s Xmiprague

XML Prague 2019

Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 7-9, 2019

XML Prague 2019 — Conference Proceedings
Copyright © 2019 Jifi Kosek

ISBN 978-80-906259-6-9 (pdf)
ISBN 978-80-906259-7-6 (ePub)

o'ygen

The Complete Solution for XML
Authoring & Development

XML Editor

oXygen XML Editor is a complete XML editing solution
for developers and content authors.

XML Author

oXygen XML Author provides a visual interface
designed for user-friendly structured authoring.

XML Developer
oXygen XML Developer is an effective and easy-to-use
industry-leading XML development tool.

XML Web Author

oXygen XML Web Author is the ultimate tool for editing
and reviewing content in browsers on any device.

B8 BB

g

WebHelp

oXygen XML WebHelp allows you to publish DITA and
DocBook in a modern, interactive web-based help system.

7 www.oxygenxml.com

L —

y
N
T

\ 4
AA A A AV 4

Table of Contents

GEnNETal INTOTINATION ceeiiiiiiieetteeeeee et eeeeeeeeeeeeeeeeeeeeeasesereeeeeeeeeeeeeeeeeseeeeeeeenen vii
SPOMISOTS ...ttt ix
PIEIACE oottt ettt e e e e e e e e e eeeeaeeaaaaaaaasaaaaesaserareaeeasaeeeeseeeeeaeeeeeeeeeeeenerenaeeeaaae xi

Task Abstraction for XPath Derived Languages —

Debbie Lockett and Adam Retter ... 1
A novel approach to XSLT-based Schematron validation — David Maus 57
Authoring DSLs in Spreadsheets Using XML Technologies — Alan Painter 67
How to configure an editor — Martin Middelccccceeviviviiiniiinininncnieene, 103
Discover the Power of SQF — Octavian Nadolu and Nico Kutscherauer 117
Tagdiff: a diffing tool for highlighting differences in text-oriented XML —

CYFIL BYIGUEL ..ottt e 143
Merge and Graft: Two Twins That Need To Grow Apart —

Robin La Fontaine and Nigel WRItAKerc.cccoooveiviniiininiiiiiiicicceceenceenes 163
The Design and Implementation of FusionDB — Adam Refterccccoeueuenene 179
xqgerl_db: Database Layer in xqerl — Zachary N. Deanccccccovvvvvvvviiuinnnnnnnne. 215
An XSLT compiler written in XSLT: can it perform? —

Michael Kay and Johtn LUTIEY ..ottt 223
XProc in XSLT: Why and Why Not — Liam Quin ... 255
Merging The Swedish Code of Statutes (SFS) — Ari Nordstromcccccuu...... 265
JLIFF, Creating a JSON Serialization of OASIS XLIFF —

David Filip, Phil Ritchie, and Robert van ENGelen ..., 295
History and the Future of Markup — Michael Piotrowskiccccceevevuiininucnnnnne 323
Splitting XML Documents at Milestone Elements — Gerrit Imsieke 335
Sonar XSL — Jitn ELEUVEHATAeceueeeeeeeeeieeeeeeeeeeeteeete e et e s e e e veesseesveesveesnaesenaeenneas 355
Copy-fitting for Fun and Profit — Tony Graham ..., 363

RDFe — expression-based mapping of XML documents to RDF triples —
Hans-Juergen ReNmaUccoovvvviviiiiniiiiiiiiiiicnicicicccc s 381

Trialling a new JATS-XML workflow for scientific publishing — Tamir Hassan . 405
On the Specification of Invisible XML — Steven Pembertonccccovvueurvnnnnne. 413

Vi

General Information

Date
February 7th, 8th and 9th, 2019

Location

University of Economics, Prague (UEP)
nam. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.

Vit Janota, Xyleme & XML Prague, z.s.

Kata Kabrhelova, XML Prague, z.s.

Jirka Kosek, xmlguru.cz & XML Prague, z.s. & University of Economics, Prague
Martin Svarovsky, Memsource & XML Prague, z.s.

Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Robin Berjon, The New York Times

Petr Cimprich, Wunderman

Jim Fuller, MarkLogic

Michael Kay, Saxonica

Jirka Kosek (chair), University of Economics, Prague
Ari Nordstrom, Karnov Group

Uche Ogbuji, Zepheira LLC

Adam Retter, Evolved Binary

Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, Cornelsen GmbH

John Snelson, MarkLogic

Jeni Tennison, Open Data Institute

Eric van der Vlist, Dyomedea

Priscilla Walmsley, Datypic

Norman Walsh, MarkLogic

Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)

Vil

http://xmlprague.cz/about
http://fis.vse.cz

viii

Sponsors

oXygen (https://www.oxygenxml.com)

le-tex publishing services (https://www.le-tex.de/en/)
Antenna House (https://www.antennahouse.com/)

Saxonica (https://www.saxonica.com/)
speedata (https://www.speedata.de/)

Czech Association for Digital Humanities (https://www.czadh.cz)

<olygen/>

xml editor

7 A Data Usability Compan
Z 4 ANTENNA HOUSE

speedata

X

le/TaX

pub]iﬁhing services

SAXONICA:

XSLT AND XQUERY PROCESSING

CzADH |

https://www.oxygenxml.com
https://www.le-tex.de/en/
https://www.antennahouse.com/
https://www.saxonica.com/
https://www.speedata.de/
https://www.czadh.cz

Preface

This publication contains papers presented during the XML Prague 2019 confer-
ence.

In its 14th year, XML Prague is a conference on XML for developers, markup
geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big
Data and recent advances in XML technologies. The conference provides an over-
view of successful technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 7-9 February 2019 at the campus of University of
Economics in Prague. XML Prague 2019 is jointly organized by the non-profit
organization XML Prague, z.s. and by the Faculty of Informatics and Statistics,
University of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see http://
xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday runs in an un-conference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday are devoted to
classical single-track format and papers from these days are published in the pro-
ceeedings. Additionally, we coordinate, support and provide space for XProc
working group meeting collocated with XML Prague.

We hope that you enjoy XML Prague 2019!

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

http://xmlprague.cz
http://xmlprague.cz

xii

Task Abstraction for XPath Derived
Languages

Debbie Lockett
Saxonica
<debbielsaxonica.com>

Adam Retter
Evolved Binary
<adam@evolvedbinary.com>

Abstract

XPDLs (XPath Derived Languages) such as XQuery and XSLT have been
pushed beyond the envisaged scope of their designers. Perversions such as
processing Binary Streams, File System Navigation, and Asynchronous
Browser DOM Mutation have all been witnessed.

Many of these novel applications of XPDLs intentionally incorporate
non-sequential and/or concurrent evaluation and embrace side effects to
achieve their purpose.

To arrive at a solution for safely managing side effects and concurrent
execution, this paper first surveys both the available XPDL vendor exten-
sions and approaches offered in non-XPDLs, and then describes EXPath
Tasks, a novel solution derived for the safe evaluation of side effects in
XPDLs which respects both sequential and concurrent execution.

1. Introduction

XPath 1.0 was originally designed to “provide a common syntax and semantics
for functionality shared between XSL Transformations and XPointer” [1], and
XPath 2.0 pushed the abstraction further by declaring “XPath is designed to be
embedded in a host language such as XSL Transformations ... or XQuery” [2]. For
XML processing, XPath has enjoyed an arguably unparalleled level of language
adoption through reuse, forming the basis of XPointer, XSLT, XQuery, XForms,
XProc, Schematron, JSONiq, and others. XPath has also had a wide influence out-
side of XML, with concepts and syntax being reused in other languages like AQL
(Arrango Query Language), Cypher, JSONPath, and OData (Open Data Protocol)
amongst others.

As functional languages, XPDLs such as XQuery were designed to avoid strict
or ordered evaluation [21], thus leaving them open to optimisations which may
exploit concurrency or parallelism. XPDLs are thus good candidates for event

Task Abstraction for XPath Derived Languages

driven and task based concurrent and/or parallel processing. Since 2001, when
the first non-embedded multi-core processor the IBM Power 4 [11] was intro-
duced, CPU manufacturers have followed the trend of offering improved per-
formance through greater numbers of parallel hardware threads as opposed to
increased clock speeds. Unfortunately, exploiting the performance of additional
hardware threads puts an additional burden on developers by requiring the use
of low-level complex concurrent programming techniques [12]. Such low-level
concurrent programming is often error-prone [13], so it is desirable to employ
higher level abstractions such as event driven architectures [14], or task based
computation with Futures [16] and Promises [18]. This paper advances the use of
XPDLs in this context.

Indeed, the formal semantics for XPath state that “[XPath/XQuery] is a func-
tional language” [4]. From this we can infer that strict XPDLs must therefore also
be functional languages; this inference is strengthened by XQuery and XSLT
which are both functional languages. By placing restrictions on expression formu-
lation, composition, and evaluation, functional programming languages can ena-
ble advantageous classes of verification and optimisation when compared to
imperative languages.

One such restriction enforced by functional languages is the elimination of
side effects. A side effect is defined as a function or expression modifying some
state which is external to its local environment, this includes:

1. Modifying either: a global variable, static local variable, or variable passed by
reference.

2. Performing I/O.
3. Calling other side effect functions.

XPath and the XPDLs as defined by the W3C specifications address these con-
cerns and prevent side effects by enforcing that:

1. Global variables and static local variables are immutable, and that variables
are always passed by value and not reference.

2. T/O is frozen before evaluation, only documents known to the immutable
static context may be read, whilst the only output facility is the XDM result of
the program.

3. There are no side-effecting functions’.

In reality though many XPDL implementations offer additional vendor-specific
“extensions” which compromise functional integrity to permit side effects so that

IXPath 3.0 defines only one absolute non-deterministic function fn:error, and several other functions
(fn:analyze-string, fn:parse-xml, fn:parse-xml-fragment, fn:json-to-xml, and fn:transform)
which could be non-deterministic depending on implementation choices. We devalue the significance
of fn:error's side effect by tendering that, it could equally have been specified as a language expres-
sion for raising exceptions as opposed to a function.

2

Task Abstraction for XPath Derived Languages

I/O can be more easily achieved by the developer. Of concern for this paper is the
ability to utilize XPDLs for complex I/O requiring side effects without compro-
mising functional integrity or correctness of the application.

The key contributions of this paper are:

1. A survey of XPDL vendor implementations, detailing both how they manage
side effects and any proprietary extensions they offer for concurrent execu-
tion. See Section 2.

2. A survey of currently popular mechanisms for concurrent programming in
non-XPDLs, their ability to manage side effects, and their potential for XPDLs.
See Section 3

3. EXPath Tasks, a module of XPath functions defined for managing computa-
tional side effects and enabling concurrent and asynchronous programming.
To demonstrate the applicability of EXPath Tasks, we offer experimental refer-
ence implementations of this module in XQuery, XSLT, Java (for use from
XQuery in eXist-db), and JavaScript (for use from XSLT in Saxon-JS). See Sec-
tion 4.

We next briefly examine the original vision for XPath, XQuery, and XSLT, with
particular concern for how these languages should be evaluated by processors.
We then examine how the use of these languages has evolved over time and some
of the unexpected and novel ways in which they have been used.

1.1. The vision of XPDLs

The design requirements of XPath 2.0 [3] mostly focused on that of exploiting the
XDM (XQuery and XPath Data Model) and interoperability. As a language
designed to describe the processing abstractions of various host languages, it did
not need to state how the evaluation of such abstractions should take place,
although we find that it was not without sympathy for implementations, as one
of the stated Goals was: “Enable improved processor efficiency”; unfortunately,
we found little explicit public information on how or if that goal was met.

Examining the XQuery 1.0 requirements [6] we find a similar focus upon the
XDM, where querying different types of XML documents, and non-XML data
sources is possible, provided that both can present their data in an XDM form.
However, the XQuery 1.0 specification makes an explicit statement about evalua-
tion: “an implementation is free to use any strategy or algorithm whose result
conforms to the specifications in this document”, thus giving implementations a
great deal of freedom in how the query should be evaluated.

One of the requirements of XSLT 2.0 is labelled “2.11 Could Improve Effi-
ciency of Transformations on Large Documents” [5]. It describes both the situa-
tion where the tree representation of source documents may exceed memory
requirements, and a desire to still be able to process such large documents. It uses

Task Abstraction for XPath Derived Languages

non-prescriptive language to suggest two possible solutions: 1) a subset of the
language which would not require random access to the source tree, we could
likely recognise XSLT 3.0 Streaming as the implementation of that solution, and 2)
splitting a tree into sub-trees, performing a transformation on each sub-tree, and
then copying the results to the final result tree. Whilst XSLT 2.0 does not state
how an implementation should be achieved, many would likely recognise that (2)
is an embarrassingly parallel problem that would likely benefit from a MapReduce
[19] like approach.

An academic example of exploiting the implicit parallelisation opportunites of
XPDLs is PAXQuery, which compiles a subset of XQuery down into MapReduce
jobs which can execute in a highly-parallel manner over a cluster of Hadoop
nodes [24]. To the best of our knowledge, Saxon is the only commercial XPDL
processor which attempts implicit parallelisation. However, Michael Kay reports
that within the XSLT processor it can be difficult to determine when implicitly
parallelising operations will reduce processing time [20]. Saxon therefore also
offers vendor extensions which allow an XSLT developer with a holistic view of
both the XSLT and the data it must process, to explicitly annotate certain XSLT
instructions as parallelisable.

1.2. Novel applications of XPDLs

XPDLs have been used in many novel situations for which they were never envis-
aged, many of which utilise non-standardised extensions for I/O side effects and
concurrent processing to achieve their goals.

1.2.1. XPDLs as Web Languages

XPDLs, in particular XQuery, have been adopted with considerable success as
server-side scripting languages for the creation of dynamic web pages and web
APIs. A web page is by definition a document, and since an HTML document is
representable as an XML document, XPDLs' ability to build and transform such
documents from constituent parts has contributed to their uptake. Implementa-
tions such as BaseX, eXist-db, and MarkLogic all provide HTTP Servers which
execute XQuery in response to HTTP requests. Whilst a single XQuery may be
executed concurrently by many thousands of users in response to incoming
HTTP requests, stateful information often needs to be persisted and shared on the
server. This could be in response to either a user logging into a secure website, at
which point the server must establish a session for the user and memorize the
users identity; or multiple web users communicating through the server, for
example, updating stock inventory for a shopping basket or social messaging.
Regardless, such operations require the XPDL to make side-effecting changes to
the state of the server or related systems.

4

Task Abstraction for XPath Derived Languages

XSLT's main strength as a transformation language for XML is equally appli-
cable to constructing or styling HTML web pages. Web browsers offer limited
XSLT 1.0 facilities, which can be either applied to XML documents which include
an appropriate Processing Instruction, or invoked from JavaScript. The XSLT
process offered by the web browser vendors is a black-box transformation,
whereby an XSLT stylesheet is applied to an XML input document, which produ-
ces output. This XSLT process is completely isolated and has no knowledge of the
environment from which it is called; it can not read or write directly to or from
the web page displayed by the browser. In contrast, in recent years Saxonica has
provided JavaScript based processors which run directly within the web browser,
removing the isolation and allowing access to the web page state and events via
XSLT extensions. First with Saxon-CE, a ported version of the XSLT 2.0 Saxon
Java processor, and then with Saxon-JS, a clean implementation of XSLT 3.0 in
JavaScript. The XSLT extensions designed for use with these processors make use
of asynchronous processing (as demanded by JavaScript) and side effects to read
and write the DOM model of the web page.

Similar to Saxon-CE, although now unmaintained another notable example is
XQiB. XQiB implements an XQuery 1.0 processor in JavaScript which runs in the
web browser and provides a number of XQuery extension functions which cause
side effects by writing directly to the HTML DOM and CSS [25].

1.2.2. Binary Processing with XPDLs

The generation of various binary formats using XPDLs has also been demonstra-
ted. One such example is Philip Fennel's generation of TIFF format images, which
uses a Reyes pipeline written in XSLT [26]. One of Fennel's conclusions with
regard to execution was that “Certainly it is not fast and it is not very efficient
either”. It is not hard to imagine that if concurrent processing was applied to each
stage of the pipeline, so that stages were processed in parallel, then execution
time might be significantly reduced.

Two XPath function extension modules produced by the EXPath project, the
Binary [27] and File Module [28] specifications, allow the user to both read and
write files and manipulate binary data at the byte level from within XPDLs. In
particular, the File Module, which provides I/O functions, states that some func-
tions are labelled as non-deterministic; this specification lacks the detail required to
determine if implementations are forced to produce side effects when the func-
tions are evaluated, or whether they are allowed to operate on a static context and
only apply I/O updates after execution. The authors of this paper believe that it
would be beneficial to have a more formal model within that specification, possi-
bly one which allows implementers flexibility to determine the scope of side
effects.

Task Abstraction for XPath Derived Languages

1.3. Motivation

To enable side effects in a web application running in Saxon-JS, the IXSL (Interac-
tive XSLT) extensions (instructions, functions and modes) are provided (as previ-
ously developed for Saxon-CE, with some further additions and improvements).
These IXSL extensions allow rich interactive client-side applications to be written
directly in XSLT.

Saxon-CE used a Pending Update List (PUL) to make all HTML page DOM
updates (side effects) at the end of a transform (e.g. setting attributes on HTML
page nodes using ixsl:set-attribute; and adding content to the HTML page
using xsl:result-document.) Currently Saxon-JS does not use a PUL, instead
these side-effecting changes are allowed to execute immediately as the instruc-
tions are evaluated, and it is up to the developer of a Saxon-JS application to
ensure that adverse affects are avoided. Since inception, the intention has been to
eventually provide better implicit handling. Should the use of PULs be reinstated,
or is there an alternative solution?

Meanwhile, use of asynchronous (concurrent) processing is essential for user-
friendly modern web applications. Whenever the client-side needs to interact
with the server-side, to retrieve resources, or make other HTTP requests, this
should be done asynchronously. The application may provide a "processing,
please wait" message to the user, but it should not just stop due to blocking.

The ixsl:schedule-action instruction allows the developer to make use of
concurrent threads, and in particular allows for asynchronous processing. In
Saxon-JS, different attributes are defined to cater for specific cases where there is
a known need. The document attribute is used to initiate asynchronous document
fetches; the http-request attribute is used for making general asynchronous
HTTP requests; and the wait attribute was designed to force a delay (e.g. to ena-
ble animation), but actually simply provides a way to start any concurrent proc-
ess. Effectively this provides a mechanism for forking, but there is no offical
joining. Are there cases that require a join? Are there other operations which a
developer could want to make asynchronously? Rather than building IXSL exten-
sions for each operation, we would prefer to realise a general mechanism for
asynchronous processing in XPDLs and by extension XSLT. Continually updating
the syntax and implementation of ixsl:schedule-action, each time a new
requirement arises (e.g. how to allow HTTP requests to be aborted), is not ideal.
In particular, the IXSL HTTP request facility was based on the first EXPath HTTP
Client Module, recent work on a second version [23] of that module could be
advantageous for us. However, by itself it neither prescribes synchronous or
asynchronous operation. So, how could we implement in a manner which is both
asynchronous and more abstract, requiring few, if any, changes to add additional
modules in future?

Task Abstraction for XPath Derived Languages

1.4. Our Requirements

Applications that cannot perform I/O and/or launch parallel processes are
unusual. Both I/O and starting parallel processes are side effects, and as dis-
cussed, explicitly forbidden within XPDLs, although often permitted by vendors
at the cost of imperative interpretation and lost optimisation opportunities.

We aim to break the trade-off between program correctness and deoptimisa-
tion in XPDLs. We require a mechanism that satisfies the following requirements:

* A mechanism for formulating processes which manage side effects, yet at the
same time remains within the pure functional approach dictated by the XPDL
formal semantics.

* Permits some form of parallel or concurrent operation, that is implementable
on systems that offer either preemptive or cooperative multitasking.

e Allows parallelisation to be explicitly described, but that should not limit the
opportunities for implicit parallelisation.

