
XML Prague 2019
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 7–9, 2019

XML Prague 2019 – Conference Proceedings
Copyright © 2019 Jiří Kosek

ISBN 978-80-906259-6-9 (pdf)
ISBN 978-80-906259-7-6 (ePub)

Table of Contents
General Information ... vii

Sponsors .. ix

Preface .. xi

Task Abstraction for XPath Derived Languages –
Debbie Lockett and Adam Retter .. 1

A novel approach to XSLT-based Schematron validation – David Maus 57

Authoring DSLs in Spreadsheets Using XML Technologies – Alan Painter 67

How to configure an editor – Martin Middel ... 103

Discover the Power of SQF – Octavian Nadolu and Nico Kutscherauer 117

Tagdiff: a diffing tool for highlighting differences in text-oriented XML –
Cyril Briquet .. 143

Merge and Graft: Two Twins That Need To Grow Apart –
Robin La Fontaine and Nigel Whitaker ... 163

The Design and Implementation of FusionDB – Adam Retter 179

xqerl_db: Database Layer in xqerl – Zachary N. Dean .. 215

An XSLT compiler written in XSLT: can it perform? –
Michael Kay and John Lumley ... 223

XProc in XSLT: Why and Why Not – Liam Quin .. 255

Merging The Swedish Code of Statutes (SFS) – Ari Nordström 265

JLIFF, Creating a JSON Serialization of OASIS XLIFF –
David Filip, Phil Ritchie, and Robert van Engelen ... 295

History and the Future of Markup – Michael Piotrowski .. 323

Splitting XML Documents at Milestone Elements – Gerrit Imsieke 335

Sonar XSL – Jim Etevenard .. 355

Copy-fitting for Fun and Profit – Tony Graham ... 363

RDFe – expression-based mapping of XML documents to RDF triples –
Hans-Juergen Rennau ... 381

v

Trialling a new JATS-XML workflow for scientific publishing – Tamir Hassan . 405

On the Specification of Invisible XML – Steven Pemberton 413

vi

General Information

Date

February 7th, 8th and 9th, 2019

Location

University of Economics, Prague (UEP)
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, Xyleme & XML Prague, z.s.
Káťa Kabrhelová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s. & University of Economics, Prague
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Robin Berjon, The New York Times
Petr Cimprich, Wunderman
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Ari Nordström, Karnov Group
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, Cornelsen GmbH
John Snelson, MarkLogic
Jeni Tennison, Open Data Institute
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)

vii

http://xmlprague.cz/about
http://fis.vse.cz

viii

Sponsors

oXygen (https://www.oxygenxml.com)
le-tex publishing services (https://www.le-tex.de/en/)
Antenna House (https://www.antennahouse.com/)
Saxonica (https://www.saxonica.com/)
speedata (https://www.speedata.de/)
Czech Association for Digital Humanities (https://www.czadh.cz)

ix

https://www.oxygenxml.com
https://www.le-tex.de/en/
https://www.antennahouse.com/
https://www.saxonica.com/
https://www.speedata.de/
https://www.czadh.cz

x

Preface

This publication contains papers presented during the XML Prague 2019 confer-
ence.

In its 14th year, XML Prague is a conference on XML for developers, markup
geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big
Data and recent advances in XML technologies. The conference provides an over-
view of successful technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 7–9 February 2019 at the campus of University of
Economics in Prague. XML Prague 2019 is jointly organized by the non-profit
organization XML Prague, z.s. and by the Faculty of Informatics and Statistics,
University of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday runs in an un-conference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday are devoted to
classical single-track format and papers from these days are published in the pro-
ceeedings. Additionally, we coordinate, support and provide space for XProc
working group meeting collocated with XML Prague.

We hope that you enjoy XML Prague 2019!

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

Task Abstraction for XPath Derived
Languages

Debbie Lockett
Saxonica

<debbie@saxonica.com>
Adam Retter

Evolved Binary
<adam@evolvedbinary.com>

Abstract

XPDLs (XPath Derived Languages) such as XQuery and XSLT have been
pushed beyond the envisaged scope of their designers. Perversions such as
processing Binary Streams, File System Navigation, and Asynchronous
Browser DOM Mutation have all been witnessed.

Many of these novel applications of XPDLs intentionally incorporate
non-sequential and/or concurrent evaluation and embrace side effects to
achieve their purpose.

To arrive at a solution for safely managing side effects and concurrent
execution, this paper first surveys both the available XPDL vendor exten-
sions and approaches offered in non-XPDLs, and then describes EXPath
Tasks, a novel solution derived for the safe evaluation of side effects in
XPDLs which respects both sequential and concurrent execution.

1. Introduction
XPath 1.0 was originally designed to “provide a common syntax and semantics
for functionality shared between XSL Transformations and XPointer” [1], and
XPath 2.0 pushed the abstraction further by declaring “XPath is designed to be
embedded in a host language such as XSL Transformations ... or XQuery” [2]. For
XML processing, XPath has enjoyed an arguably unparalleled level of language
adoption through reuse, forming the basis of XPointer, XSLT, XQuery, XForms,
XProc, Schematron, JSONiq, and others. XPath has also had a wide influence out-
side of XML, with concepts and syntax being reused in other languages like AQL
(Arrango Query Language), Cypher, JSONPath, and OData (Open Data Protocol)
amongst others.

As functional languages, XPDLs such as XQuery were designed to avoid strict
or ordered evaluation [21], thus leaving them open to optimisations which may
exploit concurrency or parallelism. XPDLs are thus good candidates for event

1

driven and task based concurrent and/or parallel processing. Since 2001, when
the first non-embedded multi-core processor the IBM Power 4 [11] was intro-
duced, CPU manufacturers have followed the trend of offering improved per-
formance through greater numbers of parallel hardware threads as opposed to
increased clock speeds. Unfortunately, exploiting the performance of additional
hardware threads puts an additional burden on developers by requiring the use
of low-level complex concurrent programming techniques [12]. Such low-level
concurrent programming is often error-prone [13], so it is desirable to employ
higher level abstractions such as event driven architectures [14], or task based
computation with Futures [16] and Promises [18]. This paper advances the use of
XPDLs in this context.

Indeed, the formal semantics for XPath state that “[XPath/XQuery] is a func-
tional language” [4]. From this we can infer that strict XPDLs must therefore also
be functional languages; this inference is strengthened by XQuery and XSLT
which are both functional languages. By placing restrictions on expression formu-
lation, composition, and evaluation, functional programming languages can ena-
ble advantageous classes of verification and optimisation when compared to
imperative languages.

One such restriction enforced by functional languages is the elimination of
side effects. A side effect is defined as a function or expression modifying some
state which is external to its local environment, this includes:
1. Modifying either: a global variable, static local variable, or variable passed by

reference.
2. Performing I/O.
3. Calling other side effect functions.
XPath and the XPDLs as defined by the W3C specifications address these con-
cerns and prevent side effects by enforcing that:
1. Global variables and static local variables are immutable, and that variables

are always passed by value and not reference.
2. I/O is frozen before evaluation, only documents known to the immutable

static context may be read, whilst the only output facility is the XDM result of
the program.

3. There are no side-effecting functions1.
In reality though many XPDL implementations offer additional vendor-specific
“extensions” which compromise functional integrity to permit side effects so that

1XPath 3.0 defines only one absolute non-deterministic function fn:error, and several other functions
(fn:analyze-string, fn:parse-xml, fn:parse-xml-fragment, fn:json-to-xml, and fn:transform)
which could be non-deterministic depending on implementation choices. We devalue the significance
of fn:error's side effect by tendering that, it could equally have been specified as a language expres-
sion for raising exceptions as opposed to a function.

Task Abstraction for XPath Derived Languages

2

I/O can be more easily achieved by the developer. Of concern for this paper is the
ability to utilize XPDLs for complex I/O requiring side effects without compro-
mising functional integrity or correctness of the application.

The key contributions of this paper are:
1. A survey of XPDL vendor implementations, detailing both how they manage

side effects and any proprietary extensions they offer for concurrent execu-
tion. See Section 2.

2. A survey of currently popular mechanisms for concurrent programming in
non-XPDLs, their ability to manage side effects, and their potential for XPDLs.
See Section 3

3. EXPath Tasks, a module of XPath functions defined for managing computa-
tional side effects and enabling concurrent and asynchronous programming.
To demonstrate the applicability of EXPath Tasks, we offer experimental refer-
ence implementations of this module in XQuery, XSLT, Java (for use from
XQuery in eXist-db), and JavaScript (for use from XSLT in Saxon-JS). See Sec-
tion 4.
We next briefly examine the original vision for XPath, XQuery, and XSLT, with

particular concern for how these languages should be evaluated by processors.
We then examine how the use of these languages has evolved over time and some
of the unexpected and novel ways in which they have been used.

1.1. The vision of XPDLs

The design requirements of XPath 2.0 [3] mostly focused on that of exploiting the
XDM (XQuery and XPath Data Model) and interoperability. As a language
designed to describe the processing abstractions of various host languages, it did
not need to state how the evaluation of such abstractions should take place,
although we find that it was not without sympathy for implementations, as one
of the stated Goals was: “Enable improved processor efficiency”; unfortunately,
we found little explicit public information on how or if that goal was met.

Examining the XQuery 1.0 requirements [6] we find a similar focus upon the
XDM, where querying different types of XML documents, and non-XML data
sources is possible, provided that both can present their data in an XDM form.
However, the XQuery 1.0 specification makes an explicit statement about evalua-
tion: “an implementation is free to use any strategy or algorithm whose result
conforms to the specifications in this document”, thus giving implementations a
great deal of freedom in how the query should be evaluated.

One of the requirements of XSLT 2.0 is labelled “2.11 Could Improve Effi-
ciency of Transformations on Large Documents” [5]. It describes both the situa-
tion where the tree representation of source documents may exceed memory
requirements, and a desire to still be able to process such large documents. It uses

Task Abstraction for XPath Derived Languages

3

non-prescriptive language to suggest two possible solutions: 1) a subset of the
language which would not require random access to the source tree, we could
likely recognise XSLT 3.0 Streaming as the implementation of that solution, and 2)
splitting a tree into sub-trees, performing a transformation on each sub-tree, and
then copying the results to the final result tree. Whilst XSLT 2.0 does not state
how an implementation should be achieved, many would likely recognise that (2)
is an embarrassingly parallel problem that would likely benefit from a MapReduce
[19] like approach.

An academic example of exploiting the implicit parallelisation opportunites of
XPDLs is PAXQuery, which compiles a subset of XQuery down into MapReduce
jobs which can execute in a highly-parallel manner over a cluster of Hadoop
nodes [24]. To the best of our knowledge, Saxon is the only commercial XPDL
processor which attempts implicit parallelisation. However, Michael Kay reports
that within the XSLT processor it can be difficult to determine when implicitly
parallelising operations will reduce processing time [20]. Saxon therefore also
offers vendor extensions which allow an XSLT developer with a holistic view of
both the XSLT and the data it must process, to explicitly annotate certain XSLT
instructions as parallelisable.

1.2. Novel applications of XPDLs

XPDLs have been used in many novel situations for which they were never envis-
aged, many of which utilise non-standardised extensions for I/O side effects and
concurrent processing to achieve their goals.

1.2.1. XPDLs as Web Languages

XPDLs, in particular XQuery, have been adopted with considerable success as
server-side scripting languages for the creation of dynamic web pages and web
APIs. A web page is by definition a document, and since an HTML document is
representable as an XML document, XPDLs' ability to build and transform such
documents from constituent parts has contributed to their uptake. Implementa-
tions such as BaseX, eXist-db, and MarkLogic all provide HTTP Servers which
execute XQuery in response to HTTP requests. Whilst a single XQuery may be
executed concurrently by many thousands of users in response to incoming
HTTP requests, stateful information often needs to be persisted and shared on the
server. This could be in response to either a user logging into a secure website, at
which point the server must establish a session for the user and memorize the
users identity; or multiple web users communicating through the server, for
example, updating stock inventory for a shopping basket or social messaging.
Regardless, such operations require the XPDL to make side-effecting changes to
the state of the server or related systems.

Task Abstraction for XPath Derived Languages

4

XSLT's main strength as a transformation language for XML is equally appli-
cable to constructing or styling HTML web pages. Web browsers offer limited
XSLT 1.0 facilities, which can be either applied to XML documents which include
an appropriate Processing Instruction, or invoked from JavaScript. The XSLT
process offered by the web browser vendors is a black-box transformation,
whereby an XSLT stylesheet is applied to an XML input document, which produ-
ces output. This XSLT process is completely isolated and has no knowledge of the
environment from which it is called; it can not read or write directly to or from
the web page displayed by the browser. In contrast, in recent years Saxonica has
provided JavaScript based processors which run directly within the web browser,
removing the isolation and allowing access to the web page state and events via
XSLT extensions. First with Saxon-CE, a ported version of the XSLT 2.0 Saxon
Java processor, and then with Saxon-JS, a clean implementation of XSLT 3.0 in
JavaScript. The XSLT extensions designed for use with these processors make use
of asynchronous processing (as demanded by JavaScript) and side effects to read
and write the DOM model of the web page.

Similar to Saxon-CE, although now unmaintained another notable example is
XQiB. XQiB implements an XQuery 1.0 processor in JavaScript which runs in the
web browser and provides a number of XQuery extension functions which cause
side effects by writing directly to the HTML DOM and CSS [25].

1.2.2. Binary Processing with XPDLs

The generation of various binary formats using XPDLs has also been demonstra-
ted. One such example is Philip Fennel's generation of TIFF format images, which
uses a Reyes pipeline written in XSLT [26]. One of Fennel's conclusions with
regard to execution was that “Certainly it is not fast and it is not very efficient
either”. It is not hard to imagine that if concurrent processing was applied to each
stage of the pipeline, so that stages were processed in parallel, then execution
time might be significantly reduced.

Two XPath function extension modules produced by the EXPath project, the
Binary [27] and File Module [28] specifications, allow the user to both read and
write files and manipulate binary data at the byte level from within XPDLs. In
particular, the File Module, which provides I/O functions, states that some func-
tions are labelled as non-deterministic; this specification lacks the detail required to
determine if implementations are forced to produce side effects when the func-
tions are evaluated, or whether they are allowed to operate on a static context and
only apply I/O updates after execution. The authors of this paper believe that it
would be beneficial to have a more formal model within that specification, possi-
bly one which allows implementers flexibility to determine the scope of side
effects.

Task Abstraction for XPath Derived Languages

5

1.3. Motivation
To enable side effects in a web application running in Saxon-JS, the IXSL (Interac-
tive XSLT) extensions (instructions, functions and modes) are provided (as previ-
ously developed for Saxon-CE, with some further additions and improvements).
These IXSL extensions allow rich interactive client-side applications to be written
directly in XSLT.

Saxon-CE used a Pending Update List (PUL) to make all HTML page DOM
updates (side effects) at the end of a transform (e.g. setting attributes on HTML
page nodes using ixsl:set-attribute; and adding content to the HTML page
using xsl:result-document.) Currently Saxon-JS does not use a PUL, instead
these side-effecting changes are allowed to execute immediately as the instruc-
tions are evaluated, and it is up to the developer of a Saxon-JS application to
ensure that adverse affects are avoided. Since inception, the intention has been to
eventually provide better implicit handling. Should the use of PULs be reinstated,
or is there an alternative solution?

Meanwhile, use of asynchronous (concurrent) processing is essential for user-
friendly modern web applications. Whenever the client-side needs to interact
with the server-side, to retrieve resources, or make other HTTP requests, this
should be done asynchronously. The application may provide a "processing,
please wait" message to the user, but it should not just stop due to blocking.

The ixsl:schedule-action instruction allows the developer to make use of
concurrent threads, and in particular allows for asynchronous processing. In
Saxon-JS, different attributes are defined to cater for specific cases where there is
a known need. The document attribute is used to initiate asynchronous document
fetches; the http-request attribute is used for making general asynchronous
HTTP requests; and the wait attribute was designed to force a delay (e.g. to ena-
ble animation), but actually simply provides a way to start any concurrent proc-
ess. Effectively this provides a mechanism for forking, but there is no offical
joining. Are there cases that require a join? Are there other operations which a
developer could want to make asynchronously? Rather than building IXSL exten-
sions for each operation, we would prefer to realise a general mechanism for
asynchronous processing in XPDLs and by extension XSLT. Continually updating
the syntax and implementation of ixsl:schedule-action, each time a new
requirement arises (e.g. how to allow HTTP requests to be aborted), is not ideal.
In particular, the IXSL HTTP request facility was based on the first EXPath HTTP
Client Module, recent work on a second version [23] of that module could be
advantageous for us. However, by itself it neither prescribes synchronous or
asynchronous operation. So, how could we implement in a manner which is both
asynchronous and more abstract, requiring few, if any, changes to add additional
modules in future?

Task Abstraction for XPath Derived Languages

6

1.4. Our Requirements

Applications that cannot perform I/O and/or launch parallel processes are
unusual. Both I/O and starting parallel processes are side effects, and as dis-
cussed, explicitly forbidden within XPDLs, although often permitted by vendors
at the cost of imperative interpretation and lost optimisation opportunities.

We aim to break the trade-off between program correctness and deoptimisa-
tion in XPDLs. We require a mechanism that satisfies the following requirements:

• A mechanism for formulating processes which manage side effects, yet at the
same time remains within the pure functional approach dictated by the XPDL
formal semantics.

• Permits some form of parallel or concurrent operation, that is implementable
on systems that offer either preemptive or cooperative multitasking.

• Allows parallelisation to be explicitly described, but that should not limit the
opportunities for implicit parallelisation.

• Any parallel operation explicitly initiated by the developer, should be cancel-
lable.

• Composability: it should be possible to explicitly compose many side-effecting
processes together in a manner that is both pure and ensures correct order of
execution.

Regardless of the mechanism, we require that it should be as widely applica-
ble as possible, therefore it should be either:

• Formulated strictly in terms of XPath constructs so that it be reused by any
XPDL.

Ideally, rather than developing a superset of the XPath grammar, a module
of XPath extension functions should be defined. The module approach has
been successfully demonstrated by the EXPath project, and would likely lower
the barrier to adoption.

• A clearly defined abstract processing model which can have multiple syntacti-
cal expressions.

Such a model could for example provide one function-based syntax for
XQuery, and another instruction-based syntax for XSLT.

2. Current Approaches by Implementers
This survey provides a brief review of the offerings of the most visible XQuery
and XSLT implementations for both concurrent and/or asynchronous execution,
and how they manage side effects.

Task Abstraction for XPath Derived Languages

7

2.1. BaseX
For concurrent processing from within XQuery, BaseX provides two mechanisms:
a Jobs XQuery extension module [8], and an XQuery extension function called
xquery:fork-join. The latter is actually an adoption of xq-promises's
promise:fork-join function, which we cover in detail in Section 2.5. The former,
the Jobs Module, allows an XQuery to start another XQuery by calling either of
two XPath functions jobs:invoke or jobs:eval. Options can be supplied to both
of these functions, which instead of executing the query immediately, schedule it
for later execution. Whilst deferred scheduled queries are possibly executed con-
currently we will not consider them further here as our focus is concurrent pro-
cessing for the purposes of completing an immediate task. BaseX describes these
functions as asynchronous, and whilst technically true, unlike other asynchronous
programming models the caller neither provides a callback function nor receives
a promise, and instead has to either poll or wait in the main query for the result.
We believe these functions could more aptly be described as non-blocking.

Asynchronously starting another XQuery in BaseX returns an identifier which
can be used to either stop the asynchronously executing query, retrieve its result
(if it has completed), or to wait until it has completed. The lifetime of the asyn-
chronously executing query is not dependent on the initiating query, and may
continue executing after the main query has completed. In many ways this is very
similar to a Future (see Section 3.5).

BaseX implements XQuery Update [7] which allows updates to XML nodes to
be described from within XQuery via additional update statement syntax.
XQuery Update makes use of a PUL (Pending Update List) which holds a set of
Update Primitives. These Update Primitives describe changes that will be made,
but have not yet been applied. These changes are not visible to the executing
query, the PUL is output alongside the XDM when the query completes. This is
not entirely dissimilar to how Haskell eventually evaluates an IO monad (see Sec-
tion 3.4). To further facilitate additional common tasks required in a document
database without conflicting with XQuery Update or resorting to side effects
within an executing query, BaseX also provides many vendor specific Update
Primitives in addition to those of XQuery Update. These include primitives for
database operations to replace, rename and delete documents; manage users; and
backup and restore databases [29]. The use of an XQuery Update PUL avoids side
effects for updates, as it only describes what will happen at evaluation time, leav-
ing the actual updates to be applied at execution time. Ultimately BaseX applies
the PUL to modify the state of its database after the query completes and the
transaction is committed, thus making the updates visible to subsequent transac-
tions.

Regardless of its support for PULs, BaseX does not quite manage to entirely
avoid side effects during the execution of some queries. BaseX offers a number of

Task Abstraction for XPath Derived Languages

8

XQuery extension functions which are known to cause side effects, including for
example, those of the EXPath HTTP and File Modules. Internally such side-effect-
ing functions are annotated as nondeterministic, and will be treated differently by
BaseX's query compiler. By skipping a range of otherwise possible query optimi-
sations, BaseX ensures that the execution order of the functions within a query is
as a user would expect even when these nondeterministic functions are present.
In the presence of nondeterminism, optimisations that are skipped include: pre-
evaluation, reordering of let clauses, variable inlining, and disposal of expres-
sions that yield an empty sequence.

2.2. eXist-db

eXist-db does not present a cohesive solution for concurrent processing from
within XQuery. Until recently, eXist-db had a non-blocking XPath extension func-
tion named util:eval-async [9] which could start another XQuery asynchro-
nously. Like BaseX it returned an identifier for the executing query and did not
accept a callback function or provide a promise. Unlike BaseX however, there
were no additional functions to control the asynchronously executing query or
obtain its result, rather the asynchronously executing query would run to com-
pletion and its result would be discarded, although it may have updated the data-
base via side effects. This facility proved not to be particularly practical and has
since been removed. Similarly to BaseX, eXist-db provides a Scheduler XQuery
extension module [10] for scheduling the future (or immediate) execution of jobs
written in XQuery. Unfortunately even if an XQuery is scheduled for immediate
execution, there is no mechanism for obtaining the result of its execution from the
initiating XQuery.

eXist-db makes no attempts to avoid side effects during processing, and
instead offers many extension functions and a syntax for updating nodes that
cause side effects by immediately modifying external state and making the modi-
fications visible. eXist-db also relaxes the XPath deterministic constraint upon
Available Documents, and Available Collections, allowing a query to both modify
which documents and collections are available (a side effect), and to see changes
made by concurrently executing queries.

eXist-db is able to suffer side effects, through making several compromises:

• eXist-db offers the lowest transaction isolation level when executing XQuery -
Read Uncommitted.

eXist-db makes XQuery users somewhat aware of this, and provides XPath
extension functions which enable them to lock documents and collections on
demand if they require a stronger isolation level.

• eXist-db executes XQuery sequentially as though it was a procedural pro-
gram.

Task Abstraction for XPath Derived Languages

9

Whilst some query rewriting is employed to improve performance, eXist-
db cannot exploit many of the more advanced optimisations available to func-
tional language compilers: any reordering of the XQuery program's execution
path could cause the program to return incorrect results, due to side effects
being applied in an order that the XQuery developer had not intended.

Likewise, eXist-db cannot easily parallelise the execution of disjoint state-
ments within an XQuery: as shared-state modified by side effects could intro-
duce race conditions in the XQuery developer's application.

2.3. MarkLogic

MarkLogic provides an XPath extension function named xdmp:spawn, which
allows another XQuery to be started asynchronously from the calling query. This
is done by placing it on the task queue of the MarkLogic task server, and this
query may be executed concurrently if the task server has the available resources.
The function is non-blocking, and for our interests has two modes of operation
controlled by an option called result. When the result option is set to false, the
calling query has no reference to the queued query, and like eXist-db it can nei-
ther retrieve its result, enquire about its status, or abort its execution. When the
result option is set to true, the xdmp:spawn function returns what MarkLogic
describes as a “value future for the result of the spawned task”. This “value
future” is quite unusual, and certainly a vendor extension with no corresponding
type in XDM. Essentially, after calling xdmp:spawn with the return option set to
true, the calling query continues executing until it tries to access the value of the
variable bound to the result of the xdmp:spawn, at which point if the spawned
query has completed executing, the result is available, however if it has not com-
pleted then the main query thread blocks and waits for the spawned query to com-
plete and provide the result [30]. Similarly to BaseX and eXist-db, MarkLogic also
provides mechanisms for the scheduling of XQuery execution through its offline
batch processing framework called CPF (Content Processing Framework) [31],
and a set of XPath extension functions such as admin:group-add-scheduled-
task [32].

MarkLogic's value future is intriguing in its nature, albeit proprietary. The con-
cept of Futures appear in several programming languages, but unlike other lan-
guages (e.g., Java or C++11), MarkLogic's implementation provides no explicit call
to get the value of the future (possibly with a timeout), instead the wait and/or get
happen as one implicitly when accessing the value through its variable binding.

MarkLogic clearly documents where it allows side effects from within
XQuery. There are two distinct types of side effects within MarkLogic, state
changes that happen within the scope of the XQuery itself, and those state-
changes which are external to the XQuery. For use within the scope of an XQuery,
MarkLogic provides an XPath extension function xdmp:set, which explicitly

Task Abstraction for XPath Derived Languages

10

states that it uses “changes to the state (side effects)” [33] to modify the value of a
previously declared variable, thus violating the formal semantics of XPath [4]. For
modifying state external to an XQuery, MarkLogic provides a series of XPath
extension functions for updating nodes and managing documents within the
database. Similarly to BaseX, these extension functions do not cause side effects
by immediate application, and are invisible to both the executing query and con-
currently executing queries [34]. Unlike BaseX, MarkLogic does not implement
the XQuery Update specification, but similarly it utilizes a PUL, likewise leading
to a process whereby the updates are applied to the database after the query com-
pletes and the transaction is committed, thus making the updates visible to subse-
quent transactions.

Whilst MarkLogic utilizes both a well defined transaction isolation model and
deferred updates to mostly avoid side effects within an executing XQuery, we
suspect that the use of xdmp:set likely places some limitations on possible query
optimisations that could be performed.

We have focused on MarkLogic's XQuery implementation, but it is worth not-
ing that MarkLogic also implements XSLT 2.0. All of MarkLogic's XPath exten-
sion functions (e.g., xdmp:set and xdmp:insert-*) are also available from its
XSLT processor, and are subject to the same transactional mechanisms as the
XQuery processor; therefore our findings are equally applicable to running either
XQuery or XSLT on MarkLogic.

2.4. Saxon

Saxon-EE utilises parallel processing in certain specific instances [20]. By default
the parsing of input files for the fn:collection function is multithreaded, as is
the processing of xsl:result-document instructions. Note that the outputs pro-
duced by multiple xsl:result-document instructions are quite independent and
never need to be merged; so while this does allow parallel execution of user code
and requires careful implementation of features such as try/catch and lazy evalu-
ation, the fact that there is a "fork" with no "join" simplifies things a lot. Further-
more, multi-threading of xsl:for-each instructions using a MapReduce
approach can be enabled by the user, by setting the saxon:threads extension
attribute to specify the number of threads to be used.

Saxon-EE allows use of a number of extension functions with side effects,
including those in the EXPath File and Binary modules. Similar to the BaseX han-
dling, the Saxon compiler recognises such expressions as causing side effects, and
takes a pragmatic approach in attempting to avoid aggressive optimisations
which could otherwise disrupt the execution order. Usually instructions in an
XSLT sequence constructor will be executed sequentially in the order written, but
deviation can be caused by the compiler through lazy evaluation or loop lifting;
and this is where problems can arise when side effects are involved. Such optimi-

Task Abstraction for XPath Derived Languages

11

sations can cause the side effect to happen the wrong number of times (never, or
too often), or at the wrong time. It is relatively straightforward to prevent such
optimisations for static calls to side-effecting functions, but cannot always be
guaranteed for more nested calls, as "side-effecting" is not necessarily recognised
as a transitive property. For instance, a function or template which includes a call
to a side-effecting function may not itself be recognised as side-effecting. So it is
always recommended that side-effecting XPath expressions are "used with care".
One mechanism which gives the XSLT author better control when using side-
effecting expressions, is the recently added extension instruction saxon:do. It is
similar to the xsl:sequence instruction, but is designed specifically for use when
invoking XPath expressions with side effects. In contrast to xsl:sequence, when
using saxon:do any result is always discarded, and the processor ensures that
instructions in the sequence constructor are always evaluated sequentially in the
order written, avoiding any reordering from optimisations.

As previously mentioned, for use with the Saxon-JS runtime XSLT processor, a
number of Interactive XSL extension instructions and functions are available. To
enable non-blocking (asynchronous) HTTP requests and document fetching, the
ixsl:schedule-action instruction is provided. Attributes on the instruction are
used to specify an HTTP request, or document URI, and the associated HTTP
request is then executed in a new concurrent thread. The callback, for when an
HTTP response is returned or the document is fetched (or an HTTP error occurs),
is specified using the single permitted xsl:call-template child of the
ixsl:schedule-action instruction. When the document attribute has been used,
the called template can then access the document(s) using the fn:doc or fn:doc-
available functions; the document(s) will be found in a local cache and will not
involve another request to the server. When using the http-request attribute, the
HTTP response is supplied as the context item to the called template, in the form
of an XDM map. Alternatively, ixsl:schedule-action can simply be used to
start concurrent processing for any action, by using just the wait attribute (with a
minimal delay). Note that while this provides a "fork", there is no "join", and it is
up to the developer to avoid conflicts caused by side effects.

To be able to write interactive applications directly in XSLT, it is necessary to
make use of side effects, for example to dynamically update nodes in the HTML
page. Almost all of the IXSL extension instructions and functions (such as
ixsl:set-attribute and ixsl:set-property which are used to set attributes on
nodes and properties on JavaScript objects respectively) have (or may have) side
effects. Note that Saxon-JS runs precompiled XSLT stylesheets, called SEFs (Style-
sheet Export Files) generated using Saxon-EE. As described above, during compi-
lation in Saxon-EE, such side-effecting functions and instructions are internally
marked as such to prevent optimisations from disrupting the intended execution
order.

Task Abstraction for XPath Derived Languages

12

2.5. xq-promise
Whilst xq-promise [35] is not an implementation of XQuery or XSLT, it is the first
known non-vendor specific proposal for a module of XPath extension functions
by which XPDL implementations can offer concurrent processing from within an
XPDL. It is valuable to review this proposal as theoretically it could be implemen-
ted by any XPDL implementation, at present we are only aware of a single imple-
mentation for BaseX [36].

xq-promise first and foremost provides a set of XPath extension functions
which were inspired by jQuery's Deferred Object utility, it claims to implement
the “promise pattern” (see Section 3.5), and focuses on the concept of deferring
execution. In its simplest form, the promise:defer function takes two parame-
ters: a function of variable arity, and a sequence of arguments of the same arity as
the function. Calling promise:defer returns a new zero arity function called a
“promise”, this promise function encapsulates the application of the function
passed as a parameter to the arguments passed as a parameter. The encapsulation
provided by the promise function defers the execution of the encapsulated func-
tion. The promise function also serves to enable chaining further actions which
are dependent on the result of executing the deferred function, such further
actions are also deferred. The chaining is implemented through function compo-
sition, but is opaque to the user who is provided with the more technically acces-
sible functions promise:then, promise:done, promise:always, promise:fail,
and promise:when.

The functions provided by xq-promise discussed so far allow a user to
describe a chain of related actions, where callback functions, for example estab-
lished through promise:then, can be invoked when another function completes
with success or failure. Considered in isolation these functions do not explicitly
prescribe any asynchronous or concurrent operation. To address this, xq-promise
secondly provides an XPath extension function named promise:fork-join based
on the Fork-join model of concurrency. This functions takes as a parameter a
sequence of promise functions, which may then be executed concurrently. The
promise:fork-join function is a blocking function, which is quite different from
those of BaseX, eXist-db, MarkLogic, or Saxon, which are all non-blocking. Rather
than scheduling a query for concurrent execution and then returning to the main
query so execution can continue, when promise:fork-join is invoked n query
sub-processes are forked from the main query which then waits for these to com-
plete, at which point the results of the sub-processes are joined together and
returned as the result of the function call.

An important insight we offer is that whilst sharing some terminology with
implementations in other languages (particularly JavaScript likely due to build-
ing upon jQuery's Deferred Object) the promise concept used in xq-promise is sub-
tly different [61]. JavaScript Promises upon construction immediately execute the

Task Abstraction for XPath Derived Languages

13

function that they are provided [38] [39], whereas an xq-promise is not executed
until either promise:fork-join is used or the promise function is manually
applied by the user. Conceptually the xq-promise promises appear to be at odds
with the fork-join approach, as once a promise has been constructed, it is likely
that useful computation could have been achieved in parallel to the main thread
by executing the promise(s) before reaching the fork-join point. The construction
of a JavaScript Promise requires an executor function, which takes two parameter
functions, a resolve function and a reject function. The executor must then call
one of these two functions to signal completion. When constructing a promise
with xq-promise, completion is instead signalled by the function terminating nor-
mally, or raising an XPath error. This may appear to be just syntactical differen-
ces, but the distinction is important: the JavaScript approach allows an error value
to explicitly be returned upon failure in a functional manner, the xq-promise
approach relies instead on fn:error... which is a side effect!

On the subject of xq-promise and side effects, xq-promise constructs chains of
execution where each step has an dependency on the result of the preceding step.
On the surface this may appear similar to how IO Monads (see Section 3.4) com-
pose. The composition of xq-promise through is much more limited, and whilst it
ensures some order of execution, its functional semantics are likely not strong
enough to ensure a total ordering of execution.

2.6. Conclusion of Implementers Survey
Our conclusion from this survey is twofold. Firstly, all surveyed implementations
offer some varying proprietary mechanism for performing asynchronous compu-
tations from within a main XPDL thread of execution. A standardised approach is
evidently missing from the W3C defined XPDLs, but a requirement has been
demonstrated by implementations presumably meeting a technical demand of
their users of XPDLs. Secondly, none of the XPDL implementations which we
examined adhere strictly to the functional processing semantics required by
XPath and/or the respectively implemented XPDL specification. Instead each
implementation to a lesser or greater extent offers some operations which cause
side effects. Most implementations appear to have taken a pragmatic approach to
deliver the features that their users require, often sacrificing the advantages of a
pure functional approach to offer a likely more familiar imperative programming
model.

3. Solutions offered for non-XPDLs
This survey provides a brief review of several options for non-XPDLs that pro-
vide solutions for both concurrent and/or asynchronous execution, and how side
effects are managed or avoided. This is not intended as an exhaustive survey,
rather the options surveyed herein were subjectively chosen for their variety.

Task Abstraction for XPath Derived Languages

14

3.1. Actor Model
The Actor Model defines a universal concept, the Actor, which receives messages
and undertakes computation in response to a message. Each Actor may also asyn-
chronously send messages to other Actors. A system is typically made up of
many of these Actors [40]. Actor systems are another class of embarrassingly par-
allel problem, as the messages sent between actors are immutable, there is no
shared-mutable state to synchronize access to, and so each Actor can run concur-
rently.

The Actor Model by itself is not enough to clearly describe, manage, or elimi-
nate side-effectful computation, however by nature of its message passing
approach it does eliminate the side effects of modifying the shared-state for com-
munication between concurrent threads of execution which is often found in non-
actor systems. Through encapsulation, actors may also help to reason about
programs with side effects. Systems utilising actors are often built in such a man-
ner that each task specific side-effectful computation is isolated and encapsulated
within a single Actor. For example, within an actor system there may only be a
single Actor which handles a particular file I/O, then since each Actor likely runs
as a separate process, the file I/O has been isolated away from other computation.

The Erlang programming language is possibly the most well known Actor
Model like implementation, wherein Actors are known as processes [41]. Erlang
itself makes no additional efforts to manage side effects, and additional synchro-
nization primitives are often employed. Within the JVM (Java Virtual Machine)
ecosystem, the Akka framework is available for both Java and Scala programming
languages [42]. Java as a non-functional language makes no attempts at limiting
side effects. Meanwhile, whilst Scala is often discussed as a functional language
and does provide many functional programming constructs, it is likely more a
general purpose language, as mutability and side effects are not restricted, and it
is quite possible to write imperative Scala code. Actor systems are also available
for many other programming languages [43], although they do not seem to have
gained the same respective popularity as Erlang or Akka.

3.2. Async/Await
The Async/Await concept was first introduced in C#, inspired by F#'s async work-
flows [44], which was in turn inspired by Haskell's Async Monad [45] [46] (see
Section 3.4). Async/Await provides syntax extensions to a programming language
in the form of the async and await keywords. Async/Await allows a developer to
write a program using a familiar synchronous like syntax but easily achieve asyn-
chronous operation of parts of the program.

Async/Await adds no further processing semantics for concurrency or manag-
ing side effects over that of Promises (see Section 3.5), which are often used to
implement Async/Await. Async/Await may be thought of as syntactic sugar for

Task Abstraction for XPath Derived Languages

15

utilising a Promise based implementation, and has recently become very popular
with JavaScript developers [47] [48].

3.3. Coroutines
Coroutines are a concept for cooperative multitasking between two (or more) pro-
cesses within a program. One process within an application, Process A, may
explicitly yield control to another process, Process B. When control is transferred,
the state of Process A is saved, the current state of Process B is restored (or a new
state created if there is no previous state), and Process B continues until it explic-
itly yields control back to Process A or elsewhere [49].

Like Actors, the impact of side effects of impure functions can be somewhat
isolated within a system by encapsulating them in distinct coroutines. Otherwise
Coroutines provide no additional facilities for directly managing side effects, and
global state is often shared between them. Unlike Actors, Coroutines are often
executed concurrently by means of explicitly yielding control. Without additional
control structures, coroutines typically operate on a single-thread, one exception
is Kotlin's Coroutines which can be structured to execute concurrently across
threads [52].

Some implementations of Coroutines, such as those present in Unity [50], or
JavaScript [51], attempt to bring a familiar synchronous programming style to the
developer. These implementations typically have a coroutine yield multiple
results to the caller, as opposed to yielding control. This masks the cooperative
multitasking aspect from the developer and presents the return value of a corou-
tine as an iterable collection of results.

3.4. IO Monads
Haskell is a statically typed, non-strict, pure functional programming language.
The pure aspect means that every function in Haskell must be pure, that is to say
akin to a mathematical function in the sense that mathematical functions cannot
produce side effects. Even though Haskell prohibits side effects by design, it still
enables developers to perform I/O and compute concurrently. This seemingly
impassable juxtaposition of academic purism and real-world engineering need is
made possible by its IO Monad [54]. Haskell trialled several other approaches in
the past, including streams and continuations, before the IO Monad won out as it
facilitated a more natural imperative programming style [55].

In Haskell, any function that performs I/O must return an IO type which is
monadic. This IO type represents an IO action which has not yet happened. For
example if you have a function that reads a string from a file, that function does
not directly return a String, instead it returns an IO String. This is not the result
of reading a line from the file, instead it can be thought of as an action that when
executed will read a line from the file and return a String. These IO actions

Task Abstraction for XPath Derived Languages

16

describe the I/O that you wish to perform, but critically defer its execution. The
IO actions adhere to monad laws which allow them to be composed together. For
example given two IO actions, one that reads a file and one that writes a file, they
could be composed together into a single IO action which first reads a file and
then writes a file, e.g. a copy file IO action.

Importantly, the formal definition for an IO type is effectively IO a = World -
> (a, World). That is to say that an IO is a state transformation function that
takes as input the current state of the world, and produces as the result both a
value and a new state of the new world. The World is a purely Abstract Data
Type, that the Haskell programmer cannot create. The important thing to note
here is that the World is threaded through the IO function. When multiple IO
actions are composed together using monadic application, such as bind, the World
output from a preceding function will be fed to the input of the succeeding func-
tion. In this manner the World will be threaded through the entire chain of IO
actions.

A Haskell program begins by executing a function named main that must
return an IO, it is typed as mainIO :: IO (). Haskell knows how to execute the
IO type function that the main function returns. Naively one can think of this as
Haskell's runtime creating the World and then calling our IO with it as an argu-
ment to execute our code; in reality the Haskell compiler optimises out the World
during compilation whilst still ensuring the correct execution order. (We may
remark that an IO action is similar to a PUL's Update Primitive, and the fact that
main returns an IO is not dissimilar to an XQuery Update returning both XDM
and a PUL.)

By using IO Monads which defer rather than perform I/O, all Haskell func-
tions are pure, and so a Haskell program at evaluation time exhibits no side
effects whatsoever, instead finally evaluating to an IO (), i.e. a state transforma-
tion function upon the world. As the developer has used monadic composition of
their IO actions, this has implicitly threaded the World between them, in the order
the developer would expect (i.e. in the order of the composition), therefore the
state transformation also ensures that the functions are executed in the expected/
correct order. At execution time, the machine code representation of the Haskell
program is run by a CPU which is side-effecting in nature, and the IO action's
side effects are unleashed.

It is possible to encapsulate stateful computations so that they appear to the rest of
the program as pure (stateless) functions which are guaranteed by the type system
to have no interactions whatever with other computations, whether stateful or oth-
erwise (except via the values of arguments and results, of course).

—from "State in Haskell", by John Launchbury and Simon Peyton Jones

Haskell provides further functions for concurrency, but critically these also return
IO actions. One such example is forkIO with the signature forkIO :: IO () ->

Task Abstraction for XPath Derived Languages

17

IO ThreadId [56]. The purpose of forkIO is to execute an IO in another thread, so
it takes an IO as an argument, and returns an IO. The important thing to remem-
ber here, is that calling the forkIO function does not create a new thread and exe-
cute an IO, rather it returns an IO action which describes and defers such
behaviour. Later when this IO action is finally executed at run-time, the thread
will be created at the appropriate point within the running program. There are
also a number of other higher-level abstractions for concurrency in Haskell, such
as Async [46], and whilst such abstractions may introduce additional monads,
they ultimately all operate with IO to defer any non-pure computation. One final
point on the IO Monad, is to mention that concurrently executing I/O actions,
may at runtime produce side effects that conflict with each other. The IO Monad
is only strong enough to ensure correct operation within a single thread of execu-
tion, its protections do not cross thread-boundaries. To guard against problems
with concurrent modifications additional synchronisation is required. Haskell
provides additional libraries of such functions and types for working with syn-
chronization primitives, many of which themselves produce IO actions!

Monads are by no means limited to Haskell, and can likely be used in any lan-
guage which supports higher-order functions. The preoccupation with Haskell is
centred around how it uses Monads to ensure a pure language in the face need-
ing to perform I/O. Several libraries exist which attempt to bring the IO Monad
concept to other programming languages, this seems to have been most visible
within the Scala ecosystem, where there are now at least five differing established
libraries [57]. Whilst all of these efforts are admirable and bring new mechanisms
for managing side effects, they all have one weakness which Haskell does not: in
Haskell one is forced to ensure that the entire program is pure, because the main
function must return an IO. The runtimes of other languages are not structured in
this way, and so these IO Monad libraries are forced to rely on workarounds to
evaluate the IO. These rely on the user structuring their program around the con-
cept of an IO, and only evaluating that IO as the last operation in their program.
For example Monix Task [58], where the user must eventually call runUnsafeSync
to evaluate the IO, describes the situation as thus:

In general prefer to ... structure your logic around asynchronous actions in a non-
blocking way. But in case you're blocking only once, in main, at the "edge of the
world" so to speak, then it's OK.

—Alexandru Nedelcu

3.5. Promises and Futures
There may be some confusion over the differences between the computer science
terms Promise, Future, or even Eventuals. However, these terms are academically
synonymous, as perhaps best explained by Baker and Hewitt, the fathers of the
term Future [16]:

Task Abstraction for XPath Derived Languages

18

the mechanism of futures, which are roughly Algol-60 "thunks" which have their
own evaluator process ("thinks"?). (Friedman and Wise [18] call futures "prom-
ises", while Hibbard [17] calls them "eventuals".)

—Henry G. Baker Jr. and Carl Hewitt

The confusion likely comes from implementations that offer both Future and
Promise abstractions to developers looking for safer concurrency facilities, yet use
differing terminology and provide vastly different APIs. Two examples of
extreme variation of terminology, are the Scala and Clojure programming lan-
guages, which each define Future and Promise as distinct classes. The Scala/
Clojure Future class is much more like the computer science definition of Future/
Promise which models computation; whereas the Scala/Clojure Promise class
serves a very different purpose, primarily as a memorized data provider for com-
pleting a Future class. We are strictly interested in the computer science definition
of Promise and Future, and herein will refer to them singly as Promise.

A Promise represents a value which may not yet have been computed. Typi-
cally when creating a Promise a computation is immediately started asynchro-
nously and returns a Promise. In implementation terms, a Promise is a reference
which will likely take the form of an object, function, or integer. At some point in
the future when the asynchronous computation completes, the Promise is fulfil-
led with the result of the computation which may be either a value or an error.
Promises provide developers with an abstraction for concurrent programming,
but whether that is executed via cooperative or preemptive multi-tasking is
defined by the implementation. Promises by themselves provide no mechanism
for avoiding side effects as they are likely eagerly evaluated, with multiple prom-
ises being unordered with respect to execution.

Some implementations, for example those based on Promise/A+ like Java-
Script, allow you to functionally compose Promises together [53]. This functional
composition can allow you to chain together side-effecting functions which are
encapsulated within Promises, thus giving an explicit execution order, in a man-
ner not dissimilar to Haskell's IO Monad (see Section 3.4). Unlike Haskell's IO
Monad however, this doesn't suddenly mean that your application is pure:
remember that JavaScript Promises are eagerly evaluated. It does though offer a
judicious JavaScript developer some measure to ensure the correct execution
order of her impure asynchronous code.

3.6. Reactive Streams
Reactive Streams enable the composition of a stream of computation, where the
Publisher, Subscriber, or a Processor in the stream (which act as both Subscriber
and Publisher), may operate asynchronously [59]. A key characteristic of Reactive
Streams is that of back-pressure, a form of flow control which can prevent slower
Subscribers from being overwhelmed by faster asynchronous Producers. This

Task Abstraction for XPath Derived Languages

19

built-in back-pressure facility appears to be unique to Reactive Streams, and
would otherwise have to be manually built by a developer atop other concur-
rency mechanisms.

The Reactive Streams initiative itself just defines a set of interfaces and princi-
ples for Reactive Stream implementations, it is up to the implementations to pro-
vide mechanisms for controlling concurrent and parallel processing of streaming
values. Typically implementations provide mechanisms for parallelising Process-
ors within a stream, or splitting a stream into many asynchronously executing
streams which are later resolved back to the main stream.

Reactive Streams offers little explicitly to help with side effects, however if we
consider that a data flow within a non-concurrent stream is always downwards,
then streams do provide an almost Monadic-like mechanism for composing pro-
cessing steps where the order of execution becomes explicit. Likewise, if one was
to ensure that the data that is passed from one step to another is immutable, then
when there are concurrent or asynchronous Subscribers, there can be no data-
driver side effects between them as the data provided by the publisher was
immutable, meaning that any changes to the data by a subscriber are isolated to a
localised copy of the data.

Examples of Reactive Streams implementations that support concurrent and
parallel processing at this time include: RxJava, Akka Streams, Monix, Most.js,
and Reactive Streams .NET#

3.7. Conclusion of non-XPDL Solutions Survey

Our survey shows several different options for concurrent/parallel programming.
It is possible to build the same application using any of these options, but each
offers a different approach and syntax for isolating and managing concurrently
executing processes. As well as the underlying computer science principles of
each option, the libraries or languages that implement these options can vary
between Cooperative Multitasking and Preemptive Multitasking. Coroutines,
Async/Await, and Promises are particularly well suited to Cooperative Multitask-
ing systems due to their explicit demarcation of computation boundaries, which
can be used to yield the CPU to another process. Likely this is why these options
have been adopted in the JavaScript community, where JavaScript Virtual
Machines are frequently designed as cooperatively multitasking systems utilising
an event loop [60].

We find that the IO Monad is the only surveyed option that is specifically
designed to manage computational side effects in a functional manner. This is
likely due to the fact that the IO Monad approach was explicitly developed for
use in a non-strict purely functional language, i.e. Haskell, whereas all of the
other approaches are more generalised, and whilst not explicitly limited to imper-
ative languages are often found in that domain.

Task Abstraction for XPath Derived Languages

20

Of all the approaches surveyed, to the best of our knowledge, only the devel-
opment of a Promise-like approach has been realised for XPDLs, namely xq-
promise (see Section 2.5). It seems likely that at least aspects of the IO Monad
approach (such as that demonstrated by Monix), or Reactive Streams options,
could be implemented by utilising XPath extension functions and a written speci-
fication of concurrent implementation behaviour, without resorting to propriet-
ary XPath syntax extensions. Conversely, whilst an XPath function based
implementation could likely be devised, both Async/Await and Coroutines
would likely benefit by extending the XPath language with additional syntax.

In conclusion, we believe that an IO Monad exhibits many of the desirable
properties that we set out to discover in Section 1.4. It has strong pure functional
properties, strict isolation of side effects, and acts as a building block for con-
structing further concurrent/parallel processing. Therefore we have chosen to use
this as the basis for a solution to handle side effects and sequential or concurrent
processing in XPDLs.

4. EXPath Tasks
Herein we describe EXPath Tasks, a module of extension XPath functions for per-
forming Tasks. These functions have been designed to allow an XPDL developer
to work with both side effects and concurrency in a manner which appears
imperative but is functionally pure, and therefore does not require processors to
sacrifice optimisation opportunities.

The specification of the functions and their behaviour is defined in Appen-
dix A. We have also developed four reference implementations:

XQuery task.xq is written in pure XQuery 3.1 with no extensions. It imple-
ments all functions, however all potentially asynchronous opera-
tions are executed sychronously. The source code is available
from https://github.com/adamretter/task.xq.

XSLT task.xsl is written in pure XSLT 3.0 with no extensions. There is a
lot of code overlap with task.xq, since much is actually XPath 3.1.
Like task.xq, it implements all functions, however all potentially
asynchronous operations are executed sychronously. The source
code is available from https:// github.com/ saxonica/ expath-task-
xslt.

Java An implementation of EXPath Tasks for XQuery in eXist-db. The
source code is available from https:// github.com/ eXist-db/ exist/
tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/
task.

JavaScript An implementation of EXPath Tasks for XSLT in Saxon-JS.

Task Abstraction for XPath Derived Languages

21

https://github.com/adamretter/task.xq
https://github.com/saxonica/expath-task-xslt
https://github.com/saxonica/expath-task-xslt
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task

4.1. The Design of EXPath Tasks
From the findings of our survey on non-XPDL solutions (see Section 3), we felt
that the best fit for our requirements (see Section 1.4) was that of developing a
module of XPath Functions that could both ensure the correct execution ordering
of side-effecting functions, and provide facilities for asynchronous programming.

We decided to adopt the principles of the IO Monad, as we have previously
identified it as providing the most comprehensive approach to managing non-
deterministic functions in a pure functional language. Our design was heavily
influenced by both Haskell's IO [54] and Async [46] packages, and to a lesser
extent by Monix's Task [58].

Our decision to develop a module of extension functions rather than grammar
extensions, was influenced by a previous monadic approach for XQuery, called
XQuery!, which utilized grammar extensions but failed to gain adoption [63].

An astute reader may raise the question of why we didn't attempt a transla-
tion of IO actions to PUL Update Primitives. The issue that we saw is that a PUL
is an opaque collection, which cannot be computed over. With XQuery Update
there is no mechanism for directly working with the result of a previous Update
Primitive. We required a solution that was applicable to general computation, so
we focused on a task based approach. Of course there is the concern that we
would have also had to adopt much of the XQuery Update specification to make
this work in practice. For XPDLs that are not derived from XQuery this may have
been prohibitive to adoption. However, we see no reason why further work could
not examine the feasibility of lifting a Task to an Update Primitive.

4.1.1. Abstract Data Types

Haskell's IO Monad makes use of an ADT (Abstract Data Type) to represent the
World which it is transforming. The beauty of using an ADT here is that the Has-
kell programmer cannot themselves instantiate this type2, which makes it impos-
sible to execute IO directly. Instead the Haskell compiler is responsible for
compiling the application in such a manner that the IO will be implicitly executed
at runtime.

Recall that the IO type is really a state transformation function, with the signa-
ture

IO a = World -> (a, World)

To create an equivalent function for XPDLs we need some mechanism for model-
ling the World ADT. Unfortunately, without requiring Schema Awareness, the

2Haskell does provide an unsafePerformIO function which can conjure the world up, and execute the
IO. However, such behaviour is considered bad practice in the extreme.

Task Abstraction for XPath Derived Languages

22

XDM type system is sealed. It is not possible to define new types abstract or oth-
erwise within XPDLs.

To remain within the XPDL specifications we must therefore define the World
using some non-abstract existing type. Unfortunately, this means that the devel-
oper can also instantiate the World and potentially execute the IO. We developed
an initial prototype [62] where we modelled the World simply as an XDM Ele-
ment named io:realworld, thus our XPath IO type function was defined such:

declare function io:IO($realworld as element(io:realworld)) as item()+

Note the item()+ return type: in XPath there is no tuple type so we have to use a
less strict definition than we would prefer. This sequence of items will have 1+n
items, where the head of the sequence is always the new state of the world (i.e.
the XDM element named io:realworld), and the tail of the sequence is the result
of executing the IO.

Implementations written for XPDLs in non-XPDLs could likely enforce stron-
ger semantics by using some proprietary type outside of the XDM to represent
the World which is un-instantiable from the XPDL.

Like Haskell's GHC (Glasgow Haskell Compiler), whether there really is a
World that is present in the application at execution time or not is an implementa-
tion detail. Certainly it is crucial that the World is threaded through the chain of
IO actions at evaluation time to ensure ordering, but implementations are free to
optimise the world away as long as they preserve ordering.

4.1.2. Typing a Task

Ultimately we adopted the name Task instead of IO to represent our embracement
of more than just I/O.

The first version of our Task Module was developed around the type defini-
tion of a Task as:

declare function task:task($realworld as element(adt:realworld))
 as item()+

We quickly realised that using this module led to verbose syntax, and that the
function syntax obscured the ordering of chains; the ordering of task execution
being the most deeply nested and then extending outwards:

task:fmap(
 task:fmap(

Task Abstraction for XPath Derived Languages

23

 task:value("hello"),
 upper-case#1
),
 concat(?, " adam")
)

Figure 1. Example of Tasks using Function based syntax

To provide a more natural imperative syntax, we realised that instead of mod-
elling a Task as a function type, we could model it as an XDM Map of functions
which can be applied. An XDM Map is itself a function from its key to its value. By
modelling a Task as Map, we could use the encapsulation concept from OOP
(Object Oriented Programming) to place functions in the Task (Map), that act
upon that task. Each function that we previously defined that operated upon a
Task, we recreated as a function inside the Map which operates on the Task repre-
sented by the Map. Thus yielding a fluent imperative-like API that utilises the
Map Lookup Operator to appear more familiar to imperative programmers:

task:value("hello")
 ? fmap(upper-case#1)
 ? fmap(concat(?, " adam"))
 ? RUN-UNSAFE()

Figure 2. Example of Tasks using fluent imperative-like syntax

So our Task type is finalised as:

map(xs:string, function(*))

More specifically our Task Map is defined as:

map {
 'apply': as function(element(adt:realworld)) as item()+,
 'bind': as function($binder as function(item()*) as map(xs:string,
function(*))) as map(xs:string, function(*)),
 'then': as function($next as map(xs:string, function(*))) as
map(xs:string, function(*)),
 'fmap': as function($mapper as function(item()*) as item()*) as
map(xs:string, function(*)),
 'sequence': as function($tasks as map(xs:string, function(*))+) as
map(xs:string, function(*)),
 'async': as function() as map(xs:string, function(*)),

Task Abstraction for XPath Derived Languages

24

 'catch': as function($catch as function(xs:QName?, xs:string,
map(*)) as map(xs:string, function(*))) as map(xs:string, function(*)),
 'catches': as function($codes as xs:QName*, $handler as
function(xs:QName?, xs:string, map(xs:QName, item()*)?) as item()*) as
map(xs:string, function(*)),
 'catches-recover': as function($codes as xs:QName*, $handler as
function() as item()*) as map(xs:string, function(*)),
 'RUN-UNSAFE': as function() as item()*
}

Observe that the apply entry inside the Task map retains our original Task type.
The Map provides us with encapsulation which allows for the creation of an
imperative-like API. By refactoring our existing Task functions we have been able
to preserve both the function syntax-like API and the fluent imperative-like API.
This provides developers the opportunity to choose whichever best suits their
needs, or to work with a mix of syntaxes as appropriate to them.

4.1.3. Asynchronous Tasks

We provide a mechanism which explicitly allows the developer to state that a
Task could benefit from being executed asynchronously. The task:async function
allows the developer to state their intention, however EXPath Tasks does not
specify whether, how, or if this actually executes asynchronously. This gives pro-
cessors the ability to make informed decisions about concurrent execution based
on input from the developer, but great freedom in how that is actually executed.
The only constraint on implemetations is that the order of execution within a task
chain must be preserved. Developers should rather think of task:async as pro-
viding a hint to the processor that asynchronous execution would be beneficial,
rather than assuming asynchronous execution will always take place.

Conversely, as the only constraint that we place on implementers is that the
order of execution within a task chain must be preserved, compliant processors
are free to implicitly parallelise operations at execution time providing that con-
straint holds.

4.1.4. Executing a Task

Recall that a Haskell application starts with a main that must return an IO, thus
framing the entire application as an IO action. The result of executing an XPDL is
always an instance of the XDM (and possibly a PUL). Whilst we could certainly
return a Task (map) as the result of the evaluation of our XPDL, what should the
processor do when it encounters it? If the processor decides to serialize the XDM
then we are likely at the mercy of the W3C XSLT and XQuery Serialization speci-
fication, which certainly won't execute our Task by applying it to transform the
state of the world.

Task Abstraction for XPath Derived Languages

25

Three potential solutions that present themselves from our research are:
• Prescribe in the specification of EXPath Tasks that an implementation must

execute a Task which is returned as the result of the XPDL in a certain manner.
• Incorporate the concept of a PUL into the specification of EXPath Tasks. Each

Task would create an Update Primitive which is added into the PUL. The
result of evaluating the XPDL would then be both an XDM and a PUL.

• Provide an explicitly unsafe function for evaluating a Task, similar to Haskell's
unsafePerformIO or Monix Tasks's runUnsafeSync.
We decided to adopt a hybrid approach. We provide a task:RUN-UNSAFE func-

tion, where we explicitly prescribe that this should only appear once within an
XPDL program, and that it must occur at the edge of the program, i.e. as the main
function. However, we also explicitly state that implementers are free to override
this function. For example, implementations that already support an XQuery
Update PUL, may choose to promote a Task chain to a set of Update Primitives
when this function is evaluated.

4.2. Using EXPath Tasks
We provide several examples to demonstrate key features of EXPath Tasks.

4.2.1. Composing Tasks

We can use monadic composition to safely compose together several tasks that
may at execution time cause side effects, but at evaluation time result in an
ordered chain of tasks.

Example 1. Safely Uppercasing a file

task:value("/tmp/my-file")
 ?fmap(file:read-text#1)
 ?fmap(fn:upper-case#1)
 ?fmap(fn:write-text("/tmp/my-file-upper", ?))

Consider the code in Example 1. We use the EXPath File Module to read the
text of a file, we then upper-case the text, and finally write the text out to a new
file. We start with a pure value Task holding the path of the source file, by map-
ping this through the read-text function a second new task is created. At evalua-
tion time nothing has been executed, instead we have a task that describes that
first there is a file path, and then secondly we should read a file from that path.
We have composed two operations into one operation which preserves the order-
ing of the original operations. We then continue by mapping through the upper-

Task Abstraction for XPath Derived Languages

26

case, which composes another new task representing all three operations (file
path, read-text, and upper-case) in order. Our last mapping composition results
in a final new task which represents all four operations in order. When this final
task is executed at runtime, each of the four operations will be performed in the
correct order.

Through using the EXPath Tasks module, we have safely contained the side
effects of the functions from the EXPath File Module, by deferring them from
evaluation time to execution time. As the Task is a state transformation, we have
also threaded the World through our task chain, which ensures that any XPDL
processor must execute them in the correct order even in the face of aggressive
optimisation.

4.2.2. Using Asynchronous Tasks

We can lift a Task to an Asynchronous Task, which can help provide the XPDL
processor with hints about how best to parallelise an XPDL application.

The following is a refactored version of the fork-join example from xq-promise
[35], to show how concurrent programming can be structured safely using
EXPath Tasks.

The example performs 25 HTTP requests to 5 distinct servers and returns the
results. First we show the synchronous version:

Example 2. Synchronous HTTP Fetching

let $tasks :=
 for $uri in ((1 to 5) !
 ('http://www.google.com', 'http://www.yahoo.com',
 'http://www.amazon.com', 'http://cnn.com',
 'http://www.msnbc.com'))
 let $task :=
 task:value($uri)
 ?fmap(http:send-request(<http:request method="GET" />, ?))
 ?fmap(fn:tail#1)
 ?fmap(fn:trace(?, 'Results found: '))
 ?fmap(function ($res) {
 $res//*:a[@href => matches('^http')]
 })
return
 task:sequence($tasks)
 ?RUN-UNSAFE()

Now we show the asynchronous version, where we have only needed to insert
two lines of code, the call to task:async which lifts each Task into an Asynchro-
nous Task, and a binding to task:wait-all:

Task Abstraction for XPath Derived Languages

27

Example 3. Asynchronous HTTP Fetching

let $tasks :=
 for $uri in ((1 to 5) !
 ('http://www.google.com', 'http://www.yahoo.com',
 'http://www.amazon.com', 'http://cnn.com',
 'http://www.msnbc.com'))
 let $task :=
 task:value($uri)
 ?fmap(http:send-request(<http:request method="GET" />, ?))
 ?fmap(fn:tail#1)
 ?fmap(fn:trace(?, 'Results found: '))
 ?fmap(function ($res) {
 $res//*:a[@href => matches('^http')]
 })
 ?async()
return
 task:sequence($tasks)
 ?bind(task:wait-all#1)
 ?RUN-UNSAFE()

4.2.3. Using Tasks with IXSL

We now consider how Tasks could be used within an IXSL stylesheet for a Saxon-
JS web application. Here we use Tasks to enable both concurrency (an asynchro-
nous HTTP request) and side effects (HTML DOM updates). The code in
Example 4 shows an IXSL event handling template for onclick events for the "go"
button, and associated functions. The main action of clicking the "go" button is to
send an asynchronous HTTP request. The intention is that the HTTP response
will provide new content for the <div id="target"> element in the HTML page,
as directed by the local f:handle-http-response function. But while awaiting
the HTTP response, the "target" div is first updated to provide a "Request pro-
cessing..." message, and the "go" button is hidden; as directed by the local
f:onclick-page-updates function.

Example 4. Asynchronous HTTP using Tasks in IXSL

 <xsl:template match="button[@id eq 'go']" mode="ixsl:onclick">
 <xsl:variable name="onclick-page-updates-task"
 select="task:of(f:onclick-page-updates#0)"/>
 <xsl:variable name="http-post-task"
 select="task:of(function(){http:post($request-body,
$request-options)})"/>
 <xsl:variable name="async-http-task"

Task Abstraction for XPath Derived Languages

28

 select="$http-post-task ? fmap(f:handle-http-
response#1) ? async()"/>
 <xsl:sequence select="task:RUN-UNSAFE(task:then($onclick-page-
updates-task, $async-http-task))"/>
 </xsl:template>

 <xsl:function name="f:onclick-page-updates">
 <ixsl:set-style name="display" select="'none'"
 object="ixsl:page()//button[id='go']"/>
 <xsl:result-document href="#target" method="ixsl:replace-content">
 <p>Request processing...</p>
 </xsl:result-document>
 </xsl:function>

 <xsl:function name="f:handle-http-response">
 <xsl:param name="response" as="map(*)"/>
 <xsl:for-each select="$response?body">
 <xsl:result-document href="#target"
 method="ixsl:replace-content">
 <p>Response from request:</p>
 <xsl:sequence select="."/>
 </xsl:result-document>
 </xsl:for-each>
 <ixsl:set-style name="display" select="'inline'"
 object="ixsl:page()//button[id='go']"/>
 </xsl:function>

Through using the EXPath Tasks module, we have safely contained the side
effects of the local functions. Meanwhile, the use of the task:async function
allows the Saxon-JS processor to use an asynchronous implementation of the
EXPath HTTP Client 2.0 http:post function. The task chain is created making
use of task:fmap to pass the HTTP response to the handler function; and
task:then to compose the initial $onclick-page-updates-task with the main
$async-http-task, ensuring the correct order for their side effects.

5. Conclusion
In this paper we have surveyed the current state-of-the-art mechanisms by which
XPDL processors allow side effects and concurrent programming, and the
options available to non-XPDLs for managing side effects and providing concur-
rent or parallel programming. From this research we have then developed and
specified EXPath Tasks, a module of XPath extension functions, that allow devel-
opers to safely encapsulate side-effecting functions so that at evaluation time they
appear as pure functions and enforce the expected order of execution. Finally, we

Task Abstraction for XPath Derived Languages

29

have developed several reference implementations of EXPath Tasks to demon-
strate the feasability of implementing our specification.

Were the necessary functions available for performing node updates, we
believe that the IO Monad approach taken by EXPath Tasks could even have ben-
efits over using XQuery Update. Whilst it provides similarly strong deferred
semantics like a PUL, a PUL is completely opaque, and one cannot compute over
it, unlike a Task chain where Tasks may be composed together.

Whilst at a casual glance it may appear that EXPath Tasks have some similari-
ties to xq-promise, we should be careful to point out that they work quite differ-
ently in practice. We believe that EXPath Tasks has the following advantages over
xq-promise:

• Correct Ordering of Execution.
Under aggressive functional optimisation, EXPath Tasks will still preserve

the correct order of execution even when tasks have no explicit dependency
between them. EXPath Tasks can guarantee the order because they transpar-
ently thread the World through the chain of computation as tasks are com-
posed, which implicitly introduces dependencies between the Tasks.

• Flexible Asynchronous Processing.
The asynchronous processing model of EXPath Tasks is very generalised,

and only makes guarantees about ordering of execution. This enables many
forms of concurrent programming to be expressed using EXPath Tasks,
whereas xq-promise only offers fork-join. In fact xq-promise can easily be reim-
plemented atop EXPath tasks, including fork-join:

declare function local:fork-join($tasks as task:Task(~An)+)
 as task:Task(array(~An)) {
 task:sequence($tasks ! task:async#1)
 ?bind(task:wait-all#1)
};

Interestingly, if the xq-promise API were reimplemented atop EXPath Tasks, it
would gain stronger guarantees about execution order.

Likewise our generalised approach, whilst making explicit the intention of
parallelism, does not restrict processors from making further implicit paralle-
lisation optimisations.

• Potential Performance
An xq-promise Promise is a deferred computation that cannot be executed

until its fork-join function is called. In comparison EXPath Tasks's Asyn-
chronous Tasks can begin execution at runtime as soon as their construct func-
tion is executed, thus making better use of computer resources by starting
computation earlier than would be possible in xq-promise.

Task Abstraction for XPath Derived Languages

30

It will certainly be interesting to see how the XML community responds to our
EXPath Tasks specification. We are hopeful that developers working with Tasks
need not necessarily have any understanding of Monads to be able to fully
exploit the benefits of EXPath Tasks.

We are still at an early stage of investigating how well use of the Task module
can be incorporated into IXSL stylesheets for Saxon-JS applications. Does the Task
module provide a good solution for handling asynchronous processing and side
effects in Saxon-JS? This may only be answerable once more examples have been
trialled, once the Saxon-JS implementation is more advanced.

Given an existing Saxon-JS application, a move to use the Task module could
involve a significant amount of restructuring. To use the Task module properly,
all side-effecting expressions should be wrapped in tasks, and care would need to
be taken to chain them together appropriately. Side-effecting expressions are
likely to be found in numerous different templates, and so bringing the tasks
together could be a challenge, and would likely involve considerable redesign.
These challenges are not necessarily a problem with the Task module, but given
that currently developers can be relatively free with how side effects and asyn-
chronous processes fit into their XSLT programs; the move to any solution which
requires explicit strict management of these is going to be a fairly radical change.
But this work would not be without benefit: the current lack of management of
side effects can easily result in unexpected results if the developer is not careful.
The use of Tasks would eliminate this risk.

Further work is also required to work out exactly how to use Tasks to accom-
plish some specific actions within a Saxon-JS application. For example, providing
a mechanism which allows a user to abort an asynchronous HTTP request. Com-
bining the use of Tasks with IXSL event handling templates, does not seem to
work. Instead it seems a solution requires another way to create event listeners
from within the XSLT; in which case, perhaps new IXSL extensions are needed.

5.1. Future Work
We have identified several areas for possible future research:
• Stronger/Stricter Explicit Typing

The explicit types we have specified in our Task Module are not as strict as
we would like. This is in general due to a lack of a stronger type system which
would allow us to express both abstract and generic types. At run-time the
correct types will be inferred by the processor. It would be interesting to
research modifications to the XDM so that we can statically express stricter
types. For instance, the Saxon processor provides the tuple type [64] syntax
extension as a way of defining a more precise type for maps.

We recognise there may also be an approach where function generation is
used, to generate Task functions with stricter types by type switching on

Task Abstraction for XPath Derived Languages

31

incoming parameters. Due to the large number of types in the XDM to switch
over, such generation would itself likely need to be computed.

• Side effects between Concurrent Tasks
We have provided no mechanisms for avoiding side effects across shared

state between parallel tasks at execution time, e.g. race conditions, data cor-
ruption, etc. Often such issues can be avoided by developers decomposing
asynchronous tasks into smaller asynchronous tasks which have to synchron-
ize via task:wait-all, and then begin asynchronously again. A set of func-
tional Task based synchronization primitives which could be used to help in
parallel situations would be an interesting extension.

• Additional convenience functions
Whilst we have provided the building blocks necessary for general compu-

tation, additional convenience functions could be added. For instance gather
(similar to task:sequence but with relaxed ordering), withAsync (which lifts
a normal function into an Asynchronous Task), and parZip (which asynchro-
nously zips the results of two tasks together).

We have provided mechanisms for working with XPath errors, however
we could also consider functions for working with error values. We see no rea-
son why something akin to an Either (disjoint union) could not be developed
to work with EXPath Tasks, where a result is either an error value or the result
of successful computation.

A. EXPath Tasks Module Definitions

A.1. Namespaces and Prefixes
This module makes use of the following namespaces to contain its application.
The URIs of the namespaces and the conventional prefixes associated with them
are:
• http://expath.org/ns/task for functions -- associated with task.
• http://expath.org/ns/task/adt for abstract data types -- associated with

adt.

A.2. Types
As an attempt at simplifying the written definition of the functions within the
Task Module, we have specified a number of type aliases. The concrete types are
likely of little interest to users of the Task Module who are more concerned with
behaviour than implementation detail. Implementers which need such detail may
substitute the aliases for the concrete types as defined below.

Task Abstraction for XPath Derived Languages

32

We have followed the XPath convention of using lower-cased names for our
functions, apart from task:RUN-UNSAFE where the use of continuous capital let-
ters is intended to draw developer attention. Our type aliases are described using
a capitalised-cased naming convention to visually distinguish them from function
names.

Alias Concrete Type
~A The ~ signifies that this is a generic type, and the A is just a pla-

ceholder for the actual type. Concretely this is at least an
item()*, however intelligent processors can likely infer and
enforce stricter types through the functionally composed Task
chain.

Task Abstraction for XPath Derived Languages

33

Alias Concrete Type
task:Task(~A) The task:Task type alias, is concretely map(xs:string,

function(*)).
The inner aliased generic type, indicates that the Task when exe-
cuted returns a result of type ~A.
Specifically the Task map has the following non-optional entries:

map {
 'apply': as function(World) as item()+,
 'bind': as function($binder $binder as function(~A) as
task:Task(~B)) as task:Task(~B),
 'then': as function($next as task:Task(~B)) as
task:Task(~B),
 'fmap': as function($mapper as function(~A) as ~B) as
task:Task(~B),
 'sequence': as function($tasks as task:Task(~An)+) as
task:Task(array(~An)),
 'async': as function() as task:Task(task:Async(~A)),
 'catch': as function($catch as function(xs:QName?,
xs:string, map(*)) as task:Task(~B)) as task:Task(~B),
 'catches': as function($codes as xs:QName*, $handler as
function(xs:QName?, xs:string, map(xs:QName, item()*)?) as
~B) as task:Task(~B),
 'catches-recover': as function($codes as xs:QName*,
$handler as function() as ~B) as task:Task(~B),
 'RUN-UNSAFE': as function() as ~A
}

Note: Each of the functions defined in the Task Map have the
exact same behaviour as their cousins of the same name residing
outside of the map. The only difference is that the functions
inside the Map don't need an explicit task argument.

Task Abstraction for XPath Derived Languages

34

Alias Concrete Type
task:ErrorObject The task:ErrorObject type alias, is concretely map(xs:QName,

item()*).
All entries in the map are optional, but otherwise it is structured
as:

map {
 xs:QName("err:value") : item()*,
 xs:QName("err:module") : xs:string?,
 xs:QName("err:line-number") : xs:integer?,
 xs:QName("err:column-number") : xs:integer?
 xs:QName("err:additional") : item()*
}

task:Async(~A) The task:Async type alias, is concretely
function(element(adt:scheduler)) as ~A.
The inner aliased generic type, indicates that the Async if it runs
to completion will compute a result of type ~A.

A.3. Functions

A.3.1. Basic Task Construction

This group of functions offer facilities for constructing basic tasks. They usually
form the starting point of a task chain.

A.3.1.1. task:value

Summary Constructs a Task from a pure value.

Signature task:value($v as ~A) as task:Task(~A).

Rules When the task is run it will return the value of $v.

Notes In Haskell this would be known as return or sometimes alterna-
tively unit.

In Scala Monix this would be known as now or pure.
In formal descriptive terms this is:

value :: a -> Task a

Task Abstraction for XPath Derived Languages

35

Example Example A.1. Task from a String

task:value("hello world")

A.3.1.2. task:of

Summary Constructs a Task from a function.
This provides a way to wrap a potentially non-pure (i.e. side-

effecting) function and delay its execution until the Task is execu-
ted.

Signature task:of($f as function() as ~A) as task:Task(~A).
Rules The function is lifted into the task, which is to say that the function

will not be executed until the task is executed. When the task is
run, it will execute the function and return its result.

Notes In Haskell there is no direct equivalent.
In Scala Monix this would be known as eval or delay.
In formal descriptive terms this is:

of :: (() -> a) -> Task a

Example Example A.2. Task which computes the system time from a side-
effecting function.

task:of(util:system-time#0)

A.3.2. Task Composition
This group of functions offer facilities for functionally composing tasks together.

A.3.2.1. task:bind

Summary Composes a new Task from an existing task and a binder function
which creates a new task from the existing task's value.

Signature task:bind($task as task:Task(~A), $binder as
function(~A) as task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the binder function processes
the existing task's value, and then the result of the task is returned.

Notes In Haskell this is also called bind and often written as >>=.
In Scala Monix this is known as flatMap.

Task Abstraction for XPath Derived Languages

36

In formal descriptive terms this is:

bind :: Task a -> (a -> Task b) -> Task b

Examples Example A.3. Using bind to Square a number

task:bind(task:value(99), function($v) {
 task:value($v * $v)
})

Example A.4. Using bind to Transform a value

task:bind(task:value("hello"), function($v) {
 task:value(fn:upper-case($v))
})

Example A.5. Using bind to conditionally raise an error

task:bind(task:value("hello"), function($v) {
 if ($v eq "goodbye")
 then
 task:error((), "It's not yet time to say goodbye!",
())
 else
 task:value($v)
})

Example A.6. Using bind to compose two tasks

let $task1 := task:value("hello")
let $task2 := task:value("world")
return
 task:bind($task1, function($v1) {
 task:bind($task2, function($v2) {
 task:value($v1 || " " || $v2)
 })
 })

Task Abstraction for XPath Derived Languages

37

A.3.2.2. task:then

Summary Composes a new Task from an existing task and a new task. It is
similar to task:bind but discards the existing task's value.

Signature task:then($task as task:Task(~A), $next as
task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the existing task is executed
and the result discarded, and then the result of the next task is
returned.

task:then($task, $next) is equivalent to task:bind($task,
function($_) { $next }).

Notes In Haskell this is also a form of bind which is sometimes called
then, and often written as >>.

In Scala Monix this is direct equivalent.
In formal descriptive terms this is:

then :: Task a -> (_ -> Task b) -> Task b

Example Example A.7. Sequentially composing two tasks

task:then(task:value("something we don't further need"),
task:value("something important"))

A.3.2.3. task:fmap

Summary Composes a new Task from an existing task and a mapping func-
tion which creates a new value from the existing task's value.

Signature task:fmap($task as task:Task(~A), $mapper as
function(~A) as ~B) as task:Task(~B).

Rules When the resultant task is executed, the mapper function processes
the existing task's value, and then the result of the task is returned.

Notes In Haskell this is also called fmap and often written as <$>.
In Scala Monix this is known as map.
In formal descriptive terms this is:

fmap :: Task a -> (a -> b) -> Task b

Task Abstraction for XPath Derived Languages

38

Examples Example A.8. Upper-casing a Task String

task:fmap(task:value("hello"), fn:upper-case#1)

Example A.9. Concatenating a Task String

task:fmap(task:value("hello"), fn:concat(?, " world"))

Example A.10. Extracting the code-points of a Task String (e.g.
type conversion, String to Integer+)

task:fmap(task:value("hello"), fn:string-to-codepoints#1)

A.3.2.4. task:sequence

Summary Constructs a new Task representating the sequential application of
one or more other tasks.

Signature task:sequence($tasks as task:Task(~An)+) as
task:Task(array(~An)).

Rules When the resultant task is executed, each of the provided tasks will
be executed sequentially, and the results returned as an XDM array.
The order of entries in the resultant array is the same as the order
of $tasks.

Notes In Haskell and Scala Monix this is known as sequence.
In formal descriptive terms this is:

sequence :: [Task a] -> Task [a]

Examples Example A.11. Sequencing three Tasks into one

task:sequence((task:value("hello"), task:value(54),
task:value("goodbye"))

A.3.3. Task Error Management
This group of functions offers facilities for using tasks in the face of XPath errors.
Several can be used along with task:error as a form of conditional branching or
downward flow control.

Task Abstraction for XPath Derived Languages

39

A.3.3.1. task:error

Summary Constructs a Task that raises an error.
This is a Task abstraction for fn:error.

Signature task:error($code as xs:QName?, $description as
xs:string, $error-object as task:ErrorObject?) as
task:Task(none).

Rules The error is not raised until the task is run.
The parameters $code, and $description have the same purpose

as those with the same name defined for fn:error.
The parameter $error-object has the same purpose but is a type

restriction of the parameter with the same name defined for
fn:error, it should be of type task:ErrorObject.

Notes In Haskell this would be closest to fail.
In Scala Monix this would be known as raiseError.
In formal descriptive terms this is:

error :: (code, description, error-object) -> Task none

Examples Example A.12. Constructing a simple Task Error

task:error(xs:QName("local:error001"), "BOOM!", ())

A.3.3.2. task:catch

Summary Constructs a Task which catches any error raised by another task.
This is similar to task:catches except that all errors are

caught.
Signature task:catch($task as task:Task(~A), $handler as

function(xs:QName?, xs:string, task:ErrorObject?) as
task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any error from executing the existing task, and then the result of
the handler task is returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Task Abstraction for XPath Derived Languages

40

Notes In Haskell this is similar to catch.
In Scala Monix this would be similar to onErrorHandleWith.
In formal descriptive terms this is:

catches :: Task a -> ([code, description, errorObject] -> Task b) -
> Task b

Example Example A.13. Using catch to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catch(task:error($my-error-code, "Boom!", ()),
function($actual-code, $actual-description, $actual-error-
object) {
 "Handled error: " || $actual-code
 })

A.3.3.3. task:catches

Summary Constructs a Task which catches specific errors of another task.
This is similar to task:catch-recover except that the error

handler receives details of the error.
Signature task:catches($task as task:Task(~A), $codes as

xs:QName*, $handler as function(xs:QName?, xs:string,
task:ErrorObject?) as ~B) as task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Notes In Haskell this is similar to catches.
In Scala Monix this would be similar to onErrorHandle.
In formal descriptive terms this is:

catches :: Task a -> ([code] -> ([code, description, errorObject] ->

Task Abstraction for XPath Derived Languages

41

b)) -> Task b

Example Example A.14. Using catches to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catches(task:error($my-error-code, "Boom!", ()),
($my-error-code, xs:QName("err:XPDY004")), function($actual-
code, $actual-description, $actual-error-object) {
 "Handled error: " || $actual-code
 })

A.3.3.4. task:catches-recover

Summary Constructs a Task which catches specific errors of another task.
This is similar to task:catches except that the error handler

does not receive details of the error.
Signature task:catches-recover($task as task:Task(~A), $codes as

xs:QName*, $handler as function() as ~B) as
task:Task(~B).

Rules When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

Notes In Haskell this is similar to catches, but it does not pass the error
details to the $handler.

In Scala Monix this would be similar to onErrorRecover.
In formal descriptive terms this is:

catches-recover :: Task a -> ([code] -> (_ -> b)) -> Task b

Example Example A.15. Using catches-recover to recover from an error

let $my-error-code := xs:QName("local:error01")
return
 task:catches-recover(task:error($my-error-code,
"Boom!", ()), ($my-error-code), function() {
 "Recovering from error..."

Task Abstraction for XPath Derived Languages

42

 })

A.3.4. Asynchronous Tasks

This group of functions offers facilities for constructing asynchronous tasks and
acting upon their progress.

A.3.4.1. task:async

Summary Constructs an Asynchronous Task from an existing Task.

Signature task:async($task as task:Task(~A)) as
task:Task(task:Async(~A)).

Rules The existing task will be composed into a new task which may be
executed asynchronously.

This function makes no guarantees about how, when, or if the
asynchronous task is executed other than the fact that execution
will not begin before the task itself is executed.

Implementations are free to implement asynchronous tasks
using any mechanism they wish including cooperative multitask-
ing, preemptive multitasking, or even plain old single-threaded
synchronous. The only restriction on implementations is that the
processing order of task chains and asynchronous task chains must
be preserved, so that the user gets the result that they should
expect.

When the task is run, it may start an asynchronous process
which executes the task, regardless it returns a reference to the
(possibly) asynchronous process, which may later be used for can-
cellation or obtaining the result of the task.

If the function call results in asynchronous behaviour (i.e. a fork
of the execution path happens), then the asynchronous task inher-
its the Static Context, and a copy of the Dynamic Context where the
Context item, Context position, and Context size have been reinitial-
ised. If an implementation supports XQuery Update PUL, then any
Update Primitives generated in the Asynchronous Task are merged
back to the main Task only when task:wait or task:wait-all is
employed.

Notes In Haskell this is similar to async from the
Control.Concurrent.Async package.

In Scala Monix this would be known as executeAsync.
In formal descriptive terms this is:

Task Abstraction for XPath Derived Languages

43

async :: Task a -> Task (Async a)

Example Example A.16. Task which asynchronously posts a document

task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)

A.3.4.2. task:wait

Summary Given an Async this function will extract its value and return a
Task of the value.

Signature task:wait($async as task:Async(~A)) as task:Task(~A).
Rules At execution time of the task returned by this function, if the Asyn-

chronous computation represented by the $async reference has not
yet completed, then this function will block until the asynchronous
computation completes.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

Notes In Haskell this is similar to wait from the
Control.Concurrent.Async package.

In Scala Monix this would be similar to Await.result.
In formal descriptive terms this is:

wait :: Async a -> Task a

Example Example A.17. Task waiting on an asynchronous task

let $async-task :=

Task Abstraction for XPath Derived Languages

44

 task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)
return

 (: some further task chain of processing... :)

 (: wait on the asynchronous task to complete :)
 task:bind(
 $async-task,
 task:wait#1
)

A.3.4.3. task:wait-all

Summary Given multiple Asyncs this function will extract their values and
return a Task of the values.

Signature task:wait-all($asyncs as array(task:Async(~A))) as
task:Task(array(~A)).

Rules At execution time of the task returned by this function, if any of the
Asynchronous computations represented by the $asyncs referen-
ces have not yet completed, then this function will block until all
the asynchronous computations complete.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

This is equivalent to:

task:bind($task, function($asyncs as array(*)) as
map(xs:string, function(*)) {
 task:sequence(array:flatten(array:for-each($asyncs,
task:wait#1)))
})

Task Abstraction for XPath Derived Languages

45

Notes In Haskell there is no direct equivalent, but it can be modelled by a
combination of wait and sequence.

In Scala Monix there is no direct equivalent.
In formal descriptive terms this is:

wait-all :: [Async a] -> Task [a]

Example Example A.18. Task waiting on multiple asynchronous tasks

let $async-tasks :=
 (
 task:async(
 task:fmap(
 task:value("http://websiteone.com"),
 http:post(?, <some-document/>)
)
),
 task:async(
 task:fmap(
 task:value("http://websitetwo.com"),
 http:post(?, <some-document/>)
)
)
)
return

 (: some further task chain of processing... :)

 (: wait for all asynchronous tasks to complete :)
 task:bind(
 task:sequence($async-tasks),
 task:wait-all#1
)

A.3.4.4. task:cancel

Summary Given an Async this function will attempt to cancel the asynchro-
nous process.

Signature task:cancel($async as task:Async(~A)) as task:Task().
Properties This function is non-blocking.
Rules At execution time of the task returned by this function, cancella-

tion of the Asynchronous computation represented by the $async
reference may be attempted.

Task Abstraction for XPath Derived Languages

46

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous reference is invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous reference is
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

Notes In Haskell this is similar to cancel from the
Control.Concurrent.Async package.

In Scala Monix this is known as `cancel`.
In formal descriptive terms this is:

cancel :: Async a -> Task ()

Example Example A.19. Cancelling an asynchronous task

let $async-task :=
 task:async(
 task:fmap(
 task:value("http://somewebsite.com"),
 http:post(?, <some-document/>)
)
)
return

 (: some further task chain of processing... :)

 (: cancel the asynchronous task :)
 task:bind(
 $async-task,
 task:cancel#1
)

A.3.4.5. task:cancel-all
Summary Given multiple Asyncs this function will attempt to cancel all of

the asynchronous processes.

Task Abstraction for XPath Derived Languages

47

Signature task:cancel-all($asyncs as array(task:Async(~A))) as
task:Task().

Properties This function is non-blocking.
Rules At execution time of the task returned by this function, cancella-

tion of all Asynchronous computations represented by the
$asyncs references may be attempted.

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous references are invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous references are
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

Notes In Haskell there is no direct equivalent, but it can be modelled by
a combination of cancel and sequence.

In Scala Monix there is no direct equivalent.
In formal descriptive terms this is:

cancel-all :: [Async a] -> Task ()

Example Example A.20. Cancelling asynchronous tasks

let $async-tasks :=
 (
 task:async(
 task:fmap(
 task:value("http://websiteone.com"),
 http:post(?, <some-document/>)
)
),
 task:async(
 task:fmap(
 task:value("http://websitetwo.com"),
 http:post(?, <some-document/>)
)
)
)

Task Abstraction for XPath Derived Languages

48

return

 (: some further task chain of processing... :)

 (: cancel all asynchronous tasks :)
 task:bind(
 task:sequence($async-tasks),
 task:cancel-all#1
)

A.3.5. Unsafe Tasks

This defines a single function task:RUN-UNSAFE, which is useful only when a task
chain needs to be executed. If an XPDL implementation cannot provide a better
mechanism, then this may be implemented and used as a last resort.

A.3.5.1. task:RUN-UNSAFE

Summary Executes a Task Chain and returns the result.
This function is inherently unsafe, as it causes any side effects

within the Task chain to be actualised.
If this function is used within an application, it should only be

invoked once, and it should be at the edge of the application, i.e.
in the position where it is the first and only thing to be directly
executed by the application at runtime. No further computation,
neither on the result of this function, or after this function call
should be attempted by the application.

Signature task:RUN-UNSAFE($task as task:Task(~A)) as ~A.
Properties This function is nondeterministic.
Rules At execution time, the task chain is evaluated and the result

returned.
However, if implementations can provide a safer mechanism

for the execution of a Task after the XPDL has completed evalua-
tion, then they are free to override this as they see fit. Once such
mechanism could be to promote the Task chain to a set of Update
Primitives within a PUL and then demote this to an identity func-
tion.

Notes In Haskell the closest equivalent is unsafePerformIO.
In Scala Monix the closest approach would be a combination

of runToFuture and Await.result.
In formal descriptive terms this is:

Task Abstraction for XPath Derived Languages

49

RUN-UNSAFE :: Task a -> a

Example Example A.21. Unsafely executing a Task

(:~
 : Just a utility function for calculating
 : previous sightings of Halley's comet
 :)
declare function local:halleys-sightings($before-year) {
 let $start := 1530
 let $interval := 76

 for $range in
 ($start - $interval to $before-year - $interval)
 let $visible := $range + $interval
 where (($visible - $start) mod $interval) eq 0
 return
 $visible
};

let $task := task:fmap(
 task:fmap(
 task:of(util:system-time#0),
 fn:year-from-date#1
),
 local:halleys-sightings#1
)
return

 task:RUN-UNSAFE($task)

Bibliography
[1] James Clark. Steve DeRose. XML Path Language (XPath) Version 1.0. W3C

Recommendation 16 November 1999 (Status updated October 2016).
1999-11-16. https://www.w3.org/TR/1999/REC-xpath-19991116/.

[2] Anders Berglund. Scott Boag. Mary Fernández. Scott Boag. Michael Kay.
Jonathan Robie. Jérôme Siméon. XML Path Language (XPath) 2.0 (Second
Edition). W3C Recommendation 14 December 2010 (Link errors corrected 3
January 2011; Status updated October 2016). 2010-12-14. https://www.w3.org/
TR/xpath20/.

Task Abstraction for XPath Derived Languages

50

https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/

[3] Mary Fernandez. K Karun. Mark Scardina. XPath Requirements Version 2.0.
W3C Working Draft 3 June 2005. 2005-06-03. https://www.w3.org/TR/
xpath20req/.

[4] Denise Draper. Peter Fankhauser. Mary Fernández. Ashok Malhotra. Kristoffer
Rose. Michael Rys. Jérôme Siméon. Philip Wadler. XQuery 1.0 and XPath 2.0
Formal Semantics (Second Edition). W3C Recommendation 14 December 2010
(revised 7 September 2015). 2015-09-07. https://www.w3.org/TR/xquery-
semantics/.

[5] Steve Muench. Mark Scardina. XSLT Requirements Version 2.0. W3C Working
Draft 14 February 2001. 2001-02-14. https://www.w3.org/TR/xslt20req/.

[6] Don Chamberlin. Peter Fankhauser. Massimo Marchiori. Jonathan Robie. XML
Query (XQuery) Requirements. W3C Working Group Note 23 March 2007.
2007-03-27. https://www.w3.org/TR/xquery-requirements/.

[7] John Snelson. Jim Melton. XQuery Update Facility 3.0. Pending Update Lists.
W3C Working Group Note 24 January 2017. 2017-01-24. https://www.w3.org/
TR/xquery-update-30/#id-pending-update-lists.

[8] Christian Grün. BaseX. 2018-10-31T16:11:00Z. Jobs Module. BaseX. http://
docs.basex.org/wiki/Jobs_Module.

[9] Adam Retter. eXist-db. eXist-db Util XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
util&location=java:org.exist.xquery.functions.util.UtilModule&details=true.

[10] Adam Retter. eXist-db. eXist-db Scheduler XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModul
e.

[11] IBM. 2012-03-07. IBM100 - Power 4 : The First Multi-Core, 1GHz Processor.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/.

[12] Michael Perrone. 2009. Multicore Programming Challenges. IBM, TJ Watson
Research Lab. 978-3-642-03868-6. 10.1007/978-3-642-03869-3_1. Springer.
https://link.springer.com/chapter/10.1007%2F978-3-642-03869-3_1. Euro-Par
2009 Parallel Processing, Lecture Notes in Computer Science. 5704.

[13] Pedro Fonseca. Cheng Li. Rodrigo Rodrigues. 2011-04-10. Finding complex
concurrency bugs in large multi-threaded applications. EuroSys '11 Proceedings of
the sixth conference on Computer systems. 215-228. ACM. 978-1-4503-0634-8.
10.1145/1966445.1966465. https://dl.acm.org/citation.cfm?id=1966465.

Task Abstraction for XPath Derived Languages

51

https://www.w3.org/TR/xpath20req/
https://www.w3.org/TR/xpath20req/
https://www.w3.org/TR/xquery-semantics/
https://www.w3.org/TR/xquery-semantics/
https://www.w3.org/TR/xslt20req/
https://www.w3.org/TR/xquery-requirements/
https://www.w3.org/TR/xquery-update-30/#id-pending-update-lists
https://www.w3.org/TR/xquery-update-30/#id-pending-update-lists
http://docs.basex.org/wiki/Jobs_Module
http://docs.basex.org/wiki/Jobs_Module
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://link.springer.com/chapter/10.1007%2F978-3-642-03869-3_1
https://dl.acm.org/citation.cfm?id=1966465

[14] Matthew Loring. Mark Marron. Daan Leijen. 2017-10-24. Semantics of
Asynchronous JavaScript. DLS 2017 Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic Languages table of contents. 51-62. ACM.
978-1-4503-5526-1. 10.1145/3133841.3133846. https://dl.acm.org/citation.cfm?
id=3133846.

[15] Cosmin Radoi. Stephan Herhut. Jaswanth Sreeram. Danny Dig. 2015-01-24.
Are Web Applications Ready for Parallelism?. Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 289-290.
ACM. 978-1-4503-3205-7. 10.1145/2688500.2700995. https://dl.acm.org/
citation.cfm?id=2700995.

[16] Henry G. Baker, Jr.. Carl Hewitt. 1977-08-15. The Incremental Garbage Collection
of Processes. Proceedings of the 1977 symposium on Artificial intelligence and
programming languages. 55-59. ACM. 10.1145/800228.806932.

[17] Peter Hibbard. 1976. Parallel Processing Facilities. New Directions in Algorithmic
Languages. 1-7.

[18] Daniel Friedman. David Wise. 1976. The Impact of Applicative Programming on
Multiprocessing. International Conference on Parallel Processing 1976. 263–272.
ACM.

[19] Jeffrey Dean. Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and
Implementation. 137-150. https://research.google.com/archive/mapreduce-
osdi04.pdf.

[20] Michael Kay. 2015-02-14. Parallel Processing in the Saxon XSLT Processor. XML
Prague 2015 Conference Proceedings. 978-80-260-7667-4. http://
www.saxonica.com/papers/xmlprague-2015mhk.pdf.

[21] Jonathan Robie. 2016-03-03T12:05:03-05:00. EXPath Mailing List. Re: [expath]
Re: New Modules? Promise Module, Async Module. https://groups.google.com/
forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ.

[22] O'Neil Delpratt. Michael Kay. 2013-08-06. Interactive XSLT in the browser.
Balisage Series on Markup Technologies, vol. 10 (2013). 10. https://doi.org/10.4242/
BalisageVol10.Delpratt01. https://www.balisage.net/Proceedings/vol10/html/
Delpratt01/BalisageVol10-Delpratt01.html.

[23] Adam Retter. 2018-10-03. EXPath and Asynchronous HTTP. https://
blog.adamretter.org.uk/expath-and-asynchronous-http/.

