
 <who/>
 <solution/>
 </answer>
</data>

then the whole switch in the form can be replaced with a single group that is
driven by the data. The group selects only the answer whose choice attribute
matches that of the value actually chosen, and so covers all three cases:

Form, and Content

218

<group ref="answer[@choice=../choice]">
 <label ref="instance('m')/answer[@choice=context()/@choice]/label"/>
 <textarea ref="problem">
 <label ref="instance('m')/answer[@choice=context()/../@choice]/problem"/>
 </textarea>
 <select1 ref="likely">
 <label ref="instance('m')/answer[@choice=context()/../@choice]/likely/label"/>
 <itemset ref="instance('m')/answer[@choice=context()/../@choice]/likely/item">
 <label ref="."/><value ref="@value"/>
 </itemset>
 </select1>
 <textarea ref="who">
 <label ref="instance('m')/answer@choice=context()/../@choice]/who"/>
 </textarea>
 <textarea ref="solution">
 <label ref="instance('m')/answer[@choice=context()/../@choice]/solution"/>
 </textarea>
</group>

Note that:
• Just as before, since initially no answer has a choice with a value that has

been selected (since nothing has yet been selected), the ref will select no
nodes, and so nothing will be displayed for the answers.

• If the instance data for the selected answer doesn't have a likely or who ele-
ment, the controls for those elements won't be displayed, since similarly they
are not bound to any node.

This change to the data requires a similar change to the structure of the messages
document. Note how closely its structure mirrors that of the data:

Form, and Content

219

Data Messages
<data>

 <choice/>
 <answer choice="problem">

 <problem/>
 <solution/>
 </answer>
 <answer choice="failure">

 <problem/>

 <solution/>
 </answer>
 <answer choice="prediction">

 <problem/>
 <likely/>

 <who/>
 <solution/>
 </answer>
</data>

<messages lang="en">
 <label>Process improvement</label>
 <intro>Please help us discover problems and solutions
 that would improve our processes.</intro>
 <choice>How can you help?</choice>
 <answer choice="problem">
 <label>You know a problem that needs to be fixed</label>
 <problem>What problem do you see?</problem>
 <solution>Can you propose a solution?</solution>
 </answer>
 <answer choice="failure">
 <label>You know a 'solution' that doesn't work</label>
 <problem>What 'solutions' will fail or
 cause trouble?</problem>
 <solution>Can you propose a solution?</solution>
 </answer>
 <answer choice="prediction">
 <label>You have a prediction about a future
 possible failure</label>
 <problem>What is your scenario?</problem>
 <likely>
 <label>How likely is this scenario?</label>
 <item value="1">High</item>
 <item value="2">Medium</item>
 <item value="3">Low</item>
 </likely>
 <who>Who should address these issues?</who>
 <solution>Can you propose a solution?</solution>
 </answer>
</messages>

The message for the group's label is selected using answer[@choice=context()/
@choice]. This selects the answer element in the messages, whose choice attrib-
ute matches that of the context element. In this case the context element is the
answer element in the data that has been selected.

For the first textarea element, the context item is now the element problem,
which is a child of answer, so you have to go up one level to get to answer, in
order to get its choice attribute: item[@choice=context()/../@choice].

2.4. Analysis
The form is now driven from two data files: the template for the data, and the
messages. Essentially, the group of controls acts as an interpreter of the data.

To illustrate this, suppose a fourth option were to be added to the form; all
that is necessary is to add it to the data template, with a suitable new choice
value:

<answer choice="solution"><problem/><who/><solution/></answer>
and matching messages in the message file:

<answer choice="solution">
 <label>You know an existing solution that can be adopted</label>

Form, and Content

220

 <problem>What solution do you know of?</problem>
 <who>Who should we approach?</who>
 <solution>How could we best adopt the solution?</solution>
</answer>

and the form now works without change with the new entry.
This makes life much easier for content providers: they can make textual

changes to a form without having to ask the programmers to do it, they can add
new cases themselves fairly easily. In fact, you could even make a form to sim-
plify the process!

To adapt the form for a different language, you only have to supply a transla-
tion of the message document for the new language, and add code to switch
between languages by loading in the various message documents.

3. Data-driven Display: A Presentation Manager
The CSS [1] styling language has a special presentation mode. If you include a set
of rules grouped as projection media, like so:

@media projection {
 ...
}

then when the browser is put into presentation mode, those styling rules apply.
The idea is that the browser goes into full-screen mode, and the projection rules
will typically increase the font size, and express where 'page' breaks are. As a
result, this allows you to avoid using proprietary presentation software, and use
HTML, plus CSS with a projection mode, and present from a browser.

This has had several advantages, for instance:
• it makes the content easily repurposable,
• it gives a choice of editing software,
• it is platform independent,
• it gives a lot of control,
• but most important: it guarantees a long life for the content. The use of propri-

etary software always brings with it the risk of the content no longer being
readable after several years.

Unfortunately, and shamefully, only one browser ended up supporting presenta-
tion mode, Opera, but now even Opera has discontinued support.

Since the effective demise of presentation mode, many packages of Javascript
have emerged to support presentation in combination with HTML5, such as [9],
[10], [11], [12], and [13] (and dozens more) and although some of them are very
cute, they all have some underlying problems:

Form, and Content

221

• They are largely not standardised: each has its own format for slides, and its
own package of javascript, so you can't swap between packages;

• If you want to repurpose existing content, you have to edit the content files;
• If support for the package disappears (which has already happened for some

packages), you are in trouble: this is comparable to the problem of using pro-
prietary software.

To mitigate these problems, one solution is to use XForms to display the slides. Of
course, this is not quite as good as having a standard built into the browser, but
the advantages include:
• It is very easy: it is a surprisingly small amount of markup;
• it allows the continued use and repurposing of existing content without

change;
• it continues to give the power of XHTML+CSS for styling.

3.1. Slide Deck

Each slide deck is an XHTML document, where, in this example, each slide is a
top-level div containing XHTML including images.