* Any parallel operation explicitly initiated by the developer, should be cancel-
lable.

¢ Composability: it should be possible to explicitly compose many side-effecting
processes together in a manner that is both pure and ensures correct order of
execution.

Regardless of the mechanism, we require that it should be as widely applica-
ble as possible, therefore it should be either:

e Formulated strictly in terms of XPath constructs so that it be reused by any
XPDL.

Ideally, rather than developing a superset of the XPath grammar, a module
of XPath extension functions should be defined. The module approach has
been successfully demonstrated by the EXPath project, and would likely lower
the barrier to adoption.

* A clearly defined abstract processing model which can have multiple syntacti-
cal expressions.
Such a model could for example provide one function-based syntax for
XQuery, and another instruction-based syntax for XSLT.

2. Current Approaches by Implementers

This survey provides a brief review of the offerings of the most visible XQuery
and XSLT implementations for both concurrent and/or asynchronous execution,
and how they manage side effects.

Task Abstraction for XPath Derived Languages

2.1. BaseX

For concurrent processing from within XQuery, BaseX provides two mechanisms:
a Jobs XQuery extension module [8], and an XQuery extension function called
xquery:fork-join. The latter is actually an adoption of xg-promises's
promise: fork-join function, which we cover in detail in Section 2.5. The former,
the Jobs Module, allows an XQuery to start another XQuery by calling either of
two XPath functions jobs:invoke or jobs:eval. Options can be supplied to both
of these functions, which instead of executing the query immediately, schedule it
for later execution. Whilst deferred scheduled queries are possibly executed con-
currently we will not consider them further here as our focus is concurrent pro-
cessing for the purposes of completing an immediate task. BaseX describes these
functions as asynchronous, and whilst technically true, unlike other asynchronous
programming models the caller neither provides a callback function nor receives
a promise, and instead has to either poll or wait in the main query for the result.
We believe these functions could more aptly be described as non-blocking.

Asynchronously starting another XQuery in BaseX returns an identifier which
can be used to either stop the asynchronously executing query, retrieve its result
(if it has completed), or to wait until it has completed. The lifetime of the asyn-
chronously executing query is not dependent on the initiating query, and may
continue executing after the main query has completed. In many ways this is very
similar to a Future (see Section 3.5).

BaseX implements XQuery Update [7] which allows updates to XML nodes to
be described from within XQuery via additional update statement syntax.
XQuery Update makes use of a PUL (Pending Update List) which holds a set of
Update Primitives. These Update Primitives describe changes that will be made,
but have not yet been applied. These changes are not visible to the executing
query, the PUL is output alongside the XDM when the query completes. This is
not entirely dissimilar to how Haskell eventually evaluates an IO monad (see Sec-
tion 3.4). To further facilitate additional common tasks required in a document
database without conflicting with XQuery Update or resorting to side effects
within an executing query, BaseX also provides many vendor specific Update
Primitives in addition to those of XQuery Update. These include primitives for
database operations to replace, rename and delete documents; manage users; and
backup and restore databases [29]. The use of an XQuery Update PUL avoids side
effects for updates, as it only describes what will happen at evaluation time, leav-
ing the actual updates to be applied at execution time. Ultimately BaseX applies
the PUL to modify the state of its database after the query completes and the
transaction is committed, thus making the updates visible to subsequent transac-
tions.

Regardless of its support for PULs, BaseX does not quite manage to entirely
avoid side effects during the execution of some queries. BaseX offers a number of

Task Abstraction for XPath Derived Languages

XQuery extension functions which are known to cause side effects, including for
example, those of the EXPath HTTP and File Modules. Internally such side-effect-
ing functions are annotated as nondeterministic, and will be treated differently by
BaseX's query compiler. By skipping a range of otherwise possible query optimi-
sations, BaseX ensures that the execution order of the functions within a query is
as a user would expect even when these nondeterministic functions are present.
In the presence of nondeterminism, optimisations that are skipped include: pre-
evaluation, reordering of let clauses, variable inlining, and disposal of expres-
sions that yield an empty sequence.

2.2. eXist-db

eXist-db does not present a cohesive solution for concurrent processing from
within XQuery. Until recently, eXist-db had a non-blocking XPath extension func-
tion named util:eval-async [9] which could start another XQuery asynchro-
nously. Like BaseX it returned an identifier for the executing query and did not
accept a callback function or provide a promise. Unlike BaseX however, there
were no additional functions to control the asynchronously executing query or
obtain its result, rather the asynchronously executing query would run to com-
pletion and its result would be discarded, although it may have updated the data-
base via side effects. This facility proved not to be particularly practical and has
since been removed. Similarly to BaseX, eXist-db provides a Scheduler XQuery
extension module [10] for scheduling the future (or immediate) execution of jobs
written in XQuery. Unfortunately even if an XQuery is scheduled for immediate
execution, there is no mechanism for obtaining the result of its execution from the
initiating XQuery.

eXist-db makes no attempts to avoid side effects during processing, and
instead offers many extension functions and a syntax for updating nodes that
cause side effects by immediately modifying external state and making the modi-
fications visible. eXist-db also relaxes the XPath deterministic constraint upon
Available Documents, and Available Collections, allowing a query to both modify
which documents and collections are available (a side effect), and to see changes
made by concurrently executing queries.

eXist-db is able to suffer side effects, through making several compromises:

* eXist-db offers the lowest transaction isolation level when executing XQuery -
Read Uncommitted.
eXist-db makes XQuery users somewhat aware of this, and provides XPath
extension functions which enable them to lock documents and collections on
demand if they require a stronger isolation level.

* eXist-db executes XQuery sequentially as though it was a procedural pro-
gram.

Task Abstraction for XPath Derived Languages

Whilst some query rewriting is employed to improve performance, eXist-
db cannot exploit many of the more advanced optimisations available to func-
tional language compilers: any reordering of the XQuery program's execution
path could cause the program to return incorrect results, due to side effects
being applied in an order that the XQuery developer had not intended.

Likewise, eXist-db cannot easily parallelise the execution of disjoint state-
ments within an XQuery: as shared-state modified by side effects could intro-
duce race conditions in the XQuery developer's application.

2.3. MarkLogic

MarkLogic provides an XPath extension function named xdmp:spawn, which
allows another XQuery to be started asynchronously from the calling query. This
is done by placing it on the task queue of the MarkLogic task server, and this
query may be executed concurrently if the task server has the available resources.
The function is non-blocking, and for our interests has two modes of operation
controlled by an option called result. When the result option is set to false, the
calling query has no reference to the queued query, and like eXist-db it can nei-
ther retrieve its result, enquire about its status, or abort its execution. When the
result option is set to true, the xdmp:spawn function returns what MarkLogic
describes as a “value future for the result of the spawned task”. This “value
future” is quite unusual, and certainly a vendor extension with no corresponding
type in XDM. Essentially, after calling xdmp:spawn with the return option set to
true, the calling query continues executing until it tries to access the value of the
variable bound to the result of the xdmp:spawn, at which point if the spawned
query has completed executing, the result is available, however if it has not com-
pleted then the main query thread blocks and waits for the spawned query to com-
plete and provide the result [30]. Similarly to BaseX and eXist-db, MarkLogic also
provides mechanisms for the scheduling of XQuery execution through its offline
batch processing framework called CPF (Content Processing Framework) [31],
and a set of XPath extension functions such as admin:group-add-scheduled-
task [32].

MarkLogic's value future is intriguing in its nature, albeit proprietary. The con-
cept of Futures appear in several programming languages, but unlike other lan-
guages (e.g., Java or C++11), MarkLogic's implementation provides no explicit call
to get the value of the future (possibly with a timeout), instead the wait and/or get
happen as one implicitly when accessing the value through its variable binding.

MarkLogic clearly documents where it allows side effects from within
XQuery. There are two distinct types of side effects within MarkLogic, state
changes that happen within the scope of the XQuery itself, and those state-
changes which are external to the XQuery. For use within the scope of an XQuery,
MarkLogic provides an XPath extension function xdmp:set, which explicitly

10

Task Abstraction for XPath Derived Languages

states that it uses “changes to the state (side effects)” [33] to modify the value of a
previously declared variable, thus violating the formal semantics of XPath [4]. For
modifying state external to an XQuery, MarkLogic provides a series of XPath
extension functions for updating nodes and managing documents within the
database. Similarly to BaseX, these extension functions do not cause side effects
by immediate application, and are invisible to both the executing query and con-
currently executing queries [34]. Unlike BaseX, MarkLogic does not implement
the XQuery Update specification, but similarly it utilizes a PUL, likewise leading
to a process whereby the updates are applied to the database after the query com-
pletes and the transaction is committed, thus making the updates visible to subse-
quent transactions.

Whilst MarkLogic utilizes both a well defined transaction isolation model and
deferred updates to mostly avoid side effects within an executing XQuery, we
suspect that the use of xdmp:set likely places some limitations on possible query
optimisations that could be performed.

We have focused on MarkLogic's XQuery implementation, but it is worth not-
ing that MarkLogic also implements XSLT 2.0. All of MarkLogic's XPath exten-
sion functions (e.g., xdmp:set and xdmp:insert-*) are also available from its
XSLT processor, and are subject to the same transactional mechanisms as the
XQuery processor; therefore our findings are equally applicable to running either
XQuery or XSLT on MarkLogic.

2.4. Saxon

Saxon-EE utilises parallel processing in certain specific instances [20]. By default
the parsing of input files for the fn:collection function is multithreaded, as is
the processing of xsl:result-document instructions. Note that the outputs pro-
duced by multiple xs1:result-document instructions are quite independent and
never need to be merged; so while this does allow parallel execution of user code
and requires careful implementation of features such as try/catch and lazy evalu-
ation, the fact that there is a "fork” with no "join" simplifies things a lot. Further-
more, multi-threading of xsl:for-each instructions using a MapReduce
approach can be enabled by the user, by setting the saxon:threads extension
attribute to specify the number of threads to be used.

Saxon-EE allows use of a number of extension functions with side effects,
including those in the EXPath File and Binary modules. Similar to the BaseX han-
dling, the Saxon compiler recognises such expressions as causing side effects, and
takes a pragmatic approach in attempting to avoid aggressive optimisations
which could otherwise disrupt the execution order. Usually instructions in an
XSLT sequence constructor will be executed sequentially in the order written, but
deviation can be caused by the compiler through lazy evaluation or loop lifting;
and this is where problems can arise when side effects are involved. Such optimi-

11

Task Abstraction for XPath Derived Languages

sations can cause the side effect to happen the wrong number of times (never, or
too often), or at the wrong time. It is relatively straightforward to prevent such
optimisations for static calls to side-effecting functions, but cannot always be
guaranteed for more nested calls, as "side-effecting” is not necessarily recognised
as a transitive property. For instance, a function or template which includes a call
to a side-effecting function may not itself be recognised as side-effecting. So it is
always recommended that side-effecting XPath expressions are "used with care".
One mechanism which gives the XSLT author better control when using side-
effecting expressions, is the recently added extension instruction saxon:do. It is
similar to the xs1:sequence instruction, but is designed specifically for use when
invoking XPath expressions with side effects. In contrast to xs1:sequence, when
using saxon:do any result is always discarded, and the processor ensures that
instructions in the sequence constructor are always evaluated sequentially in the
order written, avoiding any reordering from optimisations.

As previously mentioned, for use with the Saxon-JS runtime XSLT processor, a
number of Interactive XSL extension instructions and functions are available. To
enable non-blocking (asynchronous) HTTP requests and document fetching, the
ixsl:schedule-action instruction is provided. Attributes on the instruction are
used to specity an HTTP request, or document URI, and the associated HTTP
request is then executed in a new concurrent thread. The callback, for when an
HTTP response is returned or the document is fetched (or an HTTP error occurs),
is specified using the single permitted xsl:call-template child of the
ixsl:schedule-action instruction. When the document attribute has been used,
the called template can then access the document(s) using the fn:doc or fn:doc-
available functions; the document(s) will be found in a local cache and will not
involve another request to the server. When using the http-request attribute, the
HTTP response is supplied as the context item to the called template, in the form
of an XDM map. Alternatively, ixsl:schedule-action can simply be used to
start concurrent processing for any action, by using just the wait attribute (with a
minimal delay). Note that while this provides a "fork", there is no "join", and it is
up to the developer to avoid conflicts caused by side effects.

To be able to write interactive applications directly in XSLT, it is necessary to
make use of side effects, for example to dynamically update nodes in the HTML
page. Almost all of the IXSL extension instructions and functions (such as
ixsl:set-attribute and ixsl:set-property which are used to set attributes on
nodes and properties on JavaScript objects respectively) have (or may have) side
effects. Note that Saxon-JS runs precompiled XSLT stylesheets, called SEFs (Style-
sheet Export Files) generated using Saxon-EE. As described above, during compi-
lation in Saxon-EE, such side-effecting functions and instructions are internally
marked as such to prevent optimisations from disrupting the intended execution
order.

12

Task Abstraction for XPath Derived Languages

2.5. xq-promise

Whilst xg-promise [35] is not an implementation of XQuery or XSLT, it is the first
known non-vendor specific proposal for a module of XPath extension functions
by which XPDL implementations can offer concurrent processing from within an
XPDL. It is valuable to review this proposal as theoretically it could be implemen-
ted by any XPDL implementation, at present we are only aware of a single imple-
mentation for BaseX [36].

xg-promise first and foremost provides a set of XPath extension functions
which were inspired by jQuery's Deferred Object utility, it claims to implement
the “promise pattern” (see Section 3.5), and focuses on the concept of deferring
execution. In its simplest form, the promise:defer function takes two parame-
ters: a function of variable arity, and a sequence of arguments of the same arity as
the function. Calling promise:defer returns a new zero arity function called a
“promise”, this promise function encapsulates the application of the function
passed as a parameter to the arguments passed as a parameter. The encapsulation
provided by the promise function defers the execution of the encapsulated func-
tion. The promise function also serves to enable chaining further actions which
are dependent on the result of executing the deferred function, such further
actions are also deferred. The chaining is implemented through function compo-
sition, but is opaque to the user who is provided with the more technically acces-
sible functions promise:then, promise:done, promise:always, promise:fail,
and promise:when.

The functions provided by xg-promise discussed so far allow a user to
describe a chain of related actions, where callback functions, for example estab-
lished through promise:then, can be invoked when another function completes
with success or failure. Considered in isolation these functions do not explicitly
prescribe any asynchronous or concurrent operation. To address this, xg-promise
secondly provides an XPath extension function named promise:fork-join based
on the Fork-join model of concurrency. This functions takes as a parameter a
sequence of promise functions, which may then be executed concurrently. The
promise:fork-join function is a blocking function, which is quite different from
those of BaseX, eXist-db, MarkLogic, or Saxon, which are all non-blocking. Rather
than scheduling a query for concurrent execution and then returning to the main
query so execution can continue, when promise:fork-join is invoked n query
sub-processes are forked from the main query which then waits for these to com-
plete, at which point the results of the sub-processes are joined together and
returned as the result of the function call.

An important insight we offer is that whilst sharing some terminology with
implementations in other languages (particularly JavaScript likely due to build-
ing upon jQuery's Deferred Object) the promise concept used in xg-promise is sub-
tly different [61]. JavaScript Promises upon construction immediately execute the

13

Task Abstraction for XPath Derived Languages

function that they are provided [38] [39], whereas an xg-promise is not executed
until either promise:fork-join is used or the promise function is manually
applied by the user. Conceptually the xg-promise promises appear to be at odds
with the fork-join approach, as once a promise has been constructed, it is likely
that useful computation could have been achieved in parallel to the main thread
by executing the promise(s) before reaching the fork-join point. The construction
of a JavaScript Promise requires an executor function, which takes two parameter
functions, a resolve function and a reject function. The executor must then call
one of these two functions to signal completion. When constructing a promise
with xg-promise, completion is instead signalled by the function terminating nor-
mally, or raising an XPath error. This may appear to be just syntactical differen-
ces, but the distinction is important: the JavaScript approach allows an error value
to explicitly be returned upon failure in a functional manner, the xg-promise
approach relies instead on fn:error... which is a side effect!

On the subject of xg-promise and side effects, xq-promise constructs chains of
execution where each step has an dependency on the result of the preceding step.
On the surface this may appear similar to how IO Monads (see Section 3.4) com-
pose. The composition of xg-promise through is much more limited, and whilst it
ensures some order of execution, its functional semantics are likely not strong
enough to ensure a total ordering of execution.

2.6. Conclusion of Implementers Survey

Our conclusion from this survey is twofold. Firstly, all surveyed implementations
offer some varying proprietary mechanism for performing asynchronous compu-
tations from within a main XPDL thread of execution. A standardised approach is
evidently missing from the W3C defined XPDLs, but a requirement has been
demonstrated by implementations presumably meeting a technical demand of
their users of XPDLs. Secondly, none of the XPDL implementations which we
examined adhere strictly to the functional processing semantics required by
XPath and/or the respectively implemented XPDL specification. Instead each
implementation to a lesser or greater extent offers some operations which cause
side effects. Most implementations appear to have taken a pragmatic approach to
deliver the features that their users require, often sacrificing the advantages of a
pure functional approach to offer a likely more familiar imperative programming
model.

3. Solutions offered for non-XPDLs

This survey provides a brief review of several options for non-XPDLs that pro-
vide solutions for both concurrent and/or asynchronous execution, and how side
effects are managed or avoided. This is not intended as an exhaustive survey,
rather the options surveyed herein were subjectively chosen for their variety.

14

Task Abstraction for XPath Derived Languages

3.1. Actor Model

The Actor Model defines a universal concept, the Actor, which receives messages
and undertakes computation in response to a message. Each Actor may also asyn-
chronously send messages to other Actors. A system is typically made up of
many of these Actors [40]. Actor systems are another class of embarrassingly par-
allel problem, as the messages sent between actors are immutable, there is no
shared-mutable state to synchronize access to, and so each Actor can run concur-
rently.

The Actor Model by itself is not enough to clearly describe, manage, or elimi-
nate side-effectful computation, however by nature of its message passing
approach it does eliminate the side effects of modifying the shared-state for com-
munication between concurrent threads of execution which is often found in non-
actor systems. Through encapsulation, actors may also help to reason about
programs with side effects. Systems utilising actors are often built in such a man-
ner that each task specific side-effectful computation is isolated and encapsulated
within a single Actor. For example, within an actor system there may only be a
single Actor which handles a particular file I/O, then since each Actor likely runs
as a separate process, the file I/O has been isolated away from other computation.

The Erlang programming language is possibly the most well known Actor
Model like implementation, wherein Actors are known as processes [41]. Erlang
itself makes no additional efforts to manage side effects, and additional synchro-
nization primitives are often employed. Within the JVM (Java Virtual Machine)
ecosystem, the Akka framework is available for both Java and Scala programming
languages [42]. Java as a non-functional language makes no attempts at limiting
side effects. Meanwhile, whilst Scala is often discussed as a functional language
and does provide many functional programming constructs, it is likely more a
general purpose language, as mutability and side effects are not restricted, and it
is quite possible to write imperative Scala code. Actor systems are also available
for many other programming languages [43], although they do not seem to have
gained the same respective popularity as Erlang or Akka.

3.2. Async/Await

The Async/Await concept was first introduced in C#, inspired by F#'s async work-
flows [44], which was in turn inspired by Haskell's Async Monad [45] [46] (see
Section 3.4). Async/Await provides syntax extensions to a programming language
in the form of the async and await keywords. Async/Await allows a developer to
write a program using a familiar synchronous like syntax but easily achieve asyn-
chronous operation of parts of the program.

Async/Await adds no further processing semantics for concurrency or manag-
ing side effects over that of Promises (see Section 3.5), which are often used to
implement Async/Await. Async/Await may be thought of as syntactic sugar for

15

Task Abstraction for XPath Derived Languages

utilising a Promise based implementation, and has recently become very popular
with JavaScript developers [47] [48].

