
Authoring Domain Specific Languages

in Spreadsheets

Using XML Technologies

Alan Painter

Development Engineer

HSBC France
XML Prague

8 February 2019

2

What is a DSL?

• a computer language specialized to a particular application domain

Domain Specific Languages – The Short Description

XML Prague 2019

make
all: hello.exe

hello.exe: hello.o

gcc -o hello.exe

hello.o

hello.o: hello.c

gcc -c hello.c

clean:

rm hello.o

hello.exe

YACC
statement_list

: statement

| statement statement_list

statement

: NAME EQ expression ';' {vbltable[$1] = $3; }

expression

: expression PLUS expression {$$ = $1 + $3;}

| expression MINUS expression {$$ = $1 - $3;}

| expression TIMES expression {$$ = $1 * $3;}

| expression DIV expression {$$ = $1 / $3;}

| MINUS expression %prec UMINUS {$$ = - $2;}

| '(' expression ')' { $$ = $2; }

| NUMBER

| NAME { $$ = vbltable[$1]; }
troff

.nf

.ll 4.0i

.in 2.0i

101 Main Street

Morristown, NJ 07960

15 March, 1997

.sp 1i

.in 0

Dear Sir,

html
<p>You can reach Michael at:</p>

Website

Email

Phone

Two main aspects of any DSL:
• The syntax of the language

• The implementation of the action (often generating an artifact)

Two main aspects of any DSL:
• The syntax of the language

• The implementation of the action (often generating an artifact)

3

In a paper presented October 2018 to the ACM/IEEE Conference MODELS ‘18,

Juha-Pekka Tolvanen and Steven Kelly presented a survey of DSLs and the effort

required to develop them. The DSLs surveyed were in diverse domains:

• Voice control systems for home automation

• Testing a military radio system

• Touch screen controller

Their survey noted that the it required from a few person-days to 3 person-weeks to

develop the DSLs.

Domain Specific Languages – Diverse Uses

4

« I believe that the hardest part of software projects, the most common

source of project failure, is communication with the customers and users

of that software. By providing a clear yet precise language to deal with

domains, a DSL can help improve this communication. »

—Martin Fowler, Domain Specific Languages, 2010

Domain Specific Languages – What’s the Utility?

XML Prague 2019

«[XML] is terrible for a programming language. Once you start putting

structures like control logic the noise of XML becomes intolerable. The

great example of this is XSLT, which is awful to work with. No language

can be good that makes a subroutine call so painful. »

—Martin Fowler, Use of XML, 3 January 2014

5

A Typical Development Process Without a DSL

XML Prague 2019

Business

Analyst

Technical

Implementer

SpecificationSpecification ImplementationImplementation

Quality

Assurance

Problems

discovered

by QA may be

corrected directly

in the

Implementation

and not be

reflected in the

Specification.

Subsequent

updates to the

Specification may

be difficult to

correlate with the

Implementation.

6

A Cleaner Development Process With a DSL

XML Prague 2019

Business

Analyst

Technical

Implementer

Specification as a

DSL

Specification as a

DSL

ImplementationImplementation

Quality

Assurance

Problems

discovered

by QA are

corrected in the

DSL /

Specification

Auto-

generate

from the

DSL

Auto-

generate

from the

DSL

7

Test Results

A Shorter Testing Cycle With a DSL

XML Prague 2019

Business

Analyst

Specification as a

DSL

Specification as a

DSL

ImplementationImplementation
Auto-

generate

from the

DSL

Auto-

generate

from the

DSL

Test Harness

authors

verifies

8

• Business Analysts and Domain Experts are Extremely Comfortable working

with Spreadsheets

• Everything is squared up.

• Rows can be lined up for tablular data  readability

• The editing model allows for editing blocks of cells, entire rows, entire columns.

• Even multi-line text can be contained within a cell

• Can add text colors, styles, background colors, etc (i.e. Pimp my spec!!!)

DSLs in Spreadsheets

XML Prague 2019

9

If we accept that :

• DSLs present a meaningful and readable expression of a process

• Business Analysts can use DSLs to be direct contributors to development

• Business Analysts prefer to work with spreadsheets

We should use spreadsheets as a support for DSLs!

But wait, there’s more!

• XML Technologies (Xquery, XSLT) can read spreadsheets easily

• XML Technologies (Xquery, XSLT) can produce almost any artifact

We can use XML Technologies for implementing DSLs in Spreadsheets.

Summing up: The Value Proposition

XML Prague 2019

10

Spreadsheet documents are already XML!

• Microsoft XML Format (.xml)

• a single xml Document (Office 2003)

• Open Office XML (OOXML) (.xlsx)

• a zip archive containing a collection of XML files

• 2 major versions of the XML content

• Open Document Format (ODF) (.odt)

• a zip archive containing a collection of XML files

Why is it that XML Technologies can read a spreadsheet
document so easily?