[24] Jesús Camacho-Rodríguez. Dario Colazzo. Ioana Manolescu. 2015.
PAXQuery: Efficient Parallel Processing of Complex XQuery. IEEE Transactions on
Knowledge and Data Engineering. Institute of Electrical and Electronics

Task Abstraction for XPath Derived Languages

52

https://dl.acm.org/citation.cfm?id=3133846
https://dl.acm.org/citation.cfm?id=3133846
https://dl.acm.org/citation.cfm?id=2700995
https://dl.acm.org/citation.cfm?id=2700995
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
http://www.saxonica.com/papers/xmlprague-2015mhk.pdf
http://www.saxonica.com/papers/xmlprague-2015mhk.pdf
https://groups.google.com/forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ
https://groups.google.com/forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ
https://www.balisage.net/Proceedings/vol10/html/Delpratt01/BalisageVol10-Delpratt01.html
https://www.balisage.net/Proceedings/vol10/html/Delpratt01/BalisageVol10-Delpratt01.html
https://blog.adamretter.org.uk/expath-and-asynchronous-http/
https://blog.adamretter.org.uk/expath-and-asynchronous-http/

Engineers. 1977-1991. 10.1109/TKDE.2015.2391110. https://hal.archives-
ouvertes.fr/hal-01162929/document.

[25] Ghislain Fourny. Donald Kossmann. Markus Pilman. Tim Kraska. Daniela
Florescu. Darin Mcbeath. WWW 2009 MADRID! Track: XML and Web Data /
Session: XML Querying XQuery in the Browser. 2009-04-20. XQuery in the
Browser. http://www2009.eprints.org/102/1/p1011.pdf.

[26] Philip Fennell. 2013-06-15. XML London 2013 Conference Proceedings. 1.
978-0-9926471-0-0. Extremes of XML. https://xmllondon.com/2013/
xmllondon-2013-proceedings.pdf#page=80.

[27] Jirka Kosek. John Lumley. 2013-12-03. Binary Module 1.0. EXPath. http://
expath.org/spec/binary/1.0.

[28] Christian Grün. 2015-02-20. File Module 1.0. EXPath. http://expath.org/spec/
file/1.0.

[29] BaseX. 2018-08-26T16:13:04Z. Concepts: Pending Update List. BaseX. http://
docs.basex.org/wiki/XQuery_Update#Pending_Update_List.

[30] MarkLogic. 2018. xdmp:spawn — MarkLogic 9 Product Documentation.
MarkLogic. https://docs.marklogic.com/xdmp:spawn?
q=spawn&v=9.0&api=true.

[31] MarkLogic. 2018. Developing Modules to Process Content (Content Processing
Framework Guide) — MarkLogic 9 Product Documentation. MarkLogic. https://
docs.marklogic.com/guide/cpf/modules.

[32] MarkLogic. 2018. admin:group-add-scheduled-task — MarkLogic 9 Product
Documentation. MarkLogic. https://docs.marklogic.com/admin:group-add-
scheduled-task.

[33] MarkLogic. 2018. xdmp:set — MarkLogic 9 Product Documentation. MarkLogic.
https://docs.marklogic.com/xdmp:set.

[34] MarkLogic. 2018. Understanding Transactions in MarkLogic Server (Application
Developer's Guide) — MarkLogic 9 Product Documentation. Visibility of Updates.
MarkLogic. https://docs.marklogic.com/guide/app-dev/transactions#id_85012.

[35] James Wright. 2016-02-13. XML Prague 2016 Conference Proceedings. 1.
978-80-906259-0-7. Promises and Parallel XQuery Execution. http://
archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151.

[36] James Wright. xq-promise. 2016-04-29. Git Hub. https://github.com/james-jw/
xq-promise.

[37] Conway Melvin. 1963. A Multiprocessor System Design. ACM.
10.1145/1463822.1463838. Proceedings of the November 12-14, 1963, Fall Joint
Computer Conference. 139-146.

Task Abstraction for XPath Derived Languages

53

https://hal.archives-ouvertes.fr/hal-01162929/document
https://hal.archives-ouvertes.fr/hal-01162929/document
http://www2009.eprints.org/102/1/p1011.pdf
https://xmllondon.com/2013/xmllondon-2013-proceedings.pdf#page=80
https://xmllondon.com/2013/xmllondon-2013-proceedings.pdf#page=80
http://expath.org/spec/binary/1.0
http://expath.org/spec/binary/1.0
http://expath.org/spec/file/1.0
http://expath.org/spec/file/1.0
http://docs.basex.org/wiki/XQuery_Update#Pending_Update_List
http://docs.basex.org/wiki/XQuery_Update#Pending_Update_List
https://docs.marklogic.com/xdmp:spawn?q=spawn&v=9.0&api=true
https://docs.marklogic.com/xdmp:spawn?q=spawn&v=9.0&api=true
https://docs.marklogic.com/guide/cpf/modules
https://docs.marklogic.com/guide/cpf/modules
https://docs.marklogic.com/admin:group-add-scheduled-task
https://docs.marklogic.com/admin:group-add-scheduled-task
https://docs.marklogic.com/xdmp:set
https://docs.marklogic.com/guide/app-dev/transactions#id_85012
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151
https://github.com/james-jw/xq-promise
https://github.com/james-jw/xq-promise

[38] 2018-11-15T06:49:39Z. Promise | MDN. Syntax. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax.

[39] 2015. 6th Edition. Standard ECMA-262. ECMAScript® 2015 Language
Specification. Ecma International. http://www.ecma-international.org/
ecma-262/6.0/#sec-promise-executor.

[40] Carl Hewitt. Peter Bishop. Richard Steiger. 1973. A Universal Modular ACTOR
Formalism for Artificial Intelligence. Proceedings of the 3rd International Joint
Conference on Artificial Intelligence. IJCAI'73. 235-245. Morgan Kaufmann
Publishers Inc.. http://dl.acm.org/citation.cfm?id=1624775.1624804.

[41] Joe Armstrong. Ericsson AB. 2007. A History of Erlang. Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages. HOPL III.
6-1--6-26. ACM. 978-1-59593-766-7. 10.1145/1238844.1238850.

[42] Lightbend, Inc.. Akka Documentation. Actors. 2018-12-07T11:55:00Z. https://
doc.akka.io/docs/akka/2.5.19/actors.html.

[43] 2019-01-17T21:11:00Z. Actor model. Actor libraries and frameworks. Wikipedia.
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks.

[44] Anders Hejlsberg. Microsoft. 2010-10-28T10:13:00Z. Channel 9. Introducing
Async – Simplifying Asynchronous Programming. https://channel9.msdn.com/
Blogs/Charles/Anders-Hejlsberg-Introducing-Async.

[45] Don Syme. Microsoft Research. 2007-10-10. Introducing F# Asynchronous
Workflows. https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-
asynchronous-workflows/.

[46] Simon Marlow. 2012. async-2.2.1: Run IO operations asynchronously and wait for
their results. Control.Concurrent.Async. Hackage. http://hackage.haskell.org/
package/async/docs/Control-Concurrent-Async.html.

[47] Mostafa Gaafar. 2017-03-26. 6 Reasons Why JavaScript’s Async/Await Blows
Promises Away (Tutorial). Hacker Noon. https://hackernoon.com/6-reasons-
why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9.

[48] Ilya Kantor. 2019. Promises, async/await. Async/await. JavaScript.info. https://
javascript.info/async-await.

[49] Melvin Conway. 1963-07. Design of a Separable Transition-diagram Compiler.
ACM Communications. 6. 396-408. 10.1145/366663.366704. ACM.

[50] Unity Technologies. 2018. Unity - Manual: Coroutines. https://
docs.unity3d.com/Manual/Coroutines.html.

[51] Harold Coopper. 2012-12. Coroutine Event Loops in Javascript. https://x.st/
javascript-coroutines/.

Task Abstraction for XPath Derived Languages

54

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-executor
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-executor
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doc.akka.io/docs/akka/2.5.19/actors.html
https://doc.akka.io/docs/akka/2.5.19/actors.html
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
https://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async
https://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
http://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
http://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://javascript.info/async-await
https://javascript.info/async-await
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://x.st/javascript-coroutines/
https://x.st/javascript-coroutines/

[52] Kotlin. 2018-12-06. Kotlin Documentation. Shared mutable state and concurrency.
GitHub. https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-
mutable-state-and-concurrency.md.

[53] Domenic Denicola. 2012-10-14. You're Missing the Point of Promises. https://
blog.domenic.me/youre-missing-the-point-of-promises/.

[54] Simon Peyton Jones. Philip Wadler. 1992. 1993-01. Imperative Functional
Programming. ACM. Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL '93. 71-84. 0-89791-560-7.
10.1145/158511.158524. https://www.microsoft.com/en-us/research/wp-
content/uploads/1993/01/imperative.pdf.

[55] Paul Hudak. John Hughes. Simon Peyton Jones. Philip Wadler. 2007-04-16. A
History of Haskell: Being Lazy with Class. Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. HOPL III. 12-1--12-55.
978-1-59593-766-7. 10.1145/1238844.1238856. ACM. https://
www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf.

[56] The University of Glasgow. 2010. base-4.12.0.0: Basic libraries.
Control.Concurrent. Hackage. http://hackage.haskell.org/package/base/docs/
Control-Concurrent.html#v:forkIO.

[57] John A De Goes. 2017-09-16. There Can Be Only One...IO Monad. http://
degoes.net/articles/only-one-io.

[58] Alexandru Nedelcu. 2018-11-09. Task - Monix. Documentation. GitHub. https://
monix.io/docs/3x/eval/task.html.

[59] Viktor Klang. Lightbend, Inc.. 2017-12-19. Reactive Streams. GitHub. http://
www.reactive-streams.org/.

[60] Mozilla. 2018-09-23T04:04:54Z. JavaScript - Concurrency model and Event Loop.
Mozilla. https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop.

[61] Adam Retter. xq-promise Terminology vs. JavaScript/jQuery. 2018-11-30. GitHub.
https://github.com/james-jw/xq-promise/issues/19.

[62] Adam Retter. 2019-01-13. Haskell I/O and XPath. https://
blog.adamretter.org.uk/haskell-io-and-xpath/.

[63] Giorgio Ghelli. Christopher Ré. Jérôme Siméon. 2006. XQuery!: An XML query
language with side effects. Current Trends in Database Technology -- EDBT 2006.
Springer Berlin Heidelberg. 178-191. 978-3-540-46790-8.

[64] Saxonica. 2018-12-06. Saxon Documentation. Tuple types. Saxonica. http://
www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/
tuple-types.

Task Abstraction for XPath Derived Languages

55

https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-mutable-state-and-concurrency.md
https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-mutable-state-and-concurrency.md
https://blog.domenic.me/youre-missing-the-point-of-promises/
https://blog.domenic.me/youre-missing-the-point-of-promises/
https://www.microsoft.com/en-us/research/wp-content/uploads/1993/01/imperative.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/1993/01/imperative.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf
http://hackage.haskell.org/package/base/docs/Control-Concurrent.html#v:forkIO
http://hackage.haskell.org/package/base/docs/Control-Concurrent.html#v:forkIO
http://degoes.net/articles/only-one-io
http://degoes.net/articles/only-one-io
https://monix.io/docs/3x/eval/task.html
https://monix.io/docs/3x/eval/task.html
http://www.reactive-streams.org/
http://www.reactive-streams.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://github.com/james-jw/xq-promise/issues/19
https://blog.adamretter.org.uk/haskell-io-and-xpath/
https://blog.adamretter.org.uk/haskell-io-and-xpath/
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types

56

Ex-post rule match selection: A novel
approach to XSLT-based Schematron

validation
David Maus

Herzog August Bibliothek Wolfenbüttel
<maus@hab.de>

Abstract

SchXslt [6] is a Schematron processor written entirely in XSLT. It follows
the principal design of Rick Jelliffe's "skeleton" implementation and com-
piles a Schematron 2016 schema to a validating XSLT stylesheet. The goal
of the SchXslt project is a conforming processor that improves Schematron
validation by using features and instructions of recent XSLT versions. This
paper discusses the principal design of an XSLT-based Schematron pro-
cessor and introduces ex-post rule match selection as a novel validation
strategy.

1. Introduction
Schematron is a rule based validation language for structured documents. It was
designed by Rick Jelliffe in 1999 and standardized as ISO/IEC 19757-3 in 2006.
The key concepts of Schematron validation are patterns that are the focus of a vali-
dation, rules selecting the portions of a document contributing to the pattern, and
assertion tests that are run in the context of a rule. Schematron uses XPath both as
the language to select the portion of a document and as the language of the asser-
tion tests. This use of XPath gives Schematron the flexibility to validate arbitrary
relationships and dependencies of information items in a document.

What also sets Schematron apart from other languages is that it encourages
the use of natural language descriptions targeted to human readers. This way val-
idation can be more than just a binary distinction (document valid/invalid) but
also support authors of in-progress documents with quick feedback on erroneous
or unwanted document structure and content.

2. Design of an XSLT-based Schematron processor
The principal design of an XSLT-based Schematron processor was laid out as
early as 1999 by [2] and [4], later summarized by [1]. An XSLT-based processor
reads a Schematron document and transforms it into an XSLT stylesheet. This val-

57

idation stylesheet is then applied to an XML document and outputs a validation
report.

Given the key concepts of the Schematron language one can describe the basic
structure of a validation stylesheet:

• A pattern is implemented as a named pattern template.

• A rule is implemented as a rule template with the rule context expression as
match expression. Rule templates are chained by calls to xsl:apply-
templates.

• An assertion tests is implemented as xsl:if element with the assertion in the
test attribute.

The standardization of Schematron ([5]) added two concepts to earlier versions of
Schematron that make compiling a validation stylesheet a three-stage process:
Abstract patterns and rules, and external definitions.

• A pattern can be declared as abstract and use named parameters that act as
placeholders and are replaced when the abstract pattern is instantiated. An
abstract rule is a collection of assertions and reports without a rule context
expression.

• External definitions enable sharing patterns, rules, or assertion tests between
Schematron files.

The three step compilation works as follows. The first step copies the external
definitions in the source document. The second step instantiates abstract patterns
and rules. The final third step transforms the resulting Schematron into the vali-
dation stylesheet. Once this stylesheet is compiled it is applied to an XML docu-
ment and creates a validation report using the Schematron Validation Report
Language (SVRL).

The relationship of a pattern and its rules is represented by a pattern specific
XSLT mode. Because the match selection of an xsl:apply-templates instruction
selects only one template per node according to a template's priority and import
precedence, a node N mached by rule R1 in Pattern P1 would not be matched by
a rule R2 in Pattern P2 unless the rule templates run in different modes. To cover
the case where two rules of the same pattern inadvertently match the same node
all rule templates are created with a calculated priority reflecting their relative
position.

Example 1 shows a simple Schematron with two patterns (P1, P2) and five
rules (R1, R2, R3, R4, R5). To simplify the example each rule has exactly one asser-
tion tests that always fails. Example 2 shows a corresponding validation style-
sheet. Figure 1 visualizes the validation process. The rules R1, R2 and R3, R4 are
chained by calls to xsl:apply-templates in two modes M1 and M2. The rule R5
is never tested because it matches the same context as R4 and has a lower priority.

A novel approach to XSLT-based Schematron validation

58

Modified default template rules ensure that every node of the XML document can
be matched by a rule template.

Example 1. Simple Schematron

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
 queryBinding="xslt2">
 <pattern id="P1">
 <rule context="/" id="R1">
 <assert test="false()" id="A1"/>
 </rule>
 <rule context="*" id="R2">
 <assert test="false()" id="A2"/>
 </rule>
 </pattern>
 <pattern id="P2">
 <rule context="@attribute" id="R3">
 <assert test="false()" id="A3"/>
 </rule>
 <rule context="element" id="R4">
 <assert test="false()" id="A4"/>
 </rule>
 <rule context="element" id="R5">
 <assert test="false()" id="A5"/>
 </rule>
 </pattern>
</schema>

Example 2. Validation stylesheet

<xsl:transform version="2.0"
 xmlns:svrl="http://purl.oclc.org/dsdl/svrl"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="/">
 <svrl:schematron-output>
 <xsl:call-template name="P1"/>
 <xsl:call-template name="P2"/>
 </svrl:schematron-output>
 </xsl:template>

 <xsl:template name="P1">
 <svrl:active-pattern id="P1"/>
 <xsl:apply-templates mode="M1" select="."/>
 </xsl:template>

A novel approach to XSLT-based Schematron validation

59

 <xsl:template name="P2">
 <svrl:active-pattern id="P2"/>
 <xsl:apply-templates mode="M2" select="."/>
 </xsl:template>

 <xsl:template match="/" mode="M1" priority="1">
 <svrl:fired-rule id="R1"/>
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A1"/>
 </xsl:if>
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

 <xsl:template match="*" mode="M1" priority="0">
 <svrl:fired-rule id="R2"/>
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A2"/>
 </xsl:if>
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

 <xsl:template match="@attribute" mode="M2" priority="2">
 <svrl:fired-rule id="R3"/>
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A3"/>
 </xsl:if>
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

 <xsl:template match="element" mode="M2" priority="1">
 <svrl:fired-rule id="R4"/>
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A4"/>
 </xsl:if>
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

 <xsl:template match="element" mode="M2" priority="0">
 <svrl:fired-rule id="R5"/>
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A5"/>
 </xsl:if>
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

A novel approach to XSLT-based Schematron validation

60

 <xsl:template match="node() | @*" priority="-10" mode="#all">
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

</xsl:transform>

Rule template

Default template

M2

R4 R3

R5

M1

R1 R2

SVRL rule match

Figure 1. Processing the Rules R1–R4 in two modes

3. Ex-post rule match selection
Using one mode per pattern as shown in example 2 is required to allow rules
from different patterns to match the same node, but has a drawback: The entire
source document is processed as many times as there are patterns in the Schema-
tron.

SchXslt addresses this by implementing a different validation strategy, ex-post
rule match selection. This strategy relies on the xsl:next-match instruction intro-
duced with XSLT 2.0. When called, it applies the next template that matches the
current context node but has a lower priority, or the built-in template rules if no
other template matching the current context node is found ([3]). The xsl:next-
match instruction overcomes a limitation of XSLT 1.0 where matching a node with
more than one template was relegated to imported templates (xsl:apply-
imports), or template modes. Second, ex-post rule match selection looks at the
Schematron validation from the perspective of the validation report. From here
there is no difference between a rule that never fired and a rule that fired but is
not reported. Hence if we were to assume that the case where two rules of a pat-
tern match the same node is an error in the Schematron, then we could see it as
justified to fire such a rule but remove it from the report.

Ex-post rule match selection thus works as follows: The Schematron processor
chains all rules with a call to xsl:next-match instead of xsl:apply-templates.

A novel approach to XSLT-based Schematron validation

61

This will fire all rules of all patterns that match a node in the source document.
The validation stylesheet collects this information in a temporary report and
removes rules that fired because they matched a node that was already matched
by a previous rule in the same pattern. To do so the validation stylesheet uses the
generated id of the current context node and the generated id of the pattern dur-
ing compilation to track which nodes have been matched by which rules in which
patterns. To ensure that the order of reported fired rules reflects the order of rules
in a pattern, the processor calculates a priority for each template such that a tem-
plate which is lexically further down in the Schematron has a lower priority than
one higher up.

Example 3 shows the simple Schematron implemented with ex-post rule
match selection. Note how the identity of context and pattern are stored in a
schxslt:context and schxslt:pattern attribute, and are later used to remove
all but the first fired rule to be reported. Also note how the generated id for the
pattern was created during the compilation phase and the one for the context
node is generated by the validation stylesheet. Figure 2 shows how the Rules R2,
R4, and R5 are chained by xsl:next-match with the match of R5 later to be
removed.

Example 3. Validation stylesheet using ex-post rule match selection

<xsl:transform version="2.0"
 xmlns:schxslt="https://doi.org/10.5281/zenodo.1495494"
 xmlns:svrl="http://purl.oclc.org/dsdl/svrl"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="/">
 <xsl:variable name="report">
 <xsl:call-template name="Validate"/>
 </xsl:variable>
 <svrl:schematron-output>
 <xsl:for-each select="$report/svrl:active-pattern">
 <xsl:copy>
 <xsl:sequence select="@* except @schxslt:*"/>
 </xsl:copy>
 <xsl:for-each-group select="$report/svrl:fired-
rule[@schxslt:pattern = current()/@schxslt:pattern]"
 group-by="@schxslt:context">
 <xsl:copy>
 <xsl:sequence select="@* except @schxslt:*"/>
 </xsl:copy>
 <xsl:sequence select="*"/>
 </xsl:for-each-group>

A novel approach to XSLT-based Schematron validation

62

 </xsl:for-each>
 </svrl:schematron-output>
 </xsl:template>

 <xsl:template name="Validate">
 <svrl:active-pattern id="P1" schxslt:pattern="d11e-1"/>
 <svrl:active-pattern id="P2" schxslt:pattern="d11e-2"/>
 <xsl:apply-templates mode="M" select="."/>
 </xsl:template>

 <xsl:template match="/" mode="M" priority="4">
 <svrl:fired-rule id="R1" schxslt:pattern="d11e-1"
schxslt:context="{generate-id()}">
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A1"/>
 </xsl:if>
 </svrl:fired-rule>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="*" mode="M" priority="3">
 <svrl:fired-rule id="R2" schxslt:pattern="d11e-1"
schxslt:context="{generate-id()}">
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A2"/>
 </xsl:if>
 </svrl:fired-rule>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="@attribute" mode="M" priority="2">
 <svrl:fired-rule id="R3" schxslt:pattern="d11e-2"
schxslt:context="{generate-id()}">
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A3"/>
 </xsl:if>
 </svrl:fired-rule>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="element" mode="M" priority="1">
 <svrl:fired-rule id="R4" schxslt:pattern="d11e-2"
schxslt:context="{generate-id()}">
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A4"/>
 </xsl:if>

A novel approach to XSLT-based Schematron validation

63

 </svrl:fired-rule>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="element" mode="M" priority="0">
 <svrl:fired-rule id="R5" schxslt:pattern="d11e-2"
schxslt:context="{generate-id()}">
 <xsl:if test="not(false())">
 <svrl:failed-assert id="A5"/>
 </xsl:if>
 </svrl:fired-rule>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="node() | @*" priority="-10" mode="#all">
 <xsl:apply-templates select="node() | @*" mode="#current"/>
 </xsl:template>

</xsl:transform>

M

R1 R3R2 R4 R5

Figure 2. Processing the Rules R1–R5 with ex-post rule match selection

The Schematron given in example 1 sure is a simplification of Schematron's fea-
ture set. There are two features in particular that question the applicability of the
xsl:next-match instruction.
• Schematron supports variable bindings in the scope of a pattern. These varia-

bles can be used in XPath expressions inside rules. Rules that use pattern sco-
ped variable bindings can only run together if they use the same variable
bindings.

• A pattern can specify documents other than the source document to be valida-
ted by its rules. Rules can only run together if they apply to the same docu-
ment.

SchXslt takes this into account and identifies patterns whose rules can run
together in the same mode because they validate the same documents. Patterns

A novel approach to XSLT-based Schematron validation

64

with pattern scoped variable bindings each run in a single mode. The grouping is
implemented by a grouping key function that concatenates the generated id of a
pattern's variable binding element (sch:let) and the value of a patterns
documents attribute. This way ex-post rule match selection reduces the number of
times the source documents are processed to one in the best case and to be equal
to the number of patterns in the worst case.

4. Conclusion and future work
SchXslt is a conforming XSLT-based Schematron processor. It implements Sche-
matron validation with novel strategy that groups patterns whose rules can run
at once and removes unwanted report elements afterwards. Up to now the devel-
opment of SchXslt was focussed on implementing a conforming processor and
exploring recent XSLT features like the xsl:next-match instruction.

The goal for the near future is to use SchXslt in real-world validation scenarios
and see under which circumstances ex-post rule match selection improves the
overall validation performance.

Bibliography
[1] Dodds, Leigh: Schematron: validating XML using XSLT. XSLT-UK conference,

April 8-9 2001 http://ldodds.com/papers/schematron_xsltuk.html
[2] Jelliffe, Rick: Using XSL as a Validation Language. Internet Document, 1999

https://web.archive.org/web/20000415135808/http://www.ascc.net:80/
xml/en/utf-8/XSLvalidation.html

[3] Kay, Michael (ed.): XSL Transformations (XSLT) Version 2.0 (Second Edition).
W3C Proposed Edited Recommendation, 21 April 2009 http://www.w3.org/
TR/xslt20/

[4] Norton, Francis: Generating XSL for Schema Validation. Internet Document, 1999
https://web.archive.org/web/20010110235200/http://www.redrice.com/
ci/generatingXslValidators.html

[5] Information Technology – Document Schema Definition Languages (DSDL) – Part 3:
Rule-based validation – Schematron. 2016 (=ISO/IEC-19757-3:2016)

[6] Maus, David: SchXslt. DOI: 10.5281/zenodo.14954941

1 https://doi.org/10.5281/zenodo.1495494

A novel approach to XSLT-based Schematron validation

65

http://ldodds.com/papers/schematron_xsltuk.html
https://web.archive.org/web/20000415135808/http://www.ascc.net:80/xml/en/utf-8/XSLvalidation.html
https://web.archive.org/web/20000415135808/http://www.ascc.net:80/xml/en/utf-8/XSLvalidation.html
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
https://web.archive.org/web/20010110235200/http://www.redrice.com/ci/generatingXslValidators.html
https://web.archive.org/web/20010110235200/http://www.redrice.com/ci/generatingXslValidators.html
https://doi.org/10.5281/zenodo.1495494
https://doi.org/10.5281/zenodo.1495494

66

Authoring Domain Specific Languages in
Spreadsheets Using XML Technologies

Alan Painter
HSBC France

<alan.painter@hsbc.fr>

Abstract

Domain Specific Languages (DSLs) have been shown to be useful in the
development of information systems. DSLs can be designed to be authored,
manipulated and validated by business experts (BEs) and subject matter
experts (SMEs). Because BEs and SMEs are known to be comfortable work-
ing with spreadsheet applications (Microsoft™ Excel®, Libre Office Calc),
the ability to author DSLs within spreadsheets makes the DSL authoring
process even more engaging for BEs and SMEs.

Today's most popular spreadsheet applications are implemented using
XML documents (ODF, OOXML, Excel 2003 XML format) and, for this
reason at least, XML technologies (XPATH, XSLT, XQuery) are well suited
for reading DSL definitions within Spreadsheets.

What is usually considered the part of DSL implementation that
requires the most effort is the artifact or code generation from the DSL
description. For this aspect of DSL development, XML technologies are also
well placed for generating the technical artifacts described by the DSLs.

In this paper, I will first motivate the usage of DSLs by describing some
of their utility in information systems development. I'll then go on to
describe how XML Technologies can be used for reading DSLs within
spreadsheets and for generating technical artifacts. I'll then go on to present
some real world examples of DSL usage via XML Technologies and attempt
to draw some general conclusions from the examples.

Keywords: XML, DSL, Domain Specific Languagues, Spreadsheet

1. An Entirely Incomplete Description of DSLs
Domain Specific Languages (DSLs) are not a new concept in Information Technol-
ogy[1]. The examples are legion and familiar to developers. To cite just a few
well-known examples: make [2], YACC [3], troff [4], html [5]. These are computer
languages that are used by humans in order to describe how to produce an arti-
fact or present a graphical user interface.

67

Table 1. Well Known Examples of DSLs

Example Model Generated Artifact Method

make

Dependency Graph
between source
files and generated
files

Any generated arti-
fact (often gener-
ated libraries and
executables)

Runs system com-
mands to launch
compilers, applica-
tions, file manipu-
lation, etc.

YACC
Grammar describ-
ing a computer lan-
guage.

C-language source
code for recogniz-
ing and processing
the language
described in the
grammar.

Directly generated
by YACC.

troff Text processing Device-independ-
ent output format

Directly generated
by troff

html

Text, table, form
markup and link-
ages between
hypermedia docu-
ments (simplified
description)

User Interface of
Rendered Views
and Embedded
Controls

Browser reads the
html, retrieves
associated docu-
ments, renders and
presents the UI.

The examples above underline the two major objectives of a DSL to consider:
1. the syntax of the language itself which allows expressing the different ele-

ments, their attributes and relations within a specific domain
2. the implementation of the language which produces the resulting artifacts

described by the input

2. DSLs in Business Application Development
There has been a recent resurgence in interest for using DSLs for describing rules
and processes for business applications. [6] [7] Martin Fowler dedicated a book to
the subject of DSLs [8] and mentions:

I believe that the hardest part of software projects, the most common source of
project failure, is communication with the customers and users of that software.
By providing a clear yet precise language to deal with domains, a DSL can help
improve this communication.

—Martin Fowler[8]

Business software developers are often faced with the challenge of working with
different Domain Experts (DEs), Subject Matter Experts (SMEs) and Business

Authoring DSLs in Spreadsheets Using XML Technologies

68

Experts (BEs) who are involved in the specification and definition of what the
business application needs to do, often as part of the business requirements or
functional requirements specification. Technical developers will then take the
specification and interpret it by developing the technical implementation. At this
point, we have two separate representations of the work: the specification and the
implementation.

Because there are two separate representations, these two can evolve separately
and differently and, subsequently, diverge. The informal specification may no
longer be up-to-date because the technical implementation may have corrected
problems discovered either during technical analysis or by quality assurance.
Updates made to the informal specification may not be obvious to add to the
technical implementation based upon a previous version of the informal specifi-
cation.

If the Business Analysts and Technical Developers can agree upon a DSL for
representing the business rules and process description, they can then have a
chain of development in which the Business Analyst becomes a contributor to the
DSL specification. The Technical Implementor can also contribute to the DSL
specification. The DSL specification is then the common support for the business
implementation from which the implementation of the business rules will be gen-
erated automatically from the DSL specification. This means that the specification
(the DSL) is alway up-to-date and synchronized with the technical implementa-
tion (generated artifact).

Authoring DSLs in Spreadsheets Using XML Technologies

69

A further advantage of providing a DSL to the Business Analyst is that this
allows the Business Analyst the possibility of testing the business rules immedi-
ately, given an appropriate test framework. This means that the Business Analyst
can contribute to the testing of the new rules and can verify the specification
immediately rather than awaiting its implementation.

In this paper, I'll address what I see as the two major advantages of using a
DSL for application development.

• The representation of the functional workings afforded by a DSL, separate
from the technical corpus.

• The optimization of the development process that is gained by enabling tech-
nical and non-technical contributors to author the functional definition via a
DSL.

3. DSLs in Spreadsheets
Given that DSLs are useful for engaging Business Experts in the specification,
development and testing process, it will also be useful to allow the Business
Experts to edit the DSL within a Spreadsheet application. Spreadsheet applica-
tions such as Microsoft Excel and LibreOffice Calc are common tools for Business
Experts to use and the comfort level with using spreadsheet applications is high.

There are several aspects of spreadsheet editing that make it a favorite among
Business Experts:

• Spreadsheets allow for realigning and reordering columns and lines in simple
gestures

• Orthogonal editing facilitate keeping lists in one axis and attributes of each
item in the list in the other

Authoring DSLs in Spreadsheets Using XML Technologies

70

• Spreadsheet applications allow for defining styles on a cell-by-cell basis (text
color, fonts, background colors) and sometimes even within the text of the cell

Not all DSLs will be obvious to author from within a spreadsheet; nonetheless,
there will be a subset of DSLs that can be represented in tabular form. What fol-
lows in this paper will address that subset of DSLs that can be authored from
within a spreadsheet application.

4. Using XML Technologies To Read Spreadsheet Data

4.1. The Simple Structure of Data Within a Spreadsheet

Treating spreadsheets as tables of data 1 gives a simple model of the spreadsheet
structure in XML with four nested elements:
• Workbook
• Worksheet (with a required name attribute)
• Line
• Cell
The following image gives an example of the simple model and its relationship to
a spreadsheet.

4.2. Using XPATH for Addressing Data within the Simple Model

The data within the Simple Model is easily addressed using XPATH. For example,
data can be addressed using fixed coordinates. In the following, the second Cell
element of the first Line is chosen.

1Ignoring formulas, formatting and other non-data spreadsheet notations.

Authoring DSLs in Spreadsheets Using XML Technologies

71

 /Workbook/Worksheet[@name eq 'Sheet1']/Line[1]/Cell[2]

Data can be addressed based upon its content. The following selects all of the Cell
elements in the second line of the first Worksheet because that line's second Cell
contains the value 'Second'

 /Workbook/Worksheet[@name eq 'Sheet1']/Line[Cell[2] eq 'Second']/
Cell[3]

The simplicity of addressing data within the simple spreadsheet model will aid in
reading the DSL contained within the spreadsheet.

4.3. Extracting the Simple Spreadsheet Model from Real-world
Spreadsheets

Extracting the Simple Spreadsheet Model from the different real-world spread-
sheet vocabularies is a bit more complicated and it is somewhat beyond the scope
of this paper.

Nonetheless, to give an idea of the complexity, I would mention that I know of
an implementation for reading .xslx files in "strict" mode that requires around 250
lines of XSLT. Another implementation for Excel 2003 XML mode requires fewer
than 100 lines of XSLT. Hence, the problem of extracting the Simple Spreadsheet
Model from a spreadsheet is fairly simple to achieve.

5. Using XML Technology to Generate Artifacts from a DSL
I'm concentrating on XSLT in the following examples although I believe that
XQuery would hold as well. Standard XSLT does, nonetheless, have the advant-
age over Standard XQuery of facilitating output to multiple documents.

5.1. Producing artifacts using TEXT output

XSLT writes in a "text" output method as a series of "string" data. This is suffi-
cient, although not necessarily convenient, for writing output such as GPL lan-
guages (Java, C, C++) or for writing configuration files such as Java property files,
Windows .ini files, etc.

The Text Value Template mechanism in XSLT3 can be particularly useful and
elegant for producing text. 2

2https://www.w3.org/TR/xslt-30/#text-value-templates

Authoring DSLs in Spreadsheets Using XML Technologies

72

5.2. Producing XML and JSON artifacts

Writing XML documents is, of course, the natural output method for XSLT, hence
XSLT is the ideal language for such output. JSON output is also a possibility with
XSLT, especially in the latest version, XSLT3.0, which has a JSON output method.

5.3. Producing XSLT artifacts

XSLT is a special form of XML output but it is significant to mention that XSLT is
very good at writing XSLT.

Where XSLT is particularly useful is that it is a separable artifact that can be
tested independently and then be included into a larger, technical project. In
essence, this allows us to generate the XSLT from the DSL and test the results sep-
arately, especially by the Business Analyst but also within a unit testing frame-
work. The XSLT itself can then be included, at compile-time or run-time, into a
separate technical corpus, especially Java but also with C#, C, C++, Javascript,
JVM-based languages such as scala, etc.

The process of using xsl:namespace-alias and xsl:element in order to facil-
itate the generation of XSLT artifacts from another XSLT is described in the XSLT
literature.[9]

6. Some examples of DSLs in Spreadsheets
To motivate the utility and convenience of developing DSLs within Spreadsheets
using XML Technologies, I'll give a few examples from my personal work experi-
ence. These are examples that I have used extensively and which have provided
an important benefit to different projects.

Table 2. Some Personal Examples of DSLs in Spreadsheets

Use Case DSL Model Output Artifact Output Method

Automaton
Table of States,
Events, Transitions
and Actions

Java Abstract Class
textGraphviz DOT lan-

guage

Configuration

Linked Description
of Instances and
Values
Templates of Prop-
erties

Properties files
XML Configura-
tion
JSON Configura-
tion
YML Configura-
tion

text
xml
json

Authoring DSLs in Spreadsheets Using XML Technologies

73

Use Case DSL Model Output Artifact Output Method
Tabular Data from

XML
for-each / varia-
bles / cell rules XSLT xml

Schema to Schema
templates, varia-
bles, transcodifica-
tion

XSLT xml

6.1. An Automaton or Finite State Machine (FSM) as DSL

6.1.1. Objectives of the FSM DSL in a Spreadsheet

• Make it easy to edit the standard tabular represention of an FSM with its list
of States, Events, Actions and Transitions.

• Generate a Java class that implements the handleEvent() method
• Generate a DOT file description of the FSM from which GraphViz will gener-

ate the state/transition graph

6.1.2. Description of the DSL Model

A common and basic representation in computer science is to show a Finite State
Machine in tabular form with States represented in columns and Events represen-
ted in rows.

The given example is that of a coin vending machine in the USA with the
Events being named after the US coins that can be deposited in the Vending
Machine (i.e. a Nickel is 5 cents, a Dime is 10 cents and a Quarter is 25 cents. An
additional Event is the CoinReturnButton.. The States are the cumulative total of
coins dropped in the machine up to 25 cents, at which point the candy is dis-
pensed and the state returns to Start. 3

3Note that this is a very simple machine and that change is not rendered for amounts over 25 cents.

Authoring DSLs in Spreadsheets Using XML Technologies

74

Figure 1. A Representation of an Automaton with a Spreadsheet

This tabular form in a spreadsheet simplifies the authoring. Adding a new state
means adding a new column. Adding a new event is adding two new rows (one
row for the action and one row for the nextstate. The author can copy/paste a cell
in order to duplicate an existing action or nextstate. Both states transitions and
actions are captured in this simple table.

The simple worksheet model in XML looks something like this (abbreviated):
<Workbook>
 <Worksheet name="FSM-FsmDemoBase">

 <Line>
 <Cell>package</Cell><Cell>dslss.fsm</Cell>
 </Line>

 <Line>
 <Cell>header</Cell><Cell>Events</Cell><Cell>Start</
Cell><Cell>FiveCents</Cell><Cell>TenCents</Cell><Cell>FifteenCents</
Cell><Cell>TwentyCents</Cell>
 </Line>

 <Line>
 <Cell>action</Cell><Cell>Nickel</Cell><Cell></Cell><Cell></
Cell><Cell></Cell><Cell></Cell><Cell>dispenseCandy</Cell>
 </Line>
 <Line>
 <Cell>nextstate</Cell><Cell>Nickel</Cell><Cell>FiveCents</
Cell><Cell>TenCents</Cell><Cell>FifteenCents</Cell><Cell>TwentyCents</

Authoring DSLs in Spreadsheets Using XML Technologies

75

Cell><Cell>Start</Cell>
 </Line>

 <Line>
 <Cell>action</Cell><Cell>Dime</Cell><Cell></Cell><Cell></
Cell><Cell></Cell><Cell>dispenseCandy</Cell><Cell>dispenseCandy</Cell>
 </Line>
 <Line>
 <Cell>nextstate</Cell><Cell>Dime</Cell><Cell>TenCents</
Cell><Cell>FifteenCents</Cell><Cell>TwentyCents</Cell><Cell>Start</
Cell><Cell>Start</Cell>
 </Line>

 </Worksheet>
</Workbook>

6.1.3. Describing the Java Abstract Class

One artifact that the DSL implementation is to generate is a java abstract class that
encapsulates the generic handleEvent() method and the state/action tables for the
FSM taken from the spreadsheet DSL. The FSM table gives us the names of the
action methods and hence the generated class declares these methods as abstract
in such a fashion that the deriving, concrete class can then simply implement the
action methods.

In our simple example, the generated Java abstract class can look like:
package dslss.fsm;

public abstract class FsmDemoBase {

 public enum Event { Nickel, Dime, Quarter, CoinReturnButton }

 public enum State { Start, FiveCents, TenCents, FifteenCents,
TwentyCents }

 protected abstract Runnable dispenseCandy();
 protected abstract Runnable returnCoins();

 private final Runnable action[][] = {
 { __nop(), __nop(), __nop(),
__nop(), dispenseCandy() },
 { __nop(), __nop(), __nop(),
dispenseCandy(), dispenseCandy() },

Authoring DSLs in Spreadsheets Using XML Technologies

76

 { dispenseCandy(), dispenseCandy(), dispenseCandy(),
dispenseCandy(), dispenseCandy() },
 { returnCoins(), returnCoins(), returnCoins(),
returnCoins(), returnCoins() },
 };

 private final static State nextState[][] = {
 { State.FiveCents, State.TenCents, State.FifteenCents,
State.TwentyCents, State.Start },
 { State.TenCents, State.FifteenCents, State.TwentyCents,
State.Start, State.Start },
 { State.Start, State.Start, State.TwentyCents,
State.Start, State.Start },
 { State.Start, State.Start, State.TwentyCents,
State.Start, State.Start },
 };

 public final State handleEvent(final State currentState, final Event
newEvent) {
 action [newEvent.ordinal()]
[currentState.ordinal()].run();
 return nextState [newEvent.ordinal()] [currentState.ordinal()];
 }

 private Runnable __nop() { return () -> {}; }
}

and, for reference, an example concrete Java class that extends the generated
abstract class can be:

package dslss.fsm;

public class FsmDemo extends FsmDemoBase {

 protected Runnable dispenseCandy() {
 return () -> System.out.println("Dispensing candy.");
 }

 protected Runnable returnCoins() {
 return () -> System.out.println("Returning coins.");
 }
}

Authoring DSLs in Spreadsheets Using XML Technologies

77

6.1.4. A Stylesheet for Generating the Java Abstract Class

To generate the java abstract class from Simple Spreadsheet Model using XML
Technologies, I'll give an example using XSLT. The template will match any Work-
sheet element with a name that starts with the substring FSM.

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:f = "urn:for:functions"

 version="3.0" >

 <xsl:param name="outputDir" as="xs:string" />

 <xsl:template match="/">
 <xsl:apply-templates />
 </xsl:template>

 <xsl:template match="Workbook" >
 <xsl:apply-templates />
 </xsl:template>

 <xsl:template match="Worksheet[starts-with(@name, 'FSM-')]" expand-
text="yes" >
 ...

and within that template we'll have the static Java code that we'll generate as well
as different Text Value Template (TVT) fields that we'll use to produce the specific
Event names, State names, Action method declarations and the values for the
action and nextstate tables. The result is fairly readable.

 <xsl:template match="Worksheet[starts-with(@name, 'FSM-')]" expand-
text="yes" >

 <xsl:variable name="class" as="xs:string" select="substring-
after(@name, 'FSM-')" />

 <xsl:result-document href="{$outputDir}/{f:getPath(Line)}/
{$class}.java" method="text">
package {f:getPackage(Line)}

public abstract class {$class} {{

 public enum Event {{ {f:getEventsList(Line)} }}

 public enum State {{ {f:getStatesList(Line)} }}

Authoring DSLs in Spreadsheets Using XML Technologies

78

{f:getMethodDeclarationLines(Line)}

 private final Runnable action[][] = {{
{f:getFormattedTable(f:getActionTable(Line))}
 }};

 private final static State nextState[][] = {{
{f:getFormattedTable(f:getNextStateTable(Line))}
 }};

 public final State handleEvent(final State currentState, final Event
newEvent) {{
 action [newEvent.ordinal()]
[currentState.ordinal()].run();
 return nextState [newEvent.ordinal()] [currentState.ordinal()];
 }}

 private Runnable __nop() {{ return () -> {{}}; }}
}}
 </xsl:result-document>
 </xsl:template>

The functions for extracting the action and state names for the Java enum declara-
tions are especially simple:

 <xsl:function name="f:getPackage" as="xs:string">
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:sequence select="$lines[Cell[1] eq 'package']/Cell[2]" />
 </xsl:function>

 <xsl:function name="f:getPath" as="xs:string">
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:sequence select="replace(f:getPackage($lines), '[.]',
'/')" />
 </xsl:function>

 <xsl:function name="f:getStates" as="xs:string*" >
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:sequence select="$lines[Cell[1] eq 'header']/
Cell[position() gt 2]" />
 </xsl:function>

 <xsl:function name="f:getStatesList" as="xs:string">
 <xsl:param name="lines" as="element(Line)*" />

Authoring DSLs in Spreadsheets Using XML Technologies

79

 <xsl:value-of select="f:getStates($lines)" separator=", "/>
 </xsl:function>

 <xsl:function name="f:getEvents" as="xs:string*" >
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:sequence select="$lines[Cell[1] eq 'action']/Cell[2]" />
 </xsl:function>

 <xsl:function name="f:getEventsList" as="xs:string">
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:value-of select="f:getEvents($lines)" separator=", "/>
 </xsl:function>

The functions for creating the state and action tables and the abstract method dec-
larations can also be fairly straightforward:

 <xsl:function name="f:getMethodDeclarationLines" as="xs:string">
 <xsl:param name="lines" as="element(Line)*" />

 <xsl:variable name="actions" as="xs:string*"
 select="$lines[Cell[1] eq 'action']/
Cell[position() gt 2]" />
 <xsl:variable name="methodDeclarations" as="xs:string*" expand-
text="yes" >
 <xsl:for-each select="distinct-values($actions[. ne ''])" >
 <xsl:text> protected abstract Runnable {.}();</
xsl:text>
 </xsl:for-each>
 </xsl:variable>
 <xsl:value-of select="$methodDeclarations" separator="
" />
 </xsl:function>

 <xsl:function name="f:getActionTable" as="element(Line)*" >
 <xsl:param name="lines" as="element(Line)*" />

 <xsl:for-each select="$lines[Cell[1] eq 'action']">
 <Line>
 <xsl:for-each select="Cell[position() gt 2]" >
 <Cell>
 <xsl:value-of select="(text()[. ne ''], '__nop')
[1] || '()'" />
 </Cell>
 </xsl:for-each>
 </Line>
 </xsl:for-each>

Authoring DSLs in Spreadsheets Using XML Technologies

80

 </xsl:function>

 <xsl:function name="f:getNextStateTable" as="element(Line)*" >
 <xsl:param name="lines" as="element(Line)*" />

 <xsl:for-each select="$lines[Cell[1] eq 'nextstate']">
 <Line>
 <xsl:for-each select="Cell[position() gt 2]" >
 <Cell>
 <xsl:value-of select="'State.' || text()" />
 </Cell>
 </xsl:for-each>
 </Line>
 </xsl:for-each>
 </xsl:function>

6.1.5. Generating the DOT / GraphViz artifact

The DOT[11] file that we generate for the graphviz application contains a link
from each of the states to a next state, labeled by the event that caused that state
transition and a possible action. This is a simple text format for DOT
digraph FsmDemoBase {
 node [shape = circle];
 Start -> FiveCents [label =
"Nickel"];
 Start -> TenCents [label =
"Dime"];
 Start -> Start [label = "Quarter
\ndispenseCandy()"];
 Start -> Start [label = "CoinReturnButton
\nreturnCoins()"];
 FiveCents -> TenCents [label =
"Nickel"];
 FiveCents -> FifteenCents [label =
"Dime"];
 FiveCents -> Start [label = "Quarter
\ndispenseCandy()"];
 FiveCents -> Start [label = "CoinReturnButton
\nreturnCoins()"];
 TenCents -> FifteenCents [label =
"Nickel"];

Authoring DSLs in Spreadsheets Using XML Technologies

81

 TenCents -> TwentyCents [label =
"Dime"];
 TenCents -> Start [label = "Quarter
\ndispenseCandy()"];
 TenCents -> Start [label = "CoinReturnButton
\nreturnCoins()"];
 FifteenCents -> TwentyCents [label =
"Nickel"];
 FifteenCents -> Start [label = "Dime
\ndispenseCandy()"];
 FifteenCents -> Start [label = "Quarter
\ndispenseCandy()"];
 FifteenCents -> Start [label = "CoinReturnButton
\nreturnCoins()"];
 TwentyCents -> Start [label = "Nickel
\ndispenseCandy()"];
 TwentyCents -> Start [label = "Dime
\ndispenseCandy()"];
 TwentyCents -> Start [label = "Quarter
\ndispenseCandy()"];
 TwentyCents -> Start [label = "CoinReturnButton
\nreturnCoins()"];
}

We can pass this document to the dot application in order to generate a graphic
state presentation. In the following command, we will generate SVG output, but
it's also possible to generate other graphic output types via dot.

 % dot -Tsvg FsmDemoBase.gv -o FsmDemoBase.gv.svg

Authoring DSLs in Spreadsheets Using XML Technologies

82

Start Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

FiveCents

Nickel

TenCents

Dime

Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

Nickel

FifteenCents

Dime

Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

Nickel

TwentyCents

Dime

Dime
dispenseCandy()

Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

Nickel

Nickel
dispenseCandy()

Dime
dispenseCandy()

Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

6.1.6. Generating the DOT artifact

We can use the Text Value Template mechanism again in order to generate this arti-
fact, adding an extra output document to the same template that generated the
java abstract class artifact above.

<xsl:result-document href="{$outputDir}/{f:getPath(Line)}/{$class}.gv"
method="text">
digraph {$class} {{
 node [shape = circle];
{f:getDotTable(f:getDotLines(Line))}
}}
</xsl:result-document>

To generate the DOT document, we need to create a link from each state to its
nextstate and label it with the event that provoked the transaction, along with an
action that may be triggered by the state transition. An example generation, again
employing text value templates, could be:

 <xsl:function name="f:getDotLines" as="element(Line)*" expand-
text="yes">
 <xsl:param name="lines" as="element(Line)*" />

 <xsl:variable name="states" as="xs:string*"
select="f:getStates($lines)" />
 <xsl:for-each select="f:getStates($lines)" >

Authoring DSLs in Spreadsheets Using XML Technologies

83

 <xsl:variable name="state" as="xs:string" select="." />
 <xsl:for-each select="f:getEvents($lines)" >
 <xsl:variable name="event" as="xs:string" select="." />
 <xsl:variable name="action" as="xs:string?"
select="f:getAction($lines, $state, $event)" />
 <Line>
 <Cell>{$state}</Cell>
 <Cell>-></Cell>
 <Cell>{f:getNextState($lines, $state, $event)}</Cell>
 <Cell>[label = "{$event}{('\n' || $action || '()')
[$action]}"</Cell>
 <Cell>];</Cell>
 </Line>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:function>

 <xsl:function name="f:getNextState" as="xs:string" >
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:param name="state" as="xs:string" />
 <xsl:param name="event" as="xs:string" />

 <xsl:variable name="stateColumn" as="xs:integer"
select="f:getHeaderIndex($lines, $state)" />
 <xsl:sequence select="$lines[Cell[1] eq 'nextstate'][Cell[2] eq
$event]/Cell[$stateColumn]" />
 </xsl:function>

 <xsl:function name="f:getAction" as="xs:string?" >
 <xsl:param name="lines" as="element(Line)*" />
 <xsl:param name="state" as="xs:string" />
 <xsl:param name="event" as="xs:string" />

 <xsl:variable name="stateColumn" as="xs:integer"
select="f:getHeaderIndex($lines, $state)" />
 <xsl:sequence select="$lines[Cell[1] eq 'action'][Cell[2] eq
$event]/Cell[$stateColumn]" />
 </xsl:function>

Authoring DSLs in Spreadsheets Using XML Technologies

84

6.2. Configuring Instances of an Enterprise Application in a Spreadsheet
DSL

6.2.1. Overall Objectives of the Configuration DSL

• Give a bird's eye, editable and comparative view of the data points that deter-
mine the configurations.

• Include, in the same workbook, templates which describe common configura-
tion artifacts (e.g. properties files).

• Make it simple to extend to other artifacts (XML, JSON, YAML amongst oth-
ers).

6.2.2. Requirements for Configuration

When a service-oriented enterprise application is developed, there is usually a
requirement to install the application in a number of different instances for devel-
oper and QA testing, for pre-production, for performance testing and for produc-
tion installations. These installations will have somewhat different configurations.
Configurations can become quite thorny, especially with the proliferation of

micro-service applications. Configuration Management has become an enterprise
in and of itself. [10]

In the DSL for Configuration Management, I had a number of objectives:
• Have a central inventory of all instances, test and production
• Keep all the changeable values within a single Workbook, or, even better, on a

single Worksheet
• Facilitate the comparison of the parameters in the different instances
• Have a separate Worksheet for each properties file that we generate with a

template containing the properties that are generated
• Facilitate the generation of other types of types of formats that could be

required (ex: JSON, YAML and XML).
A Java properties file has the following general look. Properties are a map from a
string key to a string value. For properties, the model will need to determine
what property keys to include for a given instance and what value to assign to
that key.

system.location=AUSTIN
jms.QUEUE_MGR=DGBLHFCMP1
jms.HOST_NAME=gbltstfiag.yoyodyne
jms.PORT=23400
. . .

Authoring DSLs in Spreadsheets Using XML Technologies

85

The wrapper properties file has a similar look but some additional requirements.
All property keys are prefixed with wrapper. and the properties that are num-
bered require unique, consecutive numbering, hence the property generator need
to manage this numbering.

wrapper.java.additional.1=-Drmi.hostname=localhost
wrapper.java.additional.2=-Xms1024m
wrapper.java.additional.3=-Xmx1024m
wrapper.app.parameter.1=classpath:yoyodyne_service.xml
. . .

6.2.3. A Model Specifying The Configuration of Instances of a System

The Workbook model for this DSL involves a main worksheet (i.e. Instance work-
sheet) which contains all of the structuring parameters of a system. This is presen-
ted as a series of tables (separated by blank lines) with the name of each table
being at the upper-left corner of the table. The Instance table is required and con-
tains the list of instances. Only these instances can be generated by this mecha-
nism. The tables in this example (e.g. QueueBroker, QueueSet, etc) that follow
the Instance table are Linked tables to which an instances refer. The name of a
Linked table corresponds to the name of a column in the Instance table. The
graphical connectors in the Spreadsheet are added to illustrate the linkages
between the Instances table and the Linked tables.

There are multiple reasons for the Linked tables:

• They allow for regrouping information that belong together. (In the example,
the four different parameters that correspond to the QueueBroker are in the
same table).

• They give a symbolic name for a bit of data. (In the example, we associated the
QueueSuffix .003 with the UAT BackEnd. This documents the reason for the
value .003).

• Allows the same data in the Linked tabled to be referenced multiple times
from the Instance data (i.e. DRY4).

• Allows for one-to-many relationships from the Instance to the Linked data.
(In the example, there are three Accounts for PDN.)

4https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Authoring DSLs in Spreadsheets Using XML Technologies

86

The second and third worksheets correspond to two different properties files
that need to be generated for an instance's installation. These worksheets are
tables of types of lines to be produced in the resultant property files and the rules
for generating them. The Condition column is a boolean xpath expression which
determines whether or not this line should be produced in the results (where
blank implies true).

The TextValueTemplate entries were manually formatted to help distinguish
between constant values (in a shade of blue in the image) and the values calcula-
ted from the first page (in a shade of green in the image). The PropertyName cells
have background colors that correspond to the separate regions of the first work-
sheet in order to facilitate their relation visually. The shade of yellow background
color corresponds to information from the Instance columns as opposed to the
Linked columns.

Authoring DSLs in Spreadsheets Using XML Technologies

87

The functions available for xpath expressions in the properties worksheets can
come from the DSL library or can be user-supplied:

 f:instanceValue(...)
 f:linkedValue(...)
 f:linkedValues(...)

6.2.4. Generating the Configuration Artifacts

In addition to the workbook containing the Instance and Properties worksheets, the
configuration author will provide an XSLT which acts as the main entry point
into the generation process. This stylesheet receives standard arguments for the
generation process: the URL of the workbook, the name of the Instance worksheet,
the URL of the root output directory for writing the generated files and the name
of the Instance to be generated.

For the above example generating two properties files, the following XSLT
stylesheet is sufficient. This stylesheet includes the common functions from an
external XSLT file DryGen.xslt. It calls two supplied functions, one for generat-
ing standard Properties and another for writing Wrapper Properties, this latter
property file requiring special treatment by adding number suffixes to the prop-
erty keys in order to render them unique.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="3.0">

 <xsl:include href="DryGen.xslt" />

Authoring DSLs in Spreadsheets Using XML Technologies

88

 <xsl:param name="workbookURL" as="xs:string" required="yes" />
 <xsl:param name="worksheetName" as="xs:string" required="yes" />
 <xsl:param name="instanceName" as="xs:string" required="yes" />
 <xsl:param name="destinationURL" as="xs:string" required="yes" />

 <xsl:template name="dslconfig" >
 <xsl:sequence select="f:writeProperties($workbookURL,
$worksheetName,
 $instanceName,
'Application',
 $destinationURL,
'yoyodyne.properties')" />

 <xsl:sequence select="f:writeWrapper ($workbookURL,
$worksheetName,
 $instanceName, 'Wrapper',
 $destinationURL,
'yoyodyne.conf',
 $numberProperties)" />
 </xsl:template>

 <xsl:variable name="numberedProperties"
as="element(numberedProperty)*" >
 <numberedProperty name="java.classpath" />
 <numberedProperty name="java.additional" />
 <numberedProperty name="app.parameter" />
 </xsl:variable>

</xsl:stylesheet>

The implementation of DryGen.xslt itself is not provided here but can be descri-
bed generally as a library which can read the different worksheets from the work-
book and also implements the common functions used for generating properties
and extracting instance and linked values. DryGen.xslt needs to extract xpath
expressions from the worksheet and then evaluate the results of those expres-
sions. There are a few different ways of going about this in the implementation:

• Use the xsl:evaluate element5 in XSLT3 (or the saxon:evaluate() func-
tion)6

• Generate an XSLT stylesheet containing the extracted xpath expressions and
execute that stylesheet to obtain the results.

5https://www.w3.org/TR/xslt-30/#dynamic-xpath
6https://www.saxonica.com/html/documentation/extensions/functions/saxon-extension-functions.html

Authoring DSLs in Spreadsheets Using XML Technologies

89

Not all versions of the XSLT implementations provide for dynamic xpath evalua-
tion, sometimes for licensing reasons, hence the second option may be required in
an implementation.

6.2.5. Generating non-Properties Configuration Artifacts

Because the main entry point to the generation process is the XSLT, it's easy to
add extra functionality within that stylesheet in order to generate additional con-
figuration artifacts, espection XML, JSON and YAML artifacts that are so in vogue
these days.

6.2.6. Added Benefits of the Configuration DSL

Because the model requires only two files (i.e. the Worksheet and the Entry Point
XSLT file) it's easier to deploy than N configuration files. Moreover, the configura-
tion generation can be implemented Just-In-Time, often as part of automated
deployment scripts.

Because this mechanism generates the configuration, we can add standardized
unit tests that confirm the generated content..

6.3. Extracting Tabular Data from XML Documents

6.3.1. High-level Objectives

• Simplify the representation and authoring of business rules that determine
how tabular data is to be extracted from structured data (XML) of diverse
vocabularies and content models

• Facilitate the authoring by subject matter experts
• Simplify the mechanism for determining which business rules apply to which

incoming document.
• Simplify the mechanism for determining the number of result lines to produce

for an incoming document.

6.3.2. The Requirements for Extracting Tabular Data from XML

One problem that I ran across was a situation where a large number of diverse,
detailed XML content models representing different financial instrument types
and originating systems needed to be processed in quasi-realtime and have a
fixed set of columns but a variable number of rows of tabular data extracted from
each document. The number of rows extracted could be different for each docu-
ment as a function of the type and nature of the instrument. Each line would have
the same number of columns of data, each column representing a particular bit of
information such as: coupon-rate, maturity-date, currency, amounts, etc.

Authoring DSLs in Spreadsheets Using XML Technologies

90

The requirements of the DSL in this case were:
• Given that the Business Analysts would know the XML vocabularies for the

received content
• Have a method of managing the extraction rules where Business Analysts

could keep them updated and, moreover, test them for correctness
• The business rules would need to be able to determine, upon document recep-

tion, which rules to use for that particular document (ex: instrument type,
vocabulary) and how many result lines would be produced.

6.3.3. The Model for Describing the Extraction of the XML Data

The basic mechanism for this model is the following:
• From the workbook an XSLT stylesheet is generated that contains a an ordered

list of named templates.
• To extract data from a document, the document will be presented to the first

named template in ordered list. If that template produces no output CSV
lines, then the document will be presented to the next template in the list, and
so on until there is a template that produces at least one line of output data.

• The line or lines of output data produced by the first template that did not
produce 0 lines is the output data.

The order of the templates determined by the order of the worksheets in the work-
book (left to right order) and by the document types declared within each worksheet
in the header declaration. An example showing one worksheet with two document
types (i.e. FixmlBond and FpmlBond, from the header line) is presented below.

Figure 2. Csv Extraction Model Spreadsheet

Authoring DSLs in Spreadsheets Using XML Technologies

91

Running the example worksheet will generate two named templates with the names
that are a composition of the worksheet name and the document type name from the
header declaration. The generated templates follow:

<xsl:template xmlns:fpml="http://www.fpml.org/FpML-5/recordkeeping"
 xmlns:fixml="http://www.fixprotocol.org/FIXML-4-4"
 xpath-default-namespace="http://www.fixprotocol.org/
FIXML-4-4"
 name="f:BOND-FixmlBond" as="xs:string*">
 <xsl:for-each select="/Bond/TrdCaptRpt">
 <xsl:variable name="trade" as="element(fixml:TrdCaptRpt)"
select="current()" />
 <xsl:variable name="book" as="xs:string" select="$trade/TrdLeg/
@BookId" />
 <xsl:variable name="resultCells" as="item()*">
 <xsl:sequence select="f:empty-if-absent($trade/ccy)" />
 <xsl:sequence select="f:empty-if-absent($trade/@lastQty)" />
 <xsl:sequence select="f:empty-if-absent('SystemC')" />
 <xsl:sequence select="f:empty-if-absent($trade/
@primaryTrader)" />
 <xsl:sequence select="f:empty-if-absent($trade/instr/
@maturity)" />
 <xsl:sequence select="f:empty-if-absent($book)" />
 </xsl:variable>
 <xsl:value-of separator="{$separator}" select="for $i in
$resultCells
 return f:encode-
csv($i, $separator)" />
 </xsl:for-each>
</xsl:template>

<xsl:template xmlns:fpml="http://www.fpml.org/FpML-5/recordkeeping"
 xmlns:fixml="http://www.fixprotocol.org/FIXML-4-4"
 xpath-default-namespace="http://www.fpml.org/FpML-5/
recordkeeping"
 name="f:BOND-FpmlBond" as="xs:string*">
 <xsl:for-each select="/trade[details/bond]">
 <xsl:for-each select=".[@system = ('SystemA', 'SystemB')]" >
 <xsl:variable name="trade" as="element(fpml:trade)"
select="current()" />
 <xsl:variable name="ourParty" as="xs:string" select="$trade/
header/onBehalfOf/@id" />
 <xsl:variable name="book" as="xs:string" select="$trade/acct/
book[@id eq $ourParty]/@ref" />
 <xsl:variable name="resultCells" as="item()*">

Authoring DSLs in Spreadsheets Using XML Technologies

92

 <xsl:sequence select="f:empty-if-absent($trade/leg[1]/
@Ccy)" />
 <xsl:sequence select="f:empty-if-absent($trade/@notional
* 100)" />
 <xsl:sequence select="f:empty-if-absent(/*/@system)" />
 <xsl:choose>
 <xsl:when test="/*/@system eq 'SystemA'" >
 <xsl:sequence select="f:empty-if-absent($trade/
@userid)" />
 </xsl:when>
 <xsl:when test="/*/@system eq 'SystemB'" >
 <xsl:sequence select="f:empty-if-absent(/*/
details/trader)" />
 </xsl:when>
 </xsl:choose>
 <xsl:sequence select="f:empty-if-absent($trade/
payment[last()]/@date)" />
 <xsl:sequence select="f:empty-if-absent($book)" />
 </xsl:variable>
 <xsl:value-of separator="{$separator}" select="for $i in
$resultCells
 return
f:encode-csv($i, $separator)" />
 </xsl:for-each>
 </xsl:for-each>
</xsl:template>

The association between the generated templates and the example worksheet is
illustrated in the following image:

Authoring DSLs in Spreadsheets Using XML Technologies

93

Figure 3. Association between the generated templates and the example
worksheet

Within each worksheet with a name starting with CSV- there are a series of line
declarations of different types, with the type given by the value in Cell[1] of
each line:

• header — gives the names of the document types, used to form the names of
the generated templates, from Cell[4] and greater (skipping columns for
which the Cell value is empty or starts with a '#FWD-' value).

• default-prefix — gives the prefix associated with the namespace URI that
will be set as the xpath-default-namespace

• for-each — each Cell[] in the same column as one of the document types
from the header line, if it is not empty, is the value that will be used in a
select attribute of a xsl:for-each element

• variable — declares an xsl:variable with an optional type declaration
(Cell[2]) and with a name (Cell[3])

Authoring DSLs in Spreadsheets Using XML Technologies

94

• column — declares the column number (Cell[2]), the column name
(Cell[3]) and the xpath expression (Cell[position() ge 4]) that is evalu-
ated to to provide the string result for that column

• #FWD(..) — if the column rule appears to be a call to the function #FWD(...)
then this really a Forward operation that chooses one of the rules in the fol-
lowing columns that are titled #FWD-XXX on the header line. The substring
following the #FWD header column must match the string value of the xpath
expression in the #FWD(...) pseudo-function call.

6.3.4. Testing and Analyzing the Data Extraction

The steps involved in authoring the DSL in a workbook and checking the output
is illustrated in the following diagram. Here the Business Analyst will update the
workbook and save it. To check the results, the Business Analyst can launch a
batch process that runs two successive XSLT processes:
• A first XSLT process that reads the workbook and generates the result XSLT.

This result XSLT is the artifact that will ultimately be used in production if it
passes all tests.

• A second XSLT process that reads a stylesheet that is a test harness whose util-
ity is to indicate the list of test documents to be transformed into the test out-
put. The test harness will xsl:include or xsl:import the Generated XSLT from the
first step.

Authoring DSLs in Spreadsheets Using XML Technologies

95

Figure 4. Illustration of the CSV Extraction Authoring and Testing Process

What is important about this process is that the Business Analyst has all the nec-
essary tools for generating and verifying the output directly, without requiring
additional technical help. This makes a Business Analyst a first-class contributor
to the development process.

Note that in the first step, the XSLT process is generating an XSLT stylesheet
as output. The generated XSLT is a separable deliverable that can be tested sepa-
rately.

6.3.5. Business Expert Usage of the CSV Extraction DSL

This Spreadsheet DSL has seen good usage by a handful of business analysts and
subject matter experts on practically a daily basis over the past 6 years as of this
writing. One very nice result of this organization is that the rules for all the differ-
ent types of instruments that we receive are presented in a Rosetta Stone fashion.
In one workbook, our biggest, we have 85 columns of extracted data with 15
worksheets and 23 different generated templates. There are a number of other
workbooks for other uses. Business Analysts can typically pick up the structure of
the spreadsheet fairly quickly. The XPATH rules seem to be fairly intuitive for

Authoring DSLs in Spreadsheets Using XML Technologies

96

Business Analysts with some analysts being aware of thornier XML issues such as
document ordering.

Not only is this tool useful for data extraction but also for interactive data dis-
covery. It's very easy to add new columns with new rules for doing things like
adding sums of values, checking hypotheses, hence the tool becomes an interac-
tive workbench.

Overall, the worksheet DSL imparts a structure to the extraction process that a
generalized language such as XSLT would probably not have given.

6.4. Schema to Schema Translations

6.4.1. Overall Objectives

• Define the process of transforming from one XML vocabulary (XML schema)
to another for a same domain.

• Provide a support for authoring and validation by subject matter experts.

6.4.2. Requirements

I was working on a system for which different types of credit facilities (i.e. loans)
were modeled by a Front Office system and also by a Risk system. Both systems
used XML Schema for describing their models, which were quite complex, man-
aging a large number of different notions such as:
• Types of loans (fixed-rate, indexed, revolving credit, etc)
• Types of counterparties
• Types of collateral (buildings, airplanes, commodities, etc)
• Types of guarantees (cash, securities, insurance, export/import banks, etc)
Not only were there two different content models, but each model had a different
set of Subject Matter Experts, hence getting the SMEs to agree was the major
requirement. What we needed was a way of describing the transformation from
the source system to the target system in business terms that could be under-
stood, authored and validated by the SMEs themselves. The result was the DSL in
a Workbook describing the transformation which then generated an XSLT.

In the biggest blocks, we were producing templates in schema-aware XSLT 2.0
that produced an element of a specific type. All parameters were strongly typed
and all templates had required types hence the content model was closely moni-
tored by the Schema Aware processor. This gave immediate feedback to the Busi-
ness Analyst whenever there was either an xpath expression that did not conform
to the input model or an xslt element that did not conform to the result model.
An example:

Authoring DSLs in Spreadsheets Using XML Technologies

97

 <!-- ================================= -->
 <!-- ContreGarantie_Concours: (99) -->
 <!-- ================================= -->
 <xsl:template match="element(*,bankml:DL_Reference)" as="element(*,
fsc2:GarantieType)"
 mode="ContreGarantie_Concours" >
 <xsl:param name="elementName" as="xs:string" required="yes" />
 <xsl:param name="facility" as="element(*,bankml:DL_Facility)*"
tunnel="yes" />
 <xsl:param name="loanInfo" as="element(*,bankml:DL_LoanInfo)*"
tunnel="yes" />
 <xsl:element name="{$elementName}" type="fsc2:GarantieType" >
 <xsl:variable name="contreGarantieExterne" select="'13013'"
as="xs:string*" />
 <xsl:variable name="contreGarantieConsolide"
select="'13018'" as="xs:string*" />
 <xsl:variable name="isBranchOffice" as="xs:boolean"
 select="((brkfct:getParty(current()))/
tradePartyType eq 'BranchOffice')" />

The example shows that strong typing against the schema definition is used.

The result is quite detailed and looks a lot like a template in an XSLT. On the left
hand side we have the attributes, elements and variables that we are producing
from the information that is presented on the right-hand side. A SubMapping is
really a call to xsl:apply-templates. A "Rule" is a call to a xsl:function. To
give more information about the definitions:
• #$XXX — produce a variable that will be then be passed as a tunnel variable to

all subsequent xsl:apply-templates from that template
• $XXX — produce a strongly-typed variable
• @XXX — produce an attribute
• SubMapping — xsl:apply-templates on a particular select value, passing

all variables decl

Authoring DSLs in Spreadsheets Using XML Technologies

98

• Rule — simply a call to a named function.
There is a separate page in the spreadsheet for declaring XPATH functions.

Also what was important was the translations from the code lists used in the
source documents to the target schema.

6.4.3. Benefits of Generating the XSLT from the Schema-to-Schema DSL

The major benefit in this case was the possibility of have a fairly readable version
of an XSLT within a Spreadsheet such that Subject Matter Experts could verify
and validate the rules. One additional column in each line of the DSL was
reserved for setting "Validated" on a rule-by-rule basis. This allowed the SMEs to
follow the progress of Validation in a finely-grained fashion.

A major benefit was from the use of Schema Aware processing and strongly-
typed template declarations. On the one hand, this tied the XSLT production
directly to the two vocabularies. Furthermore, the SME authors benefitted
directly and immediately from the Schema Aware checking of the XSLT Pro-
cessor.

7. Conclusions
DSLs can be useful for application development and it's fairly straightforward to
develop them in spreadsheets with XML Technology. I've presented some exam-
ples of usages of DSLs that I've developed, including two that involved close
association and engagement of Business Experts. The result was the streamlining
of development and a better participation of SMEs in the development chain.

Whether or not a DSL is appropriate or useful for a given problem remains a
Domain-Specific determination. Furthermore, whereas the spreadsheet format may
not be the optimal format for a given DSL, I've presented a few for which spread-
sheet format was probably ideal. I suspect that the utility of spreadhsheet formats
is not rare.

Authoring DSLs in Spreadsheets Using XML Technologies

99

I have run into cases where SMEs were reluctant to get involved in a process
that appeared to them to be more one of technical development; however, this has
been, for me, the exception rather than the rule. For the most part, I've seen SMEs
enthusiastic about the possibility of symbolic manipulation and direct feedback.

8. Caveats
Spreadsheet documents require some special treatment within Version Control
Systems, including git. Typically, it's not straightforward to merge a spreadsheet
document with divergent changes, hence manual merging will be required. Fur-
thermore, visualizing the historical changes performed upon a spreadsheet docu-
ment will not be within the capabilities of a text-based differences visualizer.

Bibliography
[1] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An

Annotated Bibliography. 2000. CWI, The Netherlands. http://
www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf.

[2] S. I. Feldman. Make --- A Program for Maintaining Computer Programs. 1979. Bell
Laboratories.

[3] S.C. Johnson and R. Sethi. YACC: A parser generator. 1990. Unix Research
System Programmer’s Manual, Tenth Edition, Volume 2.

[4] B.W. Kernighan. A Typesetter-Independent TROFF. 1982. Bell Labs.
[5] Tim Berners-Lee. Hypertext Markup Language - 2.0. November 1995. MIT/W3C.
https://tools.ietf.org/html/rfc1866.

[6] Juha-Pekka Tolvanen and Steven Kelly. Effort Used to Create Domain-Specific
Modeling Languages. ACM/IEEE. ACM/IEEE 21th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’18). October
2018. MetaCase. http://www.metacase.com/papers/effort-create-domain-
cameraReady.pdf.

[7] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop DomainSpecific Languages. ACM/IEEE. ACM Computing Surveys, 37, 4.
2015. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.654&rep=rep1&type=pdf.

[8] Martin Fowler. Domain-Specific Languages. Pearson Education. Addison-Wesley
Signaure Series. 2010.

[9] Dr. Michael Kay. XSLT 2.0 and XPath 2.0, 4th Edition. Wrox. 2008.
[10] Susan Dart. Carnegie-Mellon University. Concepts in configuration management

systems.. ACM. ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/

Authoring DSLs in Spreadsheets Using XML Technologies

100

http://www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf
http://www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf
https://tools.ietf.org/html/rfc1866
http://www.metacase.com/papers/effort-create-domain-cameraReady.pdf
http://www.metacase.com/papers/effort-create-domain-cameraReady.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.654&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.654&rep=rep1&type=pdf
ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/cm_concepts.pdf

cm_concepts.pdf. Proceedings of the 3rd international workshop on Software
configuration management. 1991.

[11] John Ellson, Emden Gansner, Eleftherios Koutsofios, Stephen North, and
Gordon Woodhull. AT&T Labs. Graphviz and Dynagraph – Static and Dynamic
Graph Drawing Tools. Springer-Verlag. https://graphviz.gitlab.io/_pages/
Documentation/EGKNW03.pdf. 2004.

Authoring DSLs in Spreadsheets Using XML Technologies

101

ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/cm_concepts.pdf
https://graphviz.gitlab.io/_pages/Documentation/EGKNW03.pdf
https://graphviz.gitlab.io/_pages/Documentation/EGKNW03.pdf

102

How to configure an editor
An overview of how we built Fonto

Martin Middel
FontoXML

<martin.middel@fontoxml.com>

Abstract

In 2012 a web agency took on the challenge of building an XML editor. This
paper gives an overview of a number of concepts that proved to be useful,
and some concepts that did not.

1. Introduction
FontoXML is an editor for XML document or structured content in more general
terms. It's primary intended to be used by Subject Matter Expert who do not nec-
essarily have any knowledge of XML. FontoXML editor is much a platform then a
shrink-wrapped piece of software. It can be tailored to support any kind of XML
document format, including DITA 1.3, JATS , TEI, Office Open XML and other
proprietary format. The platform itself is highly confirurable so it can be tailored
to specific use cases.

All of these different editors have three different parts of configuration:
• the schema defines which elements may occur where;
• elements are assigned to ‘families’ causing them to receive a visualization and

basic cursor behaviour;
• and operations, which define the effect of the toolbar buttons and hotkeys.
Especially the operation part is where FontoXML has seen some major API rede-
signs. This paper will discuss a number of key decisions we’ve made and where
the XML manipulation layer of FontoXML will move to. We hope that this paper
will give an insight in how a small team of JavaScript developers with medium
knowledge of XML technologies made the platform on which a large number of
XML editors have been and are being built.

2. Iteration 0
FontoXML started in late 2012 when a publisher of commentary on legislative
content moved to use an XML schema to encode their content in. Their authors
were happily working in MS Word and threatened the company with leaving for
their competitor if the new tooling would hinder them in any way. The publish-

103

ing company required a solution where the user experience is the number one
priority and where anything technical would just be taken care of. At that
moment, there were no existing XML editors which met their requirements. This
is the birth of the precursor of FontoXML, which started life as a specific, bespoke
solution.

Writing a user interface containing a toolbar, designing a way to render XML
as an HTML view, updating the view as efficiently as possible and many other
parts of this version of FontoXML were fun and challenging to do, but this paper
will focus on the XML manipulation side of the editor: what happens when I
press a button?

2.1. The beginning: canInsert
The first iteration of the XML manipulation was as simple as it gets. There were
commands which could be queried for their state: whether they were enabled or
disabled or whether they were ‘active’. Getting state was implemented separately
from actually executing the command. Schema validation was hard-coded and
exposed functions that could check whether adding an element could exist at a
given location. The command then had to implement an execute method to per-
form the intended mutation if it is allowed. At this point, every command had to
query the system by itself. There were no atomic transactions: when a command
inevitably had to try multiple things, the command had to undo all of them when
it found out that it could not run to completion.

2.2. Schemata as regular expressions
One of the major hurdles of writing an XML editor in JavaScript is the absence of
most XML tools for the browser environment. When we started to work on the
editor in 2012, there was no usable XPath engine, no usable DOM implementation
(besides the browser implementations, which all had a number of inconsistencies,
browser-specific issues and performance issues). An XML-schema implementa-
tion was also not available. However, XML Schema is a regular tree grammar???,
meaning the content models of an element are regular languages. We used actual
JavaScript regular expressions as a basic schema validator:

// The note element may contain p, ol or ul elements, repeated
indefinitely
const noteSchema = /((<p>)|()|())*/;
// To allow us to work with regular expressions,
// we need to ‘stringify’ the contents of an element.
function createElementContentString (element) {
 return element.children.map(child => '<' + child.nodeName +
'>').join('');
}

How to configure an editor

104

const noteElement = document.createElement('note');
noteElement.appendChild(document.createElement('p'));
const isValid = noteSchema.test(createElementContentString(nodeElement));
// isValid is true

noteElement.appendChild(document.createElement('note'));
const isValid = noteSchema.test(createElementContentString(nodeElement));
// isValid is false, a note may not contain a note

This string-based validation allows us to compose a ‘canInsert’ function quite ele-
gantly:

function canInsert (element, offset, nodeName, schemaRegex) {
 const elementContents = element.children
 .map(child => '<' + child.nodeName + '>');
 // Use the Array#splice method to add a new element at the given offset
 elementContents.splice(offset, 0, '<' + nodeName + '>');
 return schemaRegex.test(elementContents.join(''));
}

We used the browser’s built-in RegEx engine to evaluate these expressions.
Even though this approach is a very pragmatic and easy way to implement a

schema validator, it is not the best way. The regular expressions were hand-writ-
ten and hard to maintain. Besides the maintainability issue, string regular expres-
sions are not very extensible. ‘Repairing’ a split element by generating missing
elements turned out to be one of the most code-intensive parts of the editor and
the regular-expression approach to validation could not give us any information
that we could use as input for this problem.

Perhaps surprisingly, performance was not a bottleneck when we used regexes
for schema validation. One would expect the string allocations would cause per-
formance problems when validating elements with a large number of children.
We did not run into these issues because the documents we loaded were rela-
tively small. Nodes with relatively many children still only had dozens of child
elements, not hundreds.

3. Iteration 1

3.1. Validation

As the first iteration of the XML schema validator, we opted to still use a regular
language-based implementation, but to implement our own engine for running
them[7]. By compiling the schema to a non-deterministic finite automaton (NFA),
we can check whether our element is valid[2].

How to configure an editor

105

p

ol

ul

Figure 1. Example validation state machine

term

definition

Figure 2. Example of a state machine for a repetition schema

3.2. Synthesis

The schema for which we initially developed the editor was relatively simple and
was specialized for different departments of our client. A figure could contain a
title followed by an image and a list had to contain list items. During the develop-
ment of the editor, the schema grew into different sub-schemas. Some of them
forced or disallowed titles in figures, while some added new elements which bet-
ter expressed their specific content. This required us to make the commands we
had better interpret the schema, to see which choices could be made where.

We needed to not only know whether an element is valid or not, but we also
needed to know WHY it is deemed invalid and whether we can ‘fix’ it by creating
required elements at the correct positions. A major advantage of the new NFA-
based schema validator is extensibility. By tracking the path(s) taken though the
NFA that lead to its acceptance of a given input sequence, we can see which deci-
sions led to the acceptance or rejection. This can, in turn, tell us which elements
are missing under a node.

This process essentially adds an additional state transition type: record, which
does not 'eat' an input but leaves data on the trace:

How to configure an editor

106

title

record the absence of a title

paragraph

Figure 3. Diagram of the state machine describing the content model (title
paragraph*)

When we validate an element containing a single <paragraph> with the content
model (title paragraph*), it will not be valid. If we however use synthesis, the
record branch will be taken. This will leave us with the information that we are
missing a <title> element, and the exact position at which to insert it in order to
make the document valid again.

We call this process synthesis and even though randomly creating elements
may result in an unexpected situation, this happens relatively rarely in practice,
so we still depend on it.

3.3. Flow behaviour

The second hurdle when writing more abstract XML mutations is defining an
abstract flow behaviour. Authors expect that having a cursor inside an image
should be prevented and that pressing the right arrow with the cursor before a
footnote shoulder should not cause the cursor to appear inside the footnote.
However, the way images and footnotes are represented as XML varies from
schema to schema.

We call the set of properties of elements that define such global navigation
and editing behaviour flow properties. Among other things, these directly deter-
mine the effect of pressing enter or backspace, as well as the cursor behaviour in
and around these elements. The most important flow properties of an element
are:
• Splittability: Whether the element should be cut in two then we press enter in

it, or when we insert a new element in it which can not be contained. A para-

How to configure an editor

107

graph is usually splittable, while a link or a semantic element like a TEI
<persName/> is not. This property also defines whether we can merge an ele-
ment with similar ones, to keep the merging and splitting behaviour consis-
tent.

• Closed: Whether we can move in and out of this element using the cursor
keys. Footnotes are closed and do not influence the cursor behaviour around
them.

• Detached: Similar to closed, but with additional concern that it is fully
detached from its parent and should act like it isn’t there. Elements containing
metadata are detached.

• Removable if empty: Whether the element should be deleted if it is empty
and backspace is pressed in front of it. <note> elements in DITA can be remov-
able-if-empty: if one presses backspace when the cursor is in an empty note, it
should be removed.

• Auto-mergeable / auto-removable if empty: Empty HTML elements are
useless, and two adjacent elements are equivalent to a single element
spanning their combined content. FontoXML normalizes them when it finds
them being empty or adjacent.

• Default text container: If any, what element should be created when one
starts to type in it? For example, typing inside an empty <note> may need to
first create a <paragraph> to contain the new text

3.4. Blueprints

Asking for validity or trying to come up with the definitive structure before
changing anything in the dom did not allow for very manageable code, so we
came up with a new component: blueprints.

A blueprint is basically an overlay over the DOM, it intercepts all accesses to
the DOM (like retrieving the parent of a node, or which attributes it has). It also
intercepts the mutations to the underlying DOM, so that they don’t affect the
underlying “real” DOM, but the updated relations in the blueprint can still be
queried.

const blueprint = new Blueprint();
const newElement = document.createElement('newElement');
blueprint.appendChild(document.documentElement, newElement);
const newParent = blueprint.getParentNode(newElement);
// newParent is now set the documentElement node.

blueprint.setAttribute(newElement, 'attr', 'value');
const attrValue = blueprint.getAttribute(newElement, 'attr');
// attrValue is now set to the string 'value'

How to configure an editor

108

const isValid = validator.isValidNode(blueprint, newParent);
// The validator is passed the blueprint so it can see
// whether the new structure is valid

if (isValid) {
 // We know it's valid, so we can safely apply these changes to the DOM
 blueprint.realize();
}

This approach allows us to make atomic changes to the DOM; we can revert
everything by just not applying the new relations. The programming model for
these commands is more maintainable and easier. Instead of trying to predict
what a command will result in, the command can just apply changes and query
them.

Because these changes are atomic, we can implement a very simple ‘getState’
function for all of these commands. Instead of seeing whether a command can
work, we can just run the normal command, validate the outcome and simply not
apply its changes to the actual DOM.

Bueprints let us make a proposed change to the dom. We extend this concept
to ‘overlays’, which are essentially blueprints over blueprints. By using these
overlays, we can compose different ‘atomic’ changes to essentially ‘puzzle’ our
way through a mutation; making edits as we go along, but being able to revert
them as we go along.

3.5. Schema-independent primitives: vertical insert nodes
Blueprints and overlays let us make changes to the document and revert them.
This caused the birth of schema-independent primitives like ‘insertNode’, which
attempts to insert a node by splitting the ancestry:

Vertical insert nodes:

Let $position be the position at which we will insert,
 consisting of a container node and an offset
Let $node be the new node we'd like to insert

A:
Start an overlay on the blueprint to contain all the changes in this
mutation.

B:
If $position resides in a text node:
Split the text node at the given offset
Set $position to after the first half of the result

How to configure an editor

109

C:
Start an overlay on the blueprint
Insert the $node at the given position
Validate the parent of $node, using the new relations present in the
blueprint

If the result is valid:
 Apply all pending overlays on the blueprint
 Return true to indicate success

D:
If the result is invalid:
 Discard the overlay on the blueprint to revert the insertion of $node
 If the container of the $position is the document element:
 Discard the blueprint overlay and return false to indicate failure.
 Otherwise:
 Split the container of the $position at the given offset
 Insert the new second half of the container to after the first half.
 Set the $position to after the first half and before the second half
 of the old container.
 Continue at section C.

3.6. Operations

At this point in time, these mutations were composed using JavaScript. This
works well for most mutations, but soon we found ourselves re-inventing the
same commands over and over and that flowing data from things like modals to
command were cumbersome to implement. We currently still use a component
that we invented during that timeframe: operations.

Operations are pipelines that allow composing XML manipulating “com-
mands”, data-modifying “transforms”, modals and other operations. Arguments
for the command, which is usually the last step, flow through the pipeline and
are modified and appended to by each of the steps.

As with commands, operations support a “getState” mode, which performs a
dry-run in order to determine the validity of an operation without affecting the
current state of the application.

3.6.1. JSONML

These operations are written in JSON files, which pose another challenge. XML
does not let itself be inlined all too well in a format like JSON. Line breaks in
JSON strings are disallowed and it’s easy to forget to escape a double quote some-
where. We often use JSONML[4]when an XML fragment should be made serializ-
able or could be included in JSON at some point, like the operations pipeline.

How to configure an editor

110

JSONML also blends in nicely with our existing data interpolation functionality
in operation.json files:

{
 "insert-a-note": {
 "label": "Insert note",
 "summary": "insert a note, with the type attribute set from a modal",
 "steps": [
The ask-for-type modal will write to the 'type' of the
 data object we pass along in the pipeline.
 { "type": "modal/ask-for-type" },
 {
 "type": "command/insert-node",
 "data": {
 "childNodeStructure": [
 "note",
 {
The following line lets us set the 'type' attribute to
 the value of the modal
 "type": "{{type}}"
 }
]
 }
 }
]
 }
}

The main limitation of the operation pipeline lies in predictability; an operation
does not explicitly define which keys of the ‘data’ object it reads from, nor does it
define to which keys it will write. We attempted to resolve this using documenta-
tion, but in practice, this does not adequately address the problem.

4. Iteration 2

4.1. Families, Content Visualization Kit

Editors using the FontoXML platform were growing to cover more and more dif-
ferent schemata, but all elements were configured all of the different ‘flow’ prop-
erties separately. Different FontoXML implementations ‘felt’ differently and were
getting inconsistent in their behaviour of similar elements. However, most ele-
ments represented the same ‘concept’ within a document. Some act like blocks of
text, some act like unsplittable, semantic inlines. We call these roles ‘families’,
which each define a set of flow properties and a visualization, intended to make
its properties predictable for an author.

How to configure an editor

111

These families are made up of three different groups:

• Containers,which contain blocks

• Blocks, which contain lines

• Inlines, which can contain other inlines and text

These different groups consist of different families, which may have their own
sub-families:

• Frame: An unsplittable entity, which contains blocks. They are ignored for
navigation next to the default text container so that the arrow-keys directly
jump between the blocks it contains. Frames are visualized with a border to
indicate they can’t be split using the enter key.

• Sheetframe: A sub-family of frames are sheet-frames, which represent whole
documents or units of work. They are the root element in FontoXML, the
white ‘sheets’ in which one types.

• Block: A ‘block’ of text, like an HTML <p/> element. They are splittable, not
detached, removable if they’re empty, but not automatically removable, nor
automatically mergeable. They are not ignored for navigation, but their paren-
ts' elements often are.

• Inline formatting: Like the HTML , <i/>, <sup/> elements. They may be
split, do not influence the behaviour of the enter keys but are automatically
mergeable.

• Inline frames: The inline variant of a frame. Also unsplittable, but they can
directly contain text.

4.2. Selectors

Nodes are assigned a family using a system inspired by CSS selectors, using a
JavaScript fluent API:

// Configure elements matching the
// 'self::span[@type="bold"] and parent::span' XPath selector
configureAsInlineFormatting(
 matchNodeName('span')
 .withAttribute('type', 'bold')
 .requireChild(matchNodeName('span')),
 'Parent of nested span')

If an element matched multiple configurations, we chose one based on the ‘specif-
icity[5]’ of the selector. The specificity algorithm is based on CSS selector specific-
ity.

How to configure an editor

112

4.3. Stencils

The new generic commands were powerful when combined with the operations
pipeline, but they were hard to target. Provisioning modals with data also started
to be very code-heavy. We needed a new component that could read from and
write data to the dom: stencils.

Stencils are an extension on JSONML, with regex-like ‘gaps’ that can catch
nodes. They can be used much like XPath, but they describe a structure that can
be matched much like a schema. For instance, a stencil matching a <figure> ele-
ment, catching the contents of the <title> element and the value of the @href
attribute looks like this:

[
 "figure",
 [
 "title",
 [{
 "bindTo": "titleGap",

Figure 4. Excerpt of the "CVK family chart"

How to configure an editor

113

 "multiple": true,
 "required": false
 }]
],
 ["img", { "href": { "bindTo": "hrefGap"}}]
]

This stencil would allow both reading from and setting the value of the title using
the “titleGap” gap.

Stencils fulfil another role as well: matching a DOM structure. The following
stencil matches a <metadata> element with a <title> (disregarding its contents)
and a <related-links> element, which contains an empty <link> element with
the @href attribute set to a certain value:

[
 "metadata",
 ["title", [{"multiple": true, "required": false}],
 [
 "related-links",
 {"multiple": true, "required": false},
 ["link", {"href": "a certain value"}],
 [{"multiple": true, "required": false}]
]
]

This stencil matches the same structures as the XPath expression
self::metadata[title and related-links/ link/ @href = "a certain
value"]: match all metadata elements with a title, with a link to "a certain
value". The stencil is subjectively easier to manage in some cases because it can
perform two-way data binding as well test whether a node aligns with it. Obvi-
ous downsides of these stencils are related to the complexity of them. Stencils
were later enhanced by:

• allowing nested XPath expressions;

• omitting nodeNames, to allow us to match a node regardless of its name;

• requiring the selection to either be fully contained, start before, or end after a
given node;

• setting the selection after the command was executed;

• and many more features.

This did make stencils more powerful, and the selection mechanics allowed them
to match structures which XPath expressions could not. This did not make them
easier to write, and we are working on deprecating this API in favour of more
XPath and XQuery usage.

How to configure an editor

114

4.4. Extender

‘Fuzzy commands’ became one of the most powerful features of the FontoXML
editor platform. These are primitives like InsertNodes: ‘insert a node at the current
cursor position, splitting anything that has to be split to allow for this new element to be
placed’. A new related need arose: insert a new element somewhere under a given ele-
ment, at any offset. This can be computed using a new extension upon schema vali-
dation and synthesis: extension.

The exact inner workings of the extension component is too complex to cover
in this paper and should be covered more in-depth in a future one.

5. Iteration 3 (now)

5.1. XPath

The editor API was quickly growing to using too many proprietary ‘standards’,
which were invented by our own. This makes it difficult to explain to an outsider
how to use our platform for their own editor. Far too many configurations were
reverting to using custom JavaScript callbacks to express their concerns, for
example when assigning elements to a family. This sparked the need of an XPath
engine, preferably one that could leverage a number of optimizations we imple-
mented for our current Selectors implementation. We also wanted to use the new
features that the XPath 3.1 standard defines, which was in its Candidate Recom-
mendation phase at the time. At that time, there were no usable implementations,
so we wrote an open source XPath 3.1 JavaScript engine[3].

5.2. XPath observers

A number of the editors require knowledge of which kind of elements are present
in a document, and what information is related to them. This information is used
in, for example, a Schematron panel. We provide a way to detect which dom-rela-
tions an XPath query traverses, and a way to be notified when these relations
have been altered, so we can update our user interface as few times as possible.
This process is further explained in our earlier paper[6].

5.3. XQuery & Update Facility

At this moment, we are in the process of writing an XQuery 3.1 + XQuery Update
Facility implementation, so that we can port our DOM manipulation algorithms
to those standards and expose them from an XQuery API.

We are still learning how we can express concepts that are not present in those
standards, like the selection, DOM positions, the blueprint concept, and ‘fuzzy’

How to configure an editor

115

commands. These concepts are what makes writing editor commands different
from for instance writing database update queries.

Database update queries are usually fully aware of the restrictions a schema
enforces. This contrasts with editor commands where a certain kind of ‘just make
it work’ mentality is required to correctly interpret what an author wants to do.

6. Conclusion
When one writes a platform for an XML editor in JavaScript, they should be pre-
pared to write a lot of the XML tools themselves (though this may have changed
in the last seven years). Furthermore, while it does pay off to design your own
configuration languages due to the flexibility of them and the ability to keep it
simple, using more complete standards like XPath and XQuery will work better
in the long run because those technologies will inevitably have a larger commun-
ity around them.

Bibliography
[1] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. 2005.

Taxonomy of XML schema languages using formal language theory. ACM
Trans. Internet Technol. 5, 4 (November 2005), 660-704.

[2] Implementing regular expressions: https://swtch.com/~rsc/regexp/
[3] A minimalistic XPath 3.1 implementation in pure JavaScript https://

github.com/FontoXML/fontoxpath
[4] http://www.jsonml.org
[5] https://drafts.csswg.org/selectors-4/#specificity-rules
[6] Martin Middel. Soft validation in an editor environment. 2017. http://

archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
[7] https://github.com/bwrrp/whynot.js

How to configure an editor

116

https://swtch.com/~rsc/regexp/
https://github.com/FontoXML/fontoxpath
https://github.com/FontoXML/fontoxpath
http://www.jsonml.org
https://drafts.csswg.org/selectors-4/#specificity-rules
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
https://github.com/bwrrp/whynot.js

Discover the Power of SQF
Octavian Nadolu

Oxygen XML Editor
<octavian_nadolu@oxygenxml.com>

Nico Kutscherauer
<kutscherauer@schematron-quickfix.com>

Abstract

In the last few years, the Schematron QuickFix (SQF) language has started
to be used in more and more projects from various domains (technical pub-
lishing, automotive, government, financial). The Schematron QuickFix lan-
guage was presented for the first time three years ago at the XML Prague
conference. It has now reached a point where we have a second draft specifi-
cation available on GitHub1 and within the W3C "Quick-Fix Support for
XML Community Group2.

Based on the feedback that we have received from the users, the Schema-
tron QuickFix language was updated and new improvements where added.
For example, the multilingual support available in Schematron can now
also be used for SQF messages, the quick fixes can now be generated dynam-
ically, the sqf:keep element was replaced by the sqf:copy-of element,
and the sqf:stringReplace regular expression interpretation can now be
controlled by the @flags attribute.

The SQF language is very powerful, you can use it to make multiple
changes in the current document, or to make changes in external docu-
ments. You also can use XSLT3 code in a quick fix to make complex process-
ing or you can display dialog boxes to get input from the user. You can
create generic fixes, or you can define abstract quick fixes that can be imple-
mented with different parameters depending on the context.

Schematron quick fixes can be created for any type of XML document.
There are quick fixes created for DITA, DocBook, or TEI documents, and
also quick fixes for XSLT that check the quality of the XSLT code and pro-
pose solutions to correct the problems.

In this presentation, you will discover the new additions for the SQF
language and how you can create useful and interesting quick fixes for the
Schematron rules defined in your project. It will include examples of quick

1 http://schematron-quickfix.github.io/sqf
2 https://www.w3.org/community/quickfix/
3 https://www.w3.org/TR/xslt/all/

117

http://schematron-quickfix.github.io/sqf
https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/
https://www.w3.org/TR/xslt/all/
http://schematron-quickfix.github.io/sqf
https://www.w3.org/community/quickfix/
https://www.w3.org/TR/xslt/all/

fixes for several types of projects using abstract quick fixes to enable easier
creation of specific fixes, or XSLT code for more complex fixes. You will also
discover some use cases for quick fixes that extend your Schematron scope.