3.3. Coroutines

Coroutines are a concept for cooperative multitasking between two (or more) pro-
cesses within a program. One process within an application, Process A, may
explicitly yield control to another process, Process B. When control is transferred,
the state of Process A is saved, the current state of Process B is restored (or a new
state created if there is no previous state), and Process B continues until it explic-
itly yields control back to Process A or elsewhere [49].

Like Actors, the impact of side effects of impure functions can be somewhat
isolated within a system by encapsulating them in distinct coroutines. Otherwise
Coroutines provide no additional facilities for directly managing side effects, and
global state is often shared between them. Unlike Actors, Coroutines are often
executed concurrently by means of explicitly yielding control. Without additional
control structures, coroutines typically operate on a single-thread, one exception
is Kotlin's Coroutines which can be structured to execute concurrently across
threads [52].

Some implementations of Coroutines, such as those present in Unity [50], or
JavaScript [51], attempt to bring a familiar synchronous programming style to the
developer. These implementations typically have a coroutine yield multiple
results to the caller, as opposed to yielding control. This masks the cooperative
multitasking aspect from the developer and presents the return value of a corou-
tine as an iterable collection of results.

3.4. 10 Monads

Haskell is a statically typed, non-strict, pure functional programming language.
The pure aspect means that every function in Haskell must be pure, that is to say
akin to a mathematical function in the sense that mathematical functions cannot
produce side effects. Even though Haskell prohibits side effects by design, it still
enables developers to perform I/O and compute concurrently. This seemingly
impassable juxtaposition of academic purism and real-world engineering need is
made possible by its IO Monad [54]. Haskell trialled several other approaches in
the past, including streams and continuations, before the IO Monad won out as it
facilitated a more natural imperative programming style [55].

In Haskell, any function that performs I/O must return an IO type which is
monadic. This IO type represents an IO action which has not yet happened. For
example if you have a function that reads a string from a file, that function does
not directly return a String, instead it returns an I0 String. This is not the result
of reading a line from the file, instead it can be thought of as an action that when
executed will read a line from the file and return a String. These IO actions

16

Task Abstraction for XPath Derived Languages

describe the I/O that you wish to perform, but critically defer its execution. The
I0 actions adhere to monad laws which allow them to be composed together. For
example given two IO actions, one that reads a file and one that writes a file, they
could be composed together into a single IO action which first reads a file and
then writes a file, e.g. a copy file IO action.

Importantly, the formal definition for an I0 type is effectively I0 a = World -
> (a, World). That is to say that an IO is a state transformation function that
takes as input the current state of the world, and produces as the result both a
value and a new state of the new world. The World is a purely Abstract Data
Type, that the Haskell programmer cannot create. The important thing to note
here is that the World is threaded through the IO function. When multiple IO
actions are composed together using monadic application, such as bind, the World
output from a preceding function will be fed to the input of the succeeding func-
tion. In this manner the World will be threaded through the entire chain of IO
actions.

A Haskell program begins by executing a function named main that must
return an IO, it is typed as mainIO :: IO (). Haskell knows how to execute the
IO type function that the main function returns. Naively one can think of this as
Haskell's runtime creating the World and then calling our IO with it as an argu-
ment to execute our code; in reality the Haskell compiler optimises out the World
during compilation whilst still ensuring the correct execution order. (We may
remark that an IO action is similar to a PUL's Update Primitive, and the fact that
main returns an IO is not dissimilar to an XQuery Update returning both XDM
and a PUL.)

By using IO Monads which defer rather than perform I/O, all Haskell func-
tions are pure, and so a Haskell program at evaluation time exhibits no side
effects whatsoever, instead finally evaluating to an I0 (), i.e. a state transforma-
tion function upon the world. As the developer has used monadic composition of
their IO actions, this has implicitly threaded the World between them, in the order
the developer would expect (i.e. in the order of the composition), therefore the
state transformation also ensures that the functions are executed in the expected/
correct order. At execution time, the machine code representation of the Haskell
program is run by a CPU which is side-effecting in nature, and the IO action's
side effects are unleashed.

It is possible to encapsulate stateful computations so that they appear to the rest of
the program as pure (stateless) functions which are guaranteed by the type system
to have no interactions whatever with other computations, whether stateful or oth-
erwise (except via the values of arguments and results, of course).

—from "State in Haskell”, by John Launchbury and Simon Peyton Jones

Haskell provides further functions for concurrency, but critically these also return
IO actions. One such example is forkIO with the signature forkIO :: IO () ->

17

Task Abstraction for XPath Derived Languages

I0 Threadld [56]. The purpose of forklO is to execute an IO in another thread, so
it takes an IO as an argument, and returns an IO. The important thing to remem-
ber here, is that calling the forkIO function does not create a new thread and exe-
cute an IO, rather it returns an IO action which describes and defers such
behaviour. Later when this IO action is finally executed at run-time, the thread
will be created at the appropriate point within the running program. There are
also a number of other higher-level abstractions for concurrency in Haskell, such
as Async [46], and whilst such abstractions may introduce additional monads,
they ultimately all operate with IO to defer any non-pure computation. One final
point on the IO Monad, is to mention that concurrently executing I/O actions,
may at runtime produce side effects that conflict with each other. The IO Monad
is only strong enough to ensure correct operation within a single thread of execu-
tion, its protections do not cross thread-boundaries. To guard against problems
with concurrent modifications additional synchronisation is required. Haskell
provides additional libraries of such functions and types for working with syn-
chronization primitives, many of which themselves produce IO actions!

Monads are by no means limited to Haskell, and can likely be used in any lan-
guage which supports higher-order functions. The preoccupation with Haskell is
centred around how it uses Monads to ensure a pure language in the face need-
ing to perform I/O. Several libraries exist which attempt to bring the IO Monad
concept to other programming languages, this seems to have been most visible
within the Scala ecosystem, where there are now at least five differing established
libraries [57]. Whilst all of these efforts are admirable and bring new mechanisms
for managing side effects, they all have one weakness which Haskell does not: in
Haskell one is forced to ensure that the entire program is pure, because the main
function must return an IO. The runtimes of other languages are not structured in
this way, and so these IO Monad libraries are forced to rely on workarounds to
evaluate the IO. These rely on the user structuring their program around the con-
cept of an IO, and only evaluating that IO as the last operation in their program.
For example Monix Task [58], where the user must eventually call runUnsafeSync
to evaluate the IO, describes the situation as thus:

In general prefer to ... structure your logic around asynchronous actions in a non-
blocking way. But in case you're blocking only once, in main, at the "edge of the
world” so to speak, then it's OK.

— Alexandru Nedelcu

3.5. Promises and Futures

There may be some confusion over the differences between the computer science
terms Promise, Future, or even Eventuals. However, these terms are academically
synonymous, as perhaps best explained by Baker and Hewitt, the fathers of the
term Future [16]:

18

Task Abstraction for XPath Derived Languages

the mechanism of futures, which are roughly Algol-60 "thunks” which have their
own evaluator process ("thinks”?). (Friedman and Wise [18] call futures "prom-
ises”, while Hibbard [17] calls them "eventuals”.)

—Henry G. Baker Jr. and Carl Hewitt

The confusion likely comes from implementations that offer both Future and
Promise abstractions to developers looking for safer concurrency facilities, yet use
differing terminology and provide vastly different APIs. Two examples of
extreme variation of terminology, are the Scala and Clojure programming lan-
guages, which each define Future and Promise as distinct classes. The Scala/
Clojure Future class is much more like the computer science definition of Future/
Promise which models computation; whereas the Scala/Clojure Promise class
serves a very different purpose, primarily as a memorized data provider for com-
pleting a Future class. We are strictly interested in the computer science definition
of Promise and Future, and herein will refer to them singly as Promise.

A Promise represents a value which may not yet have been computed. Typi-
cally when creating a Promise a computation is immediately started asynchro-
nously and returns a Promise. In implementation terms, a Promise is a reference
which will likely take the form of an object, function, or integer. At some point in
the future when the asynchronous computation completes, the Promise is fulfil-
led with the result of the computation which may be either a value or an error.
Promises provide developers with an abstraction for concurrent programming,
but whether that is executed via cooperative or preemptive multi-tasking is
defined by the implementation. Promises by themselves provide no mechanism
for avoiding side effects as they are likely eagerly evaluated, with multiple prom-
ises being unordered with respect to execution.

Some implementations, for example those based on Promise/A+ like Java-
Script, allow you to functionally compose Promises together [53]. This functional
composition can allow you to chain together side-effecting functions which are
encapsulated within Promises, thus giving an explicit execution order, in a man-
ner not dissimilar to Haskell's IO Monad (see Section 3.4). Unlike Haskell's IO
Monad however, this doesn't suddenly mean that your application is pure:
remember that JavaScript Promises are eagerly evaluated. It does though offer a
judicious JavaScript developer some measure to ensure the correct execution
order of her impure asynchronous code.

3.6. Reactive Streams

Reactive Streams enable the composition of a stream of computation, where the
Publisher, Subscriber, or a Processor in the stream (which act as both Subscriber
and Publisher), may operate asynchronously [59]. A key characteristic of Reactive
Streams is that of back-pressure, a form of flow control which can prevent slower
Subscribers from being overwhelmed by faster asynchronous Producers. This

19

Task Abstraction for XPath Derived Languages

built-in back-pressure facility appears to be unique to Reactive Streams, and
would otherwise have to be manually built by a developer atop other concur-
rency mechanisms.

The Reactive Streams initiative itself just defines a set of interfaces and princi-
ples for Reactive Stream implementations, it is up to the implementations to pro-
vide mechanisms for controlling concurrent and parallel processing of streaming
values. Typically implementations provide mechanisms for parallelising Process-
ors within a stream, or splitting a stream into many asynchronously executing
streams which are later resolved back to the main stream.

Reactive Streams offers little explicitly to help with side effects, however if we
consider that a data flow within a non-concurrent stream is always downwards,
then streams do provide an almost Monadic-like mechanism for composing pro-
cessing steps where the order of execution becomes explicit. Likewise, if one was
to ensure that the data that is passed from one step to another is immutable, then
when there are concurrent or asynchronous Subscribers, there can be no data-
driver side effects between them as the data provided by the publisher was
immutable, meaning that any changes to the data by a subscriber are isolated to a
localised copy of the data.

Examples of Reactive Streams implementations that support concurrent and
parallel processing at this time include: RxJava, Akka Streams, Monix, Most.js,
and Reactive Streams .NET#

3.7. Conclusion of non-XPDL Solutions Survey

Our survey shows several different options for concurrent/parallel programming.
It is possible to build the same application using any of these options, but each
offers a different approach and syntax for isolating and managing concurrently
executing processes. As well as the underlying computer science principles of
each option, the libraries or languages that implement these options can vary
between Cooperative Multitasking and Preemptive Multitasking. Coroutines,
Async/Await, and Promises are particularly well suited to Cooperative Multitask-
ing systems due to their explicit demarcation of computation boundaries, which
can be used to yield the CPU to another process. Likely this is why these options
have been adopted in the JavaScript community, where JavaScript Virtual
Machines are frequently designed as cooperatively multitasking systems utilising
an event loop [60].

We find that the IO Monad is the only surveyed option that is specifically
designed to manage computational side effects in a functional manner. This is
likely due to the fact that the IO Monad approach was explicitly developed for
use in a non-strict purely functional language, i.e. Haskell, whereas all of the
other approaches are more generalised, and whilst not explicitly limited to imper-
ative languages are often found in that domain.

20

Task Abstraction for XPath Derived Languages

Of all the approaches surveyed, to the best of our knowledge, only the devel-
opment of a Promise-like approach has been realised for XPDLs, namely xg-
promise (see Section 2.5). It seems likely that at least aspects of the IO Monad
approach (such as that demonstrated by Monix), or Reactive Streams options,
could be implemented by utilising XPath extension functions and a written speci-
fication of concurrent implementation behaviour, without resorting to propriet-
ary XPath syntax extensions. Conversely, whilst an XPath function based
implementation could likely be devised, both Async/Await and Coroutines
would likely benefit by extending the XPath language with additional syntax.

In conclusion, we believe that an IO Monad exhibits many of the desirable
properties that we set out to discover in Section 1.4. It has strong pure functional
properties, strict isolation of side effects, and acts as a building block for con-
structing further concurrent/parallel processing. Therefore we have chosen to use
this as the basis for a solution to handle side effects and sequential or concurrent
processing in XPDLs.

4. EXPath Tasks

Herein we describe EXPath Tasks, a module of extension XPath functions for per-
forming Tasks. These functions have been designed to allow an XPDL developer
to work with both side effects and concurrency in a manner which appears
imperative but is functionally pure, and therefore does not require processors to
sacrifice optimisation opportunities.

The specification of the functions and their behaviour is defined in Appen-
dix A. We have also developed four reference implementations:

XQuery task.xq is written in pure XQuery 3.1 with no extensions. It imple-
ments all functions, however all potentially asynchronous opera-
tions are executed sychronously. The source code is available
from https://github.com/adamretter/task.xq.

XSLT task.xsl is written in pure XSLT 3.0 with no extensions. There is a
lot of code overlap with task.xq, since much is actually XPath 3.1.
Like task.xq, it implements all functions, however all potentially
asynchronous operations are executed sychronously. The source
code is available from https:// github.com/saxonica/ expath-task-
xslt.

Java An implementation of EXPath Tasks for XQuery in eXist-db. The
source code is available from https:// github.com/eXist-db/exist/
tree/ expath-task-module-4.x.x/extensions/expath/src/org/expath/
task.

JavaScript An implementation of EXPath Tasks for XSLT in Saxon-]JS.

21

https://github.com/adamretter/task.xq
https://github.com/saxonica/expath-task-xslt
https://github.com/saxonica/expath-task-xslt
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task
https://github.com/eXist-db/exist/tree/expath-task-module-4.x.x/extensions/expath/src/org/expath/task

Task Abstraction for XPath Derived Languages

4.1. The Design of EXPath Tasks

From the findings of our survey on non-XPDL solutions (see Section 3), we felt
that the best fit for our requirements (see Section 1.4) was that of developing a
module of XPath Functions that could both ensure the correct execution ordering
of side-effecting functions, and provide facilities for asynchronous programming.

We decided to adopt the principles of the IO Monad, as we have previously
identified it as providing the most comprehensive approach to managing non-
deterministic functions in a pure functional language. Our design was heavily
influenced by both Haskell's IO [54] and Async [46] packages, and to a lesser
extent by Monix's Task [58].

Our decision to develop a module of extension functions rather than grammar
extensions, was influenced by a previous monadic approach for XQuery, called
XQuery!, which utilized grammar extensions but failed to gain adoption [63].

An astute reader may raise the question of why we didn't attempt a transla-
tion of IO actions to PUL Update Primitives. The issue that we saw is that a PUL
is an opaque collection, which cannot be computed over. With XQuery Update
there is no mechanism for directly working with the result of a previous Update
Primitive. We required a solution that was applicable to general computation, so
we focused on a task based approach. Of course there is the concern that we
would have also had to adopt much of the XQuery Update specification to make
this work in practice. For XPDLs that are not derived from XQuery this may have
been prohibitive to adoption. However, we see no reason why further work could
not examine the feasibility of lifting a Task to an Update Primitive.

4.1.1. Abstract Data Types

Haskell's IO Monad makes use of an ADT (Abstract Data Type) to represent the
World which it is transforming. The beauty of using an ADT here is that the Has-
kell programmer cannot themselves instantiate this type?, which makes it impos-
sible to execute IO directly. Instead the Haskell compiler is responsible for
compiling the application in such a manner that the IO will be implicitly executed
at runtime.

Recall that the IO type is really a state transformation function, with the signa-
ture

I0 a = World -> (a, World)

To create an equivalent function for XPDLs we need some mechanism for model-
ling the World ADT. Unfortunately, without requiring Schema Awareness, the

?Haskell does provide an unsafePerformIO function which can conjure the world up, and execute the
IO. However, such behaviour is considered bad practice in the extreme.

22

Task Abstraction for XPath Derived Languages

XDM type system is sealed. It is not possible to define new types abstract or oth-
erwise within XPDLs.

To remain within the XPDL specifications we must therefore define the World
using some non-abstract existing type. Unfortunately, this means that the devel-
oper can also instantiate the World and potentially execute the I0. We developed
an initial prototype [62] where we modelled the World simply as an XDM Ele-
ment named io:realworld, thus our XPath IO type function was defined such:

declare function 10:I0(Srealworld as element (io:realworld)) as item()+

Note the item()+ return type: in XPath there is no tuple type so we have to use a
less strict definition than we would prefer. This sequence of items will have 1+n
items, where the head of the sequence is always the new state of the world (i.e.
the XDM element named io:realworld), and the tail of the sequence is the result
of executing the IO.

Implementations written for XPDLs in non-XPDLs could likely enforce stron-
ger semantics by using some proprietary type outside of the XDM to represent
the World which is un-instantiable from the XPDL.

Like Haskell's GHC (Glasgow Haskell Compiler), whether there really is a
World that is present in the application at execution time or not is an implementa-
tion detail. Certainly it is crucial that the World is threaded through the chain of
IO actions at evaluation time to ensure ordering, but implementations are free to
optimise the world away as long as they preserve ordering.

4.1.2. Typing a Task

Ultimately we adopted the name Task instead of IO to represent our embracement
of more than just I/O.

The first version of our Task Module was developed around the type defini-
tion of a Task as:

declare function task:task(Srealworld as element (adt:realworld))
as item()+

We quickly realised that using this module led to verbose syntax, and that the
function syntax obscured the ordering of chains; the ordering of task execution
being the most deeply nested and then extending outwards:

task:fmap (
task:fmap (

23

Task Abstraction for XPath Derived Languages

task:value ("hello"),
upper-case#l

)

concat (?, " adam")

Figure 1. Example of Tasks using Function based syntax

To provide a more natural imperative syntax, we realised that instead of mod-
elling a Task as a function type, we could model it as an XDM Map of functions
which can be applied. An XDM Map is itself a function from its key to its value. By
modelling a Task as Map, we could use the encapsulation concept from OOP
(Object Oriented Programming) to place functions in the Task (Map), that act
upon that task. Each function that we previously defined that operated upon a
Task, we recreated as a function inside the Map which operates on the Task repre-
sented by the Map. Thus yielding a fluent imperative-like API that utilises the
Map Lookup Operator to appear more familiar to imperative programmers:

task:value("hello")
? fmap (upper-case#l)
? fmap(concat(?, " adam"))
? RUN-UNSAFE ()

Figure 2. Example of Tasks using fluent imperative-like syntax

So our Task type is finalised as:
map (xs:string, function(*))

More specifically our Task Map is defined as:

map {

'apply': as function(element (adt:realworld)) as item()+,

'bind': as function(Sbinder as function(item()*) as map(xs:string,
function(*))) as map(xs:string, function(*)),

"then': as function($Snext as map(xs:string, function(*))) as
map (xs:string, function(*)),

'fmap': as function(Smapper as function(item()*) as item()*) as
map (xs:string, function(*)),

'sequence': as function(S$tasks as map(xs:string, function(*))+) as
map (xs:string, function(*)),

'async': as function() as map(xs:string, function(*)),

24

Task Abstraction for XPath Derived Languages

'catch': as function(Scatch as function(xs:QName?, xs:string,
map (*)) as map(xs:string, function(*))) as map(xs:string, function(*)),
'catches': as function($Scodes as xs:QName*, S$Shandler as
function (xs:QName?, xs:string, map(xs:QName, item()*)?) as item()*) as
map (xs:string, function(*)),
'catches-recover': as function($codes as xs:QName*, S$handler as
function() as item()*) as map(xs:string, function(*)),
'"RUN-UNSAFE': as function() as item()*
1

Observe that the apply entry inside the Task map retains our original Task type.
The Map provides us with encapsulation which allows for the creation of an
imperative-like API. By refactoring our existing Task functions we have been able
to preserve both the function syntax-like API and the fluent imperative-like API.
This provides developers the opportunity to choose whichever best suits their
needs, or to work with a mix of syntaxes as appropriate to them.