XML Prague 2019

11

The Simple Model for Data in a Spreadsheet

XML Prague 2019

<Workbook>

<Worksheet name="Sheet1">

<Line>

<Cell>On</Cell>

<Cell>First</Cell>

<Cell>Line</Cell>

</Line>

<Line>

<Cell>On</Cell>

<Cell>Second</Cell>

<Cell>Line</Cell>

</Line>

</Worksheet>

<Worksheet name="Sheet2">

....

</Worksheet>

</Workbook>

12

Using our Simple Model to Design a Spreadsheet DSL

XML Prague 2019

<xsl:function name="f:getPackage" as="xs:string">

<xsl:param name="lines" as="element(Line)*" />

<xsl:sequence select="$lines[Cell[1] eq 'package']/Cell[2]" />

</xsl:function>

<xsl:function name="f:getStates" as="xs:string*" >

<xsl:param name="lines" as="element(Line)*" />

<xsl:sequence select="$lines[Cell[1] eq 'header']/Cell[position() gt 2]" />

</xsl:function>

<xsl:function name="f:getHeaderIndex" as="xs:integer" >

<xsl:param name="lines" as="element(Line)*" />

<xsl:param name="state" as="xs:string" />

<xsl:variable name="headerCells" select="$lines[Cell[1] eq 'header']/Cell"

as="xs:string*" />

<xsl:sequence select="index-of($headerCells, $state)" />

</xsl:function>

13

Using our Simple Model to Design a Spreadsheet DSL(2)

XML Prague 2019

<xsl:function name="f:getEvents" as="xs:string*" >

<xsl:param name="lines" as="element(Line)*" />

<xsl:sequence select="$lines[Cell[1] eq 'action']/Cell[2]" />

</xsl:function>

<xsl:function name="f:getAction" as="xs:string?" >

<xsl:param name="lines" as="element(Line)*" />

<xsl:param name="state" as="xs:string" />

<xsl:param name="event" as="xs:string" />

<xsl:variable name="stateColumn" select="f:getHeaderIndex($lines, $state)"

as="xs:integer" />

<xsl:sequence select="$lines[Cell[1] eq 'action']

[Cell[2] eq $event]/Cell[$stateColumn]" />

</xsl:function>

14

DSL of an Automaton (Finite State Machine)

XML Prague 2019

15

Generated Java Abstract Class

XML Prague 2019

package dslss.fsm;

public abstract class FsmDemoBase {

public enum Event { Nickel, Dime, Quarter, CoinReturnButton }

public enum State { Start, FiveCents, TenCents, FifteenCents, TwentyCents }

protected abstract Runnable dispenseCandy();

protected abstract Runnable returnCoins();

private final Runnable action[][] = {

{ __nop(), __nop(), __nop(), __nop(), dispenseCandy() },

{ __nop(), __nop(), __nop(), dispenseCandy(), dispenseCandy() },

{ dispenseCandy(), dispenseCandy(), dispenseCandy(), dispenseCandy(), dispenseCandy() },

{ returnCoins(), returnCoins(), returnCoins(), returnCoins(), returnCoins() },

};

private final static State nextState[][] = {

{ State.FiveCents, State.TenCents, State.FifteenCents, State.TwentyCents, State.Start },

{ State.TenCents, State.FifteenCents, State.TwentyCents, State.Start, State.Start },

{ State.Start, State.Start, State.TwentyCents, State.Start, State.Start },

{ State.Start, State.Start, State.TwentyCents, State.Start, State.Start },

};

public final State handleEvent(final State currentState, final Event newEvent) {

action [newEvent.ordinal()] [currentState.ordinal()].run();

return nextState [newEvent.ordinal()] [currentState.ordinal()];

}

private Runnable __nop() { return () -> {}; }

}

16

Generated GraphViz

XML Prague 2019

digraph FsmDemoBase {

node [shape = circle];

Start -> FiveCents [label = "Nickel"];

Start -> TenCents [label = "Dime"];

Start -> Start [label = "Quarter\ndispenseCandy()"];

Start -> Start [label = "CoinReturnButton\nreturnCoins()"];

FiveCents -> TenCents [label = "Nickel"];

FiveCents -> FifteenCents [label = "Dime"];

FiveCents -> Start [label = "Quarter\ndispenseCandy()"];

FiveCents -> Start [label = "CoinReturnButton\nreturnCoins()"];

TenCents -> FifteenCents [label = "Nickel"];

TenCents -> TwentyCents [label = "Dime"];

TenCents -> Start [label = "Quarter\ndispenseCandy()"];

TenCents -> Start [label = "CoinReturnButton\nreturnCoins()"];