The initial slide deck is loaded into an XForms instance like this:
<instance id="slides"
 src="http://www.cwi.nl/~steven/Talks/2018/prague/"/>

(we'll see later how to load different decks).
The central part of the application is then an XForms group that handles a sin-

gle div:
<group ref="h:body/h:div[position()=instance('i')/index]">
 ...
</group>

This selector defines how to find a single slide within the instance, so it can be
considered cleaner to gather the instance and this definition together:

<instance id="slides"
 src="http://www.cwi.nl/~steven/Talks/2018/prague/"/>
<bind id="slide" ref="h:body/h:div"/>

and then use this for the group. In this way, the controls in the form are inde-
pendent of the data:

<group ref="bind('slide')[position()=instance('i')/index]">
 ...
</group>

(The bind function is an XForms 2.0 feature)

Form, and Content

222

Either way, this requires an administration instance to keep track of which
slide is visible at any time, initalised to 1:

<instance id="i">
 <admin xmlns="">
 <index>1</index>
 </admin>
</instance>

Although buttons could be added to step through the slides like this:
<trigger label="←">
 <setvalue ev:event="DOMActivate"
 ref="instance('i')/index" value=". - 1"/>
</trigger>
<trigger label="→">
 <setvalue ev:event="DOMActivate"
 ref="instance('i')/index" value=". + 1"/>
</trigger>

it is preferable to do it via the keyboard, not least because presentation remotes
act as if they are keyboards, sending the characters "Page Up" and "Page Down"
when the buttons are pressed:

<action ev:event="keydown" ev:defaultAction="cancel">
 <setvalue ref="instance('i')/index"
 if="event('key')='PageUp'
 or event('key')='ArrowLeft'" value=". - 1"/>
 <setvalue ref="instance('i')/index"
 if="event('key')='PageDown' or
 event('key')='ArrowRight'" value=". + 1"/>
</action>

(It is necessary to cancel the default action of the event, since otherwise the
browser would do a page up or down as well.)

3.2. Displaying One Slide

Now that we have the infrastructure to step through each slide, we can define
how an individual slide should be presented.

Each slide contains a sequence of XHTML elements. So within the group hold-
ing the slide, each of those elements have to be displayed. They are treated one by
one within a repeat:

<repeat ref="*">
 ...
</repeat>

Here are some simple cases:

Form, and Content

223

<output class="h1" ref=".[name(.)='h1']"/>
<output class="h2" ref=".[name(.)='h2']"/>
<output class="pre" ref=".[name(.)='pre']"/>

The XPath idiom ".[name(.)='h1']" selects the current element only if its name
is 'h1'. If its name doesn't match, then no node is selected by the output element,
and so the control is disabled and is not rendered; if the name matches, then its
content is output. By attaching a class, CSS controls how it will be displayed.
Clearly at most one of the output elements will be enabled.

In fact these can be combined into one output element by taking advantage of
XForms 2.0 attribute value templates:

<output class="{name(.)}"
 ref=".[name(.)='h1' or name(.)='h2' or name(.)='pre']"/>

More complicated cases are those elements that themselves contain other ele-
ments, such as <p> and .

The easier of these two is . Here a similar trick is used, with a repeat over
the contained elements, with the advantage that we know they are all ele-
ments:

<group class="ul" ref=".[name(.)='ul']">
 <repeat ref=".[name(.)='li']">
 <output class="li" ref="."/>
 </repeat>
</group>

The <p> elements have a complication that they may contain mixed content. For
this, rather than using the selector "*", the selector "node()" is used, which selects
all child nodes: text and comments as well as elements:

<group class="p" ref=".[name(.)='p']">
 <repeat ref="node()">
 <output class="text" ref=".[name(.)='#text']"/>
 <output class="{name(.)}"
 ref=".[name(.)='em' or name(.)='strong' or ►
name(.)='code' or name(.)='a']"/>
 <output class="img"
 ref=".[name(.)='img']" value="concat(instance('i')/base, ►
@src)" mediatype="image/*"/>
 </repeat>
</group>

Since there is no output element that selects comment nodes, they won't be dis-
played.

The only interesting case here is for images. The src attribute is relative to the
original slides, so must be concatenated with the base URL of the slides, which
can be stored in the admin instance:

Form, and Content

224

<instance id="i">
 <admin xmlns="">
 <index>1</index>
 <base>https://homepages.cwi.nl/~steven/Talks/2018/prague/</base>
 </admin>
</instance>

3.3. Loading Other Slide Sets

Having the base stored in the admin instance makes it easy to load another slide
set. The user supplies the URL of the new slide set, it gets submitted, and the
result is used to replace the slides instance:

<input ref="instance('i')/base" label="URL:"/>
<submit submission="change" label="Go"/>

where the <submission> element looks like this, remembering also to set the
index back to 1:

<submission id="change" resource="{instance('i')/base}"
 method="get" serialize="none"
 replace="instance" instance="slides">
 <action ev:event="xforms-submit-done">
 <setvalue ref="instance('i')/index" value="1"/>
 </action>
</submission>

3.4. Analysis

The input from the user for this form is minimal: it is a URL for a slide set, and a
single integer, indicating which slide to display, which is incremented and decre-
mented via keystrokes, or emulated keystrokes from a presentation remote.
Although it was presented as an 'administrative' value, it is in fact the central
piece of input. The controls, in a similar way to the first example, are an inter-
preter for the data in the selected slide; the result can be considered a 'presenta-
tion' of the integer.

4. Data-driven Control: The XForms 2.0 Test Suite
XForms 1.0 and 1.1 both had test suites that consisted largely of static XForms
documents [7], [8]. If you wanted to add more cases to a test, it involved adding
to the set of documents, or editing the individual documents.

The test suite for XForms 2.0 now being constructed takes a different
approach. While different parts of the test suite have different structures, depend-
ing on what is being tested, we consider here the testing of functions.

Form, and Content

225

4.1. Testing Functions
It is required to test that functions like

compare('apple', 'orange')
return the right result.