4.1.3. Asynchronous Tasks

We provide a mechanism which explicitly allows the developer to state that a
Task could benefit from being executed asynchronously. The task:async function
allows the developer to state their intention, however EXPath Tasks does not
specify whether, how, or if this actually executes asynchronously. This gives pro-
cessors the ability to make informed decisions about concurrent execution based
on input from the developer, but great freedom in how that is actually executed.
The only constraint on implemetations is that the order of execution within a task
chain must be preserved. Developers should rather think of task:async as pro-
viding a hint to the processor that asynchronous execution would be beneficial,
rather than assuming asynchronous execution will always take place.

Conversely, as the only constraint that we place on implementers is that the
order of execution within a task chain must be preserved, compliant processors
are free to implicitly parallelise operations at execution time providing that con-
straint holds.

4.1.4. Executing a Task

Recall that a Haskell application starts with a main that must return an IO, thus
framing the entire application as an IO action. The result of executing an XPDL is
always an instance of the XDM (and possibly a PUL). Whilst we could certainly
return a Task (map) as the result of the evaluation of our XPDL, what should the
processor do when it encounters it? If the processor decides to serialize the XDM
then we are likely at the mercy of the W3C XSLT and XQuery Serialization speci-
fication, which certainly won't execute our Task by applying it to transform the
state of the world.

25

Task Abstraction for XPath Derived Languages

Three potential solutions that present themselves from our research are:

* Prescribe in the specification of EXPath Tasks that an implementation must
execute a Task which is returned as the result of the XPDL in a certain manner.

* Incorporate the concept of a PUL into the specification of EXPath Tasks. Each
Task would create an Update Primitive which is added into the PUL. The
result of evaluating the XPDL would then be both an XDM and a PUL.

* Provide an explicitly unsafe function for evaluating a Task, similar to Haskell's
unsafePerformIO or Monix Tasks's runUnsafeSync.

We decided to adopt a hybrid approach. We provide a task:RUN-UNSAFE func-
tion, where we explicitly prescribe that this should only appear once within an
XPDL program, and that it must occur at the edge of the program, i.e. as the main
function. However, we also explicitly state that implementers are free to override
this function. For example, implementations that already support an XQuery
Update PUL, may choose to promote a Task chain to a set of Update Primitives
when this function is evaluated.

4.2. Using EXPath Tasks

We provide several examples to demonstrate key features of EXPath Tasks.

4.2.1. Composing Tasks

We can use monadic composition to safely compose together several tasks that
may at execution time cause side effects, but at evaluation time result in an
ordered chain of tasks.

Example 1. Safely Uppercasing a file

task:value ("/tmp/my-file")
?fmap (file:read-text#1)
?fmap (fn:upper-case#l)
?fmap (fn:write-text ("/tmp/my-file-upper", ?))

Consider the code in Example 1. We use the EXPath File Module to read the
text of a file, we then upper-case the text, and finally write the text out to a new
file. We start with a pure value Task holding the path of the source file, by map-
ping this through the read-text function a second new task is created. At evalua-
tion time nothing has been executed, instead we have a task that describes that
first there is a file path, and then secondly we should read a file from that path.
We have composed two operations into one operation which preserves the order-
ing of the original operations. We then continue by mapping through the upper-

26

Task Abstraction for XPath Derived Languages

case, which composes another new task representing all three operations (file
path, read-text, and upper-case) in order. Our last mapping composition results
in a final new task which represents all four operations in order. When this final
task is executed at runtime, each of the four operations will be performed in the
correct order.

Through using the EXPath Tasks module, we have safely contained the side
effects of the functions from the EXPath File Module, by deferring them from
evaluation time to execution time. As the Task is a state transformation, we have
also threaded the World through our task chain, which ensures that any XPDL
processor must execute them in the correct order even in the face of aggressive
optimisation.

4.2.2. Using Asynchronous Tasks

We can lift a Task to an Asynchronous Task, which can help provide the XPDL
processor with hints about how best to parallelise an XPDL application.

The following is a refactored version of the fork-join example from xq-promise
[35], to show how concurrent programming can be structured safely using
EXPath Tasks.

The example performs 25 HTTP requests to 5 distinct servers and returns the
results. First we show the synchronous version:

Example 2. Synchronous HTTP Fetching

let Stasks :=
for $uri in ((1 to 5) !
("http://www.google.com', 'http://www.yahoo.com',

'http://www.amazon.com', 'http://cnn.com',
'http://www.msnbc.com'))
let S$task :=

task:value (Suri)
?fmap (http:send-request (<http:request method="GET" />, ?))
?fmap (fn:tail#l)
?fmap (fn:trace(?, 'Results found: '))
?fmap (function ($res) {

Sres//*:a[@href => matches (' http')]
1)
return
task:sequence (Stasks)
?RUN-UNSAFE ()

Now we show the asynchronous version, where we have only needed to insert
two lines of code, the call to task:async which lifts each Task into an Asynchro-
nous Task, and a binding to task:wait-all:

27

Task Abstraction for XPath Derived Languages

Example 3. Asynchronous HTTP Fetching

let Stasks :=
for Suri in ((1 to 5) !

("http://www.google.com', 'http://www.yahoo.com',
'http://www.amazon.com', 'http://cnn.com',
"http://www.msnbc.com'))

let S$task :=
task:value (Suri)
?fmap (http:send-request (<http:request method="GET" />, ?))
?fmap (fn:tail#l)
?fmap (fn:trace(?, 'Results found: '))
?fmap (function (Sres) {
Sres//*:a[@Ghref => matches ('*http')]
1)
?async ()
return
task:sequence ($tasks)
?bind(task:wait-all#1l)
?RUN-UNSAFE ()

4.2.3. Using Tasks with IXSL

We now consider how Tasks could be used within an IXSL stylesheet for a Saxon-
JS web application. Here we use Tasks to enable both concurrency (an asynchro-
nous HTTP request) and side effects (HTML DOM updates). The code in
Example 4 shows an IXSL event handling template for onclick events for the "go"
button, and associated functions. The main action of clicking the "go" button is to
send an asynchronous HTTP request. The intention is that the HTTP response
will provide new content for the <div id="target"> element in the HTML page,
as directed by the local f:handle-http-response function. But while awaiting
the HTTP response, the "target" div is first updated to provide a "Request pro-
cessing..." message, and the "go" button is hidden; as directed by the local
f:onclick-page-updates function.

Example 4. Asynchronous HTTP using Tasks in IXSL

<xsl:template match="button[@id eq 'go']" mode="ixsl:onclick">
<xsl:variable name="onclick-page-updates-task"
select="task:of (f:onclick-page-updates#0)"/>
<xsl:variable name="http-post-task"
select="task:of (function() {http:post (Srequest-body,
Srequest-options) })"/>
<xsl:variable name="async-http-task"

28

Task Abstraction for XPath Derived Languages

select="S$http-post-task ? fmap (f:handle-http-
response#l) ? async()"/>
<xsl:sequence select="task:RUN-UNSAFE (task:then (Sonclick-page-
updates-task, Sasync-http-task))"/>
</xsl:template>

<xsl:function name="f:onclick-page-updates">
<ixsl:set-style name="display" select="'none'"
object="ixsl:page()//button[id="go']"/>
<xsl:result-document href="#target" method="ixsl:replace-content">
<p>Request processing...</p>
</xsl:result-document>
</xsl:function>

<xsl:function name="f:handle-http-response">
<xsl:param name="response" as="map (*)"/>
<xsl:for-each select="S$Sresponse?body">
<xsl:result-document href="#target"
method="ixsl:replace-content">
<p>Response from request:</p>
<xsl:sequence select="."/>
</xsl:result-document>
</xsl:for-each>
<ixsl:set-style name="display" select="'inline'"
object="ixsl:page()//button[id="go']"/>
</xsl:function>

Through using the EXPath Tasks module, we have safely contained the side
effects of the local functions. Meanwhile, the use of the task:async function
allows the Saxon-JS processor to use an asynchronous implementation of the
EXPath HTTP Client 2.0 http:post function. The task chain is created making
use of task:fmap to pass the HTTP response to the handler function; and
task:then to compose the initial $onclick-page-updates-task with the main
$async-http-task, ensuring the correct order for their side effects.

5. Conclusion

In this paper we have surveyed the current state-of-the-art mechanisms by which
XPDL processors allow side effects and concurrent programming, and the
options available to non-XPDLs for managing side effects and providing concur-
rent or parallel programming. From this research we have then developed and
specified EXPath Tasks, a module of XPath extension functions, that allow devel-
opers to safely encapsulate side-effecting functions so that at evaluation time they
appear as pure functions and enforce the expected order of execution. Finally, we

29

Task Abstraction for XPath Derived Languages

have developed several reference implementations of EXPath Tasks to demon-
strate the feasability of implementing our specification.

Were the necessary functions available for performing node updates, we
believe that the IO Monad approach taken by EXPath Tasks could even have ben-
efits over using XQuery Update. Whilst it provides similarly strong deferred
semantics like a PUL, a PUL is completely opaque, and one cannot compute over
it, unlike a Task chain where Tasks may be composed together.

Whilst at a casual glance it may appear that EXPath Tasks have some similari-
ties to xg-promise, we should be careful to point out that they work quite differ-
ently in practice. We believe that EXPath Tasks has the following advantages over
X{-promise:

* Correct Ordering of Execution.

Under aggressive functional optimisation, EXPath Tasks will still preserve
the correct order of execution even when tasks have no explicit dependency
between them. EXPath Tasks can guarantee the order because they transpar-
ently thread the World through the chain of computation as tasks are com-
posed, which implicitly introduces dependencies between the Tasks.

* Flexible Asynchronous Processing.

The asynchronous processing model of EXPath Tasks is very generalised,
and only makes guarantees about ordering of execution. This enables many
forms of concurrent programming to be expressed using EXPath Tasks,
whereas xg-promise only offers fork-join. In fact xq-promise can easily be reim-
plemented atop EXPath tasks, including fork-join:

declare function local:fork-join(S$tasks as task:Task(~An)+)
as task:Task(array(~An)) {
task:sequence (Stasks ! task:async#l)
?bind (task:wait-all#1)
b

Interestingly, if the xq-promise API were reimplemented atop EXPath Tasks, it
would gain stronger guarantees about execution order.

Likewise our generalised approach, whilst making explicit the intention of
parallelism, does not restrict processors from making further implicit paralle-
lisation optimisations.

* Potential Performance
An xg-promise Promise is a deferred computation that cannot be executed
until its fork-join function is called. In comparison EXPath Tasks's Asyn-
chronous Tasks can begin execution at runtime as soon as their construct func-
tion is executed, thus making better use of computer resources by starting
computation earlier than would be possible in xg-promise.

30

Task Abstraction for XPath Derived Languages

It will certainly be interesting to see how the XML community responds to our
EXPath Tasks specification. We are hopeful that developers working with Tasks
need not necessarily have any understanding of Monads to be able to fully
exploit the benefits of EXPath Tasks.

We are still at an early stage of investigating how well use of the Task module
can be incorporated into IXSL stylesheets for Saxon-JS applications. Does the Task
module provide a good solution for handling asynchronous processing and side
effects in Saxon-JS? This may only be answerable once more examples have been
trialled, once the Saxon-JS implementation is more advanced.

Given an existing Saxon-JS application, a move to use the Task module could
involve a significant amount of restructuring. To use the Task module properly,
all side-effecting expressions should be wrapped in tasks, and care would need to
be taken to chain them together appropriately. Side-effecting expressions are
likely to be found in numerous different templates, and so bringing the tasks
together could be a challenge, and would likely involve considerable redesign.
These challenges are not necessarily a problem with the Task module, but given
that currently developers can be relatively free with how side effects and asyn-
chronous processes fit into their XSLT programs; the move to any solution which
requires explicit strict management of these is going to be a fairly radical change.
But this work would not be without benefit: the current lack of management of
side effects can easily result in unexpected results if the developer is not careful.
The use of Tasks would eliminate this risk.

Further work is also required to work out exactly how to use Tasks to accom-
plish some specific actions within a Saxon-JS application. For example, providing
a mechanism which allows a user to abort an asynchronous HTTP request. Com-
bining the use of Tasks with IXSL event handling templates, does not seem to
work. Instead it seems a solution requires another way to create event listeners
from within the XSLT; in which case, perhaps new IXSL extensions are needed.

5.1. Future Work

We have identified several areas for possible future research:

* Stronger/Stricter Explicit Typing

The explicit types we have specified in our Task Module are not as strict as
we would like. This is in general due to a lack of a stronger type system which
would allow us to express both abstract and generic types. At run-time the
correct types will be inferred by the processor. It would be interesting to
research modifications to the XDM so that we can statically express stricter
types. For instance, the Saxon processor provides the tuple type [64] syntax
extension as a way of defining a more precise type for maps.

We recognise there may also be an approach where function generation is
used, to generate Task functions with stricter types by type switching on

31

Task Abstraction for XPath Derived Languages

incoming parameters. Due to the large number of types in the XDM to switch
over, such generation would itself likely need to be computed.

¢ Side effects between Concurrent Tasks

We have provided no mechanisms for avoiding side effects across shared
state between parallel tasks at execution time, e.g. race conditions, data cor-
ruption, etc. Often such issues can be avoided by developers decomposing
asynchronous tasks into smaller asynchronous tasks which have to synchron-
ize via task:wait-all, and then begin asynchronously again. A set of func-
tional Task based synchronization primitives which could be used to help in
parallel situations would be an interesting extension.

¢ Additional convenience functions

Whilst we have provided the building blocks necessary for general compu-
tation, additional convenience functions could be added. For instance gather
(similar to task:sequence but with relaxed ordering), withAsync (which lifts
a normal function into an Asynchronous Task), and parZip (which asynchro-
nously zips the results of two tasks together).

We have provided mechanisms for working with XPath errors, however
we could also consider functions for working with error values. We see no rea-
son why something akin to an Either (disjoint union) could not be developed
to work with EXPath Tasks, where a result is either an error value or the result
of successful computation.

A. EXPath Tasks Module Definitions

A.1. Namespaces and Prefixes

This module makes use of the following namespaces to contain its application.
The URIs of the namespaces and the conventional prefixes associated with them
are:

® http://expath.org/ns/task for functions -- associated with task.

* http://expath.org/ns/task/adt for abstract data types -- associated with
adt.

A.2. Types

As an attempt at simplifying the written definition of the functions within the
Task Module, we have specified a number of type aliases. The concrete types are
likely of little interest to users of the Task Module who are more concerned with
behaviour than implementation detail. Implementers which need such detail may
substitute the aliases for the concrete types as defined below.

32

Task Abstraction for XPath Derived Languages

We have followed the XPath convention of using lower-cased names for our
functions, apart from task:RUN-UNSAFE where the use of continuous capital let-
ters is intended to draw developer attention. Our type aliases are described using
a capitalised-cased naming convention to visually distinguish them from function
names.

Alias Concrete Type

~A The ~ signifies that this is a generic type, and the A is just a pla-
ceholder for the actual type. Concretely this is at least an
item() *, however intelligent processors can likely infer and
enforce stricter types through the functionally composed Task
chain.

33

Task Abstraction for XPath Derived Languages

Alias

Concrete Type

task:Task(~A)

The task:Task type alias, is concretely map (xs:string,
function(*)).

The inner aliased generic type, indicates that the Task when exe-
cuted returns a result of type ~A.

Specifically the Task map has the following non-optional entries:

map {

'apply': as function (World) as item()+,

'bind': as function (Sbinder S$Sbinder as function(~A) as
task:Task(~B)) as task:Task(~B),

"then': as function (Snext as task:Task(~B)) as
task:Task (~B),

"fmap': as function (Smapper as function(~A) as ~B) as
task:Task (~B),

'sequence': as function($tasks as task:Task(~An)+) as
task:Task (array(~An)),

'async': as function() as task:Task(task:Async(~A)),

'catch': as function(Scatch as function (xs:QName?,
xs:string, map(*)) as task:Task(~B)) as task:Task(~B),

'catches': as function(Scodes as xs:QName*, S$handler as
function (xs:QName?, xs:string, map(xs:QName, item()*)?) as
~B) as task:Task(~B),

'catches-recover': as function(Scodes as xs:QName*,
Shandler as function() as ~B) as task:Task(~B),

'RUN-UNSAFE': as function() as ~A

Note: Each of the functions defined in the Task Map have the
exact same behaviour as their cousins of the same name residing
outside of the map. The only difference is that the functions
inside the Map don't need an explicit task argument.

34

Task Abstraction for XPath Derived Languages

Alias Concrete Type
task:ErrorObject |The task:ErrorObject type alias, is concretely map (xs:QOName,
item() *).
All entries in the map are optional, but otherwise it is structured
as:
map {
xs:QName ("err:value") : item()*,
xs:QName ("err:module") : xs:string?,
xs:QName ("err:line-number") : xs:integer?,
xS:QName ("err:column-number") : xs:integer?
XS :QName ("err:additional™) : item()*

task:Async(~A) |The task:Async type alias, is concretely

function (element (adt:scheduler)) as ~A.

The inner aliased generic type, indicates that the Async if it runs
to completion will compute a result of type ~A.

A.3. Functions

A.3.1. Basic Task Construction

This group of functions offer facilities for constructing basic tasks. They usually
form the starting point of a task chain.

A.3.1.1. task:value

Summary Constructs a Task from a pure value.

Signature task:value($v as ~A) as task:Task(~A).

Rules When the task is run it will return the value of $v.

Notes In Haskell this would be known as return or sometimes alterna-

tively unit.
In Scala Monix this would be known as now or pure.
In formal descriptive terms this is:

value :: a -> Task a

35

Task Abstraction for XPath Derived Languages

Example Example A.1. Task from a String

task:value ("hello world")

A.3.1.2. task:of

Summary Constructs a Task from a function.
This provides a way to wrap a potentially non-pure (i.e. side-
effecting) function and delay its execution until the Task is execu-

ted.
Signature task:of ($Sf as function() as ~A) as task:Task(~A).
Rules The function is lifted into the task, which is to say that the function

will not be executed until the task is executed. When the task is
run, it will execute the function and return its result.

Notes In Haskell there is no direct equivalent.
In Scala Monix this would be known as eval or delay.
In formal descriptive terms this is:

of :: (() -> a) -> Task a

Example Example A.2. Task which computes the system time from a side-
effecting function.

task:of (util:system-time#0)

A.3.2. Task Composition

This group of functions offer facilities for functionally composing tasks together.

A.3.2.1. task:bind

Summary Composes a new Task from an existing task and a binder function
which creates a new task from the existing task's value.

Signature task:bind($task as task:Task(~A), Sbinder as
function(~A) as task:Task(~B)) as task:Task(~B).

Rules When the resultant task is executed, the binder function processes

the existing task's value, and then the result of the task is returned.

Notes In Haskell this is also called bind and often written as >>=.
In Scala Monix this is known as flatMap.

36

Task Abstraction for XPath Derived Languages

In formal descriptive terms this is:
bind :: Task a -> (a -> Task b) -> Task b
Examples Example A.3. Using bind to Square a number

task:bind(task:value (99), function(Sv) {
task:value (Sv * S$Sv)

1)

Example A.4. Using bind to Transform a value

task:bind (task:value ("hello"), function(Sv) {
task:value (fn:upper-case (Sv))

})

Example A.5. Using bind to conditionally raise an error

task:bind(task:value ("hello"), function($v) {
if ($v eq "goodbye")
then

task:error((), "It's not yet time to say goodbye!",
()
else
task:value ($v)

Example A.6. Using bind to compose two tasks

let Staskl := task:value("hello")
let Stask2 task:value ("world")
return
task:bind (Staskl, function($Svl) {
task:bind ($Stask2, function($v2) {
task:value(Svl || "™ " || $v2)

})
)

37

Task Abstraction for XPath Derived Languages

A.3.2.2. task:then

Summary

Signature

Rules

Notes

Example

Composes a new Task from an existing task and a new task. It is
similar to task:bind but discards the existing task's value.

task:then ($task as task:Task (~A4), Snext as
task:Task(~B)) as task:Task(~B).