1. Introduction
Schematron is a powerful language, and one of the reasons is because it allow the
schema developers to define there own custom messages. The messages can also
includes hints to help the user correct the problem, but this operation must be
performed manually. Correcting the problem manually is inefficient and can
result in additional problems.

The SQF language allows you to define actions that will automatically correct
the problem reported by Schematron assertions. This will save you time and
money, and will help to avoid the potential for generating other problems.

2. Schematron QuickFix
Schematron QuickFix (SQF) it is a simple language that allows the Schematron
developer to define actions that will correct the problems reported by Schematron
rules. SQF was created as an extension of the Schematron language. It was devel-
oped within the W3C "Quick-Fix Support for XML Community Group". The first
draft of the Schematron Quick Fix specification was published in April 2015, sec-
ond draft in March 2018, and it is now available on the W3C Quick-Fix Support
for XML community group4 page.

The actions defined in a Schematron QuickFix are called operations. There are
four types of operations defined in the SQF language that can be performed on an
XML document: add, delete, replace, and string replace. The operations must per-
form precise changes in the documents without affecting other parts of the XML
document.

Example 1. A Schematron Quick Fix that adds a 'bone' element as child of the
'dog' element

<sch:rule context="dog">
 <sch:assert test="bone" sqf:fix="addBone">
 A dog should have a bone.</sch:assert>
 <sqf:fix id="addBone">
 <sqf:description>
 <sqf:title>Add a bone</sqf:title>
 </sqf:description>
 <sqf:add node-type="element" target="bone"/>

4 https://www.w3.org/community/quickfix/

Discover the Power of SQF

118

https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/
https://www.w3.org/community/quickfix/

 </sqf:fix>
</sch:rule>

3. SQF Use Cases

3.1. Quality Assurance

It is important to have quality control over the XML documents in your project.
You do this using Schematron schema in combination with other schemas (such
as XSD, RNG, or DTD). Schematron solves the limitation that other types of
schema have when validating XML documents because it allows the schema
author to define the tests and control the messages that are presented to the user.
The validation problems are more accessible to users and it ensures that they
understand the problem.

However, correcting the validation problems in the XML documents can
sometimes be difficult for a content writer. Most of the content writers are not
XML experts, but they know the context of the document very well and they are
experts in their domain. If a problem occurs when they write content in the docu-
ment, they need to fix it correctly without adding new ones.

For example, perhaps you have a rule that checks if two consecutive lists are
found and reports any occurrences as a problem. This can happen if the list was
split by mistake, or maybe the writer forgot to add a paragraph or sentence
before the second list. If the content writer encounters this type of problem and
tries to merge the lists manually, it is possible for them to make mistakes and
introduce other problems.

Example 2. A Schematron assertion that reports a problem if two consecutive
lists are found

<sch:rule context="ul">
 <sch:report test="following-sibling::element()[1][name() = 'ul']">
 Two consecutive unordered lists. You can probably merge them into
one.
 </sch:report>
</sch:rule>

On the other hand, an XML expert knows the syntax very well and knows how to
fix the problem, but they may not be familiar with the domain of the content
writer. In this case, since the XML expert and content writer will need to work
together to correct the problems, this will introduce extra costs and take more
time.

Using SQF, you can provide in-place actions to help the content writer correct
the problems by themselves without involving the XML expert, and without pro-

Discover the Power of SQF

119

ducing new errors. This will solve the problem faster and companies will spend
less money. The XML expert can focus on developing new rules and quick fixes
for the content writer.

Example 3. A Schematron QuickFix that merges two adjacent lists into one

<sqf:fix id="mergeLists">
 <sqf:description>
 <sqf:title>Merge lists into one</sqf:title>
 </sqf:description>
 <sqf:add position="last-child" select="following-sibling::element()[1]/
node()"/>
 <sqf:delete match="following-sibling::element()[1]"/>
</sqf:fix>

3.2. Efficiency
A Schematron QuickFix can also be used to improve efficiency when adding con-
tent in XML documents. You can define actions that will automatically add a new
XML structure in the document at a valid location, or actions that will convert an
XML structure into another. These types of actions will help the content writer
add content more easily and without making mistakes.

For example, suppose you want to make sure that all of your documents have
keywords (index terms) defined in a prolog so that searches in the output will
generate desired results. For this, you can create a Schematron rule that reports a
problem if the keywords element is missing from the prolog.

Example 4. Schematron rule that verifies if the keywords element is present

<sch:rule context="topic">
 <sch:assert test="exists(prolog/metadata/keywords)" role="warn">
 No keywords are set for the current topic.
 </sch:assert>
</sch:rule>

Then you can create an action that will automatically add an entire structure of a
prolog element (with metadata, keywords, and indexterm elements) before the body
element, and the content writer just needs to specify the keyword value in a user
entry dialog box.

Example 5. Schematron QuickFix that inserts an XML structure

<sqf:fix id="addKeywords">
 <sqf:description>
 <sqf:title>Add keywords for the current topic</sqf:title>
 </sqf:description>

Discover the Power of SQF

120

 <sqf:user-entry name="keyword">
 <sqf:description><sqf:title>Keyword value:</sqf:title></
sqf:description>
 </sqf:user-entry>

 <sqf:add match="body" position="before">
 <prolog>
 <metadata>
 <keywords>
 <indexterm>
 <sch:value-of select="$keyword"/>
 </indexterm>
 </keywords>
 </metadata>
 </prolog>
 </sqf:add>
</sqf:fix>

You can also create more complex actions. For example, actions that will correct a
table layout and uses complex XSLT processing, or actions that use data from
other documents or from a database. This will allow the content writer to focus
on the content of the document while the quick fixes will help them to easily
insert XML structure or to fix various issues that can appear during editing.

4. Abstract Quick Fixes
The Schematron QuickFix language is a simple language, and has just four types
of operations that can be performed (add, delete, replace, and string replace).
Being a simple language, it is easy to learn and use, and also easy to implement
by applications.

Sometimes the developers that creates the quick fixes need to use other types
of operations (such as wrap, unwrap, rename, or join). They expect to have these
operations defined in the language. Defining more operations in the language
will help them create the quick fixes more easy, but this means that the language
will be more complicated to learn and harder to be implemented by applications.
A solution to this problem is to define a library of generic quick fixes that can be
used for other types of operations.

A library of quick fixes can be implemented using abstract quick fixes. An
abstract quick fix can be defined as a quick fix that has abstract parameters
defined at the beginning of an sqf:fix element.

Example 6. Schematron abstract quick fix that can be used to rename a generic
element

<sqf:fix id="renameElement" role="replace">
 <sqf:param name="element" abstract="true"/>

Discover the Power of SQF

121

 <sqf:param name="newName" abstract="true"/>
 <sqf:description>
 <sqf:title>Rename '$element' element in '$newName'</sqf:title>
 </sqf:description>
 <sqf:replace match="." target="$newName" node-type="element"
select="node()"/>
</sqf:fix>

An abstract quick fix can be instantiated from an abstract pattern. The pattern
must have all the parameters declared in the quick fix, and the quick fix must
declare all the abstract parameters that are used. Abstract parameters cannot be
used as normal XPath variables. The reference of the abstract parameter will be
replaced by the value specified in the abstract pattern.

Example 7. Schematron abstract pattern that reference an abstract quick fix
<sch:pattern id="elementNotAllowed" abstract="true">
 <sch:rule context="$element">
 <sch:assert test="false()" sqf:fix="renameElement">
 Element '$element' not allowed, use '$newName' instead.
 </sch:assert>
 </sch:rule>
</sch:pattern>

The abstract pattern can be instantiated by providing different values for the
parameters. Therefore, you can quickly adapt to multiple variants of XML for-
mats and provide rules and quick fixes that will allow the user to correct the
problems.

Example 8. Schematron abstract pattern instantiation
<sch:pattern is-a="elementNotAllowed">
 <sch:param name="element" value="orderedlist"/>
 <sch:param name="newName" value="itemizedlist"/>
</sch:pattern>

Another solution for providing other quick fix actions without using abstract pat-
terns is to use the sqf:call-fix5 element.

5. Multilingual Support in SQF
The second draft of the Schematron QuickFix specification comes with an impor-
tant addition, the localization concept for quick fixes. It is based on the Schema-
tron localization concept, but it is more flexible.

5 http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/
SQFSpec.html#param.call-fix

Discover the Power of SQF

122

http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix
http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix
http://schematron-quickfix.github.io/sqf/publishing-snapshots/March2018Draft/spec/SQFSpec.html#param.call-fix

A new attribute was added for the sqf:title and sqf:p elements, the @ref
attribute. In the value of the @ref attribute, you can specify one or more IDs that
point to different translations of the current phrase. The specification does not
restrict the implementations of the @ref attribute to a specific reference structure.

Example 9. Schematron QuickFix that has multilingual support

 <sqf:fix id="addBone">
 <sqf:description>
 <sqf:title ref="fix_en fix_de">Add a bone</sqf:title>
 <sqf:p ref="fix_d_en fix_d_de">Add a bone as child element</
sqf:p>
 </sqf:description>
 <sqf:add node-type="element" target="bone"/>
 </sqf:fix>

One possible implementation of the multilingual support in SQF is to use the
Schematron diagnostics element. You can define a diagnostic for each referenced
id and specify the language of the diagnostic message using the xml:lang attrib-
ute on the sch:diagnostic element or on its parent.

Example 10. Schematron diagnostics

 <sch:diagnostics>
 <sch:diagnostic id="fix_en" xml:lang="en">Add a bone</
sch:diagnostic>
 <sch:diagnostic id="fix_de" xml:lang="de">Fügen Sie einen Knochen
hinzu</sch:diagnostic>
 </sch:diagnostics>

This implementation conforms with the Schematron standard that also uses diag-
nostic for localization. It is easier to translate the messages because the Schema-
tron messages and quick fix messages are kept together, and another important
aspect is that it will be the same implementation used for both Schematron and
SQF messages.

There are also some issues with this implementation. One of them is that you
cannot have IDs with the same name in your document because the diagnostic
uses XML IDs. Another issue is that SQF will depend on the Schematron lan-
guage and cannot be encapsulated separately.

Another implementation of quick fix localization is to use Java Property Files.
In this case, the localized text phrases should be stored in external files, grouped
by language. These files should be placed parallel to the Schematron schema with
the name pattern ${fileName}_${lang}.xml. ${fileName} should be the name of
the Schematron schema but without the extension. The @ref attribute from the
quick fix must reference the property key.

Discover the Power of SQF

123

Example 11. Java Property File for German translation

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="dog.addBone.title">Füge einen Knochen hinzu</entry>
 <entry key="dog.addBone.p">Der Hund wird einen Knochen erhalten.</
entry>
</properties>

In contrast to the references to sch:diagnostic elements, in this case, it is not
necessary to make any changes in the Schematron schema to introduce a new lan-
guage. You just have to add a file with the name (for example localized_fr.xml)
in the same folder of the Schematron file (for example localized.sch).

However, this needs a different implementation than the standard Schema-
tron, and the Schematron messages and the SQF messages will be in different
locations.

6. Generate Quick Fixes Dynamically
Another important addition in the second draft of the Schematron QuickFix spec-
ification is the possibility to define generic quick fixes. Using a generic quick fix,
the developer can generate multiple similar fixes using the values provided by an
XPath expression.

In the first draft of the SQF specification, it was not possible to have a dynamic
amount of quick fixes for a Schematron error. The developer should specify the
quick fixes presented for a Schematron error. He could only control whether or
not a quick fix will be presented to the user by using the @use-when attribute.

To create a generic quick fix, the SQF developer needs to set the use-for-each
attribute for the sqf:fix element. The value of the use-for-each attribute must
be an XPath expression. For each item of the evaluated XPath expression, a quick
fix is provided to the user. The context inside of the quick fix will be the current
Schematron error context. To access the value of the current item from the XPath
expression, a built-in variable $sqf:current can be used.

Example 12. A Generic QuickFix that provides a quick fix to remove each item
from a list

<sqf:fix id="removeAnyItem" use-for-each="1 to count(li)">
 <sqf:description>
 <sqf:title>Remove item #<sch:value-of select="$sqf:current"/></
sqf:title>
 </sqf:description>
 <sqf:delete match="li[$sqf:current]"/>
</sqf:fix>

Discover the Power of SQF

124

Using generic quick fixes, the SQF developer can now provide a dynamic number
of fix action depending on a set of values from the current document or they can
use an XPath expression to get the values from external documents.

7. Interactive Schematron through SQF

7.1. An ignore concept
One of Schematron's advantages is the ability to hierarchize and evaluate the
rules you set up yourself. While structure-based schema languages such as XSD
or RELAX NG only know valid or invalid documents, Schematron can differenti-
ate between errors, warnings and information with the help of the role attribute –
although the Schematron standard did not even provide this classification. It only
became a de facto standard.

However, with these possibilities new questions and problems also arise.
When does a document pass a Schematron validation? Can I ignore a Schematron
assert that has been classified as a warning? Basically this should be possible, oth-
erwise such a classification is quite pointless. An unfixed warning should not
usually lead to a process abort.

At the same time, however, an unfixed warning is usually an indication that
the document is not completely "clean". Warnings are often used to notify the
user of problematic content that is often incorrect, but does not necessarily have
to be false. This means that an unfixed warning often points to bad content, but
not always.

The condition of a document containing warnings is similar to the condition
of Schrödinger's cat: As long as I don't look at the cause of the warnings, the
document is correct and incorrect at the same time. A manual intervention by the
user is therefore required in order to check the warnings. Assuming that the user
has fixed all problematic warnings, the state of the document is cleaned and all
remaining warnings would be "ignorable". However, this cleaned state is
extremely volatile because it is not saved anywhere. The persons involved must
remember that the existing warnings can be ignored. However, this only applies
until the document is processed again. Then it immediately falls back into the
condition of Schrödinger's cat.

With a small number of ignorable warnings and editors of the document, this
problem can still sometimes be handled. However, as soon as the number of igno-
rable warnings accumulates, this very quickly leads to all warnings being ignored
– whether problematic or not. One option to mark warnings as ignorable is not to
surrender to the convenience of the user, as you might think at first, but, if cor-
rectly applied, may improve the documents. In addition, an ignore concept can
provide clarity about the status of a document by accepting documents with
warnings that have not been ignored as incorrect.

Discover the Power of SQF

125

7.1.1. How can an ignore concept work in Schematron?

The biggest challenge for an ignore concept in Schematron is that there are no
uniform errors. Complex Schematron errors can occur due to interactions of dif-
ferent document structures in one or even in different documents. To mark an
error as ignorable, it must be uniquely identified, otherwise also other errors
could be mistakenly ignored.

Schematron errors also have in common that they all have a context
(sch:rule/@context). This context is also usually used to specify the location of
the error. If a help structure is added relative to the context, the Schematron can
react to such a help structure and ignore a possible error. The context of a possi-
ble error is marked as "to ignore".

The help structure must be as closely connected as possible to the context. It
should also be noted that, according to the Schematron standard, every node type
can be a context, even if not every implementation supports it. A help structure
could, for example, be an attribute in a special namespace or a Processing Instruc-
tion (PI) that is inserted before the context node.

Advantages of attributes are that a connection with an element as context is
very strong and thus also easily catchable with Schematron. In addition, naming
conflicts are excluded by a separate namespace. The disadvantages are that there
is no possibility for PIs, comments or text nodes as context to uniquely assign
attributes to it. A connection would be extremely loose. In addition, attributes in
foreign namespaces can lead to validation errors in other schemata, which, for
example, control the structure of the document.

PIs, on the other hand, can be set relative to any node type and should not
conflict with any other schema, since they are ignored by default. On the other
hand, the connection to the context node is rather loose – as soon as a node is
moved, for example, it must be noted that the associated PI is also moved. The PI
is also at a disadvantage when it comes to uniqueness, since it cannot have a
namespace.

The value of the attribute or PI should contain an identifier of the error. A sim-
ple d2t:ignore="true" is not enough because ignoring an error does not mean
that you want to ignore another error that happens to have the same context. It is
recommended to use is a list of IDs, which refers to the IDs of the sch:assert or
sch:report elements. If the patterns are not too large, the pattern ID is also suffi-
cient.

7.1.2. XSLT style guide example

So much for dry theory. Now it shall be demonstrated how the concept works in
practice. As an example serves an XSLT style guide which uses Schematron to
check for certain spellings and constellations that are permitted by the XSLT

Discover the Power of SQF

126

standard – i.e. they do not lead to compilation errors – but still do not correspond
to a good language style.

Here, as an example rule, a template is presented that is not used anywhere
else in the stylesheet:

<sch:pattern id="p_04_unused_items">
 <sch:rule context="xsl:template[@name]" role="warn">
 <!-- Check if this template is used somewhere in the stylesheet.
-->

Now XSLT offers the possibility to call a template initially. Then it would be cor-
rect if it is no longer used in the stylesheet. A warning could be ignored. How-
ever, since this is a very rare case, we do not want to do without this check.

In order to give the XSLT developer a way to ignore this check, we have now
decided for a d2t:ignore help attribute in the namespace http://data2type.de/.
The possible value should be the pattern ID of the error to be ignored. In our
example this would look like this:

<xsl:template name="initial" d2t:ignore="p_04_unused_items"
xmlns:d2t="http://data2type.de/">

With a simple additional empty sch:rule you can catch the contexts to be
ignored in the Schematron by using the order of the rules within a pattern:

<sch:pattern id="p_04_unused_items">
 <sch:rule context="*[@d2t:ignore = 'p_04_unused_items']"/>
 <sch:rule context="xsl:template[@name]" role="warn">
 <!-- Check if this template is used somewhere in the stylesheet.
-->
As a result, all elements having an @d2t:ignore attribute with the

p_04_unused_items value are caught in this pattern by the first rule and ignored
because the rule does not contain any tests. If you want to extend the logic so that
an element can ignore different patterns, you should be allowed to specify a list of
pattern IDs. In Schematron it would look like this:

<sch:rule context="*[tokenize(@d2t:ignore, '\s') =
'p_04_unused_items']"/>

7.1.3. Interaction with SQF

Now the above concept is very nice in theory, but unfortunately it has a big hook
in practice: The user is required to have some prior knowledge to ignore such a
Schematron warning. First of all, he has to know that such an ignore function
exists at all. This may be quickly communicated to a single user. But if one imag-
ines that such an XSLT style guide is used within a larger company, this basic
information can quickly get lost deep in some software documentation. Even if
the ignore function is known, it must still be known exactly how it works: it must

Discover the Power of SQF

127

be an ignore attribute in the specific namespace http:// data2type.de/ (not
http:// www.data2type.de/ or http:// data2type.de!). In addition, the corre-
sponding pattern ID must be known for each Schematron error. In reality it leads
to the fact that such a logic, if it is implemented at all, is quickly forgotten.

This is where Schematron QuickFix joins the game. All this information,
which the user would otherwise have to remember, can be stored in a QuickFix
by the Schematron developer. The Schematron error simply gets a QuickFix
"Ignore this error". If the user selects such an "Ignore QuickFix", this fix makes
exactly the changes that the user would otherwise have to make manually: it sets
the d2t:ignore attribute in the correct namespace with the correct pattern ID.

Please note: If an Ignore QuickFix is embedded in an extensive QuickFix collec-
tion, it should no longer be a problem that it is not found. Furthermore, it will be
easier for the user to use an Ignore QuickFix only if it is justified. A standalone
Ignore QuickFix, on the other hand, gives the impression that ignoring a warning
is the only possible solution.

In our style guide example, the Ignore QuickFix would look like this:
<sqf:fix id="ignore_p_04_unused_items">
 <sqf:description>
 <sqf:title>Ignore this error.</sqf:title>
 </sqf:description>
 <sqf:add match="." target="d2t:ignore" node-type="attribute"
 select="'p_04_unused_items'"/>
</sqf:fix>
A d2t:ignore attribute (target="d2t:ignore" node-type="attribute") is

added (<sqf:add ... / >) to the current context node (match="."). The value
used is the pattern ID p_04_unused_items (select="'p_04_unused_items'").

In the version in which different patterns can be ignored, an existing
d2t:ignore attribute should not be overwritten, but its value should be taken
over:

<sqf:fix id="ignore_p_04_unused_items">
 <sqf:description>
 <sqf:title> Ignore this error.</sqf:title>
 </sqf:description>
 <sch:let name="newIgnoreId" value="string-join((@d2t:ignore,
'p_04_unused_items'), ' ')"/>
 <sqf:add match="." target="d2t:ignore" node-
type="attribute" select="$newIgnoreId"/>
</sqf:fix>

7.2. XSD Guide
XML Schema (XSD) is a large, widely used standard for structuring XML data. As
in many big standards, there are different ways to express the same in XSD. How-

Discover the Power of SQF

128

ever, due to its widespread use, non-developers or developers with low XSD
experience often have to deal with XML Schema. In addition, the XSD standard
has a very verbose XML syntax in which even seemingly simple structures with a
complex spelling must be described. This often leads to "Google-guided develop-
ment", which usually results in a wild mishmash of XSD structures. If insufficient
testing is added, schemas are created in which no one can say exactly what is
allowed where and why.

The idea of the XSD Guide6 is to provide the inexperienced user with a tool
that will guide him to develop an XSD schema while adhering to the rules of a
particular design pattern.

A design pattern in XSD restricts the extensive standard to certain structures.
Well-known design patterns are Salami Slice, Venetian Blind or Russian Doll.
While Salami Slice works with global element declarations that are referenced
locally, Venetian Blind only declares the possible root elements globally and all
others locally. Instead, Venetian Blind uses global types that are referenced by the
local element declarations. Russian Doll, on the other hand, completely refrains
from reuse and declares the document structure within a global element declara-
tion.

7.2.1. Design patterns examples

Salami Slice:

 <xs:element name="document">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="head"/>
 <xs:element ref="body"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="head">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="meta" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="meta">

6 https://github.com/octavianN/thePowerOfSQF/tree/master/Samples/XSDGuide

Discover the Power of SQF

129

https://github.com/octavianN/thePowerOfSQF/tree/master/Samples/XSDGuide
https://github.com/octavianN/thePowerOfSQF/tree/master/Samples/XSDGuide

 <xs:complexType>
 <xs:attribute name="value" type="xs:string"/>
 <xs:attribute name="key">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\S+"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="body">

 </xs:element>

Venetian Blind:

<xs:element name="document" type="documentType"/>
 <xs:complexType name="documentType">
 <xs:sequence>
 <xs:element name="head" type="headType"/>
 <xs:element name="body" type="bodyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="headType">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="meta" minOccurs="0" maxOccurs="unbounded"
type="metaType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="metaType">
 <xs:attribute name="value" type="xs:string"/>
 <xs:attribute name="key" type="keyType"/>
 </xs:complexType>
 <xs:simpleType name="keyType">
 <xs:restriction base="xs:string">
 <xs:pattern value="\S+"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="bodyType">

 </xs:complexType>

Russian Doll:

Discover the Power of SQF

130

<xs:element name="document">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="head">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="meta" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="value"
type="xs:string"/>
 <xs:attribute name="key">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\S+"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="body">

 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

7.2.2. Using Schematron and SQF
The XSD Guide now has two tasks: The first is to check whether the XSD devel-
oper has violated the rules of the initially selected design pattern, and to notify
him accordingly. On the other hand, simple and understandable functions for
generating XSD structures are to be offered to the user. With these functions a
kind of user guidance is to develop, which does not only let the user generate the
necessary XSD structures in a simple way, but also makes sure that the selected
design pattern is adhered to. In contrast to some code generators, not only func-
tional code is to be generated, but also code that is maintainable and readable and
can be further developed without the help of an XSD Guide.

As a language for very specific rules that can be queried with XPath, Schema-
tron is ideal for the first task of the XSD Guide – checking the rules for the selec-
ted design pattern. Less obvious is that Schematron can be used together with
Schematron QuickFix to develop a user guide with relatively simple means. The

Discover the Power of SQF

131

ignore example shown above gives us some hints, where a QuickFix has used for-
eign help structures (the d2t:ignore attribute) to store information in the source
document for the Schematron schema, to which the schema then reacted. The
XSD Guide works in a similar way. In XSD there is even a separate area for such
help structures: the xs:appInfo element can contain any elements in a foreign
namespace.

As an introductory example, we use an empty XSD schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

</xs:schema>

Here the XSD guide gives us the Schematron message: "The XSD guide is inac-
tive". The QuickFix "Set the XSD guide active" is available for this message. If I
execute this QuickFix, I get the following result in my source document:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:annotation>
 <xs:appinfo>
 <d2t:xsdguide xmlns:d2t="http://www.data2type.de"
status="active"/>
 </xs:appinfo>
 </xs:annotation>

</xs:schema>

I also get a completely different Schematron message: "Please select the basic XSD
design pattern. Possible values are: 'Venetian Blind' or 'Salami Slice'".

So the Schematron first checks if there is a global xs:annotation/
xs:appinfo/d2t:xsdguide[@status = 'active']. If this is not the case, all other
Schematron checks are not displayed at all. In Schematron this works via a global
variable:

<sch:let name="config" value="/xs:schema/xs:annotation/xs:appinfo/
d2t:xsdguide"/>
<sch:let name="status" value="($config/@status, 'inactive')[1]"/>

Each pattern receives an empty rule that catches all nodes when the status is inac-
tive:

<sch:pattern id="mode">

Discover the Power of SQF

132

 <sch:rule context="node()[$status = 'inactive']"/>

Due to the sequential processing of the rules, no node in this pattern is checked
by another rule if the status is inactive.

7.2.3. Multiple Choice

If you stick to this example, you will see that after activating the XSD Guide, a
design pattern should be selected initially. Here you can see that the XSD Guide is
limited to the patterns Venetian Blind and Salami Slice. Now the user has to make
a multiple choice decision. In SQF there are even different ways to realize this.
For this example, the simplest way was chosen: A separate QuickFix was devel-
oped for each possible answer.

<sch:let name="design-pattern" value="$config/@mode"/>

<sch:assert test="$design-pattern = ('venetian-blind', 'salami-slice')"
sqf:fix="mode.venetian.blind mode.element.based setGuideInActive">Please
select the basic XSD design pattern. Possible patterns are: "Venetian
Blind" or "Salami Slice".</sch:assert>
<sqf:fix id="mode.venetian.blind">
 <sqf:description>
 <sqf:title>Choose the Venetian Blind pattern.</sqf:title>
 <sqf:p>The Venetian Blind pattern will generate for each element
top-level xsd:complexType or xsd:simpleType elements.</sqf:p>
 <sqf:p>The local elements will refer to these types by type
attributes.</sqf:p>
 </sqf:description>
 <sqf:add match="$config" target="mode" node-type="attribute"
select="'venetian-blind'"/>
</sqf:fix>
<sqf:fix id="mode.element.based">
 <sqf:description>
 <sqf:title>Choose the Salami Slice pattern.</sqf:title>
 <sqf:p>The Salami Slice pattern will generate for each element
top-level xsd:element elements.</sqf:p>
 <sqf:p>The local element declarations will refer to these
elements by ref attributes.</sqf:p>
 </sqf:description>
 <sqf:add match="$config" target="mode" node-type="attribute"
select="'salami-slice'"/>
</sqf:fix>

Discover the Power of SQF

133

Depending on which design pattern is desired, the user can execute the corre-
sponding QuickFix and this selection is stored as a mode attribute in the
d2t:xsdguide element. The other Schematron patterns react accordingly.

The generic QuickFixes are another possibility to send multiple choice queries
to the user. They have a similar effect for the user, but can offer different response
options depending on the current source document. An example of this is hidden
in the XSD Guide. First we have to skip a few steps and assume that we already
have the following structure:

<xs:complexType name="bodyType" mixed="false">
 <xs:sequence>
 <xs:element name="title"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="titleType">

</xs:complexType>
<xs:complexType name="titleType2">

</xs:complexType>

Here the title element declaration in the bodyType type has no specification of the
type. So we get the error message "Please specify the type of the element title."

In addition to various QuickFixes, which all receive element declarations that
have no type specification, two additional Reuse QuickFixes are offered in this
special constellation:

- "Reuse the complex type 'titleType'"
- "Reuse the complex type 'titleType2'"
These two QuickFixes are created within a single sqf:fix element:

<sch:let name="name" value="@name"/>

<sqf:fix id="vb.elementType.complexReuse" use-for-each="/xs:schema/
(xs:complexType | xs:simpleType)[matches(@name, concat($name, 'Type
\d*'))]">

For each global complex type or simple type that matches the pattern
{$name}Type\d*, a separate QuickFix is created.

In addition to these two multiple choice variants, the Escali plugin7 offers
another option, which is described below.

7 https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen

Discover the Power of SQF

134

https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen
https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen

7.2.4. Input by the user
However, an XSD schema cannot be developed by multipe choice queries alone.
It also requires the ability to ask the user questions that can be answered without
restrictions on predefined values. An example – here we jump back to the first
steps with the XSD Guide – is the selection of the root element. For the name of
the root element there is no finite number of possible answers. A multiple choice
query is meaningless. SQF contains UserEntries, which were introduced for
exactly such a question to the user.

If the user has activated the XSD Guide and selected his design pattern, the
Schematron message "You should start with a root element" is displayed. This
message has a QuickFix "Define a root element name". If this QuickFix is execu-
ted, the user is asked by the UserEntry what the name of the root element should
be ("Please specify the local name of your root element").

In Schematron it looks like this:
<sch:rule context="xs:schema" role="info">
 <sch:assert test="xs:element" sqf:fix="vb.root.define
sl.root.define">You should start with a root element</sch:assert>
 <sqf:fix id="vb.root.define">
 <sqf:description>
 <sqf:title>Define a root element name</sqf:title>
 </sqf:description>
 <sqf:user-entry name="vb.root.element.name">
 <sqf:description>
 <sqf:title>Please specify the local name of your root
element</sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:add position="last-child">
 <xs:element name="{$vb.root.element.name}"
type="{$vb.root.element.name}Type"/>
 <!-- ... -->
 </sqf:add>
 </sqf:fix>

7.2.5. Mode filter by rule order and use-when condition
The XSD Guide must react differently depending on the respective context and
the user's previous decisions (e.g. selection of the design pattern). Two concepts
are used to make this distinction. First, as shown above in the status check, the
sequential processing of the rules within a Schematron pattern is used to show or
hide all rules of a pattern, depending on a global configuration.

There are patterns that were developed only for Venetian Blind and others
only for Salami Slice. By convention these are distinguished by an ID prefix "vb."
and "sl.". They are activated or deactivated by the first empty sch:rule elements:

Discover the Power of SQF

135

<sch:let name="config" value="/xs:schema/xs:annotation/xs:appinfo/
d2t:xsdguide"/>
<sch:let name="design-pattern" value="$config/@mode"/>

<sch:let name="isSalamiSlice" value="$design-pattern = 'salami-slice'"/>
<sch:let name="isVenetianBlind" value="$design-pattern = 'venetian-
blind'"/>

<sch:pattern id="vb.content">
 <sch:rule context="node()[$status = 'inactive']"/>
 <sch:rule context="node()[not($isVenetianBlind)]"/>

 <!-- ... -->

 <sch:pattern id="sl.content">
 <sch:rule context="node()[$status = 'inactive']"/>
 <sch:rule context="node()[not($isSalamiSlice)]"/>

Generally, for each pattern all rules are deactivated if the XSD Guide is inactive by
catching all nodes if the condition $status = 'inactive' is true. Additionally,
for the vb.content pattern, all nodes are caught if the design pattern is not Vene-
tian Blind (not($isVenetianBlind)).

There are also patterns that apply to all design patterns (with the ID prefix
"g."). If there are QuickFixes that are only suitable for a special design pattern, the
use-when condition is used:

<sqf:fix id="vb.root.define" use-when="$isVenetianBlind">
 <sqf:description>
 <sqf:title>Define a root element name</sqf:title>
 </sqf:description>
 <!-- ... -->
</sqf:fix>
<sqf:fix id="sl.root.define" use-when="$isSalamiSlice">
 <sqf:description>
 <sqf:title>Define a root element name</sqf:title>
 </sqf:description>
 <!-- ... -->
</sqf:fix>

Due to the opposing use-when conditions, only one of the QuickFixes is always
visible. However, as they have the same descriptions, the user does not see any
difference. The internal functionality of the QuickFixes differs, of course.

Discover the Power of SQF

136

7.2.6. Complex tasks with XSLT

An important part of the XSD Guide is the description of a content model. Once
the setup (activation, design pattern, root element) is defined, the following steps
are repeated in recursive form:
1. Determination of a content model
2. Definition of the attributes
3. Generation of missing element or type declarations.
The most complex task is probably the content model. Here, elements can be
defined in different variants of nested sequences and/or choices. Now you could
display a Schematron message for each element, sequence or choice, with various
options: Insert element before, insert element after, insert sequence after/before,
etc. This only leads to an endless number of QuickFixes that have to be executed
to create a practical content model.

Therefore, the XSD Guide supports a DTD-like syntax. The QuickFix "Edit/
Specify the content with DTD syntax" has a UserEntry "Use the usual DTD syntax
to specify the content". As a value for the UserEntry, the user can now describe
the content for the corresponding type or element as being used to it from DTDs
and also from RELAX NG.

Example 1:
(head, body)

becomes:

 <xs:sequence>
 <xs:element name="head"/>
 <xs:element name="body"/>
 </xs:sequence>

Example 2:
(head, body+, (epilog|index)?)

becomes:

 <xs:sequence>
 <xs:element name="head"/>
 <xs:element name="body" maxOccurs="unbounded"/>
 <xs:choice minOccurs="0">
 <xs:element name="epilog"/>
 <xs:element name="index"/>
 </xs:choice>
 </xs:sequence>

A small extension of the DTD syntax also occurs:

Discover the Power of SQF

137

Curly brackets can also be used to make special minOccurs/maxOccurs specifi-
cations:

(head, body{1:3}, (epilog | index)?)
becomes:

 <xs:sequence>
 <xs:element name="head"/>
 <xs:element name="body" maxOccurs="3"/>
 <xs:choice minOccurs="0">
 <xs:element name="epilog"/>
 <xs:element name="index"/>
 </xs:choice>
 </xs:sequence>

Of course, such conversions from a string representation to an XML structure go
beyond SQF's own functions. Such tasks were solved in the XSD Guide by an
XSLT function.

7.2.7. Escali plugin feature

Basically, the XSD Guide is designed to work with both SQF implementations in
the Oxygen XML Editor: The Oxygen build-in implementation8 and the Escali
Oxygen Plugin9.

The difference between the two implementations is minimal. However, there
is one feature in the Escali plugin that was used here and for which there is no
representation in the build-in implementation: the drop-down menus for UserEn-
tries. Here, the Escali plugin uses a trick that is not provided by the SQF specifica-
tion, but does not contradict it. In the default value for the UserEntry, a sequence
is specified instead of a single value. As soon as the Escali plugin receives a
sequence in the default value, it creates a drop-down menu containing the values
of the sequence.

Example:

 <sch:let name="es-impl" value="function-available('es:getPhase')"/>
 <sch:let name="xsd-common-types" value="
 ('xs:string',
 'xs:boolean',
 'xs:integer',
 'xs:double',
 'xs:dateTime',

8 http://www.oxygenxml.com
9 https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen

Discover the Power of SQF

138

http://www.oxygenxml.com
https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen
https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen
http://www.oxygenxml.com
https://github.com/schematron-quickfix/escali-package/tree/master/escaliOxygen

 'xs:date',
 'xs:time',
 'xs:token'
)"/>
 <sch:let name="types-as-default" value="
 $xsd-common-types[if ($es-impl) then
 true()
 else
 1]
 "/>
 <!-- ... -->

 <sqf:fix id="vb.elementType.xsdtype">
 <sqf:description>
 <sqf:title>Use a build-in type</sqf:title>
 </sqf:description>
 <sqf:user-entry name="type" default="$types-as-default">
 <sqf:description>
 <sqf:title>Use one of the build-in types</sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:add node-type="attribute" target="type" select="$type"/>
 </sqf:fix>

The $es-impl and $types-as-default variables limit the sequence of XSD types
in $xsd-common-types to a single value only, except for the Escali plugin imple-
mentation. Otherwise, all types from the $xsd-common-types variable are taken
over into the $types-as-default variable. Thus the $type UserEntry gets a
sequence of possible values as default value for the Escali plugin. With the plugin
the UserEntry looks like this:

7.2.8. Restrictions and open issues

This first version of the XSD Guide is just a proof of concept and can be extended
as you like.

Known open issues are:

Discover the Power of SQF

139

• A support of a target namespace is still missing completely.
• The limited use of UserEntries results in each xs:complexType receiving a

mixed attribute once the content model has been determined, even if no #
PCDATA is used. The value false, which the attribute gets, is not wrong, but
since it is the default value of the attribute, it could actually be omitted. A
clean-up mechanism is still missing here.

7.2.9. Summary and conclusions

It is important to note that the XSD Guide was only used as an example to dem-
onstrate the basic possibilities offered by an interaction between Schematron and
SQF. In the XML world, there are many other standards that have related prob-
lems and for which a similar guide might be more suitable. It should be noted
that both Schematron and SQF are used for other purposes. Instead of an exami-
nation and the following correction, dummy checks are made here and the "cor-
rections" serve rather for the structure generation.

A disadvantage is that an edited XSD schema can receive a large number of
Schematron messages when the XSD Guide is active, and this could irritate a
naive developer. Although most of these messages are marked with the role
attribute as information (info), the corresponding elements are still highlighted.
QuickFixes without Schematron messages that pop up on any node and can per-
form an action for that context would be desirable.

To achieve this, we suggest two possibilities: The simple method would be
another misappropriation. The values for the role attribute are not specified by
the Schematron standard. If a further value is supported here, e.g. refactoring,
an implementation could not even display the error message, but only the corre-
sponding QuickFixes.

A second possibility would be more conceptual in nature and would have
more far-reaching consequences. Already today, independent SQF libraries can be
created and embedded in Schematron schemata via sch:include. If one now
imagines such a SQF library as an independent script, the individual QuickFixes
only lack a context in which they are to be represented. If you replace the id
attribute of the sqf:fix element with a context attribute (with the same task as
the context attribute of the sch:rule element), the QuickFix would be independ-
ent. Additional conditions for providing a QuickFix, as currently provided by
sch:assert or sch:report, could be implemented with use-when conditions.

As a result, an independent "refactoring language" would be created with
minimal structural changes. But this is just an idea and needs to be discussed
thoroughly.

Discover the Power of SQF

140

8. Conclusion
Schematron has become a very popular language in the XML world. In the last
few years, Schematron started to be used more and more and in numerous
domains. One of the reasons Schematron started to be more popular is because
now you have the ability to also define actions that will allow the user to correct
the problem, rather than just presenting an error message. SQF has made Sche-
matron more powerful and became a powerful language itself.

Discover the Power of SQF

141

142

Tagdiff: a diffing tool for highlighting
differences in the tagging of text-oriented

XML documents
Cyril Briquet

<cyril.briquet@canopeer.org>

Abstract

Finding differences in the tagging of two XML documents can be very use-
ful when evaluating the output of tagging algorithms. The tool described in
this paper, called tagdiff, is an original attempt to take into account the spe-
cifics of text-oriented XML documents (such as the importance of lateral
proximity and unimportance of ancestor/child relationships) and algorith-
mic tagging (lack of validity of tagged XML documents, or XML schema
too relaxed to be useful), as opposed to a general purpose diffing tool such as
the well-known (but XML-oblivious) diff, or as opposed to more recent tools
offering comparison of XML trees, or to tools offering rich graphical user
interfaces that are not suited to long lines of XML contents. In practice, the
two compared XML documents are split into small typed segments that are
aligned with one another and compared. These small typed segments of text
or markup are aligned and printed next to one another, into two columns.
Effort is made to ease visual inspection of differences.

Keywords: XML, diff, tagging, algorithm

1. Introduction
Structure-oriented XML documents have received much attention so far: "In many
applications XML documents can be treated as unordered trees – only ancestor relation-
ships are significant, while the left-to-right order among siblings is not significant." [10]

While XML documents are usually modeled as trees, there also exists many
use cases where XML is relied upon to (semantically) tag sections of text. In text-
oriented XML documents, the ancestor/child navigation axes are not so important
whereas what's in immediate lateral proximity (to the left, to the right) is of
utmost importance.

Finding differences between two text-oriented XML documents (typically two
versions of the same text-oriented XML document resulting from the tagging of
slightly different algorithms, or of subsequent algorithms in a processing
sequence) is an interesting and important problem in algorithmic tagging
projects, for example those using the update facility of XQuery [9], or those rely-

143

ing on home-made algorithms [1]. Debugging the XML tagging algorithms and
understanding the linguistic surprises highlighted by unexpected tagging are not
straightforward. It is thus important to be able to compare easily the output of
tagged XML documents.
Diffing two XML documents with the well-known command line diff tool [4]

(see Example 1) is not the best option because the output of this tool (totally
suited for diffing files containing mostly short lines of source code) is difficult to
read for XML documents. In particular, for text-oriented documents, lines may be
very long and extend to a whole paragraph. Presenting differing fragments one
above the other, at some distance and with lots of surrounding visual noise, also
does not lend itself to easy visual inspection.

Example 1. Example: output of diff tool for 4 differences in a paragraph

< <p>Heapsort was invented by <link><person>J. W. J. Williams</person></link
> in <link><date>1964</date></link>. This was also the birth of the heap, pr
esented already by Williams as a useful data structure in its own right.</p>

> <p>Heapsort was invented by <link><person>J. W. J. Williams</person
></link> in <link><date>1964</date></link>. This was also the birth o
f the heap, presented already by Williams as a useful data structure in its
own right.</p>

Diffing two XML documents with well-known XML tools with a rich graphical
user interface, such as the Oxygen XML Editor [8] and the DeltaXML XML Com-
pare tool [3], is possible and differences are highlighted with nice colors. Compar-
ison can be typically configured in several useful ways such as ignoring
differences in certain markup types (e.g. comments, processing instructions, ...).
However, the contents of the compared XML documents remain readable only as
long as the lines remain conveniently short. Whenever a paragraph of the XML
documents is longer than half the screen width (which is typical of many text-ori-
ented XML documents), the overflowing contents are not displayed. Moreover,
the differences are not systematically vertically aligned with one another.
Diffing XML documents is also possible with tools targeting tree-oriented

XML documents (some of these tools are recent, such as the XQuery-based one
presented at XML Prague 2018 based on the approach proposed by the prior X-
Diff tool [10]). These tools take into account the arborescent nature of XML and
allow for differences in the ordering of subtrees. However, such tools focus on the
changes between contents of XML elements rather than on tags added, removed
or moving around laterally.

The command line tagdiff tool that we describe in this paper is an original
attempt at diffing text-oriented XML documents. Tagdiff displays the two text-ori-
ented XML documents side-by-side, splits them into typed segments of limited

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

144

width that fit within one vertical column, and displays contexts around the differ-
ences (see Example 2, and contrast it with the previous Figure here above).

The rest of this paper is structured as follows: Section 2 describes the algo-
rithm on which tagdiff is based, Section 3 discusses its implementation, Section 4
provides a preliminary evaluation, Section 5 lists related work, and Section 6 con-
cludes the paper.

Example 2. Example: output of tagdiff tool for 4 differences in a paragraph

==

 6 . = 6 .
 6 </p> = 6 </p>
 6 <?eoln?> = 6 <?eoln?>
 7 <?eoln?> = 7 <?eoln?>
 8 <p> = 8 <p>
 8 Heapsort was invented by = 8 Heapsort was invented by
 8 <link> = 8 <link>
 8 <person> = 8 <person>
 <---> 8
 8 J. W. J. Williams = 8 J. W. J. Williams

==

 8 J. W. J. Williams = 8 J. W. J. Williams
 <---> 8
 8 </person> = 8 </person>
 8 </link> = 8 </link>
 8 in = 8 in
 8 <link> = 8 <link>
 8 <date> = 8 <date>

==

 8 </person> = 8 </person>
 8 </link> = 8 </link>
 8 in = 8 in
 8 <link> = 8 <link>
 8 <date> = 8 <date>
 <---> 8
 8 1964 = 8 1964

==
 8 1964 = 8 1964
 <---> 8
 8 </date> = 8 </date>

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

145

 8 </link> = 8 </link>
 8 . This was also the birth of = 8 . This was also the birth of
 8 the heap, presented already b = 8 the heap, presented already b
 8 y Williams as a useful data s = 8 y Williams as a useful data s
 8 tructure in its own right. = 8 tructure in its own right.
 8 </p> = 8 </p>
 8 <?eoln?> = 8 <?eoln?>
==

2. Algorithm
The main idea behind the algorithm on which the tagdiff tool is based is to seg-
ment the XML documents into small typed segments that are easy to align
(between the two XML documents), easy to compare, and easy to visualize.

The algorithm is composed of five phases: (1) Diffing of the unparsed XML
documents, (2) Segmentation of the parsed XML documents, (3) Visual segmenta-
tion, (4) Alignment of sequences of differing segments, and (5) Prettyprinting.

2.1. First phase: Diffing of the unparsed XML documents
The first phase consists in comparing the unparsed XML documents (the raw
data, without parsing), in order to identify which sections of the two XML docu-
ments are equal and which are differing. This is a preprocessing step for the fol-
lowing phases, and it does not involve XML parsing.

For this first phase, the algorithm relies on a classic diffing algorithm [7] with
complexity O(ND) (with N=length of the XML documents, D=length of edit script
between documents) which reduces to O(N) when the differences between docu-
ments are small. This is a perfectly reasonable assumption and, even in the pres-
ence of very different XML documents, the Myers algorithm is, to the best of our
current knowledge, still the way to go. (Nonetheless, see the Implementation and
Evaluation Sections of this paper for important remarks about performance.)

The output of the first phase is that all sections of each XML document are
typed as either equal to their counterpart, or not present in the other XML docu-
ment (i.e. differing).

2.2. Second phase: Segmentation of the parsed XML documents
The second phase consists in segmenting each XML document into short, typed
segments that are known (thanks to the first phase, see above) to be equal or dif-
fering with their counterparts in the other XML document.

Each XML document is modeled first as a list of XML chunks resulting from
XML parsing, and then as a list of typed segments.

How does it work? Each of the XML documents goes through XML parsing.
As a result of XML parsing, each XML document is first initially modeled as a list

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

146

of XML chunks (see Example 3), each chunk roughly equivalent to a DOM node
without navigation axes except lateral navigation (to the left, to the right).

This modeling implies that the non-empty elements are modeled as two tag
chunks each (the opening tag chunk and the closing tag chunk), and the attributes
are modeled as contained in the relevant opening (or empty) tag chunk; empty
elements are modeled as one empty tag chunk each.

Remark: Note that the method of parsing (i.e. SAX or DOM) is orthogonal to
(i.e. independent from) the modeling into XML chunks. The modeling of the XML
documents into two lists of XML chunks can be implemented based on SAX pars-
ing or DOM parsing. End of remark.

Example 3. Each XML document is first modeled as a list of contiguous XML
chunks (chunk boundaries are here represented by vertical bars)

|<?xml version="1.0" encoding="UTF-8"?>|<?eoln?>|<article xmlns="http://
www.tagdiff.
org/basic-markup">|<?eoln?>|<?eoln?>|<p>|In computer science, the heapsort
algorithm is a |<l
ink>|comparison-based sorting algorithm|</link>|. Heapsort can be thought o
f as an improved |<link>|selection sort|</link>|: like that algorithm, it d
ivides its input into a sorted ...| ...

Upon completion of the modeling of each XML document as a list of XML
chunks, the algorithm iterates over both (1) the sections of each of the unparsed
XML documents (known to be equal or differing thanks to the diffing algorithm
in the first phase) and (2) the list of XML chunks resulting from XML parsing
(whose XML node type is known from the XML parsing in this second phase).
Each XML chunk is typed based on the its XML node type (text/tag/processing
instruction/comment) and its equal/differing status (4 x 2 = 8, there are thus 8
types).

Types include:
• equal text,
• equal tag,
• equal processing instruction,
• equal comment,
• differing text,
• differing tag,
• differing processing instruction,
• differing comment.

Entities were resolved during the prior XML parsing of the XML document.
Other items of the XML infoset (i.e. CDATA, notations, ...) are currently not taken

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

147

into account but would be modeled as chunks (and segmented) in a similar man-
ner.

Remark: End of line characters are materialized into the segmentation as pro-
cessing instructions. Two XML text chunks separated by an end of line are dis-
tinct and thus assigned to separate segments. Comments split over two or more
consecutive lines are not necessarily assigned to separate segments (and ends of
lines enclosed in a comment are displayed as a space character for readability
purposes). End of remark.

See Example 4 for an example of our proposed segmentation of two XML
documents.

Each equal-data XML chunk corresponding to multiple XML chunks in the
other document is split into multiple segments. For example, in document 1 of
Example 4, the text chunk |In computer science| is split into two equal-data seg-
ments, |In | and |computer science|.

Each XML chunk comprised of multiple sections of equal or differing contents
(e.g. multiple equal types and multiple differing types) is typed as one segment
only, and always of a differing type. It must be noted that the corresponding XML
chunk in the other XML document also needs to be similarly segmented and
typed as a differing type (this is trivially achieved by using the data obtained in
the first phase). For example, in both documents modeled in Example 4, the <arti-
cle> tag is typed in both documents as a differing tag.

Example 4. Each XML document is modeled as a list of typed segments
(segment boundaries are here represented by vertical bars)

first XML document

|<?xml version="1.0" encoding="UTF-8"?>| equal processing instruction
|<?eoln?>| equal processing instruction
|<article xmlns="http://www.tagdiff.org/basic-markup">| differing tag
|<?eoln?>| equal processing instruction
|<?eoln?>| equal processing instruction
|<p>| equal tag
|In | equal text
|computer science| equal text
|, the | equal text
|heapsort| equal text
| algorithm is a | equal text
|<link>| equal tag
|comparison-based sorting algorithm| equal text
|</link>| equal tag
...

second XML document

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

148

|<?xml version="1.0" encoding="UTF-8"?>| equal processing instruction
|<?eoln?>| equal processing instruction
|<article book="1" volume="20" ici="2" xmlns=...| differing tag
|<?eoln?>| equal processing instruction
|<?eoln?>| equal processing instruction
|<p>| equal tag
|In | equal text
|<link>| differing tag
|| differing tag
|computer science| equal text
|| differing tag
|</link>| differing tag
|, the | equal text
|<link>| differing tag
|| differing tag
heapsort| equal text
|| differing tag
|</link>| differing tag
| algorithm is a | equal text
|<link>| equal tag
|| differing tag
|comparison-based sorting algorithm| equal text
|| differing tag
|</link>| equal tag
...

The output of the second phase consists in the two XML documents modeled in a
data structure each (referred to as the segmentation of an XML document) that
lists the derived segments and associates each of them (1) with its type, (2) with
its character offset in the equal-data version of the XML document (i.e. the concat-
enation of all equal sections of the XML document, which is also the unparsed
version of the XML document with all differing sections removed), as well as (3)
with the line number where it's stored in the XML document.

For each of the two XML documents, the complexity of the segmentation is
linear in the number of typed segments generated by the algorithm, which is at
most the length of the XML document. The complexity of the second phase is
thus O(N) (with N=length of the XML documents).

2.3. Third phase: Visual segmentation
The third phase consists in segmenting further the segments obtained at the end
of the second phase, so that each segment can be printed on a half page (the left
half for the first XML document, the right half for the second XML document).
Each segment is further segmented into one or more segments (see Example 5).
This splitting depends on the length of each segment: shorter, longer or even sev-

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

149

eral times longer than a half page, with the length of half page provided as a
parameter to the algorithm (typically 29 characters for displaying in classic termi-
nals).

This further visual segmentation ensures that both the visual comparison and
the algorithmic comparison are straightforward, as will be seen in the following.

Example 5. XML chunks are segmented into typed segments, themselves
possibly further segmented into several typed segments of limited width in

order to facilitate both the algorithmic and the visual inspection of differences

 1 <?xml version="1.0" encoding= = 1 <?xml version="1.0" encoding=
 1 "UTF-8"?> = 1 "UTF-8"?>
 1 <?eoln?> = 1 <?eoln?>
 2 <article xmlns="http://www.ta <---> 2 <article book="1" ici="2" lan
 2 gdiff.org/basic-markup"> <---> 2 g="english" volume="20" xmlns
 <---> 2 ="http://www.tagdiff.org/basi
 <---> 2 c-markup">
 2 <?eoln?> = 2 <?eoln?>
 3 <?eoln?> = 3 <?eoln?>
 4 <p> = 4 <p>
 4 In = 4 In
 ...

 4 comparison-based sorting algo = 4 comparison-based sorting algo
 4 rithm = 4 rithm

 ...

 4 selection sort = 4 selection sort
 <---> 4
 4 </link> = 4 </link>
 4 : like that algorithm, it div = 4 : like that algorithm, it div
 4 ides its input into a sorted = 4 ides its input into a sorted

The output of the third phase is a segmentation of each XML document into
smaller segments than those output by the second phase. The complexity of the
third phase is thus again O(N) (with N=length of the XML documents).

2.4. Fourth phase: Alignment of sequences of differing segments

The fourth phase consists in aligning and comparing the segments produced by
the third phase. The main idea consists in grouping together into sequences the
segments that may be different between the XML documents, in order to signifi-
cantly facilitate and reduce in size the alignments and comparisons to be per-
formed.

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

150

The first step (of the fourth phase) thus consists in grouping together the
neighboring differing segments. For example, see Example 6.

Example 6. Neighboring differing segments are grouped together

==
==
example of an area of the two XML documents with differing markup and text
==
==

 6 <link> = 6 <link>
 <---> 6
 6 in-place algorithm <---> 6 piece of work
 <---> 6
 6 </link> = 6 </link>

==
==
example of 3 segment sequences in the first (left-side) XML document
==
==

sequence i (equal tag segment):
|<link>|

sequence i+1 (differing text segment):
|in-place algorithm|

sequence i+2 (equal tag segment):
|</link>|

==
==
example of 3 segment sequences in the second (right-side) XML document
==
==

sequence j (equal tag segment):
|<link>|

sequence j+1 (differing tag and text segments):
||
|piece of work|
||

sequence j+2 (equal tag segment):

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

151

|</link>|

==
==

The second step (of the fourth phase) is as follows. Once grouped together into
sequences, the segments are aligned at two levels: sequence level and then seg-
ment level.

Alignment at the sequence level:
• The sequences of equal data, always comprised of exactly one segment, are

aligned (at the sequence level, which is - in the case of equal data - also the
segment level) with their identical counterparts by relying on their character
offsets in the equal-data version of the XML documents. Those character off-
sets were computed in the second phase (segmentation) of the algorithm.

Remark: A frequently occurring special case is when a segment of equal
data is split by an added tag in the other XML document. For example, see
Example 7, where "In computer science" in one XML document is split into "In
" and "computer science" in the other XML document. A correction must be
made when aligning the segments of equal data: whenever one segment of
equal data at a given character offset is a prefix of a segment of equal data at
the same character offset, the latter must be split into two segments of equal
data. The two new segments of equal data will then be aligned with their
counterparts by the regular alignment algorithm, just like any other segments
of equal data. End of remark.

• The sequences comprised of several differing segments are aligned (at the
sequence level) with their possibly differing counterparts in the other XML
document, based on the character offset of the nearest (i.e. previous) sequence
of equal data. Intuitively and very importantly, this corresponds to aligning
together what's in between parts of the XML documents that are guaranteed
(as known from the first phase) to be equal, based on their character offsets in
the data-equal version of the XML documents. See Example 6 and Example 8
for a visual illustration.

Example 7. Segments of equal data may not be identical (frequent special case)
==
==
incorrect (on the left side): one equal text segment "In computer science"
==
==

 4 In computer science <---> 4 In
 <---> 4 <link>
 <---> 4

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

152

 <---> 4 computer science

==
==
correct (on the left side): two equal text segments (after splitting)
==
==

 4 In = 4 In
 <---> 4 <link>
 <---> 4
 4 computer science = 4 computer science

==
==

Alignment at the segment level: when a sequence of differing segments differs
from its counterpart, there are typically "gaps" in one or both of the sequences,
corresponding, for instance, to added or removed tags (see Example 8). The align-
ment between pairs of matching sequences is a combinatorial problem to solve
for each pair of matching sequences of differing segments.

Example 8. Alignment at the segment level of two sequences of differing
segments (the equal-data segments above and below are already aligned based

on their offsets)

==
==
two sequences of segments that need alignment
==
==
 |<link>| = |<link>|
 |in-place algorithm| ? ||
 (gap) ? |piece of work|
 (gap) ? ||
 |</link>| = |</link>|
==
==
the same sequences, aligned
==
==
 |<link>| = |<link>|
 (gap) <---> ||
 |in-place algorithm| <---> |piece of work|
 (gap) <---> ||
 |</link>| = |</link>|

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

153

==
==

The third step (of the fourth phase) thus consists in a heuristic to find the best
possible alignment between matching sequences of differing segments. We pro-
pose that a difference minimization algorithm finds the best possible alignment.

Relying on systematic recursive enumeration of possible alignments (with
early pruning of unpromising solutions), the optimal alignment that minimizes
the number of differences between segments of the two sequences of differing
segments is chosen. Comparisons are made at the segment level, based on their
contents (which are rather small due to the third phase of the algorithm). Further-
more, differences between segments are weighted by segment type, so that e.g.
tags are aligned preferably with other tags, text preferably with other text, ...

An upper bound on the complexity of the fourth phase is O(Ngs) (with
N=length of the XML documents, g=number of gaps=number of segments of the
longest sequence minus number of segments of the shortest sequence, s=number
of slots=1 plus number of segments of the shortest sequence).

However, in practice, this complexity is not going to be a problem because (1)
it is a very large upper bound (computing a tighter bound would be a nice
endeavor) and (2) the number of gaps and slots (for example, see Example 8
where there are 2 gaps and 2 slots) are typically small given that the alignment
algorithm is applied, one at a time, to sequences of differing segments in-between
segments of equal data. Moreover, again, long sequences of differing segments
are found in structure-oriented XML documents rather than text-oriented XML
documents. For the running example illustrating this paper, both the mean num-
ber of gaps per sequence and the mean number of slots per sequence are both
around 2.

2.5. Fifth phase: Prettyprinting

The fifth phase consists in prettyprinting the differences between segments detec-
ted in the previous phases.
Differences between the two XML documents are presented to the user as a

sequence of contextualized items. As already said, the two versions of each differ-
ing segment are printed next to one another, into two columns. Each difference is
contextualized by printing several neighboring segments above and below, with-
out duplication of context beyond the previous and following differences.
Differing segments (the differences) and equal segments (the contexts) are

clearly identified. Line numbers are provided. See again, for example, Example 2.
The complexity of the fifth phase is O(N) (with N=length of the XML docu-

ments).

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

154

3. Implementation
The presented algorithm is implemented as a command line tool programmed in
Java 8 (about 5000 lines of code, plus the various libraries used for finding differ-
ences in raw data, for XML parsing and for the XML data model).

The tool requires only the path to the two XML documents two compare.
Well-formedness is enforced but validation is not performed.

Indeed, to find the differences between two XML documents using tagdiff, a
schema is not only unneeded but could also prevent the parsing of XML docu-
ments that are non-valid. For example, in our use case (see the introductory Sec-
tion of this paper), the newest of the two XML documents to compare may
include non-valid markup spliced by the newest (and buggy) version of the tag-
ging algorithm that produced it.
Diffing the unparsed versions of the XML documents in the first phase of our

proposed algorithm relies on a high performance Google library (Diff Match and
Patch1) that implements a classic diffing algorithm [7]. However, measurements
of processing of actual data showed that the runtime of the Myers diffing algo-
rithm increased very quickly with the number of differences, resulting in poor
performance.

To boost performance, we optimized the use of the Myers algorithm (not the
algorithm itself) as follows. The intent is to split the two XML documents to com-
pare into relatively short sections with not too many differences that will keep the
cost of the Myers algorithm to a reasonable level for each short section. The ques-
tion is then to find, in the two XML documents, splitting points that are guaran-
teed to match. The splitting points we chose are the paragraph tags (<p> and </
p>), making the assumption that no paragraph was added or removed between
the two XML documents. Other splitting points (to be specified by the user as a
regular expression) are possible, as long as they can be assumed to be equal
between the two XML documents. The Myers algorithm is thus applied many
times to the short sections in-between and within the paragraphs. And it works,
as illustrated in the Evaluation section here below.

Compared with a tree-to-tree comparison, this optimization (1) is less general
and requires the user to provide a bit of knowledge about the XML documents (if
the default choice of paragraph tags is not applicable), but (2) has neither the
memory overhead required by two complete XML trees, nor the extra work
required for XML parsing and for the tree-to-tree comparison; finally, (3) it must
be conceded that this solution is a bit arborescent in nature with a 3-level model-
ing of the XML documents (root, paragraphs, contents).

Obtaining chunks in the second phase (segmentation of the parsed XML docu-
ments) is currently done through SAX parsing and a chunk-based XML data

1 https://github.com/google/diff-match-patch

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

155

https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch
https://github.com/google/diff-match-patch

model [1]. This could be based on another data model as long as chunks can be
extracted into the appropriate in-memory data structure, or chunks could even be
obtained a posteriori after e.g. DOM parsing. These are implementation considera-
tions that are independent from the diffing algorithm proposed in this paper.

4. Evaluation
Descriptions of an algorithm typically include an evaluation of its performance.
As a preliminary evaluation, the tagdiff algorithm has been tested on a small test
corpus of 3 pairs of XML documents:
• a pair of small XML documents: 14 lines and about 2 kB each, 26 differences

between them;
• a pair of medium XML documents: about 1000 lines and 115 kB each, 743 dif-

ferences between them;
• another pair of medium XML documents: about 4000 lines and 500 kB each,

3638 differences between them.
The tagdiff algorithm has been applied to these XML documents, 3 times (for

reliability of results), on 2 different test computers equipped, respectively, with a
high-end CPU (Intel Core i7) and a commodity one (Intel Celeron). Figure 1
shows that, for the high-end CPU, the runtime is a fraction of a second for the
small XML documents and a few seconds for the medium documents. It also
illustrates that performance is much better with the optimization for the use of
the Myers diffing algorithm described here above in the Implementation Section.
The results are also about twice as fast on the high-end CPU, both with or with-
out the optimization of the diffing algorithm.

Figure 2 gives (for the Intel Core i7 CPU) the breakdown of runtimes for the
algorithm components: (1) diffing of the raw documents, (2) XML parsing, (3)
segmentation and (4) alignment (the combinatorial optimization problem).
Table 1 gives (for the Intel Core i7 CPU) the actual runtimes. Two observations
can be made.

Firstly, XML parsing dominates the runtime for the small XML documents
and, while growing less than linearly with the XML document sizes (not shown
on the figure but available in the table: 142 ms, 472 ms, 1235 ms, respectively),
quickly becomes a fraction of the total runtime.

Secondly, the runtime of the diffing library increases with the XML document
sizes. While initially very small, it rapidly becomes a fraction of the total runtime
but does not become overly large.

Table 2 gives (for the Intel Core i7 CPU) the runtimes for the second pair of
medium XML documents for a variable number of differences. The XML docu-
ment containing differences is 3858 lines long and we compared 3 versions of it:
about 1 difference every line, about 1 difference every 2 lines, and about 1 differ-

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

156

ence every 4 lines (the latter is the one described in the rightmost columnn of the
previous Table). This ought to illustrate whether or not the diffing component
decreases significantly with the number of differences between the XML docu-
ments. This is not the case, confirming that our proposed optimization of the use
of the diffing library limits the growth of the runtimes with the number of differ-
ences.

Figure 1. tagdiff runtimes

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

157

Figure 2. tagdiff components runtimes breakdown

Table 1. tagdiff components runtimes (fixed number of differences)

Runtimes (ms) small docs medium docs 1 medium docs 2
diffing 8 378 1987

XML parsing 142 472 1235
segmentation 12 220 882

alignment 35 593 1630
total 197 1663 5734

Table 2. tagdiff components runtimes (varying number of differences)

Runtimes (ms) medium docs 2,
1066 d. (29%)

medium docs 2,
1912 d. (53%)

medium docs 2,
3637 d. (100%)

diffing 1142 1315 1987
XML parsing 973 1020 1235
segmentation 664 560 882

alignment 1302 1567 1630
total 4082 (71%) 4464 (78%) 5734 (100%)

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

158

Finally, some preliminary measurements of memory usage. Memory usage
was measured (using VisualVM2) for the processing of the three pairs of XML
documents. For most of the execution, actual heap size was about, 10 MB, 30 MB
and 90 MB, respectively. During the very last phase of the execution (prettyprint-
ing, as described in the previous section), memory usage spiked a bit due to the
instantiation of lots of strings to generate the output of tagdiff.

5. Related work

5.1. Diffing algorithms

The Myers diffing algorithm [7] is used in the first phase of our proposed algo-
rithm, but not in the fourth phase. Indeed, the Myers diffing algorithm operates
on untyped strings, not on typed segments, and thus does not provide alignment
where there are differences. For example, see again Example 8 where |in-place
algorithm| would be aligned with || instead of |piece of work| if the Myers
diffing algorithm were used also for differing segments.

Other prior diffing algorithms (e.g. Xyleme project [2], X-Diff algorithm [10])
focus on structure-oriented XML documents rather than text-oriented XML docu-
ments. Differences between XML documents are reported in terms of modified
contents of subtrees instead of tags inserted and deleted. Prior diffing tools also
study performance and memory consumption but give only limited attention to
the visualization of results.

5.2. Command line tools

The classic diff tool [4] outputs differences line by line, which quickly becomes
unreadable as the line length becomes longer than half the screen width (see
Example 2).

The classic diff tool [4] with the -y option activated prints the two documents
side-by-side but does not segment long lines into segments of maximum fixed
width, and does not output differences as typed segments, each on a dedicated
line.

The classic diff tool [4] with the -u option activated provides data to patch an
existing file, which the tagdiff tool doesn't. This is not a goal of tagdiff, which is
intended for human users, not for processing by another software (though the
output of a command line tool can be provided to other command line tools, of
course).

The DiffMk tool [5] relies on the Myers diffing algorithm [7] and on tree-to-
tree comparison. On small test cases, it has slightly better performance than tagdiff

2 https://visualvm.github.io/

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

159

https://visualvm.github.io/
https://visualvm.github.io/

but doesn't do segmentation and alignment. It highlight differences by inlining
the differing segments within the text common to the two XML documents.

5.3. GUI tools

Tools with a rich graphical user interface, such as the Oxygen XML Editor [8] and
the DeltaXML XML Compare tool [3], offer diffing with a variety of options and
filters (such as exact comparison, compare by word, ignore certain items of the
XML infoset, ...). However, the differences between the compared XML docu-
ments remain readable only as long as the lines remain conveniently short.
Whenever a paragraph of the XML documents is longer than half the screen
width (which is typical of many text-oriented XML documents), the overflowing
contents are not displayed. Moreover, the differences are not systematically verti-
cally aligned with one another.

There also exists (web-based) tools, such as the W3C HTML diff service [6],
that highlight differences by inlining the differing segments within the text com-
mon to the two XML documents, at the expense of discarding differences in
markup.

5.4. Usability

In terms of usability, tagdiff is as simple as it gets as it is a command tool that
expects as arguments only the paths to the two XML documents to compare. As
discussed in the previous paragraphs, we also believe that tagdiff does a good job
of facilitating visualization of differences between text-oriented XML documents.

Responsiveness is also a component of usability. In terms of performance, it is
however too early to draw conclusions. Additional evaluation and benchmarking
are needed but, as seen in the previous section, the number of differences have
the biggest impact on the Myers diffing algorithm [7]. In addition to this, the cost
of XML parsing, which is amortized for large documents, has a big impact for the
diffing of small XML documents.

6. Conclusion
This paper presents an original attempt to provide a tool that facilitates the visu-
alization of differences in the tagging of two text-oriented XML documents.

The tool described, tagdiff, segments the chunks of the XML documents (both
text and markup are individually segmented) and then compares aligned sequen-
ces of typed segments:
• detection of differences and alignment of equal segments are done by a classic
diffing algorithm [7], applied to small sections of the XML documents (in a
slightly arborescent fashion) to obtain good performance,

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

160

• alignment of differing segments is done by a combinatorial difference minimi-
zation algorithm (with pruning) that is applied a large number of times, but to
typically small data, thus keeping its runtime under control.
Differences are then contextualized and prettyprinted.

7. Acknowledgements
We would like to thank the anonymous reviewers for their helpful suggestions
that helped improve this paper.

Bibliography
[1] C. Briquet, P. Renders and E. Petitjean. A virtualization-based retrieval and update

API for XML-encoded corpora. In Proc. Balisage, Montréal, Québec, 2010.
[2] G. Cobéna, S. Abiteboul, A. Marian. Detecting Changes in XML Documents. In

Proc. Int. Conf. on Data Engineering, San Jose, 2002.
[3] DeltaXML. [online]: https://www.deltaxml.com/
[4] Diff. In Wikipedia, the Free Encyclopedia. [online]: https://en.wikipedia.org/

wiki/Diff
[5] DiffMk. [online]: https://sourceforge.net/projects/diffmk/
[6] HTML diff service. [online]: https://services.w3.org/htmldiff
[7] E. Myers. An O(ND) Difference Algorithm and Its Variations. In Algorithmica 1, 2,

1986.
[8] Oxygen XML Editor. [online]: https://www.oxygenxml.com/
[9] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton and J. Siméon.

XQuery Update Facility 1.0. W3C Recommendation [online]: http://
www.w3.org/TR/xquery-update-10/

[10] Y. Wang, D. DeWitt and J. Cai. X-Diff: An Effective Change Detection Algorithm
for XML Documents. In Proc. Int. Conf. on Data Engineering, Bangalore, India,
2003.

Tagdiff: a diffing tool for highlighting differences in text-oriented XML

161

https://www.deltaxml.com/
https://en.wikipedia.org/wiki/Diff
https://en.wikipedia.org/wiki/Diff
https://sourceforge.net/projects/diffmk/
https://services.w3.org/htmldiff
https://www.oxygenxml.com/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/

162

Merge and Graft: Two Twins That Need
To Grow Apart

Robin La Fontaine
DeltaXML

<robin.lafontaine@deltaxml.com>
Nigel Whitaker

DeltaXML
<nigel.whitaker@deltaxml.com>

Abstract

Software developers are familiar with merge, for example pulling together
changes from one branch into another in a version control system. Graft
(also known as 'cherry pick') is a more selective process, pulling changes
from selected commits onto another branch. These two processes are often
implemented in the same way, but they are not the same, there are subtle but
important differences.

Git and Mercurial have different ways to determine the correct ancestor
when performing a merge operation. Graft operations use yet another way
to determine the ancestor. In the built-in line-based algorithm, the underly-
ing diff3 process is then used. This diff3 algorithm accepts non-conflicting
changes and relies on the user to resolve conflicts. We will examine the
details of this process and suggest that the symmetrical treatment that diff3
uses is appropriate for merge but not necessarily optimal for the graft opera-
tion.

We will look at examples of tree-based structures such as XML and
JSON to show how different approaches are appropriate for merge and graft,
but the arguments presented apply to the merging of any structured con-
tent. Treating structured documents and data as tree-structured rather than
just as a sequence of lines provides more intelligent merge and graft results,
and enables rules to be applied to give improved results, thus reducing time-
consuming and tedious manual conflict resolution.

We examine how these improvements can be integrated into version
control systems, taking Git as an example, and suggest developments in
their architecture that will make them even more powerful development
tools.

Keywords: XML, JSON, Merge, Graft, Cherry-pick, Git

163

1. Introduction
Merging files across branches in a version control system can be a very time-con-
suming process. Automation is a great help, of course, but has its limitations,
some of which are fundamental and some of which are due to the merge tools not
fully understanding the source file structure.

One fundamental limitation is that it is not always possible to automate the
propagation of changes because conflicts may occur. A conflict is a situation
where accepting one change is not compatible with accepting another change – a
choice needs to be made and so user intervention is needed. User intervention
obviously slows down the process because it can take significant time to under-
stand a conflict sufficiently to resolve it. A high level of expertise is needed to
resolve conflicts and this is therefore an expensive process, not to mention being a
very tedious job requiring sustained high levels of concentration.

It is worth mentioning that it is possible to resolve all conflicts automatically if
a precedent order is defined, i.e. the changes in one branch will always take prior-
ity. We will discuss this in more detail later.

Merge tools are, usually, line-based tools that treat the files as a sequence of
lines but they have no understanding of any syntactic structure that may be
present. The result is often surprisingly good but can go very wrong in some sit-
uations, for example when the text has been re-formatted. Errors in the result can
also occur because, for example, a new start tag insertion has been accepted but
the corresponding end tag, perhaps several hundreds of lines further down the
file, has been rejected – this type of error may be difficult to avoid, and very time
consuming to correct.

Our concern in this paper is with processing XML, which has a tree structure,
but the discussion also applies to other file types that can be converted into XML
[1]. One example of this is JSON which also has a tree structure and can be con-
verted into XML for processing [2] and then the result transformed back into
JSON.

For XML, the merge process begins by merging all three source files into a sin-
gle file where common data is shared and the differences between the three files
are represented in a well-defined way. We call this intermediate merged file a
delta file. Rules can then be applied to the delta file so that any changes are pro-
cessed to generate a resultant merged file, ideally one that does not contain any
conflicts. If there are conflicts, these can be represented in XML for downstream
conflict resolution.

It is this ability to represent the three files in one, and the definition of rules to
process the changes, that enables us to refine our understanding of the process
and so identify subtle but important differences between the regular merge proc-
ess and the graft process. This paper explores these differences as a step towards

Merge and Graft: Two Twins That Need To Grow Apart

164

refining automated merge/graft processing to improve it and so save time and
effort.

2. Terminology
First we will define our terminology and describe the merge and graft processes.
Graft is also often known as 'cherry pick' but we will use the shorter term here.

Given two branches, each with two versions:
• Branch P with versions P0, P1 and P2
• Branch Q with versions Q0, Q1 and Q2

Figure 1. Merge and Graft Operations

The figure above shows the classic merge operation on the left. Graft, in the cen-
tre, cherry-picks the changes from P1 to P2 and applies this to Q2 to produce Q3.
The figure on the right is the way that graft is implemented as a merge, so that P1
is considered the ancestor.

For merge, P0=Q0 in other words P1 and Q1 have a common ancestor.
The merge process is to create Q3 such that all the changes between Q0 and P2

and all the changes between Q0 and Q2 are represented in the changes between
Q0 and Q3. This may result in conflicts that need to be resolved.

For graft, P0 may not equal Q0, but we want to propagate the changes
between two selected commits on the same branch, such as P1 and P2, onto
another branch, for example the one ending Q2, to create a new commit Q3.

These processes are not the same, and we will present XML and JSON exam-
ples to illustrate in detail how using the same algorithm for both does not always
give optimal results.

The graft process is therefore to create Q3 such that all the relevant changes
between P1 and P2 are represented in the changes between Q2 (the 'target' data

Merge and Graft: Two Twins That Need To Grow Apart

165

set) and Q3. A change is only relevant if the data involved in the change is
present in the target data set. This may also result in conflicts that need to be
resolved, but typically there are fewer (or no) conflicts caused by graft than those
caused by merge - for reasons that are described later.

3. A word about conflicts
As noted in the Introduction, it is possible to resolve all conflicts automatically if
a precedent order is defined, i.e. the changes in one branch will always take prior-
ity. Conflicts are not usually resolved in this way because it does not always give
the ‘right’ result simply because some conflicts require user review to understand
why they have occurred and how best to correct them. The ‘right’ result may not
be the acceptance of one change or the other but rather some form or merging of
the changes. This is the case both for source code merge and for document
merges.

There may be situations when a precedent order can be defined and if so time
can be saved because some, if not all, conflicts can be resolved automatically. The
ability to do this is a desirable feature in a merge application.

4. How do merge and graft differ?
Regular three-way merge is a symmetrical process in that the two branches being
merged are considered to have equal status. We do not want a change in one to
override a change in the other without some user checking. Therefore we want
conflicts to be identified. With tree structured data conflicts can be more complex,
for example a sub-tree is deleted in one branch but it has also been changed in the
other branch.

The use case for merge is well understood in version control systems, i.e. the
requirement to merge changes from a branch back into the trunk or master ver-
sion. The use case for graft is not so obvious, and it is worth considering use cases
where graft is really what is required rather than merge. Within a version control
system, graft is appropriate for 'cherry picking' changes between two versions on
one branch to propagate these changes across to another branch. For source code,
we might want to apply a bug fix but no other changes to another branch. It is
also the appropriate process for keeping related sets of data synchronised in
terms of changes made to either set.

Consider an example related to Master Data Management (MDM). We have a
set of contact information (name, address, phone etc.) for members of an organi-
sation. A smaller list or subset might be held for a local office, but how can this be
kept up to date with changes to the master set of members? Regular three-way
merge is not appropriate because a change to a member who is not in this office
would result in an apparent conflict (amended in master set and deleted in local

Merge and Graft: Two Twins That Need To Grow Apart

166

office set). Graft would work because this change would not be relevant so would
be ignored. What about deletion? If a member leaves, then that member is deleted
in the master set and both graft and merge would propagate this deletion to the
local office set. But if a member moves from the local office to another office, then
the deletion from the local office set would similarly propagate to the master set -
which is not what is needed. This is an example where a 'safe graft' or 'graft with-
out deletions' would be needed - a variation on the normal graft that requires
different rules. Although this applies to a specific use case, this use case supports
the argument that different use cases require different rules.

For regular merge, the appropriate common ancestor file is identified and
each branch has the same relationship with it in that it has been derived from it.
Therefore differences between the ancestor and each branch are ‘real’ changes
that need to be considered. In some situations, the appropriate ancestor file is
unambiguous, but in other more complex merge scenarios it may be necessary for
more complex processing to determine what is appropriate. Further discussion of
this is outside the scope of this paper.

For graft, on the other hand, we do not have a common ancestor. Therefore
the graft situation is not symmetrical. We have two files from one branch and we
are trying to apply the changes between these to some other file – typically a file
that is very similar but there may be significant differences.

The principles can be illustrated with a simple example. This is a very simple
example and seems rather trivial but the simplicity is intended to clarify the
actual changes from the detail of the data.

Consider some file that contains contact information, identified by a name. To
keep this very simple, we have used a string "v1" to represent the data rather than
more realistic details of address, phone etc. Therefore "v2" represents some
change to that data.

Given two branches, each with two versions:

• Branch P with versions P0, P1 and P2

• Branch Q with versions Q0, Q1 and Q2

We now consider and example to show that the implementation of graft as a
merge does not always produce the desired results.

We started with P0 and Q0 containing these contacts: John, Mike, Anna. We
will look at it as JSON, which is more compact than XML, but of course it could
be XML.

Example 1. P0=Q0

{
 "John": "v1",
 "Mike": "v1",

Merge and Graft: Two Twins That Need To Grow Apart

167

 "Anna": "v1"
}

We took these and added David into P1: John, Mike, Anna, David

Example 2. P1:

{
 "John": "v1",
 "Mike": "v1",
 "Anna": "v1",
 "David": "v1"
}

We deleted John and changed details for Mike and David in P2: Mike has been
changed and this is denoted by a new value "v2", Anna is unchanged, and David
is also changed, so again we indicate this simply with a new value "v2"

Example 3. P2:

{
 "Mike": "v2",
 "Anna": "v1",
 "David": "v2"
}

The above describes what happened on the P branch. Now we can look at the
changes made on the Q branch. First, we changed details for Anna in Q1: John,
Mike, Anna is now "v2".

Example 4. Q1:

{
 "John": "v1",
 "Mike": "v1",
 "Anna": "v2"
}

We add a new contact, Jane, and change John in Q2: John is now "v2", Mike, Anna
is now "v2", Jane

Example 5. Q2:

{
 "John": "v2",
 "Mike": "v1",
 "Anna": "v2",

Merge and Graft: Two Twins That Need To Grow Apart

168

 "Jane": "v1"
}

A regular three-way merge of these two branches would result in a merged Q
branch:

Q3 would have a conflict for John who has been deleted in P but changed in
Q, Mike has value "v2", Anna likewise is "v2", Jane is unchanged and there is a
conflict for David who appears to have been deleted in Q2 but at the same time
has been changed in P.

Example 6. 3-way merge

P1 P2 Q2 Q3: 3-way merge
{ { { {
 "John": "v1", "John": "v2", ! CONFLICT
 "Mike": "v1", "Mike": "v2", "Mike": "v1", "Mike": "v2",
 "Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
 "David": "v1" "David": "v2" ! CONFLICT
 "Jane": "v1" "Jane": "v1"
} } } }

On the other hand, if we want to perform a graft then we want to propagate the
changes between P1 and P2 onto the Q branch. The changes between P1 and P2
are to Mike and David, and John is deleted. However, as David does not appear
in Q2 we cannot apply that change – it is not a conflict, it is just a change that is
not relevant.

So the result is Q3: Mike has value "v2", Anna has value "v2", Jane is
unchanged.

Example 7. Graft

P1 P2 Q2 Q3: Graft
{ { { {
 "John": "v1", "John": "v2",
 "Mike": "v1", "Mike": "v2", "Mike": "v1", "Mike": "v2",
 "Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
 "David": "v1" "David": "v2"
 "Jane": "v1" "Jane": "v1"
} } } }

Can we get the same result using a regular three way merge with a precedent on
changes, e.g. that changes in Q override changes in P? In this case the deletion of
David overrides the change in David in the P branch. However, the change in
John in Q overrides the deletion in P, so we would get:

Merge and Graft: Two Twins That Need To Grow Apart

169

Example 8. 3-way merge, Q priority

P1 P2 Q2 Q3: 3-way merge,
 Q priority
{ { { {
 "John": "v1", "John": "v2", "John": "v2",
 "Mike": "v1", "Mike": "v2", "Mike": "v1", "Mike": "v2",
 "Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
 "David": "v1" "David": "v2"
 "Jane": "v1" "Jane": "v1"
} } } }

Similarly, a merge with changes in P overriding changes in Q would leave David
in the result which differs from the graft result, as shown below.

Example 9. 3-way merge, P priority

P1 P2 Q2 Q3: 3-way merge,
 P priority
{ { { {
 "John": "v1", "John": "v2",
 "Mike": "v1", "Mike": "v2", "Mike": "v1", "Mike": "v2",
 "Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
 "David": "v1" "David": "v2" "David": "v2"
 "Jane": "v1" "Jane": "v1"
} } } }

This shows that the rules for merge are different from the rules for graft. They
may appear to be only different in a subtle way but the differences in the result of
a complex merge are significant. So too would be the time saved in getting the
automated result to be correct.

Some readers may say that the result of the graft is not exactly what they want
because they do not want to ever have any data deleted, they only want additions
to be propagated. Such a requirement might arise, for example, when we do not
want master data deleted or changed. This is shown below.

Example 10. Graft: Additions only

P1 P2 Q2 Q3: Graft:
 Additions
 only
{ { { {
 "John": "v1", "John": "v2", "John": "v2",
 "Mike": "v1", "Mike": "v2", "Mike": "v1", "Mike": "v1",
 "Anna": "v1", "Anna": "v1", "Anna": "v2", "Anna": "v2",
 "David": "v1" "David": "v2"

Merge and Graft: Two Twins That Need To Grow Apart

170

 "Jane": "v1" "Jane": "v1"
} } } }

The conclusion is that the merge or graft rules need to be controlled in different
situations, and indeed may need to be controlled in a different way across an
XML tree. The ability to define the rules according to the use case is an advantage
even if the standard definitions work in most situations.

We summarise the above results in the following table.

Table 1. Changes and their different interpretation for Merge and Graft

P1 P2 Q2 Merge
interpreta-
tion

Graft inter-
pretation

Comment

"John": "v1" "John": "v2" Deleted by
P2, changed
by Q2 - con-
flict

Deleted We do not
know if Q2
has changed
this because
we do not
have its
ancestor

"Mike": "v1" "Mike": "v2" "Mike": "v1" Changed by
P2

Changed

"Anna":
"v1"

"Anna": "v1" "Anna": "v2" Changed by
Q2

No change
to apply

"David":
"v1"

"David": "v2" Changed by
P2, deleted
by Q2 - con-
flict

Data not
present in
target so
cannot apply
change

 "Jane": "v1" Added by
Q2

No relevant
changes to
apply

 "Mar-
tin"="v1"

 Added by
P2

Added

The table above shows how the same situation is interpreted in a different way by
merge and graft. Similarly, we can create a table to show a number of possible
types of graft operation.

Merge and Graft: Two Twins That Need To Grow Apart

171

Table 2. Variants of Graft

P1 P2 Q2 'Regular'
graft inter-
pretation

'Additions
only' graft
interpreta-
tion

'No dele-
tions' graft
interpreta-
tion

"John": "v1" "John": "v2" Deleted No change No change
"Mike": "v1" "Mike": "v2" "Mike": "v1" Changed No change Changed
"Anna":
"v1"

"Anna": "v1" "Anna": "v2" No change
to apply

No change No change

"David":
"v1"

"David": "v2" Data not
present in
target so
cannot
apply
change

No change No change

 "Jane": "v1" No relevant
changes to
apply

No change No change

 "Mar-
tin"="v1"

 Added Added Added

These different flavours of graft are appropriate in different situations. For exam-
ple if the Q branch is the master data then we might not want deletions to be
applied. On the other hand if the P branch is the master one then we may want to
apply all changes and deletions. In tree-structured data the situation is more com-
plex because we may want to apply different rules at different places in the tree.

5. Advantages of XML for rule-based conflict resolution
Merge or graft rules can potentially become very adept at handling different sit-
uations, reducing the need to resolve conflicts by inspection.

It is very difficult to apply useful rules to line-based merges. There are two
reasons for this. First, most data is structured in some way, for example the tree
structure of XML and JSON. Source code is also structured and can typically be
represented as a tree structure. Any line-based representation will not reflect this
structure and so it is not possible to represent sensible rules. Secondly, the stand-
ard representations of change to text files, for example the output from diff or the
diff3 format, do not easily support rule-based processing.

XML does provide significant advantages in this area. First, it is possible to
merge several documents into one and represent the similarities and differences

Merge and Graft: Two Twins That Need To Grow Apart

172

in XML. Given this representation, rules can then be defined to process the
merged document to generate a result, so different sets of rules will generate dif-
ferent results according to the requirements. A major benefit of XML or JSON
markup is that the conflicts can be addressed using mechanisms such as XPath [10]
or JSON Pointer [9]. This enables much more powerful automated or rule-based
processing. XPath and XSLT provide a well-defined language to specify the rules
and execute them.

For example, consider the merge of a Maven POM file (a system for software
build configuration). In the POM file we describe dependencies of the code being
built and in a number of circumstances we have found version conflicts in POM
dependencies. We could identify these conflicts with an XPath: / project/
dependencies/dependency/version and could say that for these conflicts we will
use the version in the current or HEAD branch, or perhaps, assuming the
dependency has an upwardly compatible API, we take the highest version.

It is the addressability of tree-based conflicts that introduces these automation
possibilities. If conflict resolution rules can be applied in the merge driver then
fewer conflicts would need to be presented to the user to deal with manually in a
merge tool. We could expect that rules could be created to improve the conflict
processing for a number of formats which are manually or semi-automatically
created using developer tools such as IDEs, including Apache Ant, Maven POMs
and XSLT.

Looking further ahead, other structured data could be converted into XML,
and then back again, as shown with 'Invisible XML' 1. This approach opens up
the opportunity to apply the intelligent, tree-structured XML merge to other
types of data, then after application of rules the result can be converted back from
XML into the original format. This is how the above JSON was processed 3.

6. Integration with Git Merge
We have argued here that 'merge' is not a fixed process, rather it changes accord-
ing to different needs and the nature of the data. We now move on to discuss how
we might go about implementing this for Git.

The merge (and also graft) process of Git involves a number of components,
these are:
• merge scenario
• merge driver
• merge tool
The 'merge scenario' is responsible for looking at all of the files and directories
with an understanding of moves and renames, matching up the corresponding
files, determining the appropriate ancestor and calling the merge driver on triples
of files. In some cases the scenario will determine that a full merge is unnecessary

Merge and Graft: Two Twins That Need To Grow Apart

173

and may, for example, perform a fast-forward merge. It is also possible to specify
a scenario such as 'mine' that produces a result that takes all of the files on a cer-
tain branch. In these cases it is not really a full merge and the merge driver may
not be invoked.

The 'merge driver' receives three files corresponding to the ancestor and the
two branches, loads the content into memory and is responsible for aligning their
content and identifying any conflicts. Using a return code, it signals to the invok-
ing code whether there are any conflicts. This usually reports a message to the
user, often using a line starting with a capital "C" character. The diff3 merge
driver in Git represents conflicts using a textual line based format consisting of
marker lines using angle-bracket, equals or plus characters. The git config com-
mand can be used to configure different merge drivers and the .gitattributes
file can then select between them using the filenames or extensions of the files
being merged.

The user typically needs to resolve any conflicts in each file before the merge
operation can be completed and committed. It is possible to take the file with the
markers produced by the driver and resolve the conflicts by editing that output in
a text editor and then reporting that the file has been resolved. A 'merge tool' pro-
vides a graphical user interface to automate the conflict resolution process, often
allowing the user to select content from one of the branches or possibly the ances-
tor for each of the conflicting regions in the file.

There are two common usage or interaction patterns we have found relating
to the use of merge drivers and merge tools:
• The merge driver produces the line-based conflict markers and then the merge

tool reads the result file from the driver, interprets the markers and provides
the user with selection capabilities based on this interpretation. Merge tools
which take this approach include MS Visual Studio Code [5] and TkDiff [4].

• The merge tool, when it is invoked, is supplied with the filename of the driver
result, but also the names of the original inputs to the merge driver. It can then
re-merge the inputs and perhaps base its user interface on internal data struc-
tures from its own merge algorithm. Examples of tools which re-merge and
do not seem to use the driver results include: Araxis Merge [7], P4Merge [6],
and OxygenXML [8].

Given an enhanced, tree-based, three-way merge algorithm it is possible to inte-
grate it into the Git merge process as either a merge driver or merge tool. We
believe that the best approach is to integrate as a merge driver for reasons that we
will summarise next.

6.1. Avoiding conflict confusion
The merge driver and merge tool should identify the same conflicts, i.e. behave in
a consistent way. When processing XML with a line-based algorithm (such as

Merge and Graft: Two Twins That Need To Grow Apart

174

diff3), changes such as those to attribute order might cause a conflict in the merge
driver. In many workflows a conflicting file would cause the merge tool to be
invoked in order to resolve the conflict. But if the merge tool then uses a tree-
based XML or JSON aware algorithm this would not identify these apparent con-
flicts and the file may not even have any conflicts present. The unnecessary
invocation of the merge tool may cause confusion for the user.

6.2. Improved non-conflicting results
A tree-based merge algorithm which is XML or JSON aware would normally pro-
duce well-formed XML or JSON results. However this is not true of a line based
merge such as diff3, where the result may have mismatched element tags for
example. These bad results will not necessarily be associated with a conflict - the
mismatched tag may be non-conflicting. If the tree-aware algorithm is only used
in the merge tool, it may never be invoked unless there is a conflict and it is there-
fore possible for bad results to go unnoticed.

An algorithm with a better understanding of the data and its semantics can
make better alignment decisions. Again in non-conflicting situations it makes
sense to have this better alignment performed at the merge driver stage.

6.3. Simpler software design
The separation of the merge algorithm and a conflict resolving GUI can lead to
simpler software design. It may be that merge tools find the textual markers
insufficient for their needs and can provide a better experience by re-running a
merge algorithm, but the merge architecture would be simpler if this was not nec-
essary. This would avoid duplicated code and reduce the processing and IO
required. In the following section we will look at this issue in greater detail.

7. Representing merge conflicts
It is possible to have an XML or JSON aware merge algorithm and then describe
conflicts with diff3 compatible line-based markers discussed earlier. However, we
found some limitations to this approach:
• If fine-grained textual changes are shown to the user on individual lines this

can interfere with the original code or data layout and the result of the merge
may be less familiar and need reformatting. Figure 2 shows one of our experi-
ments in this area using Visual Studio code. It illustrates how an attribute con-
flict can be reformatted to work well with the diff3 markers and Figure 3
shows the resolved result.

• The line based conflict format represents a linear sequence of conflicts. How-
ever tree based merge algorithms can have nested changes and (with an n-

Merge and Graft: Two Twins That Need To Grow Apart

175

way or octopus merge) nested conflicts. Consider the case where one branch
modifies a single word in a paragraph and in the other merge branch that
paragraph is deleted. If the deletion is accepted then there is no need to
descend further into that subtree to deal with any nested changes or conflicts.

• For XML, if a conflicting insertion of a start tag is accepted, then the corre-
sponding end tag should also be included, but there is no way to specify these
linked edits in diff3. Similarly for JSON, it is not simple to ensure that the sep-
arating commas are included correctly.

Figure 2. XML attribute conflict in Microsoft Visual Studio Code

Figure 3. Resolved attribute conflict in Microsoft Visual Studio Code

These limitations, together with the limited number of merge tools which handle
the diff3 format, have made us consider alternative approaches. Representing the
conflict as XML or JSON markup allows us to overcome the limitations above and
could allow better communication between the merge driver and merge tool. The
intention would be to provide a rich enough change representation so that there

Merge and Graft: Two Twins That Need To Grow Apart

176

is no need to re-run the merge algorithm. Merge tool applications can then take
advantage of different merge drivers, and users can choose their preferred merge
tool.

Some merge tools handle the data as lines of text, others are more aware of the
type of data, e.g. OxygenXML understands the structure of XML or JSON. This
leads to different requirements for the way that conflicts are communicated from
the merge driver to the merge tool. A fully XML aware merge driver could com-
municate detailed XML semantics to an XML aware merge tool, but could only
convey more limited information to a merge tool that understands only line
based text files.
Conflict markers from diff3 may have line numbers but these are not helpful

in free-format XML or JSON structures. On the other hand, users do care about
layout for source code and for some JSON or XML data and this should be pre-
served. There is no simple solution to how best to communicate between more
semantically intelligent merge drivers and the requirements and capabilities of
various merge tools.

8. Conclusions

We have shown how merge and graft differ and argued that a single merge proc-
ess is not appropriate to cover both scenarios. This distinction can be taken fur-
ther to show that there are not just two but many different types of merge, each
useful and appropriate for different use cases.

The ability to represent structured data and documents as tree-based enables
us to provide improved merge and graft operations. The use of XML, with XPath
and XSLT, provides essential support to the development of a rule-based system
that provides merge and graft for different use cases.

We have examined how such improvements can be integrated into Git and
suggested developments in its architecture that will enable more versatile and
appropriate merge and graft operations. The saving in time when dealing with
large, complex documents and data is self-evident, but the advantage to users of
reducing the time that needs to be spent on the very tedious task of conflict reso-
lution is an even greater incentive to pursue this.