To do this, the string is enclosed in an element:
<test>compare('apple', 'orange')</test>

sub-elements are added to identify the parameters
<test>compare('<a>apple', 'orange')</test>

and attributes added to store the required result, the actual result, and whether
the test case passes or not:

<test pass="" res=""
 req="-1">compare('<a>apple', 'orange')</test>

As many such test cases as necessary are then gathered together in an instance:
<instance>
 <tests pass="" name="compare() function" xmlns="">
 <test pass="" res=""
 req="-1">compare(<a>apple, orange)</test>
 <test pass="" res=""
 req="1">compare(<a>orange, apple)</test>
 <test pass="" res=""
 req="0">compare(<a>apple, apple)</test>
 ...
 </tests>
</instance>

A bind is then used to calculate the individual results:
<bind ref="test/@res" calculate="compare(../a, ../b)"/>

another bind, independent of which function is being tested, decides if each test
case has passed:

<bind ref="test/@pass" calculate="if(../@res = ../@req, 'yes', 'no')"/>
and finally a bind for the attribute on the outmost element records if all tests have
passed:

<bind ref="@pass" calculate="if(count(//test[@pass!
='yes'])=0, 'PASS', 'FAIL')"/>

With this structure, every test form has an identical set of controls, that output the
name of the test, an optional description (which is only displayed if present in the
instance), whether all tests have passed, for quick inspection, and the list of each
test with an indication if it has not passed:

Form, and Content

226

<group>
 <label class="title" ref="@name"/>
 <output class="block" ref="description"/>
 <output class="{@pass}" ref="@pass"/>
 <repeat ref="test">
 <output value="."/> → <output ref="@res"/>
 <output class="wrong"
 value="if(@pass!='yes', concat(' expected: ', ►
@req), '')"/>
 </repeat>
</group>

This looks like this when run:

Success Failure

4.2. Analysis
Not all test cases can be structured like this, but many can, and even tests that do
not test functions can emulate this behaviour by writing results to the tests
instance, and use the same mechanism for checking. These forms are introspec-
tive: they are requiring the XForms processor to reveal properties of itself, to
itself. Although there is no direct input from the user, the input in this case can be
seen as being the XForms processor itself.

5. Conclusion
In the introduction, the comparison of XForms's separation of data and controls
with the separation of style and content using style sheets was not accidental.
Someone typing a publishing contract into a word-processor may only be interes-

Form, and Content

227

ted in the content; a designer styling the contract may only be interested in how it
look; someone in the publishing industry may only be interested in the name of
the author, and the sizes of the advance and the royalty being granted: a docu-
ment may have several layers of abstraction. It is data-driven forms that can rep-
resent one of those layers. The dynamism afforded by computer-based forms has
blurred the distinction between form and application, and allowed similar techni-
ques and mechanisms to be applied to both.

As shown in the three cases here, the use of presence and relevance of data
elements to drive the controls of the interface with the user gives a lot of power,
and affords the declarative definition of applications that would normally be
thought of as procedural in nature.

6. References

Bibliography

[1] CSS Snapshot 2017. Tab Atkins Jr. et al.. W3C. 2017. https://​www.w3.org/​TR/
css-2017/ .

[2] Forms that Work. Caroline Jarrett and Gerry Gaffney. Morgan Kaufmann. 2009.
[3] XML Path Language. Anders Berglund et al.. W3C. 2010. https://​www.w3.org/
TR/​xpath20/ .

[4] XForms 1.0. Micah Dubinko et al.. W3C. 2003. https://​www.w3.org/​TR/​2003/
REC-xforms-20031014/ .

[5] XForms 1.1. John M. Boyer et al.. W3C. 2009. http://​www.w3.org/​TR/​2009/​REC-
xforms-20091020/ .

[6] XForms 2.0. Erik Bruchez et al.. W3C. 2017. https://​www.w3.org/​community/
xformsusers/​wiki/​XForms_2.0.

[7] XForms 1.0 Test Suite. W3C. 2003. https://​www.w3.org/​MarkUp/​Forms/​Test/
XForms1.0/​Edition3/​front_html/​XF103edTestSuite.html.

[8] XForms 1.1 Test Suite. W3C. 2009. https://​www.w3.org/​MarkUp/​Forms/​Test/
XForms1.1/​Edition1/​driverPages/​html/.

[9] reveal. http://​lab.hakim.se/​reveal-js .
[10] remark. https://​remarkjs.com/ .
[11] webslides. https://​webslides.tv/ .
[12] deck. http://​imakewebthings.com/​deck.js .
[13] shwr. https://​shwr.me/ .

Form, and Content

228

https://www.w3.org/TR/css-2017/
https://www.w3.org/TR/css-2017/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/2003/REC-xforms-20031014/
https://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2009/REC-xforms-20091020/
http://www.w3.org/TR/2009/REC-xforms-20091020/
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/MarkUp/Forms/Test/XForms1.0/Edition3/front_html/XF103edTestSuite.html
https://www.w3.org/MarkUp/Forms/Test/XForms1.0/Edition3/front_html/XF103edTestSuite.html
https://www.w3.org/MarkUp/Forms/Test/XForms1.1/Edition1/driverPages/html/
https://www.w3.org/MarkUp/Forms/Test/XForms1.1/Edition1/driverPages/html/
http://lab.hakim.se/reveal-js
https://remarkjs.com/
https://webslides.tv/
http://imakewebthings.com/deck.js
https://shwr.me/

tokenized-to-tree
An XProc/XSLT Library For Patching Back

Tokenization/Analysis Results Into Marked-up Text
Gerrit Imsieke

le-tex publishing services GmbH
<gerrit.imsieke@le-tex.de>

Abstract

This paper presents an XProc/XSLT library for performing string-based
tokenization and analysis (TA) on marked-up text, represented as XML, and
possibly deeply nested. Tokenization and analysis yield another XML repre-
sentation of the input that overlaps with the original markup. These results
need to be merged with the original markup. The task is made complicated
because the input needs to be normalized prior to TA, for example by con-
verting non-breaking and other typographic spaces to plain spaces, ignoring
index entries, or processing footnotes separately. After the TA results have
been merged into the normalized source XML, things that have been nor-
malized away need to be restored.

The library provides a representation for the normalized input units
(typically paragraphs) and for different types of placeholders. Three applica-
tions that build on this representation are presented: Linguistic TA of
OOXML (MS Word) files, inserting line numbers from a PDF rendering
into its TEI source, and linking occurrences of headwords in reference work
entries to their primary entries.