When the resultant task is executed, the existing task is executed
and the result discarded, and then the result of the next task is
returned.

task:then($task, $next) is equivalent to task:bind(S$task,
function($) { Snext }).

In Haskell this is also a form of bind which is sometimes called
then, and often written as >>.

In Scala Monix this is direct equivalent.

In formal descriptive terms this is:

then :: Task a -> (_ -> Task b) -> Task b
Example A.7. Sequentially composing two tasks

task:then(task:value ("something we don't further need"),
task:value ("something important"))

A.3.2.3. task:fmap

Summary

Signature

Rules

Notes

Composes a new Task from an existing task and a mapping func-
tion which creates a new value from the existing task's value.

task:fmap (Stask as task:Task (~A), Smapper as
function(~A) as ~B) as task:Task(~B).

When the resultant task is executed, the mapper function processes
the existing task's value, and then the result of the task is returned.

In Haskell this is also called fmap and often written as <$>.
In Scala Monix this is known as map.
In formal descriptive terms this is:

fmap :: Task a -> (a -> b) -> Task b

38

Task Abstraction for XPath Derived Languages

Examples

Example A.8. Upper-casing a Task String

task:fmap (task:value ("hello"), fn:upper-case#l)

Example A.9. Concatenating a Task String

task:fmap (task:value("hello"), fn:concat(?, " world"))

Example A.10. Extracting the code-points of a Task String (e.g.
type conversion, String to Integer+)

task:fmap (task:value("hello"), fn:string-to-codepoints#l)

A.3.2.4. task:sequence

Summary
Signature

Rules

Notes

Examples

Constructs a new Task representating the sequential application of
one or more other tasks.

task:sequence (Stasks as task:Task (~An) +) as
task:Task (array(~An)).

When the resultant task is executed, each of the provided tasks will
be executed sequentially, and the results returned as an XDM array.
The order of entries in the resultant array is the same as the order
of $tasks.

In Haskell and Scala Monix this is known as sequence.
In formal descriptive terms this is:
sequence :: [Task a] -> Task [a]

Example A.11. Sequencing three Tasks into one

task:sequence ((task:value("hello"), task:value(54),
task:value ("goodbye"))

A.3.3. Task Error Management

This group of functions offers facilities for using tasks in the face of XPath errors.
Several can be used along with task:error as a form of conditional branching or
downward flow control.

39

Task Abstraction for XPath Derived Languages

A.3.3.1. task:error

Summary

Signature

Rules

Notes

Examples

Constructs a Task that raises an error.
This is a Task abstraction for fn:error.

task:error (Scode as xS :QName?, Sdescription as
xs:string, Serror-object as task:ErrorObject?) as
task:Task (none).

The error is not raised until the task is run.

The parameters $code, and $description have the same purpose
as those with the same name defined for fn:error.

The parameter $error-object has the same purpose but is a type
restriction of the parameter with the same name defined for
fn:error, it should be of type task:ErrorObject.

In Haskell this would be closest to fail.
In Scala Monix this would be known as raiseError.
In formal descriptive terms this is:

error :: (code, description, error-object) -> Task none

Example A.12. Constructing a simple Task Error

task:error (xs:QName ("local:error001"™), "BOOM!™, ())

A.3.3.2. task:catch

Summary

Signature

Rules

Constructs a Task which catches any error raised by another task.
This is similar to task:catches except that all errors are
caught.

task:catch (Stask as task:Task (~A), Shandler as
function (xs:QName?, xs:string, task:ErrorObject?) as
task:Task (~B)) as task:Task(~B).

When the resultant task is executed, the handler function catches
any error from executing the existing task, and then the result of
the handler task is returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

40

Task Abstraction for XPath Derived Languages

Notes

Example

In Haskell this is similar to catch.
In Scala Monix this would be similar to onErrorHandleWith.
In formal descriptive terms this is:

catches :: Task a -> ([code, description, errorObject] -> Task b) -
> Task b

Example A.13. Using catch to recover from an error

let Smy-error-code := xs:QName ("local:error01l")
return
task:catch(task:error (Smy-error-code, "Boom!", ()),
function (Sactual-code, Sactual-description, S$actual-error-
object) {
"Handled error: " || Sactual-code

1)

A.3.3.3. task:catches

Summary

Signature

Rules

Notes

Constructs a Task which catches specific errors of another task.
This is similar to task:catch-recover except that the error
handler receives details of the error.

task:catches (Stask as task:Task (~2), Scodes as
xs:QName*, Shandler as function(xs:QName?, xs:string,
task:ErrorObject?) as ~B) as task:Task(~B).

When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

The handler function accepts three arguments, the first is the
QName of the error that was caught, the second is the description
of the error that was caught, and the third are the ancillary error
details collected as a task:ErrorObject.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

In Haskell this is similar to catches.
In Scala Monix this would be similar to onErrorHandle.
In formal descriptive terms this is:

catches :: Task a -> ([code] -> ([code, description, errorObject] ->

41

Task Abstraction for XPath Derived Languages

Example

b)) -> Task b

Example A.14. Using catches to recover from an error

let Smy-error-code := xs:QName ("local:error01l")
return
task:catches (task:error (Smy-error-code, "Boom!", ()),

(Smy-error-code, xs:QName ("err:XPDY004")), function($Sactual-
code, Sactual-description, S$actual-error-object) {
"Handled error: " || Sactual-code

1)

A.3.3.4. task:catches-recover

Summary

Signature

Rules

Notes

Example

Constructs a Task which catches specific errors of another task.
This is similar to task:catches except that the error handler
does not receive details of the error.

task:catches-recover (Stask as task:Task(~A), Scodes as
xS :QName*, Shandler as function() as ~B) as
task:Task (~B).

When the resultant task is executed, the handler function catches
any matching errors identified by the parameter $codes from exe-
cuting the existing task, and then the result of the handler task is
returned.

If no errors are raised by the existing task, the handler will not
be called, and instead this task acts as an identity function.

In Haskell this is similar to catches, but it does not pass the error
details to the Shandler.

In Scala Monix this would be similar to onErrorRecover.

In formal descriptive terms this is:

catches-recover :: Task a -> ([code] -> (\ ->b)) -> Task b

Example A.15. Using catches-recover to recover from an error

let Smy-error-code := xs:QName ("local:error01l")

return
task:catches-recover (task:error (Smy-error-code,

"Boom!", ()), (Smy-error-code), function() {

"Recovering from error..."

42

Task Abstraction for XPath Derived Languages

})

A.3.4. Asynchronous Tasks

This group of functions offers facilities for constructing asynchronous tasks and
acting upon their progress.

A.3.4.1. task:async

Summary

Signature

Rules

Notes

Constructs an Asynchronous Task from an existing Task.

task:async (Stask as task:Task(~A)) as
task:Task (task:Async (~A)).

The existing task will be composed into a new task which may be
executed asynchronously.

This function makes no guarantees about how, when, or if the
asynchronous task is executed other than the fact that execution
will not begin before the task itself is executed.

Implementations are free to implement asynchronous tasks
using any mechanism they wish including cooperative multitask-
ing, preemptive multitasking, or even plain old single-threaded
synchronous. The only restriction on implementations is that the
processing order of task chains and asynchronous task chains must
be preserved, so that the user gets the result that they should
expect.

When the task is run, it may start an asynchronous process
which executes the task, regardless it returns a reference to the
(possibly) asynchronous process, which may later be used for can-
cellation or obtaining the result of the task.

If the function call results in asynchronous behaviour (i.e. a fork
of the execution path happens), then the asynchronous task inher-
its the Static Context, and a copy of the Dynamic Context where the
Context item, Context position, and Context size have been reinitial-
ised. If an implementation supports XQuery Update PUL, then any
Update Primitives generated in the Asynchronous Task are merged
back to the main Task only when task:wait or task:wait-all is
employed.

In Haskell this is similar to async from the
Control.Concurrent.Async package.

In Scala Monix this would be known as executeAsync.

In formal descriptive terms this is:

43

Task Abstraction for XPath Derived Languages

Example

async :: Task a -> Task (Async a)

Example A.16. Task which asynchronously posts a document

task:async (
task: fmap (
task:value ("http://somewebsite.com"),
http:post (?, <some-document/>)

A.3.4.2. task:wait

Summary

Signature

Rules

Notes

Example

Given an Async this function will extract its value and return a
Task of the value.

task:wait (Sasync as task:Async(~A)) as task:Task(~A).

At execution time of the task returned by this function, if the Asyn-
chronous computation represented by the Sasync reference has not
yet completed, then this function will block until the asynchronous
computation completes.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

In Haskell this is similar to wait from the
Control.Concurrent.Async package.

In Scala Monix this would be similar to Await.result.

In formal descriptive terms this is:

wait :: Async a -> Task a

Example A.17. Task waiting on an asynchronous task

let Sasync-task :=

44

Task Abstraction for XPath Derived Languages

task:async(
task:fmap (
task:value ("http://somewebsite.com"),
http:post(?, <some-document/>)

)

return
(: some further task chain of processing... :)

(: wait on the asynchronous task to complete :)
task:bind/(

Sasync-task,

task:wait#l

A.3.4.3. task:wait-all

Summary
Signature

Rules

Given multiple Asyncs this function will extract their values and
return a Task of the values.

task:wait-all ($Sasyncs as array(task:Async (~A))) as
task:Task (array(~A)).

At execution time of the task returned by this function, if any of the
Asynchronous computations represented by the Sasyncs referen-
ces have not yet completed, then this function will block until all
the asynchronous computations complete.

This function makes no guarantees about how, when, or if
blocking occurs other than the fact that any blocking (if required)
will not begin before the task itself is executed.

Implementations are free to implement waiting upon asynchro-
nous tasks using any mechanism they wish. The only restriction on
implementations is that the processing order of task chains and
asynchronous task chains must be preserved, so that the user gets
the result that they should expect.

This is equivalent to:

task:bind(Stask, function($Sasyncs as array(*)) as
map (xs:string, function(*)) {
task:sequence (array:flatten(array:for-each(Sasyncs,
task:wait#1)))
})

45

Task Abstraction for XPath Derived Languages

Notes In Haskell there is no direct equivalent, but it can be modelled by a
combination of wait and sequence.
In Scala Monix there is no direct equivalent.
In formal descriptive terms this is:

wait-all :: [Async a] -> Task [a]
Example Example A.18. Task waiting on multiple asynchronous tasks

let Sasync-tasks :=
(
task:async(
task:fmap (
task:value ("http://websiteone.com"),
http:post (?, <some-document/>)
)
)I
task:async(
task:fmap (
task:value ("http://websitetwo.com"),
http:post (?, <some-document/>)

)

return
(: some further task chain of processing... :)

(: wait for all asynchronous tasks to complete :)
task:bind/(

task:sequence (Sasync-tasks),

task:wait-all#l

A.3.4.4. task:cancel

Summary Given an Async this function will attempt to cancel the asynchro-
nous process.

Signature task:cancel (Sasync as task:Async(~A)) as task:Task().
Properties This function is non-blocking.
Rules At execution time of the task returned by this function, cancella-

tion of the Asynchronous computation represented by the $async
reference may be attempted.

46

Task Abstraction for XPath Derived Languages

Notes

Example

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous reference is invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous reference is
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

In Haskell this is similar to cancel from the
Control.Concurrent.Async package.

In Scala Monix this is known as ‘cancel .

In formal descriptive terms this is:

cancel :: Async a -> Task ()

Example A.19. Cancelling an asynchronous task

let Sasync-task :=
task:async (
task: fmap (
task:value ("http://somewebsite.com"),
http:post (?, <some-document/>)

)

return
(: some further task chain of processing... :)

(: cancel the asynchronous task :)
task:bind(

Sasync-task,

task:cancel#l

A.3.4.5. task:cancel-all

Summary

Given multiple Asyncs this function will attempt to cancel all of
the asynchronous processes.

47

Task Abstraction for XPath Derived Languages

Signature

Properties

Rules

Notes

Example

task:cancel-all (Sasyncs as array(task:Async(~A))) as
task:Task ().

This function is non-blocking.

At execution time of the task returned by this function, cancella-
tion of all Asynchronous computations represented by the
Sasyncs references may be attempted.

This function makes no guarantees about how, when, or if
cancellation occurs other than the fact that any cancellation (if
required/possible) will not begin before the task itself is executed.
Regardless the Asynchronous references are invalidated by this
function.

Implementations are free to implement cancellation of asyn-
chronous tasks using any mechanism they wish, they are also free
to ignore cancellation as long as the Asynchronous references are
still invalidated. The only restriction on implementations is that
the processing order of task chains and asynchronous task chains
must be preserved, so that the user gets the result that they
should expect.

In Haskell there is no direct equivalent, but it can be modelled by
a combination of cancel and sequence.

In Scala Monix there is no direct equivalent.

In formal descriptive terms this is:

cancel-all :: [Async a] -> Task ()

Example A.20. Cancelling asynchronous tasks

let Sasync-tasks :=
(
task:async (
task: fmap (
task:value ("http://websiteone.com"),
http:post (?, <some-document/>)
)
) 14
task:async (
task: fmap (
task:value ("http://websitetwo.com"),
http:post (?, <some-document/>)

48

Task Abstraction for XPath Derived Languages

return
(: some further task chain of processing... :)

(: cancel all asynchronous tasks :)
task:bind(
task:sequence ($async-tasks),
task:cancel-all#l

A.3.5. Unsafe Tasks

This defines a single function task:RUN-UNSAFE, which is useful only when a task
chain needs to be executed. If an XPDL implementation cannot provide a better
mechanism, then this may be implemented and used as a last resort.

A.3.5.1. task:RUN-UNSAFE

Summary

Signature
Properties

Rules

Notes

Executes a Task Chain and returns the result.

This function is inherently unsafe, as it causes any side effects
within the Task chain to be actualised.

If this function is used within an application, it should only be
invoked once, and it should be at the edge of the application, i.e.
in the position where it is the first and only thing to be directly
executed by the application at runtime. No further computation,
neither on the result of this function, or after this function call
should be attempted by the application.

task:RUN-UNSAFE (Stask as task:Task(~A)) as ~A.
This function is nondeterministic.

At execution time, the task chain is evaluated and the result
returned.

However, if implementations can provide a safer mechanism
for the execution of a Task after the XPDL has completed evalua-
tion, then they are free to override this as they see fit. Once such
mechanism could be to promote the Task chain to a set of Update
Primitives within a PUL and then demote this to an identity func-
tion.

In Haskell the closest equivalent is unsafePerformIO.

In Scala Monix the closest approach would be a combination
of runToFuture and Await.result.

In formal descriptive terms this is:

49

Task Abstraction for XPath Derived Languages

RUN-UNSAFE :: Task a -> a

Example Example A.21. Unsafely executing a Task

(:~
: Just a utility function for calculating
: previous sightings of Halley's comet
:)
declare function local:halleys-sightings ($before-year) {
let Sstart := 1530
let $interval := 76

for S$range in
($start - Sinterval to Sbefore-year - Sinterval)

let S$visible := S$range + S$interval
where ((Svisible - $start) mod $interval) eq 0
return

Svisible

let Stask := task:fmap(
task:fmap (
task:of (util:system-time#0),
fn:year-from-date#1l

)
local:halleys-sightings#l

)

return

task:RUN-UNSAFE (Stask)

Bibliography

[1] James Clark. Steve DeRose. XML Path Language (XPath) Version 1.0. W3C
Recommendation 16 November 1999 (Status updated October 2016).
1999-11-16. https://www.w3.0rg/TR/1999/REC-xpath-19991116/.

[2] Anders Berglund. Scott Boag. Mary Fernandez. Scott Boag. Michael Kay.
Jonathan Robie. Jérome Siméon. XML Path Language (XPath) 2.0 (Second
Edition). W3C Recommendation 14 December 2010 (Link errors corrected 3
January 2011; Status updated October 2016). 2010-12-14. https://www.w3.org/
TR/xpath20/.

50

https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/

Task Abstraction for XPath Derived Languages

[3] Mary Fernandez. K Karun. Mark Scardina. XPath Requirements Version 2.0.
W3C Working Draft 3 June 2005. 2005-06-03. https://www.w3.org/TR/
xpath20req/.

[4] Denise Draper. Peter Fankhauser. Mary Ferndndez. Ashok Malhotra. Kristoffer
Rose. Michael Rys. Jérome Siméon. Philip Wadler. XQuery 1.0 and XPath 2.0
Formal Semantics (Second Edition). W3C Recommendation 14 December 2010
(revised 7 September 2015). 2015-09-07. https://www.w3.org/TR/xquery-
semantics/.

[5] Steve Muench. Mark Scardina. XSLT Requirements Version 2.0. W3C Working
Draft 14 February 2001. 2001-02-14. https://www.w3.org/TR/xslt20req/.

[6] Don Chamberlin. Peter Fankhauser. Massimo Marchiori. Jonathan Robie. XML
Query (XQuery) Requirements. W3C Working Group Note 23 March 2007.
2007-03-27. https://www.w3.org/TR/xquery-requirements/.

[7] John Snelson. Jim Melton. XQuery Update Facility 3.0. Pending Update Lists.
W3C Working Group Note 24 January 2017. 2017-01-24. https://www.w3.org/
TR/xquery-update-30/#id-pending-update-lists.

[8] Christian Griin. BaseX. 2018-10-31T16:11:00Z. Jobs Module. BaseX. http://
docs.basex.org/wiki/Jobs_Module.

[9] Adam Retter. eXist-db. eXist-db Util XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
util&location=java:org.exist. xquery.functions.util. UtilModule&details=true.

[10] Adam Retter. eXist-db. eXist-db Scheduler XQuery Module. Git Hub. http://
www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/
xquery/
scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModul
e.

[11] IBM. 2012-03-07. IBM100 - Power 4 : The First Multi-Core, 1GHz Processor.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/.

[12] Michael Perrone. 2009. Multicore Programming Challenges. IBM, T] Watson
Research Lab. 978-3-642-03868-6. 10.1007/978-3-642-03869-3_1. Springer.
https://link.springer.com/chapter/10.1007%2F978-3-642-03869-3_1. Euro-Par
2009 Parallel Processing, Lecture Notes in Computer Science. 5704.

[13] Pedro Fonseca. Cheng Li. Rodrigo Rodrigues. 2011-04-10. Finding complex
concurrency bugs in large multi-threaded applications. EuroSys "11 Proceedings of
the sixth conference on Computer systems. 215-228. ACM. 978-1-4503-0634-8.
10.1145/1966445.1966465. https://dl.acm.org/citation.cfm?id=1966465.

51

https://www.w3.org/TR/xpath20req/
https://www.w3.org/TR/xpath20req/
https://www.w3.org/TR/xquery-semantics/
https://www.w3.org/TR/xquery-semantics/
https://www.w3.org/TR/xslt20req/
https://www.w3.org/TR/xquery-requirements/
https://www.w3.org/TR/xquery-update-30/#id-pending-update-lists
https://www.w3.org/TR/xquery-update-30/#id-pending-update-lists
http://docs.basex.org/wiki/Jobs_Module
http://docs.basex.org/wiki/Jobs_Module
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/util&location=java:org.exist.xquery.functions.util.UtilModule&details=true
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
http://www.exist-db.org/exist/apps/fundocs/view.html?uri=http://exist-db.org/xquery/scheduler&location=java:org.exist.xquery.modules.scheduler.SchedulerModule
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://link.springer.com/chapter/10.1007%2F978-3-642-03869-3_1
https://dl.acm.org/citation.cfm?id=1966465

Task Abstraction for XPath Derived Languages

[14] Matthew Loring. Mark Marron. Daan Leijen. 2017-10-24. Semantics of
Asynchronous JavaScript. DLS 2017 Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic Languages table of contents. 51-62. ACM.
978-1-4503-5526-1. 10.1145/3133841.3133846. https://dl.acm.org/citation.cfm?
id=3133846.