References
[1] Data Just Wants to Be Format-Neutral1, Steven Pemberton, CWI
[2] Transforming JSON using XSLT 3.02 Michael Kay, Saxonica

1 http://www.xmlprague.cz/day2-2016/#data
2 http://www.xmlprague.cz/day2-2016/#jsonxslt

Merge and Graft: Two Twins That Need To Grow Apart

177

http://www.xmlprague.cz/day2-2016/#data
http://www.xmlprague.cz/day2-2016/#jsonxslt
http://www.xmlprague.cz/day2-2016/#data
http://www.xmlprague.cz/day2-2016/#jsonxslt

[3] JSON Compare Online Preview - DeltaXML https://www.deltaxml.com/json-client/
[4] tkdiff project3

[5] Visual Studio Code4

[6] Helix P4Merge and Diff Tool5

[7] Araxis Merge6

[8] Oxygen XML Editor7

[9] RFC: 6901 JavaScript Object Notation (JSON) Pointer8, Internet Engineering Task
Force (IETF)

[10] XML Path Language (XPath) 3.19, W3C

3 https://sourceforge.net/projects/tkdiff/
4 https://code.visualstudio.com
5 https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
6 https://www.araxis.com/merge/
7 https://www.oxygenxml.com/xml_editor.html
8 https://tools.ietf.org/html/rfc6901
9 https://www.w3.org/TR/2017/REC-xpath-31-20170321/

Merge and Graft: Two Twins That Need To Grow Apart

178

https://www.deltaxml.com/json-client/
https://sourceforge.net/projects/tkdiff/
https://code.visualstudio.com
https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
https://www.araxis.com/merge/
https://www.oxygenxml.com/xml_editor.html
https://tools.ietf.org/html/rfc6901
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://sourceforge.net/projects/tkdiff/
https://code.visualstudio.com
https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
https://www.araxis.com/merge/
https://www.oxygenxml.com/xml_editor.html
https://tools.ietf.org/html/rfc6901
https://www.w3.org/TR/2017/REC-xpath-31-20170321/

The Design and Implementation of
FusionDB

Adam Retter
Evolved Binary

<adam@evolvedbinary.com>

Abstract

FusionDB is a new multi-model database system which was designed for the
demands of the current Big Data age. FusionDB has a strong XML herit-
age, indeed one of its models is that of a Native XML store.

Whilst at the time of writing there are several Open Source and at least
one commercial Native XML Database system available, we believe that
FusionDB offers some unique properties and its multi-model foundation for
storing heterogeneous types of data opens up new possibilities for cross-
model queries.

This paper discusses FusionDB's raison d'être, issues that we had to
overcome, and details its high-level design and architecture.

1. Introduction
FusionDB, or Project Granite as it was originally known, was conceived in the
spring of 2014. Ultimately it was born out of a mix of competing emotions - frus-
tration, excitement, and ambition. The frustration came from both, the perceived
state of Open Source NXDs (Native XML databases) at that time, and commercial
pressures of operating such systems reliably at scale. The overall conclusion
being that they each had several critical issues that were not being addressed over
a prolonged period of time, and that they were rapidly being surpassed on sev-
eral fronts by their newer NoSQL document database cousins. The excitement
came from witnessing an explosion of new NoSQL database options, including
many document oriented database systems, which offered varying consistency
and performance options, with a plethora of interesting features and query lan-
guages. Whilst the ambition came from believing that the community, i.e.: the
users of NXD systems, deserved and often wanted a better option, and that if it
needed building, then we both could and, more importantly, should build it!

In 2014, we had over 10 years experience with an Open Source NXD, eXist-db,
both contributing to its development, and helping users deploy and use it at a
variety of scales. Well aware of its strengths and weaknesses in comparison to
other NXDs and non-XML database systems, we set out to identify in a more sci-
entific manner the problems faced by the stakeholders; ourselves as the develop-

179

ers of the NXD, our existing users, and those users which we had not yet attracted
due to either real or perceived problems and missing features.

In the remainder of this section we set out what we believe to be the most
important issues as identified by eXist-db users and developers. Whilst we do
make comparisons between BaseX, eXist-db, MarkLogic and other NoSQL data-
bases, we place a particular focus on eXist-db as that is where our experience lies.
It should be remembered that each of these products has varying strengths and
weaknesses, and that all software has bugs. Whilst one might interpret our dis-
cussion of eXist-db issues as negative, we would rather frame it in a positive light
of transparent discussion, yes there are issues, but if we are aware of them, then
ultimately they can be fixed. There are many eXist-db users operating large sites
who are able to cope with such issues, just as there are with BaseX, MarkLogic,
and others.

1.1. Issues Identified by Users
First, through either direct reports from existing and potential users, or acting as
a proxy whilst deploying solutions for users, we identified the following issues:
1. Stability

Under normal operation the NXD could stop responding to requests. As
developers, we identified two culprits here, 1) deadlocks caused by the overlap-
ping schedules of concurrent operations requiring mutually exclusive access
to shared resources, and 2) read and write contention upon resources in the
system, whereby accessing certain resources could cause other concurrent
operations to stall for unacceptably long periods of time.

2. Corruption
When the system stopped responding to requests, it had to be forcefully

restarted. Often this revealed or led to corruption of the database. As develop-
ers, we identified both a lack of the Consistency and Durability properties of
ACID (Atomicity, Consistency, Isolation, and Durability) semantics, which
also affected the ability to recover safely from a crash (or forceful restart).

3. Vertical Scalability
Adding CPUs with more hardware threads did not cause the performance

of the database to scale as expected. As developers, we identified many bottle-
necks caused by contention upon shared resources.

4. Horizontal Scalability
There was no clustering support for sharding large data sets or splitting

resource intensive queries across multiple machines.
5. Operational Reliability

There was no support for a mirrored system with automatic failover in the
event of a hardware failure.

The Design and Implementation of FusionDB

180

6. Key/Value Metadata
There was no facility to associate additional key/value metadata with

documents in the database. Many users would store the metadata externally
to the document, either in a second "metadata document", or an external (typi-
cally) SQL database, later combining the two at query time. Unfortunately,
this lacks atomic consistency, as updates to both the metadata and documents
are not guaranteed to be in sync. As developers, we identified that a key/value
model which is atomically consistent with a document model would be
advantageous.

7. Performant Cross-reference Queries
The system supported indexes for xml:id XML identifiers and references

within and across documents. However, more complicated XML Markup Lan-
guages such as DocBook, TEI, and DITA, may use much more complex link-
ing schemes between nodes where composite key addressing information is
expressed within a single attribute. As developers, we identified that for quer-
ies spanning documents with such complex references, more advanced data
models and index structures could be used to improve performance.

1.2. Issues Identified by Developers
Both through those issues raised by users, and our experience as developers, we
identified a number of technical issues with eXist-db that we believed needed to
be solved. Each of those technical issues fell into one of three categories - Correct-
ness, Performance, and Missing Features.

It is perhaps worth explicitly stating that we have ordered these categories by
the most important first. Correctness has a higher priority than Performance, and
Performance has a higher priority than developing new features. There is little
perceived benefit to a database system which is fast, but fast at giving the wrong
results!

1.2.1. Correctness

1. Crash Recoverable
If the database crashes, whether due to a forced stop, software error, or the

host system losing power, it should always be possible to restore the database
to a previously consistent state.

A lack of correctness with respect to the implementation and interaction of
the WAL (Write Ahead Log) and Crash Recovery process needs to be
addressed.

2. Deadlock Avoidance
In a number of scenarios, locks within the database on different types of

resources are taken in different orders, this can lead to a predictable yet avoid-
able deadlock between two or more concurrent operations.

The Design and Implementation of FusionDB

181

A lack of correctness with respect to the absolute order in which locks
should be obtained and released by developers on shared resources needs to
be addressed.

3. Deadlock Detection and Resolution
With dynamic queries issued to the database by users on an ad-hoc basis,

it is prohibitively expensive (or even impossible) to know all of the shared
resources that will be involved and how access to them from concurrent quer-
ies should be scheduled. Deadlock Avoidance in such scenarios is impossible,
as it requires a deterministic and consistently ordered locking schedule.

With the ad-hoc locking of resources to ensure consistency between con-
current query operations, deadlocks cannot be prevented.

To ensure the correct and continual functioning of the system, deadlocks
must not cause the system to stop responding. If pessimistic concurrency with
locking is further employed, a deadlock must be detected and resolved in
some fashion which allows forward progress of the system as a whole. An
alternative improvement would be the employment of a lock-free optimistic
concurrency scheme.

4. Transaction Isolation
With regards to concurrent transactions, Isolation (the I in ACID) [1], is

one of the most important considerations of a database system and deeply
affects the design of that system.

Also equally important, is a clear statement to users about the available
isolation levels provided by the database. Different user applications may
require varying isolation levels, where some applications, such as social
media, may be able to tolerate inconsistencies provided by weaker isolation
levels, accounting or financial applications often require the strongest isola-
tion levels to ensure consistency between concurrent operations.

For example, BaseX provides clear documentation of how concurrent oper-
ations are scheduled [10]. It unfortunately does not explicitly state its isolation
level, but we can infer from its scheduling that it likely provides the strictest
level - Serializable. Likewise, MarkLogic dedicates an entire chapter of their
documentation [14], to the subject, a comprehensive document that unexpect-
edly does not explicitly state the isolation level, but likely causes one to infer
that Snapshot Isolation is employed; a further MarkLogic blog post appears to
confirm this [15].

The exact isolation level of eXist-db is unknown to its users and likely also
its developers. Originally eXist-db allowed dirty-reads [2], therefore providing
the weakest level of transaction isolation - Read-Uncommitted. Several past
attempts [3][5][6][7] have been made at extending the lock lease to the transac-
tion boundary, which would ensure the stronger Read-Committed or Repeatable-
Read level. Unfortunately, those past attempts were incomplete, so we can only

The Design and Implementation of FusionDB

182

infer that eXist-db provides at least Read-Uncommitted semantics, but for some
operations may offer a stronger level of isolation.

At least one ANSI (American National Standards Institute) ACID transac-
tion isolation level must be consistently supported, with a clear documented
statement of what it is and how it functions.

5. Transaction Atomicity and Consistency
A transaction must complete by either, committing or aborting. Committing

implies that all operations within the transaction were applied to the database
as though they were one unit (i.e. atomically), and then become visible to sub-
sequent transactions. Aborting implies that no operation within the transac-
tion was applied to the database, and no change surfaces to subsequent
transactions.

Unfortunately, the transaction mechanism in eXist-db is not atomic. If an
error occurs during a transaction, it will be the case that any write operation
prior to the error will have modified the database, and any write operation
subsequent to the error will not have modified the database, the write opera-
tions are not undone when the transaction aborts!

There is no guarantee that a transaction which aborts in eXist-db will leave
the database in a logically consistent state. Unless a catastrophic failure hap-
pens (e.g. hardware failure), it is still possible although unlikely, for an abor-
ted transaction to leave the database in a physically inconsistent state.
Recovery from such physically inconsistent states is attempted at restart by
the database Recovery Manager.

Transactions must be both Atomic and Consistent. It should not be left as a
surprise for users running complex queries, that if their query raises an error
and aborts, to discover that some of their documents have been modified
whilst others have not.

1.2.2. Performance

1. Reducing Contention
Alongside the shared resources of Documents and Collections that the

users of NXDs are concerned with, internally there are also many data struc-
tures that need to be safely shared between concurrent operations.

For example, concurrent access to a Database Collection in eXist-db is
effectively mutually exclusive, meaning that only a single thread, regardless
as to whether it is a reader or writer, may access it. Likewise, the same applies
to the paged storage files that eXist-db keeps on disk.

To improve vertical scaling we therefore need to increase concurrent access
to resources. The current liberal deployment of algorithms utilising coarse-
grained locking and mutual exclusion need to be replaced, either with single-

The Design and Implementation of FusionDB

183

writer/multi-reader locking, or algorithms that use a finer-grained level of
locking, or where possible, non-blocking lock-free algorithms.

2. System Maintenance
There is occasionally the need to perform maintenance tasks against the

database system, such as creating backups or reindexing documents within
the database.

Often such tasks require a consistent view of the database, and so acquire
exclusive access to many resources, which limits (or even removes) the ability
of other concurrent queries and operations to run or complete until such
maintenance tasks finish.

For example, in eXist-db there are two backup mechanisms. The first is a
best effort approach which will run concurrently with other transactions, but
does not guarantee a consistent snapshot of the database. The second will wait
for all other transactions to complete, and then will block any other transac-
tion from starting until it has completed, this provides a consistent snapshot
of the database, but at the cost of the database being unavailable whilst the
backup is created. Another example is that of re-indexing, which blocks any
other Collection operation, and therefore any other query transaction.

Such database operations should not cause the database to become
unavailable. Instead, a version snapshot mechanism should be developed,
whereby a snapshot that provides a point-in-time consistent view of the data-
base can be obtained cheaply. Such maintenance tasks could then be per-
formed against a suitable snapshot.

1.2.3. Missing Features

1. Multi-Model
The requirement from users for Document Metadata informs us that we

also need the ability to store key/value model data alongside our documents.
Conversely, the requirement from users for more complex linking between

documents appears to us to be well suited to a graph model. Such a graph
model, if it were available, could be used as a query index of the connections
between document nodes.

If we disregard mixed-content, then JSON's rising popularity, likely driven
by JavaScript and the creation of Web APIs [16], places it now heavily in-
demand. Many modern NoSQL document databases offer JSON (JavaScript
Object Notation) [11][12][13] document storage. Undoubtedly an additional
JSON document model would be valuable.

Neither eXist-db nor BaseX have multi-model support, although both have
some limited support for querying external relational-models via SQL (Struc-
tured Query Language), and JSON documents in XQuery [17][18]. Berkeley

The Design and Implementation of FusionDB

184

DB XML offers atomic access to both key/value and XML document models
[19]. MarkLogic offers both graph and document models natively [20].

It is desirable to support key/value, graph, and alternative document mod-
els such as JSON, to compliment our existing XML document model.

2. Clustering
With the advent of relatively cheap off-the-shelf commodity servers, and

now to a more extreme extent, Cloud Computing, when storage and query
requirements dictate it should be possible to distribute the database across a
cluster of machines.

Should any machine fail within the cluster, the entire database should still
remain available for both read and write transactions (albeit likely with
reduced performance). Should the size of the database reach the ceiling of the
storage available within the cluster, it should be possible to add more
machines to the cluster to increase the storage space available to the cluster.
Likewise, if the machines in the cluster are saturated by servicing transactions
on the database, adding further machines should enable more concurrent
transactions.

Ideally, we want to achieve a shared-nothing cluster, where both data and
queries are automatically distributed to nodes within the cluster, thus achiev-
ing a system with no single point of failure.

2. Design Decisions
Due to both our technical expertise and deep knowledge of eXist-db, and our
commercial relationships with organisations using eXist-db, rather than develop-
ing an entirely new database system from scratch, or adopting and enhancing
another Open Source database, we decided to start by forking the eXist-db code-
base.

Whilst we initially adopted the eXist-db codebase, as we progressed in the
development of FusionDB we constantly reevaluated our efforts against three
high-level objectives, in order of importance:
1. Does a particular subsystem provide the best possible solution?
2. We must replace any inherited code whether from eXist-db or elsewhere that

we cannot trust and or/verify to operate correctly.
3. We would like to maintain eXist-db API compatibility where possible.

2.1. Storage Engine

The storage engine resides at the absolute core of any database system. For disk
based databases, the task of the storage engine is to manage the low-level reading
and writing of data from persistent disk to and from memory. Reads from disk

The Design and Implementation of FusionDB

185

occur when a query needs to access pages from the in-memory buffer pool that
are not yet in memory, writes occur when pages from the in-memory buffer pool
need to be flushed to disk to ensure durability.

eXist-db has its own low level storage engine, which combines the usually
segregated responsibilities of managing in-memory and on-disk operations.
eXist-db's engine provides a B+ tree with a paged disk file format. Originally
inherited from dbXML's B+ tree implementation in 2001 [9][8], and is still recog-
nisable as such, although to improve performance and durability it has received
significant modifications, including improved in-memory page caching and sup-
port for database logging.

After an in-depth audit of the complex code forming eXist-db's BTree and
associated Cache classes which make up its storage engine, we concluded that we
could not easily reason about its correctness, a lack of unit tests in this area fur-
ther dampened confidence. In addition, due to the write-through structure of its
page cache, we identified that concurrent operations on a single B+ tree were
impossible and that exclusive locking is required for the duration of either a read
or write operation.

Without confidence in the storage engine of eXist-db, we faced a fundamental
choice:

• Write the missing unit tests for eXist-db's storage engine so that we may assert
correct behaviour, hopefully without uncovering new previously unknown
issues. Then re-engineer the storage engine to improve performance for con-
current operations, add new tests for concurrent operation, and assert that it
still passes all tests for correctness.

• Develop a new storage engine which offers performant and concurrent opera-
tion, with clean and documented code. A comprehensive test suite would also
need to be developed which proves the correctness of the storage engine
under both single-threaded and concurrent operation.

• Go shopping for a new storage engine! With the recent explosion of Open
Source NoSQL databases, it seems a reasonable assumption that we might be
able to find an existing well-tested and trusted storage engine that could be
adapted and reused.

2.1.1. Why we opted not to improve eXist-db's

As eXist-db's storage engine is predominantly based on a dated B+ tree imple-
mentation, and not well tested, we felt that investing engineering effort in
improving this would likely only yield a moderate improvement of the status
quo. Instead, we really wanted to see a giant leap in both performance and foun-
dational capabilities for building new features and services.

The Design and Implementation of FusionDB

186

Considering that within the last year at least one issue was discovered and
fixed that caused a database corruption related to how data was structured
within a B+ tree [4], it seemed likely that further issues could also surface.

Likewise, whilst the B+ tree is still fundamental and relevant for database
research, hardware has significantly advanced and now provides CPUs with mul-
tiple hardware threads, huge main memories, and faster disk IO in the form of
SSDs (Solid State Disks). Exploiting the potential performance of modern hard-
ware requires sympathetic algorithms, and recent research has delivered newer
data structures derived from B-Trees. Newer examples include the Blink tree [21]
which removes read locks to improve concurrent read throughput, Lock-Free B
+Tree [22] which removes locks entirely to reduce contention and improve scala-
bility under concurrent operation, Buffer Trees [24] and Fractal Trees [25] which
perform larger sequential writes to improve linear IO performance by coalescing
updates, and the Bw-Tree [23] which both eschews locks to improve concurrent
scalability and utilises log structuring to improve IO.

Given these concerns and access to newer research, we elected not to improve
eXist-db's current storage engine.

2.1.2. Why we opted not to build our own

Whilst we possess the technical ability, the amount of engineering effort in pro-
ducing a new storage engine should not be understated.

Of utmost importance, when producing a new storage engine is ensuring cor-
rectness, i.e. that one does not lose or corrupt data. Given that the storage engine
of eXist-db evolved over many years and may still have correctness issues, and
that a search quickly reveals that many other databases also had correctness
issues with their storage engines, that in some cases took years to surface and fix
[26] [27] [28] [29], we have elected not to develop a new storage engine.

In line with our organisations philosophy of both, not re-inventing a worse
wheel, and gaining from contributing to open source projects as part of a larger
community, we believe our engineering resources are best spent elsewhere by
building upon a solid and proven core, to further deliver the larger database sys-
tem features which are of interest to the end users and developers.

2.1.3. How and why we chose a 3rd-party

Having decided to use an existing storage engine to replace eXist-db's, we ini-
tially started by looking for a suitable Open Source B+ Tree (or derivative) imple-
mentation written in Java. We wanted to remain with a 100% Java ecosystem if
possible to ease integration. We had several requirements to meet:
• Correctness

We must be able to either explicitly verify the correctness of the storage
engine, or have a high degree of confidence in its correct behaviour.

The Design and Implementation of FusionDB

187

• Performance
The new storage engine should provide the same or better single-threaded

performance than eXist-db's B+ tree. Although we were willing to sacrifice
some single-threaded performance for improved concurrent scalability with
multi-threading.

• Scalability
As previously discussed in Section 2.1, eXist-db's B+ tree only allows one

thread to either read or write, and due to this it cannot scale under concurrent
access. The new storage engine should scale with the number of available
hardware threads.

Initially, we studied the storage engines of several other Open Source databases
written in Java that use B+ Trees, namely: Apache Derby, H2, HSQLDB, and
Neo4j. Whilst each had a comprehensive and well tested B+ Tree implementation
backed by persistent storage, there were several barriers to reuse:

• Tight Integration - each of the B+ tree implementations were tightly integrated
with the other neighbouring components of their respective database.

• No clean interface - there was no way to easily just reuse the B+ tree imple-
mentation without adopting other conventions, e.g. configuration of the host-
ing database system.

• Surface area - to reuse an existing B+ Tree would have meant a trade-off,
where we either: 1) add the entire 3rd-party database core Jar as a dependency
to our project, allowing for easy updates but also adding significant amounts
of unneeded code, or 2) we copy and paste code into our project which makes
keeping our copy of the B+ Tree code up-to-date with respect to upstream
updates or improvements a very manual and error prone task.

Succinctly put, these other database systems had likely never considered that
another project might want to reuse their core storage engine, and so were not
designed with that manner of componentisation in mind.

A second route that we considered, was looking for a very lean standalone
storage engine implemented in Java that could be reused within our database sys-
tem. We identified MapDB as a potential option, but soon discounted it due to a
large number of open issues around performance and scalability [30].

Having failed to find an existing suitable Java Open Source option for a stor-
age engine, we needed to broaden our search. We started by examining the latest
research papers on fast key/value database systems, and reasoning that databases
are often considered as infrastructure software and therefore more often than not
written in C or C++, we removed the requirement that it must be implemented in
Java. We also broadened our scope from B+ tree like storage, to instead requiring
that whatever option we identified must provide excellent performance when

The Design and Implementation of FusionDB

188

dealing with the large number of keys and values that make up our XML docu-
ments, including for both random access and ordered range scans.

From many new possibilities, we identified three potential candidates that
could serve as our storage engine. Each of the candidates that we identified were
considered to be mature products with large userbases, and stable due to being
both open source and having large successful software companies involved in
their development and deployment.

• LMDB (Lightning Memory-Mapped Database Manager)
LMDB offers a B-Tree persistent storage engine written in C. It was origi-

nally designed as the database engine for OpenLDAP.
LMDB provides full ACID semantics with Serializable transaction isolation.

Through a Copy-on-Write mechanism for the B-Tree pages and MVCC (Multi-
Version Concurrency Control), it provides read/write concurrency and claims
excellent performance; readers can't block writers, and writers can't block
readers, however only one concurrent write transaction is supported. One dis-
tinguishing aspect is that the code-base of LMDB is very small at just 6KLOC,
potentially making it easy to understand. The small codebase is achieved by
relying on the memory mapped file facilities of the underlying operating sys-
tem, although this can potentially be a disadvantage as well if multiple pro-
cesses are competing for resources.

There is no built-in support for storing heterogeneous groups of homoge-
neous keys, often known as Columns or Tables. LMDB also strongly advises
against long running transactions, such read transactions can block space rec-
lamation, whilst write transactions block any other writes. Another considera-
tion, although of less concern, is that LMDB is released under the OpenLDAP
license. This is similar to the BSD license, and arguably an open source license
in good faith, however in the stricter definition of "Open Source" the license
does not comply with the OSI's (Open Source Initiative) OSD (Open Source
Definition) [31].

• ForestDB
ForestDB offers a novel HB+-Trie (Hierarchical B+-Tree based Trie) persis-

tent storage engine written in C++11 [32]. It was designed as a replacement for
CouchBase's CouchStore storage engine. The purpose of the HB+-Trie is to
improve upon the B+Tree based CouchStore's ability to efficiently store and
query variable-length keys.

ForestDB provides ACID semantics with a choice of either Read Uncommit-
ted or Read Committed transaction isolation. Through an MVCC and append
only design, it supports both multiple readers and multiple writers, readers
can't block writers, and writers can't block readers, however because synchro-
nization between multiple writers is required it is recommended to only use a
single writer. The MVCC approach also supports database snapshots, this

The Design and Implementation of FusionDB

189

could likely be exploited to provide stronger Snapshot Isolation transactions
and online database backups.

ForestDB through its design intrinsically copes well with heterogeneous
keys, however if further grouping of homogeneous keys is required it also
supports multiple distinct KV store across the same files. Unlike LMDB, For-
estDB because of its append only design requires a compaction process to run
intermittently depending on write load, such a process has to be carefully
managed to avoid blocking write access to the database. ForestDB is available
under the Apache 2.0 license which meets the OSI's OSD, however one not
insignificant concern is that ForestDB seems to have a very small team of con-
tributors with little diversity in the organisations that are contributing or
deploying it.

• RocksDB
Initially, we identified LevelDB from Google but at that time development

appeared to have stalled, we then moved our attention to RocksDB from Face-
book which was forked from LevelDB to further enhance its performance and
feature set. Facebook's initial enhancements included multi-threaded compac-
tion to increase IO and reduce write stalls, dedicated flush threads, universal
style compaction, prefix scanning via Bloom Filters, and Merge (read-modify-
write) operators [36]. RocksDB offers an LSM-tree persistent storage engine
written in C++14. The purported advantage of the LSM tree is that writes are
always sequential, both when appending to the log and when compacting
files. Sequential writes, especially when batched, offer performance advan-
tages over the random write patterns which occur with B+Trees. The trade-off
is that reads upon an LSM tree require a level of indirection as the index of
more than one tree may need to be accessed, although Bloom filters can signif-
icantly reduce the required IO [33] [34].

RocksDB provides only some of the ACID properties, Durability and
Atomicity (via Write Batches). Write batches act as a semi-transparent layer
above the key value storage that enable you to stage many updates in mem-
ory, reads first access the write batch and then fall-through to the key value
store, giving read-your-own-writes and therefore a primitive for building isola-
tion with at least Read Committed strength [35]. Unfortunately, the developer
has to manually build Consistency and Isolation into their application via
appropriate synchronisation1. Through MVCC and append only design, it
supports both multiple readers and multiple writers. Like ForestDB, the
MVCC approach also supports database snapshots, which likewise could be

1At the time that RocksDB was adopted for FusionDB's storage engine, RocksDB offered no transac-
tional mechanisms and therefore we developed our own. RocksDB now offers both pessimistic and
optimistic transactional mechanisms

The Design and Implementation of FusionDB

190

exploited to enable a developer to provide Snapshot Isolation strength transac-
tions and online database backups.

RocksDB offers Column Families for working with heterogeneous groups of
homogeneous keys, each Column Family has its own unique configuration,
in-memory and on-disk structures, the only commonality is a shared WAL
which is used to globally sequence updates. Each Column Family may be
individually configured for specific memory and/or IO performance, which
offers the developer a great deal of flexibility in tuning the database for spe-
cific datasets and workloads. In addition, due to the global sequencing,
updates can be applied atomically across column families, allowing a devel-
oper to write complex read and update operations across heterogeneous sets
of data.

Like ForestDB, RocksDB runs a background compaction process to merge
storage files together, this could potentially lead to write stalls, although the
multi-threaded approach of RocksDB eases this, it still has to be carefully
managed. One concern is that RocksDB is available under the BSD-3 clause
license with an additional patent grant condition, this is a complex issue,
whilst the BSD license certainly meets the OSI's OSD, the patent grant is pro-
prietary and does not.2.
From the three potential candidates, each of which could technically work out

very well, we ultimately selected RocksDB.
We quickly discounted ForestDB because of three concerns:

• Its' almost sole adopter seems to be CouchBase. This appears to be confirmed
by its small GitHub community of contributors and users.

• We felt that we did not need its main advantage, of excellent performance for
variable length keys. eXist-db (ignoring extended indexes) uses seven differ-
ent key types for the data it needs to store, however within each key type, the
key length variation is usually just a few bytes.

• There was no existing Java language binding, unlike LMDB's lmdbjava and
RocksDB's RocksJava.

The choice between LMDB and RocksDB was not an easy one. Initially, we experi-
mented by replacing just eXist-db's persistent DOM store with RocksDB, we
added a layer of storage engine abstraction between eXist-db and RocksDB so
that we could more easily replace RocksDB with LMDB or another storage engine
should RocksDB not meet out requirements.

The reasons that we chose RocksDB over LMDB or any other storage engine
were not just technical. RocksDB is the result of a team of highly skilled engi-
neers, having first been built at Google and then advanced by Facebook (and oth-

2RocksDB was later relicenced by Facebook as a dual-licensed Open Source project, available under
either GPL 2.0 or Apache 2.0.

The Design and Implementation of FusionDB

191

ers), the storage engine is involved in almost every interaction that a user makes
with the Facebook websites (facebook.com, instagram.com, and messenger.com),
as of the third quarter of 2018, Facebook had 2.27 billion monthly active users.
From this, we can likely assume that RocksDB has been thoroughly battle tested
in production and at scale. Whilst LMDB is used in a handful of important infra-
structure projects such as - OpenLDAP, Postfix, Monero, libpaxos, and PowerDNS
[37], RocksDB is used by some of the largest web companies including - AirBnb,
LinkedIn, NetFlix, Uber, and Yahoo [38]. LMDB seems to be predominantly
developed by Symas Corporation, whereas RocksDB whilst led by Facebook has
a larger number of diverse contributors. RocksDB also appears to have a much
more rapid pace of development, with new features and bugfixes appearing fre-
quently, in contrast LMDB appears to have stabilised with little new develop-
ment.

Technically, RocksDB offered a much richer feature set that any other option
we evaluated, a number of which we felt would be well suited for our use case.
Many of the keys used within a key type by eXist-db are very uniform with com-
mon prefixes, this is highlighted when storing large XML documents with deeply
nested levels, as the DLN (Dynamic Level Numbering) node identifier encoding
that it employs will produce long strings with common prefixes. RocksDB offers
both Prefix Compression and a Prefix Seek API, the compression ensures that com-
mon prefixes are only stored once [39] which reduces disk space and therefore IO,
whilst the prefix seek builds bloom filters of key prefixes to enable faster random
lookup and scan for keys with common prefixes [40]. eXist-db provides an
update facility which is similar to XQuery Update, but where the updates are
applied immediately to the data, in eXist-db these updates are not isolated to the
transaction, RocksDB provides a WriteBatchWithIndex feature, which allows you
to stage updates in-memory to the database, reading from this batch allows you
to read-your-own-writes without yet applying them to the database, we recognised
that this would allow us to provide stronger isolation for both eXist-db's XQuery
Update equivalent and its various other updating functions. There are also many
other RocksDB features that we are making use of such as atomic commit across
column families, which we would otherwise have had to build ourselves atop
another storage engine such as LMDB.

Since our initial prototyping with RocksDB in 2014 and subsequent wholesale
adoption in 2015, it has since also been adopted as the primary storage engine by
a number of other NoSQL databases with varying data models - Apache Kafka
(event stream), ArangoDB (document, graph, and key/value), CockroachDB (tab-
ular i.e. SQL), DGraph (graph), QuasarDB (time-series), SSDB (key/value), and
TiKV (key/value). RocksDB storage engines have also been developed as replace-
ments for the native storage engines of Apache Casandra (wide column store),
MongoDB (document i.e. JSON), and MySQL (tabular i.e. SQL) [38] [41].

The Design and Implementation of FusionDB

192

2.2. ACID Transactions

Having decided that FusionDB must support full ACID semantics, as well as the
technical implementation we must also have a clear statement of our transaction
isolation level. This enables developers building their applications with FusionDB
to understand how concurrent transactions on the database will interact with
each other, what constraints this places on the type of applications that FusionDB
is best suited for, or whether they need to add any additional synchronisation
within their application to support stronger isolation semantics.

Historically, there were four levels of transaction isolation, as defined by
ANSI, each of which is expressed in terms of possible phenomena dirty-read,
fuzzy-read, and phantom, that may occur when concurrent transactions operate at
that level. From weakest to strongest these are: Read Uncommitted, Read Committed,
Repeatable Read, and Serializable. Often users expect or even desire the strongest
level, Serializable, but as this can require a great deal of synchronization between
concurrent transactions, it can have a serious performance impact, and few data-
base systems offer this option, and typically even then not as the default. To work
around the dichotomy of needing to provide Serializable semantics and excellent
performance, additional transaction levels have been developed in recent years.
These are not as strong as Serializable, but exhibit less, or other, potentially
acceptable phenomena, these include - Cursor Stability, Snapshot Isolation, and Seri-
alizable Snapshot Isolation [1] [42].

Table 1. Isolation Types Characterized by Possible Anomalies Allowed

Isola-
tion
level

P0
Dirty
Write

P0
Dirty
Read

P4C
Cursor
Lost
Update

P4 Lost
Update

P2
Fuzzy
Read

P3
Phan-
tom

A5A
Read
Skew

A5A
Write
Skew

Read
Uncom-
mitted

Not
Possible

Possible Possible Possible Possible Possible Possible Possible

Read
Com-
mitted

Not
Possible

Not
Possible

Possible Possible Possible Possible Possible Possible

Cursor
Stabil-
ity

Not
Possible

Not
Possible

Not
Possible

Some-
times
Possible

Some-
times
Possible

Possible Possible Some-
times
Possible

Repeat-
able
Read

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Possible Not
Possible

Not Pos-
sible

The Design and Implementation of FusionDB

193

Isola-
tion
level

P0
Dirty
Write

P0
Dirty
Read

P4C
Cursor
Lost
Update

P4 Lost
Update

P2
Fuzzy
Read

P3
Phan-
tom

A5A
Read
Skew

A5A
Write
Skew

Snap-
shot

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Some-
times
Possible

Not
Possible

Possible

ANSI
SQL
Serializ-
able

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not
Possible

Not Pos-
sible

Reproduced from [1] - “Table 4. Isolation Types Characterized by Possible
Anomalies Allowed.”

As discussed in Section 1.2.1, the ACID semantics of eXist-db whilst accepta-
ble for the projects that suit it, are much weaker than we require for FusionDB.
eXist-db provides no user controllable transactions, internally it provides a Txn
object that is often required when writing to the database, however this object in
reality just manages transaction demarcation for its database log. In eXist-db,
writes are immediate, and visible to all other transactions, likewise aborting a Txn
does not cause previous statements to be rolled-back. The commit and abort
mechanisms of Txn strictly exist for the purposes of attempting to return the data-
base to a consistent state during crash recovery by replaying the database log.
• Atomicity

With eXist-db, the atomicity is provided internally though multi-reader/
single-writer locks for Documents, and exclusive locks for everything else
including Collections and B+ tree page files.

• Consistency
Unfortunately, as there are no true transactions in eXist-db, there is no real

mechanism for taking the database from one consistent state to the next.
• Isolation

The effective Isolation level in eXist-db is approximately Read Uncommitted.
• Durability

eXist-db does take serious strides to ensure durability. It provides both a
WAL which is fsynced to disk, and a synchronization task which periodically
flushes dirty in-memory pages to persistent disk.
Fortunately for us, RocksDB provides the Durability and Atomicity properties

of ACID. For durability, data is written to both in-memory and a WAL upon com-
mit, in-memory updates are later batched and flushed to disk. Through switching
to RocksDB for its storage engine, FusionDB also utilises RocksDB's WAL instead

The Design and Implementation of FusionDB

194

of eXist-db's, thus discarding eXist-db's previously error prone crash recovery
behaviour. This results in greater confidence of recovery from those system
crashes that are beyond the control of our software. For Atomicity, RocksDB pro-
vides Write Batches where batches of updates may be staged and then applied
atomically, in this manner all updates succeed together or fail. However, RocksDB
leaves us to build the level of Isolation and Consistency that we wish to gain our-
selves.

2.2.1. Transactions for FusionDB

Utilising a number of features provided by RocksDB we were able to build a level
of isolation for FusionDB which is at least as strong as Snapshot Isolation. Firstly,
we repurposed eXist-db's TransactionManager and associated Txn object to pro-
vide real user controllable database transactions. Secondly, due to its previous
nature, whilst the Txn object was often required for write operations in eXist-db,
it was rarely required for read operations, this meant modifying a great deal of
eXist-db's internal APIs so that a Txn is always required when reading or writing
the database.

Internally in FusionDB, when a transaction is begun, we make use of Rock-
sDB's MVCC capability and create a Snapshot of the database. These Snapshots
are cheap to create, and scale well up to hundreds of thousands, at which point
they may significantly slow-down flushes and compactions. However, we think it
unlikely that we would need to support hundreds of thousands of concurrent
transactions on a single instance. Each snapshot provides an immutable point-in-
time view of the database. A reference to the snapshot is placed into the Txn
object, and is used for every read and scan operation upon the database by that
transaction. When only considering reads, this by itself is enough to provide
Snapshot Isolation, we can then, in fact, remove all of the database read locks
that eXist-db used. As the Snapshot is immutable, we no longer need the read
locks as no concurrent transaction can modify it.

To provide the isolation for write operations, when a transaction is begun we
also create a new Write Batch and hold a reference to it in the Txn. This Write
Batch sits above the Snapshot, and in actuality all reads and writes of the transac-
tion go to the Write Batch. When the transaction writes to the database, it is
actually writing to the Write Batch. The Write Batch stages all of the writes in
order in memory, the database is not modified at this point. When the transaction
reads from the database, it actually reads from the Write Batch. The Write Batch
first attempts to answer the read for a key from any staged updates, if there is no
update staged for the key, it falls through to reading from the Snapshot. As each
transaction has its own Write Batch, which is entirely in memory, any writes
made before committing the transaction are only visible within the same transac-
tion. At commit time, the Write Batch of the (transaction) (Txn) is written atomi-

The Design and Implementation of FusionDB

195

cally to the database, or if the transaction is aborted the memory is simply
discarded, as no changes were made there are no changes to roll-back/undo.
Whether committed or aborted, when the transaction is complete we release the
database snapshot. The semantics are stronger than Read Uncommitted because no
other transaction can read another transaction's Write Batch, stronger than both
Read Committed and Repeatable Read because every read in the transaction is
repeatable due to the snapshot, but also different than Repeatable Read as it could
exhibit write skew. Like reads, for writes, we find that combining a Write Batch
with a Snapshot enables us to maintain Snapshot Isolation semantics. In FusionDB,
we could remove the Write Locks taken by eXist-db upon the database, but we
have not yet done so, the write locks are only held for short durations rather than
the duration of the transaction, however we are considering providing a configu-
ration option which would extend them to the transaction lifetime, thus yielding
Serializable isolation.

Figure 1. FusionDB Transaction Architecture

2.2.2. FusionDB Transactions and XQuery
At present FusionDB reuses eXist-db's XQuery engine but enforces that an
XQuery is executed as a single transaction. This means that an XQuery will either
commit all updates atomically or abort, this is in contrast to eXist-db, where there
is no atomicity for an XQuery. Consider the XQuery listed in Figure 2, when this
query is run in eXist-db if an error occurs during the update insert statement,
the /db/test.xml document will have already been inserted into the database
but will be missing its update, and so will have an incorrect balance! In FusionDB
because a transaction maintains isolation and commits or aborts atomically, if an
error occurs anywhere within the query, the document would never be inserted
into the database.

 1
 2 import module namespace xmldb = "http://exist-db.org/xquery/xmldb";

The Design and Implementation of FusionDB

196

 3
 4 let $uri := xmldb:store(
 5 "/db",
 6 "some-account.xml,
 7 <account currency="gbp" id="223344"><balance>0</balance></
account>)
 8 return
 9 update insert <balance>9.99</data> into doc($uri)/test
 10

Figure 2. Simple Compound Update XQuery

Whilst an XQuery does execute as a single transaction, FusionDB also pro-
vides a mechanism akin to sub-transactions. Sub-transactions are exposed to the
XQuery developer naturally via XQuery try/catch expressions. The body of each
try clause is executed as a sub-transaction, i.e. an atomic unit, if any expression
within the try body raises an error, then all expressions within the try body are
atomically aborted and the catch clause is invoked, otherwise all expressions in
the try body will have been correctly executed. These sub-transactions permit the
XQuery developer a fine level of control over their query. Consider the XQuery
listed in Figure 3, with FusionDB if an error happens with any of the operations
inside try body clause, the sub-transaction is atomically aborted, and so no docu-
ments are moved, the task log file then records the failure. With eXist-db due to a
lack of atomicity, it an error occurs whilst moving one of the documents, it is
entirely possible that some documents could have already been moved even
though the query recorded the failure in the task log, thus meaning that the data-
base is no longer logically consistent.

 1
 2 import module namespace xmldb = "http://exist-db.org/xquery/xmldb";
 3
 4 let $archived-uris :=
 5 try {
 6 for $record in collection("/db")/record[date lt
xs:date("2001-01-01")]
 7 let $uri := document-uri(root($record))
 8 let $filename := replace($uri, ".*/(.+)", "$1")
 9 return
 10 (
 11 xmldb:move("/db", "/db/archive", $filename),
 12 update insert
 13 <entry>Archived {$uri}</entry>
 14 into doc("/db/archive-log.xml")/log
 15)

The Design and Implementation of FusionDB

197

 16 } catch * {
 17 <archive-failure>{$err:code}</archive-failure>
 18 }
 19 return
 20 xmldb:store(
 21 "/db",
 22 "task-log-" || current-dateTime() || ".xml",
 23 <task id="123">{$archived-uris}</task>)
 24

Figure 3. XQuery with Try/Catch Sub-transaction

XQuery allows try/catch expressions to be nested within the try or catch
clause of another try/catch expression, likewise FusionDB supports nesting sub-
transactions within sub-transactions. By using the standard try/catch recovery
facilities of XQuery, we believe that FusionDB naturally does what the user
expects with regards to transaction boundaries.

2.2.3. FusionDB Transactions and APIs

FusionDB strives to maintain API compatibility with eXist-db, and as such
FusionDB provides the following eXist-db compatible APIs: REST, RESTXQ,
WebDAV, XML-RPC and XML:DB. Apart from the XML:DB API, none of the
other eXist-db APIs expose any mechanisms for controlling transactions, and
regardless eXist-db does not implement the XML:DB API Transaction Service.
FusionDB treats each call to any of these APIs as a distinct transaction, to main-
tain compatibility with eXist-db there are no mechanisms to establish a transac-
tion across multiple API calls. When executing XQuery via these APIs, the use of
transactions and sub-transactions as described in Section 2.2.2 apply. In future, it
is likely that FusionDB will provide new APIs to allow external applications
greater transactional control.

2.3. Concurrency and Locking

As we previously identified, eXist-db had a number of classes of concurrency
problems. We needed to study and understand each of these to ensure that they
would not also become issues for the components of eXist-db inherited by
FusionDB. As part of our company philosophy of giving back to the larger Open
Source community, we recognised that we should fix these problems at their
source. As such, we undertook a code-audit project whereby we identified and
fixed many concurrency and locking issues directly in eXist-db, we subsequently
backported these fixes to the fork of eXist-db that we use for FusionDB. This
backporting also enabled us to further increase our confidence in our changes by
showing that not only did our code pass the new tests that we had created, but

The Design and Implementation of FusionDB

198

that the modified version of eXist-db could pass the existing full-test suites of
both eXist-db and FusionDB.

The changes we made to the locking and concurrency mechanisms in eXist-db
were numerous and far-reaching. We have recently published two comprehensive
technical reports detailing the problems and the solutions that we implemented
[43] [44]. These comprehensive technical improvements have been incorporated
into both eXist-db 5.0.0 and FusionDB. Instead of reproducing those technical
reports within this paper, we will briefly highlight the improvements that were
made and their impact for FusionDB.

2.3.1. Incorrect Locking

We identified and addressed many issues in the eXist-db codebase that were the
result of incorrect locking, these included:
• Inconsistent Locking, whereby locking was applied differently to the same

types of objects at varying places throughout the codebase. We documented
the correct locking pattern, and made sure that it was applied consistently.
This gave us improved deadlock avoidance of different types of locks which
must interleave, e.g. Collection and Document locks, which are now always
acquired and released in the same order.

• Insufficient/Overzealous Locking, whereby in some code paths objects were
accessed either without locks or with more locking than is required for a par-
ticular operation. We modified many code paths to ensure that the correct
amount of locking is used.

• Incorrect Lock Modes, where shared reader/writer locks were used, we
repaired some cases whereby the wrong lock mode was used. For example,
where a read lock was taken but a write was performed, or vice-versa.

• Lock Leaks and Accidental Release, whereby a lock is never released, is
released too soon, or too often for reentrant locks. We introduced the concept
of Managed Locks, and deployed them throughout the codebase. Our Man-
aged Locks make use of Java's try-with-resources expression, to ensure that
they are always released, this is done automatically and in line with the
developer's expectations.

2.3.2. Lock Implementations

We identified that alongside standard Java Lock implementations, eXist-db also
made use of two proprietary lock implementations. Whilst no issues with the lock
implementations had been directly reported, we questioned the likely correctness
of them, theorising that they could be a contributor to other reported problems
with database corruption. As part of our need to understand them we were able
to research and develop an incomplete provenance for them.

The Design and Implementation of FusionDB

199

1. Collection Locks. eXist-db's own ReentrantReadWriteLock class was used for
its Collection Locks. It was originally copied from Doug Lea's ReentrantLock,
which was itself superseded by J2SE 5.0's locks. The eXist-db version has
received several modifications which make it appear like a multi-reader/
single-writer lock, and its naming is misleading, as in actuality it is still a
mutually exclusive lock.

Document Locks. eXist-db's own MultiReadReentrantLock class was used
for its Document Locks. It was likely copied from the Apache Turbine JCS
project which is now defunct. Strangely, this is a multi-reader/single-writer
lock, which also appears to support lock upgrading. However, lock upgrading
is a well-known anti-pattern which is typically prohibited by lock implemen-
tations. The eXist-db version has received several changes which were only
simply described as “bug-fixes”.
Ultimately, we felt that the custom Lock Implementations in use by eXist-db

were of questionable pedigree and correctness. We replaced them with imple-
mentations that we believe to be both correct and reliable. We switched Docu-
ment Locks to Java's standard ReentrantReadWriteLock. Whilst for Collection
Locks we switched to MultiLock [45] from Imperial College London, which is
itself based on Java's standard locking primitives. MultiLock is a multi-state
intentioned multi-reader/single-writer lock, thus allowing for concurrent opera-
tions on Collection objects.

2.3.3. Asymmetrical Locking

Previously, the correct locking pattern in eXist-db when performing read opera-
tions on Documents within a Collection, was to lock the Collection for read
access, retrieve the Document(s) from the Collection, lock the Documents for read
access, perform the operations on the documents, release the Document locks and
then finally release the Collection locks.

We were able to optimise this pattern to reduce the duration that Collection
Locks are held for. Our asymmetrical pattern allows the Collection lock to be
released earlier, after all the Document locks have been acquired, thus reducing
contention and improving concurrent throughput.

2.3.4. Hierarchical Locking

Locks in eXist-db were previously in a flat space with one Lock per-Collection or
Document object. Unfortunately, this meant that user-submitted concurrently exe-
cuting queries could acquire locks for write access in differing orders which
would could cause a deadlock between concurrent threads. A deadlock in eXist-
db is unresolvable without restarting the system, at which point the Recovery
Manager has to attempt to bring the database back to a logically consistent state.

The Design and Implementation of FusionDB

200

We created a modified version of Gray's hierarchical locking scheme [46] for
Collection Locks, whereby the path components of eXist-db's Collection URIs
represent the hierarchy. The hand-over locking through this hierarchy that we
implemented, coupled with intention locks provided by MultiLock, permit multi-
reader/single-writer Collection access, but make it impossible to deadlock
between concurrent Collection lock operations. We also added a configuration
option (disabled by default) that allows for multi-reader/multi-writer locking of
Collections, but its use requires careful application design by the XQuery devel-
oper.

In eXist-db, we have not as yet extended the hierarchical locking scheme to
cover Documents, and so it is still possible to deadlock between Collection and
Document access, if user-submitted queries have different lock schedule ordering
for the same resources.

In FusionDB, less locking is required due to our MVCC based snapshot isola-
tion, however at present such deadlocks are still possible for write operations.
However, it is possible to resolve a deadlock by aborting a transaction in
FusionDB, leaving the database in a consistent and functioning state.

2.3.5. Concurrent Collection Caching

eXist-db made use of a global Collection Cache to reduce both object creation
overhead and disk I/O. Unfortunately, this cache was a point of contention for
concurrent operation, as accessing it required acquiring a global mutually exclu-
sive lock over the cache. For eXist-db we replaced this Collection Cache with a
concurrent data structure called Caffeine which allows fine-grained concurrent
access without explicit locking. For FusionDB, we need such global shared struc-
tures to be version aware so that they integrate with our MVCC model. We are
working on replacing this shared cache with something similar to Caffeine but
also supports MVCC.

2.3.6. New Locking Features

Alongside many technical fixes that we have made to eXist-db, we have also
added three new substantial features:

1. A centralised Lock Manager, whereby all locking actions are defined consis-
tently in a single class, and regardless of the underlying lock implementation
they present the same API.

2. A Lock Table which is fed by the Lock Manager, and allows the state of all
locks in the database system to be observed in real-time. It also provides facili-
ties for tracing and debugging lock leases, and makes its state available via
JMX for integration with 3rd-party monitoring systems.

The Design and Implementation of FusionDB

201

3. A set of annotations named EnsureLocked which can be added to methods in
the code base. These annotations form a contract which describes the locks
that should be held when the method is invoked. When these annotations are
enabled for debugging purposes, they can consult the lock table and eagerly
report on violations of the locking contracts.

Example 1. Example Use of Locking Annotations

private Collection doCopyCollection(final Txn transaction,
 final DocumentTrigger documentTrigger,
 @EnsureLocked(mode=LockMode.READ_LOCK) final Collection
sourceCollection,
 @EnsureLocked(mode=LockMode.WRITE_LOCK) final Collection
destinationParentCollection,
 @EnsureLocked(mode=LockMode.WRITE_LOCK, type=LockType.COLLECTION)
final XmldbURI destinationCollectionUri,
 final boolean copyCollectionMode,
 final PreserveType preserve) {

2.4. UUIDs

In FusionDB every Collection and Document is assigned an immutable and per-
sistent UUID (Universally Unique Identifier). Each UUID is a 128-bit identifier,
adhering to the UUID Version 1 specification as defined by IETF (Internet Engi-
neering Task Force) RFC (Request For Comments) 4122. Instead of using the hosts
MAC address, instead as permitted by the UUID specification, we use a random
multicast address, which we generate and persist the first time a database host is
started. This allows us per-host identification for the UUIDs within a multi-host
system, but without leaking information about any hosts network settings.

These UUIDs allow the user to refer to a Collection or Document across sys-
tems, and retrieve it by its identifier regardless of its location with the database.
When a Collection or Document is moved within the database, its UUID remains
unchanged, whilst a copy of a Collection or Document will be allocated a new
UUID. UUIDs are also preserved across backup and restore. When restoring a
backup, the backup will notify the user of any conflicts between Collections and
Documents in the database and the backup that have the same UUID but differ-
ent database locations.

2.5. Key/Value Metadata

FusionDB offers a key/value metadata store for use with Collections and Docu-
ments. Any Collection or Document may have arbitrary metadata in the form of

The Design and Implementation of FusionDB

202

key/value pairs which are transparently stored alongside it. FusionDB also pro-
vides range indexing and search for Collections and Documents based on both
the keys and values of their associated Metadata. For example, the user can for-
mulate queries like, "Return me all of the documents which have the metadata
keys town and country, with the respective metadata values, Wiggaton and
United Kingdom. Within FusionDB updates across are atomic and consistent
across data-models, so for example, it is impossible for a Document and the Key/
Value Metadata associated with that document to be inconsistent with respect to
each other even under concurrent updates. Although not yet exposed via XQuery,
internally there are also iterator based APIs for efficiently scanning over Collec-
tions and Documents metadata.

At present our Key/Value store, is just one of the small ways in which we
expose the multi-model potential of FusionDB.

2.6. Online Backup

For backing up a FusionDB database we are able to make use of RocksDB's
MVCC facilities to create snapshots and checkpoints. We provide two mecha-
nisms for backing up the database, 1) a Full Document Export, and 2) a Check-
point Backup. The Checkpoint Backup process is both light-weight and fast, and
is the preferred backup mechanism for FusionDB. The Full Document Export
process exists only for when the user needs a dump of the database for use with
3rd party systems such as eXist-db.

2.6.1. Full Document Export

The Full Document Export mechanism will be familiar to eXist-db users as it's
very similar to the primary backup format for eXist-db, and is in fact compatible.
The export results in a directory or zip file, which contains a complete copy of
every document from the Collections that the user chose to backup. The output
directory or zip file is also structured with directories representing each sub-Col-
lection that is exported. Each directory in the output contains a metadata file
named __contents__.xml which contains the database metadata for the Collec-
tion and its Documents.

The metadata files have been extended from eXist-db for FusionDB to also
contain the key/value metadata (see Section 2.5) that a user may have associated
with Collection or Documents, and the UUID (see Section 2.4) of each Collection
and Document. We should also explicitly state that this Backup is transactional,
and as transactions in FusionDB are snapshots of the database, the export has the
advantage of being point-in-time consistent unlike in eXist-db. In addition, due to
removing read-locks in FusionDB thanks to our snapshot isolation, unlike eXist-
db the backup process will not block access for reads or writes to the database.

The Design and Implementation of FusionDB

203

2.6.2. Checkpoint Backup

Checkpoint backups are provided by the underlying RocksDB storage engine and
are near-instantaneous. They exploit both the MVCC and append-only nature of
the storage engine's database files. When a checkpoint is initiated, a destination
directory is created and if the destination is on the same filesystem then the files
making up the current state of the live database will be hard-linked into it, other-
wise they are copied over to it. Once the checkpoint has completed, a backup
process operates directly from the checkpoint to provide a version of the database
files that are suitable for archiving. The first part of this process is relatively sim-
ple, and really provides just the RocksDB database files holding the data for the
backup and some metadata describing the backup. The second part of the backup
process makes sure to copy any binary documents present in the database to the
backup directory as well, to do this it starts a second read-only database process
from the checkpoint, scans the binary documents in the database, making of copy
of the filesystem blob of each one. When initiating a Checkpoint Backup, the user
can choose either a full or incremental backup. As the backup process operates
from a checkpoint, it cannot block concurrent operations accessing the database.
The file format of the Checkpoint Backup is proprietary to FusionDB and should
be treated as a black-box.

2.7. BLOB Store

Similarly to our work on Locking (see Section 2.3), we recognised that there were
a number of problems with the handling of Binary Documents (i.e. non-XML
documents), that we had inherited with eXist-db. We again decided to address
these by contributing back to the wider Open Source community, as such we
developed a new BLOB (Binary Large Object) store component3 for use within
eXist-db. This new BLOB Store is available in FusionDB, and a Pull Request that
we prepared will likely be merged into eXist-db in the near future.

Although we have recently reported on the technical detail of the new BLOB
Store [47], it is relevant to highlight two key points of its design:
• Lock Free. The entire Blob Store operates without any locks whatsoever,

instead it operates as an atomic state machine by exploiting CAS (Compare-
And-Swap) CPU instructions. This design decision was taken to try and
increase concurrent performance for Binary Document operations.

Deduplication. The Blob Store only stores each unique Binary Document
once. When a copy of a Document is made, a reference counter is incremen-
ted, and conversely when a copy is deleted the reference counter is decremen-

3RocksDB has recently developed an extension called BlobDB, which is still highly experimental. Like
our BLOB Store it also stores Binary Document file content in a series of files on the filesystem, but as
far as we are aware does not yet offer deduplication.

The Design and Implementation of FusionDB

204

ted. The Binary Document's content is only deleted once the reference count
reaches zero. This design decision was made to try and reduce disk IO in sys-
tems which make use of many Binary Documents.
Importantly with regards to FusionDB, the new BLOB Store was designed not

to reuse eXist-db's B+Tree storage engine, but instead persists a simple Hash
Table. In FusionDB we have also replaced the BLOB Store's persistent Hash Table
with a RocksDB Column Family, which means that updates to Binary Document
objects are also transactionally consistent.

3. High-level Architecture
In this section, we detail several of the high-level architectural aspects of
FusionDB.

3.1. Programming Language
FusionDB is written in a combination of both Java 8 and C++14 and is available
for Windows, macOS, and Linux on x86, x86_64, and PPC64LE CPUs. This came
about predominantly because eXist-db 5.0.0 is written in Java 8, whilst RocksDB
is written in C++14 and RocksJava (the RocksDB Java API) is written in Java 7.
Evolved Binary have been contributors to the RocksJava API since the adoption of
RocksDB for FusionDB's storage engine. The RocksJava API is comprehensive,
but typically lags behind the RocksDB C++ API, and so Evolved Binary have
make many Open Source contributions to add missing features and fix issues.

The RocksJava API makes heavy use of Java's JNI (Java Native Interface) ver-
sion 1.2 for calling C++ methods in RocksDB. Unfortunately when calling C++
code from Java (or vice-versa) via JNI, there is a performance penalty each time
the Java/C++ boundary is traversed. After benchmarking different call mecha-
nisms across the JNI boundary [48], we were able to improve the situation some-
what. However, when callbacks from C++ to Java involve millions of calls,
perhaps because of iterating over large datasets, the cost of the JNI boundary
accumulates quickly and has a large impact on performance. To avoid such a pen-
alty and ensure good performance, several components of FusionDB which com-
municate directly and frequently with RocksDB were rewritten in C++. These
components are then compiled directly into a custom RocksDB library that is
used by FusionDB.

The Design and Implementation of FusionDB

205

Figure 4. FusionDB - Components by Language

3.2. Column Families
As discussed in Section 2.1.3, RocksDB provides a feature called Column Families.
These Column Families allow you to separate the key/value pairs that make up
the database into arbitrary groupings. By storing homogeneous groups of keys
and values into distinct Column Families, we can configure each Column Family
in a manner that best reflects the format of those keys and values, and the likely
access patterns to them. Modifications across Column Families remain atomic.

When we replaced eXist-db's B+Tree based storage engine with RocksDB, we
carefully ported each distinct sub-system in eXist-db that used a B+Tree to one or
more RocksDB Column Families. We also replaced eXist-db's non-B+Tree based
Symbol Table and its indexes with a newly designed highly concurrent Symbol

The Design and Implementation of FusionDB

206

Table which is persisted to several Column Families. In addition the new sub-sys-
tems that we added for Key/Value Metadata (see Section 2.5) and UUID locators
(see Section 2.4) also make use of Column Families for storing data and indexes.

Figure 5. Main Column Families used by FusionDB

4. Conclusion
In 2014, the inception of this project came about as a response to a number of
issues that we had identified over a period of several years from both users of
Open Source NXDs and developers. We therefore set out to build a better modern
Open Source database system which could handle XML Documents as well as
other data models.

Initially we opted to fork and modify eXist-db as the base for FusionDB. Our
plan was to firstly, fork eXist-db and replace its storage engine with RocksDB,
before undertaking further radical changes to our fork of eXist-db. Then secondly,
to build out new features, both alongside and with our fork of eXist-db. At that
time, we believed that forking the eXist-db codebase with which we were famil-
iar, would result in a faster route to delivery for FusionDB. Our initial estimate
was calculated at between six and twelve months of development time. Unfortu-
nately, this proved not to be the case, in fact quite the opposite! eXist-db has
evolved over 18 years, and as such is a feature rich and complex product. As an

The Design and Implementation of FusionDB

207

Open Source project, many developers have contributed and moved on, and there
are several areas that are undocumented, untested, and no longer well under-
stood by its current development team. Our goal, was to pass 100% of eXist-db's
test suite with FusionDB. This proved to be a tough although not insurmountable
challenge, however, achieving this revealed many bugs and incorrect tests in
eXist-db which we also had to fix (and chose to contribute back to the eXist-db
Open Source project). Whilst we have gained much by forking eXist-db, with
hindsight we believe that it would have been quicker to develop a new eXist-db
compatible system from scratch without forking eXist-db.

With FusionDB, in the first instance, we have now addressed many of the
issues identified by users and developers. RocksDB has given us much greater
stability, crash resilience, recovery, and performance. We have created an ACID
transactional database system which offers Snapshot Isolation and ensures con-
sistency and atomicity. We have invested a great deal of time and effort in to
improving the locking situation of eXist-db, which when coupled with our Snap-
shot Isolation has also reduced the number and duration of locks that we require
in FusionDB. Reduced locking has improved performance generally and
decreased contention, thus also improving vertical scalability. Likewise, it has
also prevented system maintenance tasks such as Backup or Reindexing from
blocking access to the database, as these now have their own dedicated snapshot
on which to act. Additionally we have also replaced and contributed new subsys-
tems which add Key/Value Metadata, UUID locators, and improved Binary Docu-
ment storage. This paper has both described much of the design rationale behind
these technical achievements, and revealed the architecture of their implementa-
tion.

Whilst we have not yet completed work on the issues of complex graph-like
cross-reference queries, or clustering to deliver horizontal scalability, they are
firmly on our roadmap. The construction of FusionDB has not been an easy path
to navigate, but ultimately we felt that the work was both justified and deserved
by the XML community. We believe that FusionDB has a huge amount of poten-
tial, and we are excited to both share it with the world and develop it further.

5. Future Work
A great deal of research and development work has gone into the development of
FusionDB. Some of this work, such as that around Locking and Binary Storage,
has been contributed back to eXist-db, whilst more modest improvements have
been contributed back to RocksJava.

We are approaching the stage where we believe we could release a first ver-
sion of FusionDB, however before that becomes a reality, there is still work to
complete in the short-term concerning:

The Design and Implementation of FusionDB

208

• Collection Caching.
The Collection Cache of eXist-db is shared between multiple transaction

but is yet version aware. The Collection cache was originally designed to
reduce Java Object creation and memory-use by ensuring only one Object for
each distinct Collection, and reduce disk I/O by avoiding the need to fre-
quently re-read Collections from disk. To cope with transactional updates
upon cached in-memory Collection objects, the Collection Cache needs to be
either, removed entirely, or revised to be MVCC aware so that a transaction is
accessing the correct in-memory version of the on-disk Collection.

• Locking and Transactions.
Whilst we have hugely improved the current state of locking in eXist-db,

for FusionDB there are many more opportunities for reducing the number of
locks whilst preserving transaction isolation and consistency. One obvious
area of work, would be looking for any advantages in replacing FusionDB's
transactions with the new facilities recently available in RocksDB for pessimis-
tic and optimistic transactions.

• Performance.
Ultimately our goal is to push FusionDB to out-perform any other Docu-

ment Database. Our first performance goal is to have FusionDB out-perform
eXist-db on any operation or query. At present, FusionDB is faster than eXist-
db for many operations, but slower than eXist-db for several others. Our
changes so far to the fork of eXist-db used by FusionDB have been far-reach-
ing but somewhat conservative, we have focused on carefully reproducing
existing behaviour. We are looking forward to drastically improving perform-
ance, by exploiting the many untapped optimisations that our new technology
stack affords.

• Licensing.
Our goal has always been to release FusionDB as Open Source software,

and this has not changed. However, we want to ensure that we choose an
appropriate license or licenses, that enable us to build the best possible com-
munity and software. We were previously considering a dual-licensed
approach, whereby users could choose AGPLv3 or a Commercially licensed
exemption to AGPLv3.

Recent developments in software licensing require us to properly reevalu-
ate this choice. Concrete examples of this in the database market are:
• Redis previously licensed its open source version under a BSD 3-clause,

and the modules for that under AGPLv3. Its Enterprise edition is only
available under a commercial license without source code. Around the
August 22nd 2018, Redis relicenced its modules from AGPLv3 to Apache
2.0 modified with Commons Clause, changing them from Open Source to
Source Available.

The Design and Implementation of FusionDB

209

• MongoDB's database was previously licensed under AGPLv3. On October
16th 2018, MongoDB relicensed its software under a new license SSPL
(Server Side Public License) it created to solve their perceived problems
with AGPL. Whether SSPL is an Open Source or Source Available license is
still to be determined by its submission to the OSI.

• Neo4j previously licensed its Community Edition under GPLv3, and its
Enterprise edition under AGPLv3. On November 15th 2018, Neo4j changed
to an Open Core model, whereby their Enterprise Edition is now only
available under a commercial license without source code.
The reason for these licensing changes have often been cited as protecting

commercial interests of Open Source companies. However it is clear that each
of these companies is taking a different route to achieve a similar outcome. We
believe that further study of the outcomes of these changes is merited, with a
focus on their acceptance or rejection by their respective previous open source
users.
In the medium term, areas of future work that are already under considera-

tion are:
• Further Document Models

Of primary concern is support for natively storing JSON documents. Sev-
eral options exist for querying across XML and JSON document models,
including XQuery 3.1 Maps/Arrays and JSONiq, further work is needed to
identify the best approach for FusionDB. In addition, some research has
already been undertaken into also storing Markdown and HTML5 documents
natively, and will likely be further expanded upon.

• Distributed Database
After correctness and single-node performance, we consider this to be the

most important feature of modern database that are designed to scale. Further
research into establishing a multi-node shared-nothing instance of FusionDB
is highly desirable.

• Graph Database
As discussed (see Section 1.1) many users have complex cross document

query requirements that would likely benefit from more complex graph based
linking and querying. The key/value facilities of RocksDB have been previ-
ously been demonstrated by ArangoDB and DGraph as a feasible base for
building Graph database models. Integrating a graph model into FusionDB,
and the subsequent opportunities for cross-model querying is an interesting
topic for further research in FusionDB.

Bibliography
[1] Hal Berenson. Phil Bernstein. Jim Gray. Jim Melton. Elizabeth O'Neil. Patrick

O'Neil. June 1995. A Critique of ANSI SQL Isolation Levels. Association for

The Design and Implementation of FusionDB

210

Computing Machinery, Inc. http://research.microsoft.com/pubs/69541/
tr-95-51.pdf .

[2] Wolfgang Meier. eXist-db. 2006-10-13T09:35:53Z. Re: [Exist-open] Lock
(exclusive-lock, etc) does anybody have a book, tutorial, or helpful explanation?. exist-
open mailing list. https://sourceforge.net/p/exist/mailman/message/14675343/ .

[3] Wolfgang Meier. eXist-db. 2005-07-26T07:15:39Z. Initial checkin of
logging&recovery code.. GitHub. https://github.com/eXist-db/exist/commit/
1ed4d47f01c9ee2ede#diff-16915756b76d37e10eba8b939a1e2f40R1648.

[4] Wolfgang Meier. Adam Retter. eXist-db. 2018-04-23T20:21:37+02:00. [bugfix] Fix
failing recovery for overflow DOM nodes (>4k). Addresses #1838. GitHub. https://
github.com/exist-db/exist/commit/6467898.

[5] Pierrick Brihaye. eXist-db. 2007-02-13T16:13:31Z. Made a broader use of
transaction.registerLock(). Left 2 methods with the old design (multiple collections are
involved).. GitHub. https://github.com/eXist-db/exist/commit/
cd29fef34f91d471d79966b963d1657fd9186f89.

[6] Dmitriy Shabanov. eXist-db. 2010-12-14T17:44:07Z. [bugfix] The
validateXMLResourceInternal lock document, but do not unlock with a hope that it
will happen up somewhere. Link lock with transaction, so document lock will be
released after transaction completed or canceled.. GitHub. https://github.com/eXist-
db/exist/commit/5af077cd441039d9b8125a9149f399b9bd8ee95c.

[7] Adam Retter. eXist-db. 2018-10-31T19:12:22+08:00. [bugfix] Locks do not need to
be acquired for the transaction life-time for permission changes. GitHub. https://
github.com/eXist-db/exist/commit/
0faee22bc792629d625807319459a164d00691c1.

[8] eXist-db. eXist-db B+ tree. GitHub. https://github.com/eXist-db/exist/blob/
eXist-4.5.0/src/org/exist/storage/btree/BTree.java#L26.

[9] dbXML. dbXML 1.0b4 B+Tree. SourceForge. http://sourceforge.net/projects/
dbxml-core/files/OldFiles/dbXML-Core-1.0b4.tar.gz/download.

[10] Christian Grün. BaseX. 2014-05-23T17:54:00Z. Transaction Management -
Concurrency Control. BaseX. http://docs.basex.org/index.php?
title=Transaction_Management&oldid=10646#Concurrency_Control.

[11] J. Chris Anderson, Jan Lehnardt, and Noah Slater. Apache. 2010-02-05.
CouchDB - The Definitive Guide. Storing Documents. 1st. O'Reilly. http://
guide.couchdb.org/draft/documents.html.

[12] MongoDB, Inc.. 2018-11-29. What is MongoDB?. https://www.mongodb.com/
what-is-mongodb.

The Design and Implementation of FusionDB

211

http://research.microsoft.com/pubs/69541/tr-95-51.pdf
http://research.microsoft.com/pubs/69541/tr-95-51.pdf
https://sourceforge.net/p/exist/mailman/message/14675343/
https://github.com/eXist-db/exist/commit/1ed4d47f01c9ee2ede#diff-16915756b76d37e10eba8b939a1e2f40R1648
https://github.com/eXist-db/exist/commit/1ed4d47f01c9ee2ede#diff-16915756b76d37e10eba8b939a1e2f40R1648
https://github.com/exist-db/exist/commit/6467898
https://github.com/exist-db/exist/commit/6467898
https://github.com/eXist-db/exist/commit/cd29fef34f91d471d79966b963d1657fd9186f89
https://github.com/eXist-db/exist/commit/cd29fef34f91d471d79966b963d1657fd9186f89
https://github.com/eXist-db/exist/commit/5af077cd441039d9b8125a9149f399b9bd8ee95c
https://github.com/eXist-db/exist/commit/5af077cd441039d9b8125a9149f399b9bd8ee95c
https://github.com/eXist-db/exist/commit/0faee22bc792629d625807319459a164d00691c1
https://github.com/eXist-db/exist/commit/0faee22bc792629d625807319459a164d00691c1
https://github.com/eXist-db/exist/commit/0faee22bc792629d625807319459a164d00691c1
https://github.com/eXist-db/exist/blob/eXist-4.5.0/src/org/exist/storage/btree/BTree.java#L26
https://github.com/eXist-db/exist/blob/eXist-4.5.0/src/org/exist/storage/btree/BTree.java#L26
http://sourceforge.net/projects/dbxml-core/files/OldFiles/dbXML-Core-1.0b4.tar.gz/download
http://sourceforge.net/projects/dbxml-core/files/OldFiles/dbXML-Core-1.0b4.tar.gz/download
http://docs.basex.org/index.php?title=Transaction_Management&oldid=10646#Concurrency_Control
http://docs.basex.org/index.php?title=Transaction_Management&oldid=10646#Concurrency_Control
http://guide.couchdb.org/draft/documents.html
http://guide.couchdb.org/draft/documents.html
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb

[13] Marklogic Corporation. 2018-11-29. MarkLogic Application Developers Guide.
Working with JSON. https://docs.marklogic.com/guide/app-dev/json.

[14] Marklogic Corporation. 2018-11-29. MarkLogic Application Developers Guide.
Understanding Transactions in MarkLogic Server. https://docs.marklogic.com/
guide/app-dev/transactions.

[15] David Gorbet. Marklogic Corporation. 2018-11-30. I is for Isolation, That's Good
Enough for Me! - MarkLogic. https://www.marklogic.com/blog/isolation/.

[16] Sinclair Target. Two-Bit History. 2017-09-21. The Rise and Rise of JSON. https://
twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html.

[17] Christian Grün. BaseX. 2014-11-20T14:02:00Z. SQL Module. BaseX. http://
docs.basex.org/index.php?title=SQL_Module&oldid=11101.

[18] Dan McCreary. XQuery Examples Collection Wikibook.
2011-04-14T16:42:00Z. XQuery SQL Module. Wikibooks. https://
en.wikibooks.org/wiki/XQuery/XQuery_SQL_Module.

[19] Oracle. 2015-07-10. Introduction to Berkeley DB XML. Database Features. Oracle.
https://docs.oracle.com/cd/E17276_01/html/intro_xml/dbfeatures.html.

[20] Pete Aven. Diane Burley. MarkLogic. 2017-05-11. Building on Multi-Model
Databases. How to Manage Multiple Schemas Using a Single Platform. 1st. 24-26.
O'Reilly. http://info.marklogic.com/rs/371-XVQ-609/images/building-on-multi-
model-databases.pdf.

[21] Philip Lehman. S BING YAO. 1981. Efficient Locking for Concurrent Operations
on B-Trees. ACM. ACM Transactions on Database Systems. 6. 4. 650-670.

[22] Anastasia Braginsky. Erez Petrank. Technion - Israel Institute of Technology.
2012. A Lock-Free B+tree. Proceedings of the Twenty-fourth Annual ACM
Symposium on Parallelism in Algorithms and Architectures. SPAA '12. ACM.
58-67. 978-1-4503-1213-4. 10.1145/2312005.2312016.

[23] Justin Levandoski. David Lomet. Sudipta Sengupta. Microsoft Research.
2014-04-08. The Bw-Tree: A B-tree for new hardware platforms. IEEE. 2013 IEEE
29th International Conference on Data Engineering (ICDE). 978-1-4673-4910-9.
10.1109/ICDE.2013.6544834.

[24] Lars Arge. 1995. The Buffer Tree: A New Technique for Optimal I/O Algorithms.
BRICS, Department of Computer Science, University of Aarhus. Lecture Notes
in Computer Science. 995. WADS 1995. Springer.

[25] Gerth Stølting Brodal. Rolf Fagerberg. 2003. Lower Bounds for External Memory
Dictionaries. BRICS, Department of Computer Science, University of Aarhus.
Society for Industrial and Applied Mathematics. Proceedings of the Fourteenth

The Design and Implementation of FusionDB

212

https://docs.marklogic.com/guide/app-dev/json
https://docs.marklogic.com/guide/app-dev/transactions
https://docs.marklogic.com/guide/app-dev/transactions
https://www.marklogic.com/blog/isolation/
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
http://docs.basex.org/index.php?title=SQL_Module&oldid=11101
http://docs.basex.org/index.php?title=SQL_Module&oldid=11101
https://en.wikibooks.org/wiki/XQuery/XQuery_SQL_Module
https://en.wikibooks.org/wiki/XQuery/XQuery_SQL_Module
https://docs.oracle.com/cd/E17276_01/html/intro_xml/dbfeatures.html
http://info.marklogic.com/rs/371-XVQ-609/images/building-on-multi-model-databases.pdf
http://info.marklogic.com/rs/371-XVQ-609/images/building-on-multi-model-databases.pdf

Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '03. 546-554.
0-89871-538-5.

[26] brandur. 2017-05-07. The long road to Mongo's durability. https://brandur.org/
fragments/mongo-durability.

[27] Nassyam Basha. 2018-04-01. Database Lost write and corruption detections made
easy with dbcomp - 12.2. Oracle User Group Community. https://
community.oracle.com/docs/DOC-1023009.

[28] Robert Newson. 2017-01-19. [COUCHDB-3274] eof in couch_file can be incorrect
after error - ASF JIRA. Apache Software Foundation. https://issues.apache.org/
jira/browse/COUCHDB-3274.

[29] Jeffrey Aguilera. 2005-10-07T08:08:00Z. [DERBY-606]
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE fails on (very) large tables -
ASF JIRA. Apache Software Foundation. https://issues.apache.org/jira/browse/
DERBY-606.

[30] Issues · jankotek/mapdb. 2019-01-20. GitHub. https://github.com/jankotek/
mapdb/issues?utf8=%E2%9C%93&q=is%3Aissue+corrupt.

[31] Ryan S. Dancey. License-discuss Mailing List. OpenLDAP license.
2001-04-09T23:22:48Z. http://lists.opensource.org/pipermail/license-
discuss_lists.opensource.org/2001-April/003156.html.

[32] Jung-Sang Ahn. Chiyoung Seo. Ravi Mayuram. Rahim Yaseen. Jin-Soo Kim.
Seung Ryoul Maeng. 2016-03-01. 2015-05-20. ForestDB: A Fast Key-Value Storage
System for Variable-Length String Keys. IEEE. Published in: IEEE Transactions on
Computers. 65. 3. 902-915. 10.1109/TC.2015.2435779.

[33] Patrick O'Neil. Edward Cheng. Dieter Gawlick. Elizabeth O'Neil. 1996. The
Log-structured Merge-tree (LSM-tree). Acta Informatica. 33. Springer-Verlag New
York, Inc.. 351-385. 10.1007/s002360050048.

[34] Ilya Grigorik. 2012-02-06. SSTable and Log Structured Storage: LevelDB. https://
www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/.

[35] Siying Dong. 2015-02-27. WriteBatchWithIndex: Utility for Implementing Read-
Your-Own-Writes. https://rocksdb.org/blog/2015/02/27/write-batch-with-
index.html.

[36] Dhruba Borthakur. Facebook. 2013. The Story of RocksDB. Embedded Key-Value
Store for Flash and RAM. https://github.com/facebook/rocksdb/blob/gh-pages-
old/intro.pdf?raw=true.

[37] Symas Corporation. 2019. LMDB TECHNICAL INFORMATION. Other
Projects. https://symas.com/lmdb/technical/#projects.

The Design and Implementation of FusionDB

213

https://brandur.org/fragments/mongo-durability
https://brandur.org/fragments/mongo-durability
https://community.oracle.com/docs/DOC-1023009
https://community.oracle.com/docs/DOC-1023009
https://issues.apache.org/jira/browse/COUCHDB-3274
https://issues.apache.org/jira/browse/COUCHDB-3274
https://issues.apache.org/jira/browse/DERBY-606
https://issues.apache.org/jira/browse/DERBY-606
https://github.com/jankotek/mapdb/issues?utf8=%E2%9C%93&q=is%3Aissue+corrupt
https://github.com/jankotek/mapdb/issues?utf8=%E2%9C%93&q=is%3Aissue+corrupt
http://lists.opensource.org/pipermail/license-discuss_lists.opensource.org/2001-April/003156.html
http://lists.opensource.org/pipermail/license-discuss_lists.opensource.org/2001-April/003156.html
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://rocksdb.org/blog/2015/02/27/write-batch-with-index.html
https://rocksdb.org/blog/2015/02/27/write-batch-with-index.html
https://github.com/facebook/rocksdb/blob/gh-pages-old/intro.pdf?raw=true
https://github.com/facebook/rocksdb/blob/gh-pages-old/intro.pdf?raw=true
https://symas.com/lmdb/technical/#projects

[38] Facebook. GitHub. 2019. rocksdb/USERS.md at v5.17.2 · facebook/rocksdb. Users
of RocksDB and their use cases. Other Projects. https://github.com/facebook/
rocksdb/blob/v5.17.2/USERS.md.

[39] Facebook. GitHub. 2019. rocksdb/block_builder.cc at v5.17.2 · facebook/rocksdb.
https://github.com/facebook/rocksdb/blob/v5.17.2/table/block_builder.cc#L10.

[40] Facebook. GitHub. 2019. Prefix Seek API Changes · facebook/rocksdb Wiki. https://
github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes.

[41] Facebook. GitHub. 2019-01-23. 2019-01-21. RocksDB - Wikipedia. Integration.
https://en.wikipedia.org/wiki/RocksDB#Integration.

[42] Dan Ports. Kevin Grittner. 2012-08. Serializable Snapshot Isolation in
PostgreSQL. VLDB Endowment. Proc. VLDB Endow.. 5. August 2012. 1850-1861.
10.14778/2367502.2367523.

[43] Adam Retter. Locking and Cache Improvements for eXist-db. 2018-02-05. https://
www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-
improvements/locking-and-cache-improvements-20180205.pdf.

[44] Adam Retter. Asymmetrical Locking for eXist-db. 2018-02-05. https://
www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/
asymmetrical-locking-20180205.pdf.

[45] Gudka Khilan. Susan Eisenbach. Fast Multi-Level Locks for Java. A Preliminary
Performance Evaluation. 2010. EC^2 2010: Workshop on Exploiting Concurrency
Efficiently and Correctly. https://www.cl.cam.ac.uk/~kg365/pubs/ec2-
fastlocks.pdf.

[46] Gudka Khilan. 1975. Granularity of Locks in a Shared Data Base. Proceedings of
the 1st International Conference on Very Large Data Bases. VLDB '75.
10.1145/1282480.1282513. 978-1-4503-3920-9. ACM. 428-451.

[47] Adam Retter. BLOB Deduplication in eXist-db. 2018-11-27. https://
blog.adamretter.org.uk/blob-deduplication/.

[48] Adam Retter. JNI Construction Benchmark. Results. 2016-01-18. https://
github.com/adamretter/jni-construction-benchmark#results.

The Design and Implementation of FusionDB

214

https://github.com/facebook/rocksdb/blob/v5.17.2/USERS.md
https://github.com/facebook/rocksdb/blob/v5.17.2/USERS.md
https://github.com/facebook/rocksdb/blob/v5.17.2/table/block_builder.cc#L10
https://github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes
https://github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes
https://en.wikipedia.org/wiki/RocksDB#Integration
https://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/locking-and-cache-improvements-20180205.pdf
https://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/locking-and-cache-improvements-20180205.pdf
https://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/locking-and-cache-improvements-20180205.pdf
https://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/asymmetrical-locking-20180205.pdf
https://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/asymmetrical-locking-20180205.pdf
https://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/asymmetrical-locking-20180205.pdf
https://www.cl.cam.ac.uk/~kg365/pubs/ec2-fastlocks.pdf
https://www.cl.cam.ac.uk/~kg365/pubs/ec2-fastlocks.pdf
https://blog.adamretter.org.uk/blob-deduplication/
https://blog.adamretter.org.uk/blob-deduplication/
https://github.com/adamretter/jni-construction-benchmark#results
https://github.com/adamretter/jni-construction-benchmark#results

xqerl_db: Database Layer in xqerl
Zachary N. Dean

<contact@zadean.com>

Abstract

xqerl, an open-source XQuery 3.1 processor written in Erlang, now has an
internal database layer for persistent storage of XML and JSON documents
as well as other unparsed resources. This paper will discuss overall layout of
the data layer, some internal workings of databases, and work that is still to
be done concerning document querying and indexing.

Keywords: XML Database, XQuery, Erlang, Big Data

1. Introduction

There were many reasons for adding a persistent data layer to xqerl. Parsing of
data, be it XML or JSON, can be one the most resource-consuming parts of the
system. [1] To limit this cost and time, saving the parsed and decomposed data
means parsing only happens once on input. To fully implement the Update
Facility for XQuery without altering files on the filesystem, or only being able to
handle in-memory changes of the copy-modify statement, a persisted store was
also needed.

Also, to be useful in any number of use-cases, be it applications with high
insertion transaction rates, or with the need to store huge amounts of data, the
data backend should have several qualities. The data storage should be relatively
compact when compared to the unparsed data that it contains. There should also
be as few limitations as possible on the size and complexity of the data that is
input. Nodes should be able to be quickly accessed regardless of physical loca-
tion. Data should also be able to be rapidly queried and reconstructed on
demand.

This new datastore is an initial attempt to address many of these requirements
and is described here.

2. Overview of the System

The entire system can be envisioned as a collection of loosely coupled independ-
ent databases with one process keeping track of all databases and their current
states. The basic outline of the system is shown in Figure 1. This layout allows
each database to handle portions of queries on their own and in parallel.

215

Figure 1. Process Overview - Supervision Tree

The xqldb_sup process is the root of the supervision tree and simply ensures that
the entire system stays running. Should either of its child processes, or both,
crash, it restarts both anew. The xqldb_db_sup process supervises each open
database. If any database should crash, it is restarted singly. The xqldb_db_server
process maintains a record of all existing databases and their current status. This
process also handles all requests for starting and stopping databases, as well as
database discovery in the system.

Each individual database is given a unique 32-bit integer identifier upon crea-
tion. Using this method does limit the total number of possible databases the sys-
tem can address, but it would require creating one database per second for well
over 100 years to reach this limit and therefore is imagined to be large enough.
The integer identifier is used to create a physical folder on the local filesystem to
hold all the databases data files. To avoid a possibly extremely wide directory
structure each identifier is encoded to its hexadecimal string value and split into
four values of two characters each. This causes each directory to have only a max-
imum of 256 immediate subdirectories.

Each database represents a node in the URI hierarchy of all document URIs in
the system. That is, for each "directory" that contains a document in the system,
there exists one database. Databases are dynamically created at the time of the
first document insertion into that directory. Collections of documents can be ref-
erence either by their base directory or an ancestor directory.

3. Databases
The term "database" as used in this paper is meant to mean a single self-con-
tained, independent group of processes and linked data. It can be considered
roughly like a table in a relational database including all its indexes, data and
data-files thereof.

Each database consists of one supervisor process and several child processes
that each encapsulate a portion of the database and that portion's individual
logic. The supervisor process only ensures that if one of its child processes should

xqerl_db: Database Layer in xqerl

216

crash, that all other child processes are also stopped in a controlled way and then
restarted. This ensures that the entire database maintains a consistent state in case
of failure. The child processes consist of the following:
lock A Finite-State-Machine that tracks all reading and writing

processes to the database. Writes must wait for all reads to
finish. Any reads that come after a write must wait for the
write to finish. Currently, the entire database is locked by a
writing process. This will eventually be changed to docu-
ment or node-range granularity.

nodes A file containing every XML node in the database as a 13-
byte wide portion of the file in document order. The struc-
ture of this file is described in Section 3.1.

names A simple key/value store for a 19-bit integer to a tuple con-
taining local-name and prefix.

namespaces A simple key/value store for a 10-bit integer to xs:anyURI.
namespace nodes Handles the position and scope of namespace nodes in

XML documents in the database. Namespace nodes are not
kept in the node table.

texts Handles a "string table" (explained in depth in Section 3.2)
for all text node values in the database.

attributes Identical to the texts process but handles attribute values
instead of text nodes.

resources A file holding all resources inserted into the database. A
resource can be any unparsed text or binary content.

JSON Holds pre-parsed JSON documents in a bit-packed binary
format.

paths A table containing each document or resource name in the
database, its type, and a pointer to its location in its respec-
tive process and file. The path table is explained in greater
detail in Section 3.3. The document types in the database
are:
1. XML - pre-parsed XML documents
2. JSON - bit-width binary streams that when material-

ized make up valid JSON
3. Resource
4. Link - Linked files that are outside the database. These

can be files too large to reasonably include in the
resource table or files that do not exist at the time of
input but will exist when first queried.

xqerl_db: Database Layer in xqerl

217

5. Item - Any XDM value (including functions). All values
are serialized to a binary format and put in the
Resource Table.

All the processes have access to one or more files on the filesystem to save their
data and state and ensure persistency in case of failure. Processes that are expec-
ted to have a high level of write actions also have a "log file" to relieve pressure
on the main data file and avoid possible file corruption. This file is used to collect
updates to the main file. After a predefined number of additions to this file a
process is triggered to commit the changes to the main file. Should a process
crash before the log file is committed to the main file it will be committed when
the process starts again. This form of buffering file changes is similar to the Jour-
naling File System [5] used in many Linux filesystems.

3.1. Node Table

The node table contains information about every XML node in the database. Sin-
gle nodes are stored as fixed-width, 13-byte binary values. These values are all
stored in document order. This format allows for efficient linear scanning of all
nodes for certain values and allows for fast rebuilding of contiguous nodes and
node hierarchies. A mapping of all node values is shown in Table 1. The width of
each value is given in bits in the column header. Each node kind has one 32-bit
value that is ignored and not included in the binary value. Values of N/A mean
that the value is set to all 0 value bits. This layout leans partially on the node table
layout used within BaseX. [6]

Table 1. Node bit-patterns

Kind (3) Text (32) Offset
(32)

Size (32) Name
(19)

Name-
space
(10)

NS
Node (1)

Attrib-
utes (7)

Docu-
ment

String ID
of docu-
ment-uri

[null] Count of
child
nodes

N/A N/A N/A N/A

Element [null] Offset to
parent
node

Count of
attributes
and child

nodes

Node
name ID

Name-
space ID

Flag to
indicate
a new

in-scope
name-
space

Count of
Attrib-
utes

xqerl_db: Database Layer in xqerl

218

Kind (3) Text (32) Offset
(32)

Size (32) Name
(19)

Name-
space
(10)

NS
Node (1)

Attrib-
utes (7)

Text String ID
of string

value

Offset to
parent
node

[null] N/A N/A N/A N/A

Attrib-
ute

String ID
of attrib-
ute value

N/A [null] Node
name ID

Name-
space ID

N/A Offset to
parent
node

Com-
ment

String ID
of string

value

Offset to
parent
node

[null] N/A N/A N/A N/A

Process-
ing-
instructi
on

String ID
of string

value

Offset to
parent
node

[null] Node
name ID

N/A N/A N/A

3.2. String Table
Currently, the string table is the most complex portion of the database. It consists
of five files; three data files, and two journal files. The string table is a Hash Table
key/value store and strings are only stored once in the database regardless of the
count of occurrences in any documents. The string ID values are limited to a 32-
bit integer value. The first 28-bits of the identifier is the hash value of the string
itself, the last 4 bits are a pointer to the string in an overflow array with a maxi-
mum of 16 values. Should more than 16 string values share the same hash value,
an error occurs.

The decision to use a hash value as part of the key was made to allow for fast
lookups of values and the fact that many databases may share the same string
values. All databases will at least have the same first 28 bits in the ID for the same
value. This also can also help queries that access more than one database to elimi-
nate certain databases from selection based on a hash value not existing in the
database at all. This causes the string table to act as a kind of Bloom filter [3],
eliminating unnecessary disk access and lookups.

Using a fixed size key and a maximum overflow count limits the total possible
capacity of the string table. To test the total capacity of a string table and effective-
ness of the hashing algorithm, a simple test was run. An attempt was made to
insert every possible four-byte value into a string table as if it were a normal
string. This was run until the first hash collision occurred that caused a hash
value to overflow the 16 possible positions. Once this error occurred, the total
number of strings inserted was returned as was the total count of values per posi-

xqerl_db: Database Layer in xqerl

219

tion in the overflow array. The total count of strings at the time of error was
655,871,412. The counts per position shows how many lookups must be made in
each hash bucket position array to find a certain value. As can been seen in Fig-
ure 2, the large majority of values could be found in the first four positions of the
overflow array.

Figure 2. Unique Strings per Overflow Count at Full Capacity

To avoid overly large datafiles and wasted space when a string table is sparsely
populated, the addressing of the 28-bit hash is split into three levels. The levels
and sizes can be seen in Figure 3. Each level contains a pointer to the next levels
position in the "index" file or in the case of the last level, a pointer into a "leaf" file
that makes up the 16 overflow positions for each hash value. Only values in use at
a certain level are created and written to disk. The 16 possible positions in the
overflow array are split into four small blocks of pointers that are also only cre-
ated by the first usage. Should a string be 11 bytes or less in length it is stored in
the position block directly. Should the string be longer than 11 bytes, it is written
to an append-only file called a "heap" and the position and length of the string
stored.

Figure 3. Bit Breakdown of 32-bit String ID

3.3. Path Table and Transactions
The path table is perhaps the most important part of a database as it not only pro-
vides a mapping between an available document’s name and its current location
on disk, but also acts as a transaction manager. This portion of the database acts
as a window to all currently "committed" documents in the database. A docu-
ment is only truly available to queries if it has a current record in the path table.
Also, if a document should be deleted, it is only truly gone if the path table has no
reference to its position on file. Changes to the path table are always the last thing

xqerl_db: Database Layer in xqerl

220

to happen in any updating query and are only visible after the database lock has
been released. This form of transaction management, though somewhat crude, is
effective in ensuring consistency among all parallel queries to any given database
even in the case of failure.

It is worth noting that all database processes other than the path table are
append-only. That is, no data is ever deleted from disk and space is not reclaimed
or reused. Documents are simply dereferenced by the path table and therefore no
part of them can be returned to a query.

4. Future Work
Though data can be input into, updated in and retrieved from xqerl_db, it is far
from complete. The next planned additions are to implement indexing, improve
XPath rewriting rules, and to allow for external backends to be queried directly
from xqerl as if they were collections or databases internal to the system.

Currently, no indexes exist for data that is input into xqerl_db. The major diffi-
culty with including indexes is the overall lack of existing open-source, persistent,
sorted data stores for Erlang. There are many in-memory implementations, but
only few save to disk. The few that do use persistency are either quite out of date
or do not easily allow for variable-length indexed values as is needed with string
values. A likely option going forward is to make a new implementation of an AA-
Tree [4] that can be saved to file. This algorithm is already in use in the standard
Erlang/OTP release, but only an in-memory implementation.

Changing the way that XPath expressions are handled statically and dynami-
cally will also dramatically improve performance. In its current state, xqerl
expects an in-memory version of all nodes and handles path expressions recur-
sively as function calls on the node tree. This forces calls to the fn:collection
and fn:doc functions to hold entire documents in memory. This will be changed
in two ways. Firstly, in the static phase of query compilation, all XPath statements
will be simplified as much as possible. Reverse axes that can be changed to a for-
ward axis will be changed, and redundant path expressions removed, in a way as
described by Olteanu et al. [2] This could eliminate the need for keeping parent
and sibling nodes in memory or being built at all. Secondly, the simplified path
expressions from the static phase will be sent to the individual databases that
they query at runtime using a simple syntax. The database will then be responsi-
ble for finding the best query plan to execute based on the cost of execution for
that expression. This will allow different databases to execute different, and pos-
sibly, best plan at the given moment instead of the query plan being decided at
compile time with no knowledge of the queried data. How the cost should be cal-
culated for any given statement is still unknown. It is also unknown how com-
plex joins and complex predicate statements will be handled when they cross
database boundaries.

xqerl_db: Database Layer in xqerl

221

Though xqerl_db will remain the default storage option, it is planned to add
other storage and query options. An optional, mnesia-based backend will become
part of the xqerl project and will be able to leverage the transactional, and distrib-
uted features of mnesia (the distributed database that ships with Erlang/OTP).
This will be able to either be disk-based or entirely in-memory as well as option-
ally replicated across multiple nodes.

Other backends could also be added later to either act as the entire data source
for a given node, or as a single database. These external databases could be any-
thing from a relational database storing XML or JSON to a NoSQL database. All
marshalling and unmarshalling of data will happen in the backend itself and it
will be responsible for translating path expressions to the appropriate query lan-
guage for the data source. This use of external data sources could vastly increase
the flexibility of xqerl and the types of data it uses.

5. Conclusion
This paper has described the overall architecture of the current state of xqerl_db
and some of its internal working as well as the next features to be implemented.
Though far from complete, with the features mentioned above, xqerl will become
an extremely flexible and dynamic XQuery processor.

Bibliography
[1] Nicola, M. John, J. XML Parsing: A Threat to Database Performance, CIKM

2003
[2] Olteanu, D. Meuss, H. Furche, T. Bry, F. XPath: Looking Forward, Institute for

Computer Science and Center for Information and Language Processing
University of Munich, Germany, 2001

[3] Bloom, B. H. Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, Volume 13, Issue 7 , July 1970, 422-426

[4] Andersson, A. Balanced Search Trees Made Simple, http://user.it.uu.se/
~arnea/ps/simp.pdf, Retrieved 29 Jan 2019

[5] Jones, M. T. Anatomy of Linux journaling file systems https://www.ibm.com/
developerworks/linux/library/l-journaling-filesystems/index.html,
Retrieved 24 Jan 2019

[6] Node Storage - BaseX Documentation, http://docs.basex.org/wiki/
Node_Storage, Retrieved 27 Jan. 2019

xqerl_db: Database Layer in xqerl

222

http://user.it.uu.se/~arnea/ps/simp.pdf
http://user.it.uu.se/~arnea/ps/simp.pdf
https://www.ibm.com/developerworks/linux/library/l-journaling-filesystems/index.html
https://www.ibm.com/developerworks/linux/library/l-journaling-filesystems/index.html
http://docs.basex.org/wiki/Node_Storage
http://docs.basex.org/wiki/Node_Storage

An XSLT compiler written in XSLT:
can it perform?

Michael Kay
Saxonica

<mike@saxonica.com>
John Lumley

jwL Research, Saxonica
<john@jwlresearch.com>

Abstract

This paper discusses the implementation of an XSLT 3.0 compiler written in
XSLT 3.0. XSLT is a language designed for transforming XML trees, and
since the input and output of the compiler are both XML trees, compilation
can be seen as a special case of the class of problems for which XSLT was
designed. Nevertheless, the peculiar challenges of multi-phase compilation
in a declarative language create performance challenges, and much of the
paper is concerned with a discussion of how the performance requirements
were met.

1. Introduction

Over the past 18 months we have been working on a new compiler for XSLT,
written in XSLT itself: see [1], [2]. At the time of writing, this is nearing functional
completeness: it can handle over 95% of the applicable test cases in the W3C XSLT
suite. In this paper we'll give a brief outline of the structure of this compiler (we'll
call it XX), comparing and constrasting with the established Saxon compiler writ-
ten in Java (which we will call XJ). And before we do that, we'll give a reminder
of the motivation for writing it, from which we can derive some success criteria to
decide whether it is fit for release.

Having got close to functional completeness, we now need to assess the com-
piler's performance, and the main part of this paper will be concerned with the
process of getting the compiler to a point where the performance requirements
are satisfied.