The process of normalizing, character position counting, TA invocation,
patching back the TA results, and inverting the normalization, is complex.
It consists of multiple XSLT passes that need to be customized and assem-
bled in a distinct way for each application. Encapsulating invariant core
process steps as well as macroscopic, customizable steps and orchestrating
the XML transformation steps in a sometimes non-linear way requires a
technology that is good at these things. In this regard, the paper, and the
open-source library that the presented applications are built on, is a demon-
stration of the utility of XProc in complex publishing pipelines.

Keywords: Overlapping Markup, Automatic Linking, TEI, XProc,
XSLT, Regular Expression, Pagination, Publishing, Whitespace Nor-
malization, Tokenization, XML Splitting, Mixed Content

229

1. Introduction
Tokenization/analysis (TA) tasks can be be performed with relative ease on XML
elements that contain only text nodes. Examples include:
• Using a list of headwords in a reference work, with corresponding link targets

to the entries, in order to find these words in other entries and link them to the
main entry;

• Running a text through natural language analysis that returns a sequence of
tokens along with part-of-speech information for each token, adding this TA
information to the source text;

• Splitting a PDF rendering of a text-critical edition into lines and identifying
which string positions in the source text correspond to the beginning of each
PDF line; adding line break markers to the TEI source.

An established tool, at least for XSLT 2.0+ users, would be xsl:analyze-string.
The search terms or PDF lines will be converted into regular expressions, and the
matching strings will be tagged appropriately. There are also other tools than
XSLT/XPath/XQuery-based regular expression matching. Natural language pro-
cessing, as performed by Apache NLP [1], will do the tokenization and the tag-
ging of an input string all by itself.

There is a significant shortcoming with these tools though when applied to
mixed-content XML: They will not honor existing markup. They will rather proc-
ess the input as a flat string and add only statically configured markup in the tag-
ged replacement text.

Example 1. Matching reference work headwords and linking to their entries

Suppose there is a pharmaceutical reference work with entries for solutions of
varying concentrations. Another entry or publication contains this sentence:

<p>375 ml of a sodium chloride solution (0.455 mol · l^{−1})
is diluted with 0.5 l of water</p>

The list of headwords / link targets contains this entry:
<link linkend="preparation-00437">sodium chloride solution
(0.455 mol · l^{−1})</link>

Accounting for differences in whitespace that may occur in the text, the link tag-
ging can be performed using the following regular expression that is generated
from the search term:

sodium[\s\p{Zs}]+chloride[\s\p{Zs}]+solution[\s\p{Zs}]+\(0.455[\s\p{Zs}]
+mol[\s\p{Zs}]*·[\s\p{Zs}]*l−1\)

Tagging will be lost using this method. Even if the search term’s tagging will be
used for reconstructing the match in the output, there will be (at least) two issues:

tokenized-to-tree

230

• Using xsl:analyze-string or other regex-matching methods, the non-match-
ing parts of the input will just be rendered as text nodes.

• Subtle tagging variations within the matches will not be accounted for in the
output.

As an example for the second issue, consider this matching source markup that
contains a processing instruction for typesetting:

sodium chloride solution<?tex \break ?> (0.455 mol · l^{−1})
If the line break that this processing instruction enforces were missing after auto-
matic link insertion, the pagination might change which would amount to a
major issue for this class of reference works that sometimes comprise thousands
of pages.

2. Requirements
The main requirements for a non-destructive tagging are:
• existing markup must be preserved

• within and outside the matching tokens,
• no matter how deep the nesting;

• existing text nodes must be preserved; in particular, non-breaking or thin
spaces must not be replaced with plain spaces that the search term may con-
tain;

• if the newly introduced markup overlaps existing markup, either the new or
the old markup needs to be split into segments. This happens frequently when
re-inserting linguistic analysis results to markup.

Example 2. Linguistic Analysis

A contrived example for the latter processing:
<p>partly bold text</p>

After linguistic analysis, it becomes:
<p><word pos="adv">partly</word> <word pos="adj">bold</word>
 <word pos="noun">text</word></p>

In many XML vocabularies, content is included in the linear markup stream at a
position that it is anchored to, while it is supposed to be rendered elsewhere.
Think of index terms or footnotes. When linking, doing linguistic analysis, or
patching the PDF line breaks into the XML document, this kind of content must
be ignored (apart from the footnote marker, in the line break scenario). It must be
re-inserted after the tokenization and analysis results have been applied.

tokenized-to-tree

231

2.1. A detailed example: Marking up line numbers in PDF; matching
generated text
An inverse problem is that of generated text. It affects the PDF line break problem
in particular. The footnote markers mentioned above are often generated text. The
actual footnote number may be calculated by applying the same rules that the
typesetting system used for the PDF rendering. Inserting this generated text in a
modified source XML allows a matching between the source XML and the PDF
rendering. However, this exact match is not possible for page and line numbers
that serve as a reference to the original text (see Figure 1) in a text-critical note, as
depicted in Figure 2.

The problem here is that the customer not only wants the line numbers
patched back to the TEI source for the main text, but also for the text-critical notes
that are rendered at a different page range in the PDF.

The typesetting system used to generate the layout depicted above, which is
LaTeX, is able to determine page and line numbers of any given rendered text. In
principle, one could use the auxiliary file in which LaTeX stores the numbers for
each referred item in order to adorn this item in the source XML with its exact
position, thus allowing an exact matching between source XML and PDF output.
We chose not to do this, but rather detect these types of references in the PDF and
replace them with generic regular expressions such as \[\d+,\d+(\p{Pd}\d+)?\]
instead of a regular expression that would have only matched the exact numbers

Taken from: Uwe Johnson Werkausgabe. Ein Vorhaben der Berlin-Brandenburgischen
Akademie der Wissenschaften an der Universität Rostock

Figure 1. The rendered source text that the text-critical note refers to

tokenized-to-tree

232

in the source XML. Instead of prepending the exact numbers to the note in the
source XML, we simply prepend '1,1' to the note’s XML content and flag it as gen-
erated text so that it can be removed again in a later processing stage.

3. A detailed look at the PDF line number patching example
At this point it may be instructive to look at how this particular process, feeding
back line breaks into the source XML, is orchestrated.

