“Merge and Graft: Two Twins
That Need To Grow Apart’

Robin La Fontaine
Nigel Whitaker
DeltaXML

Merge is important in version control
systems, e.g. Git

« Merge conflicts take time and effort to sort out
« XML/JSON aware merge is better than line-based merge

« XML and XPath/XSLT allow rules to be applied
« Enables us to have different types of merge
« Some conflicts can be avoided
« Some conflicts can be resolved automatically

Merge and Graft (Cherry-pick) in Git

 Our objective: make life easier for anyone merging XML or
JSON in Git
* Improved merge/graft tools
« Fewer conflicts to resolve manually (takes time and is tedious)

» Our approach: Provide XML and JSON aware merge and graft
tools
« We will show Merge and Graft are not the same
» Rule-based merge/graft can help
* Integration into Git is work in progress

“Varieties of XML Merge: Concurrent versus
Sequential”, presented at XML Prague 2018

o—0—0—0

Concurrent Sequential
Merge Merge

DELTA

QO

Q1

Q2

Q3

Merge and Graft (Cherry-pick)

Merge
Q2+P2 to
create Q3

P1

P2

QO
Q1 6 P1
Q2 P2
Q3

Graft P1->P2
changes to create

Q3

DELTA

Are merge and graft the same?

QO QO
Q1 P1 Q1 6 P1
Q2 P2 Q2 P2
Q3 Q3
Graft P1->P2 Implementing graft
changes to create as a merge
Q3

DELTA 6

Graft: apply changes P1->P2 to Q2

Pl P2 Q2 Q3: Graft
{ { {
"John": "v2", "John": "vlﬂ
"Mike": "v1", "Mike":("v2", "Mike": "v1", "Mike" :C "v2",
"Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
"David": "wv1" "David" « "v2"
"Jane": "vl1" "Jane": "v1"
} } }

P1

P2

Graft P1->P2
changes to create
Q3

DELTA

Merge: merge changes in P2 and Q2

P1 P2 02 Q3: Merge

{ { {
"John": "v2", D "John":"v1",D ! CONFLICT
"Mike": "v1", "Mike":('v2',> "Mike": "vi', "Mike":("v2", >
"Anna": "v1", "Anna": "v1", "Anna" "Anna" :
"David": "v1" "David" : | CONFLICT

} } }

Implementing graft
as a merge

DELTA

Do we get Graft if we merge with Q

priority”?

P1 P2

{

n John n : ||V2 n ,

"Mike": llvlll, "Mike"
"Anna": "v1", "Anna'":
"David": "wv1" "David":

Q3: Merge Q3: Q2 Priority
{ {
"v1l", | CONFLICT "John": "v1",
“Vl“, IIMikell : HV2 ||, llMikell : IIV2 ll,
IIV2 n , “Anna n : HV2 n ’ "Anna n : IIV2 n ,
ICONFLICT
IIVlII IIJanell : IIVlll llJanell : llvlll
} }
Qo
a @ P1
@2 @ O
B @

Implementing graft

das a merge

DELTA 9

Do we get Graft if we merge with Q
priority”? No!

Q3: Graft Q3: Merge Q3: Q2 Priority
{ { {
I CONFLICT "John": "v1",
"Mike" : ||V2 n ’ “Mike" : "V2 [1] ’ "Mike" : ||V2 n ,
"Anna" : ||V2 n ’ “Anna n : "V2 [1] ’ "Anna n : ||V2 n ,
!CONFLICT
"Jane": Ilvlll “Jane" : "Vl" "Jane" : llvlll
} } }
Qo
P1 Q1 P1
P2 Q2 @ ® r
a3 @
Graft P1->P2 imol i ft
changes to create mpiementing gra
8 Q3 as a merge DELTA 10

The story so far...

« XML and JSON aware merge tools can give better results than
line-based merge

* We have shown Merge and Graft are not the same
« BUT we will see that Git does not make this distinction

« So how does Git handle merge and is there scope to improve
it?

Why Git"?

Version Control

All Respondents Professional Developers

Git 87.2%
Subversion 16.1%
Team Foundation Version Control 10.9%
Zip file back-ups 7.9%
Copying and pasting files to network 7.9%
shares

| don't use version control 4.8%

Mercurial 3.6%

Git is the dominant choice for version control for developers today, with almost 90% of developers
checking in their code via Git.