FifteenCents -> TwentyCents [label = "Nickel"];

FifteenCents -> Start [label = "Dime\ndispenseCandy()"];

FifteenCents -> Start [label = "Quarter\ndispenseCandy()"];

FifteenCents -> Start [label = "CoinReturnButton\nreturnCoins()"];

TwentyCents -> Start [label = "Nickel\ndispenseCandy()"];

TwentyCents -> Start [label = "Dime\ndispenseCandy()"];

TwentyCents -> Start [label = "Quarter\ndispenseCandy()"];

TwentyCents -> Start [label = "CoinReturnButton\nreturnCoins()"];

}

17

GraphViz Graphic

XML Prague 2019

18

• We have a large number of installed instances with different configurations.

• We want to have a central inventory of the instances and their different configurations.

• We’ll generate at least some properties files (two in the example)

Generating an Application Configuration

XML Prague 2019

system.location=AUSTIN

jms.QUEUE_MGR=DGBLHFCMP1

jms.HOST_NAME=gbltstfiag.yoyodyne

jms.PORT=23400

...

wrapper.java.additional.1=-Drmi.hostname=localhost

wrapper.java.additional.2=-Xms1024m

wrapper.java.additional.3=-Xmx1024m

wrapper.app.parameter.1=classpath:yoyodyne_service.xml

...

19

DSL Model for Generating an Application Configuration

XML Prague 2019

20

Templates for the Properties Files

XML Prague 2019

21

Extracting Tabular Data From Diverse Content Models

XML Prague 2019

Bonds

FPML

Bonds

FixML

Forex

FPML

Read Structured

Content and

Produce

N Lines

of

Tabular Data

CSV Output

22

Primitive DSL

XML Prague 2019

23

Generated XSLT Template From the Primitive DSL

XML Prague 2019

<xsl:template xmlns:fpml="http://www.fpml.org/FpML-5/recordkeeping"

xmlns:fixml="http://www.fixprotocol.org/FIXML-4-4"

xpath-default-namespace="http://www.fixprotocol.org/FIXML-4-4"

name="f:BOND-FixmlBond" as="xs:string*">

<xsl:for-each select="/Bond/TrdCaptRpt">

<xsl:variable name="book" as="xs:string" select="$trade/TrdLeg/@BookId" />

<xsl:variable name="resultCells" as="item()*">

<xsl:sequence select="f:empty-if-absent(ccy)" />

<xsl:sequence select="f:empty-if-absent(@lastQty)" />

<xsl:sequence select="f:empty-if-absent('SystemC')" />

<xsl:sequence select="f:empty-if-absent(@primaryTrader)" />

<xsl:sequence select="f:empty-if-absent(instr/@maturity)" />

<xsl:sequence select="f:empty-if-absent($book)" />

</xsl:variable>

<xsl:value-of separator="{$separator}"

select="for $i in $resultCells

return f:encode-csv($i, $separator)" />

</xsl:for-each>

</xsl:template>

24

Basic Mechanism for Choosing Rules to Apply

XML Prague 2019

Template 1

FixML Futures

CSV Output

Template 2

FPML Bonds

Template 3

FixML Bonds

Template 4

FPML Forex

…

Bond

FixML

0 result lines

0 result lines

1 result line 1 result line

not attempted

25

Spreadsheet DSL For Extracting Tabular Data

XML Prague 2019

26

WorkbookWorkbook XSLT

Processor (1)

XSLT

Processor (1)

Generated

XSLT

Generated

XSLT

authors

XSLT

Processor (2)

XSLT

Processor (2)

source

document

generates

includes

Test

Documents

Test

Documents

XSLT

(DSL generator)

XSLT

(DSL generator)

XSLT

(test harness)

XSLT

(test harness)

processes

processes

source

documents

Test

Output

Test

Output

verifies

ArtifactArtifact

Business

analyst

Steps in the Generation and Testing of the XSLT Artifact

27

• Good acceptance by the Business Analysts

• BAs would even author Xpath functions in XSLT (e.g. sorts)

• Immediate testing results were a big benefit

• Some additional tools for analyzing data were also created (cardinality)

• Results are very structured with a Rosetta Stone type of equivalence

Observed Results

XML Prague 2019

28

Schema-to-Schema Translation

XML Prague 2019

Convert from

the input

schema to the

output schema

Risk

loans

FrontOffice

loans

• Globally very simple process (although some other flows not shown)