[15] Cosmin Radoi. Stephan Herhut. Jaswanth Sreeram. Danny Dig. 2015-01-24.
Are Web Applications Ready for Parallelism?. Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 289-290.
ACM. 978-1-4503-3205-7. 10.1145/2688500.2700995. https://dl.acm.org/
citation.cfm?id=2700995.

[16] Henry G. Baker, Jr.. Carl Hewitt. 1977-08-15. The Incremental Garbage Collection
of Processes. Proceedings of the 1977 symposium on Artificial intelligence and
programming languages. 55-59. ACM. 10.1145/800228.806932.

[17] Peter Hibbard. 1976. Parallel Processing Facilities. New Directions in Algorithmic
Languages. 1-7.

[18] Daniel Friedman. David Wise. 1976. The Impact of Applicative Programming on
Multiprocessing. International Conference on Parallel Processing 1976. 263-272.
ACM.

[19] Jetfrey Dean. Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design and
Implementation. 137-150. https://research.google.com/archive/mapreduce-
osdi04.pdf.

[20] Michael Kay. 2015-02-14. Parallel Processing in the Saxon XSLT Processor. XML
Prague 2015 Conference Proceedings. 978-80-260-7667-4. http://
www.saxonica.com/papers/xmlprague-2015mhk.pdf.

[21] Jonathan Robie. 2016-03-03T12:05:03-05:00. EXPath Mailing List. Re: [expath]
Re: New Modules? Promise Module, Async Module. https://groups.google.com/
forum/#!msg/expath/Isjeez-50p4/-DCn-KJGBAA].

[22] O'Neil Delpratt. Michael Kay. 2013-08-06. Interactive XSLT in the browser.
Balisage Series on Markup Technologies, vol. 10 (2013). 10. https://doi.org/10.4242/
BalisageVol10.DelprattO1. https://www.balisage.net/Proceedings/vol10/html/
Delpratt01/BalisageVol10-Delpratt01.html.

[23] Adam Retter. 2018-10-03. EXPath and Asynchronous HTTP. https://
blog.adamretter.org.uk/expath-and-asynchronous-http/.

[24] Jesuis Camacho-Rodriguez. Dario Colazzo. loana Manolescu. 2015.
PAXQuery: Efficient Parallel Processing of Complex XQuery. IEEE Transactions on
Knowledge and Data Engineering. Institute of Electrical and Electronics

52

https://dl.acm.org/citation.cfm?id=3133846
https://dl.acm.org/citation.cfm?id=3133846
https://dl.acm.org/citation.cfm?id=2700995
https://dl.acm.org/citation.cfm?id=2700995
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
http://www.saxonica.com/papers/xmlprague-2015mhk.pdf
http://www.saxonica.com/papers/xmlprague-2015mhk.pdf
https://groups.google.com/forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ
https://groups.google.com/forum/#!msg/expath/Isjeez-5op4/-DCn-KJGBAAJ
https://www.balisage.net/Proceedings/vol10/html/Delpratt01/BalisageVol10-Delpratt01.html
https://www.balisage.net/Proceedings/vol10/html/Delpratt01/BalisageVol10-Delpratt01.html
https://blog.adamretter.org.uk/expath-and-asynchronous-http/
https://blog.adamretter.org.uk/expath-and-asynchronous-http/

Task Abstraction for XPath Derived Languages

Engineers. 1977-1991. 10.1109/TKDE.2015.2391110. https://hal.archives-
ouvertes.fr/hal-01162929/document.

[25] Ghislain Fourny. Donald Kossmann. Markus Pilman. Tim Kraska. Daniela
Florescu. Darin Mcbeath. WWW 2009 MADRID! Track: XML and Web Data /
Session: XML Querying XQuery in the Browser. 2009-04-20. XQuery in the
Browser. http://www2009.eprints.org/102/1/p1011.pdf.

[26] Philip Fennell. 2013-06-15. XML London 2013 Conference Proceedings. 1.
978-0-9926471-0-0. Extremes of XML. https://xmllondon.com/2013/
xmllondon-2013-proceedings.pdf#page=80.

[27] Jirka Kosek. John Lumley. 2013-12-03. Binary Module 1.0. EXPath. http://
expath.org/spec/binary/1.0.

[28] Christian Griin. 2015-02-20. File Module 1.0. EXPath. http://expath.org/spec/
file/1.0.

[29] BaseX. 2018-08-26T16:13:04Z. Concepts: Pending Update List. BaseX. http://
docs.basex.org/wiki/XQuery_Update#Pending_Update_List.

[30] MarkLogic. 2018. xdmp:spawn — MarkLogic 9 Product Documentation.
MarkLogic. https://docs.marklogic.com/xdmp:spawn?
g=spawné&v=9.0&api=true.

[31] MarkLogic. 2018. Developing Modules to Process Content (Content Processing
Framework Guide) — MarkLogic 9 Product Documentation. MarkLogic. https://
docs.marklogic.com/guide/cpf/modules.

[32] MarkLogic. 2018. admin:group-add-scheduled-task — MarkLogic 9 Product
Documentation. MarkLogic. https://docs.marklogic.com/admin:group-add-
scheduled-task.

[33] MarkLogic. 2018. xdmp:set — MarkLogic 9 Product Documentation. MarkLogic.
https://docs.marklogic.com/xdmp:set.

[34] MarkLogic. 2018. Understanding Transactions in MarkLogic Server (Application
Developer’s Guide) — MarkLogic 9 Product Documentation. Visibility of Updates.
MarkLogic. https://docs.marklogic.com/guide/app-dev/transactions#id_85012.

[35] James Wright. 2016-02-13. XML Prague 2016 Conference Proceedings. 1.
978-80-906259-0-7. Promises and Parallel XQuery Execution. http://
archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151.

[36] James Wright. xq-promise. 2016-04-29. Git Hub. https://github.com/james-jw/
X{-promise.

[37] Conway Melvin. 1963. A Multiprocessor System Design. ACM.
10.1145/1463822.1463838. Proceedings of the November 12-14, 1963, Fall Joint
Computer Conference. 139-146.

53

https://hal.archives-ouvertes.fr/hal-01162929/document
https://hal.archives-ouvertes.fr/hal-01162929/document
http://www2009.eprints.org/102/1/p1011.pdf
https://xmllondon.com/2013/xmllondon-2013-proceedings.pdf#page=80
https://xmllondon.com/2013/xmllondon-2013-proceedings.pdf#page=80
http://expath.org/spec/binary/1.0
http://expath.org/spec/binary/1.0
http://expath.org/spec/file/1.0
http://expath.org/spec/file/1.0
http://docs.basex.org/wiki/XQuery_Update#Pending_Update_List
http://docs.basex.org/wiki/XQuery_Update#Pending_Update_List
https://docs.marklogic.com/xdmp:spawn?q=spawn&v=9.0&api=true
https://docs.marklogic.com/xdmp:spawn?q=spawn&v=9.0&api=true
https://docs.marklogic.com/guide/cpf/modules
https://docs.marklogic.com/guide/cpf/modules
https://docs.marklogic.com/admin:group-add-scheduled-task
https://docs.marklogic.com/admin:group-add-scheduled-task
https://docs.marklogic.com/xdmp:set
https://docs.marklogic.com/guide/app-dev/transactions#id_85012
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#page=151
https://github.com/james-jw/xq-promise
https://github.com/james-jw/xq-promise

Task Abstraction for XPath Derived Languages

[38] 2018-11-15T06:49:39Z. Promise | MDN. Syntax. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax.

[39] 2015. 6th Edition. Standard ECMA-262. ECMAScript® 2015 Language
Specification. Ecma International. http://www.ecma-international.org/
ecma-262/6.0/#sec-promise-executor.

[40] Carl Hewitt. Peter Bishop. Richard Steiger. 1973. A Universal Modular ACTOR
Formalism for Artificial Intelligence. Proceedings of the 3rd International Joint
Conference on Artificial Intelligence. IJCAI'73. 235-245. Morgan Kaufmann
Publishers Inc.. http://dl.acm.org/citation.cfm?id=1624775.1624804.

[41] Joe Armstrong. Ericsson AB. 2007. A History of Erlang. Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages. HOPL IIL.
6-1--6-26. ACM. 978-1-59593-766-7. 10.1145/1238844.1238850.

[42] Lightbend, Inc.. Akka Documentation. Actors. 2018-12-07T11:55:00Z. https://
doc.akka.io/docs/akka/2.5.19/actors.html.

[43] 2019-01-17T21:11:00Z. Actor model. Actor libraries and frameworks. Wikipedia.
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks.

[44] Anders Hejlsberg. Microsoft. 2010-10-28T10:13:00Z. Channel 9. Introducing
Async — Simplifying Asynchronous Programming. https://channel9.msdn.com/
Blogs/Charles/Anders-Hejlsberg-Introducing-Async.

[45] Don Syme. Microsoft Research. 2007-10-10. Introducing F# Asynchronous
Workflows. https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-
asynchronous-workflows/.

[46] Simon Marlow. 2012. async-2.2.1: Run 1O operations asynchronously and wait for
their results. Control.Concurrent. Async. Hackage. http://hackage.haskell.org/
package/async/docs/Control-Concurrent-Async.html.

[47] Mostafa Gaafar. 2017-03-26. 6 Reasons Why JavaScript’s Async/Await Blows
Promises Away (Tutorial). Hacker Noon. https://hackernoon.com/6-reasons-
why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9.

[48] Ilya Kantor. 2019. Promises, async/await. Async/await. JavaScript.info. https://
javascript.info/async-await.

[49] Melvin Conway. 1963-07. Design of a Separable Transition-diagram Compiler.
ACM Communications. 6. 396-408. 10.1145/366663.366704. ACM.

[50] Unity Technologies. 2018. Unity - Manual: Coroutines. https://
docs.unity3d.com/Manual/Coroutines.html.

[51] Harold Coopper. 2012-12. Coroutine Event Loops in Javascript. https://x.st/
javascript-coroutines/.

54

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Syntax
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-executor
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-executor
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doc.akka.io/docs/akka/2.5.19/actors.html
https://doc.akka.io/docs/akka/2.5.19/actors.html
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
https://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async
https://channel9.msdn.com/Blogs/Charles/Anders-Hejlsberg-Introducing-Async
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
http://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
http://hackage.haskell.org/package/async/docs/Control-Concurrent-Async.html
https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://javascript.info/async-await
https://javascript.info/async-await
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://x.st/javascript-coroutines/
https://x.st/javascript-coroutines/

Task Abstraction for XPath Derived Languages

[52] Kotlin. 2018-12-06. Kotlin Documentation. Shared mutable state and concurrency.
GitHub. https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-
mutable-state-and-concurrency.md.

[53] Domenic Denicola. 2012-10-14. You 're Missing the Point of Promises. https://
blog.domenic.me/youre-missing-the-point-of-promises/.

[54] Simon Peyton Jones. Philip Wadler. 1992. 1993-01. Imperative Functional
Programming. ACM. Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL '93. 71-84. 0-89791-560-7.
10.1145/158511.158524. https://www.microsoft.com/en-us/research/wp-
content/uploads/1993/01/imperative.pdf.

[565] Paul Hudak. John Hughes. Simon Peyton Jones. Philip Wadler. 2007-04-16. A
History of Haskell: Being Lazy with Class. Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. HOPL III. 12-1--12-55.
978-1-59593-766-7. 10.1145/1238844.1238856. ACM. https://
www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf.

[56] The University of Glasgow. 2010. base-4.12.0.0: Basic libraries.
Control.Concurrent. Hackage. http://hackage.haskell.org/package/base/docs/
Control-Concurrent.html#v:forkIO.

[57] John A De Goes. 2017-09-16. There Can Be Only One...IO Monad. http://
degoes.net/articles/only-one-io.

[58] Alexandru Nedelcu. 2018-11-09. Task - Monix. Documentation. GitHub. https://
monix.io/docs/3x/eval/task.html.

[59] Viktor Klang. Lightbend, Inc.. 2017-12-19. Reactive Streams. GitHub. http://
www.reactive-streams.org/.

[60] Mozilla. 2018-09-23T04:04:54Z. JavaScript - Concurrency model and Event Loop.
Mozilla. https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop.

[61] Adam Retter. xg-promise Terminology vs. JavaScript/jQuery. 2018-11-30. GitHub.
https://github.com/james-jw/xq-promise/issues/19.

[62] Adam Retter. 2019-01-13. Haskell 1/0O and XPath. https://
blog.adamretter.org.uk/haskell-io-and-xpath/.

[63] Giorgio Ghelli. Christopher Ré. Jérome Siméon. 2006. XQuery!: An XML query
language with side effects. Current Trends in Database Technology -- EDBT 2006.
Springer Berlin Heidelberg. 178-191. 978-3-540-46790-8.

[64] Saxonica. 2018-12-06. Saxon Documentation. Tuple types. Saxonica. http://
www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/
tuple-types.

55

https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-mutable-state-and-concurrency.md
https://github.com/Kotlin/kotlinx.coroutines/blob/1.1.1/docs/shared-mutable-state-and-concurrency.md
https://blog.domenic.me/youre-missing-the-point-of-promises/
https://blog.domenic.me/youre-missing-the-point-of-promises/
https://www.microsoft.com/en-us/research/wp-content/uploads/1993/01/imperative.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/1993/01/imperative.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf
http://hackage.haskell.org/package/base/docs/Control-Concurrent.html#v:forkIO
http://hackage.haskell.org/package/base/docs/Control-Concurrent.html#v:forkIO
http://degoes.net/articles/only-one-io
http://degoes.net/articles/only-one-io
https://monix.io/docs/3x/eval/task.html
https://monix.io/docs/3x/eval/task.html
http://www.reactive-streams.org/
http://www.reactive-streams.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://github.com/james-jw/xq-promise/issues/19
https://blog.adamretter.org.uk/haskell-io-and-xpath/
https://blog.adamretter.org.uk/haskell-io-and-xpath/
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types
http://www.saxonica.com/documentation/index.html#!extensions/syntax-extensions/tuple-types

56

Ex-post rule match selection: A novel
approach to XSLT-based Schematron
validation

David Maus
Herzog August Bibliothek Wolfenbiittel
<maus@hab.de>

Abstract

SchXslt [6] is a Schematron processor written entirely in XSLT. It follows
the principal design of Rick Jelliffe’s "skeleton” implementation and com-
piles a Schematron 2016 schema to a validating XSLT stylesheet. The goal
of the SchXslt project is a conforming processor that improves Schematron
validation by using features and instructions of recent XSLT versions. This
paper discusses the principal design of an XSLT-based Schematron pro-
cessor and introduces ex-post rule match selection as a novel validation
strategy.

1. Introduction

Schematron is a rule based validation language for structured documents. It was
designed by Rick Jelliffe in 1999 and standardized as ISO/IEC 19757-3 in 2006.
The key concepts of Schematron validation are patterns that are the focus of a vali-
dation, rules selecting the portions of a document contributing to the pattern, and
assertion tests that are run in the context of a rule. Schematron uses XPath both as
the language to select the portion of a document and as the language of the asser-
tion tests. This use of XPath gives Schematron the flexibility to validate arbitrary
relationships and dependencies of information items in a document.

What also sets Schematron apart from other languages is that it encourages
the use of natural language descriptions targeted to human readers. This way val-
idation can be more than just a binary distinction (document valid/invalid) but
also support authors of in-progress documents with quick feedback on erroneous
or unwanted document structure and content.

2. Design of an XSLT-based Schematron processor

The principal design of an XSLT-based Schematron processor was laid out as
early as 1999 by [2] and [4], later summarized by [1]. An XSLT-based processor
reads a Schematron document and transforms it into an XSLT stylesheet. This val-

57

A novel approach to XSLI-based Schematron validation

idation stylesheet is then applied to an XML document and outputs a validation
report.

Given the key concepts of the Schematron language one can describe the basic
structure of a validation stylesheet:

* A pattern is implemented as a named pattern template.

* A rule is implemented as a rule template with the rule context expression as
match expression. Rule templates are chained by calls to xsl:apply-
templates.

* An assertion tests is implemented as xsl:if element with the assertion in the
test attribute.

The standardization of Schematron ([5]) added two concepts to earlier versions of
Schematron that make compiling a validation stylesheet a three-stage process:
Abstract patterns and rules, and external definitions.

* A pattern can be declared as abstract and use named parameters that act as
placeholders and are replaced when the abstract pattern is instantiated. An
abstract rule is a collection of assertions and reports without a rule context
expression.

* External definitions enable sharing patterns, rules, or assertion tests between
Schematron files.

The three step compilation works as follows. The first step copies the external
definitions in the source document. The second step instantiates abstract patterns
and rules. The final third step transforms the resulting Schematron into the vali-
dation stylesheet. Once this stylesheet is compiled it is applied to an XML docu-
ment and creates a validation report using the Schematron Validation Report
Language (SVRL).

The relationship of a pattern and its rules is represented by a pattern specific
XSLT mode. Because the match selection of an xsl:apply-templates instruction
selects only one template per node according to a template's priority and import
precedence, a node N mached by rule R1 in Pattern P1 would not be matched by
a rule R2 in Pattern P2 unless the rule templates run in different modes. To cover
the case where two rules of the same pattern inadvertently match the same node
all rule templates are created with a calculated priority reflecting their relative
position.

Example 1 shows a simple Schematron with two patterns (P1, P2) and five
rules (R1, R2, R3, R4, R5). To simplify the example each rule has exactly one asser-
tion tests that always fails. Example 2 shows a corresponding validation style-
sheet. Figure 1 visualizes the validation process. The rules R1, R2 and R3, R4 are
chained by calls to xsl:apply-templates in two modes M1 and M2. The rule R5
is never tested because it matches the same context as R4 and has a lower priority.

58

A novel approach to XSLI-based Schematron validation

Modified default template rules ensure that every node of the XML document can
be matched by a rule template.

Example 1. Simple Schematron

<schema xmlns="http://purl.oclc.org/dsdl/schematron”
queryBinding="xslt2">
<pattern id="P1">
<rule context="/" id="R1">

<assert test="false()" id="Al"/>
</rule>
<rule context="*" id="R2">
<assert test="false()" id="A2"/>
</rule>
</pattern>

<pattern id="P2">
<rule context="@attribute" id="R3">

<assert test="false()" id="A3"/>
</rule>
<rule context="element" id="R4">
<assert test="false ()" id="A4"/>
</rule>
<rule context="element" id="R5">
<assert test="false()" id="A5"/>
</rule>
</pattern>
</schema>

Example 2. Validation stylesheet

<xsl:transform version="2.0"
xmlns:svrl="http://purl.oclc.org/dsdl/svrl"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output indent="yes"/>

<xsl:template match="/">
<svrl:schematron-output>
<xsl:call-template name="P1"/>
<xsl:call-template name="P2"/>
</svrl:schematron-output>
</xsl:template>

<xsl:template name="P1">
<svrl:active-pattern id="P1"/>
<xsl:apply-templates mode="M1" select="."/>
</xsl:template>

59

A novel approach to XSLI-based Schematron validation

<xsl:template name="P2">
<svrl:active-pattern id="P2"/>
<xsl:apply-templates mode="M2" select="."/>
</xsl:template>

<xsl:template match="/" mode="M1" priority="1">
<svrl:fired-rule id="R1"/>

<xsl:if test="not (false())">
<svrl:failed-assert id="Al"/>
</xsl:if>
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

<xsl:template match="*" mode="M1" priority="0">
<svrl:fired-rule id="R2"/>

<xsl:if test="not (false())">
<svrl:failed-assert id="A2"/>
</xsl:if>
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

<xsl:template match="Q@attribute" mode="M2" priority="2">
<svrl:fired-rule id="R3"/>

<xsl:if test="not (false())">
<svrl:failed-assert id="A3"/>
</xsl:if>
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

<xsl:template match="element" mode="M2" priority="1">
<svrl:fired-rule i1d="R4"/>

<xsl:if test="not (false())">
<svrl:failed-assert id="A4"/>
</xsl:if>
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

<xsl:template match="element" mode="M2" priority="0">
<svrl:fired-rule id="R5"/>

<xsl:if test="not (false())">
<svrl:failed-assert id="A5"/>
</xsl:if>
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

60

A novel approach to XSLI-based Schematron validation

<xsl:template match="node() | @*" priority="-10" mode="#all">
<xsl:apply-templates select="node() | @*" mode="#current"/>
</xsl:template>

</xsl:transform>

SVRL rule match

Figure 1. Processing the Rules R1-R4 in two modes

3. Ex-post rule match selection

Using one mode per pattern as shown in example 2 is required to allow rules
from different patterns to match the same node, but has a drawback: The entire
source document is processed as many times as there are patterns in the Schema-
tron.