Because the compiler is, at one level, simply a fairly advanced XSLT 3.0 style-
sheet, we hope that the methodology we describe for studying and improving its
performance will be relevant to anyone else who has the task of creating perform-
ant XSLT 3.0 stylesheets.

223

2. Motivation
When XSLT 1.0 first emerged in 1999, at least a dozen implementations appeared
within a year or two, many of them of excellent quality. Each typically targeted
one particular platform: Java, Windows, Python, C, browsers, or whatever. What-
ever your choice of platform, there was an XSLT 1.0 processor available (although
on the browsers in particular, it took a few years before this goal was achieved).

For a variety of reasons, the W3C's goal of following up XSLT 1.0 with a quick
1.1 upgrade didn't happen, and it was over seven years before XSLT 2.0 came
along, followed by a ten year wait for XSLT 3.0. By this time there was a sizeable
XSLT user community, but very few of the original XSLT 1.0 vendors had an
appetite for the development work needed to implement 2.0 or 3.0. By this stage
the number of companies still developing XSLT technology was down to three:
Altova and Saxonica, who both had commercial products that brought in enough
revenue to fund further development, and a startup, Exselt, which had aspira-
tions to do the same.

This pattern is not at all unusual for successful programming languages. If
you look at any successful programming language, the number of implementa-
tions has declined over time as a few "winners" have emerged. But the effect of
this is that the implementations that remain after the market consolidates come
under pressure to cover a broader range of platforms, and that is what is happen-
ing with XSLT.

The bottom line is: there is a demand and an opportunity to deliver an XSLT
processor that runs on a broader range of platforms. Over the past few years
Saxon has slowly (and by a variety of bridge technologies) migrated from its orig-
inal Java base to cover .NET, C, and Javascript. Currently we see demand from
Node.js users. We're also having to think about how to move forward on .NET,
because the bridge technology we use there (IKVM) is no longer being actively
developed or maintained.

The traditional way to make a programming language portable is to write the
compiler in its own language. This was pioneered by Martin Richards with BCPL
in the late 1960s, and it has been the norm ever since.

Many people react with a slight horror to the idea of writing an XSLT com-
piler in XSLT. Surely a language that is mainly used for simple XML-to-HTML
conversion isn't up to that job? Well, the language has come on a long way since
version 1.0. Today it is a full functional programming language, with higher
order functions and a rich set of data types. Moreover, XSLT is designed for per-
forming transformations on trees, and transforming trees is exactly what a com-
piler does. So the language ought to be up to the job, and if it isn't then we would
like to know why.

As we submit this paper, we have produced an almost-complete working
XSLT compiler in XSLT 3.0, without encountering any serious obstacles in the lan-

An XSLT compiler written in XSLT: can it perform?

224

guage that made the task insuperable. We'll give an outline description of how it
works in the next section. But the challenging question when we started was
always going to be: will it perform? Answering that question is the main purpose
of this paper.

Back in 2007, Michael Kay gave a paper on writing an XSLT optimizer in
XSLT: see [3]. At that time, one conclusion was that tree copying needed to be
much more efficient; the paper gave an example of how a particular optimization
rewrite could only be achieved by an expensive copying operation applied to a
complete tree. Many optimizations are likely to involve recursive tree rewrites
which perform copying of the tree; there is a serious need to optimize this design
pattern.

At XML Prague 2018 (see [4]) the same author returned to this question of effi-
cient copying of subtrees, with a proposal for new mechanisms that would allow
subtrees to be virtually copied from one tree to another. One of the things exam-
ined in this paper is how much of a contribution this makes to the performance of
the XSLT compiler (spoiler: the results are disappointing).

3. The Compilers

In this section we will give an outline description of two XSLT compilers: the tra-
ditional Saxon compiler, written in Java, which for the purposes of this paper we
will call XJ (for "XSLT compiler written in Java"), and the new compiler, which we
will call XX (for "XSLT compiler written in XSLT").

Both compilers take as input a source XSLT stylesheet (or more specifically in
XSLT 3.0 a source XSLT package, because XSLT 3.0 allows packages to be com-
piled independently and then subsequently linked to form an executable style-
sheet), and both are capable of producing as output an SEF file, which is
essentially the compiled and optimized expression tree, serialized in either XML
or JSON. The expression tree can then form the input to further operations: it can
be directly interpreted, or executable code can be generated in a chosen inter-
mediate or machine language. But we're not concerned in this paper with how it
is used, only with how it is generated. The SEF file is designed to be portable. (We
have made a few concessions to optimize for a particular target platform, but that
should really be done as a post-processing phase.)

3.1. The XJ Compiler

In this section we will give an outline description of how the traditional XSLT
compiler in Saxon (written in Java) operates. This compiler has been incremen-
tally developed over a period of 20 years since Saxon was first released, and this
description is necessarily an abstraction of the actual code.

An XSLT compiler written in XSLT: can it perform?

225

It's conventional to describe a compiler as operating in a sequence of phases,
even if the phases aren't strictly sequential, and I shall follow this convention. The
main phases of the XJ compiler are as follows:
• The XSLT source code is processed using a standard SAX parser to produce a

sequence of events representing elements and attributes.
• The content handler that receives this stream of events performs a number of

operations on the events before constructing a tree representation of the code
in memory. This can be regarded as a pre-processing phase. The main opera-
tions during this phase (which operates in streaming mode) are:
• Static variables and parameters are evaluated
• Shadow attributes are expanded into regular attributes
• use-when expressions are evaluated and applied
• xsl:include and xsl:import declarations are processed.
• Whitespace text nodes, comments, and processing instructions are strip-

ped.
The result of this phase is a set of in-memory trees, one for each module in the
stylesheet package being compiled. These trees use the standard Saxon
"linked tree" data structure, a DOM-like structure where element nodes are
represented by custom objects (subclassing the standard Element class) to
hold properties and methods specific to individual XSLT elements such as
xsl:variable and xsl:call-template.

• Indexing: the top-level components in the stylesheet (such as global variables,
named templates, functions, and attribute sets) are indexed by name.

• Attribute processing: for each element in the stylesheet, the attributes are vali-
dated and processed as appropriate. This is restricted to processing that can
be carried out locally. Attributes containing XPath expressions and XSLT pat-
terns, and other constructs such as type declarations, are parsed at this stage;
the result of parsing is an in-memory expression tree.

• Contextual validation: elements are validated "in context" to ensure that they
appear in the proper place with the proper content model, and that consis-
tency rules are satisfied. Also during this phase, the first type-checking analy-
sis is carried out, confined to one XPath expression at a time. Type checking
infers a static type for each expression and checks this against the required
type. If the inferred type and the required type are disjoint, a static error is
reported. If the required type subsumes the inferred type, all is well and no
further action is needed. If the inferred type overlaps the required type, run-
time type checking code is inserted into the expression tree.

• Expression tree generation (referred to, rather unhelpfully, as "compiling").
This phase changes the data representation from the decorated XDM tree used

An XSLT compiler written in XSLT: can it perform?

226

so far to a pure tree of Java objects representing instructions and expressions
to be evaluated. At this stage the boundaries between XSLT and XPath con-
structs disappear into a single homogenous tree; it becomes impossible to tell,
for example, whether a conditional expression originated as an XPath if-
then-else expression or as an XSLT xsl:if instruction.

• A second type-checking phase follows. This uses the same logic as the previ-
ous type-checking, but more type information is now available, so the job can
be done more thoroughly.

• Optimization: this optional phase walks the expression tree looking for
rewrite opportunities. For example, constant expressions can be evaluated
eagerly; expressions can be lifted out of loops; unnecessary sort operations (of
nodes into document order) can be eliminated; nested-loop joins can be
replaced with indexed joins.

• When XSLT 3.0 streaming is in use, the stylesheet tree is checked for conform-
ance to the streamability rules, and prepared for streamed execution. There is
also an option to perform the streamability analysis prior to optimization, to
ensure strict conformance with the streaming rules in the language specifica-
tion (optimization will sometimes rewrite a non-streamable expression into a
streamable form, which the language specification does not allow).

• Finally, a stylesheet export file (SEF file) may be generated, or Java bytecode
may be written for parts of the stylesheet.

Some of these steps by default are deferred until execution time. When a large
stylesheet such as the DocBook or DITA stylesheets is used to process a small
source document, many of the template rules in the stylesheet will never fire.
Saxon therefore avoids doing the detailed compilation and optimization work on
these template rules until it is known that they are needed. Bytecode generation is
deferred even longer, so it can focus on the hot-spot code that is executed most
frequently.

The unit of compilation is an XSLT package, so there is a process of linking
together the compiled forms of multiple packages. Currently a SEF file contains a
package together with all the packages it uses, expanded recursively. The SEF file
is a direct serialization of the expression tree in XML or JSON syntax. It is typi-
cally several times larger than the original XSLT source code. 1

1SEF files generated by the XX compiler are currently rather larger than those generated by XJ. This is
partly because XJ has a more aggressive optimizer, which tends to eliminate unnecessary constructs
(such as run-time type checks) from the expression tree; and partly because XX leaves annotations on
the SEF tree that might be needed in a subsequent optimization phase, but which are not used at run-
time. The SEF representation of the XX compiler as produced by XJ is around 2Mb in expanded
human-readable XML form; the corresponding version produced by XX is around 6Mb.

An XSLT compiler written in XSLT: can it perform?

227

3.2. The XX Compiler
The XSLT compiler written in XSLT was developed as a continuation of work on
adding dynamic XPath functionality to Saxon-JS ([1])). That project had construc-
ted a robust XPath expression compiler, supporting most of the XPath 3.1 func-
tionality, with the major exception of higher-order functions. Written in
JavaScript, it generated an SEF tree for subsequent evaluation within a Saxon-JS
context, and in addition determined the static type of the results of this expres-
sion.

Given the robustness of this compiler, we set about seeing if an XSLT compiler
could be written, using XSLT as the implementation language and employing this
XPath compiler, to support some degree of XSLT compilation support within a
browser-client. Initial progress on simpler stylesheets was promising, and it was
possible to run (and pass!) many of the tests from the XSLT3 test suites. We could
even demonstrate a simple interactive XSLT editor/compiler/executor running in
a browser. Details of this early progress and the main aspects of the design can be
found in [2])

Progress was promising, but it needed a lot of detailed work to expand the
functionality to support large areas of the XSLT specification correctly. For exam-
ple issues such as tracking xpath-default-namespaces, namespace-prefix map-
pings and correctly determining import precedence have many corner cases that,
whilst possibly very very rare in use, are actually required for conformance to the
XSLT3.0 specification.

At the same time, the possibility of using the compiler within different plat-
form environments, most noteably Node.js, increased the need to build to a very
high degree of conformance to specification, while also placing demands on usa-
bility (in the form of error messages: the error messages output by a compiler are
as important as the executable code), and tolerable levels of both compiling and
execution performance. Performance is of course the major topic of this paper, but
the work necessary to gain levels of conformance took a lot longer than might
originally have been supposed, and work on usability of diagnostics has really
only just started. The methodology used had two main parts:
• Checking the compiler against test-cases from the XSLT-3.0 test suite. This was

mainly carried out within an interactive web page (running under Saxon-JS)
that permitted tests to be selected, run, results checked against test assertions
and intermediate compilation stages examined. For example the earliest work
looked at compiling stylesheets that used the xsl:choose instruction and iter-
atively coding until all the thirty-odd tests were passing.

• At a later stage, the compiler had advanced sufficiently that it became possible
to consider it compiling its own source, which whilst not a sufficient condition
is certainly a necessary one. The test would be that after some 3-4 stages of
self-compilation, the compiled-compiler 'export' tree would be constant. This

An XSLT compiler written in XSLT: can it perform?

228

was found to be very useful indeed — for example it uncovered an issue
where template rules weren't being rank-ordered correctly, only at the third
round of self-compilation.

In this section we'll start by briefly discussing the (top-level) design of the com-
piler, but will concentrate more on considering the compiler as a program written
in XSLT, before it was 'performance optimised'.

In drawing up the original design, a primary requirement was to ease the
inevitable and lengthy debugging process. Consequently the design emphasised
visibility of internal structures and in several parts used a multiplicity of result
trees where essential processing could perhaps have been arranged in a single
pass. The top-level design has some six major sequential phases, with a complete
tree generated after each stage. These were:

• The first phase, called static, handles inclusion/importation of all stylesheet
modules, together with XSLT3.0's features of static variables, conditional
inclusion and shadow attributes. The result of this phase is a single XDM tree
representing the merged stylesheet modules, after processing of use-when and
shadow attributes, decorated with additional attributes to retain information
that would otherwise be lost: original source code location, base URIs, name-
space context, import precedence, and attributes such as exclude-result-
prefixes inherited from the original source structure. 2

• A normalisation phase where the primary syntax of the stylesheet/package is
checked, and some normalisation of common terms (such as boolean-valued
attributes 'strings', 'yes','false','0' etc), is carried out. In the absence of a full
schema processor, syntax checking involves two stages: firstly a map-driven
check that the XSLT element is known, has all required and no unknown
attributes and has permitted child and parent elements. Secondly a series of
template rules to check more detailed syntax requirements, such as
xsl:otherwise only being the last child of xsl:choose and cases where either
@select or a sequence constructor child, but not both, are permitted on an ele-
ment.

• Primary compilation of the XSLT declarations and instructions. This phase
converts the tree from the source XSLT vocabulary to the SEF vocabulary. This
involves collecting a simple static context of declaration signatures (user func-
tions, named templates) and known resources (keys, accumulators, attribute
sets, decimal formats) and then processing each top level declaration to pro-
duce the necessary SEF instruction trees by recursive push processing, using
the static context to check for XSLT-referred resource existence. Note that dur-

2We are still debating whether there would be benefits in splitting up this monolithic tree into a "for-
est" of smaller trees, one for each stylesheet component.

An XSLT compiler written in XSLT: can it perform?

229

ing this phase XPath expressions and patterns are left as specific single
pseudo-instructions for processing during the next phase3.

• Compilation of the XPath and pattern expressions, and type-checking of the
consequent bindings to variable and parameter values. In this phase the
pseudo-instructions are compiled using a saxon:compile-XPath extension
function, passing both the expression and complete static context (global func-
tion signatures, global and local variables with statically determined types, in-
scope namespaces, context item type etc.), returning a compiled expression
tree and inferred static type. These are then interpolated into the compilation
tree recursively, type-checking bindings from the the XPath space to the XSLT
space, i.e. typed XSLT variables and functions.

For pragmatic reasons, the XPath parsing is done in Java or Javascript, not
in XSLT. Writing an XPath parser in XSLT is of course possible, but we already
had parsers in Java and Javascript, so it was easier to continue using them.

• Link-editing the cross-component references in a component-binding phase.
References to user functions, named templates, attribute sets and accumula-
tors needed to be resolved to the appropriate component ID and indirected
via a binding vector attached to each component4

. After this point the SEF tree is complete and only needs the addition of a
checksum and serialization into the final desired SEF file.
Each of these phases involves a set of XSLT template rules organized into one

major mode (with a default behaviour of shallow-copy), constructing a new
result tree, but often there are subsidiary modes used to process special cases. For
example, a compiled XPath expression that refers to the (function) current() is
converted to a let expression that records the context item, with any reference to
current() in the expression tree replaced with a reference to the let variable.

The code makes extensive use of tunnel parameters, and very little use of
global variables. Indexes (for example, indexes of named templates, functions,
and global variables in the stylesheet being compiled) are generally represented
using XSLT 3.0 maps held in tunnel parameters.

It's worth stating at this point that the compiler currently does not use a num-
ber of XSLT3.0 features at all, for example attribute sets, keys,accumulators,
xsl:import, schema-awareness, streaming, and higher-order functions. One rea-
son for this was to make it easier to bootstrap the compiler; if it only uses a subset
of the language, then it only needs to be able to compile that subset in order to
compile itself. Late addition of support for higher-order functions in the XPath
compiler makes the latter a distinct possibility, though in early debugging they

3In theory XPath compilation could occur during this phase, but the complexity of debugging ruled
this out until a very late stage of optimisation.
4This derives from combination of separately-compiled packages, where component internals need
not be disturbed.

An XSLT compiler written in XSLT: can it perform?

230

may have been counter-productive. It should also be noted that separate package
compilation is not yet supported, so xsl:stylesheet, xsl:transform and
xsl:package are treated synonymously.

A run of the compiler can be configured to stop after any particular stage of
this process, enabling the tree to be examined in detail.

We'll now discuss this program not as an XSLT compiler, but as an example of
a large XSLT transformation, often using its self-compilation as a sample stress-
testing workload.

The XX compiler is defined in some 33 modules, many corresponding to the
relevant section of the XSLT specification. Internally there is much use of static-
controlled inclusion (@use-when) to accommodate different debugging, opera-
tional and optimisation configurations, but when this phase has been completed,
the program (source) tree has some 536 declarations, covering 4,200 elements and
some 7,200 attributes, plus another 13,500 attributes added during inclusion to
track original source properties, referred to above. The largest declaration (the
template that 'XSLT-compiles' the main stylesheet) has 275 elements, the deepest
declaration (the primary static processing template) is a tree up to 12 elements
deep.

Reporting of syntax errors in the user stylesheet being compiled is currently
directed to the xsl:message output stream. Compilation continues after an error,
at least until the end of the current processing phase. The relevant error-handling
code can be overridden (in the usual XSLT manner) in a customization layer to
adapt to the needs of different platforms and processing environments.

Top level processing is a chain of five XSLT variables bound to the push ('ap-
ply-templates') processing of the previous (tree) result of the chain. We'll examine
each of these in turn:

3.2.1. Static inclusion

The XSLT architecture for collecting all the relevant sections of the package
source is complicated mainly by two features: firstly the use of static global varia-
bles as a method of meta-programming, controlling conditional source inclusion,
either through @use-when decorations or even through shadow attributes on inclu-
sion/importation references. Secondly it is critical to compute the import prece-
dence of components, which requires tracking importation depth of the original
source. Other minor inconveniences include the possibility of the XSLT version
property changing between source components and the need to keep track of
original source locations (module names and line numbers).

As static variables can only be global (and hence direct children of a style-
sheet) and their scope is (almost) following-sibling::*/ descendant-or-
self::*, the logic for this phase needs to traverse the top-level sibling
declarations maintaining state as it goes (to hold information about the static vari-

An XSLT compiler written in XSLT: can it perform?

231

ables encountered. The XSLT 3.0 xsl:iterate instruction is ideally suited to this
task. The body of the xsl:iterate instruction collects definitions of static varia-
bles in the form of a map. Each component is then processed by template applica-
tion in mode static, collecting the sequence of processed components as a
parameter of the iteration. Static expressions may be encountered as the values of
static variables, in [xsl:]use-when attributes, and between curly braces in
shadow attributes; in all cases they are evaluated using the XSLT 3.0
xsl:evaluate instruction, with in-scope static variables supplied as the @with-
params property.5The result of the evaluation affects subsequent processing:
• For [xsl:]use-when, the result determines whether the relevant subtree is

processed using recursive xsl:apply-templates, or discarded
• For static variables and parameters, the result is added to a map binding the

names of variables to their values, which is made available to following sib-
ling elements as a parameter of the controlling xsl:iterate, and to their
descendant instructions via tunnel parameters.

• For shadow attributes, the result is injected into the tree as a normal (non-
shadow) attribute. For example the shadow attribute
_streamable="{$STREAMING}" might be rewritten as streamable="true".

Errors found during the evaluation of static XPath expressions will result in
exceptions during xsl:evaluate evaluation - these are caught and reported.

After each component has been processed through the static phase, it is typ-
ically added to the $parts parameter of the current iteration. In cases where the
component was the declaration of a static variable or parameter, the @select
expression is evaluated (with xsl:evaluate and the current bindings of static
variables) and its binding added to the set of active static variables.

Processed components which are xsl:include|xsl:import declarations are
handled within the same iteration. After processing the @href property is
resolved to recover the target stylesheet6. The stylesheet is then read and pro-
cessed in the static mode. The result of this a map with two members — the
processed components and the number of prior imports. The processed compo-
nents are then allocated an importation precedence (recorded as an attribute)
dependent upon importation depth/position and any previous precedence and
added to the set of components of the including stylesheet7. Finally the complete

5There is a minor problem here, in that use-when expressions are allowed access to some functions,
such as fn:system-property(), which are not available within xsl:evaluate. In a few cases like this
we have been obliged to implement language extensions.
6A stack of import/included stylesheets is a parameter of the main stylesheet template, the check
against self or mutual recursive inclusion.
7This complexity is due to the possibility of an importation, referenced via an inclusion, preceding a
high-level importation - something permitted in XSLT3.0. Note that the current XX compiler does not
itself use xsl:import - linkage is entirely through xsl:include.

An XSLT compiler written in XSLT: can it perform?

232

sequence of self and included components are returned as a map with the 'local'
importation information. At the very top level the stylesheet is formed by copy-
ing all active components into the result tree.

In more general XSLT terms, the processing involves recursive template appli-
cation for the entire (extended) source tree, with stateful iteration of the body of
stylesheets, evaluation and interpolation of static variables with that iteration and
a complex multiple-copy mechanism for recording/adjusting importation prece-
dence.

3.2.2. Normalisation

The normalisation phase makes intensive use of XSLT template rules. Generally,
each constraint that the stylesheet needs to satisfy (for example, that the type and
validation attributes are mutually exclusive) is expressed as a template rule.
Each element in the use stylesheet is processed by multiple rules, achieved by use
of the xsl:next-match instruction.

The normalisation phase has two main mechanisms. The first involves check-
ing any xsl:* element for primary syntax correctness — is the element name
known, does it have all required attributes or any un-permitted attributes, do any
'typed' attributes (e.g. boolean) have permitted values and are parent/child ele-
ments correct? A simple schema-like data structure8 was built from which a map
element-name => {permitted attributes, required attributes, permitted parents, permitted
children...} was computed, and this is used during the first stage of syntax check-
ing through a high-priority template. The second mechanism is more ad-hoc, and
comprises a large set of templates matching either error conditions such as:

 <xsl:template match="xsl:choose[empty(xsl:when)]" mode="normalize">
 <xsl:sequence select="f:missingChild(., 'xsl:when')"/>
 </xsl:template>

which checks that a 'choose' must have a when 'clause', or normalising a value,
such as:

<xsl:template match="xsl:*/@use-attribute-sets" mode="normalize">
 <xsl:attribute name="use-attribute-sets"
 select="tokenize(.) ! f:EQName(., current()/..)"/>
</xsl:template>

which normalises attribute set names to EQNames.
As far as XSLT processing is concerned, this phases builds one tree in a single

pass over the source tree.

8Derived from the syntax definitions published with the XSLT3.0 specification

An XSLT compiler written in XSLT: can it perform?

233

3.2.3. XSLT compilation

The main compilation of the XSLT package involves three main processes — col-
lecting (properties of) all the global resources of the package, such as named tem-
plates, user-defined functions, and decimal formats; collecting all template rules
into same-mode groups; and a recursive descent compilation of XSLT instructions
of each component.

The process for the first is to define a set of some dozen variables, which are
then passed as tunnel parameters in subsequent processing, such as:

<xsl:variable name="named-template-signatures" as="map(*)">
 <xsl:map>
 <xsl:for-each-group select="f:precedence-sort(xsl:template)"
 group-by="@name">
 <xsl:variable name="highest" select="
 let $highest-precedence :=
 max(current-group()/@ex:precedence)
 return
 current-group()[@ex:precedence = $highest-precedence]"/>
 <xsl:if test="count($highest) gt 1">
 <xsl:sequence select="f:syntax-error('XTSE0660',
 'Multiple declarations of ' || name() || ' name=' || @name ||
 ' at highest import precedence')"/>
 </xsl:if>
 <xsl:variable name="params"
 select="$highest/xsl:param[not(@tunnel eq 'true')]"/>
 <xsl:map-entry key="$highest/@name" select="map{
 'params': f:string-map($params/map:entry(@name,
 map{'required': @required eq 'true',
 'type': @as})),
 'required': $params[@required eq 'true']/@name,
 'type': ($highest/@as,'item()*')[1]
 }"/>
 </xsl:for-each-group>
 </xsl:map>
</xsl:variable>
which both checks for conflicting named templates, handles differing preceden-
ces and returns a map of names/signatures. This can then of course be referenced
in compiling a xsl:call-template instruction to check both the existence of the
requested template and the names/types of its parameters, as well as the implied
result type.

All template rules are first expanded into 'single mode' instances by copying
for each referred @mode token9

. From this all used modes can be determined and for each a mode component
is constructed and populated with the relevant compiled templates. A pattern

An XSLT compiler written in XSLT: can it perform?

234

matching template is compiled with a simple push template, that leaves the
@match as a pattern pseudo-instruction, and the body as a compiled instruction
tree. The design currently involves the construction of three trees for each tem-
plate during this stage.

The bulk of the XSLT compiling is a single recursive set of templates, some of
which check for error conditions10, most of which generate an SEF instruction
and recursively process attributes and children, such as:

<xsl:template match="xsl:if" mode="sef">
 <xsl:param name="attr" as="attribute()*" select="()"/>
 <choose>
 <xsl:sequence select="$attr"/>
 <xsl:call-template name="record-location"/>
 <xsl:apply-templates select="@test" mode="create.xpath"/>
 <xsl:call-template name="sequence-constructor"/>
 <true/>
 <empty/>
 </choose>
</xsl:template>

which generates a choose instruction for xsl:if, with any required attributes
attached (often to identify the role of the instruction in its parent), records the
source location, creates an xpath pseudo-instruction for the test expression, adds
the sequence constructor and appends an empty 'otherwise' case.

Local xsl:variable and xsl:param instructions are replaced by VARDEF and
PARAMDEF elements for processing during XPath compiling.

The final result of this phase is a package with a series of component children
corresponding to compiled top-level declarations and modes with their template
rules.

3.2.4. XPath compiling and type checking

In this phase the package is processed to compile the xpath and pattern pseudo-
instructions, determine types of variables, parameters, templates and functions
and propogate and type-check cross-references. As such the key action is an itera-
tion through the children of any element that contains VARDEF or PARAMDEF chil-
dren, accumulating variable/type bindings that are passed to the XPath compiler.
Unlike the similar process during the static phase, in this case the architecture is
to use a recursive named template, to build a nested tree of let bindings, propo-
gating variable type bindings downwards and sequence constructor result types
back upwards. In this case the result type is held as an @sType attribute value. The

9This has the unfortunate effect of duplicating bodies (and compilation effort thereof) for multi-mode
templates — an indexed design might be a possibility, but may require SEF additions
10And perhaps should exist in in the normalisation phase

An XSLT compiler written in XSLT: can it perform?

235

top of this process determines the type of a component's result, which can be
checked against any declaration (I.e.@as)

This phase requires a static type system and checker which generates a small
map structure (baseType, cardinality.….) from the XSchema string representation
and uses this to compare supplied and required types, determining whether there
is match, total conflict or a need for runtime checking. Written in XSLT, one draw-
back is that the type of result trees is returned as a string on an attribute, requir-
ing reparsing11.

Some instructions require special processing during this phase. Some, e.g.
forEach, alter the type of the context item for evaluation of their sequence con-
structor body. Others, such as choose, return a result whose type is the union of
those of their 'action' child instructions. These are handled by separate templates
for each case.

Finally the pattern instructions are compiled. For accumulators and keys
their result trees are left on their parent declaration. For template rules, in addi-
tion, the default priority of the compiled pattern is calculated if required and with
a priority and import precedence available for every template rule in a mode,
they can be rank ordered.

3.2.5. Component binding

At this point all the compiling is complete, but all the cross-component references
must be linked. This is via a two stage process: firstly building a component 'na-
me' to component number ('id') map. Then each component is processed in turn,
collecting all descendant references (call-template, user-function calls, key and
accumulator references etc.) and building an indirect index on the component
head, whose entries are then interpolated into the internal references during a
recursive copy.12

3.2.6. Reflections on the design

We must emphasise that this architecture was designed for ease of the (complex)
debugging anticipated, valuing visibility over performance. Several of the phases
could be coalesced, reducing the need for multiple copying of large trees. For
example the normalisation and the compiling phases could be combined into a
single set of templates for each XSLT element, the body of which both checked

11Changing the canonical return to a (map) tuple of (tree,type) could be attempted but it would make
the use of a large set of element-matching templates completely infeasible.
12In XSLT 2.0, all references to components such as variables, named templates, and functions could
be statically resolved. This is no longer the case in XSLT 3.0, where components (if not declared pri-
vate or final) can be overridden in another stylesheet package, necessitating a deferred binding proc-
ess which in Saxon is carried out dynamically at execution time. The compiler generates a set of
binding vectors designed to make the final run-time binding operation highly efficient.

An XSLT compiler written in XSLT: can it perform?

236

syntax and compiled the result13. Similarly the XSLT and XPath compilation pha-
ses could be combined, incorporating static type checking in the same operation.
And some ot the operations, especially in type representation, may be susceptible
to redesign. Some of these will be discussed in the following sections

3.3. Comparing the Two Compilers
At a high level of description, the overall structure of the two compilers is not
that different. Internally, the most conspicuous difference is in the internal data
structures.

Both compilers work initially with the XDM tree representation of the style-
sheet as a collection of XML documents, and then subsequently transform this to
an internal representation better suited to operations such as type-checking.

For the XJ compiler, this internal representation is a mutable tree of Java
objects (each node in the tree is an object of class Expression, and the references
to its subexpressions are via objects of class Operand). The final SEF output is then
a custom serialization of this expression tree. The expression tree is mutable, so
there is no problem decorating it with additional properties, or with performing
local rewrites that replace selected nodes with alternatives. It's worth noting,
however, that the mutability of the tree has been a rich source of bugs over the
years. Problems can and do arise through properties becoming stale (not being
updated when they should be), through structural errors in rewrite operations
(leading for example to nodes having multiple parents), or through failure to
keep the structure thread-safe.

For the XX compiler, the internal representation is itself an XDM node tree,
augmented with maps used primarily as indexes into the tree. This creates two
main challenges. Firstly, the values of elements and attributes are essentially limi-
ted to strings; this leads to clumsy representation of node properties such as the
inferred type, or the set of in-scope namespaces. As we will see, profiling showed
that a lot of time was being spent translating such properties from a string repre-
sentation into something more suitable for processing (and back). Secondly, the
immutability of the tree leads to a lot of subtree copying. To take just one exam-
ple, there is a process that allocates distinct slot numbers to all the local variable
declarations in a template or function. This requires one pass over the subtree to
allocate the numbers (creating a modified copy of the subtree as it goes). But
worse, on completion we want to record the total number of slots allocated as an
attribute on the root node of the subtree; the simplest way of achieving this is to

13This is something of an anathema to accepted XSLT wisdom in the general case, where a mutliplicity
of pattern-matching templates is encouraged, but in this case the 'processed target', i.e. the XSLT lan-
guage isn't going to change.

An XSLT compiler written in XSLT: can it perform?

237

copy the whole subtree again. As we will see, subtree copying contributes a con-
siderable part of the compilation cost.

4. Compiler Performance
The performance of a compiler matters for a number of reasons:

• Usability and Developer Productivity. Developers spend most of their time
iteratively compiling, discovering their mistakes, and correcting them. Reduc-
ing the elapsed time from making a mistake to getting the error message has a
critical effect on the development experience. Both the authors of this paper
have been around long enough to remember when this time was measured in
hours. Today, syntax-directed editors often show you your mistakes before
you have finished typing. In an XML-based IDE such as oXygen, the editing
framework makes repeated calls on the compiler to get diagnostics behind the
scenes, and the time and resource spent doing this has a direct impact on the
usability of the development tool.

• Production efficiency. In some environments, for example high volume trans-
action processing, a program is compiled once and then executed billions of
times. In that situation, compile cost is amortized over many executions, so
the cost of compiling hardly matters. However, there are other production
environments, such as a publishing workflow, where it is common practice to
compile a stylesheet each time it is used. In some cases, the cost of compiling
the stylesheet can exceed the cost of executing it by a factor of 100 or more, so
the entire elapsed time of the publishing pipeline is in fact dominated by the
XSLT compilation cost.

• Spin-off benefits. For this project, we also have a third motivation: if the com-
piler is written in XSLT, then making the compiler faster means we have to
make XSLT run faster, and if we can make XSLT run faster, then the execution
time of other (sufficiently similar) stylesheets should all benefit. Note that
"making XSLT run faster" here doesn't just mean raw speed: it also means the
provision of instrumentation and tooling that helps developers produce good,
fast code.

4.1. Methodology

Engineering for performance demands a disciplined approach.

• The first step is to set requirements, which must be objectively measurable,
and must be correlated with the business requirements (that is, there must be
a good answer to the question, what is the business justification for investing
effort to make it run faster?)

An XSLT compiler written in XSLT: can it perform?

238

Often the requirements will be set relative to the status quo (for example,
improve the speed by a factor of 3). This then involves measurement of the
status quo to establish a reliable baseline.

• Then it becomes an iterative process. Each iteration proceeds as follows:
• Measure something, and (important but easily forgotten) keep a record of

the measurements.
• Analyze the measurements and form a theory about why the numbers are

coming out the way they are.
• Make a hypothesis about changes to the product that would cause the

numbers to improve.
• Implement the changes.
• Repeat the measurements to see what effect the changes had.
• Decide whether to retain or revert the changes.
• Have the project requirements now been met? If so, stop. Otherwise, con-

tinue to the next iteration.

4.2. Targets
For this project the task we want to measure and improve is the task of compiling
the XX compiler. We have chosen this task because the business objective is to
improve the speed of XSLT compilation generally, and we think that compiling
the XX compiler is likely to be representative of the task of compiling XSLT style-
sheets in general; furthermore, because the compiler is written in XSLT, the cost of
compiling is also a proxy for the cost of executing arbitrary XSLT code. Therefore,
any improvements we make to the cost of compiling the compiler should benefit
a wide range of other everyday tasks.

There are several ways we can compile the XX compiler (remembering that
XX is just an XSLT stylesheet).

We can describe the tasks we want to measure as follows:
E0: CEEJ(XX) ➔ XX0 (240ms ➔ 240ms)
Exercise E0 is to compile the stylesheet XX using the built-in XSLT compiler in

Saxon-EE running on the Java platform (denoted here CEEJ) to produce an output
SEF file which we will call XX0. The baseline timing for this task (the status quo
cost of XSLT compilation) is 240ms; the target remains at 240ms.

“E1: TEEJ(XX, XX0) ➔ XX1 (2040ms ➔ 720ms)”
Exercise E1 is to apply the compiled stylesheet XX0 to its own source code,

using as the transformation engine Saxon-EE on the Java platform (denoted here
TEEJ(source, stylesheet)), to produce an output SEF file which we will call XX1.
Note that XX0 and XX1 should be functionally equivalent, but they are not
required to be identical (the two compilers can produce different executables, so

An XSLT compiler written in XSLT: can it perform?

239

long as the two executables do the same thing). The measured baseline cost for
this transformation is 2040ms, which means that the XX compiler is 8 or 9 times
slower than the existing Saxon-EE/J compiler. We would like to reduce this over-
head to a factor of three, giving a target time of 720ms.

“E2: TJSN(XX, XX0) ➔ XX2 (90s ➔ 3s)”
Exercise E2 is identical, except that this time we will use as our transformation

engine Saxon-JS running on Node.js. The ratio of the time for this task compared
to E1 is a measure of how fast Saxon on Node.js runs relative to Saxon on Java, for
one rather specialised task. In our baseline measurements, this task takes 90s – a
factor of 45 slower. That's a challenge. Note that this doesn't necessarily mean that
every stylesheet will be 45 times slower on Node.js than on Java. Although we've
described XX as being written in XSLT, that's a simplification: the compiler dele-
gates XPath parsing to an external module, which is written in Java or Javascript
respectively. So the factor of 45 could be due to differences in the two XPath pars-
ers. At the moment, though, we're setting requirements rather than analysing the
numbers. We'll set ourselves an ambitious target of getting this task down to
three seconds.

“E3: TEEJ(XX, XX1) ➔ XX3 (2450ms ➔ E1 + 25%) ”
Exercise E3 is again similar to E1, in that it is compiling the XX compiler by

applying a transformation, but this time the executable stylesheet used to per-
form the transformation is produced using the XX compiler rather than the XJ
compiler. The speed of this task, relative to E1, is a measure of how good the code
produced by the XX compiler is, compared with the code produced by the XJ
compiler. We expected and were prepared to go with it being 25% slower, but
found on measurement that we were already exceeding this goal.

There are of course other tasks we could measure; for example we could do
the equivalent of E3, but using Saxon-JS rather than Saxon-EE/J. However, it's
best to focus on a limited set of objectives. Repeatedly compiling the compiler
using itself might be expected to converge, so that after a couple of iterations the
output is the same as the input: that is, the process should be idempotent.
Although technically idempotence is neither a necessary nor a sufficient condi-
tion of correctness, it is easy to assess, so as we try to improve performance, we
can use idempotence as a useful check that we have not broken anything. We
believe that if we can achieve these numbers, then we have an offering on Node.js
that is fit for purpose; 3 seconds for a compilation of significant size will not cause
excessive user frustration. Of course, this is a "first release" target and we would
hope to make further improvements in subsequent releases.

4.3. Measurement Techniques

In this section we will survey the measurement techniques used in the course of
the project. The phase of the project completed to date was, for the most part,

An XSLT compiler written in XSLT: can it perform?

240

running the compiler using Saxon-EE on the Java platform, and the measurement
techniques are therefore oriented to that platform.

We can distinguish two kinds of measurement: bottom-line measurement
intended directly to assess whether the compiler is meeting its performance
goals; and internal measurements designed to achieve a better understanding of
where the costs are being incurred, with a view to making internal changes.

• The bottom-line execution figures were obtained by running the transforma-
tion from the command line (within the IntelliJ development environment, for
convenience), using the -t and -repeat options.

The -t option reports the time taken for a transformation, measured using
Java's System.nanoTime() method call. Saxon breaks the time down into
stylesheet compilation time, source document parsing/building time, and
transformation execution time.

The -repeat option allows the same transformation to be executed repeat-
edly, say 20 or 50 times. This delivers results that are more consistent, and
more importantly it excludes the significant cost of starting up the Java Virtual
Machine. (Of course, users in real life may experience the same inconsistency
of results, and they may also experience the JVM start-up costs. But our main
aim here is not to predict the performance users will obtain in real life, it is to
assess the impact of changes we make to the system.)

Even with these measures in place, results can vary considerably from one
run to another. That's partly because we make no serious attempt to prevent
other background work running on the test machine (email traffic, virus
checkers, automated backups, IDE indexing), and partly because the operat-
ing system and hardware themselves adjust processor speed and process pri-
orities in the light of factors such as the temperature of the CPU and battery
charge levels. Some of the changes we have been making might only deliver a
1% improvement in execution speed, and 1% is unfortunately very hard to
measure when two consecutive runs, with no changes at all to the software,
might vary by 5%. Occasionally we have therefore had to "fly blind", trusting
that changes to the code had a positive effect even though the confirmation
only comes after making a number of other small changes whose cumulative
effect starts to show in the figures.

Generally we trust a good figure more than we trust a bad figure. There's
an element of wishful thinking in this, of course; but it can be justified on the
basis that random external factors such as background processes can slow a
test run down, but they are very unlikely to speed it up. The best figures we
got were usually when we ran a test first thing in the morning on a cold
machine.

• Profiling: The easiest way to analyse where the costs are going for a Saxon
XSLT transformation is to run with the option -TP:profile.html. This gener-

An XSLT compiler written in XSLT: can it perform?

241

ates an HTML report showing the gross and net time spent in each stylesheet
tempate or function, together with the number of invocations. This output is
very useful to highlight hot-spots.

Like all performance data, however, it needs to be interpreted with care.
For example, if a large proportion of the time is spent evaluating one particu-
lar match pattern on a template rule, this time will not show up against that
template rule, but rather against all the template rules containing an
xsl:apply-templates instruction that causes the pattern to be evaluated (suc-
cessfully or otherwise). This can have the effect of spreading the costs thinly
out among many other templates.

• Subtractive measurement: Sometimes the best way to measure how long some-
thing is taking is to see how much time you save by not doing it. For example,
this technique proved the best way to determine the cost of executing each
phase of the compiler, since the compiler was already structured to allow
early termination at the end of any phase. It can also be used in other situa-
tions: for example, if there is a validation function testing whether variable
names conform to the permitted XPath syntax, you can assess the cost of that
operation by omitting the validation. (As it happens, there's a cheap optimiza-
tion here: test whether names are valid at the time they are declared, and rely
on the binding of references to their corresponding declarations to catch any
invalid names used as variable or function references).

• A corresponding technique, which we had not encountered before this
project, might be termed additive measurement. Sometimes you can't cut out a
particular task because it is essential to the functionality; but what you can do
is to run it more than once. So, for example, if you want to know how much
time you are spending on discovering the base URIs of element nodes, one
approach is to modify the relevant function so it does the work twice, and see
how much this adds to total execution time.

• Java-level profiling. There's no shortage of tools that will tell you where your
code is spending its time at the Java level. We use JProfiler, and also the basic
runhprof reports that come as standard with the JDK. There are many pitfalls
in interpreting the output of such tools, but they are undoubtedly useful for
highlighting problem areas. Of course, the output is only meaningful if you
have some knowledge of the source code you are profiling, which might not
be the case for the average Saxon XSLT user. Even without this knowledge,
however, one can make inspired guesses based on the names of classes and
methods; if the profile shows all the time being spent in a class called
DecimalArithmetic, you can be fairly sure that the stylesheet is doing some
heavy computation using xs:decimal values.

• Injected counters. While timings are always variable from one run to another,
counters can be 100% replicable. Counters can be injected into the XSLT code

An XSLT compiler written in XSLT: can it perform?

242

by calling xsl:message with a particular error code, and using the Saxon
extension function saxon:message-count() to display the count of messages
by error code. Internally within Saxon itself, there is a general mechanism
allowing counters to be injected: simply add a call on
Instrumentation.count("label") at a particular point in the source code,
and at the end of the run it will tell you the number of executions for each dis-
tinct label. The label does not need to be a string literal; it could, for example,
be an element name, used to count visits to nodes in the source document by
name. This is how we obtained the statistics (mentioned below) on the inci-
dence of different kinds of XPath expression in the stylesheet.

The information from counters is indirect. Making a change that reduces
the value of a counter gives you a warm feeling that you have reduced costs,
but it doesn't quantify the effect on the bottom line. Nevertheless, we have
found that strategically injected counters can be a valuable diagnostic tool.

• Bytecode monitoring. Using the option -TB on the Saxon command line gives a
report on which parts of the stylesheet have been compiled into Java bytecode,
together with data on how often these code fragments were executed.
Although it was not orginally intended for the purpose, this gives an indica-
tion of where the hotspots in the stylesheet are to be found, at a finer level of
granularity than the -TP profiling output.

A general disadvantage of all these techniques is that they give you a worm's-eye
view of what's going on. It can be hard to stand back from the knowledge that
you're doing millions of string-to-number conversions (say), and translate this
into an understanding that you need to fundamentally redesign your data struc-
tures or algorithms.

4.4. Speeding up the XX Compiler on the Java Platform
The first task we undertook (and the only one fully completed in time for publica-
tion) was to measure and improve the time taken for compiling the XX compiler,
running using Saxon-EE on the Java platform. This is task E1 described above,
and our target was to improve the execution time from 2040ms to 720ms.

At this stage it's probably best to forget that the program we're talking about
is a compiler, or that it it is compiling itself. Think of it simply as an ordinary,
somewhat complex, XML transformation. We've got a transformation defined by
a stylesheet, and we're using it to transform a set of source XML documents into a
result XML document, and we want to improve the transformation time. The fact
that the stylesheet is actually an XSLT compiler and that the source document is
the stylesheet itself is a complication we don't actually need to worry about.

We started by taking some more measurements, taking more care over the
measurement conditions. We discovered that the original figure of 2040ms was
obtained with bytecode generation disabled, and that switching this option on

An XSLT compiler written in XSLT: can it perform?

243

improved the performance to 1934ms. A gain of 5% from bytecode generation for
this kind of stylesheet is not at all untypical (significantly larger gains are some-
times seen with stylesheets that do a lot of arithmetic computation, for example).

Figure 1. Example of -TP profile output

Our next step was to profile execution using the -TP option. Figure 1 shows part
of the displayed results. The profile shows that 25% of the time is spent in a single
template, the template rule with match="*:xpath. This is therefore a good candi-
date for further investigation.

4.4.1. XPath Parsing

The match="*:xpath template is used to process XPath expressions appearing in
the stylesheet. As already mentioned, the XPath parsing is not done in XSLT code,
but by a call-out to Java or Javascript (in this case, Java). So the cost of this tem-
plate includes all the time spent in the Java XPath parser. However, the total time
spent in this template exceeds the total cost of running the XJ compiler, which is
using the same underlying XPath parser, so we know that it's not simply an ineffi-
ciency in the parser.

Closer examination showed that the bulk of the cost was actually in setting up
the data structures used to represent the static context of each XPath expression.
The static context includes the names and signatures of variables, functions, and
types that can be referenced by the XPath expression, and it is being passed from
the XSLT code to the Java code as a collection of maps. Of course, the average
XPath expression (think select=".") doesn't use any of this information, so the
whole exercise is wasted effort.

Reducing this cost used a combination of two general techniques:
• Eager evaluation: A great deal of the static context is the same for every XPath

expression in the stylesheet: every expression has access to the same functions
and global variables. We should be able to construct this data structure once,
and re-use it.

An XSLT compiler written in XSLT: can it perform?

244

• Lazy evaluation: Other parts of the static context (notably local variables and
namespace bindings) do vary from one expression to another, and in this case
the trick is to avoid putting effort into preparing the information in cases
when it is not needed. One good way to do this would be through callbacks -
have the XPath parser ask the caller for the information on demand (through
callback functions such as a variable resolver and a namespace resolver, as
used in the JAXP XPath API). However, we decided to rule out use of higher-
order functions on this project, because they are not available on all Saxon ver-
sions. We found an alternative that works just as well: pass the information to
the parser in whatever form it happens to be available, and have the parser do
the work of digesting and indexing it only if it is needed.

These changes brought execution time down to 1280ms, a good step towards the
target of 720ms.
Profiling showed that invocation of the XPath parser still accounted for a large

proportion of the total cost, so we subsequently revisited it to make further
improvement. One of the changes was to recognize simple path expressions like .
and (). We found that of 5100 path expressions in the stylesheet, 2800 had 5 or
fewer tokens; applying the same analysis to the Docbook stylesheets gave similar
results. The vast majority of these fall into one of around 25 patterns where the
structure of the expression can be recognised simply from the result of tokeniza-
tion: if the sequence of tokens is (dollar, name) then we can simply look up a
function that handles this pattern and converts it into a variable reference,
bypassing the recursive-descent XPath parser entirely. Despite a good hit rate, the
effect of this change on the bottom line was small (perhaps 50ms, say 4%). How-
ever, we decided to retain it as a standard mechanism in the Java XPath parser.
The benefit for Java applications using XPath to navigate the DOM (where it is
common practice to re-parse an XPath expression on every execution) may be
rather greater.

4.4.2. Further investigations

After the initial success improving the interface to the XPath parser, the profile
showed a number of things tying for second place as time-wasters: there are
about 10 entries accounting for 3% of execution time each, so we decided to
spread our efforts more thinly. This proved challenging because although it was
easy enough to identify small changes that looked beneficial, measuring the effect
was tough, because of the natural variation in bottom-line readings.

Here are some of the changes we made in this next stage of development:

• During the first ("static") phase of processing, instead of recording the full set
of in-scope namespace bindings on every element, record it only if the name-
space context differs from the parent element. The challenge is that there's no

An XSLT compiler written in XSLT: can it perform?

245

easy way to ask this question in XPath; we had to introduce a Saxon extension
function to get the information (saxon:has-local-namespaces()).

• The template rule used to strip processing instructions and comments, merge
adjacent text nodes, and strip whitespace, was contributing 95ms to total exe-
cution time (say 7%). Changing it to use xsl:iterate instead of xsl:for-
each-group cut this to 70ms.

• There was a very frequently executed function t:type used to decode type
information held in string form. Our initial approach was to use a memo func-
tion to avoid repeated decoding of the same information. Eventually however,
we did a more ambitious redesign of the representation of type information
(see below).

• The compiler maintains a map-based data structure acting as a "schema" for
XSLT to drive structural validation. This is only built once, in the form of a
global variable, but when the compiler is only used for one compilation,
building the structure is a measurable cost. We changed the code so that
instead of building the structure programmatically, it is built by parsing a
JSON file.

• We changed the code in the final phase where component bindings are fixed
up to handle all the different kinds of component references (function calls,
global variable references, call-template, attribute set references, etc) in a sin-
gle pass, rather than one pass for each kind of component. There were small
savings, but these were negated by fixing a bug in the logic that handled
duplicated names incorrectly. (This theme came up repeatedly: correctness
always comes before performance, which sometimes means the performance
numbers get worse rather than better.)

• There's considerable use in the compiler of XSLT 3.0 maps. We realised there
were two unnecessary sources of inefficiency in the map implementation.
Firstly, the specification allows the keys in a map to be any atomic type (and
the actual type of the key must be retained, for example whether it is an
xs:NCName rather than a plain xs:string). Secondly, we're using an "immuta-
ble" or "persistent" map implementation (based on a hash trie) that's opti-
mized to support map:put() and map:remove() calls, when in fact these
hardly ever occur: most maps are never modified after initial construction. We
added a new map implementation optimized for string keys and no modifica-
tion, and used a combination of optimizer tweaks and configuration options
to invoke it where appropriate.

Most of these changes led to rather small benefits: we were now seeing execution
times of around 1120ms. It was becoming clear that something more radical
would be needed to reach the 720ms goal.

An XSLT compiler written in XSLT: can it perform?

246

At this stage it seemed prudent to gather more data, and in particular it occur-
red to us that we did not really have numbers showing how much time was spent
in each processing phase. We tried two approaches to measuring this: one was to
output timestamp information at the end of each phase, the other was "subtrac-
tive measurement" - stopping processing before each phase in turn, and looking
at the effect on the bottom line. There were some interesting discrepancies in the
results, but we derived the following "best estimates":

Table 1. Execution times for each phase of processing

Static processing 112ms
Normalisation 139ms
"Compilation" (generating initial SEF tree) 264ms
XPath parsing 613ms
Component binding 55ms

These figures appear to contradict what we had learnt from the -TP profile infor-
mation. It seems that part of the discrepancy was in accounting for the cost of
serializing the final result tree: serialization happens on-the-fly, so the cost
appears as part of the cost of executing the final phase of the transformation, and
this changes when the transformation is terminated early. It's worth noting also
that when -TP is used, global variables are executed eagerly, so that the evalua-
tion cost can be separated out; the tracing also suppresses some optimizations
such as function inlining. Heisenberg rules: measuring things changes what you
are measuring.

At this stage we decided to study how much time was being spent copying
subtrees, and whether this could be reduced.

4.4.3. Subtree Copying

At XML Prague 2018, one of the authors presented a paper on mechanisms for
tree copying in XSLT; in particular, looking at whether the costs of copying could
be reduced by using a "tree grafting" approach, where instead of making a physi-
cal copy of a subtree, a virtual copy could be created. This allows one physical
subtree to be shared between two or more logical trees; it is the responsibility of
the tree navigator to know which real tree it is navigating, so that it can do the
right thing when retracing its steps using the ancestor axis, or when performing
other context-dependent operations such as computing the base URI or the in-
scope namespaces of a shared element node.

In actual fact, two mechanisms were implemented in Saxon: one was a fast
'bulk copy" of a subtree from one TinyTree to another (exploiting the fact that
both use the same internal data structure to avoid materializing the nodes in a

An XSLT compiler written in XSLT: can it perform?

247

neutral format while copying), and the other was a virtual tree graft. The code for
both was present in the initial Saxon 9.9 release, though the "bulk copy" was disa-
bled. Both gave good performance results in synthetic benchmarks.

On examination, we found that the virtual tree grafting was not being exten-
sively used by the XX compiler, because the preconditions were not always satis-
fied. We spent some time tweaking the implementation so it was used more often.
After these adjustments, we found that of 93,000 deep copy operations, the graft-
ing code was being used for over 82,000 of them.

However, it was not delivering any performance benefits. The reason was
quickly clear: the trees used by the XX compiler typically have a dozen or more
namespaces in scope, and the saving achieved by making a virtual copy of a sub-
tree was swamped by the cost of coping with two different namespace contexts
for the two logical trees sharing physical storage.

In fact, it appeared that the costs of copying subtrees in this application had
very little to do with the copying of elements and attributes, and were entirely
dominated by the problem of copying namespaces.

We then experimented by using the "bulk copy" implementation instead of the
virtual tree grafting. This gave a small but useful performance benefit (around
50ms, say 4%).

We considered various ways to reduce the overhead of namespace copying.
One approach is to try and reduce the number of namespaces declared in the
stylesheet that we are compiling; but that's cheating, it changes the input of the
task we're trying to measure. Unfortunately the semantics of the XSLT language
are very demanding in this area. Most of the namespaces declared in a stylesheet
are purely for local use (for use in the names of functions and types, or even for
marking up inline documentation), but the language specification requires that
all these names are retained in the static context of every XPath expression, for
use by a few rarely encountered constructs like casting strings to QNames, where
the result depends on the namespaces in the source stylesheet. This means that
the namespace declarations need to be copied all the way through to the gener-
ated SEF file. Using exclude-result-prefixes does not help: it removes the
namespaces from elements in the result tree, but not from the run-time evaluation
context.

We concluded there was little we could do about the cost of copying, other
than to try to change the XSLT code to do less of it. We've got ideas about changes
to the TinyTree representation of namespaces that might help14, but that's out of
scope for this project.

Recognizing that the vast majority of components (templates, functions, etc)
contain no internal namespace declarations, we introduced an early check during

14See blog article: http://dev.saxonica.com/blog/mike/2019/02/representing-namespaces-in-xdm-tree-
models.html

An XSLT compiler written in XSLT: can it perform?

248

the static phase so that such components are labelled with an attribute
uniformNS="true". When this attribute is present, subsequent copy operations on
elements within the component can use copy-namespaces="false" to reduce the
cost.

Meanwhile, our study of what was going on internally in Saxon for this trans-
formation yielded a few further insights:
• We found an inefficiency in the way tunnel parameters were being passed

(this stylesheet uses tunnel parameters very extensively).
• We found some costs could be avoided by removing an xsl:strip-space dec-

laration.
• We found that xsl:try was incurring a cost invoking

Executors.newFixedThreadPool(), just in case any multithreading activity
started within the scope of the xsl:try needed to be subsequently recovered.
Solved this by doing it lazily only in the event that multi-threaded activity
occurs.

• We found that during a copy operation, if the source tree has line number
information, the line numbers are copied to the destination. Copying the line
numbers is inexpensive, but the associated module URI is also copied, and
this by default walks the ancestor axis to the root of the tree. This copying
operation seems to achieve nothing very useful, so we dropped it.

At this stage, we were down to 825ms.

4.4.4. Algorithmic Improvements

In two areas we developed improvements in data representation and associated
algorithms that are worth recording.

Firstly, import precedence.
All the components declared in one stylesheet module have the same import

precedence. The order of precedence is that a module has higher precedence than
its children, and children have higher precedence than their preceding siblings.
The precedence order can be simply computed in a post-order traversal of the
import tree. The problem is that annotating nodes during a post-order traversal is
expensive: attributes appear on the start-tag, so they have to be written before
writing the children. The existing code was doing multiple copy operations of
entire stylesheet modules to solve this problem, and the number of copy opera-
tions increased with stylesheet depth.

The other problem here is that passing information back from called templates
(other than the result tree being generated) is tedious. It's possible, using maps,
but generally it's best if you can avoid it. So we want to allocate a precedence to
an importing module without knowing how many modules it (transitively)
imported.

An XSLT compiler written in XSLT: can it perform?

249

The algorithm we devised is as follows. First, the simple version that ignores
xsl:include declarations.
• We'll illustrate the algorithm with an alphabet that runs from A to Z. This

would limit the number of imports to 26, so we actually use a much larger
alphabet, but A to Z makes things clearer for English readers.

• Label the root stylesheet module Z
• Label its xsl:import children, in order, ZZ, ZY, ZX, ...
• Similarly, if a module is labelled PPP, then its xsl:import children are label-

led, PPPZ, PPPY, PPPX, ...
• The alphabetic ordering of labels is now the import precedence order, highest

precedence first.
A slight refinement of the algorithm is needed to handle xsl:include. Modules
are given a label that reflects their position in the hierarchy taking both
xsl:include and xsl:import into account, plus a secondary label that is changed
only by an xsl:include, not by an xsl:import.

Secondly, types.
We devised a compact string representation of the XPath SequenceType con-

struct, designed to minimize the cost of parsing, and capture as much informa-
tion as possible in compact form. This isn't straightforward, because the more
complex (and less common) types, such as function types, require a fully recur-
sive syntax. The representation we chose comprises:
• A single character for the occurrence indicator (such as "?", "*", "+"), always

present (use "1" for exactly one, "0" for exactly zero)
• A so-called alphacode for the "principal" type, chosen so that if (and only if) T

is a subtype of U, the alphacode of U is a prefix of the alphacode of T. The
alphacode for item() is a zero-length string; then, for example:
• N = node()
• NE = element()
• NA = attribute()
• A = xs:anyAtomicType
• AS = xs:string
• AB = xs:boolean
• AD = xs:decimal
• ADI = xs:integer
• ADIP = xs:positiveInteger
• F = function()
• FM = map()

An XSLT compiler written in XSLT: can it perform?

250

and so on.
• Additional properties of the type (for example, the key type and value type

for a map, or the node name for element and attribute nodes) are represented
by a compact keyword/value notation in the rest of the string.

Functions are provided to convert between this string representation and a map-
based representation that makes the individual properties directly accessible. The
parsing function is a memo function, so that conversion of commonly used types
like "1AS" (a single xs:string) to the corresponding map are simply lookups in a
hash table.

This representation has the advantage that subtype relationships between two
types can in most cases be very quickly established using the starts-with()
function.

It might be noted that both the data representations described in this section
use compact string-based representations of complex data structures. If you're
going to hold data in XDM attribute nodes, it needs to be expressible as a string,
so getting inventive with strings is the name of the game.

4.4.5. Epilogue

With all the above changes, and a few others not mentioned, we got the elapsed
time for the transformation down to 725ms, within a whisker of the target.

It then occurred to us that we hadn't yet used any of Saxon's multi-threading
capability. We found a critical xsl:for-each at the point where we start XPath
processing for each stylesheet component, and added the attribute
saxon:threads="8", so effectively XPath parsing of multiple expressions hap-
pens in parallel. This brings the run-time down to 558ms, a significant over-ach-
ievement beyond the target. It's a notable success-story for use of declarative
languages that we can get such a boost from parallel processing just by setting
one simple switch in the right place.

4.5. So what about Javascript?
The raison-d'etre of this project is to have an XSLT compiler running efficiently on
Node.js; the astute reader will have noticed that so far, all our efforts have been
on Java. Phase 2 of this project is about getting the execution time on Javascript
down, and numerically this is a much bigger challenge.

Having achieved the Java numbers, we decided we should test the "tuned up"
version of the compiler more thoroughly before doing any performance work
(there's no point in it running fast if it doesn't work correctly). During the per-
formance work, most of the testing was simply to check that the compiler could
compile itself. Unfortunately, as already noted, the compiler only uses a fairly
small subset of the XSLT language, so when we went back to running the full test

An XSLT compiler written in XSLT: can it perform?

251

suite, we found that quite a lot was broken, and it took several weeks to repair the
damage. Fortunately this did not appear to negate any of the performance
improvements.

Both Node.js and the Chrome browser offer excellent profiling tools for Java-
script code, and we have used these to obtain initial data helping us to under-
stand the performance of this particular transformation under Saxon-JS. The
quantitative results are not very meaningful because they were obtained against a
version of the XX compiler that is not delivering correct results, but they are
enough to give us a broad feel of where work is needed.

Our first profiling results showed up very clearly that the major bottleneck in
running the XX compiler on Saxon-JS was the XPath parser, and we decided on
this basis to rewrite this component of the system. The original parser had two
main components: the parser itself, generated using Gunther Rademacher's REx
toolkit [reference], and a back-end, which took events from the parser and gener-
ated the SEF tree representation of the expression tree. One option would have
been to replace the back-end only (which was written with very little thought for
efficiency, more as a proof of concept), but we decided instead to write a complete
new parser from scratch, essentially as a direct transcription of the Java-based
XPath parser present in Saxon.

At the time of writing this new parser is passing its first test cases. Early indi-
cations are that it is processing a medium sized XPath expression (around 80
characters) in about 0.8ms, compared with 8ms for the old parser. The figures are
not directly comparable because the new parser is not yet doing full type check-
ing. Recall however that the XX compiler contains around 5000 XPath expres-
sions, and if the compiler is ever to run in 1s with half the time spent doing XPath
parsing, then the budget is for an average compile time of around 0.1ms per path
expression. We know that most of the path expressions are much simpler than
this example, so we may not be too far out from this target.

Other than XPath parsing, we know from the measurements that we available
that there are a number of key areas where Saxon-JS performance needs to be
addressed to be competitive with its Java cousin.

• Pattern matching. Saxon-JS finds the template rule for matching a node (selec-
ted using xsl:apply-templates) by a sequential search of all the template
rules in a mode. We have worked to try and make the actual pattern matching
logic as efficient as possible, but we need a strategy that avoids matching
every node against every pattern. Saxon-HE on Java builds a decision tree in
which only those patterns capable of matching a particular node kind and
node name are considered; Saxon-EE goes beyond this and looks for common-
ality across patterns such as a common parent element or a common predi-
cate. We've got many ideas on how to do this, but a first step would be to
replicate the Saxon-HE design, which has served us well for many years.

An XSLT compiler written in XSLT: can it perform?

252

• Tree construction. Saxon-JS currently does all tree construction using the
DOM model, which imposes considerable constraints. More particularly,
Saxon-JS does all expression evaluation in a classic bottom-up (pull-mode)
fashion: the operands of an expression are evaluated first, and then combined
to form the result of the parent expression. This is a very expensive way to do
tree construction because it means repeated copying of child nodes as they are
added to their parents. We have taken some simple steps to mitigate this in
Saxon-JS but we know that more needs to be done. One approach is to follow
the Saxon/J product and introduce push-mode evaluation for tree construction
expressions, in which a parent instructions effectively sends a start element
event to the tree builder, then invokes its child instructions to do the same,
then follows up with an end element event. Another approach might be to
keep bottom-up construction, but using a lightweight tree representation with
no parent pointers (and therefore zero-overhead node copying) until a subtree
needs to be stored in a variable, and which point it can be translated into a
DOM representation.

• Tree navigation. Again, Saxon-JS currently uses the DOM model, which has
some serious inefficiencies built in. The worst is that all searching for nodes by
name requires full string comparison against both the local name and the
namespace URI. Depending on the DOM implementation, determining the
namespace URI of a node can itself be a tortuous process. One way forward
might be to use something akin to the Domino model recently introduced for
Saxon-EE, where we take a third party DOM as is, and index it for fast
retrieval. But this has a significant memory footprint. Perhaps we should sim-
ply implement Saxon's TinyTree model, which has proved very successful.

All of these areas impact on the performance of the compiler just as much as on
the performance of user-written XSLT code. That's the dogfood argument for
writing a compiler in its own language: the things you need to do to improve run-
time performance are the same things you need to do to improve compiler per-
formance.

5. Conclusions
Firstly, We believe we have shown that implementing an XSLT compiler in XSLT
is viable.

Secondly, we have tried to illustrate some of the tools and techniques that can
be used in an XSLT performance improvement exercise. We have used these tech-
niques to achieve the performance targets that we set ourselves, and we believe
that others can do the same.

The exercise has shown that the problem of the copying overhead when exe-
cuting complex XSLT transformations is real, and we have not found good
answers. Our previous attempts to solve this using virtual trees proved ineffec-

An XSLT compiler written in XSLT: can it perform?

253

tive because of the amount of context carried by XML namespaces. We will
attempt to make progress in this area by finding novel ways of representing the
namespace context.
Specific to the delivery of a high-performing implementation of Saxon on the

Javascript platform, and in particular server-side on Node.js, we have an under-
standing of the work that needs to be done, and we have every reason to believe
that the same techniques we have successfully developed on the Java platform
will deliver results for Javascript users.

References
[1] John Lumley, Debbie Lockett, and Michael Kay. February, 2017. XMLPrague.

XPath 3.1 in the Browser. 2017. http://archive.xmlprague.cz/2017/files/
xmlprague-2017-proceedings.pdf

[2] John Lumley, Debbie Lockett, and Michael Kay. August, 2017. Balisage: The
Markup Conference. Compiling XSLT3, in the browser, in itself. 2017. https://
doi.org/10.4242/BalisageVol19.Lumley01

[3] Michael Kay. August, 2007. Extreme Markup. Montreal, Canada. Writing an
XSLT Optimizer in XSLT. 2007. http://conferences.idealliance.org/
extreme/html/2007/Kay01/EML2007Kay01.html

[4] Michael Kay. February, 2018. XML Prague. Prague, Czechia. XML Tree Models
for Efficient Copy Operations. 2018. http://archive.xmlprague.cz/2018/
files/xmlprague-2018-proceedings.pdf

An XSLT compiler written in XSLT: can it perform?

254

XProc in XSLT: Why and Why Not
Liam Quin

Delightful Computing
<liam@fromoldbooks.org>

Abstract

Version 3 of XSLT includes the ability to call a secondary XSLT transforma-
tion from an XPath expression, using fn:transform(). It’s also possible in
most XSLT implementations to call out to system functions, so that one can
arrange to run an arbitrary external program from within a stylesheet. The
abilities from EXpath to read and write files, process zip archives, create and
remove files and so forth also exist.

This integration means that it’s often easier to call fn:transform() from a
wrapper stylesheet than to use an XProc pipeline. Doing this, however,
brings both advantages and disadvantages. This paper expands on the tech-
nique in more detail, illustrates some things that cannot be achieved,
together with techniques to mitigate the limitations. The conclusion incor-
porates suggestions on when it is better to move to XProc or other tools.

Keywords: XSLT, XProc, pipelines

1. Introduction
Recently the author was working with a client whose staff were familiar with
XSLT [3] but not with XProc [1] or XQuery [2]; it’s not that they were unwilling to
learn but that the ability to get the job done with the tools they already used was
a benefit. In the process of solving their needs using XSLT, the author found that
other consultants were using the same or very similar techniques.

As an experiment, the author rewrote an example XProc pipeline by Alex
Miłowski to create an EPUB 3 electronic book; using XSLT the result was smaller
and seemed easier to understand. However, getting to that result required some
care and expertise, so the motivation for this paper in part is to share that exper-
tise. Since there is ongoing work on XProc, another motivation is to ask some
questions about possible simplifications to XProc that may make it easier for peo-
ple to adopt it in the future.

A motivation for the work itself was that the primary implementation of
XProc to which I had access at the time suffered from poor diagnostic messages,
greatly increasing the cost of pipeline development. One approach would be to
try and improve the messages, since the implementation is open source, but there
was no guarantee that the changes would be accepted and in the short term I had

255

a client who needed an XSLT-only solution, so it wasn’t until the work was done
that the parallel with XProc became clearer. However, the possibility of an XProc
checker in XSLT seemed worth exploring and may be a secondary result of the
work.

2. The overall approach taken
The simplest approach to solving the author’s clients’ problems was to write a
single XSLT stylesheet that handled each problem, and that was what was reques-
ted and done. But in one case the actual problem included an XML document
describing steps to be taken. Interpreting that input one step at a time was
actually adequate, but is what gave rise to the question about XProc. So the
approach that the author tested was to hand-craft pipelines using XSLT, but to
spend the time doing small experiments and finding ways to do more.

It is easy to see that a two-art pipeline such as the following:
XSLT to assemble input | XSLT to make HTML

could be written as
<xsl:value-of select="make-html(assemble-input())"/>

The two functions called can each (for example) call fn:transform() to invoke an
external stylesheet.

Using function calls to replace sequential steps works well in simple cases.
However, consider a pipeline with multiple connections such as that of Figure 1:

Figure 1. A pipeline in which the first step, A1, makes two outputs: one goes
through step A2 to get to the final step, A3, and the other goes directly to A3 as

its other input.

We cannot rewrite the pipeline in Figure 1 with the equivalence that A followed
by B is the same as B(A()). If we try, we end up with:

A3(A2(A1()), A1())
Although this is correct in theory, it’s not a very good theory, because it fails to
take side-effects into account. If step A1() has side-effects, such as renaming files,
calling it twice might duplicate them. The nature of XSLT is that a processor can
cache the result of functions with the same arguments, so A1() might only be
evaluated once, but this uncertainty is not acceptable in an XProc context.

XProc in XSLT: Why and Why Not

256

One solution is to use temporary variables:
<xsl:variable name="tmp1" select="A1()"/>
 <xsl:sequence select="A3(A2($tmp1), $tmp1)"/>

The use of temporary variables poses other problems:
• There are restrictions on creating external resources using xsl:result-document

when a variable is being constructed. This can be mitigated using fn:trans-
form(), as described below.

• Memory usage may be higher, especially when compared to a text-based
pipeline, because the result of A1() now cannot be consumed in streaming
mode. However, actual pipeline implementations generally pass memory-
based trees from one processor to the next when they can, so this may not be a
difference in practice.

• A pipeline processor, and to some extent an XSLT processor using functions
but without temporary variables, may be able to make better use of multiple
threads. However, this depends on the optimizer of the specific XSLT pro-
cessor used, and optimization technology is sophisticated.

Fortunately, the restriction on creating external resources does not apply when
using a variable to store the result of fn:transform() calling an external transform
that creates such resources. Instead, the resources are not created, but fn:trans-
form() returns a map containing them, and this map can be associated with a var-
iable.

3. Immediate or Compiled
The author’s first attempt to gain pipeline functionality in XSLT through func-
tional composition used a compilation technique: an XSLT stylesheet that read a
simple pipeline specification and wrote out a stylesheet that, when interpreted by
an XSLT processor, would give the desired result. This worked, but the existence
of fn:transform() made the author wonder whether it would be possible to inter-
pret the input document directly. It was indeed possible. Although there were
some difficulties along the way, the result was easier to use, more reliable, and
faster than the two-step approach.

4. XProc Features
There is no attempt here to write a complete XProc implementation in XSLT,
although it’s in principle possible. Rather, this paper compares writing compara-
ble processing in XSLT and XProc with a strong focus on the XSLT side. The rea-
son is that if writing XProc pipelines was not a goal of the author’s clients, then
while solving their problems directly in XSLT would help them, writing an XProc

XProc in XSLT: Why and Why Not

257

implementation would not be work in which they would be interested in invest-
ing.

4.1. Definition
Any attempt to compare writing pipelines in XSLT to XProc needs first to explain
what is meant by a pipeline and secondly to list the features of XProc that the
author considers relevant.

The term pipeline (or pipe, informally) refers to a sequence or non-acyclic
graph of steps, each of which uses as input the output of one or more preceding
steps.

This definition is not that used in the XProc specification exactly, and should
be considered loose, approximate, general: as the paper progresses the intent of
the term should become clearer, but the most important thing is that we may
speak of a pipeline without necessarily meaning one represented in the XProc
language.

4.2. Comparing some features
The XML Pipeline language has some features (some of which come through
extensions and are not in the original specification) that

4.3. Dependency Management
Although an obvious form of dependency in a pipeline could be expressed as uses
as input the result of, a less obvious one might be resource has a less recent change-
date than. This sort of dependency is used by utilities such as make and ant that are
primarily intended for the development of computer programs: “if the source file
has changed since the program was last compiled, recompile the source file to
rebuild the program”.

The Calabash XProc implementation supports file revision-time dependencies;
in XSLT we can emulate them using the EXPath file:date() function:

<rule produces="socks.html" depends="socks.xml socks.xslt">
 <xslt input="socks.xml" output="socks.html" stylesheet="socks.xslt"/>
</rule>

An XSLT fragment might look like,
<xsl:if test="file:date('socks.xml') gt file:date('socks.html')">
 <xsl:sequence select="fn:transform(...)"
</xsl:if>

We will expand on the incomplete expression later, after discussing files, resour-
ces, and reading our own output, a significant consideration in any XSLT-based
approach.

XProc in XSLT: Why and Why Not

258

It is worth noting that the use of external parsed entities, of XInclude, DITA-
style maps and other multi-resource machinations can mean that determining
that an XML document has been modified in general is difficult. However,
explicit rules listing all of the fragments can mitigate this, as can making one’s
XSLT understand the inclusion paradigm being used. and this difficulty is not of
course specific to any particular implementation approach.

4.4. Running external processes

It’s possible to run arbitrary external code in most XSLT processors, including
Saxon. The exact way to do this varies depending on the host programming lan-
guage and the particular XSLT engine. It usually involves making an XPath func-
tion available which, when run, will cause execution of an external process. The
main difficulties are ensuring that the XSLT engine doesn’t optimize out the call
to the external program and capturing the output. One common approach to pre-
vent optimization is to include the “result” of calling the extension function (usu-
ally the empty sequence or a status code) in an xsl:message or in a result
element that’s used as input to the next stage. For example, it’s possible to write
out a Perl script with xsl:result-document and then to run it; the XSLT in
Appendix 1 does this. However, see the section on reusing persisted resources
later in this paper for some important caveats.

Capturing the output of the command generally involves writing it to a tem-
porary file and then reading that file, because some environments make it hard to
distinguish between error messages and output, or ignore the output completely
unless you set up some sort of pipe mechanism. For production purposes it’s
important to ensure that error messages are captured and handled.

4.5. Expression Languages and Variables

The XProc language supports the use of variables whose values can be associated
with items fished out of the pipeline stream using XPath expressions. With a two-
phase XSLT compilation it was possible to copy XPath expressions into the gener-
ated XSLT stylesheet. Without that, it’s possible to use eval() in XSLT processors
that support it; it would also be possible to parse the XPath expressions in XSLT,
but that seems unnecessarily burdensome. For now, the author chose not to sup-
port variables, although simple variables could certainly be handled.

Note that variables are always evaluated in the context of the pipeline so far.
With a functional approach, this means passing them up from fn:transform() to
the calling function as part of the result map and, potentially, down to called
transformations as a parameter. Recall that XProc variables are restricted to string
values (or, more precisely, for XPath 2, anyUntypedAtomic) and hence can be rep-
resented completely as strings.

XProc in XSLT: Why and Why Not

259

4.6. Reading and Writing Archives
The EXpath archive module provides the ability to read and write Zip archives.
Zip here is not the same as gzip despite the similar name, but is the format used
by EPUB for ebooks. As a result, XSLT stylesheets can now read and write
ebooks. A caveat is that the first entry in an EPUB archive must not be com-
pressed; the most portable way to achieve this is to make a zip archive containing
only the one constant mediatype file that is required; read this archive in XSLT (or
include it in the stylesheet in a Base64 string variable) and then use the archive
functions to append to that archive, but with compression.

5. Limitations and Restrictions of the XSLT Approach
It may seem from the foregoing that there’s no reason to use XProc in an environ-
ment in which XSLT is in heavy use. However, there are areas in which the diffi-
culty of orchestrating XSLT transforms outweighs the advantage of using a single
language.

5.1. Restrictions on Reading Created Resources
From [3] we can see (section 25.2) restrictions on the use of xsl:result-document;
some of these do not concern us here, but pay particular attention to the follow-
ing:
• It is a dynamic error to evaluate the xsl:result-document instruction in tempo-

rary output state.
• It is a dynamic error for a transformation to generate two or more final result

trees with the same URI.
• It is a dynamic error for a stylesheet to write to an external resource and read

from the same resource during a single transformation, if the same absolute
URI is used to access the resource in both cases.

The first of these restrictions means you can’t write to external files (resources)
while you are constructing a variable. Since the strategy for implementing com-
plex pipelines involves retaining the output from earlier steps in variables, this
means that steps cannot write to external resources. Fortunately, none of these
restrictions applies to fn:transform(): you can write to an external file in a style-
sheet you call, and then read from it in the caller, as long as you ensure that there
is a dependency so that the XSLT engine evaluates the external stylesheet before
you try to read the result.

In fact, when you use fn:transform(), external resources are not written out.
Instead, fn:transform() either returns a map containing them, or calls a function
you supply once for each such resource. The called stylesheet processor is not in a
temporary output state.

XProc in XSLT: Why and Why Not

260

It is possible to evade the restrictions on xsl:result-document using file:write()
and file:read(), and by not attempting to read a file that you know may have
changed except by calling an external stylesheet to do so. This last is not onerous
as you can construct a minimal stylesheet on the fly and pass it to fn:transform()
as a stylesheet node, but you need to be aware that the XSLT processor is likely to
cache the result of file:open() on any given URI.

Note that when an XSLT processor is embedded in another application, such
as a beautiful and highly functional XML editor, the result of fn:transform() may
be filtered by that application’s entity or resource manager, so that it turns out to
be wise to handle both return mechanisms: provide a function and also check the
returned map.

The following simple stylesheet writes a file and then reads it back again.
<xsl:stylesheet version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:file="http://expath.org/ns/file"
 exclude-result-prefixes="#all">

 <xsl:output method="text" />

 <xsl:variable name="socks" as="element(socks)">
 <socks>black</socks>
 </xsl:variable>

 <xsl:template match="/">
 <!--* write the file *-->
 <xsl:value-of
 select='file:write("file:/tmp/socks.xml", $socks)' />
 <!--* Read it back, upper case to show we did it: *-->
 <xsl:value-of
 select='upper-case(doc("file:/tmp/socks.xml")//socks/text())' />
 </xsl:template>
</xsl:stylesheet>

In the example above, file:write() is used and avoids the restrictions on xsl:result-
document. The output is simply the word “black” but transformed into upper
case. Inspection of the file created will show the word in lower case, by which we
know that the output from the stylesheet is from reading the document.

When you use fn:transform to call a subsidiary stylesheet, any resources that
the subsidiary stylesheet tries to create using xsl:result-document are returned in
a map; in addition, you can arrange for a user-defined function to be called for
each such resource. The following example illustrates that:

<xsl:stylesheet version="3.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:file="http://expath.org/ns/file"

XProc in XSLT: Why and Why Not

261

 xmlns:map="http://www.w3.org/2005/xpath-functions/map"
 xmlns:delicomp="https://www.dlightfulcomputing.com/"
 expand-text="yes">

 <xsl:output method="text" />

 <xsl:template match="/">
 <xsl:variable name="man" select="transform(
 map {
 'stylesheet-location' : 'output-two.xsl',
 'source-node' : /,
 'delivery-format' : 'serialized',
 'post-process' : delicomp:do-output#2,
 'stylesheet-params' : map {
 QName('', 'colour') : 'heavy iron',
 QName('', 'garment') : 'collar'
 }
 }
)"/>
 <xsl:message>Reading from file: {
 doc(map:keys($man)[1])
 }</xsl:message>
 </xsl:template>

 <xsl:function name="delicomp:do-output">
 <xsl:param name="uri" />
 <xsl:param name="value" />
 <xsl:message>write to {$uri}</xsl:message>
 <xsl:value-of select="file:write-text($uri, $value)" />
 </xsl:function>
</xsl:stylesheet>

The subsidiary stylesheet here is as follows:

<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:output="http://www.w3.org/2010/xslt-xquery-serialization">
 <xsl:param name="garment" select=" 'sock' " />
 <xsl:param name="colour" select=" 'green' " />

 <xsl:template match="/">
 <xsl:result-document href="inner-garment.xml">
 <garment>
 <xsl:value-of select="concat('Simon wears a ', $colour, ' ',
$garment, '
')"/>
 </garment>
 </xsl:result-document>

XProc in XSLT: Why and Why Not

262

 </xsl:template>
</xsl:stylesheet>

Running the main stylesheet with itself as input produces this output:

write to file:inner-garment.xml
Reading from file: Simon wears a heavy iron collar

Noteworthy in this example is that if the call to xsl:message that uses $man is
removed, the file is not created (depending on the XSLT processor used). To get
the side-effect, the result must be used in some way.

If the secondary stylesheet had in turn called a tertiary stylesheet in the same
way, it would need to save the results.

If a stylesheet creates a file but does not need to read it back (the usual case) it
can simply use xsl:result-document directly; if it is called by another stylesheet,
that stylesheet will have to save the output files or they will be lost. As a result,
normally, every call to fn:transform() that might produce external resources must
be accompanied by appropriate file creation.

5.2. Other Languages

This section would be incomplete if it did not mention that there are no standard
ways to call XProc or XQuery from XSLT. Of course, if you are using XSLT to
avoid working with XProc, the first of these will not be an issue. At least one
XSLT implementation (Saxon) provides a query() function analogous to trans-
form(), but in the use case of orchestrating multiple XQuery fragment, XProc
(including the existing XProc implementation in XQuery, perhaps) or even using
fn:transform and file:write from XQuery, makes sense.

5.3. Validation, XInclude, and Other Parsing options

Although a particular XSLT implementation might offer XInclude support, it is
not part of XSLT: there is no two-argument variant of fn:document() that takes
options, for example. XInclude can be implemented in XSLT, and has been, as
well as in XSLT processors; control over DTD validation such as that provided by
XProc’s p:load step is absent, however, and requires use of extensions.

6. Conclusions
Today, XSLT 3 (when used with widely-implemented extensions such as the
file:write() function) can emulate much of the functionality of XProc. It is entirely
reasonable to use XSLT to orchestrate simple pipelines, and doing so in an envi-
ronment or business culture in which XSLT is the main language used for XML
processing can help to minimize development and maintenance costs.

XProc in XSLT: Why and Why Not

263

There are difficulties in handling relationships between files in XSLT that can
be mostly worked around, but the result in some cases may be no easier to main-
tain than an XProc pipeline.

In environments where the pipelines are complex, or where multiple lan-
guages are used to process XML documents, XProc remains a valuable tool. In
addition, for large documents, interactions with the streaming mode of XSLT may
be easier to manage with XProc.

The conclusion, then, is that fn:transform, file:read, file:write, and other func-
tions go a long way towards reducing the need for XProc in XSLT environments
but are not an easy drop-in replacement. Pipelines still have a valuable role to
play.

Bibliography
[1] Miłowski, Alex; Thompson, Henry S.; Walsh, Norman (Eds.) XXProc: An XML

Pipeline Language. Recommendation, May 2010, W3C. http://www.w3.org/
TR/2010/REC-xproc-20100511/

[2] Dyck, Michael; Robie, Jonathan; Spiegal, Josh (Eds.) XQuery 3.1: An XML
Query Language. Recommendation, March 2017, W3C. https://www.w3.org/
TR/xquery-31/

[3] Kay, Michael (Ed.) XSL Transformations (XSLT) Version 3.0 . Recommendation,
June 2017, W3C. https://www.w3.org/TR/2017/REC-xslt-30-20170608/

XProc in XSLT: Why and Why Not

264

http://www.w3.org/TR/2010/REC-xproc-20100511/
http://www.w3.org/TR/2010/REC-xproc-20100511/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/2017/REC-xslt-30-20170608/

Merging The Swedish Code of Statutes
(SFS)

Ari Nordström
<ari.nordstrom@gmail.com>

Abstract

In 2017, Karnov Group, a Danish legal publisher, bought Norstedts juridik,
a Swedish legal publisher, and set about to merge their document sources.
Both companies publish the Swedish legislation, known as the Swedish Code
of Statutes or SFS, online and in print, and both use in-house XML sources
based on PDF sources provided by Regeringskansliet, i.e. the Swedish gov-
ernment.

But the companies use separate tag sets and their own interpretations of
the semantics in the PDFs. They also enrich the basic law text with exten-
sive annotations, links to (and from) caselaw, and so on. Norstedts also pub-
lishes the so-called blue book, a yearly printed book of the entire in-force
SFS.

It doesn't make sense to continue maintaining the two SFS sources sep-
arately, of course. Instead, we want, essentially, the sum of the two, with
annotations, missing versions (significant gaps exist in the version histor-
ies), etc added.

This paper is about merging the SFS content into a single XML source.
Basically, we convert both sources into a single exchange format, compare
those using Delta XML's XML Compare, and then do the actual merge
based on the diff. Finally, we convert the merged content to a future editing
format.

1. Intro & Background

1.1. The Swedish Code of Statutes
From Wikipedia[1]:

The Swedish Code of Statutes (Swedish: Svensk författningssamling; SFS) is the
official law code of Sweden which contains the statutes and ordinances enacted
and designated by the Government, including a publication of all new Swedish
laws enacted by the Riksdag.

The Swedish law, as is the case with most sets of statutes regardless of country, is
constantly changing, with older paragraphs, chapters, or indeed entire laws being

265

repealed in favour of new ones. Today, these older versions are saved to preserve
the evolution of the law to the benefit of the lawyers that use them, marking up
the sources with valid-from and valid-to dates, as well as the ID of the law,
known as the *change SFS number*, used to repeal the old versions. This wasn't
always the case, however; before the advent of the Internet, older versions of the
law would only be available in printed form. If you were a lawyer and needed to
know when something changed, the printed sources were your best bet.

This changed in the 90s when legal publishers wanted to make the law availa-
ble on CD-ROMs and the Internet, and began to save the repealed versions as
well as add the missing ones. With Sweden joining the EU during that same
period, it was impossible to recreate everything, of course, so they would add old
versions to some of the more important laws. Not every version and certainly not
every law, but the more recent and the more important ones.

1.2. Merging Companies (and Content)

In 2017, Karnov Group, a Danish legal publisher and the employer of yours truly,
bought Norstedts juridik, a Swedish legal publisher, and set about to merge not
only the two companies but the information published by them. As legal publish-
ers, both companies publish the Swedish Code of Statutes online and in print.
Both do it from in-house XML sources, and both sources are based on the same
basic text of the law, provided by Regeringskansliet, i.e. the Swedish government,
usually as PDFs.

But the companies use separate tag sets to mark up the contents, and, of
course, their own interpretations of the semantics in the PDFs. They also enrich
the basic law text with extensive annotations and editorial commentary, links to
(and from) caselaw, and so on. And, in the case of Norstedts, the XML source is
continually updated to support their flagship product, the so-called blue book, a
printed book of the entire in-force SFS, updated yearly as the law itself changes.

When publishers added CD-ROMs and other electronic formats to their offer-
ings in the 90s, both companies set out to add older SFS content in addition to the
ever-changing new legislation. As indicated above, however, there was only time
and means to add the more “important” ones, and so there would be significant
gaps in the respective version histories of the laws at both Karnov and Norstedts,
and neither company's sources would match the other's entirely.

1.3. Merging SFS Content

Enter early 2018 and yours truly starting a new job as a Senior XML Geek at Kar-
nov Group. At the time, the work had started to merge the two companies and
their information, and it fell upon me to suggest, and implement, a course of
action for SFS.

Merging The Swedish Code of Statutes (SFS)

266

Ideally, of course, best is to maintain a single source for the entire set of Swed-
ish statutes. At first glance, then, it might be enough to simply pick one XML
source and use that.

However, both companies had their existing online systems and customer
bases, with differing product offerings. As suggested above, the sources descri-
bed the same thing — the Swedish Code of Statutes — but the sets were not an
exact match. Sometimes one company would have SFS documents the other
didn't, and often, there were significant gaps with older versions of individual
chapters and paragraphs. It made little sense to throw any of that away just to
make the merge simpler.

There was also the matter of the Norstedts flagship product, the printed law
book, that had to be included in any future offerings, so no matter what, we'd
need to include anything written specifically for that book.

Similarly, Karnov included extended notes in their SFS content and made that
available as a separate product, which meant that they would have to be pre-
served, too. Obviously, in one way or another, the respective SFS sources would
have to be merged.

2. The Merge Process
This section briefly describes the basic merge process. Here, and in the rest of the
paper, I'll use the abbreviations “KG” and “NJ” for Karnov Group and Norstedts
juridik, respectively.

Figure 1. The Printed Law Book

Merging The Swedish Code of Statutes (SFS)

267

2.1. What You Need to Understand First

First of all, let me just emphasise how the Karnov Group (KG) and Norstedts juri-
dik (NJ) XML sources come into being. In most cases, the editors receive PDFs
from the government. These days, the PDFs are the output of a word processor1,
but not so very long ago, they could just as well be scans. These are then copied
and pasted into whatever tags and structures that the editor deems to fit best. This is
usually based on the formatting — font sizes, margins, and so on — of the content
as presented in the PDFs. For a law paragraph, the group of text blocks that is the
basic unit of most laws, this is usually straight-forward, but for any grouping of
content, from sections to chapters to parts, this is often a matter of interpretation
based on formatting and the perceived legal use.

In other words, there are no absolutes here!

2.2. Assumptions and Approach

My initial assumption was that for any shared SFS document — a law present in
both sources — the basic text of the law itself would be the same albeit with dif-
ferent tags and semantics, and that it would therefore be possible to recognise
any additions — annotations, comments, links, and other enrichments — as such,
and allow us to keep those separate from the main content.

Obviously, a primary goal of the project was to unify the sources — a single
source for the law text, with any additions intended for the various outputs
neatly separated from the law text. Since the sources were quite different from
each other, they first

My approach to merging the sources was basically as follows:

1. Create a DTD2 describing a common exchange XML format (EXC DTD), essen-
tially the sum of the semantics found in the respective sources.

2. Update an existing, or create a new, authoring format (KG++ DTD), in which
the merged SFS corpus can be maintained and updated in the future.

3. Convert both sources to the common exchange format, at times up-convert-
ing and fixing various semantic constructs so they'd match each other.

4. Compare the converted sources with each other using an XML diffing tool
that merges the sources and adds diff markup to indicate any differences.

5. Address those differences, one by one, to produce properly unified SFS
documents with a single main law text and clearly identified enhancements,
still in the exchange format.

1Guessing MS Word, in many cases.
2Both existing tool chains use DTDs so other schema languages were out of the question.

Merging The Swedish Code of Statutes (SFS)

268

6. Convert the unified SFS documents to the authoring XML (KG++ DTD) for-
mat.

2.3. Legacy Publishing at NJ
The Norstedts publishing offerings, from the printed law book to legacy online
publishing platforms, needed to be supported until the publishing systems had
been properly merged to support the new content. While easily the subject of an
entire paper by itself, from an SFS document merge point of view my approach
was simple enough:
1. Once merged SFS content is updated in the new KG++ format, those updates

are converted back to the exchange format.
2. The exchange documents are then (down-)converted to the old, legacy, NJ

format since the legacy publishing processes at NJ all require that format.
3. The NJ legacy publishing processes can then publish the new content as if it

had been produced in the old NJ format.
This, of course, can be done infinitely if needed. In practice, however, we'll only
be doing it until there are new publishing processes in place to handle the NJ
publishing offerings and the old systems can be retired3.

This approach buys us time, basically.

2.4. Legacy Publishing at KG
While it is certainly possible to use the NJ legacy approach for KG legacy publish-
ing (in other words, convert any updated KG++ content to EXC and, from there,
back to the old KG format), the larger merge project is updating those systems as
part of the project proper.

3. Implementation
The above gives an overview of what I set out to do. This chapter offers some
detail on the implementation.

3.1. Transformation and Validation Pipelines
I'm an XProc[4] fan, having used it for anything from XML publishing to large
conversion projects, and so an XProc pipeline to run the dozens of XSLT transfor-
mation steps I foresaw for each conversion (see Procedure) was my default strat-
egy4. More specifically, I've successfully used Nic Gibson's XProc Tools[5] in the

3This needs to happen before the end of this year, for various non-technical reasons.
4I introduced XProc at Karnov, as a matter of fact.

Merging The Swedish Code of Statutes (SFS)

269

past[8] to allow me to easily run an arbitrary number of XSLT stylesheets in
sequence by listing them in a manifest file. Adding a step is a question of adding
an item element pointing out the new XSLT stylesheet to the manifest.

Here's an entire manifest file for the pipeline converting EXC XML to KG++
XML:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="../../../../xproc-stuff/xproc-tools/schemas/
manifest.rng"
 type="application/xml" schematypens="http://relaxng.org/ns/structure/
1.0"?>
<manifest
 xmlns="http://www.corbas.co.uk/ns/transforms/data"
 xml:base="."
 description="This converts Exchange XML to KG++ format">

 <group description="Unmatched also need to be grouped">
 <item
 href="../sfsmerge/SFS-EXC-MERGE_group.xsl"
 description="Group unmatched; merged will not be touched"/>
 <item
 href="../sfsmerge/SFS-EXC-MERGE_no-level-group.xsl"
 description="Group group dividers without @level and their
following siblings (non-recursive)"/>
 </group>

 <group
 description="KG-specific steps"
 xml:base=".">
 <!-- Converts main structures -->
 <item
 href="SFS-EXC2KG_structure.xsl"
 description="Converts main EXC structures"/>

 <!-- Chapter versions to meta -->
 <item
 href="SFS-EXC2KG_version2meta.xsl"
 description="Converts EXC chapter version information to KG+
+ meta items"/>

 <!-- Group title versions if there are two or more consecutive
title groups -->
 <item
 href="SFS-EXC2KG_merge-title-versions.xsl"
 description="Merges the versions of two or more consecutive
title groups"/>

Merging The Swedish Code of Statutes (SFS)

270

 <!-- Front matter -->
 <item
 href="SFS-EXC2KG_front.xsl"
 description="Converts front matter elements, except those
that only need a namespace conversion"/>

 <!-- In-force info -->
 <item
 href="SFS-EXC2KG_in-force.xsl"
 description="Converts in-force elements"/>

 <!-- Various body- and chapter-level elements -->
 <item
 href="SFS-EXC2KG_body.xsl"
 description="Converts various body- and chapter-level
elements"/>

 <!-- Para- and subpara-level elements -->
 <item
 href="SFS-EXC2KG_paras.xsl"
 description="Converts para- and subpara-level elements"/>

 <!-- Title elements -->
 <item
 href="SFS-EXC2KG_title-grp.xsl"
 description="Converts title elements"/>

 <!-- Block-level -->
 <item
 href="SFS-EXC2KG_block-level.xsl"
 description="Converts block-level elements"/>

 <!-- Annotations -->
 <item
 href="SFS-EXC2KG_annotations.xsl"
 description="Converts annotations (both redanm and
kommentar)"/>

 <!-- Inline elements -->
 <item
 href="SFS-EXC2KG_inline.xsl"
 description="Converts inline elements"/>

 <!-- EXC namespace to KG++ namespace -->
 <item

Merging The Swedish Code of Statutes (SFS)

271

 href="SFS-EXC2KG_namespace-conversion.xsl"
 description="Converts the EXC namespace to the KG++
namespace"/>

 <!-- Convert various IDs to LOGIDs -->
 <item
 href="SFS-EXC2KG_id-logid.xsl"
 description="Converts IDs to LOGIDs"/>

 <!-- Attrs -->
 <item
 href="SFS-EXC2KG_attrs.xsl"
 description="Converts various attributes"/>
 </group>

</manifest>

I'll not go into detail on how Nic's tools work here (for a more through explana-
tion, see [5] for the code — it's open source, so if you're interested, try it out! —
and [8] for an example of their use); suffice to say that they allow me to write
short and to the point XSLT stylesheets, each of them doing one thing and one
thing only. A step can be as simple as this:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:exc="http://karnovgroup.com/ns/exchange"
 xmlns:kgp="http://ns.karnovgroup.com/kg-pp"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 exclude-result-prefixes="xs"
 version="2.0">

 <!-- This step transforms EXC inline elements to KG++ ditto -->

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <xsl:apply-templates select="node()" mode="SFS-EXC2KG_INLINE"/>
 </xsl:template>

 <xsl:template match="exc:ref" mode="SFS-EXC2KG_INLINE">
 <kgp:ref>
 <xsl:copy-of select="@* except @type"/>
 <xsl:if test="@type">
 <xsl:attribute name="target-type" select="@type"/>
 </xsl:if>
 <xsl:apply-templates select="node()" mode="SFS-

Merging The Swedish Code of Statutes (SFS)

272

EXC2KG_INLINE"/>
 </kgp:ref>
 </xsl:template>

 <!-- ID transform -->
 <xsl:template match="node()" mode="SFS-EXC2KG_INLINE">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates select="node()" mode="SFS-
EXC2KG_INLINE"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

A huge difference for me as an XSLT developer is that I can focus on one issue or
area at a time instead of having to write large and most likely modularised XSLTs
that are hard to read and hard to debug. An XProc pipeline that runs a manifest
file listing XSLT steps can produce debug output from each step, radically simpli-
fying development:

8.2M Jan 18 11:34 0-SFS1962-0700.xml
8.2M Jan 18 11:34 1-SFS-EXC-MERGE_group.xsl.xml
8.2M Jan 18 11:34 2-SFS-EXC-MERGE_no-level-group.xsl.xml
8.2M Jan 22 09:17 3-SFS-EXC2KG_structure.xsl.xml
8.3M Jan 22 09:17 4-SFS-EXC2KG_version2meta.xsl.xml
8.2M Jan 22 09:17 5-SFS-EXC2KG_merge-title-versions.xsl.xml
8.3M Jan 22 09:17 6-SFS-EXC2KG_front.xsl.xml
8.2M Jan 22 09:17 7-SFS-EXC2KG_in-force.xsl.xml
8.3M Jan 22 09:17 8-SFS-EXC2KG_body.xsl.xml
8.3M Jan 22 09:17 9-SFS-EXC2KG_paras.xsl.xml
8.6M Jan 22 09:17 10-SFS-EXC2KG_title-grp.xsl.xml
8.8M Jan 22 09:17 11-SFS-EXC2KG_block-level.xsl.xml
8.3M Jan 22 09:17 12-SFS-EXC2KG_annotations.xsl.xml
9.8M Jan 22 09:17 13-SFS-EXC2KG_inline.xsl.xml
8.1M Jan 22 09:17 14-SFS-EXC2KG_namespace-conversion.xsl.xml
8.1M Jan 22 09:17 15-SFS-EXC2KG_id-logid.xsl.xml
7.9M Jan 22 09:17 16-SFS-EXC2KG_attrs.xsl.xml

The first file, prefixed “0-”, is simply a copy of the source file, here because it's
needed by XSpec unit tests. The others are all outputs of the XSLT stylesheets
they are named after (with the number prefixes there for sorting and general con-
venience), extremely useful when used as input to the following step when
debugging that step.