• The FrontOffice and Risk schemas were very different

• Both strongly defined in XML Schema

• Designed by different teams

• Each had its own subject matter experts

• Needed to find agreement between the two teams of subject matter experts

29

XSLT Templates for Schema-Aware Processing

XML Prague 2019

<!-- ================================= -->

<!-- ContreGarantie_Concours: (150) -->

<!-- ================================= -->

<xsl:template match = "element(*,defiml:DL_Reference)"

as = "element(*, fsc2:GarantieType)"

mode = "ContreGarantie_Concours" >

<xsl:param name="elementName" as="xs:string" required="yes" />

<xsl:param name="facility" as="element(*,defiml:DL_Facility)*" required="yes" tunnel="yes" />

<xsl:param name="loan" as="element(*,defiml:DL_Loan)*" required="yes" tunnel="yes" />

<xsl:element name="{$elementName}" type="fsc2:GarantieType" >

<xsl:attribute name="statut" select="transco:statutComptabilise('Comptabilisee')" />

<xsl:attribute name="indEligibGar" select="transco:indEligibGar('Eligible')" />

<xsl:apply-templates select="current()" mode="CouvertFixe_ContreGarantie_Concours" >

<xsl:with-param name="elementName" select="'CouvertFixe'" as="xs:string"/>

</xsl:apply-templates>

30

XSLT Templates for Schema-Aware Processing (2)

XML Prague 2019

<!-- ================================= -->

<!-- Garantie_Reelle: (368) -->

<!-- ================================= -->

<xsl:template match ="element(*,defiml:DL_Collateral)"

as = "element(*, fsc2:GarantieType)"

mode = "Garantie_Reelle" >

<xsl:param name="elementName" as="xs:string" required="yes" />

<xsl:param name="loan" as="element(*,defiml:DL_Loan)*" required="yes" tunnel="yes" />

<xsl:param name="loanProductPosition" required="yes" tunnel="yes

as="element(*,defiml:DL_LoanProductPosition)*" " />

<xsl:variable name="collateralCode" as="xs:string"

select="collateralHeader/collateralGroupTypeCode[codingScheme='FIN_RSK']/code" />

<xsl:variable name="ReferenceCollateral" as="xs:string" select="@id" />

<xsl:attribute name="code" select="$collateralCode" />

<xsl:variable name="mntDernEval" as="element(*,defiml:BankML_Money)"

select= "brkfct:getCollateralValuationAmount($loanProductPosition,

$loan, current(),'MarkToMarket'))" />

31

Transcodification (Code List Translations)

XML Prague 2019

• BAs are in charge of the translations

• Could also pull these from an external system if available

<xsl:function name="transco:SeniorityType-To-senioriteCreance" as="xs:string">

<xsl:param name="_simple" as="defiml:DL_SeniorityTypeScheme"/>

<xsl:sequence select="transcoJ:transco('SeniorityType-To-senioriteCreance', $_simple))"/>

</xsl:function>

32

Rules (i.e. Xpath Functions)

XML Prague 2019

• BAs could write these rules in the spreadsheet

• This could not handle everything (ex: sorting) but was largely used

<xsl:function name="brkfct:getDistinctDLRefs" as="element(*,defiml:DefiML_Reference)*" >

<xsl:param name="_dlRefs" as="element(*,defiml:DefiML_Reference)*" />

<xsl:sequence

select="

for $href in distinct-values($_dlRefs/@href)

return (($_dlRefs[@href = $href])[1])

"/>

</xsl:function>

33

• Business Analysts were able to start with the model very early in the project

• Detailed Specifications, Rules and Transcodifications authored originally in

the DSL

• Immediate testing results were a big benefit (again)

• Subject matter experts (SMEs) used the DSL in meetings (often printed)

• SMEs also used an additional column in the DSL to indicate if they had

validated each individual rule (fine-grained validation)

• The approach was quickly adopted for a number of other flows including a

reverse flow

Observed Results

XML Prague 2019

34

• The DSL Representation is extremely useful in the short and in the long run

• I’ve found Business Analysts to be mostly positive on the approach

• Some BAs do not want to have to work on a « technical level »

• In these cases, can transcribe any BA work into the DSL and then agree

upon using the DSL as the common support for ongoing work

• The development time on the DSL is not that important (a few days of work)

• Designing a DSL does require creativity and some vision

• The technical implementors need to be enthusiastic about the approach

• Their enthusiasm will win over recalcitrant SMEs and BAs

Some Tentative Conclusions

XML Prague 2019

35

• I haven’t identified anything intrinsically too structured to be represented as a

DSL in a Spreadsheet

• I do have a conjecture:

• “Any functional process can be represented as a DSL in a Spreadsheet”***

• *** “provided that the implementor is clever enough”

What Can’t Be a DSL in a Spreadsheet?

XML Prague 2019

36

• Spreadsheet documents can be difficult for source control systems (ex: git)

• Can’t merge two divergent branches very easily

• Also can’t display differences between successive versions in a branch

Caveats

XML Prague 2019

37

Questions?

Thanks for Listening

XML Prague 2019