SchXslt addresses this by implementing a different validation strategy, ex-post
rule match selection. This strategy relies on the xsl:next-match instruction intro-
duced with XSLT 2.0. When called, it applies the next template that matches the
current context node but has a lower priority, or the built-in template rules if no
other template matching the current context node is found ([3]). The xsl:next-
match instruction overcomes a limitation of XSLT 1.0 where matching a node with
more than one template was relegated to imported templates (xsl:apply-
imports), or template modes. Second, ex-post rule match selection looks at the
Schematron validation from the perspective of the validation report. From here
there is no difference between a rule that never fired and a rule that fired but is
not reported. Hence if we were to assume that the case where two rules of a pat-
tern match the same node is an error in the Schematron, then we could see it as
justified to fire such a rule but remove it from the report.

Ex-post rule match selection thus works as follows: The Schematron processor
chains all rules with a call to xsl:next-match instead of xsl:apply-templates.

61

A novel approach to XSLI-based Schematron validation

This will fire all rules of all patterns that match a node in the source document.
The validation stylesheet collects this information in a temporary report and
removes rules that fired because they matched a node that was already matched
by a previous rule in the same pattern. To do so the validation stylesheet uses the
generated id of the current context node and the generated id of the pattern dur-
ing compilation to track which nodes have been matched by which rules in which
patterns. To ensure that the order of reported fired rules reflects the order of rules
in a pattern, the processor calculates a priority for each template such that a tem-
plate which is lexically further down in the Schematron has a lower priority than
one higher up.

Example 3 shows the simple Schematron implemented with ex-post rule
match selection. Note how the identity of context and pattern are stored in a
schxslt:context and schxslt:pattern attribute, and are later used to remove
all but the first fired rule to be reported. Also note how the generated id for the
pattern was created during the compilation phase and the one for the context
node is generated by the validation stylesheet. Figure 2 shows how the Rules R2,
R4, and R5 are chained by xsl:next-match with the match of R5 later to be
removed.

Example 3. Validation stylesheet using ex-post rule match selection

<xsl:transform version="2.0"
xmlns:schxslt="https://doi.org/10.5281/zenodo.1495494"
xmlns:svrl="http://purl.oclc.org/dsdl/svrl"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output indent="yes"/>

<xsl:template match="/">
<xsl:variable name="report">
<xsl:call-template name="Validate"/>
</xsl:variable>
<svrl:schematron-output>
<xsl:for-each select="S$report/svrl:active-pattern">
<xsl:copy>
<xsl:sequence select="@* except @schxslt:*"/>
</xsl:copy>
<xsl:for-each-group select="S$report/svrl:fired-
rule[@schxslt:pattern = current()/@schxslt:pattern]"
group-by="@schxslt:context">
<xsl:copy>
<xsl:sequence select="@* except @schxslt:*"/>
</xsl:copy>
<xsl:sequence select="*"/>
</xsl:for-each-group>

62

A novel approach to XSLI-based Schematron validation

</xsl:for-each>
</svrl:schematron-output>
</xsl:template>

<xsl:template name="Validate">
<svrl:active-pattern id="P1" schxslt:pattern="dlle-1"/>
<svrl:active-pattern id="P2" schxslt:pattern="dlle-2"/>
<xsl:apply-templates mode="M" select="."/>
</xsl:template>

<xsl:template match="/" mode="M" priority="4">
<svrl:fired-rule id="R1" schxslt:pattern="dlle-1"

schxslt:context="{generate-id()}">
<xsl:if test="not (false())">
<svrl:failed-assert id="Al"/>
</xsl:if>

</svrl:fired-rule>
<xsl:next-match/>
</xsl:template>

<xsl:template match="*" mode="M" priority="3">
<svrl:fired-rule id="R2" schxslt:pattern="dlle-1"

schxslt:context="{generate-id()}">
<xsl:if test="not (false())">
<svrl:failed-assert id="A2"/>
</xsl:if>

</svrl:fired-rule>
<xsl:next-match/>
</xsl:template>

<xsl:template match="@attribute" mode="M" priority="2">
<svrl:fired-rule id="R3" schxslt:pattern="dlle-2"

schxslt:context="{generate-id()}">
<xsl:if test="not (false())">
<svrl:failed-assert id="A3"/>
</xsl:if>

</svrl:fired-rule>
<xsl:next-match/>
</xsl:template>

<xsl:template match="element" mode="M" priority="1">
<svrl:fired-rule id="R4" schxslt:pattern="dlle-2"

schxslt:context="{generate-id()}">
<xsl:if test="not (false())">
<svrl:failed-assert id="A4"/>
</xsl:if>

63

A novel approach to XSLI-based Schematron validation

</svrl:fired-rule>
<xsl:next-match/>
</xsl:template>

<xsl:template match="element" mode="M" priority="0">
<svrl:fired-rule id="R5" schxslt:pattern="dlle-2"

schxslt:context="{generate-id()}">
<xsl:if test="not (false())">
<svrl:failed-assert id="A5"/>
</xsl:if>

</svrl:fired-rule>
<xsl:next-match/>
</xsl:template>

<xsl:template match="node() | @*" priority="-10" mode="#all">
<xsl:apply-templates select="node() | @*" mode="#current"/>

</xsl:template>

</xsl:transform>

Figure 2. Processing the Rules R1-R5 with ex-post rule match selection

The Schematron given in example 1 sure is a simplification of Schematron's fea-
ture set. There are two features in particular that question the applicability of the
xsl:next-match instruction.

* Schematron supports variable bindings in the scope of a pattern. These varia-
bles can be used in XPath expressions inside rules. Rules that use pattern sco-
ped variable bindings can only run together if they use the same variable
bindings.

* A pattern can specify documents other than the source document to be valida-
ted by its rules. Rules can only run together if they apply to the same docu-
ment.

SchXslt takes this into account and identifies patterns whose rules can run
together in the same mode because they validate the same documents. Patterns

64

A novel approach to XSLI-based Schematron validation

with pattern scoped variable bindings each run in a single mode. The grouping is
implemented by a grouping key function that concatenates the generated id of a
pattern's variable binding element (sch:let) and the value of a patterns
documents attribute. This way ex-post rule match selection reduces the number of
times the source documents are processed to one in the best case and to be equal
to the number of patterns in the worst case.

4. Conclusion and future work

SchXslt is a conforming XSLT-based Schematron processor. It implements Sche-
matron validation with novel strategy that groups patterns whose rules can run
at once and removes unwanted report elements afterwards. Up to now the devel-
opment of SchXslt was focussed on implementing a conforming processor and
exploring recent XSLT features like the xs1:next-match instruction.

The goal for the near future is to use SchXslt in real-world validation scenarios
and see under which circumstances ex-post rule match selection improves the
overall validation performance.

Bibliography

[1] Dodds, Leigh: Schematron: validating XML using XSLT. XSLT-UK conference,
April 8-9 2001 http://ldodds.com/papers/schematron xsltuk.html

[2] Jelliffe, Rick: Using XSL as a Validation Language. Internet Document, 1999
https://web.archive.org/web/20000415135808/http://www.ascc.net:80/
xml/en/utf-8/XSLvalidation.html

[3] Kay, Michael (ed.): XSL Transformations (XSLT) Version 2.0 (Second Edition).
W3C Proposed Edited Recommendation, 21 April 2009 http://www.w3.org/
TR/xs1t20/

[4] Norton, Francis: Generating XSL for Schema Validation. Internet Document, 1999
https://web.archive.org/web/20010110235200/http://www.redrice.com/
ci/generatingXslValidators.html

[5] Information Technology — Document Schema Definition Languages (DSDL) — Part 3:
Rule-based validation — Schematron. 2016 (=ISO/IEC-19757-3:2016)

[6] Maus, David: SchXslt. DOI: 10.5281/zenodo.14954941

Uhttps://doi.org/10.5281/zenodo.1495494

65

http://ldodds.com/papers/schematron_xsltuk.html
https://web.archive.org/web/20000415135808/http://www.ascc.net:80/xml/en/utf-8/XSLvalidation.html
https://web.archive.org/web/20000415135808/http://www.ascc.net:80/xml/en/utf-8/XSLvalidation.html
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
https://web.archive.org/web/20010110235200/http://www.redrice.com/ci/generatingXslValidators.html
https://web.archive.org/web/20010110235200/http://www.redrice.com/ci/generatingXslValidators.html
https://doi.org/10.5281/zenodo.1495494
https://doi.org/10.5281/zenodo.1495494

66

Authoring Domain Specific Languages in
Spreadsheets Using XML Technologies

Alan Painter
HSBC France
<alan.painter@hsbc.fr>

Abstract

Domain Specific Languages (DSLs) have been shown to be useful in the
development of information systems. DSLs can be designed to be authored,
manipulated and validated by business experts (BEs) and subject matter
experts (SMEs). Because BEs and SMEs are known to be comfortable work-
ing with spreadsheet applications (Microsoft™ Excel®, Libre Office Calc),
the ability to author DSLs within spreadsheets makes the DSL authoring
process even more engaging for BEs and SMEs.

Today's most popular spreadsheet applications are implemented using
XML documents (ODE, OOXML, Excel 2003 XML format) and, for this
reason at least, XML technologies (XPATH, XSLT, XQuery) are well suited
for reading DSL definitions within Spreadsheets.

What is usually considered the part of DSL implementation that
requires the most effort is the artifact or code generation from the DSL
description. For this aspect of DSL development, XML technologies are also
well placed for generating the technical artifacts described by the DSLs.

In this paper, I will first motivate the usage of DSLs by describing some
of their utility in information systems development. I'll then go on to
describe how XML Technologies can be used for reading DSLs within
spreadsheets and for generating technical artifacts. I'll then go on to present
some real world examples of DSL usage via XML Technologies and attempt
to draw some general conclusions from the examples.

Keywords: XML, DSL, Domain Specific Languagues, Spreadsheet

1. An Entirely Incomplete Description of DSLs

Domain Specific Languages (DSLs) are not a new concept in Information Technol-
ogy[1]. The examples are legion and familiar to developers. To cite just a few
well-known examples: make [2], YACC [3], troff [4], html [5]. These are computer
languages that are used by humans in order to describe how to produce an arti-
fact or present a graphical user interface.

67

Authoring DSLs in Spreadsheets Using XML Technologies

Table 1. Well Known Examples of DSLs

Example Model Generated Artifact [Method
. |Runs system com-
Dependency Graph |Any generated arti-
make between source fact (often gener- f;?;‘dﬁgfslzuni}ila-
files and generated |ated libraries and | . bl ers, app
) tions, file manipu-
files executables) .
lation, etc.
C-language source
Grammar describ- .COde for recogize)
YACC ing a computer lan- ing and processing |Directly generated
dace the language by YACC.
suase: described in the
grammar.
. Device-independ- |Directly generated
troff Text processing ent output format |by troff
Text, table, form
. Browser reads the
markup and link- |User Interface of h .
. tml, retrieves
html ages between Rendered Views associated docu-
hypermedia docu- |and Embedded ments. renders and
ments (simplified |Controls ’
description) presents the UL

The examples above underline the two major objectives of a DSL to consider:

1. the syntax of the language itself which allows expressing the different ele-
ments, their attributes and relations within a specific domain

2. the implementation of the language which produces the resulting artifacts
described by the input

2. DSLs in Business Application Development

There has been a recent resurgence in interest for using DSLs for describing rules
and processes for business applications. [6] [7] Martin Fowler dedicated a book to
the subject of DSLs [8] and mentions:

I believe that the hardest part of software projects, the most common source of
project failure, is communication with the customers and users of that software.
By providing a clear yet precise language to deal with domains, a DSL can help
improve this communication.

— Martin Fowler[8]

Business software developers are often faced with the challenge of working with
different Domain Experts (DEs), Subject Matter Experts (SMEs) and Business

68

Authoring DSLs in Spreadsheets Using XML Technologies

Experts (BEs) who are involved in the specification and definition of what the
business application needs to do, often as part of the business requirements or
functional requirements specification. Technical developers will then take the
specification and interpret it by developing the technical implementation. At this
point, we have two separate representations of the work: the specification and the

implementation.
Implementation

21 Va1 2

AR
I
-
A "

Subsequent
updates to the
Specification may
be difficult to
correlate with the
Implementation.

Problems
discovered

by QA may be
corrected directly
inthe
Implementation

o= T , and not be
reflected in the
) : Specification.
Business Technical T Quality
Analyst Implementer Assurance

Because there are two separate representations, these two can evolve separately
and differently and, subsequently, diverge. The informal specification may no
longer be up-to-date because the technical implementation may have corrected
problems discovered either during technical analysis or by quality assurance.
Updates made to the informal specification may not be obvious to add to the
technical implementation based upon a previous version of the informal specifi-
cation.

If the Business Analysts and Technical Developers can agree upon a DSL for
representing the business rules and process description, they can then have a
chain of development in which the Business Analyst becomes a contributor to the
DSL specification. The Technical Implementor can also contribute to the DSL
specification. The DSL specification is then the common support for the business
implementation from which the implementation of the business rules will be gen-
erated automatically from the DSL specification. This means that the specification
(the DSL) is alway up-to-date and synchronized with the technical implementa-
tion (generated artifact).

69

Authoring DSLs in Spreadsheets Using XML Technologies

Specification as _ . Implementation
aDSLina

‘SO
el

Problems
discovered

| by QA are
7 corrected in the
g0 DSL / Specification
o=
Business Technical Quality
Analyst Implementer Assurance

A further advantage of providing a DSL to the Business Analyst is that this
allows the Business Analyst the possibility of testing the business rules immedi-
ately, given an appropriate test framework. This means that the Business Analyst
can contribute to the testing of the new rules and can verify the specification
immediately rather than awaiting its implementation.

In this paper, I'll address what I see as the two major advantages of using a
DSL for application development.

* The representation of the functional workings afforded by a DSL, separate
from the technical corpus.

* The optimization of the development process that is gained by enabling tech-
nical and non-technical contributors to author the functional definition via a
DSL.

3. DSLs in Spreadsheets

Given that DSLs are useful for engaging Business Experts in the specification,
development and testing process, it will also be useful to allow the Business
Experts to edit the DSL within a Spreadsheet application. Spreadsheet applica-
tions such as Microsoft Excel and LibreOffice Calc are common tools for Business
Experts to use and the comfort level with using spreadsheet applications is high.

There are several aspects of spreadsheet editing that make it a favorite among
Business Experts:

* Spreadsheets allow for realigning and reordering columns and lines in simple
gestures

* Orthogonal editing facilitate keeping lists in one axis and attributes of each
item in the list in the other

70

Authoring DSLs in Spreadsheets Using XML Technologies

* Spreadsheet applications allow for defining styles on a cell-by-cell basis (text
color, fonts, background colors) and sometimes even within the text of the cell

Not all DSLs will be obvious to author from within a spreadsheet; nonetheless,
there will be a subset of DSLs that can be represented in tabular form. What fol-
lows in this paper will address that subset of DSLs that can be authored from
within a spreadsheet application.

4. Using XML Technologies To Read Spreadsheet Data

4.1. The Simple Structure of Data Within a Spreadsheet

Treating spreadsheets as tables of data ! gives a simple model of the spreadsheet
structure in XML with four nested elements:

e Workbook

* Worksheet (with a required name attribute)
e Line

e Cell

The following image gives an example of the simple model and its relationship to
a spreadsheet.

Workbooks
Worksheet name="Sheetl",

Line

< >
<Ce||>On</Ce||> _ A B C _
(CE”)FiI’St(/ce”) 1
CellyLine(/Celly 2 |On Second Line

(/LiﬂE) 3

<LinE> 4

CellsOn¢/Cell
) JSece g 5 Worksh
«CellsSecond¢/Cells > orksheets |:

(CE”)LiﬂE(/CE”> 6 / \
(/Line>

</W0rk5heet> [sheet1 [sheetz [+ JI
Worksheet -'Sheet2’s

</W6rksheet>
«/Workbooks

4.2. Using XPATH for Addressing Data within the Simple Model

The data within the Simple Model is easily addressed using XPATH. For example,
data can be addressed using fixed coordinates. In the following, the second Cell
element of the first Line is chosen.

Ignoring formulas, formatting and other non-data spreadsheet notations.

71

Authoring DSLs in Spreadsheets Using XML Technologies

/Workbook/Worksheet [@name eq 'Sheetl']/Line[1]/Cell[2]

Data can be addressed based upon its content. The following selects all of the Cell
elements in the second line of the first Worksheet because that line's second Cell
contains the value "Second’

/Workbook/Worksheet [@name eq 'Sheetl']/Line[Cell[2] eq 'Second']l/
Cell[3]

The simplicity of addressing data within the simple spreadsheet model will aid in
reading the DSL contained within the spreadsheet.

4.3. Extracting the Simple Spreadsheet Model from Real-world
Spreadsheets

Extracting the Simple Spreadsheet Model from the different real-world spread-
sheet vocabularies is a bit more complicated and it is somewhat beyond the scope
of this paper.

Nonetheless, to give an idea of the complexity, I would mention that I know of
an implementation for reading .xslx files in “strict” mode that requires around 250
lines of XSLT. Another implementation for Excel 2003 XML mode requires fewer
than 100 lines of XSLT. Hence, the problem of extracting the Simple Spreadsheet
Model from a spreadsheet is fairly simple to achieve.

5. Using XML Technology to Generate Artifacts from a DSL

I'm concentrating on XSLT in the following examples although I believe that
XQuery would hold as well. Standard XSLT does, nonetheless, have the advant-
age over Standard XQuery of facilitating output to multiple documents.

5.1. Producing artifacts using TEXT output

XSLT writes in a "text" output method as a series of "string" data. This is suffi-
cient, although not necessarily convenient, for writing output such as GPL lan-
guages (Java, C, C++) or for writing configuration files such as Java property files,
Windows .ini files, etc.

The Text Value Template mechanism in XSLT3 can be particularly useful and
elegant for producing text. 2

2h’ctps:/ /www.w3.0rg/TR/xslt-30/#text-value-templates

72

Authoring DSLs in Spreadsheets Using XML Technologies

5.2. Producing XML and JSON artifacts

Writing XML documents is, of course, the natural output method for XSLT, hence
XSLT is the ideal language for such output. JSON output is also a possibility with
XSLT, especially in the latest version, XSLT3.0, which has a JSON output method.

5.3. Producing XSLT artifacts

XSLT is a special form of XML output but it is significant to mention that XSLT is
very good at writing XSLT.

Where XSLT is particularly useful is that it is a separable artifact that can be
tested independently and then be included into a larger, technical project. In
essence, this allows us to generate the XSLT from the DSL and test the results sep-
arately, especially by the Business Analyst but also within a unit testing frame-
work. The XSLT itself can then be included, at compile-time or run-time, into a
separate technical corpus, especially Java but also with C#, C, C++, Javascript,
JVM-based languages such as scala, etc.