Most of the configuration happens by custom XSLT that imports some of the
library’s XSLT stylesheets. For example, the XSLT on the prepare-input-xsl port
imports a library XSLT that is handles TEI, which in turn imports the basic pre-
pare-input stylesheet.

There may be separate configurations for different portions of the text. The
pages to be processed and the interesting regions within a page (excluding run-
ning heads and page numbers) can be configured in the postprocess-poppler-
params XML file (which is an XProc p:param-set). Consequently, the whole book
will be processed in separate invocations of the ttt:mark-linebreaks pipeline.
Of course these separate runs with their distinct settings are also assembled as an
XProc pipeline.

As an example for different configurations for different parts of the boook, we
look at the ttt:prepare-input step. It has three distinct substeps, corresponding
to different XSLT modes:
1. ttt:add-ids: Every element (plus comments and processing instructions)

need to get an ID for later merging);
2. ttt:discard: Only interesting elements will be retained. For the main text of

the novel, it is <p> and <head>, for the critical apparatus, it is <note
type="printnote" subtype="TextKritKomm">. These variations in configura-
tion will be accounted for by importing a more generic XSLT and adding/

Taken from: Uwe Johnson Werkausgabe. Ein Vorhaben der Berlin-Brandenburgischen
Akademie der Wissenschaften an der Universität Rostock

Figure 2. A text-critical note referring to page 103, lines 7–8, and to a figure on
page 285

tokenized-to-tree

233

overwriting some templates. in this mode, also special operations such as
whitespace normalization and inserting generated text will take place;

3. ttt:count-text: The extracted and normalized text will be counted. This is a
crucial operation that adds ttt:start and ttt:end attributes by which toke-
nization and analysis results can be re-attached to the nodes that they corre-
spond to. Remember that tokenization and analysis will only be performed on
strings, therefore we need the string value of each paragraph-like processing
unit (PU) alongside the length-annotated, normalized, tagged input for this
paragraph.

The detailed structure within ttt:mark-linebreaks looks like on Figure 4.

Figure 3. Interface of the ttt:mark-linebreaks XProc step (see next figure for a
key)

tokenized-to-tree

234

Figure 4. Detailed structure of the ttt:mark-linebreaks XProc step

This length-annotated markup mentioned in the list item about ttt:count-text
will be processed in the ttt:process-paras step. Its preceding step, in this
example ttt:line-finder, provides or invokes the task-specific tokenization/
analysis routine (Apache NLP or some custom XSLT that marks link candidates,

tokenized-to-tree

235

respectively, for the two other use cases discussed in this paper) and augments
the intermediate <ttt:paras> document that will be dicussed in greater detail in
Section 4.

Just to give an illustration of its effect on the TEI source document:

Taken from: Uwe Johnson Werkausgabe. Ein Vorhaben der Berlin-Brandenburgischen
Akademie der Wissenschaften an der Universität Rostock

Figure 5. The effect of the two ttt:mark-linebreaks passes (on the main text
and on the notes). In a color rendering of this paper, line breaks in notes are
cyan (two in the center) while line breaks in the main text are purple (two on
the left-hand side on top; three below the note. A page break in the note has

also been captured by the process

4. The tokenized-to-tree library
The library consists of three macroscopic XProc steps. Each project needs to add a
bespoke TA step to run after the first, normalization step, and there may be post-
processing or cleanup XSLT passes after the second and third library steps. The
steps are:

4.1. Step ttt:prepare-input
Transforms the content to a representation with wrappers around each process-
ing unit (read: paragraph) and with placeholders for footnotes, processing
instructions and the like, and with single plain space placeholders for multiple or
typographic spaces.

Unless already present, IDs will be added to all elements that may be turned
into placeholders. This is because all PUs, for example a paragraph with a foot-
note and the paragraph in the footnote, will be in ttt:para that form a flat list
after normalization. The normalized processing untits contain placeholders with
IDs, and these IDs allow reconstruction of the original document after all other
operations have completed.

The normalizing XSLT is provided to the step on an input port. The libarary
currently contains basic normalization stylesheets for DocBook and TEI. They can
be adapted to a project’s needs by importing them, or they can be replaced with
XSLT code that supports different XML vocabularies.

tokenized-to-tree

236

An important aspect of the normalization is the post-normalization string
position counting that adds start and end position numbers to each element, as
attributes in the ttt namespace.

More details about the three XSLT passes (ID generation, deletion of uninter-
esting content, text counting) within this step can be found in the previous sec-
tion, Section 3.

This step has two output ports: The port result will provide the ttt:para list
with the normalized PUs, wrapped in a ttt:paras top-level element, and the
port with-ids will provide the ID-enriched original document that is needed for
the final placeholder expansion.

A note on the particular suitability of XProc
Apart from the encapsulation that XProc offers, and that any other func-
tional language will offer, XProc has an innate concept of multiple function
return values (output ports). The different return values (= documents on
output ports) need not be multiplexed or consumed simultaneously. This is
a huge benefit for processes where a secondary output, in this example
from the with-ids port, will be used by another step at a later stage (see
Section 4.5).

For the linguistic analysis example, parts of the with-ids output are depicted in
Figure 6. (See Section 5 for how this looks in Word.)

Figure 6. The (partly indented) output on the with-ids port of the
ttt:prepare-input step for the natural language processing example

The normalized input (after the ttt:count-text XSLT pass) for this example
looks like this:

tokenized-to-tree

237

Please note the footnote element that is merely a placeholder in the paragraph
that it appears in. The paragraph that the footnote contained is in a separate
ttt:para child of the ttt:paras element.

Why are there separate runs for inserting the TEI line breaks?
In contrast to the TEI example in Section 3, main text and footnotes are pro-
cessed in a single run for linguistic analysis. The two-run invocation of the
line number scenario is necessitated by two factors:
• the need for processing contiguous chunks of the PDF with slightly dif-

ferent settings for the text-critical notes;
• most importantly, because the algorithm does not iterate over the PDF

lines and tries to find them in the yet-unmarked XML source. It rather
finds matches in all processing unit strings for a given regular expres-
sion derived from a PDF line. Then it filters away implausible match
candidates in order to achieve an optimal coverage of the normalized
(stringified) input units. Plausibilization is done by looking whether
subsequent PDF lines correspond to subsequent matches. Therefore it is
important to process the endnote-like text-critical notes, both their XML
source elements and their PDF page range, in a separate pass.