Source: StackOverflow developer survey 2018: https://insights.stackoverflow.com/survey/2018/
DELTA 12

Git merge workflows

git mergetool

git mergetool

Pass| .ng git merge
conflicts:
I 4
) $MERGED
strategy driver —onflicts >
M *
—»>
>
o) -
git merge
Re-merg?'(~ Ve
strategy driver —>
SLOCAL »
M $REMOTE >
$BASE »
o) &

DELTA

13

Merge conflict discrepancies

<p id='conclusions'>All is well and good!</p>
<p id='conclusions’ "en_GB">All is well and good!</p>

<p "en_GB" id="conclusions' >All is well and good!</p>

<< A
<p id='conclusions' xml:lang="en_GB">All is well and good!</p>

<p xml:lang="en_GB" id='conclusions' >All is well and good!</p>
>>>>>>> B

DELTA 14

Non-conflicting, bad text merge

<rule-set name="Incoming Public”
target-interface="PublicLAN”
no-match-action="drop">
<rule name="allow https for website failover”
target-ip="81.2.96.130"
target-port="443"
action="accept"/>
</rule-set>
<rule-set name="Incoming Public”
target-interface="PublicLAN” ' - .
no-match-action="drop"> no—match—acE1on= drop”> _ _ ,
<rule name="allow https for website failover” <rule name="allow https for website failover

target-ip="81.2.96.130" protoco?:"?”)

target-port="443" target-1p="81.2.96.130

protocol="6" target-port="443"

action="accept"/> action="accept"/>
</rule-set> </rule-set>

<rule-set name="Incoming Public”
target-interface="PublicLAN”

<rule-set name="Incoming Public”
target-interface="PublicLAN”
no-match-action="drop">
<rule name="allow https for website failover”
protocol="6"
target-ip="81.2.96.130"
target-port="443"
protocol="6"
action="accept"/>
</rule-set>

Merge Driver Setup
Download the repo onto your file system. Note the path to the bin folder.

Create .gitattributes with patterns in your git repository to associate json or xml files with the merge drivers. For example:

*.xml merge=xmlmerge
*.json merge=jsonmerge

Then in git config configure the xml and json merge drivers, using --local, --global or --system as appropriate:

$ git config —-local merge.xmlmerge.name "DeltaxML XML Merge"

$ git config —-local merge.xmlmerge.driver "/Users/nigelw/bin/git-xml-merge-driver %0 %A %B %L S%P"

$ git config —--local merge.jsonmerge.name “DeltaxML JSON Merge"

$ git config —-local merge.jsonmerge.driver "/Users/nigelw/bin/git-json-merge-driver %0 %A %B %L %P"

“Note: The path to the drivers must be an absolute filesystem path and correspond to the location where you saved the files
in the bin folder.

n

SADELTAXML 16

Merge workflow (passing conflicts

t1 (Git)
L
Pull Push Fetch Branch Merge Stash
PACE All Branches Show Remote Branches Ancestor Order I% I%
Graph Descript
tus B s Merge From Log Merge Fetched
o b featu
i featu Pick a commit to merge into your current tree:
1 mast All Branches Show Remote Branches Ancestor Order Jump to:
4ES initial cc Graph Description
A U featureA commit featureA e1 file edits
3 commit featureB e2 file edits
U master master files initial commit
Sorted by path v Q ¢ v
Filename P .en
demo-xml.txt
] Hunk 1: Lines 1-26 Reverse hunk
commit featureB e2 file edits <?xml version="1.0" encoding="utf-8"7>
S <Project>
<Pranertufiroins
Options
DULES
Commit merge immediately (if no conflicts)
ES

Include messages from commits being merged in merge commit
Create a commit even if merge resolved via fast-forward
Rebase instead of merge (WARNING: make sure you haven't pushed your changes)

Sorted by path v

Filename Path

DELTA 17

astor Order

Descript Merging featureB

i featu‘ [

1> featu Pick a commit to merge into ya DeltaXML JSON Merge Driver: conflicts remain in demo-json.json
DeltaXML XML Merge Driver: conflicts remain in csproj—xml.xml

ULULLU/AIL ZUih 1TICT YL U AVel s CUITT LLULI TUlULll LI UGCiliv Al Ls AllEL

1 mast All B h 54 ShowR Auto-merging ssrs—xml.xml J t
‘ ranenes o CONFLICT (content): Merge conflict in ssrs—-xml.xml ume
initial o Graph Auto-merging ssrs—xml.txt