I wrote XSpec unit tests for many, if not most5, of my XSLT steps, but also an
XProc pipeline that was able to run the XSpec unit tests in sequence following an

Merging The Swedish Code of Statutes (SFS)

273

XSpec manifest file similar to the XSLT manifest file, using the debug output from
the various steps as input wherever needed.

Each of the pipelines ended by validating the output against the DTD and,
optionally, against a Schematron that made sure that the various features of the
exchange format were being used correctly.

3.2. Examples

To give you an idea of the kind of differences between the two sources typically
encountered, here is an example from KG:

<stycke chgbardate="20180701" logid="SFS1962-0700.K2.P2.S4" num="4">De
inskränkningar
av svensk domsrätt som anges i andra och tredje styckena gäller inte för
brott som avses i
 <list type="manuell">
 <listelement>1. <referens logidref="SFS1962-0700.K4.P1A">4 kap.
1 a</referens> och
 <referens logidref="SFS1962-0700.K4.P4C">4 c §§</referens>
och
 <referens logidref="SFS1962-0700.K16.P10A">16 kap. 10 a §
första stycket 1</referens> och
 <referens logidref="SFS1962-0700.K16.P10A.S5">femte stycket</
referens> eller
 försök till sådana brott,</listelement>
 <listelement>2. <referens logidref="SFS1962-0700.K4.P4.S2">4
kap. 4 § andra stycket</referens> varigenom
 någon förmåtts att ingå ett sådant äktenskap eller en sådan
äktenskapsliknande förbindelse som avses i
 <referens logidref="SFS1962-0700.K4.P4C">4 c §§</referens>
eller försök till sådant
 brott, eller</listelement>
 <listelement>3. <referens logidref="SFS1962-0700.K6.P1">6 kap. 1–
6</referens>,
 <referens logidref="SFS1962-0700.K6.P8">8</referens>,
 <referens logidref="SFS1962-0700.K6.P9">9</referens> och
 <referens logidref="SFS1962-0700.K6.P12">12 §§</referens>
eller försök till brott enligt
 <referens logidref="SFS1962-0700.K6.P1">6 kap. 1</referens>,
 <referens logidref="SFS1962-0700.K6.P2">2</referens>,
 <referens logidref="SFS1962-0700.K6.P4">4–6</referens>,
 <referens logidref="SFS1962-0700.K6.P8">8</referens>,
 <referens logidref="SFS1962-0700.K6.P9">9</referens> och
 <referens logidref="SFS1962-0700.K6.P12">12 §§</referens>,

5I freely admit that I should have written more of them.

Merging The Swedish Code of Statutes (SFS)

274

om brottet begåtts mot
 en person som inte fyllt arton år.</listelement>
 </list>
</stycke>

Note the mixed content, allowing character data to be mixed with a block-level
list. Also note that the list is manual, with list labels inserted by the author, and
the referens elements marking up a citation.

Note
I've added line breaks to make the example easier to read. The KG sources
were not pretty-printed.

Here's the NJ equivalent:
<sty>De inskränkningar av svensk domsrätt som anges i andra och tredje

 styckena gäller inte för brott som avses i</sty>

<lista typ="decimal">

 <lp><sty>4 kap. 1 a och 4 c §§ och 16 kap. 10 a § första stycket 1

 och femte stycket eller försök till sådana brott,</sty></lp>

 <lp><sty>4 kap. 4 § andra stycket varigenom någon förmåtts att ingå

 ett sådant äktenskap eller en sådan äktenskapsliknande
förbindelse

 som avses i 4 c § eller försök till sådant brott, eller</
sty></lp>

 <lp><sty>6 kap. 1–6, 8, 9 och 12 §§ eller försök till brott enligt

 6 kap. 1, 2, 4–6, 8, 9 och 12 §§, om brottet begåtts mot en
person

 som inte fyllt arton år. <andringssfs>

 <andringssfsd><sty>Lag (2018:618).</sty></andringssfsd>

 <andringssfstr>
 <sty>
 <stil font-weight="bold">Lagar 2010:399</stil> (se
vid 35:4),
 <stil font-weight="bold">2013:365, 2014:381</stil>

Merging The Swedish Code of Statutes (SFS)

275

(se vid 4:4 c),
 <stil font-weight="bold">2018:618,</stil> med
ikraftträdande

 1 juli s.å.</sty>
 </andringssfstr>

 </andringssfs>
 </sty>
 </lp>

</lista>

Here, the introductory text to the list is separated into its own text paragraph
(sty) element. The list is ordered (typ="decimal") and the labels are inserted
when publishing. There is no citation markup; the citations will be handled later
by an auto-linking feature. There is also content not present in the KG version:
the andringssfs provides information about what amended this particular law
paragraph, with one structure for online and the other for print.

While I've added a few line breaks to the example to make it easier to read,
the empty lines in the NJ text content, above, are present in the sources, adding a
further complication to the diff6.

3.3. KG/NJ to EXC
The two pipelines that convert KG and NJ XML to EXC contain most of the actual
up-conversions and tag abuse fixes, as the respective sources in exchange format
need to be reasonably aligned with each other in terms of various semantics so
they can be successfully diffed and merged.

This may seem like a simple task, given that they both depict the same law
texts, but in reality, there were lots of problems to address. The NJ to EXC pipe-
line currently lists 57 steps while the KG to EXC one adds a step to a total of 59
steps. A fair number of them address specific up-conversion or tag abuse prob-
lems (see Section 4.3) while others are needed to change the semantics in one
source to better align with the other.

3.4. Diff and Merge
Once both sources are in exchange format, they need to be compared with each
other. For this, we chose what many see as the industry standard for comparing
XML these days, Delta XML's XML Compare[3] tool. XML Compare compares two
XML files, “A” and “B”, with each other according to predefined rules7 and
inserts diffing markup to indicate where the differences lie:

6Why the extra lines? Your guess is as good as mine.

Merging The Swedish Code of Statutes (SFS)

276

<exc:para deltaxml:deltaV2="A!=B">
 <deltaxml:attributes deltaxml:deltaV2="B">
 <dxa:kg-process
 deltaxml:deltaV2="B">
 <deltaxml:attributeValue deltaxml:deltaV2="B"
 >@logid="SFS2004-0046.K3.P3.S1" @num="1"
 @chgbardate="20161101"</deltaxml:attributeValue>
 </dxa:kg-process>
 <dxa:id
 deltaxml:deltaV2="B">
 <deltaxml:attributeValue deltaxml:deltaV2="B"
 >SFS2004-0046.K3.P3.S1</deltaxml:attributeValue>
 </dxa:id>
 </deltaxml:attributes>Fondbolaget
 och förvaringsinstitutet ska ingå ett skriftligt avtal som reglerar
förhållandet mellan
 parterna. Avtalet ska bland annat reglera det informationsutbyte och
den samordning som krävs
 för att institutet ska kunna utföra sina uppgifter för fondens
räkning i enlighet med kraven i
 denna lag och andra författningar.
 <deltaxml:textGroup deltaxml:deltaV2="A">
 <deltaxml:text
 deltaxml:deltaV2="A"> </deltaxml:text>
 </deltaxml:textGroup>
 <exc:ref deltaxml:deltaV2="B"
 source="kg" href="SFS2004-0046.N94" role="notreferens-KAR"
number="94"/>
 <exc:change-sfs-grp deltaxml:deltaV2="A" source="nj" role="2016:892">
 <exc:change-sfs publish-type="online">
 <exc:para>Lag (2016:892).</exc:para>
 </exc:change-sfs>
 <exc:change-sfs publish-type="print">
 <exc:para><exc:emph type="bold">Lag 2016:892</exc:emph> (se
vid 4:15).</exc:para>
 </exc:change-sfs>
 </exc:change-sfs-grp>
</exc:para>

Here, we have a diffed text paragraph where all attributes are “B” (KG) only, and
where there is an exc:ref element found only in “B” (KG). The paragraph text
contents are mostly the same, but “A” (NJ) adds a whitespace before the exc:ref
and an “A”-only exc:change-sfs-grp structure. In this particular case, the merge
pipeline adds the attributes as-is, adds the exc:ref markup since this is a refer-

7And actually a pipelining mechanism, too, which we chose not to use.

Merging The Swedish Code of Statutes (SFS)

277

ence to KG-only extended editorial notes, and also adds the exc:change-sfs-grp
NJ-only structure since this is used for print publishing.

I wrote an XProc to run XML Compare on the sources converted to EXC XML.
First, the pipeline ran an XSLT to determine which source files that matched each
other and which only existed in one source.

Note
How do you determine what source files are the same? Swedish laws are
identified by an SFS number, a unique identifier for a law, present as a root
element attribute in both sources, so that's what the XSLT used.

The result was a list of matching A and B files used as an input to XML Compare,
ran using a Delta XML extension step for the XProc engine used, XML Cala-
bash[6][7].

Note
XML Compare can optionally output an HTML representation of the diffed
A and B files, which proved helpful when discussing the merge with vari-
ous project stakeholders.

Note
The other output of that initial XSLT run by the XProc was a list of
unmatched files, in other words, entire documents present only in one
source.

Once diffed, the differences need to be addressed. Again, this was an XProc pipe-
line running a total of 51 XSLT steps, some of which addressed various aspects of
the diff while others up-converted8 and manipulated diffs.

The merge pipeline addresses a number of situations, among them the follow-
ing:

• KG-only and NJ-only content that should always be added. Among these are
the extended KG editorial notes and any references to those, content intended
only for the printed NJ law book, and, of course, any law paragraph versions
present in one source but not the other.

• Both sources include short editorial notes and comments. Typically, they
explain why and when a certain piece of content was amended, repealed, etc.
As both sources have them and they essentially describe the same things, but
NJ's are far more extensive than KG's, it was decided that we keep NJ's and
discard KG's.

8Or rather, sideways conversion; this was a question of fixing problems in the diffed semantics, not
creating new semantics altogether. For more, see the issues section.

Merging The Swedish Code of Statutes (SFS)

278

• Commonly, both sources rely on auto-linking — adding links through pattern-
matching in the publishing process — for citations9, but both also add manual
citations using cross-reference markup. This resulted in one source using
markup for a citation while the other only had a text-based reference. The
merge pipeline recognises these differences and defaults to adding the
markup, if possible.

• List numbering. If one source uses manual lists (list markup with manual
labels) and the other some kind of ordered markup (such as decimal, with the
publishing process adding the labels), a step prefers the ordered list types and
removes the manual labels.

• Layout hacks in one source. Sometimes, one source would use a “layout hack”
to achieve a certain type of formatting. For example, an author might desire
the first text paragraph following a list to use the same indentation as the pre-
ceding last list item. This might achieved using a manual list type with the last
item's label left empty or by adding a second text paragraph inside that last
list item.

The other source, on the other hand, would (correctly) add the text para-
graph in question after the list. This would cause a diffing problem, with con-
tent added to the list in one source and missing after it in the other.

A number of the pipeline steps handle permutations of this basic problem,
generally adding the offending text paragraph after the list.

• Some differences happen because the sources take a very different approach
to marking up the same content.

For example, one might use a chapter structure to group content in while
the other insert running headers between the blocks of content to be grouped.
The pipeline doesn't always have the answers — it doesn't know which
markup version is correct — so there is a config file listing the preferred ver-
sions of content based on specific document IDs. The pipeline looks up the
config and deals with the differences accordingly.

Of course, there are quite a few other types of issues; there is a reason for those 51
steps.

3.5. EXC to KG++

In comparison, the EXC to KG++ conversion was a relatively simple task. The
pipeline is a mere 15 steps, mostly because the difficult parts had all been
addressed already, and because the exchange DTD and the KG++ authoring DTD
are closely related — the latter is, with few exceptions, a stricter subset of the
exchange DTD.

9These are cross-references to law paragraphs, caselaw, and so on.

Merging The Swedish Code of Statutes (SFS)

279

3.6. KG++ to EXC

Again, the KG++ to EXC pipeline to support the NJ legacy publishing platforms
was a simple task, consisting of only 13 steps.

Note
At the time of this writing, the EXC to old NJ format pipeline is being writ-
ten, but it's not finished yet.

3.7. Unit Tests

Pipelines, of course, make it easier to limit each step to a well-defined, single task,
thus allowing every XSLT stylesheet to be short (well, shortish, at least) and read-
able. Still, I aimed to write XSpec[9] unit tests for as many transformations as pos-
sible. In addition to helping me define a suitable scope for each step, XSpec tests
would also quickly pick up my more stupid mistakes.

Note
If you're reading this while thinking “Duh! Obviously!”, good for you. I
know the value of XSpec tests when writing XSLT but still ignore them
from time to time, usually out of laziness and hubris. And more often than
not, I regret both before long.

I did write an XProc library step that, for each test listed in a manifest file similar
to the XSLT manifest, ran the test associated with a specified step. This takes a
long time when converting 8,000+ documents and is usually not needed. What's
important is that you start by writing your tests and don't declare the step as done until
your tests all pass!

4. Issues
I encountered numerous issues along the way, but since describing them all here
would probably cause a book-length paper, I'll just list some of the more interest-
ing ones.

4.1. eXist-DB to the Rescue!

One of the first things I did when starting this project was to upload both sources
to an XML database, eXist-DB. I spent time indexing the lot to make the DB as
quick as possible, and then, whenever I wondered about the variations in usage
of a structure or the frequency of an attribute value, or something else, I'd query
the database.

This was almost literally a lifesaver.

Merging The Swedish Code of Statutes (SFS)

280

I started out with some light queries, but soon, I also used the DB to produce
reports and side-by-side comparisons of structures to be reviewed by editors.
Without the database, I wouldn't be writing this paper now; I wouldn't be that far
along in the project.

4.2. Up-conversion
In principle, before a comparison can take place, the semantics of the sources in
EXC format need to be about the same. This, of course, means that most up-con-
version needs to be done in the initial conversions to that format. The SFS merge
pipeline can handle some differences in semantics but radically different
approaches need to be settled before the sources are compared with each other.

4.2.1. Mixed Content

A major headache was the looseness of the block-level KG content models. They
allowed mixing textual content with tables, lists, and other typically block-level
content (for a simple example, see the KG list markup in Section 3.2). This most
likely started out as an oversight in the DTD, but its use soon became wide-
spread.

The equivalent content in the NJ sources had none of this; their block level
was neatly separated from inline level.

The up-conversion of the KG block-level confusion was far from trivial. The
use was widespread, typically with various container elements mixing text, cross-
reference markup, lists, emphasised text, and CALS tables. The container ele-
ments themselves could be anything from sections to CALS table entries.

The solution was to add wrappers around the text nodes before separating
them from their sibling block-level elements. This was complicated by the pres-
ence of inline elements that, of course, should be inside the new text wrappers
rather than next to them. But this is the sort of thing xsl:for-each-group is for:

<xsl:template
 match="textstycke[(table or
 list or
 grafikgrupp or
 tabellingress or
 exc:group[@role='referensgrupp']) and
 not(textblock)] |
 stycke[(table or list or grafikgrupp or
 tabellingress) and not(textblock)]"
 mode="SFS-KG2EXC_BLOCK-LEVEL">

 <xsl:variable name="element-type" select="name(.)"/>
 <xsl:variable name="attrs" select="@*"/>

Merging The Swedish Code of Statutes (SFS)

281

 <xsl:for-each-group
 select="node()"
 group-starting-with="table | list | tabellingress | grafikgrupp |
 exc:group[@role='referensgrupp'] |
 notreferens[not(preceding-sibling::node()[1][self::text()])]
|
 eksternref[not(preceding-sibling::node()[1][self::text()])]
|
 referens[not(preceding-sibling::node()[1][self::text()])] |
 footnote[not(preceding-sibling::node()[1][self::text()])] |
 format | sup[not(preceding-sibling::node()[1]
[self::text()])] |
 text()[preceding-sibling::*[1][self::table or self::list or
self::exc:group]]">

 <xsl:choose>

 <xsl:when
 test="self::format[not(table) and not(list)] or
 self::text() or
 self::sup or
 self::notreferens or
 self::eksternref or
 self::referens or
 self::footnote">
 <xsl:element name="{$element-type}">
 <xsl:copy-of select="$attrs"/>
 <xsl:apply-templates select="current-group()"
mode="SFS-KG2EXC_BLOCK-LEVEL"/>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates select="current-group()" mode="SFS-
KG2EXC_BLOCK-LEVEL"/>
 </xsl:otherwise>
 </xsl:choose>

 </xsl:for-each-group>

</xsl:template>

I'm not going to walk through the above; this is merely to show the kind of solu-
tion I'd typically employ to sort out the confusing mix of block-level and inline
elements and text nodes. Several similar steps walked through similar problems
in different contexts.

Merging The Swedish Code of Statutes (SFS)

282

4.2.2. Running Headers

Another major issue, this time with both sources, was that rather than using an
explicit structure to indicate section and subsection levels, they'd simply insert a
running header with formatting instructions in attributes to indicate the heading's
size:

<header type="3">Running Header 1</header>
<para>Section content</para>

<header type="4">Running Header 2</header>
<para>Subsection content</para>

<header type="4">Running Header 3</header>
<para>More subsection content</para>

<header type="3">Running Header 4</header>
<para>New section content</para>

There is no actual section or subsection structure, only running headers with type
attributes implying a section and subsection structure. For the author, the values
indicate relative font sizes; “3”, here, implies a larger size than “4” and thus, a
section rather than a subsection.

When formatted, the reader will interpret these headers as headings and sub-
headings that group the document contents. This is how the human brain works;
we pattern-match and we interpret implied structures as explicit.

To complicate things, both source DTDs would also allow explicit part and
chapter structures, and allow them mixed with the running headers:

<!ELEMENT body (part | chapter | header | paragraph)* >
The above is a translated approximation of the model; the source DTDs are in
Swedish and the models are more complex than this. Note that both part and
chapter have similar models, allowing running headers mixed with both block-
and section-level content.

If both companies had been consistent with their use of the running headers
(and any explicit grouping elements), we'd not have much of a problem. We'd
simply map the use of the running headers and merge them. In reality, however,
one source might use a part and chapter structure while the other chose to use
running headers to imply the same.

Here, the solution was a mix of techniques. Apart from a few documents that
were simply too different to be merged by the pipeline10, the solution I came up
with was a mix of up-conversion to recursively group running headers followed
by block-level elements and, possibly, “lower-level” running headers and more

10Forcing me to write a step that cherry-picked structures based on the document's SFS number.

Merging The Swedish Code of Statutes (SFS)

283

block-level content, add various to the groups when treated as such, and then
down-convert right before the diff and the merge.

So, for example, an up-conversion might result in something like this:
<group>
 <header level="3">...</header>
 ...
 <group>
 <header level="4"></header>
 ...
 </group>
 ...
</group>

This would allow me to manipulate the implied section hierarchy as such, but
then flatten the thing again so it could more easily be compared to the equivalent
document in the other source. The flattened XML might then look like this:

<group-divider level="3"/>
<header level="3">...</header>
...
<group-divider level="4"/>
<header level="4"></header>
...
...

The group-divider element would contain any information I'd need to recreate
the recursive group later, after comparing and merging two flattened structures.

Again, if the sources had the same number of running headers, this would be
much easier. Unfortunately, one source might have additional running headers,
which would then have to be added to the merged XML, adding to the total num-
ber of headers and subheaders11 in the result.

As I strongly believe that actual, explicit, section structures are much prefera-
ble, a later step, after the merge, recreates the recursive grouping for future
authoring12.

4.2.3. Manual Lists

Another required up-conversion is the differing list types problem. For example,
NJ might have use an ordered list type like this13, the processing assumption
being that the list item labels are generated when publishing:

<list type="decimal">
 <item>Apples</item>

11And possibly adding extra structural complications such as extra levels or broken levels.
12The new DTD doe not allow running headers anywhere, which has been, um, a matter of debate.
13Obviously, I'm faking both tag names and the content here. Duh.

Merging The Swedish Code of Statutes (SFS)

284

 <item>Oranges</item>
 <item>Bananas</item>
</list>

KG's take on the same list might be a manual list, with the list item labels part of
the content:

<list type="manual">
 <item>1. Apples</item>
 <item>2. Oranges</item>
 <item>3. Bananas</item>
</list>

Of course, sometimes the manual list is there for an actual reason, such as:

<list type="manual">
 <item>1. Apples</item>
 <item>1A. Nuts</item>
 <item>2. Oranges</item>
 <item>3. Bananas</item>
</list>

The “1A.” label cannot be automatically generated, of course. The usual reason,
however, is simply that the author prefers a label with a different appearance.

When converting to the exchange content, I have steps in place that detect
manual lists that really shouldn't have been manual in the first place, and can do
the up-conversion with relative ease. But authors are sometimes more creative
than that.

Let's say that the list needs to be followed by an explanatory sentence. The NJ
source looks like this:

list type="decimal">
 <item>Apples</item>
 <item>Oranges</item>
 <item>Bananas</item>
</list>
<p>This is my favourite food.</p>

The KG equivalent, however, is this:

<list type="manual">
 <item>1. Apples</item>
 <item>1A. Nuts</item>
 <item>2. Oranges</item>
 <item>3. Bananas</item>
 <item>This is my favourite food.<item>
</list>

Merging The Swedish Code of Statutes (SFS)

285

A quick glance suggests that this is a list with four items. What we have here,
however, is a manual list type used for formatting purposes: that last item will
have the same margins as the actual list items, which is what the author wants.

This is a lot more difficult to get right. The initial conversion to EXC takes care
of the manual numbering, but leaves behind the wrong number of list items.
Those I can only handle once I've compared the sources and added the Delta
XML markup, and even then it takes a couple of steps as there are variations on
this basic theme14.

For more variation of this theme, see Section 4.3.1.

4.3. Tag Abuse

Both sources had widespread tag abuse. For example, what was marked up as a
list in one source might be marked up as ordinary text paragraphs in the other,
and sometimes, ordinary text paragraphs were used in place of subheadings.
What sets tag abuse apart from the up-conversion requirements as discussed
above is mostly a matter of definition...

4.3.1. Fake Lists

A variation of the manual list up-conversion was the numerous fake lists also
present. So, instead of list markup, one source would simply have something like:

<p>1. Apples</p>
<p>2. Oranges</p>
<p>3. Bananas</p>

Now, while this is only a problem if one source uses actual list markup and the
other doesn't, I nevertheless decided to take the fix-always approach after some
querying of the sources in eXist-DB. See, unlike (some? many? most?) other types
of content, legal content is very formalistic. It is a rare thing to use a number to
start a sentence with, even rarer to always add a full stop (or some other delim-
iter) after it, and almost unheard of to have two or more text paragraphs repeat
the same pattern.

I was right. At least, the diff and the subsequent merge suggest I was. The
problem, instead, was normally a variation of the stray paragraph at the end of
the list, similar to what I encountered with the manual lists (see Section 4.2.3).
The fix, then, was more or less the same: first, up-convert to a list, then fix the dis-
crepancies in the merge pipeline.

14For example, there might be two text paragraphs rather than a single one, which immediately makes
the fix more difficult.

Merging The Swedish Code of Statutes (SFS)

286

4.3.2. Fake Headings

Not entirely uncommon was to use an ordinary emphasised paragraph as a run-
ning header15, adding emphasis to highlight the “header nature”:

<p><emph>Header</emph></p>
This was a minor issue, and easy to fix.

4.4. Preferred Content
In some cases, we'd not merge at all, but instead prefer one source over another,
depending on various requirements. For example:
• Early on, it was decided that the NJ editorial comments would be used rather

than the KG equivalents, whenever given a choice. Of course, anything that
was KG only (versions missing in the NJ equivalent or entire documents) still
needed the KG comments.

• KG has a type of extended commentary that was always to be included. This
was relatively uncomplicated since the commentary itself was out of line and
referenced by EMPTY elements inline. I'd add the references inline in an early
merge step, regardless of other considerations, and then moved on to merging
the content surrounding the references.

• Amendment information is present in every law and explains when a piece of
legislation comes into force, by using what law, and what, if anything, it repla-
ces. Here, the decision was again to use the NJ amendment information.

Of course, the general rule was to always add a missing law paragraph version,
just as we'd always add a document only present in one source.

4.5. Manual Selection
Sometimes, there'd be deviations to the norm, content that was so different
between the sources that there was no way to do an automated merge. For exam-
ple:
• Many documents have supplements, extra information that is usually not pro-

vided directly by the government office. These can be anything from forms to
pieces of EU legislation. As such, they were often quite different between the
sources and it was out of the question to attempt an automated merge.
Instead, the editorial teams spent time cherry-picking the supplements based
on a side-by-side comparison I'd generated for the purpose in eXist-DB.

15Why not a running header tag? I'd suspect that the formatting requirements were different, or that
there was no “formal” equivalent to the header in the sources. This was often the case with supple-
ments, additions to the laws outside what the government provides, as well as various editorial com-
ments.

Merging The Swedish Code of Statutes (SFS)

287

• Some documents, especially older ones, might be tagged so differently that an
automated merge wouldn't be possible. Usually, this resulted from tag abuse,
but sometimes also because of poor original scans.

In these cases, I ended up adding early conversion steps that would apply
custom conversion to the documents, based on their SFS numbers rather than
some general rule.

4.6. Diffing and Merging Problems

4.6.1. Identifying Normative Content

When you're comparing sources that supposedly have the same base, along with
some definable differences, it helps a lot if you can tell the compare process that
certain nodes are intended to be the same. For XML Compare, you tell the appli-
cation by adding deltaxml:key attribute values to any nodes that are the same in
both sources.

In SFS documents, some semantics are normative and can therefore safely be
assumed to be the same in both sources. For example, law paragraphs are norma-
tive, as are various subparagraph constructs below them, and chapters above
them. Laws change, however, and law paragraphs are frequently amended or
repealed, and so saying “Chapter 2, §3 in SFS 1999:913 in KG is equivalent with
Chapter 2, §3 in SFS 1999:913 in NJ” is not enough.

Laws are amended by other laws. A complete law will contain any number of
historical versions, one current version, and possibly one future version, of any
versioned component that is subject to change, like so:

<paragraph
 logid="SFS1962-0700.K2.P3">
 <desig>3 §</desig>

 <paragraph-version
 valid-from="20190208"
 valid-to="40000101"
 change-sfs="SFS2019-0021"
 status="future"
 logid="SFS1962-0700.K2.P3-20190208-SFS2019-0021">
 ...
 </paragraph-version>

 <paragraph-version
 valid-from="19990913"
 valid-to="20190208"
 change-sfs="SFS1999-0851"
 status="current"
 logid="SFS1962-0700.K2.P3">

Merging The Swedish Code of Statutes (SFS)

288

 ...
 </paragraph-version>

 <paragraph-version
 valid-from="19650101"
 valid-to="19990913"
 change-sfs="SFS1962-0700"
 status="historical"
 logid="SFS1962-0700.K2.P3-19650101-SFS1962-0700">
 ...
 </paragraph-version>
</paragraph>

This is 3 § of some law, shown here with all its available versions. Each have a
valid-from and a valid-to date, indicating when the version came into force and
when it was amended. The instrument used to amend it is identified by the
change-sfs attribute. Here, the oldest version came into force on 1 January 1965
and the instrument used was the actual law, SFS 1962:700. The paragraph was
then amended by SFS1999:851, and that amendment came into force on 13 Sep-
tember 1999. The status identifies it as currently being in force, but there is also a
future version of the paragraph, amended by SFS 2019:21, that will come into
force on 8 February 2019.

The nodes all also have a logid attribute. All but the currently in force version
of the paragraph have logid values consisting of a base identifier
(“SFS1962-0700.K2.P3”) that identifies the current SFS document
(“SFS1962-0700”), the current chapter (“K2”), and the current paragraph (“P3”),
followed by the valid-from date (for example, “19650101”) and the amending SFS
number (for example, “SFS1962-0700”). The logid is not an actual ID — the val-
ues are not unique, even here — but as the paragraphs and their versions are nor-
mative, their logid attributes can be used as keys.

Note
The logid values used here are a KG convention, not anything required by
the content as such. The NJ equivalent was far less formalistic, so I ended
up generating logid-like identifiers for both content sets when converting
them to EXC format. This was the only way to be sure that the same “IDs”
were used by both sources.

The last step in the pipelines converting the sources to the exchange format adds
deltaxml:key attribute values to all normative elements. In theory, this allows us
to uniquely identify content that are the same in both sources.

In theory.

Merging The Swedish Code of Statutes (SFS)

289

4.6.2. Versioning Problems

In a perfect world, if both companies had saved each and every version of the
Swedish Code of Statutes since they were first written16 by lawmakers, being able
to identify a paragraph number, when it came into force, and the amending law is
enough for unique identification. Unfortunately, we do not live in a perfect world:
• Not every version was saved. This becomes obvious when studying the older

legislation. There are huge gaps in anything older than, say, 1990.
• When transcribing and marking up the PDF sources from the government
office, sometimes the valid-from date is not yet known, so an issued-date or a
published-date is used instead.

• Frequently, historical versions of paragraphs in older, but important, laws
were added later, sometimes decades later17. As the valid-from dates of that
law varied — not everything came into force at the same time — sometimes
these dates were unknown and so a later date was used instead.

• For quite a few laws in the Karnov sources, the valid-from date inserted, when
the historical version's actual in-force date was unknown, was 1066-10-14. This
is known as the “Battle of Hastings problem” in the SFS merge project.

Norstedts, thankfully, ran a large project some years ago to correct any
dates that were known to be incorrect. When merging SFS documents that
were present in both sources, I was able to use the NJ dates rather than the
Battle of Hastings date. Unfortunately, quite a few versions are unique to Kar-
nov and so still have these dates.

• And here's an interesting date problem: none of the KG SFS source document
has valid-to dates, only valid-from. Presumably, this started a long time ago as
an assumption in the SQL database where the documents live. A version is
valid until the next one becomes valid, so there's no need to add the valid-to
date.

This assumes, of course, that every version is available, which is simply
not the case. If a version is missing, various diffing problems can ensue if NJ's
corresponding document has a different set of versions.

There are many variations of this basic theme — a missing, or wrong, valid-from
date. As the Delta XML key values depend on the date, different valid-from dates
results in the merge producing two different versions of what should have been a
single version.

You might now be wondering why the amending SFS number (the change-
sfs attribute in the example in Section 4.6.1) isn't enough. The problem is that an

16The oldest SFS document I know of is from 1540.
17For example, Criminal Law, that first came into force in 1962, has been edited in late 1980s and early
1990s to include historical versions, when publishing on CD-ROMs first became a thing.

Merging The Swedish Code of Statutes (SFS)

290

amendment might amend paragraphs on different dates, in phases. Simply put, §
5 might be amended first and § 6 six months later. Without dates, both amend-
ments would come into force at the same time. Therefore, the date is required.

4.6.3. Versioning Problems, Pt II

While both sources versioned law paragraphs and some other content on the
same level, NJ also used a similar approach to version chapters. A new chapter
version, basically, happened by definition — an amendment would simply
amend an entire chapter, copying everything from the old chapter to the new
while changing the statuses of all versioned content of the old chapter to “histori-
cal”. This might happen for a reason as simple and straight-forward as the chap-
ter getting a new title.

KG, however, did not version chapters, choosing instead to version their titles,
as well as titles in a number of other contexts. An amendment SFS number and an
accompanying in-force date changing the chapter version at NJ would thus be
equivalent to an amendment version and in-force date changing a chapter title's
version at KG18.

Merging the two produced strange results, however, and eventually I decided
to use XQuery and the eXist-DB sources to produce a report of every single occur-
rence of a chapter version in NJ SFS documents, including, of course, change SFS
numbers and in-force dates but also the chapter version contents including their
versions, change SFS numbers, and in-force dates, and then use the report to gen-
erate chapter versions to the KG content in EXC format. Once that was done,
merging chapter-level contents went without further incident.

4.6.4. Other Diffing Problems: The Merge As A Quality Assurance

Sometimes, I'd end up with a merged document that was invalid because the
sources had marked up what was supposedly the same content very differently:

• One source used a CALS table to simulate a list19 while the other used proper
list markup. There's usually no way to merge this sort of thing automatically,
at least not without considerable effort, so the solution here was to simply
pick the preferred source and move on.

• Often, I'd find about tag abuse when running the merge. For example, if one
source used running headers to simulate, say, a chapter structure while the
other used actual chapter markup, the merge would be where I first discov-
ered the problem. Usually I'd query my eXist-DB sources to find out how

18As chapters are considered to be normative, I'd say that NJ's approach is closer to the intended
semantics.
19Presumably, you get beautiful margins...

Merging The Swedish Code of Statutes (SFS)

291

common the problem was and then fix it in the initial source-to-exchange con-
version pipelines. If the problem

5. Conclusions
The project is still ongoing as I write this, but I can offer a number of conclusions
here:

• It's doable! To a big part, this is because we can base a lot of the merge deci-
sions on the fact that we actually have (or at least should have) the same main
source content. Once the respective sources themselves have been sufficiently
tweaked, it is possible to diff and merge everything while neatly separating
any additional material from that main content.

• With any large data set such as SFS, there are bound to be cases requiring
manual intervention. In our case, out of the thousands of documents, we had
perhaps two or three dozen documents that we had to add to an exception list
when merging; that exception list, basically an XML config file for the conver-
sion, simply declared preferred handling for the listed documents as identi-
fied by their SFS numbers.

• As with mostly every other technical implementation, many issues are cul-
tural rather than technical. The new authoring DTD, called KG++ throughout
this paper, has already generated more work than any other single piece of
work in the project, mostly for reasons unrelated to any technical requirement.

5.1. Why Not XQuery?

“Why not do it in XQuery and an XML database? You already use eXist-DB, don't
you? I'm sure at least some of your fixes to the sources are better done in eXist,
right?”

I wanted an easily repeatable process and something that would always pro-
duce debug information in the same way for each and every fix. While it's cer-
tainly possible to run XQuerys in XProc, accessing eXist-DB from an XProc that
needs to run on a file system is currently an extra level of pain20.

Short Glossary
Just a short list of terms and abbreviations. I don't know about you, but I always
hate it when I can't immediately figure out the meaning of an abbreviation.
Hence this list.

20And running everything in eXist-DB is currently not an option, not if you want to use XProc.

Merging The Swedish Code of Statutes (SFS)

292

Exchange DTD
The exchange DTD format used to describe the “sum” of the respective source
DTD semantics. Quite a useful thing, really.

Karnov Group
Karnov Group, Danish legal publisher.

KG++
Nickname for the new authoring DTD for the merged SFS documents.

Norstedts juridik
Norstedts juridik, a Swedish legal publisher. Bought by KG.

Swedish Code of Statutes
The official law code of Sweden, comprising thousands upon thousands of
distinct statutes.

Bibliography
[1] Swedish Code of Statutes https://en.wikipedia.org/wiki/

Swedish_Code_of_Statutes
[2] Svensk författningssamling https://www.svenskforfattningssamling.se/

english.html
[3] Difference And Compare XML Files With XML Compare https://

www.deltaxml.com/products/compare/xml-compare/
[4] XProc: An XML Pipeline Language https://www.w3.org/TR/xproc/
[5] XProc Tools https://github.com/Corbas/xproc-tools
[6] XML Calabash http://xmlcalabash.com/
[7] XML Calabash Delta XML extension step https://github.com/ndw/xmlcalabash1-

deltaxml
[8] Up and Sideways: RTF to XML https://doi.org/10.4242/

BalisageVol20.Nordstrom01
[9] XSpec https://github.com/xspec/xspec

Merging The Swedish Code of Statutes (SFS)

293

https://en.wikipedia.org/wiki/Swedish_Code_of_Statutes
https://en.wikipedia.org/wiki/Swedish_Code_of_Statutes
https://www.svenskforfattningssamling.se/english.html
https://www.svenskforfattningssamling.se/english.html
https://www.deltaxml.com/products/compare/xml-compare/
https://www.deltaxml.com/products/compare/xml-compare/
https://www.w3.org/TR/xproc/
https://github.com/Corbas/xproc-tools
http://xmlcalabash.com/
https://github.com/ndw/xmlcalabash1-deltaxml
https://github.com/ndw/xmlcalabash1-deltaxml
https://doi.org/10.4242/BalisageVol20.Nordstrom01
https://doi.org/10.4242/BalisageVol20.Nordstrom01
https://github.com/xspec/xspec

294

JLIFF, Creating a JSON Serialization of
OASIS XLIFF

Lossless exchange between asynchronous XML based and real
time JSON based pipelines

David Filip
ADAPT Centre at Trinity College Dublin

<david.filip@adaptcentre.ie>
Phil Ritchie

Vistatec
<phil.ritchie@vistatec.com>

Robert van Engelen
Genivia

<engelen@genivia.com>

Abstract

JLIFF [10] is the JSON serialization of XLIFF. Currently [10] only exists as
a reasonably stable JSON schema [11] that is very close to being a full bidir-
ectional mapping to both XLIFF 2 Versions. XLIFF is the XML Localization
Interchange File Format. The current OASIS Standard version is XLIFF
Version 2.1 [21]. The major new features added to [21] compared to XLIFF
Version 2. 0 [20] are the native W3C ITS 2.0 [8] support and the Advanced
Validation feature via NVDL and Schematron. This paper describes how
XLIFF was ported to JSON via an abstract object model [14]. Challenges
and design principles of transforming a multi-namespace business vocabu-
lary into JSON while preserving lossless machine to machine interchange
between the serializations are described in this paper. While we do explain
about the Internationalization (I18n) and Localization (L10n) business spe-
cifics, we are also striving to provide general takeaways useful when porting
XML based vocabularies into semantically and behaviorally interoperable
JSON serializations.

Keywords: inline data model, UML, JLIFF, JSON, JSON-LD, W3C
ITS, XLIFF, Internationalization, I18n, Localization, L10n, metadata,
multi-namespace, namespaces, mapping, roundtrip, lifecycle, multi-
lingual content

295

This research was conducted at the ADAPT Centre, Trinity College Dublin, Ire-
land.

The ADAPT Centre is funded under the SFI (Science Foundation Ireland)
Research Centres Programme (Grant 13/RC/2106) and is co-funded under the
European Regional Development Fund.

1. Introduction
In this paper and XML Prague presentation, we will explain about JLIFF [10], the
JSON serialization of XLIFF. JLIFF is designed to start with the 2.0 version num-
ber and bidirectional mapping for both XLIFF 2.0 [20] and XLIFF 2.1 [21] is being
built in parallel in the initial version. The design is extensible to support any
future XLIFF 2.n+1 Version. The XLIFF 2 series has been designed to be back-
wards and forwards compatible. XLIFFF 2.n+1 versions can add orthogonal fea-
tures such as the Advanced Validation added in [21] or the Rendering
Requirements [25] to be added in XLIFF 2.2. All XLIFF 2.n specifications share the
core namespace urn:oasis:names:tc:xliff:document:2.0.

OASIS XLIFF OMOS TC only recently started developing the [10] prose speci-
fication that should be released for the 1st public review by April 2019. It is how-
ever clear that the specification largely mimics the logical structure of the XLIFF 2
specifications. JLIFF is designed to mirror XLIFF including its numerous mod-
ules, albeit via the abstract object model. The modular design of XLIFF 2 makes
critical use of XML's namespaces support. Each XLIFF 2 module has elements or
attributes defined in namespaces other than the core XLIFF 2 namespace. This
allows the involved agents (conformance application targets) to handle all and
only those areas of XLIFF data that are relevant for their area of expertize (for
instance Translation Memory matching, Terminology, Text Analysis or entity recogni-
tion, Size and Length Restrictions, and so on). Now, how do you handle multi-
namespace in JSON that doesn't support namespaces? This is covered in The
design of JLIFF.

The data formats we are describing in this paper are for managing Internation-
alization and Localization payloads and metadata throughout the multilingual con-
tent lifecycle. Even though corporations and governments routinely need to
present the same, equivalent, or comparable content in various languages, multi-
lingual content is usually not consumed in more than one language at the same
time by the same end user. Typically the target audience consumes the content in
their preferred language and if everything works well they don't even need to be
aware that the monolingual content they consume is part of a multilingual con-
tent repository or a result of a Translation, Localization, or cultural adaptation proc-
ess.

Thus Multilingualism is transparent to the end user if implemented properly.
To achieve end user transparency the corporations, governments, inter- or extra-

JLIFF, Creating a JSON Serialization of OASIS XLIFF

296

national agencies need to develop and employ Internationalization, Localization,
and Translation capabilities. While Internationalization is primarily done on a mon-
olingual content or product, Localization, and Translation when done at a certain
level of maturity -- as a repeatable process possibly aspiring to efficiencies of scale
and automation -- requires a persistent Bitext format. Bitext in turn requires that
Localizable or Translatable parts of the source or native format are Extracted into the
Bitext format, which has provisions for storing the Translated or Localized target
parts in an aligned way that allows for efficient and automated processing of con-
tent during the Localization roundtrip.

Our paper presented to XML Prague 2017 [3] made a detailed introduction of
XLIFF ([22] as the then current predecessor of [21] backwards compatible with
[20]) as the open standard Bitext format used in the Localization industry. This
paper describes how the complete open transparent Bitext capability of XLIFF can
be ported to JSON environments using the JLIFF format. We also demonstrate
that JLIFF and XLIFF can be used interchangeably, effectively allowing to switch
between XML and JSON pipelines at will.

2. Lay of the land

2.1. I18n and L10n Standards

The foundational Internationalization Standard is of course [18] along with some
related Unicode Annexes (such as [17]). However, in this paper we are taking the
Unicode support for granted and will be looking at the domain standards W3C
ITS 2.0 [8] and OASIS XLIFF [21] along with its upcoming JSON serialization [10]
that are the open standards relevant for covering the industry process areas out-
lined in the second part of the Introduction.

For a long time, XML has been another unchallenged foundation of the multi-
lingual content interoperability and hence practically all Localization and Interna-
tionalization standards started as or became at some point XML vocabularies.
Paramount industry wisdom is stored in data models that had been developed
over decades as XML vocabularies at OASIS, W3C, LISA (RIP) and elsewhere.
Although ITS is based on abstract metadata categories, W3C ITS 1.0 [7] had only
provided a specific implementable recommendation for XML. The simple yet
ingenious idea of ITS is to provide a reusable namespace that can be injected into
existing formats. Although the notion of a namespace is not confined to XML,
again [7] was only specifically injectable into XML vocabularies.

[8] provides local and global methods for metadata storage not only in XML
but also in [6], it also looked at mapping into non-XML formats such as [15],
albeit in a non-normative way. Because native HTML does not support the notion
of namespaces, [8] has to use attributes that are prefixed with the string its- for

JLIFF, Creating a JSON Serialization of OASIS XLIFF

297

the purpose of being recognized as an HTML 5 module. In [10], we are using
its_ to indicate the ITS Module data.

[8] also introduced many new metadata categories compared with [7]. ITS 1.0
only looked at metadata in source content that would somehow help inform the
Internationalization and Localization processes down the line. ITS 2.0 brought
brand new and sometimes complex metadata categories that contain information
produced during the localization processes or during the language service trans-
formations that are necessary to produce target content and are typically facilita-
ted by Bitext. This naturally led to a non-normative mapping of [8] to [19] and to
[20] (that was then in public reviews). Thus ITS 2.0 became a very useful exten-
sion to XLIFF. And here comes the modular design that allows to turn useful
extensions into modules as part of a dot-release. Not only module data is better
protected but also describing a data model addition as part of the broader spec
gives an opportunity to tie lots of loose ends that are at play when using only a
partially formalized mapping as an extension.

One of the main reasons why [20] is not backwards compatible with [19] is
that the OASIS XLIFF TC and the wider stakeholder community wanted to create
XLIFF 2 with a modularized data model. [20] has a small non-negotiable core but
at the same time it brings 8 namespace based modules for advanced functionality.
The modular and extensible design aims at easy production of "dot" revisions or
releases of the standard. XLIFF Version 2.0 [20] was intended as the first in the
future family of backwards compatible XLIFF 2 standards that will share the
maximally interoperable core (as well as successful modules surviving from 2.0).
XLIFF 2 makes a distinction between modules and extensions. While module fea-
tures are optional, Conformant XLIFF Agents are bound by an absolute prohibition
to delete module based metadata (MUST NOT from [4]), whereas deletion of
extension based data is discouraged but not prohibited (the SHOULD NOT nor-
mative keyword is used, see [4]). The ITS Module is the biggest feature that was
requested by the industry community and approved by the TC for specification
as part of [21].

So in a nutshell, the difference between XLIFF 2.1 and XLIFF 2.0 can be
explained and demonstrated as the two overlapping listings of namespaces.

Example 1. Namespaces that appear both in XLIFF 2.1 and XLIFF 2.0
urn:oasis:names:tc:xliff:document:2.0 <!-- Core1 -->

urn:oasis:names:tc:xliff:matches:2.0 <!-- Translation
Candidates Module2 -->

urn:oasis:names:tc:xliff:glossary:2.0 <!-- Glossary Module3 -->

1 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#core
2 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates

JLIFF, Creating a JSON Serialization of OASIS XLIFF

298

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#core
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#core
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates

urn:oasis:names:tc:xliff:fs:2.0 <!-- Format Style
Module4 -->

urn:oasis:names:tc:xliff:metadata:2.0 <!-- Metadata Module5 -->

urn:oasis:names:tc:xliff:resourcedata:2.0 <!-- Resource Data
Module6 -->

urn:oasis:names:tc:xliff:sizerestriction:2.0 <!-- Size and Length
Restriction Module7 -->

urn:oasis:names:tc:xliff:validation:2.0 <!-- Validation Module8
-->

Example 2. Namespaces that appear only in XLIFF 2.1

http://www.w3.org/2005/11/its <!-- ITS Module9 -->

urn:oasis:names:tc:xliff:itsm:2.1 <!-- ITS Module10 -->

Example 3. Namespaces that appear only in XLIFF 2.0

urn:oasis:names:tc:xliff:changetracking:2.0 <!-- Change Tracking
Module11 -->

Apart from the 11 listed namespaces, both XLIFF Core and the W3C ITS name-
spaces reuse the xml namespace. This is still not all namespaces that you can
encounter in an XLIFF Document. XLIFF 2 Core defines 4 element extension points
(<file>, <skeleton>, <group>, and <unit>) and 4 more attribute extension points
(<xliff>, <note>, <mrk>, and <sm>). Most of XLIFF's modules are also extensible
by elements or by attributes. We will explain in the JLIFF design section how we
dealt with the inherent multi-namespace character of XLIFF. Both module and
extension data are allowed on the extension points with some notable distinctions
and exceptions. Module attributes can be added not only at the above listed 4
extension points but can be also specifically allowed on <pc>, <sc/>, and <ec/>.
Generally module namespaces based data is only considered Module (and hence

3 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
4 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
5 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
6 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#resourceData_module
7 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
8 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
9 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
10 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
11 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#changeTracking_module

JLIFF, Creating a JSON Serialization of OASIS XLIFF

299

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#resourceData_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#resourceData_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#changeTracking_module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#changeTracking_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#resourceData_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html#changeTracking_module

absolutely protected) data when it appears on the extension points where it is
explicitly listed in the prose specification which corresponds to where it is
allowed by core NVDL and Schematrons. Core xsd is not capable of making this
distinction.

2.2. The Notion of Extracting XLIFF Payload from Native Formats
Best practice for Extracting native content into [21] has been recently specified as a
deliverable of the GALA TAPICC Project in [23], see this publicly available speci-
fication for details on Extracting XLIFF. We will provide a condensed explanation
of the Extraction concept here. The most suitable metadata category to explain the
idea of Extraction from the native format with the help of ITS is Translate. This is
simply a Boolean flag that can be used to indicate Translatability or not in source
content.

Example 4. Translate expressed locally in HTML
<!DOCTYPE html>
<html>
 <head>
 <meta charset=utf-8>
 <title>Translate flag test: Default</title>
 </head>
 <body>
 <p>The World Wide Web Consortium is
 making the World Wide Web worldwide!</p>
 </body>
</html>

Example 5. Translate expressed locally in XML
<messages its:version="2.0" xmlns:its="http://www.w3.org/2005/11/its">
 <msg num="123">Click Resume Button on Status Display or <panelmsg
its:translate="no"
 >CONTINUE</panelmsg> Button on printer panel</msg>
</messages>

Since it is not always practically possible to create local annotations, or the given
source format or XML vocabulary has elements or attributes with clear semantics
with regards to some Internationalization data categories such as Translate, in
most cases, ITS 2.0 also defines a way to express a given data category globally.

Example 6. Translate expressed globally in XML
<its:rules version="2.0" xmlns:its="http://www.w3.org/2005/11/its">
 <its:translateRule translate="no" selector="//code"/>
</its:rules>

JLIFF, Creating a JSON Serialization of OASIS XLIFF

300

In the above the global its:translateRule indicates that the content of <code>
elements is not to be translated.

XLIFF 2 Core has its own native local method how to express Translatability, it
uses the xlf:translate attribute. Here and henceforth the prefix xlf: indicates
this OASIS namespace urn:oasis:names:tc:xliff:document:2.0. Because
XLIFF is the Bitext format that is used to manage the content structure during the
service roundtrip in a source format agnostic way, XLIFF needs to make a hard
distinction between the structural and the inline data. We know the structural vs
inline distinction from many XML vocabularies and HTML. Some typical struc-
tural elements are Docbook <section> or <para> as well as HTML <p>. This is
how XLIFF 2 will encode non-Translatability of a structural element:

Example 7. XLIFF Core @translate on a structural leaf element

 <unit id='1' translate="yes">
 <segment>
 <source>Translatable text</source>
 </segment>
 </unit>
 <unit id='2' translate="no">
 <segment>
 <source>Non-translatable text</source>
 </segment>
 </unit>

The above could be an Extraction of the following HTML snippet:
 <p translate='yes'>Translatable text</p>
 <p translate='no'>Non-translatable text</p>

The same snippet could be also represented like this:

Example 8. XLIFF representing ITS Translate by Extraction behavior w/o
explicit metadata

 <unit id='1'>
 <segment>
 <source>Translatable text</source>
 </segment>
 </unit>

However, it is quite likely that the non-translatable structural elements could pro-
vide the translators with some critical context information. Hence the non-extrac-
tion behavior can only be recommended if the Extracting Agent human or
machine can make the call if there is or isn't some sort of contextual or linguistic
relationship.

JLIFF, Creating a JSON Serialization of OASIS XLIFF

301

In case of the Translate metadata category being expressed inline, XLIFF has
to use its Translate Annotation:

Example 9. XLIFF Core @translate used inline

 <unit id='1'>
 <segment>
 <source>Text <pc id='1'/><mrk id='m1' translate='no'>Code</
mrk></pc></source>
 </segment>
 </unit>

The above could be an Extraction of the following HTML snippet:
 <p>Text <code translate='no'>Code</code></p>

Also inline, there is an option to "hide" the non-translatable content like this:

Example 10. XLIFF representing ITS Translate by Extraction behavior w/o
explicit metadata

 <unit id='1'>
 <segment>
 <source>Text <ph id='1'/></source>
 </segment>
 </unit>

Again not displaying of the non-translatable content can be detrimental to the
process, as both human and machine translation agents would produce unsuita-
ble translations in case there is some linguistic relationship between the displayed
translatable text and the content hidden by the placeholder code.

Because XLIFF has its own native method of expressing translatability, generic
ITS decorators could not succeed. ITS processors can however access the translat-
ability information within XLIFF using the following global rule:

Example 11. ITS global rule to detect translatability in XLIFF

 <its:rules version="2.0" queryLanguage="xpath">
 <!-- Rules for Translate -->
 <its:translateRule selector="//xlf:*[@translate='no']"
translate='no'/>
 <its:translateRule selector="//xlf:*[@translate='yes']"
translate='yes'/>
 </its:rules>

The above rule will correctly identify all XLIFF nodes that are using the
xlf:translate attribute with one important caveat, Translatability annotations
on pseudo-spans will be interpreted as empty <sm/> nodes. And pseudo-span

JLIFF, Creating a JSON Serialization of OASIS XLIFF

302

Translatability overlaps with Translatability well-formed markup will not be
properly interpreted, see [21] http:// docs.oasis-open.org/ xliff/ xliff-core/ v2.1/ os/
xliff-core-v2.1-os.html#translateAnnotation.

3. The abstract Localization Interchange Object Model (LIOM)

3.1. The Core Structure

Figure 1 is a UML class diagram rendering of the abstract object model behind
XLIFF 2 Core and hence also JLIFF core.

The above can be described in a natural language as follows:
A LIOM instance contains at least one file. Each file can contain an optional

recursive group structure of an arbitrary depth. Because grouping is fully
optional, files can contain only a flat series of units. But also any file or group can
contain either a flat structure of units or an array of groups and units (sub-
groups). Each unit contains at least one sub-unit of the type segment (rather than
ignorable). Each sub-unit contains exactly one source and at most one target.
Bitext is designed to represent the localizable source structure and only later in
the process is expected to be Enriched with aligned target content. The content
data type can contain character data mixed with inline elements. It is worth not-
ing that XLIFF even in its XML serialization only preserves a treelike document
object model (DOM) down to unit. Inline markup present in the source and target
content data can form spans that can and often have to overlap the tree structure
given by the well-formed <mrk> and <pc>, but also notably the structural
<source>, <target>, <segment>, and <ignorable> tags. The <unit> tag separates
the upper clean XML well-formed structure from the transient structure of seg-
ments where "non-well-formed" pseudo-spans formed by related empty tags (<sc
id="1"/ > and <ec startRef="1"/ >, as well as <sm id="2"/ > and <em
startRef="2"/> pairs) need to be recognized and processed by XLIFF Agents. See
[21] Spanning Code Usage12 ("Agents MUST be able to handle any of the above
two types of inline code representation") or Pseudo-span Warning13. Since the
equivalence of well-formed versions of the spanning codes <pc> and markers
<mrk> with the above pseudo-spans is defined and described in XLIFF 2 itself,
there is no need to include the well-formed versions of the inline tags in the
abstract LIOM and non-XML serializations including JLIFF are free to use a fully
linear inline data model.

The above class diagram shows that any LIOM instance has four options of
logical roots. The original XML serialization, i.e. XLIFF 2, can only use the top
level root object according to its own grammar. On the other hand, the abstract

12 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#spanningcodeusage
13 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#pseudo-spanWarning

JLIFF, Creating a JSON Serialization of OASIS XLIFF

303

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#translateAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#translateAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#spanningcodeusage
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#pseudo-spanWarning
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#spanningcodeusage
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#pseudo-spanWarning

object model caters for use cases where LIOM fragments could be exchanged.
Such scenarios include real time unit exchange between translation tools such as
between a Translation Management System (TMS) and a translation or review
workbench (browser based or standalone), a TMS and a Machine Translation (MT)
engine, two different TMSes, and so on.

Figure 1. The abstract Localization Interchange Object Model - [14]

JLIFF, Creating a JSON Serialization of OASIS XLIFF

304

Based on the above, a LIOM instance can represent a number of source files, a
single source file, a structural subgroup (at any level of recursion) or a smallest
self contained logical unit that are intended for Localization.

The top level wrapper in the XML serialization is the <xliff> element, the top
level object in the JSON serialization is an anonymous top level object with the
required jliff property.

Example 12. XLIFF top level element

<xliff xmlns="urn:oasis:names:tc:xliff:document:2.0"
xmlns:uext1="http://example.com/userextension/1.0"
xmlns:uext2="http://example.com/userextension/2.0"
version="2.1" srcLang="en" trgLang="fr">
 <file … >
 <group … >
 /arbitrary group depth including 0/
 <unit … >
 [… /truncated payload structure / …]
 </unit>
 </group>
 <file>
</xliff>

Example 13. JLIFF anonymous top level object

{
 "jliff": "2.1",
 "@context": {
 "uext1": "http://example.com/userextension/1.0",
 "uext2": "http://example.com/userextension/2.0"
 },
 "srcLang": "en",
 "trgLang": "fr",
 "files | subfiles | sugbroups | subunits": [… /truncated payload
structure / …]
}

Comparing the two examples above, it is clear that XLIFF in its original XML
serialization doesn't have another legal option but to represent the whole project
structure of source files. JLIFF has been conceived from the beginning as the
JSON Localization Fragment Format, so that top level JLIFF object (jliff) can
wrap an array of files (within the files object), an array of groups or units
(within the subfiles or the subgroups object), or an array of sub-units (within
the subunits object). Since the data model of a subfile and a subgroup is identi-
cal, subfiles and subgroups are instances of a common JSON schema type

JLIFF, Creating a JSON Serialization of OASIS XLIFF

305

named subitems. The subitem type object simply holds an array of anonymous
group or unit objects.

The jliff property values are restricted at the moment to 2.1 or 2.0. The
context property is optional as it is only required to specify [12] context for exten-
sions if present. This is a workaround to declaring the same extensions' namespa-
ces as in the XLIFF top level example. The srcLang property is required while the
trgLang property is only required when target objects are present.

3.2. LIOM Modules

3.2.1. LIOM modules originating in XLIFF 2.0

[20] defined 8 namespace based modules, from which 7 survived to [21], see the
namespaces listing above. We won't be dealing with the deprecated Change
Tracking Module.

The simplest [21] Module is the Format Style Module14 that consists just of
two attributes fs and subFs. Obviously this very easy to express both in the
abstract LIOM and in the JLIFF serialization. The subFs property is only allowed
on objects where fs has been specified. At the same time fs values are restricted
to a subset (see [21] http:// docs.oasis-open.org/ xliff/ xliff-core/ v2.1/ os/ xliff-core-
v2.1-os.html# d0e13131) of [6] tag names. While the Format Style Module only
provides 2 properties, it is rather far reaching as these are allowed on most struc-
tural and inline elements of XLIFF Core. Information provided through fs and
subFs is intended to allow for simple transformations to create previews. Pre-
views are extremely important to provide context for human translators.

Apart from Format Style, all other Modules define their own elements. In gen-
eral each Module's top wrapper is explicitly allowed on certain static structure
elements and has a reference mechanism to point to a core content portion that it
applies to. Glossary Module data can be also pointed to vice versa from the Core
Term Annotation15.

The [21] Translation Candidates Module16 is only allowed on the unit level
and serves for storing of locally relevant Translation suggestions. Those typically
come from a TM or MT service. The Translation Candidate module reuses the
core source and target data model, as the data is designed to be compared with
the core contained source content and populate the core target content parts from
the module target containers. While this primarily targets human translators
selecting suitable translation candidates. Most TMSes have a function to populate
or pre-populate core target containers with the module based suggestions based
on some decision making algorithms driven by the match metada caried within

14 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
15 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#termAnnotation
16 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates

JLIFF, Creating a JSON Serialization of OASIS XLIFF

306

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#d0e13131
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#d0e13131
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#termAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#termAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#termAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates

the module. Those include properties such as similarity, matchQuality,
matchSuitability, type of the candidate, but the only required property is a
pointer identifying the relevant source content span to which the translation sug-
gestion applies. Apart from reusing core, the module is extensible by the Meta-
data Module and by custom extensions.

The [21] Glossary Module17 is designed to provide locally relevant Terminol-
ogy matches. But can be also used vice versa to store terminology identified by
human or machine agents during the roundtrip. A mapping of XLIFF Core +
Glossary Module to and form TBX Basic has been defined in [24]. This mapping is
now being standardized also within OASIS XLIFF OMOS TC (the home of LIOM
and JLIFF).

The [21] Metadata Module18 is perhaps the most suitable for being ported to
JSON and other non-markup-language serialization methods. While being a
module that in fact strictly protects it's content, it's also an extensibility mecha-
nism for implementers who don't want to extend via their own namespace based
extensions. The metadata structure is optionally recursive and is allowed on all
XLIFF Core static structural elements (file, group, unit). It doesn't specify a ref-
erencing mechanism. It is simply an optionally hierarchically structured and
locally stored set of key-value pairs to hold custom metadata. Because the data
strusture is restricted to key-value pairs it provides at least some limited intero-
perability for the custom data as all implementers should be capable of display-
ing structural elements related key-value pairs data. Each Metadata Module
object (element) has an optional id property (attribute) that allows for addressing
from outside the module, either globally or within the LIOM instance.

The [21] Resource Data Module is designed to provide native resource data
either as context for the Translatable payload or as non-text based resource data
to be modified along with the Translatable payload (if the resource data model is
known and supported by the receiving agent), for instance GUI resources to be
resized to fit the Translated UI strings. Resource data can be considered locally
specific skeleton data and would be typically binary or generally of any media
type. To tell receiving agents what type of data the module holds, there is a media
type property (mimeType attribute).

The [21] Size and Length Restriction Module19 is a powerful mechanism that
allows for defining any sort of size or storage constraints, even multidimensional.
IT specifies a standard code point based restriction profile as well as three stand-
ard storage size restriction profiles. It also gives guidance how to specify arbitrary
size or shape restriction profiles, for instance to control fitting restrictions in com-

17 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
18 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
19 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module

JLIFF, Creating a JSON Serialization of OASIS XLIFF

307

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#glossary-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#size_restriction_module

plex desktop publishing environments, custom embedded displays with font lim-
itations, and so on.

The [21] Validation Module20 provides an end user friendly way to specify
simple Quality Assurance rules that target strings need to fulfill, mainly in rela-
tion to source strings. For instance a substring that appears in source must or
must not appear in the target string. For instance, a brand name must appear in
both source and target. Or on the contrary, a brand name must not be used in a
specific locale for legal reasons.

3.2.2. The ITS Module

The [21] ITS Module21 specification is comparable in size with all the other Mod-
ule specifications taken together. It defines native support or mapping, Extraction
or ITS Rules parsing guidance for all 19 W3C ITS 2.0 [8] metadata categories and
for its [8] ITS Tools Annotation22 mechanism.

Language Information23 uses the [5] data model via xml:lang to indicate the
natural language of content. This is obviously very useful in case you want to
source translations or even just render the content with proper locale specifics.
This partially overlaps with XLIFF's own usage of xml:lang to specify srcLang
and trgLang. An urn:oasis:names:tc:xliff:itsm:2.1 namespace based attrib-
ute itsm:lang is provided to specify third language material inline. Both xsd and
JSON Schema have an issue in validating [5] tags. A regex or custom code based
solution is recommended.

Directionality24 has quite a profound Internationalization impact, it let's ren-
derers decide at the protocol level (as opposed to the plain text or script level)
whether the content is to be displayed left to right (LTR - Latin script default) or
right to left (RTL - Arabic or Hebrew script default). But the Unicode Bidirec-
tional Algorithm [17]as well as directionality provisions in HTML and many
XML vocabularies changed since 2012/2013, so the ITS 2.0 specification text is
actually not very helpful here. This obviously doesn't affect the importance of the
abstract data category and of having proper display behavior for bidirectional
content. LIOM contains core srcDir and trgDir and dir properties that allow val-
ues ltr, rtl, and auto. The default auto determines directionality heuristically as
specified in [17]. Directionality in XLIFF is given by a high level protocol in the
sense of [17]. All objects that can have the directionality property in LIOM either
determine the directionality of their descendants (as higher level protocol) or act
as directionality isolators inline.

20 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
21 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
22 https://www.w3.org/TR/its20/#its-tool-annotation
23 http://www.w3.org/TR/its20/#language-information
24 http://www.w3.org/TR/its20/#directionality

JLIFF, Creating a JSON Serialization of OASIS XLIFF

308

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
https://www.w3.org/TR/its20/#its-tool-annotation
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#directionality
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ITS-module
https://www.w3.org/TR/its20/#its-tool-annotation
http://www.w3.org/TR/its20/#language-information
http://www.w3.org/TR/its20/#directionality

Preserve Space25 indicates via xml:space whether or not whitespace charac-
ters are significant. If whitespace is significant in source content it is usually sig-
nificant also in the target content, this is more often then not an internal property
of the content format, but it's important to keep this characteristics through trans-
formation pipelines. The danger that this category is trying to prevent is the loss
of significant whitespace characters that could not be recovered. This data cate-
gory is considered XMLism or SGMLism. It should be preserved at LIOM level.
However, even XLIFF21 recommends pre-Extaction normalization of whitespace
and setting of all inline content whitespace behavior to preserve. This is also the
option best interoperable with JSON where all payload whitespace is significant.

ID Value26 indicates via xml:id a globally unique identifier that should be
preserved during translation and localization transformations mainly for the pur-
poses of reimport of target content to all the right places in the native environ-
ment. XLIFF id mechanism is NMTOKEN rather than NCName based. However,
usage of xml:id to encode this metadata category can only be exprected in XML
source environments. Therefore, XLIFF and LIOM use an unrestricted string
mechanism (original on file, name on group and unit) to roundtrip native IDs.

Terminology27 can simply indicate words or multi-word expressions as terms
or non-terms. This is how the category worked in [7]. In [8], Terminology can be
more useful by pointing to definitions or indicating a confidence score, which is
especially useful in cases the Terminology entry was seeded automatically. Termi-
nology belong exclusively to categories that come from the native format.
Together with Text Analysis it can be actually injected into the content during any
stage of the lifecycle or roundtrip and is not limited to source. However, it is very
important for the localization process, human or machine driven, to have Termi-
nology annotated be it even only the simple Boolean flag. Core [14] doesn't have
the capability to say that a content span is not a term, therefore the negative anno-
tation capability is provided via the ITS Module.

Text Analysis28 is a sister category to Terminology that is new in [8]. It is
intended to hold mostly automatically sourced (possibly semi-supervised) entity
disambiguation information. This can be useful for translators and reviewers but
can also enrich reading experience in purely monolingual settings. This is fully
defined in the ITS Module as there is no equivalent in core [14] or [21].

Domain29 can be used to indicate content topic, specialization or subject mat-
ter focus that is required to produce certain translations. This can be for instance
used to select a suitably specialized MT engine, such as one trained on an auto-
motive bilingual corpus in case an automotive domain is indicated or. In another

25 http://www.w3.org/TR/its20/#preservespace
26 http://www.w3.org/TR/its20/#idvalue
27 http://www.w3.org/TR/its20/#terminology
28 http://www.w3.org/TR/its20/#textanalysis
29 https://www.w3.org/TR/its20/#domain

JLIFF, Creating a JSON Serialization of OASIS XLIFF

309

http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#textanalysis
https://www.w3.org/TR/its20/#domain
http://www.w3.org/TR/its20/#preservespace
http://www.w3.org/TR/its20/#idvalue
http://www.w3.org/TR/its20/#terminology
http://www.w3.org/TR/its20/#textanalysis
https://www.w3.org/TR/its20/#domain

use case, a language service provider will use a sworn translator and require in
country legal subject matter review in case the domain was indicated as legal.
Although ITS data categories are defined independently and don't have imple-
mentation dependencies, Domain information is well suited for usage together
with the Terminology and Text Analysis datacats. As the Domain30 datacat
doesn't have local markup in the W3C [8] namespace, [21] had to define a local
itsm:domain attribute that is also taken over as a local property by [14] and [11].

MT Confidence31, Localization Quality Issue32, Localization Quality Rating33,
and Provenance34 - all new categories in ITS 2.0 - can be only produced during
Localization transformations; specifically, during Machine Translation, during a
review or Quality Assurance process, during or immediately after a manual or
automated Translation or revision.

MT Confidence35 gives a simple score between 0 and 1 that encodes the auto-
mated translation system's internal confidence that the produced translation is
correct. This score isn't interoperable but can be used in single engine scenarios
for instance to color code the translations for readers or post-editors. It can also be
used for storing the data for several engines and running comparative studies to
make the score interoperable first in specific environments and later on maybe
generally. This overlaps with the LIOM Translation Module's property
matchQuality.

Localization Quality Issue36 contains a taxonomy of possible Translation and
Localization errors that can be applied in annotations of arbitrary content spans.
The taxonomy ensures that this information can be exchanged among various
Localization roundtrip agents. Although this mark up is typically introduced in a
Bitext environment on target spans, marking up source isn't exclude and can be
very practical, especially when implementing the feedback or even reporting a
source issue. Importantly, the issues and their descriptions can be Extracted into
target content and consumed by monolingual reviewers in the native environ-
ment. This is fully defined in the ITS Module as there is no equivalent in core [14]
or [21].

Localization Quality Rating37 is again a simple score that gives a percentage
indicating the quality of any portion of content. This score is obviously only inter-
operable within an indicated Localization Quality Rating system or metrics. Typi-
cally flawless quality is considered 100 % and various issue rates per translated

30 https://www.w3.org/TR/its20/#domain
31 http://www.w3.org/TR/its20/#mtconfidence
32 http://www.w3.org/TR/its20/#lqissue
33 http://www.w3.org/TR/its20/#lqrating
34 http://www.w3.org/TR/its20/#provenance
35 http://www.w3.org/TR/its20/#mtconfidence
36 http://www.w3.org/TR/its20/#lqissue
37 http://www.w3.org/TR/its20/#lqrating

JLIFF, Creating a JSON Serialization of OASIS XLIFF

310

https://www.w3.org/TR/its20/#domain
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
https://www.w3.org/TR/its20/#domain
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating
http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#mtconfidence
http://www.w3.org/TR/its20/#lqissue
http://www.w3.org/TR/its20/#lqrating

volume would strike down percentages, possibly dropping under an acceptance
threshold that can be also specified. This is fully defined in the ITS Module as
there is no equivalent in core [14] or [21].

Provenance38 in ITS is strictly specialized to indicate only translation and revi-
sion agents. Agents can be organizations, people or tools or described by combi-
nations of those. For instance, Provenance can indicate that the Reviser John Doe
from ACME Language Quality Assurance Inc. produced a content revision with
the Perfect Cloud Revision Tool. This is fully defined in the ITS Module as there is
no equivalent in core [14] or [21].

In spite of [21] using the W3C namespace for the ITS Module, there is a sys-
tematic scope mismatch between the XLIFF defined ITS attributes and the ITS
defined XML attributes. Because [8] has no provision to parse pseudo-spans, it
will necessarily fail to identify spans formed by XLIFF Core <sm/> and
markers.

In XLIFF, Modifiers can always transform <mrk id="1">span of text</mrk>
into <sm id="1"/>span of text <em startRef="1"/>, which is fundamentally
inaccessible by ITS Processors (or other generic XML tooling) without extended
provisions. Unmodified or unextended ITS Rules will find the <sm/ > nodes, if
those nodes do hold the W3C ITS namespace based attributes or native XLIFF
attributes that can be globally pointed to by ITS rules, yet they will fail to identify
the pseudo-spans and will consider the <sm/> nodes empty, ultimately failing to
identify the proper scope of the correctly identified datacat. XLIFF implementers
who want to make their XLIFF Stores maximally accessible to ITS processors are
encouraged to avoid forming of <sm/> based spans, it is however often not possi-
ble. Had it been possible, XLIFF would have not needed to define <sm/> and <em/
> delimited pseudo-spans in the first place.

Principal reasons to form pseudo-spans include the following requirements: 1)
capability to represent non-XML content, 2) need for overlapping annotations, 3)
capability to represent annotations overlapping with formatting spans as well as
4) annotations broken by segmentation (which has to be represented as well
formed structural albeit transient nodes).

4. The design of JLIFF
The design of JLIFF follows the design of XLIFF 2 closely albeit making use of
abstractions described under LIOM Core. As with XLIFF 2, the JLIFF Core corre-
sponds to the abstract Localization Interchange Object Model, LIOM. One of the
primary goals of JLIFF is compatibility with XLIFF 2 to allow switching between
XML and JSON based pipeline at will as stated in the Introduction. While JLIFF is
structurally different compared to XLIFF 2 due to the much simpler JSON repre-
sentation format, compatibility is made possible through the following mappings:

38 http://www.w3.org/TR/its20/#provenance

JLIFF, Creating a JSON Serialization of OASIS XLIFF

311

http://www.w3.org/TR/its20/#provenance
http://www.w3.org/TR/its20/#provenance

1. As a general rule, JSON object property names are used to represent XLIFF
elements and attributes, with the exception of element sequences that must be
represented by JSON arrays. JSON object properties should be unique and are
unordered, whereas this does not generally hold for XML elements;

2. It was decided to use JSON arrays to represent element sequences, for exam-
ple a sequence of <file> elements becomes an array identified by the JSON
object property "files": […] where each array item is an anonymous file
object that contains an array of "subfiles": […]. It was decided to use plural
forms to refer to arrays in JLIFF and as a reminder of the structural differences
between XML and JSON;

3. To store units and groups that exist within files, JSON object property
"subfiles": […] is an array of unit and group objects representing XLIFF
<unit> and <group> elements, where an anonymous unit object is identified
by a "kind": "unit" and an anonymous group object is identified by
"kind": "group";

4. Likewise, "subunits": […] is an array of subunits of a unit object, where a
segment subunit is identified as an object with "kind": "segment" and a
ignorable object is identified as "kind": "ignorable";

5. A subset of XSD data types that are used in XLIFF are also adopted in the
JLIFF schema by defining corresponding JSON schema string types with
restricted value spaces defined by regex patterns for NCName, NMTOKEN,
NMTOKENS, and URI/IRI. The latter is not restricted by a regex pattern due to
the lax validation of URI and IRI values by processors;

6. Because JSON intrinsically lacks namespace support, it was decided to use
qualified JSON object property names to represent XLIFF modules, which is
purely syntactic to enhance JLIFF document readability and processing. For
example, ITS module properties are identified by prefix its_, such as
"its_locQualityIssues". Generally undersore "_" is used as the namespace
prefix separator for modules (unlike custom namespace based extentions);

7. JLIFF extensions are defined by the optional JSON-LD context "@context":
{…} as a property of the anonymous JLIFF root object. [12] offers a suitable
replacement of XML namespaces required for extension identification and
processing. A JSON-LD context is a mapping of prefixes to IRIs. A JSON-LD
processor resolves the prefix in an object property name and thus creates a
fully qualified name containing the corresponding IRI qualifier;

8. To identify JLIFF documents, the anonymous JLIFF root object has a required
property "jliff": "2.0" or "jliff": "2.1";

9. One of the decisions taken in relation to element mappings was not to explic-
itly support well-formed <pc/ > and <mrk/ > elements, therefore <mrk/ > is

JLIFF, Creating a JSON Serialization of OASIS XLIFF

312

mapped to <sm/> and pairs, and <pc/> is mapped to <sc/> and <ec/>
pairs. See also LIOM Core.

These mapping decisions were verified against the LIOM and XLIFF 2 while
developing the JSON schema for JLIFF. In addition, to validate the approach sev-
eral XLIFF examples were translated to JLIFF and validated by the JLIFF JSON
schema. A reference implementation is being developed for lossless translation of
XLIFF into JLIFF and back, except for support for <pc/> and <mrk/> elements as
explained above.

Further design considerations worth noting include:
1. While JSON supports the Boolean type values true and false, it was decided

to use string based enumerations of yes and no in JLIFF to represent XLIFF
attributes of the yesNo type. There are two main reasons for this. Firstly, the
omission of a Boolean value is usually associated with the value false by pro-
cessors and applications. By contrast, the absence of a value should not
default to false in JLIFF. The absence of a value has an XLIFF driven meaning.
In fact the XLIFF default of the yesNo attributes is yes. Absence of of an attrib-
ute typically indicates permission. Hence we defined the yes defaults in the
JLIFF JSON schema, which would have conflicted with the defaulting behav-
ior of the JSON Boolean type. Secondly, the object property canReorder of the
ec, ph, and sc objects is a three-valued enumeration with the yes, no, and
firstNo values, necessitating the use of a JSON string type with enumeration
rather than a JSON Boolean type in JLIFF.

2. Almost all JSON schema types defined for JLIFF correspond one-to-one with
JSON object property names in JLIFF documents. This design choice reduces
efforts to comprehend the JLIFF JSON schema structure for implementers
versed in XLIFF. For example, the files property mentioned earlier has a cor-
responding files type in the JLIFF JSON schema, which is an array that refer-
ences the file schema type. However, this schema design deviates in one
important aspect that is intended to avoid unnecessary duplication of the
schema types for the properties subfiles and subgroups that share the same
data model. It was decided to introduce the schema type subitems to repre-
sent the value space of both subfiles and subgroups. We also added named
types to the schema that have no corresponding property name, to break out
the JSON structure more clearly. For example, elements is an array of mixed
types, which is one of (element-text, element-ph, element-sc, element-ec,
element-sm, and element-em in the schema. Note that element-text is a
string while the other types are objects.

3. JLIFF considers LIOM Modules an integral part of the JLIFF specification,
meaning that all Modules are part of the single JSON schema specification of
JLIFF [11]. The decision to make Modules part of the JLIFF specification is a
practical one that simplifies the processing of Modules by processors, as Mod-

JLIFF, Creating a JSON Serialization of OASIS XLIFF

313

ules are frequently used (albeit different subsets based on individual needs
and specializations) by implementers. By contrast, extensions are registered
externally and included in JLIFF documents as userdata objects. A userdata
object contains one or more extensions as key-value pairs: each extension is
identified by a qualified property with an extension-specific JSON value. The
prefix of the qualified property of an extension is bound to the IRI of the
extension using the JSON-LD @context to identify the unique extension
namespace IRI. Processors that are required to handle extensions should
resolve the prefix to the extension’s objects fully qualified names as per JSON-
LD processing requirements. Otherwise extensions can be ignored without
raising validation failures. This approach offers an extensible and flexible
mechanism for JLIFF extensions. While the JSON-LD workaround for name-
spaces was considered a suitable solution for extensions, it was considered
heavy weight and to complex for modules that are used regularly. The "con-
text" of modules is considered a shared JLIFF agent knowledge documented
in the prose specification rather then being resolved each time when module
data need processed, hammering OASIS servers that would need to hold the
canonical context files required for proper JSON-LD processing.

5. Reference Implementation
It was an early goal to work on a concrete implementation of JLIFF in parallel to
the development of the schema. It would give us an early opportunity to find and
work through any design flaws or limitations. Fortunately, the JliffGraphTools [9]
reference implementation has been open source since early on.

It was a wish that JLIFF should be easy to implement and serialize/deserialize
using well-known JSON libraries.

As explained in the JLIFF Design section, there is a difference in the structure
of JLIFF and XLIFF in inline markup. In XLIFF, inline markup is nested within the
segment text as descendant elements of the <source> and <target> elements. In
JLIFF the segment text and inline markup are stored as an array of objects prop-
erty of the unit's source and target properties. This has an impact on how render-
ing tools may display strings for translation, see below on the approach taken in
[9].

Having got the priority of JSON serialization and deserialization working we
then looked at roundtripping, i.e. the capability to create an XLIFF output from a
JLIFF file legally changed by a Translation agent. JliffGraphTools [9] supports
bidirectional serialization between XLIFF and JLIFF and it is this library which
powers the Xliff2JliffWeb web application made public at http://
xliff2jliff.azurewebsites.net/. Unfortunately the public web application only
implements the JLIFF output capability at the time of writing this.

JLIFF, Creating a JSON Serialization of OASIS XLIFF

314

http://xliff2jliff.azurewebsites.net/
http://xliff2jliff.azurewebsites.net/

At present when segments for translation are rendered in [9], there is an
option to flatten the array of text and inline markup objects and render them in a
way which is based upon the approach taken in the [16] XLIFF library. That is
inline markup tags are converted to coded text which uses characters from the
private use area of [18] to delimit inline markup tags. See [16] http://
okapiframework.org/devguide/gettingstarted.html#textUnits.

The following program listings demonstrate [9] can be used to exchange the
flattened fragments instead of the fully equivalent JLIFF. This capability is based
on JLIFF having been designed to support any of the four logically possible LIOM
roots, see LIOM Core Structure.

Example 14. Simple XLIFF input

<?xml version="1.0"?>
<xliff xmlns="urn:oasis:names:tc:xliff:document:2.0" version="2.1"
srcLang="en" trgLang="fr">
<file id="f1">
 <unit id="u1">
 <originalData>
 <data id="d1">[C1/]</data>
 <data id="d2">[C2]</data>
 <data id="d3">[/C2]</data>
 </originalData>
 <segment canResegment="no" state="translated">
 <source><ph id="c1" dataRef="d1"/> aaa <pc id="c2" dataRefEnd="d3"
dataRefStart="d2">text</pc></source>
 <target><ph id="c1" dataRef="d1"/> AAA <pc id="c2" dataRefEnd="d3"
dataRefStart="d2">TEXT</pc></target>
 </segment>
 <ignorable>
 <source>. </source>
 </ignorable>
 </unit>
</file>
</xliff>

Example 15. [XLiff2JliffWeb] -> Fully equivalent JLIFF

{
 "jliff": "2.1",
 "srcLang": "en-US",
 "trgLang": "fr-FR",
 "files": [
 {
 "id": "f1",
 "kind": "file",

JLIFF, Creating a JSON Serialization of OASIS XLIFF

315

http://okapiframework.org/devguide/gettingstarted.html#textUnits
http://okapiframework.org/devguide/gettingstarted.html#textUnits

 "subfiles": [
 {
 "canResegment": "no",
 "id": "u1",
 "kind": "unit",
 "subunits": [
 {
 "canResegment": "no",
 "kind": "segment",
 "source": [
 {
 "dataRef": "d1",
 "id": "c1",
 "kind": "ph"
 },
 {
 "text": " aaa "
 },
 {
 "dataRef": "d3",
 "id": "c2",
 "kind": "ec"
 },
 {
 "text": "text"
 },
 {
 "kind": "ec"
 }
],
 "target": [
 {
 "dataRef": "d1",
 "id": "c1",
 "kind": "ph"
 },
 {
 "text": " AAA "
 },
 {
 "dataRef": "d3",
 "id": "c2",
 "kind": "ec"
 },
 {
 "text": "TEXT"

JLIFF, Creating a JSON Serialization of OASIS XLIFF

316

 },
 {
 "kind": "ec"
 }
]
 },
 {
 "kind": "ignorable",
 "source": [
 {
 "text": ". "
 }
],
 "target": []
 }
]
 }
]
 }
]
}

Example 16. [XLiff2JliffWeb] -> "Flattened" JLIFF

{
 "jliff": "2.1",
 "srcLang": "en",
 "trgLang": "fr",
 "subunits": [
 {
 "canResegment": "no",
 "kind": "segment",
 "source": [
 {
 "dataRef": "d1",
 "id": "c1",
 "kind": "ph"
 },
 {
 "text": " aaa "
 },
 {
 "dataRef": "d3",
 "id": "c2",
 "kind": "ec"
 },
 {

JLIFF, Creating a JSON Serialization of OASIS XLIFF

317

 "text": "text"
 },
 {
 "kind": "ec"
 }
],
 "target": [
 {
 "dataRef": "d1",
 "id": "c1",
 "kind": "ph"
 },
 {
 "text": " AAA "
 },
 {
 "dataRef": "d3",
 "id": "c2",
 "kind": "ec"
 },
 {
 "text": "TEXT"
 },
 {
 "kind": "ec"
 }
]
 }
]
}

6. Discussion and Conclusions
In the above we tried to show how we ported into JSON XLIFF 2, a complex busi-
ness vocabulary from the area of Translation and Localization. While the paper
deals in detail only with XLIFF and JLIFF, we believe that important topics were
covered that will be useful for designer who will endeavor porting their own spe-
cialized multi-namespace business vocabularies into JSON.

The major takeway we'd like to suggest is not to port directly from XML to
JSON. It is worth the time to start your exercise with expressing your XML data
model in an abstract way, we used UML class diagram as the serialization inde-
pendent abstract method.

XML serializations are as a rule fraught with "XMLism" or "SGMLism". While
some of the XML capabilities such as the multi-namespace support are clear XML
advantages that will force the JSON-equivalent-designer into complex and more

JLIFF, Creating a JSON Serialization of OASIS XLIFF

318

or less elegant workarounds and compromises. Some other XML traits and con-
straints are arbitrary from the point of view of other languages and serialization
methods.

To name just a few examples of XMLism that doesn't need maintained in
JSON. You don't need to support well formed versions of inline markup in JSON,
it is easier to serialize everything linearly. In JSON, all payload space is signifi-
cant, so you don't need to keep the preserve | default flag in your JSON seriali-
zation. Instead make sure that all inline data is normalized and set to preserve in
your XML data. JSON data types are much poorer than XML datatyes, neverthe-
less, you can make up for this with relative ease with the usage of regular expres-
sion patterns in your JSON schema. For instance

Example 17. NCName pattern in JSON schema

"NCName": {
 "description": "XSD NCName type for xml:id interoperability",
 "type": "string",
 "pattern": "^[_A-Za-z][-._A-Za-z0-9]*$"
 }

Namespaces support workarounds in JSON are worth an extra mention.
While JSON doesn't support namespaces per se. We identified the JSON-LD meth-
ods for introducing and shortening fully qualified names quite useful as a name-
spaces support surrogate. For practical reasons (like prevention of hammering of
OASIS servers to read XLIFF module context files) we decided to use the full
blown JSON-LD method for expanding prefixes into fully qualified names only
for extensions. We decided to use an arbitrary "_" (underscore) prefix separator to
make the XLIFF modules human discernable. There goes the disadvantage of los-
ing the modularity of XLIFF modules in JLIFF, yet we felt that JSON-LD-coding of
each of the modules data would be very complex and heavyweight with minor
benefits to outweigh the drawbacks.

Bibliography
[1] S. Saadatfar and D. Filip, Advanced Validation Techniques for XLIFF 2. in

Localisation Focus, vol. 14, no. 1, pp. 43-50, April 2015. http://
www.localisation.ie/locfocus/issues/14/1

[2] S. Saadatfar and D. Filip, Best Practice for DSDL-based Validation. in XML
London 2016 Conference Proceedings, May 2016. https://xmllondon.com/
2016/xmllondon-2016-proceedings.pdf#page=64

[3] D. Filip, W3C ITS 2.0 in OASIS XLIFF 2.1, in XML Prague 2017 - Conference
Proceedings, Prague, 2017, vol. 2017, pp. 55–71. http://

JLIFF, Creating a JSON Serialization of OASIS XLIFF

319

http://www.localisation.ie/locfocus/issues/14/1
http://www.localisation.ie/locfocus/issues/14/1
https://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=64
https://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=64
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=67

archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#
page=67

[4] S. Bradner and B. Leiba, Eds., Key words for use in RFCs to Indicate Requirement
Levels and Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, IETF
(Internet Engineering Task Force) 1997 & 2017. http://tools.ietf.org/
html/bcp14

[5] M. Davis, Ed., Tags for Identifying Languages, IETF (Internet Engineering Task
Force) http://tools.ietf.org/html/bcp47 .

[6] S. Faulkner at al. Eds., HTML 5.2 W3C Recommendation 14 Dec 2017.
https://www.w3.org/TR/html52/

[7] C. Lieske and F. Sasaki, Eds.: Internationalization Tag Set (ITS) Version 1.0. W3C
Recommendation, 03 April 2007. W3C. https://www.w3.org/TR/its/

[8] D. Filip, S. McCance, D. Lewis, C. Lieske, A. Lommel, J. Kosek, F. Sasaki, Y.
Savourel, Eds.: Internationalization Tag Set (ITS) Version 2.0. W3C
Recommendation, 29 October 2013. W3C. http://www.w3.org/TR/its20/

[9] P. Ritchie, JLIFF Graph Tools. Vistatec, 2019. https://github.com/vistatec/
JliffGraphTools/commit/74ffde990d8dd6d6d5d3f80d78e76ea8b0dc8736

[10] D. Filip and R. van Engelen, JLIFF Version 1.0 [wd01]. OASIS, 2018. https://
github.com/oasis-tcs/xliff-omos-jliff/commit/
7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3

[11] R. van Engelen, JLIFF Version 1.0, JSON Schema [wd01]. OASIS, 2018. https://
github.com/oasis-tcs/xliff-omos-jliff/commit/
2ed3b57f38548600f1261995c466499ad0ade224/>

[12] M. Sporny, G. Kellogg, M. Lanthaler, Eds. JSON-LD 1.0, A JSON-based
Serialization for Linked Data W3C Recommendation 16 January 2014. https://
www.w3.org/TR/2014/REC-json-ld-20140116//>

[13] D. Filip: Localization Standards Reader 4.0 [v4.0.1], Multilingual, vol. 30, no.
1, pp. 59–73, Jan/Feb-2019. https://magazine.multilingual.com/issue/
jan-feb-2019dm/localization-standards-reader-4-0/

[14] D. Filip, XLIFF 2 Object Model Version 1.0 [wd01]. OASIS, 2018. https://
github.com/oasis-tcs/xliff-omos-om/commit/
030828c327998e7c305d9be48d7dbe49c8ddf202/>

[15] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer: Integrating NLP using
Linked Data. 12th International Semantic Web Conference, Sydney, Australia,
2013. http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf

JLIFF, Creating a JSON Serialization of OASIS XLIFF

320

http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=67
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=67
http://tools.ietf.org/html/bcp14
http://tools.ietf.org/html/bcp14
http://tools.ietf.org/html/bcp47
https://www.w3.org/TR/html52/
https://www.w3.org/TR/its/
http://www.w3.org/TR/its20/
https://github.com/vistatec/JliffGraphTools/commit/74ffde990d8dd6d6d5d3f80d78e76ea8b0dc8736
https://github.com/vistatec/JliffGraphTools/commit/74ffde990d8dd6d6d5d3f80d78e76ea8b0dc8736
https://github.com/oasis-tcs/xliff-omos-jliff/commit/7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3
https://github.com/oasis-tcs/xliff-omos-jliff/commit/7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3
https://github.com/oasis-tcs/xliff-omos-jliff/commit/7e63e0d766bb7394f9dccaa93d7fa54bf1a394d3
https://github.com/oasis-tcs/xliff-omos-jliff/commit/2ed3b57f38548600f1261995c466499ad0ade224
https://github.com/oasis-tcs/xliff-omos-jliff/commit/2ed3b57f38548600f1261995c466499ad0ade224
https://github.com/oasis-tcs/xliff-omos-jliff/commit/2ed3b57f38548600f1261995c466499ad0ade224
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://magazine.multilingual.com/issue/jan-feb-2019dm/localization-standards-reader-4-0/
https://magazine.multilingual.com/issue/jan-feb-2019dm/localization-standards-reader-4-0/
https://github.com/oasis-tcs/xliff-omos-om/commit/030828c327998e7c305d9be48d7dbe49c8ddf202
https://github.com/oasis-tcs/xliff-omos-om/commit/030828c327998e7c305d9be48d7dbe49c8ddf202
https://github.com/oasis-tcs/xliff-omos-om/commit/030828c327998e7c305d9be48d7dbe49c8ddf202
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf

[16] Y. Savourel et al., Okapi Framework. Stable release M36, Okapi Framework
contributors, August 2018. http://okapiframework.org/

[17] M. Davis, A. Lanin, and A. Glass, Eds.: UAX #9: Unicode Bidirectional
Algorithm.. Version: Unicode 11.0.0, Revision 39, 09 May 2018. Unicode
Consortium. http://www.unicode.org/reports/tr9/tr9-39.html

[18] K. Whistler et al., Eds.: The Unicode Standard. Version 11.0 - Core
Specification, 05 June 2018. Unicode Consortium. https://www.unicode.org/
versions/Unicode11.0.0/UnicodeStandard-11.0.pdf

[19] Y. Savourel, J. Reid, T. Jewtushenko, and R. M. Raya, Eds.: XLIFF Version 1.2,
OASIS Standard. OASIS, 2008. Y. Savourel, D. Filip, R. M. Raya, and Y.
Savourel, Eds.: XLIFF Version 1.2. OASIS Standard, 01 February 2008. OASIS.
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html

[20] T. Comerford, D. Filip, R. M. Raya, and Y. Savourel, Eds.: XLIFF Version 2.0.
OASIS Standard, 05 August 2014. OASIS. http://docs.oasis-open.org/
xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html

[21] D. Filip, T. Comerford, S. Saadatfar, F. Sasaki, and Y. Savourel, Eds.: XLIFF
Version 2.1. OASIS Standard, 13 February 2018. OASIS http://docs.oasis-
open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html

[22] D. Filip, T. Comerford, S. Saadatfar, F. Sasaki, and Y. Savourel, Eds.: XLIFF
Version 2.1. Public Review Draft 02, February 2017. OASIS http://
docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-
csprd02.html

[23] D. Filip and J. Husarčík, Eds., XLIFF 2 Extraction and Merging Best Practice,
Version 1.0. Globalization and Localization Association (GALA) TAPICC, 2018.
https://galaglobal.github.io/TAPICC/T1/WG3/rs01/XLIFF-EM-BP-V1.0-
rs01.xhtml/>

[24] J. Hayes, S. E. Wright, D. Filip, A. Melby, and D. Reineke, Interoperability of
XLIFF 2.0 Glossary Module and TBX-Basic, Localisation Focus, vol. 14, no. 1, pp.
43–50, Apr. 2015. https://www.localisation.ie/resources/publications/
2015/260

[25] D. Filip and J. Husarčík, Modification and Rendering in Context of a
Comprehensive Standards Based L10n Architecture, Proceedings ASLING
Translating and the Computer, vol. 40, pp. 95–112, Nov. 2018. https://
www.asling.org/tc40/wp-content/uploads/TC40-Proceedings.pdf

JLIFF, Creating a JSON Serialization of OASIS XLIFF

321

http://okapiframework.org/
http://www.unicode.org/reports/tr9/tr9-39.html
https://www.unicode.org/versions/Unicode11.0.0/UnicodeStandard-11.0.pdf
https://www.unicode.org/versions/Unicode11.0.0/UnicodeStandard-11.0.pdf
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd02/xliff-core-v2.1-csprd02.html
https://galaglobal.github.io/TAPICC/T1/WG3/rs01/XLIFF-EM-BP-V1.0-rs01.xhtml
https://galaglobal.github.io/TAPICC/T1/WG3/rs01/XLIFF-EM-BP-V1.0-rs01.xhtml
https://www.localisation.ie/resources/publications/2015/260
https://www.localisation.ie/resources/publications/2015/260
https://www.asling.org/tc40/wp-content/uploads/TC40-Proceedings.pdf
https://www.asling.org/tc40/wp-content/uploads/TC40-Proceedings.pdf

322

History and the Future of Markup
Michael Piotrowski

Université de Lausanne, Section des sciences du langage et de l’information
<michael.piotrowski@unil.ch>

1. Introduction
The report of XML’s death has been greatly exaggerated, but it is becoming obvi-
ous that the halcyon days are over. To be sure, XML has enjoyed tremendous suc-
cess since its first publication as a W3C Recommendation in 1998. Nowadays
there are few areas of computing where, in some way or another, XML does not
play a role. There are probably hundreds of specifications and standards built on
XML, and dozens of related technologies, such as XSLT, XQuery, XPath, XML
Schema, XLink, XPointer, XForms, etc. The W3C press release on the occasion of
the tenth anniversary of XML quoted Tim Bray, one of the editors of the XML
Recommendation, as saying, “[t]here is essentially no computer in the world,
desk-top, hand-held, or back-room, that doesn’t process XML sometimes.”1 This
is certainly still true today: at the height of the hype, XML found its way into so
many applications, from configuration files to office documents, it is unlikely to
completely disappear anytime soon—even though it may become legacy technol-
ogy.