The question why there is DocBook XML to be seen when the task is to linguisti-
cally analyze Word files will be answered in Section 5.

4.2. (project-specific TA step)
This step will put each processing unit’s TA result in parallel to the normalized
input, as the second child in the ttt:para element that already wraps the nor-
malized processing unit.

tokenized-to-tree

238

The step must make sure that the TA results will be represented in a specific
XML vocabulary: ttt:tokens elements with untagged text and ttt:t elements
for the individual tokens. The ttt:t elements are expected to have @start and
@end attributes for the string positions, in order to facilitate the merging of both
XML structures. Other attribtues on ttt:t contain the analysis results such as
part-of-speech, corresponding PDF line/page numbers, or link targets.

4.3. Step ttt:process-paras
The name of the XProc file that this step is declared in is probably a bit more tell-
ing: ttt-3-integrate-tokenizer-results.xpl. For the time being, the step will
retain its historically grown name.

Naming things unmistakably is difficult anyway in this library, in particular
when it comes to merging. There are two merging operations: The first (this step)
combines the normalized input with the TA results. The other (the final step)
restores the original document structure by re-filling the placeholders.

The first thing that ttt:process-paras does is to validate the project-specific
output against the Relax NG schema1 for the ttt:paras side-by-side document.
This will help people get their project-specific TA output right.

Then the step applies two to three XSLT passes to the content, typically using
the default stylesheet that comes with the step:
Mode ttt:patch-token-
results

This pass will insert ttt:start/ttt:end mile-
stone elements into the ttt:para/*[1] branch
that contains the normalized processing units.
The string positions where each milestone ele-
ment will appear corresponds to the ttt:t/
@start/ttt:t/ @end attribute values for each
token in the ttt:para/ ttt:tokens branch.
The ttt:para/ttt:tokens becomes dispensa-
ble after this pass and will be removed. The
surrounding ttt:para element is not needed
any more and may also be unwrapped.

Although the concepts and the arithmetic
of this token-merging step is primary-school
level, it is nevertheless good to encapsulate it
in an XProc step, together with the normaliza-
tion format validation. If it were carried out on
an ad-hoc basis for each project, chances are
that off-by-one or more severe errors will
creep in.

1 https://github.com/transpect/tokenized-to-tree/blob/master/schema/tokenized-to-tree.rng

tokenized-to-tree

239

https://github.com/transpect/tokenized-to-tree/blob/master/schema/tokenized-to-tree.rng
https://github.com/transpect/tokenized-to-tree/blob/master/schema/tokenized-to-tree.rng

Mode ttt:eliminate-
duplicate-start-end-elts

This is just a technical cleanup mode for
removing duplicate start or end milestones.

Mode ttt:pull-up-delims This is an optional p:xslt step that can be
deactivated by setting the step option
milestones-only="yes". It is needed for the
linguistic analysis and for the linking scenar-
ios, but not for the line number insertion sce-
nario.

In this XSLT pass, the milestone elements
that have been inserted into text nodes at any
depth of the processing units will be pulled up
so that they reside immediately beneath their
PU’s top-level element, splitting any inter-
mediate elements. (If they should not be
pulled up this far for a specific project, the
project needs to override a template.) This
technique has been called “upward projection”
by the author. An example can be found at [2].
Other than in the xsl-list example, the mile-
stones will not simply be pulled up, but they
will form a new ttt:token element that inher-
its the milestones’ attribute and that engulfs
the (potentially deeply nested) markup that
the pull-up operation has split.

A note on input segmentation
The performance of upward projection scales roughly with the product of
input length (node count) and the number of splitting points. (The proof of
this conjecture is left to another publication.)

From a performance standpoint, it is therefore advisable to split the
input into smaller processing units, for example on a paragraph level. Sup-
pose that the input consists of ten paragraphs, each of them comprising 20
nodes and four milestones to be pulled up. If one were to process the input
as a whole, the time needed would be about (10×20)×(10×4) = 8000 arbitrary
units, while when processing them individually, the time needed is only
10×20×4 = 800 a.u.

An indented output of this step for the NLP example can be seen in Figure 7.

tokenized-to-tree

240

Figure 7. The (indented) output of the ttt:pull-up-delims step for the natural
language processing example

Note that since the document language was set in the input by character-level
assignment rather than by Word’s paragraph or character styles, the <phrase
xml:lang="en"> ranges that spanned across the paragraphs will be split into
small pieces by the upward projection in ttt:pull-up-delims mode.

4.4. (project-specific postprocessing step)
While a project might choose to override the XSLT templates in the previous step
in order to rename the inserted tokens to elements in the project’s vocabulary, it is
probably better, from a separation-of-concerns standpoint, to do this in a separate
XSLT pass. For very large input files (if memory usage and processing time
become an issue), the postprocessing may be performed by overriding templates
in the ttt:pull-up-delims pass of the ttt:process-paras step.

4.5. Step ttt:merge-results
This step merges the with-ids output from the ttt:prepare-input step (see Fig-
ure 6) with the previous step’s output, using a single XSLT pass.

tokenized-to-tree

241

Whenever there is an ID in the with-ids document that corresponds to a pro-
cessing unit’s ID in the processed ttt:paras document, the processed unit will be
included in the output, replacing the original content. The processed units may
contain placeholders, for example for footnotes. When such an empty element
with an attribute ttt:role="placeholder" is encountered, the XSLT pass will
use the element’s ID to jump back to the with-ids document and write the same-
id element to the output and process its children. When it encounters an element
whose ID matches one of the processed /ttt:paras/ttt:para/* elements, it will
jump back to the ttt:paras document and write the processed paragraph to the
output, and so forth.

Taking together Figure 6 and Figure 7, one can try to figure out how this proc-
ess works. It starts at the top-level hub element of the document in Figure 6.
When it reaches the para that contains the footnote, it replaces it with the same-
ID para in the ttt:paras document. When it encounters the <footnote
ttt:role="placeholder"> element there, it switches back to the with-ids docu-
ment in order to reproduce its footnote element. When processing its children, it
determines that the contained paragraph is also present in the ttt:paras docu-
ment, and it continues to process this ttt:paras paragraph.