CONFLICT (content): Merge conflict in ssrs—xml.txt
Auto-merging nc-invalid-xml.xml
Auto-merging nc-invalid-xml.txt
° Auto-merging false—conflict-xml.xml
Auto-merging false—conflict-xml.txt
CONFLICT (content): Merge conflict in false-conflict-xml.txt
Auto-merging demo-xml.xml

Sorted by path v 22 v CONFLICT (content): Merge conflict in demo-xml.xml
Fil Auto-merging demo—xml.txt
fiehame ‘ CONFLICT (content): Merge conflict in demo-xml.txt

demo-xml.txt

commit featureB e2 fil
T O e G
<Pranertufaronins

Options

N
N

Commit merge immediately (if no conflicts)
Include messages from commits being merged in merge commit

MNemnda A mmmamald mtrmim M mnmvmn vamaliiadd tida fand faviiimeal

DELTA 18

Merge Conflicts

You now have merge conflicts in your working copy
that need to be resolved before continuing.

You can do this by selecting the conflicted files and
using the options under the 'Resolve Conflicts' menu.

Do not show this message again

DELTA

19

Pending files, sorted by path v 2= v
Filename

A\ csproj-xml.txt

A\ csproj-xml.xml

/) demo-json.json

A\ demo-json.txt

A\ demo-xml.txt

v &demo—xml Cpen

A\ false-conf Show In Finder

false-conf COPY Path To Clipboard
Open In Terminal

ne-invalid: Quick Look

nc-invalid-

A ssrsxmlt: - Create Patch...
A ssrsxmix Apply Patch...
Add to index

Remove
Stop Tracking

Commit Selected...
Reset...
Reset to Commit...

Resolve Conflicts

The xml and json merge d CUSTOTIAEHBRS

The authentication can be
Log Selected...

* Navigate to website Annotate Selected

= o Bresentet
February 6)\ ove...

11‘ Expand All

Path

Launch External Merge Tool

Resolve Using 'Mine'

Resolve Using 'Theirs'

Restart Merge
Mark Resolved
Mark Unresolved

\
t"/>

Hunk 1: Lines 1-42

- <?xml version="1.0" encoding
- <data xmlns:deltaxml="http:/
- <info>Merging XML data is
+ <?xml version="1.0" encoding
+ <info>Merging XML data is
+ <<<<<<< editl

+

the best
>>>>>>> edit2

</info>

i Diff

J0 @ EERS S ()

General Accounts Commit Diff Git Mercurial Custom Actions Update

3

Advanced

Internal Diff Visualization
Diff View font: Menlo Regular 10.0 pt.

Diff Colours: |1/ [HEEMl BB Reset
Size limit (text): 1,024 KB Size limit (binary): 10,240

Ignore File Patterns: *ppxuser, *xcuserstate

External Diff / Merge

h Visual Diff Tool: ~Custom...
Diff Command: Arguments:
Merge Tool: Custom...

Merge Command: | /usr/local/bin/code

Change...

KB

Arguments: --wait $MERGED

Available command arguments for 'Other': $LOCAL (=mine), $REMOTE (=yours), $BASE (=common parent),

$MERGED (= merge output)

DELTA 20

demo-xml.xml %

few seconds a author (You)
version="1.0" encoding="UTF-8"
Merging XML data is

Ancestor Order

Accept Current Change | Accept Incoming Chang Description

<<<<<<< editl (Current Change)

L featureA commit featureA e1 file edits
the best I featureB commit featureB e2 file edits
>>>>>>> edit2 (Incoming Change)

» master master files initial commit

initial commit of .gitattributes

ﬁ I wont change

E1l
P featureA*+! Q@2 A0 0 You, afew secondsago Ln1,Col1 Spaces:3 UTF-8 LF XML @ A1
O REM(
Q> TAGS Visual Merge: demo-xml.xml
> origir
Q e Pending files, sorted by path v & . & REMOTES Details of file being merged:
Fil A
. flename Filename: demo-xml.xml
File status STASHES
' @ workspace.xml [susn Repository: /private/tmp/t1
History
SUBMODULES .
Search SEE SUBT [E Please note that you will need to QUIT your merge tool to complete the merge process.
Ij BRANCHES S@E SUBTREES Abort
O master

DELTA 21

Conclusions

« XML and JSON aware merge tools can give better results than
line-based merge
» Fewer conflicts
« Best done in Git Merge Driver

» Merge and Graft (cherry-pick) are arguably not the same
« But Merge and Graft are treated the same way in Git

« Communication of conflicts from Merge Driver to Merge Tool
needs to be improved
 To handle conflicts in tree-structured data/documents