Nevertheless, when it comes to formats for representing and exchanging
structured data, JSON is now all the rage;2 for narrative documents, Markdown
enjoys a similar role. The W3C’s XML working groups have all been closed, and
HTML development has been taken over by what is essentially an industry con-
sortium that opposed the transition of HTML to XML. The primary syntax of
HTML5 looks like SGML, but the specification explicitly states that HTML is not
an SGML application: “While the HTML syntax described in this specification
bears a close resemblance to SGML and XML, it is a separate language with its
own parsing rules.”3

Markdown and similar lightweight markup languages clearly offer writers a
much more compact syntax for authoring simple documents, but even slightly
more complex documents require extensions. Consequently, people have defined
a large number of mutually incompatible extensions for different purposes. Pan-
doc4 does an amazing job at integrating many of them into a useful whole; one is
reminded of this 1989 speculation about the future:

1 W3C XML is Ten! [http://www.w3.org/2008/xml10/xml10-pressrelease]
2 Sinclair Target, “The Rise and Rise of JSON [https://twobithistory.org/2017/09/21/the-rise-and-rise-of-
json.html]”
3 HTML Standard [https://html.spec.whatwg.org/#parsing]

323

http://www.w3.org/2008/xml10/xml10-pressrelease
http://www.w3.org/2008/xml10/xml10-pressrelease
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://html.spec.whatwg.org/#parsing
https://html.spec.whatwg.org/#parsing

A new generation of software products may change this: perhaps the most desira-
ble result would be that by virtue of the markup minimization capability, together
with smart editors, authors will be using SGML without knowing about it, whilst
publishers reap the benefits. [1]

Except for the SGML part, of course: none of this is formally standardized.5
JSON and Markdown are in some respects certainly more convenient than

XML, but hardly “better” in an absolute sense, in particular not from a computer
science perspective. By defining an SGML DTD for HTML 5.1, Marcus Reichardt
has demonstrated that, “while nominally not based on SGML, owing to HTML
requiring legacy compatibility, HTML5 hasn’t striven far from its SGML roots,
containing numerous characteristics traceable to SGML idiosyncrasies.” [20].
This, as well as the bitter conflicts between the W3C and WHATWG,6 also sug-
gests that the dissociation of HTML5 from XML and SGML is not due to technical
requirements. It rather goes to show that the development of technology is not
solely determined by the technical superiority of one system over another, but
that it is to a large extent also driven by cultural forces, fads, and fashions. As
technology is created and used by humans, it is a cultural artifact.

On the one hand, it is thus more or less unavoidable that preferences change
for apparently “no good reason,” or that small practical advantages in one area
are used to justify giving up important benefits in other areas. On the other hand,
given the investments made into the creation of a complex ecosystem such as that
of XML, it would be a shame to simply throw it all away. This obviously applies
to business investments, but what is much more important is the intellectual
investment, the experiences and insights gained in the process.

2. Why we Need a History of Markup
This is why we need history of technology, in this case: a history of markup tech-
nology. If we want to advance the field rather than reinvent the wheel, we need to
know by which ways we arrived at the point where we are now—including the
roads not taken. Software, including markup languages, file formats, etc., are a
very peculiar class of artifacts: as they are not governed by the laws of physics,
designers enjoy, for better or worse, almost unlimited flexibility.

4 Pandoc: a universal document converter [https://pandoc.org/]
5 The CommonMark [https://commonmark.org/] initiative is working on a “standard, unambiguous
syntax specification for Markdown, along with a suite of comprehensive tests to validate Markdown
implementations against this specification.”
6 The conflict is even evident at many points in the HTML Standard [https://html.spec.whatwg.org/
multipage/parsing.html#parsing]; for example, it—correctly—notes that “few (if any) web browsers
ever implemented true SGML parsing for HTML documents” and that “the only user agents to strictly
handle HTML as an SGML application have historically been validators.” Claiming that this “has was-
ted decades of productivity” and that HTML5 “thus returns to a non-SGML basis” however, can only
be interpreted as a dig at the W3C.

History and the Future of Markup

324

https://pandoc.org/
https://pandoc.org/
https://commonmark.org/
https://commonmark.org/
https://html.spec.whatwg.org/multipage/parsing.html#parsing
https://html.spec.whatwg.org/multipage/parsing.html#parsing
https://html.spec.whatwg.org/multipage/parsing.html#parsing

There are of course papers that take a historical perspective on markup and
related technologies. For example, noting that “[d]ocument preparation has been
an increasingly important application of computers for over twenty-five years,”
Furuta set out in 1992 to “identify those projects that have been especially influ-
ential on the thinking of the community of researchers who have investigated
these systems” [5]. However, this overview (which covers publications up to
1988) was not intended as a history of document preparation, i.e., it does not link
developments and suggest causalities. An actual history of markup would be a
topic for at least one PhD thesis. The goal of this paper is thus merely to encour-
age a reflection on the history of markup, using SGML and XML as an example.

3. The Historical Trajectory of SGML and XML
As is well known, XML is an evolution of SGML, or, in the words of Egyedi and
Loeffen [4], XML was “grafted” onto SGML. It thus has a clearly identifiable
direct historical predecessor. The history of SGML has been documented several
times by its “father,” Charles Goldfarb, for example in Appendix A of The SGML
Handbook, “A Brief History of the Development of SGML” [8]. SGML is an evolu-
tion of GML, a set of macros for IBM’s SCRIPT formatter (itself modeled on Jerry
Saltzer’s RUNOFF) inspired by the idea of generic coding, which emerged in the
late 1960s. Generic coding describes the idea of marking up text elements for their
function (e.g., “heading”) rather than their appearance (e.g., “Helvetica Bold
14/16, centered”). Generic coding thus introduced an abstraction and advanced
the separation of content and form. Invented around the same time, Stanley Rice’s
text format models [21] can be considered the counterpart of generic coding in that
it permits designers to systematically map these abstract structures to concrete
formatting.7 Taking these ideas together, one could thus mark up text as “head-
ing” and then independently specify that headings are to be mapped to the
model “LDa” (14-point sans serif bold) for one application or “LBd” (12-point text
bold italic) for another—or the information “heading” could be used for the pur-
pose of information retrieval. It is not hard to see that these ideas were very
appealing for applications such as legal publishing, where highly structured texts
are to be formatted in various ways for print and ideally also made available in
electronic form, and thus also for IBM [7].

Goldfarb then went on to lead the development and standardization of GML
into SGML, published as an international standard in 1986 [10]. In “The Roots of
SGML—A Personal Recollection,”8 he writes:

7 In fact, Goldfarb has stated that “Stanley Rice, then a New York book designer and now a California
publishing consultant, provided my original inspiration for GML.” [7]
8 Charles F. Goldfarb, “The Roots of SGML—A Personal Recollection [http://www.sgmlsource.com/
history/roots.htm]”

History and the Future of Markup

325

http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm

After the completion of GML, I continued my research on document structures,
creating additional concepts, such as short references, link processes, and concur-
rent document types, that were not part of GML. By far the most important of
these was the concept of a validating parser that could read a document type defi-
nition and check the accuracy of markup, without going to the expense of actually
processing a document. At that point SGML was born – although it still had a lot
of growing up to do.

The history of XML obviously does not begin with the publication of the W3C
XML 1.0 Recommendation in 1998, nor with the creation of the SGML Editorial
Review Board (ERB) by the W3C, which developed it, but the Web rather repre-
sented an incentive to revisit earlier proposals for simplifying SGML, such as
Sperberg-McQueen’s “Poor-Folks SGML”9 or Bos’s “SGML-Lite”10—or, as DeRose
put it, “XML stands within a long tradition of SGML simplification efforts” [3].
From today’s perspective, this historical development appears completely logical,
as it follows a familiar narrative: from humble beginnings to great success. How-
ever, it is important to recognize that this well-known narrative is just one of
many possible narratives. It mentions neither alternative approaches nor criti-
cism, nor failures. The Office Document Architecture (ODA, ISO 8613) [12] is all
but forgotten today, but it is one example of a quite different contemporaneous
approach to more or less the same goals as SGML.11 Criticism of the very idea of
embedded markup is far from new either; for example, Raymond et al. claimed in
1993 that since “the formal properties of document management systems should
be based on mathematical models, markup is unlikely to provide a satisfactory
basis for document management systems” [19]. Robin Cover has called this report
“a reminder that SGML has had significant intelligent detractors from the begin-
ning.”12 In fact, many of these lines of criticism continue until today.

4. Some Observations on SGML
At this point we would like to point out some historically interesting observations
that—while far from being obscure—seem to be less often discussed than, for

9 Michael Sperberg-McQueen, “PSGML: Poor-Folks SGML: A Subset of SGML for Use in Distributed
Applications [http://www.tei-c.org/Vault/ED/edw36.gml],” Document TEI ED W 36, October 8, 1992.
10 Bert Bos, “‘SGML-Lite’ – an easy to parse subset of SGML [https:// www.w3.org/ People/ Bos/
Stylesheets/SGML-Lite.html],” July 4, 1995.
11 The Wikipedia article Open Document Architecture [https:// en.wikipedia.org/ wiki/
Open_Document_Architecture] (Open Document Architecture is the name used by ITU for their version
of the otherwise identical standard) states: “It would be improper to call ODA anything but a failure,
but its spirit clearly influenced latter-day document formats that were successful in gaining support
from many document software developers and users. These include the already-mentioned HTML
and CSS as well as XML and XSL leading up to OpenDocument and Office Open XML.” Given the
cleavage between SGML and ODA approaches and communities [15], we find this statement rather
dubious without further support.
12 http://xml.coverpages.org/markup-recon.html

History and the Future of Markup

326

http://www.tei-c.org/Vault/ED/edw36.gml
http://www.tei-c.org/Vault/ED/edw36.gml
http://www.tei-c.org/Vault/ED/edw36.gml
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://en.wikipedia.org/wiki/Open_Document_Architecture
https://en.wikipedia.org/wiki/Open_Document_Architecture
https://en.wikipedia.org/wiki/Open_Document_Architecture
http://xml.coverpages.org/markup-recon.html

example, the verbosity of the Concrete Reference Syntax (which is the only syntax
for XML) or the problem of overlapping markup.

SGML is an extremely complex standard, and, as DeRose has remarked, the
“list of SGML complexities that do not add substantial value is quite long” [3].
Some of these complexites are easy to explain historically. One example is
markup minimization, which does not only include facilities for omitting start
and end tags, but also data tags, text that functions both as content and as
markup:13 these features were motivated by the desire to minimize the amount of
typing necessary when creating SGML documents with a simple text editor.
Another example is the character set description in the SGML declaration, necessita-
ted by the diversity of character sets and encodings in use at the time.

The reasons for other complexities are, however, less clear. For example,
despite SGML’s roots in a commercial product and extensive experience with it,
many aspects necessary for interoperable implementations were left undefined,
such as the resolution of public identifiers. Similarly, SGML does hardly say any-
thing about documents may be processed apart from validation, in particular
how they could be formatted for display or transformed for an information
retrieval system. Macleod et al. criticized this in 1992 as follows:

SGML is a passive standard. That is, it provides mechanisms through which
descriptive markup to be applied to documents but says nothing about how these
documents are to be processed. The SGML standard refers frequently to the
“application” but includes no clean mechanism for attaching applications to
SGML parsers. [14]

In fact, formatting seems to have been hardly a concern, as there is little in the
standard related to formatting SGML documents or for interfacing with a format-
ter, and the facilities that are available—namely, link process definitions (LPD)—
are not only weak, but also extremly complex, in particular in relation to what
one can accomplish with them. In the commentary to Appendix D of the stand-
ard, entitled “LINK in a Nutshell,” Goldfarb himself notes that “the problem is
not so much putting LINK in a nutshell as keeping it there” [8]. This is well
known—also because most of these features were removed from XML—but the
question is why so much effort was expanded that quickly turned out to be of
little use.

Another observation is that the SGML standard is strangely detached from
computer science terminology and concepts that were already well-established at
the time when the work on it started (between 1978 and 1980). Some of this is
related to terminology, such as the use of the term parser: Barron noted in 1989
that the term parser is “firmly established in the SGML community” (in fact, it is

13 In the SGML Handbook, Goldfarb calls data tags “to some extent an accident of history” and
despite having been largely supplanted by short references, “still quite complex for both user and
implementer” [8].

History and the Future of Markup

327

defined and used by the standard), whereas “a computer scientist would recog-
nise the SGML processor as a parser generator or compiler-compiler which takes
a formal specification of a language (the DTD) and generates a parser for that lan-
guage, which in turn is used to process the user’s document” [1].

Some problems are more serious; DeRose points out that “since SGML was
developed with a publishing viewpoint largely divorced from computer science
and formal language theory, it made some choices that led to bizarre consequen-
ces for implementers and users.” [3] Kaelbling noted in 1990:

Since SGML is a language intended for computer-based systems, it is reasonable
(in the absence of convincing argument to the contrary) that it should follow
established conventions within the realm of computer science. By following accep-
ted methods of notation and structural configuration, languages can be processed
by existing tools following well-understood theories and techniques, thus offering
considerable savings to development efforts. These savings are realized by auto-
matically performing tedious, error-prone calculations correctly and by checking
and clarifying the formal descriptions of the languages. [13]

In their 1993 review of SGML, Nordin et al. made a similar statement:

From a software engineering viewpoint, it would make sense to use whatever tools
are available to build SGML-based software. It is therefore of some interest to make
sure that a standard does not inadvertently complicate the product development
process.

As specified, SGML does not cleanly map to either LL(1) or LALR(1)-type
grammars. This has made it difficult to build SGML applications as the commonly
used implementation tools have been difficult to apply. [16]

Another formulation of this criticism: “It is not possible to construct a conforming
SGML parser using well known compiler construction tools such a Lex and Yacc,
since the language is context sensitive.” [18] The demand that the “specification
of a standard should reflect the state of the art” and that to this end, “the gram-
mar specifying SGML should be rewritten to allow for automatic processing by
common tools and techniques” [13]] seems altogether reasonable. Nordin et al.
[16]] refer to Kaelbling [13] as well as further authors to underline this point; they
also point to dissenting opinions (including Goldfarb’s). This is another case of a
problem that is well known, but again the question is: why? We suspect that the
documents referenced by Nordin may be difficult to obtain now, but they could
provide valuable insights on the rather striking fact that the editors of SGML, an
international standard, were either unaware of or chose to ignore both research
and proven practice in a relevant field.

A related observation is that even though it was clear to the editors of SGML
that an SGML document describes a tree, SGML almost exclusively focused on
the syntax. Goldfarb noted:

History and the Future of Markup

328

SGML can represent documents of arbitrary structure. It does so by modeling
them as tree structures with additional connections between the nodes. This tech-
nique works well in practice because most conventional documents ar in fact tree
structures, and because tree structures can easily be flattened out for representa-
tion as character sequences.

Except for the terminal nodes, which are “data”, each node in an SGML docu-
ment tree is the root of a subtree, called an “element”. The descendants of a node
are the “content” of that element. [8]

Despite that fact that parsing SGML documents shares many commonalities with
parsing programming language code—and this is also mentioned in the standard
—the parallels between the tree represented by an SGML document and the
abstract syntax tree (AST) produced by a parser for a programming language
seem not to have been apparent for the longest time. Considering an SGML or
XML document as a serialization of a tree that exists independently of the con-
crete serialization (rather than the other way round) is a very powerful notion,
especially in conjunction with a standard API to manipulate the tree.

In hindsight this appears obvious, but historically it seems to be a realization
that was apparently not obvious at all. This does not mean that nobody had
thought of it. For example, Furuta and Stotts already noted in 1988 that one of the
most important problems to be solved in document processing is “to determine
how composite document objects may be converted from one structure to
another” [6]] and presented a system for transforming document trees based on
H-graphs [17], explictly mentioning SGML as a possible application. However,
only with the Document Object Model (DOM) and XPath the idea that an XML
document describes a tree that is independent of its serialization, and on which
programs can operate, took hold and eventually became explicit.14 It is this
notion that we think is the real foundation of today’s XML ecosystem.15

5. The Future of Markup
Price noted in 1998 that the “historical origins of SGML as a technique for adding
marks to texts has left a legacy of complexities and difficulties which hinder its
wide acceptance.” [18] This was proven true by XML: it is fascinating how
quickly it was adopted and how an extremely rich ecosystem developed once
many of these complexities had been discarded.

The early adoption by US Department of Defense and other government agen-
cies (even before the publication of the final standard) was probably the decisive

14 Conceptually this notion obviously already existed in DSSSL [11], but it remains for the most part
implicit. For example, the standard talks about “transforming one or more SGML documents into zero
or more other SGML documents” (page 9), i.e., it is the serialized documents that are considered pri-
mary.
15 And which allows XQuery, for example, to process JSON just like XML.

History and the Future of Markup

329

for SGML to survive despite all of its problems. Looking back, it seems that a
closer link of SGML to computer science research would have made it much eas-
ier to create tools and thus promoted a wider adoption. It may also have permit-
ted people to realize earlier that the abstract tree structure is more important than
the concrete syntax;16 this would have greatly reduced the importance attributed
to syntax.

It is also interesting to see that markup minimization—arguably the most syn-
tax-focused feature of SGML there is—was a central concern. Due to the problems
it created, it was completely rejected by XML—the XML Recommendation
famously states as design goal 10: “Terseness in XML markup is of minimal
importance.”17 Apart from the necessity to abandon markup minimization to
make DTD-less parsing possible, one could say that the focus on markup syntax
had become obsolete by the time it was realized that it is the abstract tree that is
important. However, it probably also caused the backlash that we can now
observe in the rise of JSON, Markdown, and similar formats that are essentially
minimized HTML, as well as the reintroduction of minimization into HTML5.

Already in 1994, a critic pointed out that “SGML relies on technology from the
1970s, when almost all computers were mainframes, almost all data was textual,
and sharing data—much less applications—between hardware platforms was
almost unheard of” [9]; Price noted in 1998 that “SGML 86 reflects thinking from
the 1960’s and 1970’s. Texts were not supposed to vary while being read” [18]. In
the last 20 years both the types of content and users’ interaction with it have sig-
nificantly changed: at least on the Web the assumption that a document is static
data that is parsed and rendered in what essentially amounts to batch mode is no
longer true. This becomes evident in the HTML5 specification:18

This specification defines an abstract language for describing documents and
applications, and some APIs for interacting with in-memory representations of
resources that use this language.

The in-memory representation is known as “DOM HTML”, or “the DOM”
for short.

There are various concrete syntaxes that can be used to transmit resources that
use this abstract language, two of which are defined in this specification.

16 In this context, Eliot Kimbers reflection in “Monastic SGML: 20 Years On [http:// drmacros-xml-
rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html]” are interesting: “As I further developed
my understanding of abstractions of data as distinct from their syntactic representations, I realized
that the syntax to a large degree doesn’t matter, and that our concerns were somewhat unwarranted
because once you parse the SGML initially, you have a normalized abstract representation that largely
transcends the syntax. If you can then store and manage the content in terms of the abstraction, the
original syntax doesn’t matter too much.”
17 Extensible Markup Language (XML) 1.0 (Fifth Edition) [https://www.w3.org/ TR/ REC-xml/ # sec-
origin-goals]
18 HTML Standard [https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml]

History and the Future of Markup

330

http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml
https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml

These three sentences alone reflect significant conceptual differences to SGML,
that are not evident from the seemingly conservative syntax. These include the
formulation “documents and applications,” the central role the DOM and the
APIs to manipulate it, and the decoupling of the DOM from a concrete syntax.
When XML was introduced, a frequently mentioned advantage over HTML was
the possibility for users to create their own elements—the semantics of which
would have to be defined by some application. HTML5 introduces the notion of
custom elements,19 which superficially seems equivalent. In fact, however, both the
elements and their behavior are specified programmatically (i.e., in JavaScript)
through the DOM API by subclassing HTMLElement (or a subclass thereof). This is
a very different approach: first, because the element is not defined on the markup
level but on that of the DOM, and second, because it also directly associates
semantics with the element.

While HTML documents have for quite some time been a mix of HTML and
JavaScript code operating on the DOM, custom elements represent a significant
conceptual shift: HTML documents now have definitely become programs, with
markup just serving as “DOM literal” or a kind of “here-document” for Java-
Script. Is this the future of markup? In any case, this is the direction HTML is tak-
ing.

6. Conclusion
XML has come a long way. Its development and that of its ecosystem into what
we have today is the result of over 50 years of history of document processing.
Some choices were made consciously, others less so, and some features can only
be described as historical accidents. We must look back in order to understand
what lies ahead of us; taking a historical perspective can help to uncover hidden
assumptions, implicit notions, critical decisions, misunderstandings, and so on,
which still shape our understanding today. For Despite their similar appearances,
HTML5 is conceptually quite different from SGML and XML. On the other hand,
despite its different appearance, Markdown is very close to the traditional pro-
cessing model of SGML. Its growing popularity in more and more domains
requires more and more extensions, but it lacks a well-defined extension mecha-
nism. The CommonMark20 initiative aims to define and standardize a single com-
mon vocabulary, whereas one of the fundamental assumptions of SGML and
XML is that this is not possible.

Sperberg-McQueen said in 1992 that “part of its [SGML’s] accomplishment is
that by solving one set of problems, it has exposed a whole new set of prob-
lems.”21 This is particularly true in a historical perspective. The point of this
paper is to encourage reflection on and discussion of the history of markup tech-

19 HTML Standard [https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements]
20 https://commonmark.org/

History and the Future of Markup

331

https://commonmark.org/
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://commonmark.org/

nologies to advance the state of the art. In order to recognize opportunities and
limitations of new technologies it is necessary to be able to compare it to previous
technologies; at the same time, the design of new markup languages (understood
in a wide sense) is, like that of programming languages, “always subtly affected
by unconscious biases and by historical precedent” [2]; even approaches that aim
to be “radically new” define themselves with respect to what has been there
before. Those who cannot remember the past are condemned to repeat it.

References
[1] David Barron 1989. Why use SGML. Electronic Publishing. 2, 1, 3–24.
[2] Michael F. Cowlishaw 1984. The design of the REXX language. IBM Systems

Journal. 23, 4, 326–335. doi:10.1147/sj.234.0326.
[3] Steven J. DeRose 1999. XML and the TEI. Computers and the Humanities. 33, 1–2,

11–30.
[4] Tineke M. Egyedi and Arjan Loeffen 2002. Succession in standardization:

Grafting XML onto SGML. Computer Standards & Interfaces. 24, 4, 279–290.
doi:10.1016/s0920-5489(02)00006-5.

[5] Richard Furuta 1992. Important papers in the history of document preparation
systems: Basic sources. Electronic Publishing. 5, 1, 19–44.

[6] Richard Furuta and P. David Stotts 1988. Specifying structured document
transformations. Document Manipulation and Typography. Proceedings of the
International Conference. Cambridge University Press, Cambridge, 109–120.

[7] Charles F. Goldfarb 1997. SGML: The reason why and the first published hint.
Journal of the American Society for Information Science. 48, 7, 656–661.
doi:10.1002/(sici)1097-4571(199707)48:7%3C656::aid-asi13%3E3.0.co;2-t.

[8] Charles F. Goldfarb 1990. The SGML handbook. Oxford University Press,
Oxford, UK.

[9] George F. Hayhoe 1994. Strategy or SNAFU? The virtues and vulnerabilities of
SGML. IPCC 94 proceedings. Scaling new heights in technical communication.
IEEE, New York, NY, USA, 378–379.

[10] International Organization for Standardization 1986. ISO 8879:1986.
Information processing — Text and office systems — Standard Generalized Markup
Language (SGML). Geneva.

21 Michael Sperberg-McQueen, “Back to the Frontiers and Edges. Closing Remarks at SGML ’92: the
quiet revolution [http://www.w3.org/People/cmsmcq/1992/edw31.html], October 29, 1992.

History and the Future of Markup

332

http://www.w3.org/People/cmsmcq/1992/edw31.html
http://www.w3.org/People/cmsmcq/1992/edw31.html
http://www.w3.org/People/cmsmcq/1992/edw31.html

[11] International Organization for Standardization 1996. ISO/IEC 10179:1996.
Information technology — Processing languages — Document Style Semantics and
Specification Language (DSSSL). Geneva.

[12] Vania Joloboff 1986. Trends and standards in document representation. Text
Processing and Document Manipulation. Proceedings of the International
Conference. British Computer Society; Cambridge University Press,
Cambridge, 107–124.

[13] Michael Kaelbling 1990. On improving SGML. Electronic Publishing. 3, 2, 93–
98.

[14] Ian A. Macleod, Brent Nordin, David T. Barnard, and Doug Hamilton 1992. A
framework for developing SGML applications. Proceedings of Electronic
Publishing 1992 (EP 92). Cambridge University Press, Cambridge, 53–63.

[15] Charles K. Nicholas and Lawrence A. Welsch 1992. On the interchangeability
of SGML and ODA. Electronic Publishing. 5, 3, 105–130.

[16] Brent Nordin, David T. Barnard, and Ian A. Macleod 1993. A review of the
Standard Generalized Markup Language (SGML). Computer Standards &
Interfaces. 15, 1, 5–19. doi:10.1016/0920-5489(93)90024-l.

[17] Terrence W. Pratt 1983. Formal specification of software using H-graph
semantics. Graph-grammars and their application to computer science. H. Ehrig, M.
Nagl, and G. Rozenberg, eds. Springer. 314–332.

[18] Roger Price 1998. Beyond SGML. Proceedings of the Third ACM Conference on
Digital Libraries (DL ’98). ACM Press, New York, NY, USA, 172–181.

[19] Darrell Raymond, Frank Tompa, and Derrick Wood 1993. Markup
reconsidered. Technical Report #356. Department of Computer Science, The
University of Western Ontario.

[20] Marcus Reichardt 2017. The HTML 5.1 DTD. Proceedings of XML Prague 2017.
University of Economics, Prague, 101–118.

[21] Stanley Rice 1978. Book design: Text format models. Bowker, New York, NY,
USA.

History and the Future of Markup

333

334

Splitting XML Documents at Milestone
Elements Using the XSLT Upward

Projection Method
Gerrit Imsieke

le-tex publishing services GmbH
<gerrit.imsieke@le-tex.de>

Abstract

Creating chunks out of a larger XML tree is easy if the splitting points cor-
respond to natural structural units, such as chapters of a book. When the
splitting points are buried at varying levels in deeply nested markup, how-
ever, the task becomes more difficult.

Examples for this problem include: Splitting mostly flat HTML at head-
ings (that are sometimes wrapped in divs or sections); splitting para-
graphs at line breaks (even when some highlighting markup stretches across
the line breaks); transforming tabulated lines (that also may contain markup
around the tabs) into tables proper; splitting chapters and sections at page
breaks, etc.

The presented solution does this quite elegantly using XSLT 2.0 group-
ing and tunneled parameters.

It will be discussed how the performance of this method scales with
input size, the number of split points, or chunk length; whether xsl:evaluate
can be used to create a generic, configurable splitting method and whether
the method works with streaming XSLT processing.

An interactive visualization of how this method works will be included
in the presentation.

Keywords: XSLT, Grouping, XML Splitting, XML Chunking, Stream-
ing, Publishing, Mixed Content

1. Introduction

From time to time people describe splitting/chunking problems on xsl-list and ask
for solutions, and the author would reply with a description how he tackles this
using the approach presented here. However, the abstract description has never
led to people actually implementing the solution, therefore the author sometimes
created the solutions for them. (He once even received a valuable bottle of scotch
for it out of gratitude.)

335

Although this technique is just a bit of XSLT that needs to be adapted to each
concrete situation, it is probably worth the while to make this solution more
broadly known in the XML/XSLT community under its suggested name, “split-
ting by upward projection”.

It is also interesting to discuss the related concept of a “scope” for operations
such as whitespace normalization or splitting at line breaks. In typical document-
centric markup languages such as DocBook, TEI, or JATS, a new scope is estab-
lished by footnotes, table cells, or list items. A scope in this sense prevents, for
example, a paragraph to be split erroneously at a line break that is part of an
embedded footnote.

In addition, it will be discussed whether the XSLT 3.0 instruction
xsl:evaluate can be used for making this splitting functionality more generic
and which performance implications this might have.
Splitting large documents at arbitrarily deeply nested nodes is a scenario that

has led people to wonder whether the upward projection method lends itself to
streaming XSLT processing. It will be discussed whether this is possible at all.

2. Description
The upward projection method consists of the following XSLT matching tem-
plates and grouping instructions:

• Match a splitting root element.
For chunking at headings in HTML or at page breaks in TEI, this is typi-

cally the body element. For splittings at line breaks, this is typically a p ele-
ment.

• Select all leaf nodes.
Typically, select="node()[empty(node())]", but it can get more com-

plex. For example, footnotes in a paragraph must be treated as an atomic leaf
node. Otherwise, they will get split into two when they contain a line break.

• Group the leaf nodes.
In the case of page breaks in TEI, this is done group-starting-with="pb".

It can get more convoluted though. In the case of two-column-start and two-
column-end markers (an example will be given below, Section 3.2), there is a
for-each-group/ @group-ending-with nested within the for-each-group/
@group-starting-with.

• For each group, process the splitting root in a dedicated XSLT mode (for ex.,
split) with the tunneled parameter restricted-to set to current-group()/
ancestor-or-self::node().

This upward-looking selection is where this method’s name stems from.

Splitting XML Documents at Milestone Elements

336

• A “conditional identity template” that matches any node in this split mode
will pick up the tunneled parameter and check whether the matching node is
among the $restricted-to nodes.

If it is contained in $restricted-to, it will be reproduced. Otherwise,
nothing will be written to the result tree.

This method was first introduced by the author in 2010, as documented on an
internal Wiki page (Figure 1). It has been used in many chunking tasks since then,
but it has not found its way into an XSLT cookbook and there has not been any
systematic performance analysis yet.

3. Examples
Upward projection is used in many splitting scenarios. Three of them have been
presented by the author at XML Prague 2018 [1].

3.1. Split at Page Break
The solution was sketched in response to a question that was raised by Geert Bor-
mans on Mulberry Technologies’ XSLT mailing list [2].

In this example, we will use a TEI document that contains Martin Luther’s
1522 translation of the New Testament into German [3]. Figure 2 shows part of
the TEI code around a page break, including the breadcrumb path to this ele-
ment.

The manuscript contains 452 pb elements at varying depths below front and
body. The pb location paths and their frequencies are as follows:

<pbs>
 <pb path="/TEI/text/body/div/div/p/pb" count="238"/>
 <pb path="/TEI/text/body/div/div/pb" count="91"/>
 <pb path="/TEI/text/body/pb" count="52"/>
 <pb path="/TEI/text/body/div/pb" count="47"/>
 <pb path="/TEI/text/front/pb" count="11"/>
 <pb path="/TEI/text/body/div/p/pb" count="10"/>
 <pb path="/TEI/text/front/div/p/pb" count="3"/>
</pbs>

In terms of text length, chunk count, and varying splitting point depths, this
document serves as a presumably well-suited source for performance measure-
ments in Section 4.

The XQuery script to generate this report, and all other programs and interac-
tive demos of this paper/presentation, can be found at [4].

Initial Attempt
Here’s a step-by-step guide to set it up. In order to be broadly applicable, also for
people who don’t use an XSLT 3 processor yet, we require that the solution work

Splitting XML Documents at Milestone Elements

337

with XSLT 2.0 and 3.0. We will later see modifications of this solution that require
3.0 features.

We assume that the document is processed in #default mode and that xpath-
default-namespace="http://www.tei-c.org/ns/1.0".

Figure 1. A company-internal Wiki page that describes the upward projection
method

Splitting XML Documents at Milestone Elements

338

As soon as the transformation encounters a splitting root element, it will con-
tinue in split mode. In this mode, the tunneled parameter $restricted-to will
determine whether the next-matching template, which is the identity template,
will copy the current node to the result tree.

<xsl:template match="node() | @*" mode="#default split">
 <xsl:copy>
 <xsl:apply-templates select="@*, node()" mode="#current"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="node()" mode="split" priority="1">
 <xsl:param name="restricted-to" as="node()*" tunnel="yes"/>
 <xsl:if test="exists(. intersect $restricted-to)">
 <xsl:next-match/>
 </xsl:if>
</xsl:template>

The splitting root element, /TEI/text or /TEI, will be transformed in split mode
for each chunk. If there are 12 chunks, the splitting root will be transformed 12
times. What goes into a chunk is determined by the $restricted-to tunneled
parameter. It holds all nodes that go into a given chunk.

How do we calculate $restricted-to for each chunk? A chunk consists of all
nodes below the splitting root and above the chunk’s leaf nodes, plus the splitting
root and the leaf nodes. (Leaf nodes are those without children, for example, text
nodes. But see the note below.) The milestone element at which the split is about
to occur must always be one of the leaf nodes, too.

Figure 2. TEI markup of Luther’s New Testament translation

Splitting XML Documents at Milestone Elements

339

Note: Extended Leaf Node Definition
For splitting purposes, “leaf nodes” are not necessarily nodes without chil-
dren.

In other splitting scenarios where the splitting point is not an empty ele-
ment, for example a footnote in a phrase in a para that is supposed to
split the para, the splitting points must always be part of the “leaf nodes”
even if they are not empty milestone elements. In such a scenario the XPath
expression to select all leaf nodes has to be changed from
descendant::node()[empty(node())] to, for example,

descendant::node()[exists(self::footnote)
 or empty(ancestor::footnote | node())]

or, in XPath 3.1,

outermost(descendant::node()[not(has-children())] |
 descendant::footnote)

In yet other scenarios where splitting should be performed at substrings in
text nodes, milestone elements have to be created first, using xsl:analyze-
string or similar methods, in a preprocessing pass.

So we will use xsl:for-each-group[@group-starting-with] with all leaf nodes
as the grouping population and the splitting points as the start nodes in order to
determine the leaf nodes for each chunk. (@group-ending-with is equally possi-
ble; in the case of page breaks in TEI, the pb element may hold attributes that per-
tain to the page that follows the break, therefore @group-starting-with seems
more adequate here.)

Once we have determined the leaf nodes of a future chunk, the splitting root
and the nodes in between (vertically) can be selected by looking up the ancestor
axis from the leaf nodes and intersecting it with the descendants of the splitting
root element.

The grouping template looks like this:

<xsl:template match="/TEI" mode="#default">
 <xsl:variable name="leaves" as="node()+"
 select="descendant::node()[empty(node())]"/>
 <xsl:for-each-group select="$leaves" group-starting-with="pb[@facs]">
 <xsl:variable name="restriction" as="node()+"
 select="current-group()/ancestor-or-self::node()"/>
 <xsl:apply-templates select="/TEI" mode="split">
 <xsl:with-param name="restricted-to" tunnel="yes"
 select="$restriction"/>
 </xsl:apply-templates>
 </xsl:for-each-group>
</xsl:template>

Splitting XML Documents at Milestone Elements

340

As said above, it does not matter much whether we use /TEI or /TEI/text in the
template’s @match attribute. The $leaves and $restriction variables would hold
almost the same nodes in each case, and the chunks will be generated by process-
ing /TEI in any case.

We will modify the template slightly in order to write each chunk into a new
file of its own:
<xsl:template match="/TEI" mode="#default">
 <xsl:variable name="leaves" as="node()+"
 select="descendant::node()[empty(node())]"/>
 <xsl:for-each-group select="$leaves" group-starting-with="pb[@facs]">
 <xsl:variable name="restriction" as="node()+"
 select="current-group()/ancestor-or-self::node()
 union /TEI/teiHeader"/>
 <xsl:variable name="out-name" as="xs:string"
 select="concat('out/pb', substring(@facs, 2), '.xml')"/>
 <xsl:result-document href="{$out-name}">
 <xsl:apply-templates select="/TEI" mode="split">
 <xsl:with-param name="restricted-to" tunnel="yes"
 select="$restriction"/>
 </xsl:apply-templates>
 </xsl:result-document>
 </xsl:for-each-group>
</xsl:template>
The resulting file for the splitting point depicted in Figure 2 looks (almost) like in
Figure 3:

“Almost” means that in the actual results, teiHeader will be missing because
it is not among the ancestors of the leaf nodes (except for the first chunk), there-
fore the conditional identity template will not write anything to the result tree.
The situation is similar to splitting /html: The head element will be missing if not
taken care for. We can address this by adding another template in split mode
with a higher priority than the conditional identity template:

<xsl:template match="teiHeader" mode="split" priority="1.5">
 <xsl:copy-of select="."/>
</xsl:template>

We will return to this example when analyzing and improving the performance
of this solution in Section 4 and when putting it into an xsl:package as a generic,
configurable splitting template (Section 5).

Splitting XML Documents at Milestone Elements

341

3.2. Put Two-Column Regions into Separate FO Blocks

In a post to xsl-list quoted in [5], Eliot Kimber asked how to transform such a
structure:

<fo:block span="all">
 <fo:block>
 <fo:block>
 <fo:block>
 <two-column-start/>
 </fo:block>
 ...
 <two-column-end/>
 </fo:block>
 <fo:block>...
 </fo:block>
</fo:block>

into something like this:

<fo:block span="all">
 <!-- Stuff before two-column start -->
</fo:block>
<fo:block span="none">
 <!-- Stuff up to <two-column-end/> marker -->
</fo:block>

Figure 3. TEI markup corresponding to a single page of Luther’s New
Testament translation

Splitting XML Documents at Milestone Elements

342

<fo:block span="all">
 <!-- Stuff after <two-column-end> marker -->
</fo:block>

He assumed that there “must be a general pattern for solving this kind of trans-
formation pattern” and he assumed that it involves grouping. The approach pre-
sented in this paper seems to be the solution he was looking for, and he used it
successfully (with modification though) to tackle the issue.

The core template involves a nested @group-starting-with/@group-ending-
with construct:

<xsl:template match="fo:block[empty(ancestor::fo:block)]" mode="#default">
 <xsl:variable name="block-root" as="element(fo:block)" select="."/>
 <xsl:for-each-group select="descendant::node()[empty(node())]"
 group-starting-with="two-column-start">
 <xsl:for-each-group select="current-group()"
 group-ending-with="two-column-end">
 <xsl:apply-templates select="$block-root" mode="split">
 <xsl:with-param name="restricted-to" as="node()*"
 select="current-group()/ancestor-or-self::node()" tunnel="yes"/>
 <xsl:with-param name="two-col-start" as="xs:boolean" tunnel="yes"
 select="exists(self::two-column-start)"/>
 <xsl:with-param name="pos" as="xs:integer" tunnel="yes"
 select="position()"/>
 </xsl:apply-templates>
 </xsl:for-each-group>
 </xsl:for-each-group>
</xsl:template>
An additional parameter $two-col-start is passed that will inform the process-
ing template whether the current group is a two-column area which necessitates a
span="none" on the outermost fo:block, which is also the splitting root in this
scenario.

The template that processes this outermost block in split mode looks as fol-
lows:

<xsl:template match="fo:block[empty(ancestor::fo:block)]" mode="split">
 <xsl:param name="restricted-to" tunnel="yes" as="node()*"/>
 <xsl:param name="two-col-start" tunnel="yes" as="xs:boolean"/>
 <xsl:copy>
 <xsl:apply-templates select="@*" mode="#current"/>
 <xsl:if test="$two-col-start">
 <xsl:attribute name="span" select="'none'"/>
 </xsl:if>
 <xsl:apply-templates mode="#current"/>
 </xsl:copy>
</xsl:template>

Splitting XML Documents at Milestone Elements

343

The actual FO problem was more complicated than sketched on the mailing list.
Since some structures that may carry IDs will be duplicated within the same
document, some ID fixup was necessary. Eliot mentions some more issues in his
presentation at DITA OT day 2018 [6].

An animated demonstration of this processing using Saxon-JS is included in
[4]. It will hopefully clarify or at least illustrate how this downward selection /
grouping / upward projection / downward processing approach works.

3.3. Split at Line Breaks, Excluding Footnotes, List Items, etc.

For the next example we will look at content in the DocBook namespace. Doc-
Book, like other XML vocabularies, features paragraphs that are indirectly nested
in paragraphs – because they are contained in a list, a table, a blockquote, a foot-
note, or other things that are allowed to be contained in paragraphs. Now if we
want to split a paragraph at line breaks, and if this paragraph also contains a list
whose list items contain paragraphs with line breaks, only line breaks that belong
to the paragraph itself should be considered, not line breaks that belong to the list
items. Instead, the list item paragraphs should be split individually at their own
line breaks.

You might argue that there is no such thing as a line break in DocBook. Well,
there is. Sometimes people who want to encode line breaks work around this lim-
itation by using something like <phrase role="br"/>, or in the DocBook Pub-
lishers derivative Hub XML [7], we allowed a br element proper in order to be
able to better represent content from word processors and DTP programs.

Let’s look at an example in which paragraphs with line breaks are considered
as stanzas of a poem. DocBook Publishers knows a linegroup element that each
paragraph is supposed to be transformed into. The split parts will be wrapped in
line elements. Since line breaks are sometimes buried in other elements, such as
emphasis or phrase, it is generally not feasible to do a plain grouping of all para/
node()s.

As stated above, naïve upward projection, on the other hand, will split a para-
graph at a line break in a contained list item or footnote, distributing the footnote
between two lines that shouldn’t have been separated in the first place. This is
where “scoping” comes into play. A new scope is established in DocBook when-
ever there is an element that may be embedded in a para and that may itself con-
tain paras.

We first introduce a variable that holds the local names of scope-establishing
DocBook elements:

<xsl:variable name="dbk:scope-establishing-elements"
 as="xs:string+" select="('annotation',
 'entry',
 'blockquote',

Splitting XML Documents at Milestone Elements

344

 'figure',
 'footnote',
 'indexterm',
 'listitem',
 'table',
 'sidebar')"/>

(Yes, authors and typesetters manage to put line breaks into index terms, too…)
Then we introduce a function dbk:same-scope() that answers for a given

node (text node, emphasis element, br element, …) and for a given paragraph
whether both are in the same scope. To be precise: The function looks at the
node’s nearest scope-establishing ancestor element. Then it checks whether this
scope-establishing element is among the paragraph’s descendants. If it is, the
node and the paragraph are in different scopes. This is the case if, for example, a
footnote is in the way when looking upward from the node to the paragraph.

<xsl:function name="dbk:same-scope" as="xs:boolean">
 <xsl:param name="node" as="node()"/>
 <xsl:param name="para" as="element()"/>
 <xsl:sequence select="empty(
 $node/ancestor::*[local-name() = $dbk:scope-establishing-elements]
 [1]
 intersect $para/descendant::*
)"></xsl:sequence>
</xsl:function>

The transformation starts in mode dbk:br-to-line (a mode that reproduces most
of the document identically). When it encounters a para or simpara ($dbk:br-to-
line-element-names) element that contains br elements in the same scope, the
following template will match:

<xsl:template match="*[local-name() = $dbk:br-to-line-element-names]
 [
 .//br[
 dbk:same-scope(., current())
]
]" mode="dbk:br-to-line">
 <xsl:variable name="context" select="." as="element(*)" />
 <poetry><linegroup>
 <xsl:apply-templates select="@*" mode="#current"/>
 <xsl:for-each-group
 select="descendant::node()[
 local-name() = $dbk:scope-establishing-elements
 or (dbk:same-scope(., current()) and empty(node()))
]" group-starting-with="br">
 <xsl:apply-templates select="$context" mode="dbk:upward-project-br">
 <xsl:with-param name="restricted-to" tunnel="yes"

Splitting XML Documents at Milestone Elements

345

 select="current-group()/ancestor-or-self::node()"/>
 </xsl:apply-templates>
 </xsl:for-each-group>
 </linegroup></poetry>
</xsl:template>
This means that the scope-establishing elements will also be treated as leaf nodes.
When such an element is encountered in mode dbk:upward-project-br (the
mode that has the conditional identity template), it switches back to the original
dbk:br-to-line mode:

<xsl:template mode="dbk:upward-project-br"
 match="*[local-name() = $dbk:scope-establishing-elements]">
 <xsl:param name="restricted-to" as="node()+" tunnel="yes" />
 <xsl:if test="exists(. intersect $restricted-to)">
 <xsl:apply-templates select="." mode="dbk:br-to-line" />
 </xsl:if>
</xsl:template>

This way, the paragraphs in footnotes or list items will be subjected to the same
scope-aware splitting.

Given the following input:
<section xmlns="http://docbook.org/ns/docbook"
 version="5.1-variant le-tex_Hub-1.2">
 <title>DocBook Poetry</title>
 <para>Para without a line break.</para>
 <para>This is some sample text

 with line <emphasis>breaks,

 emphasis around line <phrase role="sc">breaks,

 and</phrase> a footnote</emphasis> with line breaks<footnote>
 <para>This footnote contains

 a line break.</para>
 </footnote>.<footnote>
 <para>This does not.</para>
 </footnote></para>
</section>

the stylesheet will create this output (modulo indentation):
<section xmlns="http://docbook.org/ns/docbook"
 version="5.1-variant le-tex_Hub-1.2">
 <title>DocBook Poetry</title>
 <para>Para without a line break.</para>
 <poetry>
 <linegroup>
 <line>This is some sample text</line>
 <line>with line <emphasis>breaks,</emphasis></line>
 <line><emphasis>emphasis around line

Splitting XML Documents at Milestone Elements

346

 <phrase role="sc">breaks,</phrase></emphasis></line>
 <line><emphasis><phrase role="sc">and</phrase> a
 footnote</emphasis> with line breaks<footnote>
 <poetry>
 <linegroup>
 <line>This footnote contains</line>
 <line>a line break.</line>
 </linegroup>
 </poetry>
 </footnote>.<footnote>
 <para>This does not.</para>
 </footnote></line>
 </linegroup>
 </poetry>
</section>

The complete stylesheet, including this sample input, is again at [4].

4. Performance
The author’s initial assumption was that the method scales roughly linearly with
the number of nodes and with the number of splitting points. This would result
in a roughly quadratic dependence on input length. However, measurements do
not corroborate this. The method seems to scale roughly linearly with input
length, but also roughly linearly with chunk size. The latter means that the fewer
splitting points there are for a given document size, the longer will the splitting
take.

Figure 4 shows the execution times for the TEI data from Section 3.1. The orig-
inal input was transformed with a variation of the chunker that accepts the target
page count as a parameter and then splits before the corresponding pb element. It
will write only the first chunk into a file.

“Constant chunk length” is not entirely correct. Of course there are variations
in string lengths and node count between the pages. The first 8 pages contain
almost no content which explains the slight outlier for 10 chunks (the leftmost
data point).

Note
All measurements have been carried out with Saxon EE 9.9.1.1 with -opt:9
optimization on an AMD PRO A12-9800B R7 CPU at 2.7 GHz on a 64-bit
Windows 10 operating system and a 64-bit Oracle Java 1.8.0_151 JVM. For
transformations that take less than 10 seconds to complete, average times
for 6 runs have been calculated using Saxon’s -repeat option. For longer-
running transformations (up to a minute), at least 3 runs have been aver-
aged. For processes that ran longer than a minute, at least two runs have
been averaged.

Splitting XML Documents at Milestone Elements

347

When creating the shortened documents with the modified upward projection
stylesheet, the author noticed that execution time would grow disproportionally
with the target page count, that is, with chunk size. Creating the 375-page docu-
ment took nearly 12 minutes.

Therefore the author created another test set series by repeatedly removing
every other pb element while keeping the rest of the document unchanged, until
there were only 4 page breaks left, spread evenly over the document. Figure 5
displays the measurements.

If execution times are displayed in relation to average chunk size (in terms of
the number of leaf nodes per chunk), the graph will enter an approximately linear
regime for large chunks, as seen in Figure 6.
Profiling the conversion runs for different chunk sizes revealed that this time

can be attributed almost exclusively to invocations of the conditional identity
template that receives the tunneled parameter $restricted-to. The total number
of invocations of this template did not change dramatically, from about 322,000
for 453 chunks down to roughly 126,000 for 58 chunks and 105,000 invocations
for 5 chunks. But the average time for this template increased from 0.039 ms
(453 chunks) to 3.174 ms (note that the times measured during profiling are larger
than normal, so the multiplied/added times do not exactly match the execution
times given above).

The measurements have been made with an important optimization already
in place. The tunneled parameter $restricted-to has been changed from

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

Constant Chunk Length

Chunks

E
xe

cu
tio

n
Ti

m
e

/ s

Figure 4. Execution times for roughly constant chunk sizes

Splitting XML Documents at Milestone Elements

348

sequence type node()+ to xs:string+ with the string values computed by
generate-id(). The conditional identity template has been changed accordingly:

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Constant Document Length

Chunks

E
xe

cu
tio

n
Ti

m
e

/ s

Figure 5. Execution times for constant document length

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

120

140

160

Constant Document Length

Chunk Size / Leaves/Chunk

E
xe

cu
tio

n
Ti

m
e

/ s

Figure 6. Execution times for constant document length (in relation to average
chunk size)

Splitting XML Documents at Milestone Elements

349

<xsl:template match="node()" mode="split" priority="1">
 <xsl:param name="restricted-to" as="xs:string+" tunnel="yes"/>
 <xsl:if test="generate-id() = $restricted-to">
 <xsl:next-match/>
 </xsl:if>
</xsl:template>

At least for Saxon 9.9, generate-id() lookups in a sequence of tens of thousands
of strings seems to perform about 20 times better than the previously used
exists(. intersect $restricted-to) approach.

The lookup time seems to grow linearly with sequence size, which explains
the linear growth for large chunk sizes. For smaller chunk sizes, the fact that the
conditional identity template had to be called more often (because some nodes
are visited multiple times: when creating each chunk) explains that the left part of
the graph shows larger execution times than an extrapolation of the linear part
would suggest. So the number of splitting points does have an effect, but it is a
less-than-linear effect.

It must be said that for larger depths at which the pb elements are buried,
slightly worse performance measurements may be expected (because more ele-
ments will be visited for each chunk). But the XPath distribution of the pbs in the
TEI sample document is probably quite typical, therefore the measurements can
be regarded as representative.

In addition, if the document were more fragmented in terms of the number of
leaf nodes, performance would deteriorate more dramatically, but again not
worse than proportional to the number of leaves per chunk.

5. Applicability of XSLT 3.0 Features: Dynamic XPath Evaluation,
Streaming

5.1. Streaming

There has been a brief discussion in 2014 about how this method is problematic
with streaming [8]. Although the processor is now much more mature, nothing
has changed with respect to the intrinsic lack of streamability of this method.
Quoting Michael Kay: “… the real problem is that the logic is going down to
descendants, then up to their ancestors, and then down again, and that's intrinsi-
cally not processing nodes in document order, which is a precondition for stream-
ing.”

And even if it were streamable, it would probably be ill-suited to process large
documents with a large number of leaf nodes because the performance, as dis-
cussed in the previous section, deteriorates proportionally to the number of leaf
nodes.

Splitting XML Documents at Milestone Elements

350

Nevertheless, one may still use the solution in non-streaming modes within
streaming scenarios. But chunking large documents must be left to other meth-
ods.

5.2. Dynamic XPath Evaluation

As a proof of concept, the author created a configurable chunker for group-
starting-with splittings as in the TEI pb scenario. The leaf selection XPath
expression, the splitting point matching pattern and another parameter (how to
name the resulting chunks) can be given as an XPath expression that will be
dynamically evaluated. In addition, a parameter can trigger whether the splitting
element should be kept or not. The complete XSLT package looks like this:
<xsl:package
 name="http://www.le-tex.de/XSLT/split"
 package-version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:split="http://www.le-tex.de/XSLT/split"
 exclude-result-prefixes="xs split"
 version="3.0">

 <xsl:mode name="split:split" visibility="private"/>
 <xsl:mode name="split:split-entrypoint" visibility="final"/>

 <xsl:template match="*" mode="split:split-entrypoint">
 <xsl:param name="leaves-exp" as="xs:string"
 select="'outermost(descendant::node()[not(has-children(.))])'"/>
 <xsl:param name="group-start-exp" as="xs:string"/>
 <xsl:param name="chunk-name-exp" as="xs:string"/>
 <xsl:param name="keep-splitting-node" as="xs:boolean" select="true()"/>
 <xsl:document>
 <split:chunks>
 <xsl:variable name="context" select="." as="element()"/>
 <xsl:for-each-group select="split:eval-xpath(., $leaves-exp)"
 group-starting-with="node()[split:node-matches-xpath(.,
 $group-start-exp)]">
 <split:chunk>
 <xsl:attribute name="n" select="position()"/>
 <xsl:if test="$chunk-name-exp">
 <xsl:attribute name="name">
 <xsl:evaluate xpath="$chunk-name-exp" context-item="."/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates select="$context" mode="split:split">
 <xsl:with-param name="restricted-to" tunnel="yes"

Splitting XML Documents at Milestone Elements

351

 select="for $n in (
 current-group()/ancestor-or-self::node()
 except .[not($keep-splitting-node)]
)
 return generate-id($n)"/>
 </xsl:apply-templates>
 </split:chunk>
 </xsl:for-each-group>
 </split:chunks>
 </xsl:document>
 </xsl:template>

 <xsl:function name="split:node-matches-xpath" as="xs:boolean"
 visibility="private">
 <xsl:param name="_node" as="node()"/>
 <xsl:param name="xpath" as="xs:string"/>
 <xsl:sequence select="exists(split:eval-xpath($_node, $xpath))"/>
 </xsl:function>

 <xsl:function name="split:eval-xpath" as="item()*" visibility="private">
 <xsl:param name="context" as="node()"/>
 <xsl:param name="xpath" as="xs:string"/>
 <xsl:evaluate xpath="$xpath" context-item="$context" as="node()*"/>
 </xsl:function>

 <xsl:template match="@* | node()" mode="split:split" priority="-1">
 <xsl:copy>
 <xsl:apply-templates select="@*, node()" mode="#current"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="node()" mode="split:split">
 <xsl:param name="restricted-to" as="xs:string+" tunnel="yes"/>
 <xsl:if test="generate-id() = $restricted-to">
 <xsl:next-match/>
 </xsl:if>
 </xsl:template>
</xsl:package>
XSLT packages are ideally suited for providing this as re-usable code. Without
the visibility restrictions that packages offer, XSLT authors who import this code
may always overwrite templates. This should be avoided because an adaptation
that is good for one use case might not be suitable for another, thereby jeopardiz-
ing reusability. Therefore, dynamic evaluation together with visibility constraints
are perfect for providing a generic splitter.

Splitting XML Documents at Milestone Elements

352

Applying it to the TEI pb use case requires a modification of the front-end
stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tei="http://www.tei-c.org/ns/1.0"
 xmlns:split="http://www.le-tex.de/XSLT/split"
 xpath-default-namespace="http://www.tei-c.org/ns/1.0"
 exclude-result-prefixes="xs split"
 version="3.0">

 <!-- invoke it like this:
 saxon-EE-9.9.1.1 -it:test -lib:lib/split.xsl
 -s:examples/pb/luther_septembertestament_1522.TEI-P5.xml
 -xsl:examples/pb/split-at-pb_1_generate-id_evaluate.xsl -->

 <xsl:use-package name="http://www.le-tex.de/XSLT/split"
 package-version="1.0"/>

 <xsl:template match="/">
 <xsl:variable name="chunks" as="document-
node(element(split:chunks))">
 <xsl:apply-templates select="TEI/text" mode="split:split-
entrypoint">
 <xsl:with-param name="group-start-exp" as="xs:string"
 select="'self::Q{http://www.tei-c.org/ns/1.0}pb[@facs]'"/>
 <xsl:with-param name="chunk-name-exp" as="xs:string"
 select="'substring(@facs, 3)'"/>
 <xsl:with-param name="keep-splitting-node" select="true()"/>
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:sequence select="$chunks"/>
 <xsl:variable name="tei-top" as="element(TEI)" select="/TEI"/>
 <xsl:for-each
 select="$chunks/split:chunks/split:chunk[text()[normalize-space()]
| *]">
 <xsl:variable name="chunk" select="."/>
 <xsl:result-document href="out/dyn{@name}.xml">
 <xsl:copy select="$tei-top" copy-namespaces="false">
 <xsl:copy-of select="@*, teiHeader, $chunk/node()"
 copy-namespaces="false"/>
 </xsl:copy>
 </xsl:result-document>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Splitting XML Documents at Milestone Elements

353

The execution times are roughly 1.5 to 2.1 times as long as in the non-generic case
which makes the generic solution attractive especially for ad-hoc processing. For
large-scale productions, it will still be better to use bespoke solutions that are tar-
geted at specific vocabularies and splitting problems.

The generic solution will be extended in order to cover start-end delimiters as
in the FO scenario, and also by providing a dynamic evaluation facility for select-
ing/matching scope-establishing elements.

6. Summary
An elegant and versatile XML splitting solution has been presented. It is applica-
ble to a wide range of splitting problems, as proven by its usage in le-tex publish-
ing services’ XSLT conversions since 2010. While preparing this paper, the author
was able to identify and rectify performance limitations. Other limitations, in par-
ticular when processing large documents or chunks with many (~105) leaf nodes,
could not be surmounted though.

Bibliography
[1] tokenized-to-tree: An XProc/XSLT Library For Patching Back Tokenization/

Analysis Results Into Marked-up Text. In: Proceedings of XML Prague 2018,
http://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf#
page=241.

[2] Example involving page breaks: http://www.biglist.com/lists/
lists.mulberrytech.com/xsl-list/archives/201407/msg00004.html.

[3] Martin Luther (translator): Das Newe Testament Deutzsch. [Septembertestament.]
Wittenberg, 1522. In: Deutsches Textarchiv http://
www.deutschestextarchiv.de/book/show/
luther_septembertestament_1522

[4] Source code repository for this paper: https://subversion.le-tex.de/
common/presentations/2019-02-09_xmlprague_xslt-upward-projection

[5] Example involving XSL-FO blocks: https://www.biglist.com/lists/
lists.mulberrytech.com/xsl-list/archives/201804/msg00044.html.

[6] A video of Eliot’s presentation is linked at https://www.oxygenxml.com/
events/2018/dita-ot_day.html#twisted_xslt_tricks

[7] Hub XML: https://github.com/le-tex/Hub
[8] Discussion about the suitability for streaming in 2014: https://

www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/
msg00036.html.

Splitting XML Documents at Milestone Elements

354

http://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf#page=241
http://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf#page=241
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00004.html
http://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00004.html
http://www.deutschestextarchiv.de/book/show/luther_septembertestament_1522
http://www.deutschestextarchiv.de/book/show/luther_septembertestament_1522
http://www.deutschestextarchiv.de/book/show/luther_septembertestament_1522
https://subversion.le-tex.de/common/presentations/2019-02-09_xmlprague_xslt-upward-projection
https://subversion.le-tex.de/common/presentations/2019-02-09_xmlprague_xslt-upward-projection
https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201804/msg00044.html
https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201804/msg00044.html
https://www.oxygenxml.com/events/2018/dita-ot_day.html#twisted_xslt_tricks
https://www.oxygenxml.com/events/2018/dita-ot_day.html#twisted_xslt_tricks
https://github.com/le-tex/Hub
https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00036.html
https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00036.html
https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/201407/msg00036.html

Sonar XSL
A Schematron-based SonarQube plugin for XSL code quality

measurement.
Jim Etevenard

OXiane
<jetevenard@oxiane.com>

Abstract

While code quality measurement tends to be wildly used in software engi-
neering, no suitable tool were available for XSL Language. This paper
presents the Sonar XSL project, a plugin that performs XSLT quality meas-
urement in SonarQube, with Schematron under the hood.

Keywords: SonarQube, Schematron, XSL, code quality

1. The Necessity of Code Quality Measurement
XSL language is reaching a maturity level that allows using it for complex and
big projects. In that context, developers must keep in mind that their code should
conform to a certain quality level.

The Continuous Integration (CI) and Continuous Deployment (CD) processes
tends to become the standard in code industry. In such a context, continuous
quality exigence and measurement become essentials.

Code quality should be a constant concern of any developer. In this purpose,
it should be constantly measured, and the result of that measurement should take
part into any developer team's workflow: as well as the unit tests, the project's
conformance to a shared quality standard should be part of the definition of done.

1.1. The Axes of code Quality
First, we must precise that the notion of "Quality" is intrinsically subjective. By
"Quality of code", we mean conforming to a certain number of criteria that will
mainly tend to reduce the risks of failure of an application, or improve it's main-
tainability and so it's sustainability in the long term.

These criteria must be team-shared and can - and must - be discussed. As well
as craftsmen, developers must be involved in the process of defining what is
called "Good work".

A lot of work and studies have been done around code quality by computer
scientists around the world, and a consensus has emerged over seven main Code
Quality axes:

355

1.1.1. Tests and testability

Any code unit module (which, depending on the language, we may call function,
method, template...) should be covered by unit and/or integration tests. The impor-
tant thing is not to just call 100% of these modules, but to ensure that all the
instructions are effectively executed, and that as much failure cases as possible
are tested.

This purpose implies to design the code and distribute the complexity in a
way that optimises the testability of the code. Any low-level module should have
a clearly-defined behavior for a given input. Any environment-dependant opera-
tions like data access, TCP requests, file management should be as much separa-
ted as possible to preserve testability.

Some coding management frameworks like the Test-Driven Developpement
suggest to first develop the test, defining the input and the expected output, to
then run the test and to see it fail, and to finally develop the simplest way possi-
ble to make it succeed. This process puts the tests in the heart of development and
strongly increase the reliability of an application.

Unit tests can also be seen as an in-code documentation, since they describe
the expected behavior of a code module.

1.1.2. Duplicated code

Code duplication is one the most frequent mistake in computer programming,
trough it is probably one of the worst.

When time is missing, there can be a temptation to quickly duplicate code
parts instead of refactoring to distribute and share the complexity.

Duplicating code blocks - or, in a much more subtle and harder to detect form,
having several code parts that do the same thing - is a serious problem for main-
tainability: if an evolution is needed in the duplicated process, the changes will
have to be duplicated. That is, of course, a loss of time, and having duplications
makes it difficult to localise the code parts that must evolve.

1.1.3. Potential bugs

Since every programming language has its pitfalls, some coding patterns are
known for frequently leading to put bugs in an application, or expose it to some
known vulnerabilities.

These risks may come, for example, from a developper's lack of attention
and/or knowledge of language specificities: exact role of some operators, type-
conversion behavior, etc. Some frameworks or libraries may bring some vulnera-
bilities when incorrectly used.

Sonar XSL

356

1.1.4. Complex code

Code is not only intended for computers, but also for humans : it should be clear,
and esay to read and unnderstand for further debuging and/or evolving opera-
tions.

Its cyclomatic complexity should be reduced as much as possible to keep it
easy to understand and testable. Modules that contain many nested conditional
and/or loop structures could favorably be split into lower-granularity modules
that would be simpler.

1.1.5. Architecture and Design

The lack of a clearly-defined, understandable and easy-to-conform architecture is
likely to lead to what is commonly called "Spaghetti code": Something that won't
be structured, and thus hard to maintain, and where errors or bugs will be hard
to detect and fix.

1.1.6. Documentation and Comments

Commenting / documenting code makes it easy to understand, use or extend it.
Especially if a given code part is the end point of an API, intended to be called
from another application or module.

In-code documentation is now a standard in the imperative languages world:
Javadoc, in the Java-world, has popularised the concept of improving the com-
ments with markup tags that allows automated easy-to-consult document gener-
ation. This approach has been reworked in many javadoc-like framework like
Doxygen, JSDoc, pydoc, etc. in various programming languages.

In the XML world, booth XSD and RelaxNg schema languages provide stand-
ard documentation patterns. More recently, some documentation schemes have
been released for XSL.

2. The Existing Standard : SonarQube

SonarQube is an open-source software that statically analyses source code and
pull up various metrics regarding code duplication, unit test coverage, documen-
tation level and coding rules. By statically we mean performing an analysis of the
source code without executing it.

It comes from the Java world, and it itself coded in Java.
SonarQube alone is not able to analyse anything : it's architecture relies on

plugins that are responsible for analysing the code. Out of the box, a dozen plu-
gins are embedded in SonarQube, allowing it to analyse projects in the main pro-
gramming languages: Java, PHP, Js, C#, C, Css, Etc.

Sonar XSL

357

2.1. The main concept : Rules

These plugins define some Rules for the language they focus on. These Rules are
one of the main concepts of SonarQube.

A Rule consist in a best-practice pattern that should be respected in the source
code. Something important to understand about SonarQube and his community
is that a Rule is not something intended to be strongly imperative. A Rule is a
community-consensual proposal of what a quality involved developer should, or
should not do. These Rules are meant to be discussed, and SonarQube allows the
instance manager to disable some rules.

Rules are documented with a description, for which the SonarQube commun-
ity has designed a writing pattern1. This documentation should explain the rea-
sons why the Rule should be followed, and provide and non-compliant and a
compliant example.

They had a strong reflexion about the wording to use in the Rule statement
and description: Negative and/or imperative form should be avoided, the main
idea is that the Rules are best-practice recommendations, and not commands fall-
ing from Mount Olympus.

The Rules hold some meta-information that are useful for handling the analy-
sis result.
• Their type

• Code smell – Code best-practice and design
• Bug – Potential bug
• Vulnerability – Potential Vulnerability

• Their (default) severity
• Blocker
• Critical
• Major
• Minor
• Info

• Some subject-related keywords
The Rules come with a default severity, which can be overridden through the set-
tings.

2.2. Dealing with Issues

The detection, in the analysed code, of some code parts that breaks a Rule creates
an Issue.

The result of a code analysis is a list of Issues, which are linked to their source
Rule, and contextualized in source code.

1 https://docs.sonarqube.org/display/DEV/Coding+Rule+Guidelines

Sonar XSL

358

https://docs.sonarqube.org/display/DEV/Coding+Rule+Guidelines
https://docs.sonarqube.org/display/DEV/Coding+Rule+Guidelines

Ideally, an analysis should be run automatically each time changes are com-
mitted to the SCV. SonarQube makes a distinction between Issues that are raised
from new code (i.e. code added with last commit) and those which were already
there during a previous analysis of the project. This distinction is important since
we rarely have the luck to begin a project from scratch, and the approach to
improve the code quality of an application must consider the real-life reality of the
existing legacy code.

The SonarQube's API allows to connect this Issue system with project manage-
ment tools like Jira, Mantis, Trello and so on, to integrate the correction of the
Issues into the team workflow.

The Issues screen itself, that allows filtering through Issues and provide an
assignment system, is sufficiently powerful to be itself considered as a project
management system.

2.3. The verdict : Quality Gates

Afted each analysis of the project, the Issues metrics are compiled through a Qual-
ity gate. The Quality gate consists in acceptance critereas defined for the project.

Examples :

• At least 80% of the new code should be covered by unit tests
• There should not be Major or Blocker Issues in the project
• There should be less Issues than during the previous analysis
• Etc.

2.4. Whats SonarQube Brings

SonarQube is a tool intended not only for developers, but also for non-technical
managers.

The concepts of "code quality", "reliability", "maintainability", "technical debt",
etc. are very abstract for non-technical people.

By raising metrics, SonarQube helps project managers to have a visibility on
these concepts and the needed work to enforce the quality of their applications.

In the exigent context of agile development and continuous delivery, Sonar-
Qube provides a good way to ensure the quality of what is delivered.

2.5. The lack of an XSL-Specific SonarQube plugin

While it is nowadays currently used for enterprise applications written in the
above-mentioned languages, no SonarQube plugins that add specific support for
XSL were available so far. (Saying that, I'm excluding the Sonar-XML-Plugin that
performs the strict-minimal well-formed / validity tests)

Sonar XSL

359

3. The XSLT-Quality Schematron
Some XML developers addressed the question of XSL Quality :
• Mukul Gandhi2 released in 2009 his XSL Quality XSLT3, a tool written in XSLT

2.0 that checks the conformance of an XSL Stylesheet to a set of rules that he
defined.

• Matthieu Ricaud-Dussarget published last year an ISO-Schematron to check
the code-quality of an XSLT4.
• He re-wrote Mukul Gandhi's rules as Schematron asserts / reports
• He added some rules from his own work.

These rulesets are intended to help developers to avoid the common pitfalls of
XSL.

3.1. Examples of Rules from XSLT-Quality

• Variables should be typed
• The use of wildcard namespaces *: in xpath statements should be avoided
• Using xsl:for-each on nodes may be a clue of procedural programming ;

You should maybe consider using xsl:apply-templates instead
• boolean true() or false() value should be used instead of litteral strings

'true' and 'false'
• Costly double-slash operator should be used with caution
• Global variables, global parameters and mode names should have a name-

space to improve the portability of your stylesheet
• etc.

4. The Sonar-XSL-Plugin Prototype
Some coding rules exist for XSL, written as a Schematron : why not build a Sonar
Plugin that validates the XSL code using that Schematron ?

I've created an open-source SonarQube plugin for XSL, that performs some
code-style checks, using the XSLT-Quality5 Schematron project mentioned above.

The implementation is based on Schematron's official "Skeleton" XSLT imple-
mentation6, and Saxon7 as XSLT processor.

The asserts and reports from the Schematron documents are transcribed into
SonarQube Rules and registered into Sonar through its API.

2 https://www.xml.com/authors/mukul-gandhi/
3 http://gandhimukul.tripod.com/xslt/xslquality.html
4 https://github.com/mricaud/xslt-quality
5 https://github.com/mricaud/xslt-quality
6 https://github.com/Schematron/schematron/tree/master/trunk/schematron/code
7 http://saxon.sourceforge.net/

Sonar XSL

360

https://www.xml.com/authors/mukul-gandhi/
http://gandhimukul.tripod.com/xslt/xslquality.html
https://github.com/mricaud/xslt-quality
https://github.com/mricaud/xslt-quality
https://github.com/mricaud/xslt-quality
https://github.com/Schematron/schematron/tree/master/trunk/schematron/code
https://github.com/Schematron/schematron/tree/master/trunk/schematron/code
http://saxon.sourceforge.net/
https://www.xml.com/authors/mukul-gandhi/
http://gandhimukul.tripod.com/xslt/xslquality.html
https://github.com/mricaud/xslt-quality
https://github.com/mricaud/xslt-quality
https://github.com/Schematron/schematron/tree/master/trunk/schematron/code
http://saxon.sourceforge.net/

When a code analysis is launched, each XSL file is validated against the Sche-
matrons : If a Schematron assert fails, or if a report is triggered, an Issue is created
in the SonarQube system. The localisation of that Issue in the file, a contextual
message and any useful additional are saved with that Issue.

4.1. Architecture of the Plugin

The plugin is built using Maven. It consists in several modules :

4.1.1. The Schematron-Sonar Module

The main reactor, it is responsible for reading and running the Schematron gram-
mars, and establishing the link with SonarQube API.

This module can be re-used to build a SonarQube plugin for any XML-based
language.

4.1.2. Some Schematron packages

These artifacts contain the Schematron used for code quality checks.

• The Sonar XSL Plugin embeds the XSLT-Quality8 mentioned above as it's
main rule repository.

• A Maven plugin is used to build the Schematron packages, organizing the result
packages (which consists in a Jar archive) the way expected by the Schematron-
Sonar Module.

• At a project / enterprise level, one can re-built his own flavor of the Sonar XSL
Plugin, adding his own Schematron packages.

5. Evolutions and Perspectives
The Sonar XSL Plugin will has been released a few weeks ago. Some code
improvements are still needed.

It will soon be experimentally deployed in the company where I work - a pub-
lishing house - where we strongly rely on XSL code to exploit our content.

An important feature would be to measure the unit tests coverage. For that
purpose, a further evolution of the Sonar XSL Plugin must be able to fetch infor-
mations from the test reports generated by the XSpec Maven Plugin9.

Since coding rules are intrinsically subjective : a work on the rules themselves
will remain for the XSL community. The rules need to be thank about and dis-
cussed, for a better quality in XSLT-based project.

8 https://github.com/mricaud/xslt-quality
9 https://github.com/xspec/xspec-maven-plugin-1

Sonar XSL

361

https://github.com/mricaud/xslt-quality
https://github.com/xspec/xspec-maven-plugin-1
https://github.com/mricaud/xslt-quality
https://github.com/xspec/xspec-maven-plugin-1

Figure 1. Architecture of the Sonar XSL Plugin

Sonar XSL

362

Copy-fitting for Fun and Profit
Tony Graham

Antenna House, Inc.
<tony@antennahouse.com>

Abstract

Copy-fitting is the fitting of words into the space available for them or, some-
times, adjusting the space available to fit the words. Copy-fitting is included
in “Extensible Stylesheet Language (XSL) Requirements Version 2.0” and
is a common feature of making real-world documents. This talk describes an
ongoing internal project for automatically finding and fixing problems that
can be fixed by copy fitting in XSL-FO.

1. Introduction
Copy-fitting has two meanings: it is both the “process of estimating the amount of
space typewritten copy will occupy when converted into type” [7] and the proc-
ess of adjusting the formatted text to fit the available space. Since automated for-
matting, such as with an XSL-FO formatter, is now so common, a lot of the
manual processes for estimating the amount of space are superfluous.

1.1. Copy-fitting as estimating
There are multiple, and sometimes conflicting, aspects to the relationship
between copy-fitting and profit. For the commercial publisher, there is tension
between more pages costing more money and more pages providing a better
reading experience or even a better “shelf appeal”, for want of a better term. We
tell ourselves “do not judge a book by its cover”, but we do still sometimes judge
a book by the width of its spine when we look at it on the shelf in the bookstore.
Copy-fitting, in this first sense, is part of the process of making the text fill the
number of pages (the ‘extent’) that has been decided in advance by the publisher.
This may mean increasing the font-size, leading, other spaces, and the margins to
fill more pages, or it may mean reducing them so that more text fits on a page.

The six steps to copy-fitting (as estimating) from “How to Spec Type” [7] are:
1. Count manuscript characters
2. Select the typeface and type size you want.
3. Cast off (determine the number of set characters per line)
4. Divide set characters per line into total manuscript character count. Result is

number of lines of set type.

363

5. Add leading to taste.

6. If too short: add leading or increase type size or decrease line length.
If too long: remove leading or decrease type size or increase line length.

However:

Most important of all, decisions should be made with the ultimate aim of benefit-
ing the reader.

—“Book Typography: A Designer’s Manual”, Mitchell & Wightman

1.2. Copy-fitting as adjustment

‘Copy-fitting’ as adjustment is now the more common use for the term.

2. Copy-fitting for fun

It’s an interesting problem to solve.

Figure 1. Different approaches to filling pages [4][5]

Copy-fitting for Fun and Profit

364

3. Copy-fitting for profit

3.1. Books
The total number of pages in a book is generally a multiple of 16 or 32, and any
variation can involve additional cost:

It must be remembered that books are normally printed and bound in sheets of 16,
32, 64 (or multiples upwards) pages, and this exact figure for any job must be
known by the designer at the point of designing: it will be the designer’s job to see
that the book makes the required number of pages exactly. If a book is being printed
and bound in sheets of 32 pages (16 on each side of the sheet), it is generally possi-
ble to add one leaf of 2 pages by ‘tipping in’, or 4, 8, or any other multiple of 4
pages extra by additional binding operation, but the former will mean hand-work,
and even the latter will involve disproportionately higher cost.

—“The Thames and Hudson Manual of Typography”, Ruari McLean, 1980

The role here for copy-fitting (in the second sense) is to ensure that the overall
page count is at or close to a multiple of the number of pages in a signature.

Even Print-On-Demand (POD) printing has similar constraints. For example,
the Blurb POD service requires that books in “trade” formats – e.g. 6×9 inches –
are a multiple of six pages [1]. In a simplistic example, suppose that the document
with the default styles applied formats as 15 pages:

Figure 2. Document with default styles and six-page signatures

The (self-)publisher has the choice of three alternatives:

Copy-fitting for Fun and Profit

365

• Leave the layout unchanged. However, the publisher is paying for the blank
pages, and the number of blank pages may be more than the house style
allows.

• Copy-fit to reduce the page count to the next lower multiple of the signature
size. This, obviously, is cheaper than paying for blank pages, but “the public
still has a tendency to judge the value of a book by its thickness” [8].

Figure 3. After copy-fitting to reduce page count

• Copy-fit to increase the page count to better fill a multiple of the signature
size. This, just as obviously, costs more than reducing the page count, but it
has the potential for helping sales.

Figure 4. After copy-fitting to increase page count

Copy-fitting for Fun and Profit

366

3.2. Manuals and other documentation
A manufacturer who provides printed documentation along with their product
faces a different set of trade-offs. The format for the documentation may be con-
strained by the size of the product and its packaging, regulatory requirements, or
the house style for documentation of a particular type. A manufacturer may need
to print thousands or even millions1 of documents. Users expect clear documen-
tation yet may be unwilling to pay extra when the documentation is improved,
yet unclear documentation can lead to increased support costs or, in some cases,
to fatalities.

Suppose, for example, that the text for a document has been approved by the
subject matter experts – and, in some cases, also by the company’s lawyers and
possibly the government regulator – and has to be printed on a single standard-
size page, or possibly a single side of a standard-size page, yet there is too much
text for the space that is available. To let the editorial staff rewrite the text so that
it fits the available space is definitely not an option, so it becomes necessary to
apply copy-fitting to adjust the formatting until the text does fit. Figure 5 shows
an information sheet that was included with the Canon MP830 when sold in
EMEA. The same information in 24 languages is printed on a single-sided sheet
of paper. Most users would look at the information once, at most. If the informa-
tion had been allowed to extend to the back of the sheet, it would have considera-
bly increased the cost of providing the information for no real benefit. Some form
of copy-fitting was probably used to make sure that the information could fit on
one side of the sheet.

Multilingual text has other complications. Figure 6 shows two corresponding
pages from the English and Brazilian Portuguese editions of the Canon MP830
“Quick Start Guide”. The same information is presented on both pages. However,
translations of English are typically longer than the corresponding English, and
this is no exception. The Brazilian Portuguese page has more lines of text on it
and, as Figure 7 shows, the font-size and leading has also been reduced in the
Brazilian Portuguese page. A copy-fitting process could have been used to adjust
the font-size and leading across the whole document by the minimum necessary
so that no text overflowed its page.

4. Standards for copy-fitting of XML or HTML
There is currently no standards for how to specify copy-fitting for either XML or
HTML markup. However, copy-fitting was covered in the requirements for XSL
2.0, and the forward-looking “List of CSS features required for paged media” by
Bert Bos has an extensive section on copy-fitting.

1A prescription or over-the-counter medication comes with a printed “package insert”, and, for exam-
ple, nearly 4 billion prescriptions were written in the U.S. in 2010, with the most-prescribed drug pre-
scribed over 100 million times [6].

Copy-fitting for Fun and Profit

367

Figure 5. Multiple warnings on a single-sided sheet

Copy-fitting for Fun and Profit

368

4.1. Extensible Stylesheet Language (XSL) 1.1
XSL 1.1 does not address copy-fitting, but it does define multiple properties for
controlling aspects of formatting that, if the properties are not applied, could lead
to problems that would need to be corrected using copy-fitting:
hyphenation-keep Controls whether the last line of a column or

page may end with a hyphen.
hyphenation-ladder-count Limits the number of successive hyphenated

lines.
orphans The minimum number of lines that must be

left at the bottom of a page.

Figure 6. English and Brazilian Portuguese pages

Figure 7. English and Brazilian Portuguese text

Copy-fitting for Fun and Profit

369

widows The minimum number of lines that must be
left at the top of a page.

Figure 8. Orphans and widows

4.2. Extensible Stylesheet Language (XSL) Requirements Version 2.0

“Extensible Stylesheet Language (XSL) Requirements Version 2.0" [9] includes:

2.1.4 Copyfitting
Add support for copyfitting, for example to shrink or grow content (change

properties of text, line-spacing, ...) to make it constrain to a certain area. This is
going to be managed by a defined set of properties, and in the stylesheet it will be
possible to define the preference and priority for which properties should be
changed. That list of properties that can be used for copyfitting is going to be
defined.

Additionally, multiple instances of alternative content can be provided to
determine best fit.

This includes copyfitting across a given number of pages, regions, columns etc,
for example to constrain the number of pages to 5 pages.

Add the ability to keep consistency in the document, e.g. when a specific area is
copyfitted with 10 pt fonts, all other similar text should be the same.

4.3. List of CSS features required for paged media

“List of CSS features required for paged media” by Bert Bos [2] has a ‘Copyfit-
ting’ section. Part of it is relevant to fitting content into specified pages.

20. Copyfitting

Copy-fitting for Fun and Profit

370

Copyfitting is the process of selecting fonts and other parameters such that text
fits a given space. This may range from making a book have a certain number of
pages, to making a word fit a certain box.

20.1 Micro-adjustments
If a page has enough content, nicer-looking alignments and line breaks can

often be achieved by “cheating” a little: instead of the specified line height, use a
fraction of a point more or less. Instead of the normal letter sizes, make the letters a
tiny bit wider or narrower…

This can also help in balancing columns: In a newspaper, e.g., it may look bet-
ter to have all columns of an article the same height at the cost of a slightly bigger
line height in the last column, than to have all lines aligned but with a gap below
the last column.

The French newspaper “Le Canard enchainé” is an example of a publication
that favors full columns over equal line heights.

20.2 Automatic selection of font size
One common case is choosing a font size such that a headline exactly fills the

width of the page.
A variant is the case where each individual line of the text may be given a

different font size, as small as possible above a certain minimum.
Two models suggested for CSS are to see copyfitting either as one of several

algorithms available for justification, and thus as a possible value for ‘text-justify’;
or as a way to treat overflow, and thus as a possible value for ‘overflow-style’. Both
can be useful and they can co-exist:

H1 {text-align: justify; text-justify: copyfit}
H2 {height: 10em; overflow: hidden; overflow-style: copyfit}

The first rule could mean that in each line of the block, rather than shrinking or
stretching the interword space to fill out the line, the font size of each letter is
decreased or increased by a certain factor so that the line is exactly filled out. The
latter could mean that the font size of all text in the block is decreased or increased
by a common factor so that the font size is as large as possible without causing the
text to overflow. (As the example shows, this type of copyfitting requires the
block’s width and height to be set.)

20.3 Alternative content or style
If line breaks or page breaks turn out very bad, a designer may go back to the

author and ask if he can’t replace a word or change a sentence somewhere, or add
or remove an image.

In CSS, we assume we cannot ask the author, but the author may have pro-
posed alternatives in advance.

Alternatives can be in the style sheet (e.g., an alternative layout for some
images) or in the source (e.g., alternative text for some sentence).

Copy-fitting for Fun and Profit

371

In the style sheet, those alternatives would be selected by some selector that
only matches if that alternative is better by some measure than the first choice.

Some alternatives may be provided in the form of an algorithm instead of a set
of fixed alternatives. E.g., in the case of alternative image content, the alternative
may consist of progressively cropping and scaling the image up to a certain limit
and in such a way that the most important content always remains visible.

E.g., an image of a group of people around two main characters can be divided
into zones that are progressively less important: the room they are in, people’s feet,
the less important people, up to just the heads of the two main characters, which
should always be there.

Figure 9. The title of the chapter is one word that exactly fills the width of
the page

Copy-fitting for Fun and Profit

372

5. Existing Extensions

5.1. Print & Page Layout Community Group
The Print and Page Layout Community Group developed a series of open-source
extensions for XSLT processors so you can run any number of iterations of your
XSL-FO processor from within your XSLT transformation, which allows you to
make decisions based on formatted sizes of areas.

The extensions are currently available for Java and DotNet and use either the
Apache FOP XSL formatter or Antenna House AH formatter to produce the area
trees.

To date, stylesheets that use the extensions have been bespoke: writing a style-
sheet that uses the extensions has required knowledge of the source XML, and
the stylesheet for transforming the XML into XSL-FO is the stylesheet that uses
the XSLT extensions.

Figure 10. Balisage 2014 poster (detail)

5.2. AH Formatter
AH Formatter, from Antenna House, extends the overflow property. When text
overflows the area defined for it, the text may either be replaced or one of a set of

Copy-fitting for Fun and Profit

373

properties – including font-size and font-stretch – can be automatically
reduced (down to a defined lower limit) to make the text fit into the defined area.

5.3. FOP
FOP provides fox:orphan-content-limit and fox:widow-content-limit exten-
sion properties for specifying a minimum length to leave behind or carry for-
ward, respectively, when a table or list block breaks over a page.

6. Copy-fitting Implementation
The currently implemented processing paths are shown in the following figure.
The simplest processing path is the normal processing of an XSL-FO file to pro-
duce formatted pages as PDF. The copy-fitting processes require the XSL-FO to
instead be formatted and output as Area Tree XML (an XML representation of the
formatted pages) that is analyzed to detect error conditions. As currently imple-
mented, each of the supported error conditions is implemented as a XSLT 2.0
template defined in a separate XSLT file. A separate XSLT stylesheet uses the
Area Tree XML as input and imports the error condition stylesheets. The simplest
version of this stylesheet outputs an XML representation of the errors found. This
XML can be processed to generate a report detailing the error conditions. Alterna-
tively, the error information can be combined with the Area Tree XML to generate
a version of the formatted document that has the errors highlighted. Since copy-
fitting involves modifying the document, another alternative stylesheet uses the
XSLT extension functions from the Print & Page Layout Community Group at the
W3C to run the XSL-FO formatter during the XSLT transformation to iteratively
adjust selected aspects of the XSL-FO until the Area Tree XML does not contain
any errors (or the limits of either adjustment tolerance or maximum iterations
have been reached).

6.1. Error condition XSLT
The individual XSLT file for an error condition consists of an XSLT template that
matches on a node with that specific error. The result of the template is an XML
node encoding the error condition and its location. The details of how to repre-
sent the information are not part of the template (and are still in flux anyway).
<xsl:template
 match="at:LineArea[ahf:is-page-end-hyphen(.)]"
 mode="ahf:errors">
 <xsl:param name="page" as="xs:integer" tunnel="yes" required="yes" />
 <xsl:param name="x" as="xs:double" tunnel="yes" required="yes" />
 <xsl:param name="y" as="xs:double" tunnel="yes" required="yes" />

Copy-fitting for Fun and Profit

374

Figure 11. Processing paths

Copy-fitting for Fun and Profit

375

 <xsl:variable
 name="x"
 select="if (exists(@left-position))
 then $x
 + ahf:length-to-pt(@left-position)
 else $x"
 as="xs:double" />
 <xsl:variable
 name="y"
 select="if (exists(@top-position))
 then $y
 + ahf:length-to-pt(@top-position)
 else $y"
 as="xs:double" />
 <xsl:sequence
 select="ahf:error('page-end-hyphen', $page,
 $x + ahf:length-to-pt(@width),
 $y - ahf:length-to-pt(at:TextArea[last()]/@font-size) div 2)" />

 <xsl:next-match />
</xsl:template>

<xsl:function name="ahf:is-page-end-hyphen" as="xs:boolean">
 <xsl:param name="line-area" as="element(at:LineArea)" />

 <xsl:sequence
 select="empty($line-area/following-sibling::at:LineArea) and
 $line-area/at:TextArea[last()][@text[ends-with(., '-') or
 ends-with(., '‐')]] and
 empty($line-area/ancestor::at:ColumnReferenceArea[1]/
 following-sibling::*)" />
</xsl:function>

6.2. Formatting error XML
The XML for reporting errors is essentially just a list of errors and their locations.
Again, this is still in flux.

<errors>
 <error code="max-hyphens" page="1" x0="523.2752" y0="583.367"/>
 <error code="page-end-hyphen" page="2"
 x0="523.2760000000001" y0="740"/>
 <error code="paragraph-widow" page="6" x0="94.462" y0="418"/>
 <error code="page-end-hyphen" page="7"
 x0="523.2760000000001" y0="740"/>
 <error code="page-sequence-widow" page="8" x0="72" y0="72"/>
</errors>

Copy-fitting for Fun and Profit

376

6.3. PDF error report

The error XML can be processed to generate a report. It is, of course, also possible
to augment the Area Tree XML to add indications of the errors to the formatted
result, as in the simple example below.

Figure 12. Error report PDF (detail)

6.4. Copy-fitting instructions

The copy-fitting instructions consist of sets of contexts and changes to make in
that context. The sets are applied in turn until either the current formatting round
does not generate any areas or the sets are exhausted,in which case the results
from the round with the least number of errors are used. Within each set of con-
texts and changes, the changes can either be applied in sequence or all together.
Like the rest of the processing, the XML format is still in flux.

<copyfitsets>
 <copyfit use="all" name="copyfit1">
 <match role="chapter-drop" />
 <use height="25%"/>
 <match font-family="'Source Serif Pro', serif" font-size="11pt" />

Copy-fitting for Fun and Profit

377

 <use font-size="10.5pt" line-height="13.5pt"/>
 </copyfit>
 <copyfit use="first">
 <match role="chapter-drop" />
 <use height="20%"/>
 <match font-family="'Source Serif Pro', serif" font-size="11pt" />
 <use font-size="10.5pt" line-height="13.5pt"/>
 </copyfit>
</copyfitsets>

When the XSLT extensions from the Print & Page Layout Community Group are
used, the changes instruction cAN indicate a range of values. The XSLT initially
uses the .start value and, if errors are found, does a binary search between
the .start and .end values. Iterations continue until no errors occur, the maxi-
mum number of iterations is reached, or the difference between iterations is less
than the allowed tolerance.

<copyfitsets>
 <copyfit condition="page-sequence-widow">
 <match font-size="11pt" />
 <use line-height.start="14pt" line-height.end="13pt" />
 </copyfit>
</copyfitsets>

The copy-fitting instructions are transformed into XSLT that is executed by the
XSLT processor, similarly to how Schematron files and XSpec files are trans-
formed into XSLT that is then executed.

7. Future Work
• There should be an XML format for selecting which error tests to use and

what threshold values to use for each test. That XML would be converted into
the XSLT that is run when checking for errors.

• There is currently only a limited number of properties that can be matched on.
The range is due to be expanded as we get the hang of doing copy-fitting. The
match conditions are transformed into match attributes in the generated XSLT,
so there is a lot scope for improvement.

• The range of correction actions is due to be increased to include, for example,
supplying alternate text.

8. Conclusion
Automated detection and correction of formatting problems can solve a set of real
problems for real documents. There is a larger set of formatting problems that can
be recognized automatically and reported to the user in a variety of ways but

Copy-fitting for Fun and Profit

378

which so far are not amenable to automatic correction. Work is ongoing to extend
both the set of formatting problems that can be recognized and the set of prob-
lems that can be corrected automatically.

Bibliography
[1] https://support.blurb.com/hc/en-us/articles/207792796-Uploading-an-existing-

PDF-to-Blurb, Uploading an existing PDF to Blurb
[2] https://www.w3.org/Style/2013/paged-media-tasks#copyfitting, List of CSS

features required for paged media
[3] https://www.w3.org/community/ppl/wiki/XSLTExtensions, XSLTExtensions
[4] Goldfarb, Charles F., Charles F. Goldfarb’s XML Handbook, 5ed., Pearson

Education, 2004, ISBN 0-13-049765-7
[5] Kay, Michael, XSLT 2.0 and XPath 2.0, 4ed., Wiley Publishing, 2008, ISBN

978-0-470-19274-0
[6] https://www.webmd.com/drug-medication/news/20110420/the-10-most-

prescribed-drugs#1, The 10 Most Prescribed Drugs
[7] WhiteWhite, Alex, How to spec type, Roundtable Press,
[8] Williamson, Hugh, Methods of Book Design, 3ed., Yale University Press, 1983,

ISBN 0-300-03035-5
[9] https://www.w3.org/TR/xslfo20-req/#copyfitting, Extensible Stylesheet Language

(XSL) Requirements Version 2.0

Copy-fitting for Fun and Profit

379

https://support.blurb.com/hc/en-us/articles/207792796-Uploading-an-existing-PDF-to-Blurb
https://support.blurb.com/hc/en-us/articles/207792796-Uploading-an-existing-PDF-to-Blurb
https://www.w3.org/Style/2013/paged-media-tasks#copyfitting
https://www.w3.org/community/ppl/wiki/XSLTExtensions
https://www.webmd.com/drug-medication/news/20110420/the-10-most-prescribed-drugs#1
https://www.webmd.com/drug-medication/news/20110420/the-10-most-prescribed-drugs#1
https://www.w3.org/TR/xslfo20-req/#copyfitting

380

RDFe – expression-based mapping of
XML documents to RDF triples

Hans-Juergen Rennau
parsQube GmbH

<hans-juergen.rennau@parsqube.de>

Abstract

RDFe is an XML language for mapping XML documents to RDF triples.
The name suffix “e” stands for expression and hints at the key concept,
which is the use of XPath expressions mapping semantic relationships
between RDF subjects and objects to structural relationships between XML
nodes. More precisely, RDF properties are represented by XPath expressions
evaluated in the context of an XML node which represents the triple subject
and yielding XDM value items which represent the triple object. The
expressiveness of XPath version 3.1 enables the semantic interpretation of
XML resources of any structure and content. Required XPath expressions
can be simplified by the definition of a dynamic context whose variables and
functions are referenced by the expressions. Semantic relationships can be
across document boundaries, and new XML document URIs can be discov-
ered in the content of input documents, so that RDFe is capable of gleaning
linked data. As XPath extension functions may support the parsing of non-
XML resources (JSON, CSV, HTML), RDFe can also be used for mapping
mixtures of XML and non-XML resources to RDF graphs.

Keywords: RDF, XML, RDFa, RDFe, Linked Data

1. Introduction
XML is an ideal data source for the construction of RDF triples: information is
distributed over named items which are arranged in trees identified by document
URIs. We are dealing with a forest of information in which every item can be
unambiguously addressed and viewed as connected to any other item (as well as
sets of items) by a structural relationship which may be precisely and succinctly
expressed using the XPath language [9]. XPath creates an unrivalled inter-connec-
tivity of information pervading any set of XML documents of any content and
size. RDF triples describing a resource thus may be obtained by (1) selecting
within the XML forest an XML node serving as the representation of the resource,
(2) mapping each property IRI to an XPath expression reaching out into the forest
and returning the nodes representing the property values. To unleash this poten-

381

tial, a model is needed for translating semantic relationships between RDF subject
and object into structural relationships between XML nodes representing subject
and object. The model should focus on expressions as the basic units defining a
mapping – not on names, as done by JSON-LD [4], and not on additional markup
as done by RDFa [6]. This paper proproses RDFe, an expression-based model for
mapping XML to RDF.

2. RDFe example
This section introduces RDFe by building an example in several steps.

2.1. Getting started

Consider an XML document describing drugs (contents taken from drugbank
[2]):

<drugs xmlns="http://www.drugbank.ca">
 <drug type="biotech" created="2005-06-13" updated="2018-07-02">
 <drugbank-id primary="true">DB00001</drugbank-id>
 <drugbank-id>BTD00024</drugbank-id>
 <drugbank-id>BIOD00024</drugbank-id>
 <name>Lepirudin</name>
 <!-- more content here -->
 <pathways>
 <pathway>
 <!-- more content here -->
 <enzymes>
 <uniprot-id>P00734</uniprot-id>
 <uniprot-id>P00748</uniprot-id>
 <uniprot-id>P02452</uniprot-id>
 <!-- more content follows -->
 </enzymes>
 </pathway>
 </pathways>
 <!-- more content here -->
 </drug>
 <!-- more drugs here -->
</drugs>

We want to map parts of these descriptions to an RDF representation. First goals:
• Assign an IRI to each drug
• Construct triples describing the drug
The details are outlined in the table below. Within XPath expressions, variable
$drug references the XML element representing the resource.