5. Details of the linguistic analysis pipeline
The linguistic analysis is used by a German textbook publisher. The XProc pipe-
line sends the normalized strings to a Web service that invokes Apache NLP [1]
for tokenization and analysis and then adorns the identified tokens with informa-
tion whether a pupil reading the text already knows the lemma and the word
form that it appears in (past perfect etc.). This is part of a large vocabulary man-
agement platform that BaseX GmbH and LanguageTool’s Daniel Naber built for
the publisher. The pipeline gets as input a Word manuscript and information
about the work that it is part of. It forwards the work identifier to the Web service
so that the service is able to look up which words and word forms the pupils of a
certain grade in a certain German Bundesland in a certain school form already
know.

The input may look like this:

tokenized-to-tree

242

The linguistic analysis service adds both linguistic information and the status
whether the words and word forms are known to pupils at the given stage. The
result can be seen in Figure 7.

The XML format that is sent to the analysis is not OOXML but the DocBook-
based Hub format [3]. This is partly because the internal representation and frag-
mentation of text in OOXML is poorly suited for the analysis, but more
importantly because the service is designed to also process InDesign’s IDML for-
mat, for which a Hub XML conversion exists.

After analysis has been performed, the user receives a new Word file, created
from Hub XML, where the TA results are presented as tooltips on hyperlinks. The
links have differently colored double underlines, depending on the analysis
results – whether the pupils already know the word or whether the word exists at
all in the vocabulary management system. There is a Word add-on (not shown
here for reasons of trade secrecy) for editors to inform the system that a word or
its form is indeed introduced in the current manuscript. Upon re-upload of the
Word file, these status changes will be registered through the vocabulary man-
agement Web service, using p:http-request.

tokenized-to-tree

243

Figure 8. Tooltips with analysis results for “is” and “bogus” in the footnote.
Note that numbers are excluded from analysis

6. Where is the code?
The tokenized-to-tree library is open source and can be found on Github [4].
While the two other applications are proprietary configurations for Ernst Klett
Verlag and Deutscher Apotheker Verlag, respectively, the TEI/PDF line-break
application will be made available as open source in due time. The repository
location will be given in the library documentation, specifically in its
README.md document. There is additional inline documentation, as
p:documentation, in the XProc steps.

7. Conclusion
XProc and XSLT provide both encapsulation and flexibility in complex publishing
pipelines, thus enabling re-use.

For performance reasons, it has been suggested that the input be split into
smaller processing units.

In order to facilitate re-use, a normalization format for the input chunks has
been specified. It provides a side-by-side representation of the normalized input,

tokenized-to-tree

244

together with the string-based tokenization/analysis results. This specification is
supported by a Relax NG schema.

The three diverse real-life applications demonstrate the suitability and versa-
tility of this library.

Bibliography
[1] Apache OpenNLP: https://​opennlp.apache.org/.
[2] Upward projection example: http://​www.biglist.com/​lists/
lists.mulberrytech.com/​xsl-list/​archives/​201407/​msg00004.html.

[3] Hub XML: “Conveying Layout Information with CSSa”, Proceedings of XML
Prague 2013.

[4] https://​github.com/​transpect/​tokenized-to-tree.

tokenized-to-tree

245

https://opennlp.apache.org/
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00004.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00004.html
https://github.com/transpect/tokenized-to-tree

246

Jiří Kosek (ed.)

XML Prague 2018
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2018

ISBN 978-80-906259-4-5 (pdf)
ISBN 978-80-906259-5-2 (ePub)

	XML Prague 2018
	Table of Contents
	General Information
	Sponsors
	Preface
	Assisted Structured Authoring using Conditional Random Fields
	1. Introduction
	2. Model
	2.1. Citation Model
	2.2. Name Model
	2.3. Linear Chain Conditional Random Field
	2.4. Implementation
	2.5. Training
	2.6. Model Evaluation
	2.7. XML Mapping

	3. The Human Factor
	3.1. Analysis of Model Errors
	3.2. User Interactions
	3.3. Structured Content Feedback Loop

	4. Conclusion and Further Work
	Bibliography

	XML Success Story: Creating and Integrating Collaboration Solutions to Improve the Documentation Process
	1. Introduction
	2. Customizing an Issue Tracking Application to Maximize Collaboration Efficiency for all Departments
	3. Developing a Collaboration Solution to Maximize Productivity and Improve Documentation Quality
	4. Integrating Collaboration Tools to Streamline the Whole Documentation Process for all Departments
	5. Conclusion

	xqerl: XQuery 3.1 Implementation in Erlang
	1. Introduction
	2. What is Erlang/OTP?
	3. XQuery to Erlang pipeline - Transpilation
	4. Optional Features
	5. Data Model Conformance
	6. Moving Forward - Future work
	7. Conclusion
	A. Appendix
	Bibliography

	XML Tree Models for Efficient Copy Operations
	1. Introduction
	2. Push and Pull Processing
	3. The KL-Tree
	4. KL-tree Performance
	5. The TinyTree
	6. Virtual Copy
	7. Shallow Copy and the Identity Template Pattern
	8. Use in XQuery Update
	References
	A. Measurements
	B. Versioned Maps and Arrays

	Using Maven with XML development projects
	1. Context
	2. Needs
	3. Solutions
	3.1. Dependency management
	3.2. Unit tests
	3.3. Code generation
	3.4. Source code documentation
	3.5. Compiling
	3.6. Packaging

	4. Future
	Glossary

	Varieties of XML Merge: Concurrent versus Sequential
	1. Introduction
	1.1. Background

	2. Various type of merges
	2.1. Concurrent Merge
	2.2. Sequential Merge

	3. Concurrent Vs Sequential
	3.1. Attribute: deltaxml:deltaV2
	3.2. Structure and Alignment
	3.3. Alignment using keys
	3.3.1. Ordered and Orderless
	3.3.2. Concurrent Keying Vs Sequential Keying