RDFe – expression-based mapping of XML documents to RDF triples

382

Table 1. A simple model deriving RDF resource descriptions from XML data.

Resource IRI expression (XPath)
 $drug/db:drugbank-id[@primary = 'true']/concat('drug:', .)
Property IRI Property type Property value expression (XPath)
rdf:type xs:string 'ont:drug'
ont:name xs:string $drug/name
ont:updated xs:date $drug/@updated
ont:drugbank-
id

xs:string $drug/db:drugbank-id[@primary = 'true']

ont:drugbank-
altid

xs:string $drug/db:drugbank-id[not(@primary = 'true')]

ont:enzyme IRI $drug//db:enzymes/db:uniprot-id/concat('uni-
prot:', .)

This model is easily translated into an RDFe document, also called a semantic
map:

<re:semanticMap iri="http://example.com/semap/drugbank/"
 targetNamespace="http://www.drugbank.ca"
 targetName="drugs"
 xmlns:re="http://www.rdfe.org/ns/model"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:db="http://www.drugbank.ca">

 <re:namespace iri="http://example.com/resource/drug/" prefix="drug"/>
 <re:namespace iri="http://example.com/ontology/drugbank/" prefix="ont"/>
 <re:namespace iri="http://www.w3.org/2000/01/rdf-schema#" prefix="rdfs"/>
 <re:namespace iri="http://bio2rdf.org/uniprot:" prefix="uniprot"/>

 <re:resource modelID="drug"
 assertedTargetNodes="/db:drugs/db:drug"
 targetNodeNamespace="http://www.drugbank.ca"
 targetNodeName="drug"
 iri="db:drugbank-id[@primary = 'true']/concat('drug:', .)"
 type="ont:drug">
 <re:property iri="rdfs:label"
 value="db:name"
 type="xs:string"/>
 <re:property iri="ont:updated"
 value="@updated"
 type="xs:date"/>
 <re:property iri="ont:drugbank-id"

RDFe – expression-based mapping of XML documents to RDF triples

383

 value="db:drugbank-id[@primary = 'true']"
 type="xs:string"/>
 <re:property iri="ont:drugbank-alt-id"
 value="db:drugbank-id[not(@primary = 'true')]"
 type="xs:string"/>
 <re:property iri="ont:enzyme"
 value=".//db:enzymes/db:uniprot-id/concat('uniprot:', .)"
 type="#iri"/>
 </re:resource>

</re:semanticMap>
The triples are generated by an RDFe processor, to which we pass the XML docu-
ment and the semantic map. Command line invocation:

 shax "rdfe?dox=drugs.xml,semap=drugbank.rdfe.xml"
The result is a set of RDF triples in Turtle [7] syntax:

@prefix drug: <http://example.com/resource/drug/> .
@prefix ont: <http://example.com/ontology/drugbank/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix uniprot: <http://bio2rdf.org/uniprot:> .

drug:DB00001
 rdf:type ont:drug ;
 rdfs:label "Lepirudin" ;
 ont:updated "2018-07-02"^^xs:date ;
 ont:drugbank-id "DB00001" ;
 ont:drugbank-alt-id "BTD00024" ;
 ont:drugbank-alt-id "BIOD00024" ;
 ont:enzyme uniprot:P00734 ;
 ont:enzyme uniprot:P00748 ;
 ont:enzyme uniprot:P02452 ;
 …
drug:DB00002
 rdf:type ont:drug ;
 …
drug:DB00003
 rdf:type ont:drug ;
 …
…

Some explanations should enable a basic understanding of how the semantic map
controls the output. The basic building block of a semantic map is a resource
model. It defines how to construct the triples describing a resource represented
by an XML node:

RDFe – expression-based mapping of XML documents to RDF triples

384

<re:resource modelID="drug"
 assertedTargetNodes="/db:drugs/db:drug"
 iri="db:drugbank-id[@primary eq 'true']/concat('drug:', .)"
 type="ont:drug">
 <re:property iri="rdfs:label"
 value="db:name"
 type="xs:string"/>
 <!-- more property models here -->
</re:resource>

The @iri attribute on <resource> provides an XPath expression yielding the
resource IRI. The expression is evaluated in the context of the XML node representing
the resource. Note how the expression language XPath is used in order to describe
the IRI as a concatenation of a literal prefix and a data-dependent suffix. Every
node returned by the expression in @assertedTargetNodes, evaluated in the con-
text of the input document, is mapped to a resource description as specified by this
resource model element.

Each <property> child element adds to the resource model a property model.
It describes how to construct triples with a particular property IRI. The property
IRI is given by @iri, and the property values are obtained by evaluating the
expression in @value, using the node representing the resource as context node. (In our
example, the value expressions are evaluated in the context of a <drug> element.)
As the examples show, the XPath language may be used freely, for example com-
bining navigation with other operations like concatenation. The datatype of the
property values is specified by the @type attribute on <property>. The special
value #iri signals that the value is an IRI, rather than a typed literal. Another
special value, #resource, will be explained in the following section.

2.2. Linking resources
Our drug document references articles:

<drugs xmlns="http://www.drugbank.ca">
 <drug type="biotech" created="2005-06-13" updated="2018-07-02">
 <drugbank-id primary="true">DB00001</drugbank-id>
 <!-- more content here -->
 <general-references>
 <articles>
 <article>
 <pubmed-id>16244762</pubmed-id>
 <citation>
 Smythe MA, Stephens JL, Koerber JM, Mattson JC: A c…
 </citation>
 </article>
 <!-- more articles here -->
 </articles>

RDFe – expression-based mapping of XML documents to RDF triples

385

 </general-references>
 <!-- more content here -->
</drugs>

RDF is about connecting resources, and therefore our RDF data will be more val-
uable if the description of a drug references article IRIs which give access to article
resource descriptions - rather than including properties with literal values which
represent properties of the article in question, like its title and authors.

Assume we have access to a document describing articles:
<articles>
 <article>
 <pubmed-id>16244762</pubmed-id>
 <url>https://doi.org/10.1177/107602960501100403</url>
 <doi>10.1177/107602960501100403</doi>
 <authors>
 <author>Smythe MA</author>
 <author>Stephens JL</author>
 <author>Koerber JM</author>
 <author>Mattson JC</author>
 </authors>
 <title>A comparison of lepirudin and argatroban outcomes</title>
 <keywords>
 <keyword>Argatroban</keyword>
 <keyword>Lepirudin</keyword>
 <keyword>Direct thrombin inhibitors</keyword>
 </keywords>
 <citation>Smythe MA, Stephens JL, Koerber JM, Mattson JC:
 A ...</citation>
 <abstract> Although both argatroban and lepirudin are used
 ...</abstract>
 </article>
 <!--more articles here -->
</articles>

We write a second semantic map for this document about articles:
<re:semanticMap iri="http://example.com/semap/articles/"
 targetNamespace="" targetName="articles" …>
 <re:namespace iri="http://example.com/resource/article/" prefix="art"/>
 <!-- more namespace descriptors here -->
 <re:resource modelID="article" iri="pubmed-id/concat('art:', .)"
 targetNodeNamespace=""
 targetNodeName="article"
 type="ont:article">
 <re:property iri="ont:doi" value="doi" type="xs:string"/>
 <re:property iri="ont:url" value="url" type="xs:string"/>
 <re:property iri="ont:author" value=".//author" list="true"

RDFe – expression-based mapping of XML documents to RDF triples

386

 type="xs:string"/>
 <re:property iri="ont:title" value="title" type="xs:string"/>
 <re:property iri="ont:keyword" value="keywords/keyword"
 type="xs:string"/>
 <re:property iri="ont:abstract" value="abstract" type="xs:string"/>
 <re:property iri="ont:citation" value="citation" type="xs:string"/>
 </re:resource>
</re:semanticMap/>

and we extend the resource model of a drug by a property referencing the article
resource, relying on its XML representation provided by an <article> element:

<re:property iri="ont:ref-article"
 value="for $id in .//db:article/db:pubmed-id return
 doc('/ress/drugbank/articles.xml')//article[pubmed-id eq $id]"
 type="#resource"/>

The value expression fetches the values of <pubmed-id> children of <article>
elements contained by the <drug> element, and it uses these values in order to
navigate to the corresponding <article> element in a different document. This
document need not be provided by the initial input – documents can be discov-
ered during processing. While the items obtained from the value expression are
<article> elements, the triple objects must be article IRIs giving access to article
resource descriptions. Therefore two things must be accomplished: first, the output
must include triples describing the referenced articles; second, the ont:ref-
article property of a drug must have an object which is the article IRI used as
the subject of triples describing this article. The article IRI, as well as the triples
describing the article are obtained by applying the article resource model to the arti-
cle element. All this is accomplished by the RDFe processor whenever it detects
the property type #resource. Our output is extended accordingly:

drug:DB00001 a ont:drug ;
 rdfs:label "Lepirudin" ;
 …
 ont:ref-article art:16244762 ;
 …
art:16244762 a ont:article ;
 ont:abstract "Although both argatroban and lepirudin are used for ..." ;
 ont:author "Stephens JL" , "Koerber JM" , "Mattson JC" , "Smythe MA" ;
 ont:citation "Smythe MA, Stephens JL, Koerber JM, Mattson JC: A com …
" ;
 ont:doi "10.1177/107602960501100403" ;
 ont:keyword "Argatroban" , "Lepirudin" , "Direct thrombin inhibitors" ;
 ont:title "A comparison of lepirudin and argatroban outcomes" ;
 ont:url "https://doi.org/10.1177/107602960501100403" .

RDFe – expression-based mapping of XML documents to RDF triples

387

2.3. Adding a dynamic context
The property model which we just added to the resource model for drugs con-
tains a “difficult” value expression – an expression which is challenging to write,
to read and to maintain:

 for $id in .//db:article/db:pubmed-id return
 doc('/products/drugbank/articles.xml')//article[pubmed-id eq $id]"

We can simplify the expression by defining a dynamic context and referencing a
context variable. A <context> element represents the constructor of a dynamic
context:
<re:semanticMap iri="http://example.com/semap/drugbank/" …>
 ...
 <re:context>
 <re:var name="articlesURI" value="'/products/drugbank/articles.xml'"/>
 <re:var name="articlesDoc" value="doc($articlesURI)"/>
 </re:context>
 …
</re:semanticMap>
The values of context variables are specified by XPath expressions. Their evalua-
tion context is the root element of an input document, so that variable values may
reflect document contents. A context constructor is evaluated once for each input
document. The context variables are available in any expression within the
semantic map containing the context constructor (excepting expressions in pre-
ceding siblings of the <var> element defining the variable). Now we can simplify
our expression to

 for $id in .//db:article/db:pubmed-id return
 $articlesDoc//article[pubmed-id eq $id]

As a context constructor may also define functions, we may further simplify the
value expression by turning the navigation to the appropriate <article> element
into a function. The function is defined by a <fun> child element of <context>.
We define a function with a single formal parameter, which is a pubmed ID:

<re:context>
 <re:var name="articlesURI" value="'/products/drugbank/articles.xml'"/>
 <re:var name="articlesDoc" value="doc($articlesURI)"/>
 <re:fun name="getArticleElem" params="id"
 code="$articlesDoc//article[pubmed-id eq $id]"/>
 </re:function>
</re:context>

Expressions in this semantic map can reference the function by the name
getArticleElem. A new version of the value expression is this:

 .//db:article/db:pubmed-id/$getArticleElem(.)

RDFe – expression-based mapping of XML documents to RDF triples

388

For each input document a distinct instance of the context is constructed, using
the document root as context node. This means that the context may reflect the
contents of the input document. The following example demonstrates the possi-
bility: in order to avoid repeated navigation to the <article> elements, we intro-
duce a dictionary which maps all Pubmed IDs used in the input document to
<article> elements:

 <re:var name="articleElemDict"
 value="map:merge(distinct-values(//db:article/db:pubmed-id)
 ! map:entry(., $getArticleElem(.)))"/>

An updated version of the value expression takes advantage of the dictionary:
 .//db:article/db:pubmed-id/$articleElemDict(.)

The dictionary contains only those Pubmed IDs which are actually used in a par-
ticular input document. For each input document, a distinct instance of the dic-
tionary is constructed, which is bound to the context variable $articleElemDict
whenever data from that document are evaluated.

3. RDFe language
RDFe is an XML language for defining the mapping of XML documents to RDF
triples. A mapping is described by one or more RDFe documents. An RDFe docu-
ment has a <semanticMap> root element. All elements are in the namespace
http://www.rdfe.org/ns/model and all attributes are in no namespace. Docu-
ment contents are constrained by an XSD (found here: [8], xsd folder). The fol-
lowing treesheet representation [5] [13] of the schema uses the pseudo type
re:XPATH in order to indicate that a string must be a valid XPath expression, ver-
sion 3.1 or higher.
semanticMap
. @iri ty: xs:anyURI
. @targetNamespace ty: Union({xs:anyURI}, {xs:string: len=0},
 {xs:string: enum=(*)})
. @targetName ty: Union({xs:NCName}, {xs:string: enum=(*)})
. targetAssertion* ty: re:XPATH
. . @expr? ty: re:XPATH
. import*
. . @href ty: xs:anyURI
. namespace*
. . @iri ty: xs:anyURI
. . @prefix ty: xs:NCName
. context?
. . _choice_*
. . 1 var ty: re:XPATH
. . 1 . @name ty: xs:NCName

RDFe – expression-based mapping of XML documents to RDF triples

389

. . 1 . @value? ty: re:XPATH

. . 2 fun ty: re:XPATH

. . 2 . @name ty: xs:NCName

. . 2 . @params? ty: xs:string: pattern=#(\i\c*(\s*,\s*\i\c*)?)?
#
. . 2 . @as? ty: xs:Name
. . 2 . @code? ty: re:XPATH
. resource*
. . @modelID ty: xs:NCName
. . @assertedTargetNodes? .. ty: re:XPATH
. . @iri? ty: re:XPATH
. . @type? ty: List(xs:Name)
. . @targetNodeNamespace? .. ty: Union({xs:anyURI}, {xs:string: len=0},
 {xs:string: enum=(*)})
. . @targetNodeName? ty: Union({xs:NCName}, {xs:string: enum=(*)})
. . targetNodeAssertion* ... ty: re:XPATH
. . . @expr? ty: re:XPATH
. . property*
. . . @iri ty: xs:anyURI
. . . @value ty: re:XPATH
. . . @type? ty: Union({xs:Name},
 {xs:string: enum=(#iri|#resource)})
. . . @list? ty: xs:boolean
. . . @objectModelID? ty: xs:Name
. . . @card? ty: xs:string: pattern=#[?*+]|\d+(-(\d+)?)?|-\d
+#
. . . @reverse? ty: xs:boolean
. . . @lang? ty: re:XPATH
. . . valueItemCase*
. . . . @test ty: re:XPATH
. . . . @iri? ty: xs:anyURI
. . . . @value? ty: re:XPATH
. . . . @type? ty: Union({xs:Name},
 {xs:string: enum=(#iri|#resource)})
. . . . @list? ty: xs:boolean
. . . . @objectModelID? ... ty: xs:Name
. . . . @lang? ty: re:XPATH

4. RDFe model components
This section summarizes the main components of an RDFe based mapping
model. Details of the XML representation can be looked up in the treesheet repre-
sentation shown in the preceding section.

RDFe – expression-based mapping of XML documents to RDF triples

390

4.1. Semantic extension

A semantic extension is a set of one or more semantic maps, together defining a
mapping of XML documents to a set of RDF triples. A semantic extension com-
prises all semantic maps explicitly provided as input for an instance of RDFe pro-
cessing, as well as all maps directly or indirectly imported by these (see below).

4.2. Semantic map

A semantic map is a specification how to map a class of XML documents (defined
in terms of target document constraints) to a set of RDF triples. It is represented
by a <semanticMap> element and comprises the components summarized below.

Table 2. Semantic map components and their XML representation.

Model component XML representation
Semantic map IRI @iri
Target document con-
straint

 Target document namespace @targetNamespace
 Target document local name @targetName
 Target assertions <targetAssertion>
Semantic map imports <import>
RDF namespace bindings <namespace>
Context constructor <context>
Resource models <resource>

A semantic map IRI identifies a semantic map unambiguously. The map IRI should
be independent of the document URI.

The target document constraint is a set of conditions met by any XML document
to which the semantic map may be applied. The constraint enables a decision
whether resource models from the semantic map can be used in order to map
nodes from a given XML document to RDF resource descriptions. A target docu-
ment assertion is an XPath expression, to be evaluated in the context of a docu-
ment root. A typical use of target document assertions is a check of the API or
schema version indicated by an attribute of the input document.

A semantic map may import other semantic maps. Import is transitive, so that
any map reachable through a chain of imports is treated as imported. Imported
maps are added to the semantic extension, and no distinction is made between
imported maps and those which have been explicitly supplied as input.

RDFe – expression-based mapping of XML documents to RDF triples

391

RDF namespace bindings define prefixes used in the output for representing IRI
values in compact form. Note that they are not used for resolving namespace pre-
fixes used in XML names and XPath expressions. During evaluation, XML pre-
fixes are always resolved according to the in-scope namespace bindings
established by namespace declarations (xmlns).

Context constructor and resource models are described in subsequent sections.

4.3. Resource model
A resource model is a set of rules how to construct triples describing a resource
which is viewed as represented by a given XML node. A resource model is repre-
sented by a <resource> element and comprises the components summarized
below.

Table 3. Resource model components and their XML representation.

Model component XML representation
Resource model ID @modelID
Resource IRI expression @iri
Target node assertion @assertedTargetNodes
Target node constraint
 Target node namespace @targetNodeNamespace
 Target node local name @targetNodeName
 Target node assertions <targetNodeAssertion>
Resource type IRIs @type
Property models <property>

The resource model ID is used for purposes of cross reference. A resource model
has an implicit resource model IRI obtained by appending the resource model ID
to the semantic map IRI (with a hash character (“#”) inserted in between if the
semantic map IRI does not end with “/” or “#”).

The resource IRI expression yields the IRI of the resource. The expression is
evaluated using as context item the XML node used as target of the resource
model.

A target node assertion is an expression to be evaluated in the context of each
input document passed to an instance of RDFe processing. The expression yields
a sequence of nodes which MUST be mapped to RDF descriptions. Note that the
processing result is not limited to these resource descriptions, as further descrip-
tions may be triggered as explained in Section 2.2.

A target node constraint is a set of conditions which is evaluated when selecting
the resource model which is appropriate for a given XML node. It is used in par-

RDFe – expression-based mapping of XML documents to RDF triples

392

ticular when a property model treats XML nodes returned by a value expression
as representations of an RDF description (for details see Section 2.2).

Resource type IRIs identify the RDF types of the resource (rdf:type property
values). The types are specified as literal IRI values.

Property models are explained in the following section.

4.4. Property model

A property model is represented by a <property> child element of a <resource>
element. The following table summarizes the major model components.

Table 4. Property model components and their XML representation.

Model component XML representa-
tion

Property IRI @iri
Object value expression @value
Object type (IRI or token) @type
Object language tag @lang
Object resource model (IRI or ID) @objectModelID
RDF list flag @list
Reverse property flag @reverse
Conditional settings <valueItemCase>

The property IRI defines the IRI of the property. It is specified as a literal value.
The object value expression yields XDM items [11] which are mapped to RDF

terms in accordance with the settings of the property model, e.g. the object type.
For each term a triple is constructed, using the term as object, a subject IRI
obtained from the IRI expression of the containing resource model, and a prop-
erty IRI as specified.

The object type controls the mapping of the XDM items obtained from the
object value expression to RDF terms used as triple objects. The object type can be
an XSD data type, the token # iri denoting a resource IRI, or the token #
resource. The latter token signals that the triple object is the subject IRI used by
the resource description obtained for the value item, which must be a node. The
resource description is the result of applying to the value node an appropriate
resource model, which is either explicitly specified (@objectModelID) or deter-
mined by matching the node against the target node constraints of the available
resource models.

The language tag is used to turn the object value into a language-tagged string.

RDFe – expression-based mapping of XML documents to RDF triples

393

The object resource model is evaluated in conjunction with object type #
resource. It identifies a resource model to be used when mapping value nodes
yielded by the object value expression to resource descriptions.

The RDF list flag indicates whether or not the RDF terms obtained from the
object value expression are arranged as an RDF list (default: no).

The reverse flag can indicate that the items obtained from the object value
expression represent the subjects, rather than objects, of the triples to be construc-
ted, in which case the target node of the containing resource model becomes the
triple object.

Conditional settings is a container for settings (e.g. property IRI or object type
IRI) applied only to those value items which meet a condition. The condition is
expressed by an XPath expression which references the value item as an addi-
tional context variable (rdfe:value).

4.5. Context constructor
Using RDFe, the construction of RDF triples is based on the evaluation of XPath
expressions. Evaluation can be supported by an evaluation context consisting of
variables and functions accessible within the expression. The context is obtained
from a context constructor represented by a <context> element. A distinct instance
of the context is constructed for each XML document containing a node which is
used as context node by an expression from the semantic map defining the con-
text. The context constructor is a collection of variable and function constructors.
Variable constructors associate a name with an XQuery expression providing the
value. Function constructors associate a name with an XQuery function defined
in terms of parameter names, return value type and an expression providing the
function value. As the expressions used by the variable and function constructors
are evaluated in the context of the root element of the document in question, vari-
able values as well as function behaviour may reflect the contents of the docu-
ment. Variable values may have any type defined by the XDM data model,
version 3.1 [11] (sequences of items which may be atom, node, map, array or
function). Context functions are called within expressions like normal functions,
yet provide behaviour defined by the semantic map and possibly dependent on
document contents.

5. Evaluation
Semantic maps are evaluated by an RDFe processor. This section describes the
processing in an informal way. See also Appendix A.

5.1. Input / Ouput
Processing input is

RDFe – expression-based mapping of XML documents to RDF triples

394

• An initial set of XML documents
• A set of semantic map documents

Processing output is a set of RDF triples, usually designed to express semantic
content of the XML documents.

The set of contributing semantic maps consists of the set explicitly supplied,
as well as all semantic maps directly or indirectly imported by them.

The set of contributing XML documents is not limited to the initial input
documents, as expressions used to construct triples my access other documents
by derefencing URIs found in documents or semantic maps. This is an example of
navigation into a document which may not have been part of the initial set of
input documents:

 <re:property iri="ont:country" type="#resource"
 value="country/@href/doc(.)//country"/>

RDFe thus supports a linked data view.

5.2. Hybrid triples and preliminary resource description

Understanding the processing of semantic maps is facilitated by the auxiliary
concepts of a “hybrid triple” and a “preliminary resource description”. When a
property model uses the type specification #resource, the nodes obtained from
the object value expression of the property model are viewed as XML nodes repre-
senting resources, and the triple objects are the IRIs of these resources. The resource
is identified by the combined identities of XML node and resource model to be
used in order to map the node to a resource description. When this resource has
already been described in an earlier phase of the evaluation, the IRI is available
and the triple can be constructed. If the resource description has not yet been cre-
ated, the IRI is still unknown and the triple cannot yet be constructed. In this sit-
uation, a hybrid triple is constructed, using the pair of XML node and resource
model ID as object. A hybrid triple is a preliminary representation of the triple
eventually to be constructed. A resource description is called preliminary or
final, dependent on whether or not it contains hybrid triples. A preliminary
description is turned into a final description by creating for each hybrid triple a
resource description and replacing the hybrid triple object by the subject IRI used
by that description. The resource description created for the hybrid triple object
may itself contain hybrid triples, but in any case it provides the IRI required to
finalize the hybrid triple currently processed. If the new resource description is
preliminary, it will be finalized in the same way, by creating for each hybrid triple
yet another resource description which also provides the required IRI. In general,
the finalization of preliminary resource descriptions is a recursive processing
which ends when any new resource descriptions are final.

RDFe – expression-based mapping of XML documents to RDF triples

395

5.3. Asserted target nodes
The scope of processing is controlled by the asserted resource descriptions, the
set of resource descriptions which MUST be constructed, given a set of semantic
maps and an initial set of XML documents. Such a description is identified by an
XML node representing the resource and a resource model ID identifying the
model to be used for mapping the node to an RDF description. (Note that for a
single XML node more than one mapping may be defined, that is, more than one
resource model may accept the same XML node as a target.) The asserted target
nodes of a resource model are the XML nodes to which the resource model must
be applied in order to create all asserted resource descriptions involving this
resource model.

Any additional resource descriptions are only constructed if they are
required in order to construct an asserted resource description. An additional
resource description is required if without this description another description
(asserted or itself additional) would be preliminary, that is, contain hybrid triples.
As the discovery of required resource descriptions may entail the discovery of
further required resource descriptions, the discovery process is recursive, as
explained in Section 5.2.

The asserted target nodes of a resource model are determined by the target
node assertion of the resource model, an expression evaluated in the context of
each initial XML document. Note that the target node assertion is not applied to
XML documents which do not belong to the initial set of XML documents. Such
additional documents contribute only additional resource descriptions, no asser-
ted resource descriptions. Initial documents, on the other hand, may contribute
asserted and/or additional descriptions.

5.4. Processing steps
The processing of semantic maps can now be described as a sequence of steps:
1. For each resource model identify its asserted target nodes.
2. For each asserted target node create a resource description (preliminary or
final).

3. a. Map any hybrid triple object to a new resource description
b. Replace the hybrid triple object by the IRI provided by the new resource

description
4. If any resource descriptions created in (3) contain hybrid triples, repeat (3)
5. The result is the set of all RDF triples created in steps (2) and (3).
For a formal definition of the processing see Appendix A.

6. RDFe for non-XML resources
The core capability of the XPath language is the navigation of XDM node trees,
and this navigation is the “engine” of RDFe. The W3C recommendations defining

RDFe – expression-based mapping of XML documents to RDF triples

396

XPath 3.1 ([9] and [10]) do not define functions parsing HTML and CSV, and the
function defined to parse JSON into node trees (fn:json-to-xml) uses a generic
vocabulary which makes navigation awkward. Implementation-defined XPath
extension functions, on the other hand, which parse JSON, HTML and CSV into
navigation-friendly node trees are common (e.g. BaseX [1] functions json:parse,
html:parse and csv:parse). An RDFe processor may offer implementation-
defined support for such functions and, by implication, also enable the mapping
of non-XML resources to RDF triples.

7. Conformance
An RDFe processor translates an initial set of XML documents and a set of
semantic maps to a set of RDF triples.

7.1. Minimal conformance

Minimal conformance requires a processing as described in this paper. It includes
support for XPath 3.1 expressions in any place of a semantic map where an XPath
expression is expected:

• targetAssertion/@expr
• targetNodeAssertion/@expr
• var/@value
• fun/@code
• resource/@iri
• resource/@assertedTargetNodes
• property/@value
• property/@lang
• valueItemCase/@test
• valueItemCase/@value
• valueItemCase/@lang

7.2. Optional feature: XQuery Expressions Feature

If an implementation provides the XQuery Expressions Feature, it must support
XQuery 3.1 [12] expressions in any place of a semantic map where an XPath
expression is expected.

7.3. Implementation-defined extension functions

An implementation may support implementation-defined XPath extension func-
tions. These may in particular enable the parsing of non-XML resources into

RDFe – expression-based mapping of XML documents to RDF triples

397

XDM node trees and thus support the RDFe-defined mapping of non-XML
resources to RDF triples.

8. Implementation
An implementation of an RDFe processor is available on github [8] (https://
github.com/hrennau/shax). The processor is provided as a command line tool
(shax.bat, shax.sh). Example call:

shax rdfe?dox=drug*.xml,semap=drugbank.*rdfe.xml
The implementation is written in XQuery and requires the use of the BaseX [1]
XQuery processor. It supports the XQuery Expressions Feature and all XPath
extension functions defined by BaseX. This includes functions for parsing JSON,
HTML and CSV into node trees (json:parse, html:parse, csv:parse). The
implementation can therefore be used for mapping any mixture of XML, JSON,
HTML and CSV resources to an RDF graph.

9. Discussion
The purpose of RDFe is straightforward: to support the mapping of XML data to
RDF data. Why should one want to do this? In a “push scenario”, XML data are
the primary reality, and RDF is a means to augment it by an additional represen-
tation. In a “pull scenario”, an RDF model comes first, and XML is a data source
used for populating the model. Either way, the common denominator is informa-
tion content which may be represented in alternative ways, as a tree or as a
graph. The potential usefulness of RDFe (and other tools for mapping between
tree and graph, like RDFa [6], JSON-LD [4] and GraphQL [3]) depends on the
possible benefits of switching between the two models. Such benefits emerge
from the complementary character of these alternatives.

A tree representation offers an optimal reduction of complexity, paying the
price of a certain arbitrariness. The reduction of complexity is far more obvious
than the arbitrariness. Tree structure decouples amount and complexity of infor-
mation. A restaurant menu, for example, is a tree, with inner nodes like starters,
main courses, desserts and beverages, perhaps further inner nodes (meat, fish,
vegetarian, etc.) and leaf nodes which are priced offerings. Such representation
fits the intended usage so well that it looks natural. But when integrating the
menu data from all restaurants in a town - how to arrange intermediate nodes
like location, the type of restaurant, price category, ratings, …? It may also make
sense to pull the menu items out of the menus, grouping by name of the dish.

A graph representation avoids arbitrariness by reducing information to an
essence consisting of resources, properties and relationships – yet pays the price
of a certain unwieldiness. Graph data are more difficult to understand and to use.

RDFe – expression-based mapping of XML documents to RDF triples

398

If switching between tree and graph were an effortless operation, what could be
gained by “seeing” in a tree the graph which it represents, and by “seeing” in a
graph the trees which it can become?

A painting suggesting a thorough consideration of the relationship between XML and RDF.
Figure 1. La clairvoyance, Rene Magritte, 1936

Think of two XML documents, one representing <painter> as child element of
<painting>, the other representing <painting> as child element of <painter>.
From a tree-only perspective they are stating different facts; from a graph-in-tree
perspective, they are representing the same information, which is about painters,
paintings and a relationship between the two. Such intuitive insight may be infer-
red by a machine if machine-readable instructions for translating both documents
into RDF are available. Interesting opportunities for data integration and quality
control seem to emerge. A document-to-document transformation, for example,
may be checked for semantic consistency.

RDFe – expression-based mapping of XML documents to RDF triples

399

If the potential of using tree and graph quasi-simultaneously has hardly been
explored, so far, a major reason may be the high “resistence” which hinders a flow
of information between the two models. RDFe addresses one half of this problem,
the direction tree-to-graph. RDFe is meant to complement approaches dealing
with the other half, e.g. GraphQL [3].

RDFe is committed to XPath as the language for expressing mappings within a
forest of information. The conclusion that RDFe is restricted to dealing with XML
data would be a misunderstanding, due to oversight that any tree structure (e.g.
JSON and any table format) can be parsed into an XDM node tree and thus
become accessible to XPath navigation. Another error would be to think that
RDFe is restricted to connecting information within documents, as XPath offers
excellent support for inter-document navigation (see also the example given in
Section 2.2). Contrary to widespread views, XPath may be understood and used
as a universal language for tree navigation - and RDFe might accordingly serve as
a general language for mapping information forest to RDF graph.

A. Processing semantic maps - formal definition
The processing of semantic maps is based on the building block of an RDFe
expression (rdfee). An rdfee is a pair consisting of an XML node and a resource
model:

 rdfee ::= (xnode, rmodel)
The XML node is viewed as representing a resource, and the resource model
defines how to translate the XML node into an RDF resource description. An
rdfee is an expression which can be resolved to a set of tripels.

Resource models are contained by a semantic map. A set of semantic maps is
called a semantic extension (SE). A semantic extension is a function which maps
a set of XML documents to a (possibly empty) set of RDF triples:

 triple* = SE(document+)
The mapping is defined by the following rules, expressed in pseudo-code.

A.1. Section 1: Top-level rule
triples(docs, semaps) ::=
 for rdfee in rdfees(docs, semaps):
 rdfee-triples(rdfee, semaps)

A.2. Section 2: Resolving an rdfee to a set of triples
rdfee-triples(rdfee, semaps) ::=
 for pmodel in pmodels(rdfee.rmodel),

RDFe – expression-based mapping of XML documents to RDF triples

400

 for value in values(pmodel, rdfee.xnode):
 (
 resource-iri(rdfee.rmodel, rdfee.xnode),
 property-iri(pmodel, rdfee.xnode),
 triple-object(value, pmodel, semaps)
)

values(pmodel, xnode) ::=
 xpath(pmodel/@value, xnode, containing-semap(pmodel))

resource-iri(rmodel, xnode) ::=
 xpath(rmodel/@iri, xnode, containing-semap(rmodel))

property-iri(pmodel, xnode) ::=
 xpath(pmodel/@iri, xnode, containing-semap(pmodel))

triple-object(value, pmodel, semaps) ::=
 if object-type(value, pmodel) = "#resource":
 resource-iri(rmodel-for-xnode(value, pmodel), value)
 else:
 rdf-value(value, object-type(value, pmodel))

rmodel-for-xnode(xnode, pmodel, semaps) ::=
 if pmodel/@objectModelID:
 rmodel(pmodel/@objectModelID, semaps)
 else:
 best-matching-rmodel-for-xnode(xnode, semaps)

best-matching-rmodel-for-xnode(xnode, semaps):
[Returns the rmodel which is matched by xnode and, if several rmodels
are matched, is deemed the best match; rules for “best match” may evolve;
current implementation treats the number of target node constraints as a
measure of priority – the better match is the rmodel with a greater number
of constraints; an explicit @priority à la XSLT is considered a future
option.]

object-type(value, pmodel):
[Returns the type to be used for a value obtained from the value
expression;
value provided by pmodel/@type or by pmodel/valueItemCase/@type.]

rdf-value(value, type):
[Returns a literal with lexical form = string(value), datatype = type.]

RDFe – expression-based mapping of XML documents to RDF triples

401

A.3. Section 3: Resolving input documents to a set of rdfees
rdfees(docs, semaps) ::=
 for rdfee in asserted-rdfees(docs, semaps):
 rdfee,
 required-rdfees(rdfee, semaps)

Sub section: asserted rdfees

asserted-rdfees(docs, semaps) ::=
 for doc in docs,
 for semap in semaps:
 if doc-matches-semap(doc, semap):
 for rmodel in rmodels(semap),
 for xnode in asserted-target-nodes(rmodel, doc):
 (xnode, rmodel)

asserted-target-nodes(rmodel, doc) ::=
 xpath(rmodel/@assertedTargetNodes, doc, containing-semap(rmodel))

Sub section: required rdfees

required-rdfees(rdfee, semaps) ::=
 for pmodel in pmodels(rdfee.rmodel),
 for value in values(pmodel, rdfee.xnode):
 required-rdfee(value, pmodel, semaps)

required-rdfee(xnode, pmodel, semaps) ::=
 if object-type(xnode, pmodel) = "#resource":
 let rmodel ::= rmodel-for-xnode(value, pmodel, semaps),
 let required-rdfee ::= (xnode, rmodel):
 required-rdfee,
 required-rdfees(required-rdfee, semaps)

A.4. Section 4: auxilliary rules
doc-matches-semap(doc, semap):
[Returns true if doc matches the target document constraints of semap.]

xnode-matches-rmodel(xnode, rmodel):
[Returns true if xnode matches the target node constraints of rmodel.]

rmodel(rmodelID, semaps) ::=
[Returns the rmodel with an ID matching rmodelID.]

rmodels(semap) ::= semap//resource

RDFe – expression-based mapping of XML documents to RDF triples

402

pmodels(rmodel) ::= rmodel/property

containing-doc(xnode) ::= xnode/root()

containing-semap(semapNode) ::= semapNode/ancestor-or-self::semanticMap

xpath(xpath-expression, contextNode, semap) ::=
[Value of xpath-expression, evaluated as XPath expression using contextNode
as context node and a dynamic context including all in-scope variables from
the dynamic context constructed for the combination of the document
containing contextNode and semap.]

Bibliography
[1] BaseX. 2019. BaseX GmbH. http://basex.org
[2] DrugBank 5.0: a major update to the DrugBank database for 2018.. 2017. DS

Wishart, YD Feunang, AC Guo, EJ Lo, A Marcu, JR Grant, T Sajed, D Johnson,
C Li, Z Sayeeda, N Assempour, I Iynkkaran, Y Liu, A Maciejewski, N Gale, A
Wilson, L Chin, R Cummings, D Le, A Pon, C Knox, and M Wilson. Nucleic
Acids Res. 2017 Nov 8.. https://www.drugbank.ca/ 10.1093/nar/gkx1037.

[3] GraphQL. 2017. Facebook Inc.. http://graphql.org/
[4] JSON-LD 1.0. A JSON-based Serialization for Linked Data. 2014. World Wide Web

Consortium (W3C). https://www.w3.org/TR/json-ld/
[5] Location trees enable XSD based tool development.. Hans-Juergen Rennau. 2017.

http://xmllondon.com/2017/xmllondon-2017-proceedings.pdf
[6] RDFa Core 1.1 – Third Edition.. 2015. World Wide Web Consortium (W3C).

https://www.w3.org/TR/rdfa-core/
[7] RDF 1.1 Turtle. 2014. World Wide Web Consortium (W3C). https://

www.w3.org/TR/turtle/
[8] A SHAX processor, transforming SHAX models into SHACL, XSD and JSON

Schema.. Hans-Juergen Rennau. 2017. https://github.com/hrennau/shax
[9] XML Path Language (XPath) 3.1. 2017. World Wide Web Consortium (W3C).

https://www.w3.org/TR/xpath-31/
[10] XPath and XQuery Functions and Operators 3.1. 2017. World Wide Web

Consortium (W3C). https://www.w3.org/TR/xpath-functions-31/
[11] XQuery and XPath Data Model 3.1. 2017. World Wide Web Consortium (W3C).

https://www.w3.org/TR/xpath-datamodel-31/

RDFe – expression-based mapping of XML documents to RDF triples

403

[12] XQuery 3.1: An XML Query Language. 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/xquery-31/

[13] xsdplus - a toolkit for XSD based tool development. Hans-Juergen Rennau. 2017.
https://github.com/hrennau/xsdplus

RDFe – expression-based mapping of XML documents to RDF triples

404

Trialling a new JATS-XML workflow for
scientific publishing

Tamir Hassan
Round-Trip PDF Solutions

<tamir@roundtrippdf.com>

Abstract

For better or for worse, PDF is the standard for the exchange of scholarly
articles. Over the past few years, there have been a number of efforts to try
to move towards better structured workflows, typically based on XML, but
they have not gained widespread traction in the academic community for a
number of reasons. This paper describes our experience in trialling a new
“hybrid” PDF/XML workflow for the proceedings of the workshops held at
the 2018 ACM Symposium on Document Engineering.

Keywords: Scientific publishing, Publishing workflows, Document
authoring, XML

1. Introduction
PDF can be described as the lowest common denominator of print-oriented docu-
ment formats; the fact that a PDF can be generated from any application with a
print button has undoubtedly contributed to its position as the de facto standard
for document exchange, and scholarly publishing is no exception.

Due to its print-based legacy, PDF documents are rather inflexible. It is diffi-
cult to extract data out of the PDF or make edits or annotations during the
reviewing process. For a number of years, there has been a push to move towards
better structured workflows, typically based on XML, such as JATS [9] and RASH
[3], which do not have these limitations, and using web technologies to render the
document to the screen or printer.

However, the effect of such initiatives has been rather limited up to now, as
publishers, libraries and search engines are all set up to handle PDF files. Further-
more, the move away from PDF would mean forgoing the two main advantages
that that made it so suitable for publishing in the first place:

• High typographic quality and the ability to accurately maintain visual presen-
tation across different devices

• PDF files are self-contained, containing all images, fonts, etc. Unlike the Web,
if you’ve got the PDF, you’ve got it all.

405

These features are notably missing from the technologies earmarked to succeed
PDF, which is why publishers are understandably apprehensive about moving to
these formats.

But also the authors are reluctant to change. Depending on their field, they
may or may not understand the importance of structured document authoring.
And we of course cannot expect them to write or edit XML by hand; they need to
be offered suitable tools with an interface similar to the word processing pro-
grams that they are used to.

In order to get the best of both worlds, we decided to experiment with a work-
flow that produces “hybrid” PDF files, i.e. PDF files containing embedded data in
a different format; in our case we chose JATS-XML as it is a standard for scientific
literature. The concept of hybrid PDF files is not new, and has in fact been used
by OpenOffice since 2008 [8]. For authoring of the structured content, we chose
Texture [11], a platform-independent scientific word processor, which natively
saves files in a subset of JATS-XML.

1.1. Typical workflows
There are two main types of workflow in use in academia today: The first
requires authors to submit their content in a word processor format, typically
Microsoft Word. After submission of the final manuscript, a desktop publishing
operator extracts the content, cleans it up and lays out the pages of the article in
line with the publication’s style guidelines.

The second type of workflow is more common in the sciences, where the task
of typesetting and layout is outsourced to the authors themselves. Typically, tem-
plates are provided for common authoring tools such as LaTeX and Word and the
authors submit a “camera ready” PDF, which is either printed or uploaded to the
publisher’s server.

As few authors of scientific papers have the time or skills of a graphic
designer, the visual quality of such publications is often noticeably worse than
those resulting from the first workflow. In both cases, the resulting PDFs usually
don’t contain any information about the structure of the document; any structure
present in the original files has been lost.

2. A new experimental workflow
The ACM Symposium on Document Engineering [5] is an annual meeting of pro-
fessionals from academia and industry, and has taken place since 2001. In the past
few years, there have been several discussions on how we should be publishing
our own documents and whether the standard PDF-based publishing workflow
still made sense.

The first day of the conference consists of workshops, before the main pro-
gramme begins. This year, we made the decision to publish a Proceedings volume

Trialling a new JATS-XML workflow for scientific publishing

406

for the workshops, containing six “short papers” in total, one for each presenta-
tion. This provided us an excellent opportunity to experiment with the new
workflow, without affecting the main conference.

The following subsections describe the invidual parts of the workflow.

2.1. The Texture editor

Texture is an open source, MIT-licensed interactive editor for scientific content. Its
native format is DAR [6], which is a stricter form of JATS-XML. It has been devel-
oped using the Electron framework and is available as a stand-alone application,
as well as for integration into Web-based document management and review sys-
tems. Prebuilt binaries are available for Windows, Linux and Mac OS.

Texture’s graphical user interface displays the article and outline side-by-side
(see Figure 1). An additional “metadata view” provides greater control over refer-
ences and figures, as well as enabling additional metadata, such as translations, to
be added. Version 1.0 of the software was released in this September.

Figure 1. The Texture interface

Trialling a new JATS-XML workflow for scientific publishing

407

The authors found the software easy to use; the only exception was a bug we
found when adding footnotes, which was communicated back to the develop-
ment team. A further missing feature that the authors wished for was the ability
to print the document. Clearly, despite having a structured workflow and attrac-
tive online visual presentation, many authors were still uncomfortable not having
a paginated PDF as the concrete, authoritative version. We are currently in dis-
cussions with the developers on how to integrate the PDF generation pipeline
described in Section 2.3 in a future release of Texture.

2.2. Reviewing with EasyChair
A further benefit of the structured workflow is that the reviewing process can be
more closely integrated with the content in the papers, making it easier to quote
snippets and make corrections directly on the document. However, this would
have been beyond the scope of the initial pilot, as well as the capabilities of the
EasyChair system for managing the reviewing process, with which all authors
and reviewers were already familiar.

The DAR files generated by Texture are actually ZIP files containing a mani-
fest XML, manuscript XML and other related content such as images, packaged in
one file. As EasyChair is designed to work with a PDF workflow, it did not allow
files with a .dar (or .zip) extension to be uploaded, and authors were therefore
instructed to rename the extension to .dar.pdf; only then was it possible for the
manuscripts to be submitted.

From the initially submitted DAR files, PDF files were generated for the
reviewers to work with. EasyChair allows additional documents to be attached to
each submission, which are not normally visible to the authors. This function was
used to attach the generated PDFs. The following section describes this process.

2.3. The “hybrid” PDF creation pipeline
In order to create the PDFs, the Pint [10] formatter was used, which is written in
Java and based on the PDFBox library and is currently in beta. Although a more
mature formatting engine such as LaTeX could also have been used, the Pint/
PDFBox combination gives us full control over how the PDF is generated. In the
future, this will allow us to not only encode the source document data, but also
all the formatting decisions that are made in the layout optimization process,
resulting in an “Editable PDF” file that can be edited in a non-destructive way [4].

Pint also takes an XML file as input, and a PDF can be generated from scratch
by passing an abstract layout description with marked-up content. An example of
the file format is given in Figure 2.

Trialling a new JATS-XML workflow for scientific publishing

408

Figure 2. Sample of input file to the Pint formatter

In order to generate the input file, a two-step process is used: First, an XSLT trans-
formation is used to copy all the content from the file and insert the stylesheet
information. Afterwards, the file is programmatically read and references are sor-
ted and relabelled before being passed to the Pint formatter. After creation of the
PDF, the JATS-XML source content is attached to the PDF file and further optimi-
zation is performed.

As Pint is still in beta, some manual fine tuning was necessary to ensure that
the resulting layout was attractive and, for example, the figure placement was
optimal. (Note, however, that this problem also exists with other formatting
engines, such as LaTeX.) We are currently working on an improved algorithm for
figure placement and adjustment, with the goal of performing this task fully
automatically.

Trialling a new JATS-XML workflow for scientific publishing

409

3. Conclusions

This exercise has shown us that now is a good time to start thinking of moving to
more structured workflows for scholarly publishing. In order to ensure take-up
by the scholarly community, it is essential that the tools that are used are open-
source and freely available: Both Texture and Pint are published with permissive
licences (MIT and Apache respectively) and are under active development. There-
fore, they can be expected to become more stable and fully-featured in the near
future.

The lack of take-up of current standards is likely also due to the fact that
many people are uncomfortable with the concept of Web-first content that has no
authoritative visual representation. Whereas responsive document formats are
more flexible and offer numerous benefits, this flexibility can, in certain cases,
lead to misinterpretation of the content, which is every scientist’s nightmare.

We should therefore exercise caution before moving to the “next new thing”
in document formats. There is much unexplored potential in making PDF “smar-
ter” rather than replacing it outright. This new workflow achieves the best of
both worlds: as the resulting PDF files are backwardly compatible, there are
fewer hurdles in its rollout; the resulting hybrid PDFs can simply be slotted into
existing publishers’ PDF libraries and content distribution platforms.

3.1. Alternatives

Although this pilot used two relatively young software products, the fact that
they are in beta is not a reason to delay the introduction of structured workflows,
as much of the technology has already been in place for a long time. For example,
a good, mature alternative to Texture is LyX, which has a similar internal docu-
ment model to DAR. For generation of the PDF output, pdfLaTeX can be used,
and the XML metadata can be embedded afterwards using a library such as
PDFBox.

The existence of these alternatives means that authors have a choice and can
choose the editor that they are most familiar with; tools such as Pandoc make
light work of converting between all these formats.

3.2. Next steps

The next step is to integrate structure into the reviewing process. This is a major
undertaking, as it requires a much tighter integration between the reviewing plat-
form (e.g. EasyChair), the authoring tool (e.g. Texture) and the file format.

The Texture and Pint tools are under continuous development, and work is
currently progressing on improving the layout optimization algorithms to enable
fully automatic generation of PDF files. It is worth noting that some of these opti-

Trialling a new JATS-XML workflow for scientific publishing

410

mizations have been addressed by recent research work by the LaTeX Project [1]
[2].

As the Pint/PDFBox approach gives us access to every character and layout
decision made by the process, we are working with the developers to create fully
tagged, accessible PDF (PDF/UA conformant), as well as embed a full layout
description to make the PDF editable and fully reflowable1. Thus, a future
reviewing platform will have all the information it needs to be able to merge the
reviewers’ comments and, if desired, display them on the PDF, reflowing and
repaginating the document automatically.

3.3. Visual documents

Up to now, structured authoring has usually meant losing control over the visual
appearance of the final document. The goal of the Editable PDF Initiative, under
which the Pint formatter is being developed, is to better harmonize the docu-
ment’s visual presentation with its underlying source. Although the project is still
at an early stage, we plan to show how structured authoring can be introduced
into fields where visual communication is of higher importance and the Editable
PDF format has been developed in such a way as to enable WYSIWYG editing
and manipulation of the content.

But even in the sciences, it has often been questioned whether visual presenta-
tion can be fully separated from content. Authors often have the desire to main-
tain some control over the final layout of their works; even with rigid style
guidelines set by publishers, the current LaTeX-based workflows have given
authors a certain amount of flexibility to e.g. adjust figure placement and, more
importantly, scrutinize the final visual result.

Bibliography
[1] Mittelbach, Frank, 2016: A General Framework for Globally Optimized Pagination.

In DocEng 2016: Proceedings of the 16th ACM Symposium on Document
Engineering.

[2] Mittelbach, Frank, 2017: Effective Floating Strategies. In DocEng 2017: Proceedings
of the 17th ACM Symposium on Document Engineering.

[3] Peroni, Silvio; Osborne, Francesco; Di Iorio, Angelo; Nuzzolese, Andrea
Giovanni; Poggi, Francesco; Vitali, Fabio; Motta, Enrico, 2017: Research Articles
in Simplified HTML: A Web-First Format for HTML-Based Scholarly Articles. In
PeerJ Computer Science.

1 Note that this goes beyond simply tagging the file. Editable PDF [7] is an ongoing research project
and the specification is currently under development.

Trialling a new JATS-XML workflow for scientific publishing

411

[4] Hassan, Tamir, 2018: Towards a Universally Editable Portable Document Format. In
DocEng 2018: Proceedings of the 18th ACM Symposium on Document Engineering.

[5] The ACM Symposium on Document Engineering: https://doceng.org
[6] DAR (Document ARchive): https://github.com/substance/dar
[7] The Editable PDF Initiative: https://editablepdf.org
[8] Hybrid PDFs in OpenOffice: https://www.oooninja.com/2008/06/pdf-

import-hybrid-odf-pdfs-extension-30.html
[9] JATS-XML: https://jats.nlm.nih.gov/archiving/1.1/
[10] Pint (Pint is not TeX): https://github.com/tamirhassan/pint-publisher
[11] Texture: http://substance.io/texture/

Trialling a new JATS-XML workflow for scientific publishing

412

https://doceng.org
https://github.com/substance/dar
https://editablepdf.org
https://www.oooninja.com/2008/06/pdf-import-hybrid-odf-pdfs-extension-30.html
https://www.oooninja.com/2008/06/pdf-import-hybrid-odf-pdfs-extension-30.html
https://jats.nlm.nih.gov/archiving/1.1/
https://github.com/tamirhassan/pint-publisher
http://substance.io/texture/

On the Specification of Invisible XML
Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Invisible XML (ixml) is a method for treating non-XML documents as if
they were XML.

After a number of design iterations, the language is ready for specifica-
tion. This paper describes decisions made during the production of the speci-
fication of ixml. An interesting aspect of this specification is that ixml is
itself an application of ixml: the grammar describes itself, and therefore can
be used to parse itself, and thus produce an XML representation of the
grammar. We discuss the decisions taken to produce the most useful XML
version possible.

Keywords: XML, ixml, parsing, document formats

1. Introduction
Invisible XML (ixml) is a method for treating non-XML documents as if they were
XML.

This gives a number of advantages:
• it enables authors to write documents and data in a format they prefer,
• provides XML for processes that are more effective with XML content,
• opens up documents and data that otherwise are hard to import into XML

environments.
The ixml process works by providing a description of the data or document of
interest in the form of a (context-free) grammar. This grammar is then used to
parse the document, and the resulting parse tree is then serialised as an XML
document. The extra information is included in the grammar about how the tree
should be serialised, allowing the eliding of unnecessary nodes, and the choice of
serialising nodes as XML elements or attributes.

As a (necessarily small) example, take the definition of the email type from
XForms 2.0 [6], which is defined by a regular expression:

<xs:simpleType name="email">
 <xs:restriction base="xs:string">
 <xs:pattern value="([A-Za-z0-9!#-'*\+\-/=\?\^_`\{-~]+)
 (\.[A-Za-z0-9!#-'*\+\-/=\?\^_`\{-~]+)*

413

 @([A-Za-z0-9]([A-Za-z0-9-]*[A-Za-z0-9])?)
 (\.[A-Za-z0-9]([A-Za-z0-9-]*[A-Za-z0-9])?)+"/>
 </xs:restriction>
</xs:simpleType>

If we turn this into ixml, we get the following:
email: user, "@", host. {An email address has two parts separated by an @
sign}
user: atom+".". {The user part is one or more atoms, separated by
dots}
atom: char+. {An atom is a string of one or more 'char'}
host: domain+".". {A host is a series of domains, separated by dots}
domain: word+"-". {A domain may contain a hyphen, but not start or
end with one}
word: letgit+. {A domain otherwise consists of letters and digits}
-letgit: ["A"-"Z"; "a"-"z"; "0"-"9"].
-char: letgit; ["!#$%&'*+-/=?^_`{|}~"]. {A char is a letter, digit, or
punctuation.}
If we now use this grammar to parse the string

~my_mail+{nospam}$?@sub-domain.example.info
and serialise the result, we get the following XML:

<email>
 <user>
 <atom>~my_mail+{nospam}$?</atom>
 </user>@
 <host>
 <domain>
 <word>sub</word>-
 <word>domain</word>
 </domain>.
 <domain>
 <word>example</word>
 </domain>.
 <domain>
 <word>info</word>
 </domain>
 </host>
</email>

If the rule for letgit hadn't had a dash before it, then, for instance, the element
<word>sub</word>, would have looked like this:

<word><letgit>s</letgit><letgit>u</letgit><letgit>b</letgit></word>
Since the word part of a domain has no semantic meaning, we can exclude it from
the serialisation by changing the rule for word into:

On the Specification of Invisible XML

414

-word: letgit+.
to give:

<email>
 <user>
 <atom>~my_mail+{nospam}$?</atom>
 </user>@
 <host>
 <domain>sub-domain</domain>.
 <domain>example</domain>.
 <domain>info</domain>
 </host>
</email>

If we change the rule for atom and domain into
-atom: char+.
-domain: word+"-".

we get:
<email>
 <user>~my_mail+{nospam}$?</user>@
 <host>sub-domain.example.info</host>
</email>

Finally, changing the rules for user and host to:
@user: atom+".".
@host: domain+".".

gives:
<email user='~my_mail+{nospam}$?' host='sub-domain.example.info'>@</email>
To get rid of the left-over "@", we can change the rule for email to:

email: atoms, -"@", host.
to give:

<email user='~my_mail+{nospam}$?' host='sub-domain.example.info'/>
What we can see here is that the definition is much more structured than a regu-
lar expression, and that we have a lot of control over what emerges from the XML
serialisation.

It should be noted that although this example uses a regular expression as
example, ixml is more powerful than the regular expressions, being able to han-
dle any context-free grammar.

It should also be noted that an ixml processor is not a parser generator, but a
parameterised parser (although it would be possible to use the ixml format as
input to a suitably general parser generator.)

On the Specification of Invisible XML

415

Another difference with traditional parser-generator approaches, is that no
lexical analysis phase is necessary, and so there is no need to define a separate
class of token symbols, such as in the REx system [7].

After a number of design iterations ???, the language is now ready for specifi-
cation. A draft specification [5] has been produced. This paper describes the spec-
ification, and some of the decisions made.

2. The Grammar
The grammar is based on a format known as 1VWG, a one-level variant of the
two-level van Wijngaarden grammars [9].

A VWG grammar consists of a series of rules, where a rule consists of a name,
a colon, a one or more 'alternatives' separated by semicolons, all terminated by a
dot. An alternative consists of zero or more 'terms', separated by commas.

Expressing this in ixml looks like this:

ixml: rule+.
rule: name, ":", alternatives, ".".
alternatives: alternative+";".
alternative: term*",".

This introduces some of the extensions ixml has added to vwgs. Appending a star
or plus to a term is used in many grammar systems and related notations such as
regular expressions, to express repetition of a term, zero or more for a star and
one or more for a plus. An ixml difference is to make both postfix operators infix
as well. The right hand operand then defines a separator that comes between the
repeated terms.

Note that these additions do not add any power to the language (they can all
be represented by other means). However they do add ease of authoring, since
the alternative way of writing them is verbose, and obscures the purpose of the
extra rules that have to be added.

A term is a factor, an optional factor, or a factor repeated zero or more, or one
or more times:

term: factor; option; repeat0; repeat1.
option: factor, "?".
repeat0: factor, "*", separator?.
repeat1: factor, "+", separator?.
separator: factor.

These rules also demonstrate the use of a question mark to indicate an optional
factor.

A factor is a terminal, a nonterminal, or a bracketed series of alternatives:

factor: terminal; nonterminal; "(", alternatives, ")".

On the Specification of Invisible XML

416

3. Nonterminals and Terminals
A nonterminal is just a name, which refers to the rule defining that name:

nonterminal: name.
Terminals are the elements that actually match characters in the input; Unicode
characters are used. There are two forms for terminals: literal strings, and charac-
ter sets.

The simplest form is a literal string, as we have seen above, such as ":" and
",". Strings may be delimited by either double quotes or single: ":" and ':' are
equivalent. If you want to include the delimiting quote in a string, it should be
doubled: "don't" and 'don''t' are equivalent.

terminal: literal; charset.
literal: quoted; encoded.
quoted: '"', dchar+, '"';
 "'", schar+, "'".
dchar: ~['"']; '""'.
schar: ~["'"]; "''".

This introduces the exclusion: the construct ~['"'] matches any character except
what is enclosed in the brackets, and is defined below.

In order to express characters with no explicit visible representation or with
an ambiguous representation there is a representation for encoded characters. For
instance #a0 represents a non-breaking space.

encoded: "#", hex+.
hex: ["0"-"9"; "a"-"f"; "A"-"F"].

Encoded characters do not appear within strings, but are free-standing; however,
this doesn't restrict expressiveness, since a rule like

end: "the", #a0, "end".
represents the seven characters with a non-breaking space in the middle.

Character sets, which we have also seen in the earlier simple example, allow
you to match a character from a set of characters, such as ["A"-"Z"; "a"-"z";
"0"-"9"]. Elements of a character set can be a literal string, representing all the
characters in the string, a range like above, or a character class. Unicode defines a
number of classes, such as lower case letter and upper case letter, encoded with two-
letter abbreviations, such as Ll and Lu; these abbreviations may be used to save
the work of having to define those classes yourself:

charset: inclusion; exclusion.
inclusion: "[", member+, "]".
exclusion: "~", inclusion.
member: quoted; range; class.

On the Specification of Invisible XML

417

range: char, "-", char.
class: letter, letter.
char: '"', dchar, '"';
 "'", schar, "'";
 encoded.
letter: ["a"-"z"; "A"-"Z"].

4. What's in a Name?
The question arose: what should be allowed as a name in ixml?

In the XML specification [8], the characters that are permitted in a name are
specified almost entirely in terms of ranges over hexadecimal numbers, without
further explanation. In an informal test of a handful of XML users, we found they
were unable to confidently determine if certain element names were valid XML or
not. Just to give you a taste of the problem, this character may not appear in an
XML identifier: µ, while this one may: µ. They are both versions of the Greek let-
ter mu, but one is at #B5 and the other at #3BC.

So should ixml use the same definition, or is it possible to create something
more transparent? Does ixml even need to exactly duplicate the XML rules? Not
all ixml names are serialised, so there is no a priori need for them to adhere to
XML rules; furthermore, there may in the future be other serialisations; it could
be left to the author to make sure that names adhered to the rules needed for the
chosen serialisation. Would there be holes, and would it matter?

So what does XML allow? This is the XML rule:

NameStartChar ::=
 ":" |
 [A-Z] |
 "_" |
 [a-z] |
 [#xC0-#xD6] |
 [#xD8-#xF6] |
 [#xF8-#x2FF] |
 [#x370-#x37D] |
 [#x37F-#x1FFF] |
 [#x200C-#x200D] |
 [#x2070-#x218F] |
 [#x2C00-#x2FEF] |
 [#x3001-#xD7FF] |
 [#xF900-#xFDCF] |
 [#xFDF0-#xFFFD] |
 [#x10000-#xEFFFF]
NameChar ::=
 NameStartChar |
 "-" |

On the Specification of Invisible XML

418

 "." |
 [0-9] |
 #xB7 |
 [#x0300-#x036F] |
 [#x203F-#x2040]

So an XML name can start with a letter, a colon, an underscore, and "other stuff";
it can continue with the same characters, a hyphen, a dot, the digits, and some
more other stuff.

In brief, the "other stuff" for a start character is anything between #C0 (which
is À) and #EFFFF (which is not assigned) -- mostly representing a huge collection
of letters from many languages. What is excluded is:
• #D7 (×, the multiplication sign)
• #F7 (÷, the division sign)
• #300-#36F (combining characters, such as the combining grave accent),
• #37E (the Greek question mark ";")
• #2000-#200B (various spaces, such as the en space)
• #200E-#2006F, (various punctuation, including several hyphen characters)
• #2190-#2BFF, (a large number of symbol-like characters, such as arrows)
• #2FF0-#3000, (ideographic description characters)
• #D800-#F8FF, (surrogates, and private use)
• #FDD0-#FDEF, (unassigned)
• #FFFE and #FFFF (unassigned).
A name continuation character consists of the same characters plus as already
said a hyphen, a dot, and the digits, and then #B7 (the middot "·"), the combining
characters left out of the start characters, and then the two characters #203F and
#2040, the overtie and undertie characters ‿⁀.

On the other hand, Unicode [10] has 30 character classes:

Name Description Number Examples
Cc Control 65 Ack, Bell, Backspace, Tab, LF, CR, etc
Cf Format 151 Soft hyphen, Arabic Number Sign, Zero-

width space, left-to-right mark, invisible
times, etc.

Co Private Use #E000-#F8FF
Cs Surrogate #D800-#DFFF
Ll Lowercase Letter 2,063 a, µ, ß, à, æ, ð, ñ, π, Latin, Greek, Coptic,

Cyrillic, Armenian, Georgian, Cherokee,
Glagolitic, many more

On the Specification of Invisible XML

419

Name Description Number Examples
Lm Modifier Letter 250 letter or symbol typically written next to

another letter that it modifies in some
way.

Lo Other Letter 121,047 ª, º, ƻ, dental click, glottal stop, etc., and
letters from languages that don't have
cased letters, such as Hebrew, Arabic,
Syriac, ...

Lt Titlecase Letter 31 Mostly ligatures that have to be treated
specially when starting a word.

Lu Uppercase Letter 1,702 A, Á, etc
Mc Spacing Mark 401 Spacing combining marks, Devengari,

Bengali, etc.
Me Enclosing Mark 13 Combining enclosing characters such as

"Enclosing circle"
Mn Nonspacing Mark 1763 Combining marks, such as combining

grave accent.
Nd Decimal Number 590 0-9, in many languages, mathematical

variants,
Nl Letter Number 236 Ⅰ, Ⅱ, Ⅲ, Ⅳ,...
No Other Number 676 subscripts, superscripts, fractions, cir-

cled and bracketed numbers, many lan-
guages

Pc Connector Punctu-
ation

10 _, ‿, ⁀, ...

Pd Dash Punctuation 24 -, –, —, ...
Pe Close Punctuation 73),], }, ...
Pf Final Punctuation 10 », ’, ”, ...
Pi Initial Punctuation 12 «, ‘, “, ...
Po Other Punctuation 566 !, @, #, ", #, %, &, ', *, ,, ., /, :, ;, ?, ¶, ...
Ps Open Punctuation 75 (, [, {, ...
Sc Currency Symbol 54 $, £, €, ¢, ¥, ¤, ...
Sk Modifier Symbol 121 ^, ´, `, ¨, ˚, ...
Sm Math Symbol 948 +, <, =, >, |, ~, ±, ×, ÷, ...
So Other Symbol 5855 ©, ®, °, various arrows, much more.

On the Specification of Invisible XML

420

Name Description Number Examples
Zl Line Separator 1 But not cr, lf.
Zp Paragraph Separa-

tor
1

Zs Space Separator 17 space, nbsp, en quad, em quad, thin
space, etc. Not tab, cr, lf etc.

The final decision was made to define ixml names using Unicode character
classes, while keeping as close as possible to the spirit of what is allowed in XML:

name: namestart, namefollower*.
namestart: ["_"; Ll; Lu; Lm; Lt; Lo].
namefollower: namestart; ["-.·‿⁀"; Nd; Mn].

Consequently there are small differences in what a name is. For instance, Unicode
classes the characters ª and º as letters, and does class both mu characters as let-
ters, while XML doesn't; as was indicated above, not all ixml names are serialised,
so it is the responsibility of the ixml author to ensure that those that do, adhere to
the XML rules.

5. Spaces and comments
One thing that the above grammar hasn't yet defined is where spaces may go.

These are allowed after any token, and before the very first token, so we have
to update all the rules to indicate this. For instance:

ixml: S, rule+.
rule: name, S, ":", S, alternatives, ".", S.
alternatives: alternative+(";", S).

where S defines what a space is:
S: (whitespace; comment)*.
whitespace: [Zs; #9 {tab}; #a {lf}; #d {cr}].
comment: "{", (cchar; comment)*, "}".
cchar: ~["{}"].

Here we see the use of a character class, Zs, which are all characters classified in
Unicode as a space character; to this we have added tab, line feed, and carriage
return (which are classified as control characters in Unicode).

Actually, Unicode is somewhat equivocal about whitespace. Along with the
character class Zs it also has the character property WS ('WhiteSpace').

The Zs class contains the following 17 characters:

space, no-break space, ogham space mark, en quad, em quad, en space, em space,
three-per-em space, four-per-em space, six-per-em space, figure space, punctuation

On the Specification of Invisible XML

421

space, thin space, hair space, narrow no-break space, medium mathematical space,
ideographic space.

These all have the WS property, with the exception of no-break space, and narrow
no-break space, which have the property CS (common separator, along with com-
mas, colons, slashes and the like). There are also two characters that have the WS
property, but are not in the Zs class, form-feed, which has class Cc (control char-
acter), and line separator, which is the sole member of class Zl.

For the record, line feed and carriage return are both in character class Cc
(control character), with property 'Paragraph Separator'; the other characters that
share this property are: #1C, #1D, #1E ('information separator' control characters,
all in class Cc), #85 (Next line, also in Cc), and #2029 (paragraph separator, the
sole member of Zp, paragraph separator). The tab character, also in Cc, has prop-
erty 'Segment Separator'; other characters that have this property are #B (line tab-
ulation), and #1F ('Information separator), both in class Cc.

Wherever whitespace is permitted in ixml, so is a comment. A comment may
itself contain a comment, which enables commenting out sections of a grammar.

An addition that has also been made is to allow = and well as : to delimit a
rule name, and | as well as ; to delimit alternatives:

rule: name, S, ["=:"], S, alternatives, ".", S.
alternatives: alternative+([";|"], S).

6. Serialisation and Marks
Once a grammar has been defined, it is then used to parse input documents; a
resulting parse is serialised as XML. It is not specified which parse algorithm
should be used, as long as it accepts all context-free grammars, and produces at
least one parse of any document that matches the grammar.

By default, a parse tree is serialised as XML elements: the parse tree is trav-
ersed in document order (depth first, left to right), and nonterminal nodes are
output as XML elements, and terminals are just output.

For instance, for this small grammar for simple expressions:
expr: operand+operator.
operand: id; number.
id: letter+.
number: digit+.
letter: ["a"-"z"].
digit: ["0"-"9"].
operator: ["+-×÷"].

parsing the following string:
pi×10

would produce

On the Specification of Invisible XML

422

<expr>
 <operand>
 <id>
 <letter>p</letter>
 <letter>i</letter>
 </id>
 </operand>
 <operator>×</operator>
 <operand>
 <number>
 <digit>1</digit>
 <digit>0</digit>
 </number>
 </operand>
</expr>

To control serialisation, marks are added to grammars.
There are three options for serialising a nonterminal node, such as expr, and

operand above:
1. Full serialisation as an element, as above, which is the default;
2. As an attribute: in which case all (serialised) terminal descendents of the node

become the value of the attribute;
3. Partial serialisation, only serialising the children, essentially the same as

option 1, but without the surrounding tag.
For serialising a terminal the only option is between serialising it and not.

There are two places where a nonterminal can be marked for serialising: at the
definition of the rule for that nonterminal, which specifies the default way it is
serialised, or at the use of the nonterminal, which overrides the default. A termi-
nal can only be marked at the place of use.

There are three type of mark: "^" for full, "@" for attribute (which doesn't apply
to terminals), and "-" for partial (which causes terminals not to be serialised).

To support this, we add to the grammar for rule, and nonterminal:
rule: (mark, S)?, name, S, ":", S, alternatives, ".", S.
nonterminal: (mark, S)?, name, S.
mark: ["@^-"].

and similar for terminals.

7. Attribute lifting
The only unusual case for serialisation is for attribute children of a partially ser-
ialised node. In that case there is no element for the attributes to be put on, and so
they are lifted to a higher node in the parse tree. For instance, with:

On the Specification of Invisible XML

423

expr: operand+operator.
operand: id; number.
id: @name.
name: letter+.
number: @value.
value: digit+.
letter: ["a"-"z"].
digit: ["0"-"9"].
operator: ["+-×÷"].

the default serialisation for pi×10 would look like this:
<expr>
 <operand>
 <id name='pi'/>
 </operand>
 <operator>×</operator>
 <operand>
 <number value='10'/>
 </operand>
</expr>

However, if we changed the rules for id and number to partial serialisation:
-id: @name.
-number: @value.

so that neither produces an element, then the attributes are moved up, giving:
<expr>
 <operand name='pi'/>
 <operator>×</operator>
 <operand value='10'/>
</expr>

8. Ambiguity
A grammar may be ambiguous, so that a given input may have more than one
possible parse.

For instance, here is an ambiguous grammar for expressions:
expr: id; number; expr, operator, expr.
id: ["a"-"z"]+.
number: ["0"-"9"]+.
operator: "+"; "-"; "×"; "÷".

Given the string a÷b÷c, this could produce either of the following serialisations:
<expr>
 <expr>
 <id>a</id>

On the Specification of Invisible XML

424

 </expr>
 <operator>÷</operator>
 <expr>
 <expr>
 <id>b</id>
 </expr>
 <operator>÷</operator>
 <expr>
 <id>c</id>
 </expr>
 </expr>
</expr>

or
<expr>
 <expr>
 <expr>
 <id>a</id>
 </expr>
 <operator>÷</operator>
 <expr>
 <id>b</id>
 </expr>
 <id>a</id>
 </expr>
 <operator>÷</operator>
 <expr>
 <id>c</id>
 </expr>
</expr>

i.e. it could be interpreted as a÷(b÷c) or as (a÷b)÷c.
In the case of ambiguous parses, one of the parse trees is serialised (it is not

specified which), but the root element is marked to indicate that it is ambiguous.
Other examples of possible ambiguity to look out for are if we had defined a

rule in the grammar as:

rule: name, ":", alternatives, ".".
alternatives: alternative*";".
alternative: term*",".

then an empty rule such as:
empty: .

could be interpreted equally well as a rule with no alternatives, or with one alter-
native with no terms.

Similarly, if a grammar says that spaces could appear before or after tokens

On the Specification of Invisible XML

425

id: S, letter+, S.
operator: S, ["+-×÷"], S.

then with an input such as a + b the first space could be interpreted as either fol-
lowing a, or preceding +.

As a side note, this is why commas are needed between terms in an ixml alter-
native. Otherwise you wouldn't be able to see the difference between:

a: b+c.
and

a: b+, c.

9. The ixml Serialisation
The ixml grammar is itself an application of ixml, since it is defined in its own
format. That means that the grammar can be parsed with itself, and then serial-
ised to XML. This has consequences for the design of the grammar.

The main choice was whether to use attributes at all, and if so where. The
decision taken was to put all semantic terminals (such as names) in attributes, and
otherwise to use elements.

As pointed out above, spaces were carefully placed to prevent ambiguous par-
ses, but also placed in the grammar so that they didn't occur in attribute values.

So as an example, the serialisation for the rule for rule, is:
<rule name='rule'>:
 <alt>
 <option>
 <nonterminal name='mark'/>?</option>,
 <nonterminal name='name'/>,
 <nonterminal name='S'/>,
 <inclusion>[
 <literal dstring='=:'/>]</inclusion>,
 <nonterminal name='S'/>,
 <nonterminal mark='-' name='alts'/>,
 <literal dstring='.'/>,
 <nonterminal name='S'/>
 </alt>.</rule>

Although all terminal symbols are preserved in the serialisation, the only ones of
import are in attribute values.

Since formally it is the XML serialisation that is used as input to the parser,
and text nodes in the serialisation are ignored, it is only the serialisation that mat-
ters for the parser. This means that a different ixml grammar may be used, as long
as the serialisation is the same. So if the grammar looks like this:

<expr> ::= <id> | <number> | <expr>, <operator>, <expr>.

On the Specification of Invisible XML

426

that is fine, as long as it produces the same serialisation structure.

10. Implementation

A pilot implementation of an ixml processor has been created (and used for the
examples in this paper). The next step is to turn this into a full-strength imple-
mentation.

11. Future work

If you look at an ixml grammar in the right way, you can also see it as a type of
schema for an XML format. Future work will look at the possibilities of using
ixml to define XML formats. For instance, if we take the following XSL definition
of the bind element in XForms 1.1:

<element name="bind">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="xforms:bind"/>
 </sequence>
 <attributeGroup ref="xforms:Common.Attributes"/>
 <attribute name="nodeset" type="xforms:XPathExpression" use="optional"/>
 <attribute name="calculate" type="xforms:XPathExpression" use="optional"/>
 <attribute name="type" type="QName" use="optional"/>
 <attribute name="required" type="xforms:XPathExpression" use="optional"/>
 <attribute name="constraint" type="xforms:XPathExpression"
use="optional"/>
 <attribute name="relevant" type="xforms:XPathExpression" use="optional"/>
 <attribute name="readonly" type="xforms:XPathExpression" use="optional"/>
 <attribute name="p3ptype" type="xsd:string" use="optional"/>
 </complexType>
</element>

you could express this in ixml as follows:

bind: -Common, @nodeset?, -MIP*, bind*.
 MIP: @calculate; @type; @required; @constraint;
 @relevant; @readonly; @p3ptype.
 nodeset: xpath.
 calculate: xpath.
 type: QName.
 constraint: xpath.
 relevant: xpath.
 readonly: xpath.
 p3ptype: string.

On the Specification of Invisible XML

427

The main hurdle is that a rule name must be unique in a grammar, and in XML
attributes and elements with the same name may have different content models
For instance, there is also a bind attribute on other elements in XForms.

Another example is the input element in XForms:

<element name="input">
 <complexType>
 <sequence>
 <element ref="xforms:label"/>
 <group ref="xforms:UI.Common" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attributeGroup ref="xforms:Common.Attributes"/>
 <attributeGroup ref="xforms:Single.Node.Binding.Attributes"/>
 <attribute name="inputmode" type="xsd:string" use="optional"/>
 <attributeGroup ref="xforms:UI.Common.Attrs"/>
 <attribute name="incremental" type="xsd:boolean" use="optional"
 default="false"/>
 </complexType>
</element>

<attributeGroup name="Single.Node.Binding.Attributes">
 <attribute name="model" type="xsd:IDREF" use="optional"/>
 <attribute name="ref" type="xforms:XPathExpression" use="optional"/>
 <attribute name="bind" type="xsd:IDREF" use="optional"/>
</attributeGroup>

which becomes:

input: -Common, -UICommonAtts, -Binding?, @inputmode?, @incremental?,
label, UICommon*.
Binding: (@model?, @ref; @ref, @model); @bind.
model: IDREF.
bind: IDREF.
ref: xpath.

If you had such definitions, you could then even design 'compact' versions of
XML formats, eg for XForms:

bind //@open type boolean
input age "How old are you?"

by altering the rules above to

bind: -"bind" -Common, @ref?, -MIP*, bind*.
MIP: @nodeset; @calculate; @type; @required; @constraint; @relevant;
@readonly; @p3ptype.
nodeset: xpath.

On the Specification of Invisible XML

428

calculate: -"calculate", xpath.
type: -"type", QName.

etc., and
input: -"input", -Common, -UICommonAtts, -Binding?, @inputmode?,
@incremental?, label, UICommon*.

etc.

12. Conclusion
A host of new non-XML documents are opened to the XML process pipeline by
ixml. By defining ixml in ixml, it becomes the first large application of ixml.

Future work will allow designers to create formats in a compact version and
an equivalent XML version in parallel.

13. References

Bibliography
[1] Invisible XML. Steven Pemberton. Proceedings of Balisage: The Markup Conference

2013. Balisage Series on Markup Technologies, vol. 10. 2013. doi:10.4242/
BalisageVol10.Pemberton01 . http://www.cwi.nl/~steven/Talks/2013/08-07-
invisible-xml/invisible-xml-3.html .

[2] Steven Pemberton. Data Just Wants to Be Format-Neutral. Proc. XML Prague
2016. 2016. 109-120. http://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf .

[3] Steven Pemberton. Parse Earley, Parse Often: How to Parse Anything to XML.
Proc. XML London 2016. 2016. 120-126. http://xmllondon.com/2016/
xmllondon-2016-proceedings.pdf#page=120 .

[4] Steven Pemberton. On the Descriptions of Data: The Usability of Notations. Proc.
XML Prague 2018. 2018. 143-159. http://archive.xmlprague.cz/2016/files/
xmlprague-2016-proceedings.pdf .

[5] Steven Pemberton. Invisible XML Specification (Draft). CWI. 2018. https://
www.cwi.nl/~steven/ixml/ixml-specification.html .

[6] Erik Bruchez et al. (eds). XForms 2.0. W3C. 2019. https://www.w3.org/
community/xformsusers/wiki/XForms_2.0 .

[7] Gunther Rademacher. REx Parser Generator. 2016. http://www.bottlecaps.de/
rex/ .

[8] Tim Bray et al. (eds). XML 1.0 5th edition. W3C. 2008. https://www.w3.org/TR/
2008/REC-xml-20081126/ .

On the Specification of Invisible XML

429

doi:10.4242/BalisageVol10.Pemberton01
doi:10.4242/BalisageVol10.Pemberton01
http://www.cwi.nl/​~steven/​Talks/​2013/​08-07-invisible-xml/​invisible-xml-3.html
http://www.cwi.nl/​~steven/​Talks/​2013/​08-07-invisible-xml/​invisible-xml-3.html
http://​archive.xmlprague.cz/​2016/files/​xmlprague-2016-proceedings.pdf
http://​archive.xmlprague.cz/​2016/files/​xmlprague-2016-proceedings.pdf
http://​xmllondon.com/​2016/xmllondon-2016-proceedings.pdf#page=120
http://​xmllondon.com/​2016/xmllondon-2016-proceedings.pdf#page=120
http://​archive.xmlprague.cz/​2016/files/​xmlprague-2016-proceedings.pdf
http://​archive.xmlprague.cz/​2016/files/​xmlprague-2016-proceedings.pdf
https://www.cwi.nl/~steven/ixml/ixml-specification.html
https://www.cwi.nl/~steven/ixml/ixml-specification.html
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
http://www.bottlecaps.de/rex/
http://www.bottlecaps.de/rex/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/

[9] A. van Wijngaarden. 1974. The Generative Power of Two-Level Grammars. J.
Loeckx. Automata, Languages and Programming, ICALP 1974. Lecture Notes in
Computer Science, vol 14. Springer. https://doi.org/10.1007/978-3-662-21545-6_1 .

[10] Unicode Consortium. The Unicode Standard, Chapter 4: Character Properties.
Unicode, Inc.. June 2018. https://www.unicode.org/versions/Unicode11.0.0/
ch03.pdf#G2212 .

On the Specification of Invisible XML

430

https://doi.org/10.1007/978-3-662-21545-6_1
https://www.unicode.org/versions/Unicode11.0.0/ch03.pdf#G2212
https://www.unicode.org/versions/Unicode11.0.0/ch03.pdf#G2212

Jiří Kosek (ed.)

XML Prague 2019
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2019

ISBN 978-80-906259-6-9 (pdf)
ISBN 978-80-906259-7-6 (ePub)

	XML Prague 2019
	Table of Contents
	General Information
	Sponsors
	Preface
	Task Abstraction for XPath Derived Languages
	1. Introduction
	1.1. The vision of XPDLs
	1.2. Novel applications of XPDLs
	1.2.1. XPDLs as Web Languages
	1.2.2. Binary Processing with XPDLs

	1.3. Motivation
	1.4. Our Requirements

	2. Current Approaches by Implementers
	2.1. BaseX
	2.2. eXist-db
	2.3. MarkLogic
	2.4. Saxon
	2.5. xq-promise
	2.6. Conclusion of Implementers Survey

	3. Solutions offered for non-XPDLs
	3.1. Actor Model
	3.2. Async/Await
	3.3. Coroutines
	3.4. IO Monads
	3.5. Promises and Futures
	3.6. Reactive Streams
	3.7. Conclusion of non-XPDL Solutions Survey

	4. EXPath Tasks
	4.1. The Design of EXPath Tasks
	4.1.1. Abstract Data Types
	4.1.2. Typing a Task
	4.1.3. Asynchronous Tasks
	4.1.4. Executing a Task

	4.2. Using EXPath Tasks
	4.2.1. Composing Tasks
	4.2.2. Using Asynchronous Tasks
	4.2.3. Using Tasks with IXSL

	5. Conclusion
	5.1. Future Work

	A. EXPath Tasks Module Definitions
	A.1. Namespaces and Prefixes
	A.2. Types
	A.3. Functions
	A.3.1. Basic Task Construction
	A.3.1.1. task:value
	A.3.1.2. task:of

	A.3.2. Task Composition
	A.3.2.1. task:bind
	A.3.2.2. task:then
	A.3.2.3. task:fmap
	A.3.2.4. task:sequence

	A.3.3. Task Error Management
	A.3.3.1. task:error
	A.3.3.2. task:catch
	A.3.3.3. task:catches
	A.3.3.4. task:catches-recover

	A.3.4. Asynchronous Tasks
	A.3.4.1. task:async
	A.3.4.2. task:wait
	A.3.4.3. task:wait-all
	A.3.4.4. task:cancel
	A.3.4.5. task:cancel-all

	A.3.5. Unsafe Tasks
	A.3.5.1. task:RUN-UNSAFE

	Bibliography

	Ex-post rule match selection: A novel approach to XSLT-based Schematron validation
	1. Introduction
	2. Design of an XSLT-based Schematron processor
	3. Ex-post rule match selection
	4. Conclusion and future work
	Bibliography

	Authoring Domain Specific Languages in Spreadsheets Using XML Technologies
	1. An Entirely Incomplete Description of DSLs
	2. DSLs in Business Application Development
	3. DSLs in Spreadsheets
	4. Using XML Technologies To Read Spreadsheet Data
	4.1. The Simple Structure of Data Within a Spreadsheet
	4.2. Using XPATH for Addressing Data within the Simple Model
	4.3. Extracting the Simple Spreadsheet Model from Real-world Spreadsheets

	5. Using XML Technology to Generate Artifacts from a DSL
	5.1. Producing artifacts using TEXT output
	5.2. Producing XML and JSON artifacts
	5.3. Producing XSLT artifacts

	6. Some examples of DSLs in Spreadsheets
	6.1. An Automaton or Finite State Machine (FSM) as DSL
	6.1.1. Objectives of the FSM DSL in a Spreadsheet
	6.1.2. Description of the DSL Model
	6.1.3. Describing the Java Abstract Class
	6.1.4. A Stylesheet for Generating the Java Abstract Class
	6.1.5. Generating the DOT / GraphViz artifact
	6.1.6. Generating the DOT artifact

	6.2. Configuring Instances of an Enterprise Application in a Spreadsheet DSL
	6.2.1. Overall Objectives of the Configuration DSL
	6.2.2. Requirements for Configuration
	6.2.3. A Model Specifying The Configuration of Instances of a System
	6.2.4. Generating the Configuration Artifacts
	6.2.5. Generating non-Properties Configuration Artifacts
	6.2.6. Added Benefits of the Configuration DSL

	6.3. Extracting Tabular Data from XML Documents
	6.3.1. High-level Objectives
	6.3.2. The Requirements for Extracting Tabular Data from XML
	6.3.3. The Model for Describing the Extraction of the XML Data
	6.3.4. Testing and Analyzing the Data Extraction
	6.3.5. Business Expert Usage of the CSV Extraction DSL

	6.4. Schema to Schema Translations
	6.4.1. Overall Objectives
	6.4.2. Requirements
	6.4.3. Benefits of Generating the XSLT from the Schema-to-Schema DSL

	7. Conclusions
	8. Caveats
	Bibliography

	How to configure an editor
	1. Introduction
	2. Iteration 0
	2.1. The beginning: canInsert
	2.2. Schemata as regular expressions

	3. Iteration 1
	3.1. Validation
	3.2. Synthesis
	3.3. Flow behaviour
	3.4. Blueprints
	3.5. Schema-independent primitives: vertical insert nodes
	3.6. Operations
	3.6.1. JSONML

	4. Iteration 2
	4.1. Families, Content Visualization Kit
	4.2. Selectors
	4.3. Stencils
	4.4. Extender

	5. Iteration 3 (now)
	5.1. XPath
	5.2. XPath observers
	5.3. XQuery & Update Facility

	6. Conclusion
	Bibliography

	Discover the Power of SQF
	1. Introduction
	2. Schematron QuickFix
	3. SQF Use Cases
	3.1. Quality Assurance
	3.2. Efficiency

	4. Abstract Quick Fixes
	5. Multilingual Support in SQF
	6. Generate Quick Fixes Dynamically
	7. Interactive Schematron through SQF
	7.1. An ignore concept
	7.1.1. How can an ignore concept work in Schematron?
	7.1.2. XSLT style guide example
	7.1.3. Interaction with SQF

	7.2. XSD Guide
	7.2.1. Design patterns examples
	7.2.2. Using Schematron and SQF
	7.2.3. Multiple Choice
	7.2.4. Input by the user
	7.2.5. Mode filter by rule order and use-when condition
	7.2.6. Complex tasks with XSLT
	7.2.7. Escali plugin feature
	7.2.8. Restrictions and open issues
	7.2.9. Summary and conclusions

	8. Conclusion

	Tagdiff: a diffing tool for highlighting differences in the tagging of text-oriented XML documents
	1. Introduction
	2. Algorithm
	2.1. First phase: Diffing of the unparsed XML documents
	2.2. Second phase: Segmentation of the parsed XML documents
	2.3. Third phase: Visual segmentation
	2.4. Fourth phase: Alignment of sequences of differing segments
	2.5. Fifth phase: Prettyprinting

	3. Implementation
	4. Evaluation
	5. Related work
	5.1. Diffing algorithms
	5.2. Command line tools
	5.3. GUI tools
	5.4. Usability

	6. Conclusion
	7. Acknowledgements
	Bibliography

	Merge and Graft: Two Twins That Need To Grow Apart
	1. Introduction
	2. Terminology
	3. A word about conflicts
	4. How do merge and graft differ?
	5. Advantages of XML for rule-based conflict resolution
	6. Integration with Git Merge
	6.1. Avoiding conflict confusion
	6.2. Improved non-conflicting results
	6.3. Simpler software design

	7. Representing merge conflicts
	8. Conclusions
	References

	The Design and Implementation of FusionDB
	1. Introduction
	1.1. Issues Identified by Users
	1.2. Issues Identified by Developers
	1.2.1. Correctness
	1.2.2. Performance
	1.2.3. Missing Features

	2. Design Decisions
	2.1. Storage Engine
	2.1.1. Why we opted not to improve eXist-db's
	2.1.2. Why we opted not to build our own
	2.1.3. How and why we chose a 3rd-party

	2.2. ACID Transactions
	2.2.1. Transactions for FusionDB
	2.2.2. FusionDB Transactions and XQuery
	2.2.3. FusionDB Transactions and APIs

	2.3. Concurrency and Locking
	2.3.1. Incorrect Locking
	2.3.2. Lock Implementations
	2.3.3. Asymmetrical Locking
	2.3.4. Hierarchical Locking
	2.3.5. Concurrent Collection Caching
	2.3.6. New Locking Features

	2.4. UUIDs
	2.5. Key/Value Metadata
	2.6. Online Backup
	2.6.1. Full Document Export
	2.6.2. Checkpoint Backup

	2.7. BLOB Store

	3. High-level Architecture
	3.1. Programming Language
	3.2. Column Families

	4. Conclusion
	5. Future Work
	Bibliography

	xqerl_db: Database Layer in xqerl
	1. Introduction
	2. Overview of the System
	3. Databases
	3.1. Node Table
	3.2. String Table
	3.3. Path Table and Transactions

	4. Future Work
	5. Conclusion
	Bibliography

	An XSLT compiler written in XSLT: can it perform?
	1. Introduction
	2. Motivation
	3. The Compilers
	3.1. The XJ Compiler
	3.2. The XX Compiler
	3.2.1. Static inclusion
	3.2.2. Normalisation
	3.2.3. XSLT compilation
	3.2.4. XPath compiling and type checking
	3.2.5. Component binding
	3.2.6. Reflections on the design

	3.3. Comparing the Two Compilers

	4. Compiler Performance
	4.1. Methodology
	4.2. Targets
	4.3. Measurement Techniques
	4.4. Speeding up the XX Compiler on the Java Platform
	4.4.1. XPath Parsing
	4.4.2. Further investigations
	4.4.3. Subtree Copying
	4.4.4. Algorithmic Improvements
	4.4.5. Epilogue

	4.5. So what about Javascript?

	5. Conclusions
	References

	XProc in XSLT: Why and Why Not
	1. Introduction
	2. The overall approach taken
	3. Immediate or Compiled
	4. XProc Features
	4.1. Definition
	4.2. Comparing some features
	4.3. Dependency Management
	4.4. Running external processes
	4.5. Expression Languages and Variables
	4.6. Reading and Writing Archives

	5. Limitations and Restrictions of the XSLT Approach
	5.1. Restrictions on Reading Created Resources
	5.2. Other Languages
	5.3. Validation, XInclude, and Other Parsing options

	6. Conclusions
	Bibliography

	Merging The Swedish Code of Statutes (SFS)
	1. Intro & Background
	1.1. The Swedish Code of Statutes
	1.2. Merging Companies (and Content)
	1.3. Merging SFS Content

	2. The Merge Process
	2.1. What You Need to Understand First
	2.2. Assumptions and Approach
	2.3. Legacy Publishing at NJ
	2.4. Legacy Publishing at KG

	3. Implementation
	3.1. Transformation and Validation Pipelines
	3.2. Examples
	3.3. KG/NJ to EXC
	3.4. Diff and Merge
	3.5. EXC to KG++
	3.6. KG++ to EXC
	3.7. Unit Tests

	4. Issues
	4.1. eXist-DB to the Rescue!
	4.2. Up-conversion
	4.2.1. Mixed Content
	4.2.2. Running Headers
	4.2.3. Manual Lists

	4.3. Tag Abuse
	4.3.1. Fake Lists
	4.3.2. Fake Headings

	4.4. Preferred Content
	4.5. Manual Selection
	4.6. Diffing and Merging Problems
	4.6.1. Identifying Normative Content
	4.6.2. Versioning Problems
	4.6.3. Versioning Problems, Pt II
	4.6.4. Other Diffing Problems: The Merge As A Quality Assurance

	5. Conclusions
	5.1. Why Not XQuery?

	Short Glossary
	Bibliography

	JLIFF, Creating a JSON Serialization of OASIS XLIFF
	1. Introduction
	2. Lay of the land
	2.1. I18n and L10n Standards
	2.2. The Notion of Extracting XLIFF Payload from Native Formats

	3. The abstract Localization Interchange Object Model (LIOM)
	3.1. The Core Structure
	3.2. LIOM Modules
	3.2.1. LIOM modules originating in XLIFF 2.0
	3.2.2. The ITS Module

	4. The design of JLIFF
	5. Reference Implementation
	6. Discussion and Conclusions
	Bibliography

	History and the Future of Markup
	1. Introduction
	2. Why we Need a History of Markup
	3. The Historical Trajectory of SGML and XML
	4. Some Observations on SGML
	5. The Future of Markup
	6. Conclusion
	References

	Splitting XML Documents at Milestone Elements Using the XSLT Upward Projection Method
	1. Introduction
	2. Description
	3. Examples
	3.1. Split at Page Break
	3.2. Put Two-Column Regions into Separate FO Blocks
	3.3. Split at Line Breaks, Excluding Footnotes, List Items, etc.

	4. Performance
	5. Applicability of XSLT 3.0 Features: Dynamic XPath Evaluation, Streaming
	5.1. Streaming
	5.2. Dynamic XPath Evaluation

	6. Summary
	Bibliography

	Sonar XSL
	1. The Necessity of Code Quality Measurement
	1.1. The Axes of code Quality
	1.1.1. Tests and testability
	1.1.2. Duplicated code
	1.1.3. Potential bugs
	1.1.4. Complex code
	1.1.5. Architecture and Design
	1.1.6. Documentation and Comments

	2. The Existing Standard : SonarQube
	2.1. The main concept : Rules
	2.2. Dealing with Issues
	2.3. The verdict : Quality Gates
	2.4. Whats SonarQube Brings
	2.5. The lack of an XSL-Specific SonarQube plugin

	3. The XSLT-Quality Schematron
	3.1. Examples of Rules from XSLT-Quality

	4. The Sonar-XSL-Plugin Prototype
	4.1. Architecture of the Plugin
	4.1.1. The Schematron-Sonar Module
	4.1.2. Some Schematron packages

	5. Evolutions and Perspectives

	Copy-fitting for Fun and Profit
	1. Introduction
	1.1. Copy-fitting as estimating
	1.2. Copy-fitting as adjustment

	2. Copy-fitting for fun
	3. Copy-fitting for profit
	3.1. Books
	3.2. Manuals and other documentation

	4. Standards for copy-fitting of XML or HTML
	4.1. Extensible Stylesheet Language (XSL) 1.1
	4.2. Extensible Stylesheet Language (XSL) Requirements Version 2.0
	4.3. List of CSS features required for paged media

	5. Existing Extensions
	5.1. Print & Page Layout Community Group
	5.2. AH Formatter
	5.3. FOP

	6. Copy-fitting Implementation
	6.1. Error condition XSLT
	6.2. Formatting error XML
	6.3. PDF error report
	6.4. Copy-fitting instructions

	7. Future Work
	8. Conclusion
	Bibliography

	RDFe – expression-based mapping of XML documents to RDF triples
	1. Introduction
	2. RDFe example
	2.1. Getting started
	2.2. Linking resources
	2.3. Adding a dynamic context

	3. RDFe language
	4. RDFe model components
	4.1. Semantic extension
	4.2. Semantic map
	4.3. Resource model
	4.4. Property model
	4.5. Context constructor

	5. Evaluation
	5.1. Input / Ouput
	5.2. Hybrid triples and preliminary resource description
	5.3. Asserted target nodes
	5.4. Processing steps

	6. RDFe for non-XML resources
	7. Conformance
	7.1. Minimal conformance
	7.2. Optional feature: XQuery Expressions Feature
	7.3. Implementation-defined extension functions

	8. Implementation
	9. Discussion
	A. Processing semantic maps - formal definition
	A.1. Section 1: Top-level rule
	A.2. Section 2: Resolving an rdfee to a set of triples
	A.3. Section 3: Resolving input documents to a set of rdfees
	A.4. Section 4: auxilliary rules

	Bibliography

	Trialling a new JATS-XML workflow for scientific publishing
	1. Introduction
	1.1. Typical workflows

	2. A new experimental workflow
	2.1. The Texture editor
	2.2. Reviewing with EasyChair
	2.3. The “hybrid” PDF creation pipeline

	3. Conclusions
	3.1. Alternatives
	3.2. Next steps
	3.3. Visual documents

	Bibliography

	On the Specification of Invisible XML
	1. Introduction
	2. The Grammar
	3. Nonterminals and Terminals
	4. What's in a Name?
	5. Spaces and comments
	6. Serialisation and Marks
	7. Attribute lifting
	8. Ambiguity
	9. The ixml Serialisation
	10. Implementation
	11. Future work
	12. Conclusion
	13. References
	Bibliography