	3.4. Example
	3.5. Merge Analysis
	3.6. Concurrent Merge Rule’s Based Processing

	4. Applications
	4.1. Sequential Merge Applications
	4.1.1. Travelling Draft
	4.1.2. Revision History

	4.2. Three Way Concurrent Merge Applications
	4.2.1. Three To Two Merge
	4.2.2. Graft

	5. Conclusion
	Bibliography

	Including XML Markup in the Automated Collation of Literary Text
	1. Introduction
	2. Background
	2.1. Context: Computational Philology
	2.2. Modelling Properties of Text
	2.2.1. Multiple Paths
	2.2.2. Structure

	2.3. Analysis Through Collation
	2.3.1. Collation and Multiple Paths
	2.3.2. Collation and Structure

	3. Approach
	3.1. Context
	3.2. modelling (HG)
	3.2.1. Multiple Paths
	3.2.2. Structure

	3.3. Analysis through collation: HyperCollate

	4. Conclusion

	Multi-Layer Content Modelling to the Rescue
	1. Summary
	2. Setting the stage
	3. Multi-layer content modelling
	4. Implementation
	4.1. The base content model
	4.2. Second layer validation

	5. Usage
	6. Lesson and takeaways
	7. Conclusion

	Combining graph and tree: writing SHAX, obtaining SHACL, XSD and more
	1. Introduction
	2. RDF and XML: one overarching abstraction
	3. RDF and XML: the challenge of integration
	4. A short introduction to SHACL
	5. SHAX – motivation
	6. SHAX – introductory examples
	7. SHAX – building blocks
	7.1. Element shax:model
	7.2. Element shax:objectType
	7.3. Element shax:property
	7.4. Element shax:dataType

	8. Translation into concrete data modeling languages
	8.1. SHAX into SHACL
	8.2. SHAX into XSD
	8.3. SHAX into JSON Schema

	9. SHAX - implementation
	10. Prospect: SHAX for RDF-XML integration
	11. Discussion
	A. SHACL model obtained from SHAX
	B. XSD model obtained from SHAX
	C. JSON Schema model obtained from SHAX
	Bibliography

	SML – A simpler and shorter representation of XML
	1. Introduction
	1.1. Alternatives to XML
	1.1.1. Distinct syntaxes
	1.1.2. Subsets of XML

	1.2. Alternative representations of XML
	1.2.1. Binary representation
	1.2.2. JSON representation

	1.3. Birth of the SML concept
	1.4. The SML Solution

	2. SML Syntax rules
	2.1. Elements
	2.2. Attributes
	2.3. Content data
	2.4. Other types of markup
	2.5. Heuristics for XML↔SML conversion
	2.6. Syntax rules discussion

	3. SML characteristics
	3.1. SML files size
	3.2. Effect on mixed content
	3.3. Comparison with other data serialization formats
	3.3.1. SML versus XML
	3.3.2. SML versus MicroXML presented as JSON
	3.3.3. SML versus {mark}

	4. The sml.tcl conversion script
	4.1. Presentation
	4.2. Test methodology
	4.3. Performance
	4.4. Known limitations

	5. Support for SML in the libxml2 library
	5.1. Presentation
	5.2. Non binary-reversibility
	5.3. Issues with the xmlWriter APIs

	6. Other scripts
	6.1. The show script
	6.2. The spath script

	7. Next Steps
	Bibliography

	Can we create a real world rich Internet application using Saxon-JS?
	1. The challenge
	2. About Saxon-JS
	3. About the application
	4. Modifying the current document by event response
	5. Hiding and showing content
	6. Interfacing with JavaScript
	7. Global storage - maintaining history
	8. Displaying search results
	8.1. Preventing the application from freezing
	8.2. The order in which things happen

	9. Creating reusable components - an auto complete facility
	10. When it is good to still have access to JavaScript
	11. Performance
	12. Conclusions

	Implementing XForms using interactive XSLT 3.0
	1. Introduction
	1.1. Use-case: License Tool application
	1.2. XForms
	1.3. XSLT 3.0 and interactive XSLT in the browser with Saxon-JS

	2. XForms implementation
	2.1. Overview of how Saxon-Forms works
	2.2. Coverage of the XForms Specification

	3. Integrating Saxon-Forms into applications
	3.1. Standard integration
	3.2. Integration with application logic

	4. Conclusion
	5. Acknowledgements
	Bibliography

	Life, the Universe, and CSS Tests
	1. Introduction
	2. Origins
	2.1. Antenna House Regression Testing System (AHRTS)
	2.2. Customized AHRTS Reports
	2.3. CSS Test Suite Results
	2.3.1. Localization

	2.4. HTML Report
	2.5. eXist-db

	3. eXist-db Application
	3.1. Loading
	3.2. Summary view
	3.3. Individual test results
	3.4. Fatal Attraction
	3.5. Import and Export
	3.5.1. Export
	3.5.2. Import

	3.6. Running Jenkins from eXist-db
	3.7. XForms or Bootstrap?
	3.8. HTML Templating
	3.9. ‘=’ in file names
	3.10. CSS Tests now Web Platform Tests
	3.11. Localization
	3.12. Dashboard

	4. Variations
	4.1. Testing an AH Formatter fork
	4.2. Testing XSL-FO

	5. Conclusion
	Bibliography

	Form, and Content
	1. Introduction
	1.1. XForms
	1.2. What is a Form?

	2. Data-driven Structure: A Questionnaire
	2.1. The Static Version
	2.2. Making the Form Multi-lingual
	2.3. Generalising
	2.4. Analysis

	3. Data-driven Display: A Presentation Manager
	3.1. Slide Deck
	3.2. Displaying One Slide
	3.3. Loading Other Slide Sets
	3.4. Analysis

	4. Data-driven Control: The XForms 2.0 Test Suite
	4.1. Testing Functions
	4.2. Analysis

	5. Conclusion
	6. References
	Bibliography

	tokenized-to-tree
	1. Introduction
	2. Requirements
	2.1. A detailed example: Marking up line numbers in PDF; matching generated text

	3. A detailed look at the PDF line number patching example
	4. The tokenized-to-tree library
	4.1. Step ttt:prepare-input
	4.2. (project-specific TA step)
	4.3. Step ttt:process-paras
	4.4. (project-specific postprocessing step)
	4.5. Step ttt:merge-results

	5. Details of the linguistic analysis pipeline
	6. Where is the code?
	7. Conclusion
	Bibliography