The process of using xsl:namespace-alias and xsl:element in order to facil-
itate the generation of XSLT artifacts from another XSLT is described in the XSLT
literature.[9]

6. Some examples of DSLs in Spreadsheets

To motivate the utility and convenience of developing DSLs within Spreadsheets
using XML Technologies, I'll give a few examples from my personal work experi-
ence. These are examples that I have used extensively and which have provided
an important benefit to different projects.

Table 2. Some Personal Examples of DSLs in Spreadsheets

Use Case DSL Model Output Artifact | Output Method
Table of States, Java Abstract Class
Automaton Events, Transitions Graphviz DOT lan- text
and Actions guage

Properties files
Linked Description [XML Configura-

of Instances and |tion text
Configuration |Values JSON Configura- |xml
Templates of Prop- |tion json
erties YML Configura-
tion

73

Authoring DSLs in Spreadsheets Using XML Technologies

Use Case DSL Model Output Artifact | Output Method
Tabular Data from |for-each / varia-
XML bles / cell rules XSLT xml
templates, varia-
Schema to Schema |bles, transcodifica- XSLT xml

tion

6.1. An Automaton or Finite State Machine (FSM) as DSL

6.1.1. Objectives of the FSM DSL in a Spreadsheet

* Make it easy to edit the standard tabular represention of an FSM with its list

of States, Events, Actions and Transitions.

* Generate a Java class that implements the handleEvent() method

* Generate a DOT file description of the FSM from which GraphViz will gener-
ate the state/transition graph

6.1.2. Description of the DSL Model

A common and basic representation in computer science is to show a Finite State
Machine in tabular form with States represented in columns and Events represen-

ted in rows.

The given example is that of a coin vending machine in the USA with the
Events being named after the US coins that can be deposited in the Vending
Machine (i.e. a Nickel is 5 cents, a Dime is 10 cents and a Quarter is 25 cents. An

additional Event is the CoinReturnButton.. The States are the cumulative total of

coins dropped in the machine up to 25 cents, at which point the candy is dis-
pensed and the state returns to Start. 3

3Note that this is a very simple machine and that change is not rendered for amounts over 25 cents.

74

Authoring DSLs in Spreadsheets Using XML Technologies

0@ [FsmDemao.xlsx
] # Accueil | Mise en page | Tableaux | Graphigques | SmartArt | Formules | 3w E e 3
| A B | C | D | E | F | G | H
ﬁpackage dslss.fsm 1
3 =
3 |header | Ewvents Start FiveCents TenCents FifteenCents | TwentyCents
4
5 |action Mickel dispenseCandy
b |nextstate Mickel FiveCents TenCents FifteenCents |TwentyCents | 5Start
7]
8 |action Dime dispenseCandy |dispenseCandy
|9 [nextstate Dime TenCents FifteenCents | TwentyCents | Start Start
|10 |
;JEL_DCfDﬂ Quarter dispenseCandy |dispenseCandy |dispenseCandy |dispenseCandy |dispenseCandy
Iinextstate Quarter Start Start Start Start Start
13|
| 14 |action CoinReturnButton returnCoins returnCoins returnCoins returnCoins returnCoins
| 15 |nextstate CoinReturnButton | Start Start Start Start Start
16
[@« = w1 T FSM-FsmDemoBase i +] II

N

Figure 1. A Representation of an Automaton with a Spreadsheet

This tabular form in a spreadsheet simplifies the authoring. Adding a new state
means adding a new column. Adding a new event is adding two new rows (one
row for the action and one row for the nextstate. The author can copy/paste a cell
in order to duplicate an existing action or nextstate. Both states transitions and
actions are captured in this simple table.

The simple worksheet model in XML looks something like this (abbreviated):

<Workbook>
<Worksheet name="FSM-FsmDemoBase">

<Line>
<Cell>package</Cell><Cell>dslss.fsm</Cell>
</Line>

<Line>
<Cell>header</Cell><Cell>Events</Cell><Cell>Start</
Cell><Cell>FiveCents</Cell><Cell>TenCents</Cell><Cell>FifteenCents</
Cell><Cell>TwentyCents</Cell>
</Line>

<Line>
<Cell>action</Cell><Cell>Nickel</Cell><Cell></Cell><Cell></
Cell><Cell></Cell><Cell></Cell><Cell>dispenseCandy</Cell>
</Line>
<Line>
<Cell>nextstate</Cell><Cell>Nickel</Cell><Cell>FiveCents</
Cell><Cell>TenCents</Cell><Cell>FifteenCents</Cell><Cell>TwentyCents</

75

Authoring DSLs in Spreadsheets Using XML Technologies

Cell><Cell>Start</Cell>
</Line>

<Line>
<Cell>action</Cell><Cell>Dime</Cell><Cell></Cell><Cell></
Cell><Cell></Cell><Cell>dispenseCandy</Cell><Cell>dispenseCandy</Cell>
</Line>
<Line>
<Cell>nextstate</Cell><Cell>Dime</Cell><Cell>TenCents</
Cell><Cell>FifteenCents</Cell><Cell>TwentyCents</Cell><Cell>Start</
Cell><Cell>Start</Cell>
</Line>

</Worksheet>
</Workbook>

6.1.3. Describing the Java Abstract Class

One artifact that the DSL implementation is to generate is a java abstract class that
encapsulates the generic handleEvent() method and the state/action tables for the
FSM taken from the spreadsheet DSL. The FSM table gives us the names of the
action methods and hence the generated class declares these methods as abstract
in such a fashion that the deriving, concrete class can then simply implement the
action methods.

In our simple example, the generated Java abstract class can look like:

package dslss.fsm;
public abstract class FsmDemoBase ({
public enum Event { Nickel, Dime, Quarter, CoinReturnButton }

public enum State { Start, FiveCents, TenCents, FifteenCents,
TwentyCents }

protected abstract Runnable dispenseCandy();
protected abstract Runnable returnCoins();

private final Runnable action[][] = {
{ __nop(), __nop(), __nop(),
__nop(), dispenseCandy () },
{ __nop(), __nop(), __nop(),

dispenseCandy (), dispenseCandy() },

76

Authoring DSLs in Spreadsheets Using XML Technologies

{ dispenseCandy (), dispenseCandy(), dispenseCandy(),
dispenseCandy (), dispenseCandy() 1},
{ returnCoins{(), returnCoins (), returnCoins (),
returnCoins (), returnCoins () },
b
private final static State nextStatel[][] = {
{ State.FiveCents, State.TenCents, State.FifteenCents,

State.TwentyCents, State.Start },
{ State.TenCents, State.FifteenCents, State.TwentyCents,

State.Start, State.Start },

{ State.Start, State.Start, State.TwentyCents,
State.Start, State.Start },

{ State.Start, State.Start, State.TwentyCents,
State.Start, State.Start },

}s

public final State handleEvent (final State currentState, final Event
newkvent) {
action [newEvent.ordinal ()]

[currentState.ordinal ()] .run();
return nextState [newEvent.ordinal ()] [currentState.ordinal()];
}
private Runnable nop() { return () -> {}; }

and, for reference, an example concrete Java class that extends the generated
abstract class can be:

package dslss.fsm;
public class FsmDemo extends FsmDemoBase {
protected Runnable dispenseCandy () {

return () -> System.out.println("Dispensing candy.");

protected Runnable returnCoins() {
return () -> System.out.println("Returning coins.");

77

Authoring DSLs in Spreadsheets Using XML Technologies

6.1.4. A Stylesheet for Generating the Java Abstract Class

To generate the java abstract class from Simple Spreadsheet Model using XML
Technologies, I'll give an example using XSLT. The template will match any Work-
sheet element with a name that starts with the substring FSM.

<xsl:stylesheet xmlns:xsl = "http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs "http://www.w3.0rg/2001/XMLSchema"
xmlns:f = "urn:for:functions"

version="3.0" >
<xsl:param name="outputDir" as="xs:string" />

<xsl:template match="/">
<xsl:apply-templates />
</xsl:template>

<xsl:template match="Workbook" >
<xsl:apply-templates />
</xsl:template>

<xsl:template match="Worksheet[starts-with (@name, 'FSM-')]" expand-
text="yes" >

and within that template we'll have the static Java code that we'll generate as well
as different Text Value Template (TVT) fields that we'll use to produce the specific
Event names, State names, Action method declarations and the values for the
action and nextstate tables. The result is fairly readable.

<xsl:template match="Worksheet[starts-with(@name, 'FSM-')]" expand-
text="yes" >

<xsl:variable name="class" as="xs:string" select="substring-
after (@name, 'FSM-")" />

<xsl:result-document href="{SoutputDir}/{f:getPath(Line) }/
{Sclass}.java" method="text">
package {f:getPackage (Line) }
public abstract class {$class} {{

public enum Event {{ {f:getEventsList(Line)} }}

public enum State {{ {f:getStatesList(Line)} }}

78

Authoring DSLs in Spreadsheets Using XML Technologies

{f:getMethodDeclarationLines (Line) }

private final Runnable action[][] = {{
{f:getFormattedTable (f:getActionTable (Line)) }
1B

private final static State nextState[][] = {{
{f:getFormattedTable (f:getNextStateTable (Line)) }
1B

public final State handleEvent (final State currentState, final Event
newkvent) {{
action [newEvent.ordinal ()]

[currentState.ordinal ()] .run();
return nextState [newEvent.ordinal ()] [currentState.ordinal()];
b}
private Runnable nop() {{ return () -> {{}}; }}

H}
</xsl:result-document>
</xsl:template>

The functions for extracting the action and state names for the Java enum declara-
tions are especially simple:

<xsl:function name="f:getPackage" as="xs:string">

<xsl:param name="lines" as="element (Line)*" />

<xsl:sequence select="S$lines[Cell[1l] eq 'package']/Cell[2]" />
</xsl:function>

<xsl:function name="f:getPath" as="xs:string">
<xsl:param name="lines" as="element (Line)*" />
<xsl:sequence select="replace (f:getPackage($lines), '[.]',
l/l)" />

</xsl:function>

<xsl:function name="f:getStates" as="xs:string*" >
<xsl:param name="lines" as="element (Line)*" />
<xsl:sequence select="$lines[Cell[1l] eq 'header']/
Cell[position() gt 21" />
</xsl:function>

<xsl:function name="f:getStatesList" as="xs:string">
<xsl:param name="lines" as="element (Line)*" />

79

Authoring DSLs in Spreadsheets Using XML Technologies

<xsl:value-of select="f:getStates($lines)" separator=", "/>
</xsl:function>

<xsl:function name="f:getEvents" as="xs:string*" >

<xsl:param name="lines" as="element (Line)*" />

<xsl:sequence select="$lines[Cell[1l] eq 'action']/Cell[2]"™ />
</xsl:function>

<xsl:function name="f:getEventsList" as="xs:string">
<xsl:param name="lines" as="element (Line)*" />
<xsl:value-of select="f:getEvents($lines)" separator=", "/>
</xsl:function>

The functions for creating the state and action tables and the abstract method dec-
larations can also be fairly straightforward:

<xsl:function name="f:getMethodDeclarationLines" as="xs:string">
<xsl:param name="lines" as="element (Line)*" />

<xsl:variable name="actions" as="xs:string*"
select="S$1lines[Cell[l] eq 'action']/
Cell[position() gt 21" />
<xsl:variable name="methodDeclarations" as="xs:string*" expand-
text="yes" >
<xsl:for-each select="distinct-values(Sactions[. ne "'])" >
<xsl:text> protected abstract Runnable {.}();</
xsl:text>
</xsl:for-each>
</xsl:variable>
<xsl:value-of select="S$methodDeclarations" separator="
" />
</xsl:function>

<xsl:function name="f:getActionTable" as="element (Line)*" >
<xsl:param name="lines" as="element (Line)*" />

<xsl:for-each select="S$lines[Cell[l] eq 'action']">

<Line>
<xsl:for-each select="Cell[position() gt 2]" >
<Cell>
<xsl:value-of select="(text()[. ne ''], ' nop')
(211 0™ />
</Cell>
</xsl:for-each>
</Line>

</xsl:for-each>

80

Authoring DSLs in Spreadsheets Using XML Technologies

</xsl:function>

<xsl:function name="f:getNextStateTable" as="element (Line)*" >
<xsl:param name="lines" as="element (Line)*" />

<xsl:for-each select="S$lines[Cell[1l] eq 'nextstate']">
<Line>
<xsl:for-each select="Cell[position() gt 2]" >

<Cell>

<xsl:value-of select="'State.' || text()" />

</Cell>

</xsl:for-each>
</Line>
</xsl:for-each>
</xsl:function>

6.1.5. Generating the DOT / GraphViz artifact

The DOTI[11] file that we generate for the graphviz application contains a link
from each of the states to a next state, labeled by the event that caused that state
transition and a possible action. This is a simple text format for DOT

digraph FsmDemoBase

{

node [shape = circle];

Start ->
"Nickel"

Start ->
"Dime"

Start ->
\ndispenseCandy ()"

Start ->
\nreturnCoins ()" 1;

FiveCents ->
"Nickel"

FiveCents ->
"Dime"

FiveCents ->
\ndispenseCandy ()"

FiveCents ->
\nreturnCoins ()" 1;

TenCents ->
"Nickel"

FiveCents
TenCents
Start

1;
Start
TenCents
FifteenCents
Start

1;

Start

FifteenCents

[label
1;

"Quarter

"CoinReturnButton

"Quarter

"CoinReturnButton

Authoring DSLs in Spreadsheets Using XML Technologies

TenCents -> TwentyCents [label =
"Dime" 1;

TenCents -> Start [label = "Quarter
\ndispenseCandy ()" 1;

TenCents -> Start [label = "CoinReturnButton
\nreturnCoins ()" 1;

FifteenCents -> TwentyCents [label =
"Nickel" 1;

FifteenCents -> Start [label = "Dime
\ndispenseCandy ()" 1;

FifteenCents -> Start [label = "Quarter
\ndispenseCandy ()" 1;

FifteenCents -> Start [label = "CoinReturnButton
\nreturnCoins ()" 1;

TwentyCents -> Start [label = "Nickel
\ndispenseCandy ()" 17

TwentyCents -> Start [label = "Dime
\ndispenseCandy ()" 1;

TwentyCents -> Start [label = "Quarter
\ndispenseCandy ()" 1;

TwentyCents -> Start [label = "CoinReturnButton
\nreturnCoins ()" 1;

}

We can pass this document to the dot application in order to generate a graphic
state presentation. In the following command, we will generate SVG output, but
it's also possible to generate other graphic output types via dot.

0

% dot -Tsvg FsmDemoBase.gv -o FsmDemoBase.gv.svg

82

Authoring DSLs in Spreadsheets Using XML Technologies

nReturnButton

C°i

‘CoinReturnButton
returnCoins()

Quarter
dispenseCandy()

CoinReturnButton
returnCoins()

Quarter
dispenseCandy()

Quarter oinReturnButton
dispenseCandy() / returnCoins()

Nickel Dime Quarter [CoinReturnButton
di “andy() di “andy() di “andy() returnCoins()

6.1.6. Generating the DOT artifact

We can use the Text Value Template mechanism again in order to generate this arti-
fact, adding an extra output document to the same template that generated the
java abstract class artifact above.

<xsl:result-document href="{SoutputDir}/{f:getPath(Line)}/{Sclass}.gv"
method="text">
digraph {Sclass} {{
node [shape = circle];
{f:getDotTable (f:getDotLines (Line)) }
}}

</xsl:result-document>

To generate the DOT document, we need to create a link from each state to its
nextstate and label it with the event that provoked the transaction, along with an
action that may be triggered by the state transition. An example generation, again
employing text value templates, could be:

<xsl:function name="f:getDotLines" as="element (Line)*" expand-
text="yes">
<xsl:param name="lines" as="element (Line)*" />

<xsl:variable name="states" as="xs:string*"

select="f:getStates (Slines)" />
<xsl:for-each select="f:getStates($lines)" >

83

Authoring DSLs in Spreadsheets Using XML Technologies

<xsl:variable name="state" as="xs:string" select="." />
<xsl:for-each select="f:getEvents($Slines)" >
<xsl:variable name="event" as="xs:string" select="." />

<xsl:variable name="action" as="xs:string?"
select="f:getAction($lines, $state, Sevent)" />
<Line>
<Cell>{S$state}</Cell>
<Cell>-></Cell>
<Cell>{f:getNextState($Slines, Sstate, Sevent)}</Cell>
<Cell>[label = "{Sevent}{('\n' || Saction || '()")
[Saction]}"</Cell>
<Cell>];</Cell>
</Line>
</xsl:for-each>
</xsl:for-each>
</xsl:function>

<xsl:function name="f:getNextState" as="xs:string" >
<xsl:param name="lines" as="element (Line)*" />
<xsl:param name="state" as="xs:string" />
<xsl:param name="event" as="xs:string" />

<xsl:variable name="stateColumn" as="xs:integer"
select="f:getHeaderIndex ($lines, S$state)" />
<xsl:sequence select="$lines[Cell[l] eq 'nextstate'][Cell[2] eq
Sevent]/Cell[S$stateColumn]" />
</xsl:function>

<xsl:function name="f:getAction" as="xs:string?" >
<xsl:param name="lines" as="element (Line)*" />
<xsl:param name="state" as="xs:string" />
<xsl:param name="event" as="xs:string" />

<xsl:variable name="stateColumn" as="xs:integer"
select="f:getHeaderIndex ($lines, S$state)" />
<xsl:sequence select="$lines[Cell[1l] eq 'action'][Cell[2] eqg
Sevent]/Cell[SstateColumn]" />
</xsl:function>

84

Authoring DSLs in Spreadsheets Using XML Technologies

6.2. Configuring Instances of an Enterprise Application in a Spreadsheet
DSL

6.2.1. Overall Objectives of the Configuration DSL

* Give a bird's eye, editable and comparative view of the data points that deter-
mine the configurations.

* Include, in the same workbook, templates which describe common configura-
tion artifacts (e.g. properties files).

* Make it simple to extend to other artifacts (XML, JSON, YAML amongst oth-
ers).

6.2.2. Requirements for Configuration

When a service-oriented enterprise application is developed, there is usually a
requirement to install the application in a number of different instances for devel-
oper and QA testing, for pre-production, for performance testing and for produc-
tion installations. These installations will have somewhat different configurations.

Configurations can become quite thorny, especially with the proliferation of
micro-service applications. Configuration Management has become an enterprise
in and of itself. [10]

In the DSL for Configuration Management, I had a number of objectives:

* Have a central inventory of all instances, test and production

¢ Keep all the changeable values within a single Workbook, or, even better, on a
single Worksheet

* Facilitate the comparison of the parameters in the different instances

e Have a separate Worksheet for each properties file that we generate with a
template containing the properties that are generated

* Facilitate the generation of other types of types of formats that could be
required (ex: J[SON, YAML and XML).

A Java properties file has the following general look. Properties are a map from a
string key to a string value. For properties, the model will need to determine
what property keys to include for a given instance and what value to assign to
that key.

system.location=AUSTIN

jms.QUEUE MGR=DGBLHFCMP1

jms.HOST NAME=gbltstfiag.yoyodyne
jms.PORT=23400

85

Authoring DSLs in Spreadsheets Using XML Technologies

The wrapper properties file has a similar look but some additional requirements.
All property keys are prefixed with wrapper. and the properties that are num-
bered require unique, consecutive numbering, hence the property generator need
to manage this numbering.

wrapper.java.additional.l=-Drmi.hostname=localhost
wrapper.java.additional.2=-Xms1024m
wrapper.java.additional.3=-Xmx1024m
wrapper.app.parameter.l=classpath:yoyodyne service.xml

6.2.3. A Model Specifying The Configuration of Instances of a System

The Workbook model for this DSL involves a main worksheet (i.e. Instance work-
sheet) which contains all of the structuring parameters of a system. This is presen-
ted as a series of tables (separated by blank lines) with the name of each table
being at the upper-left corner of the table. The Instance table is required and con-
tains the list of instances. Only these instances can be generated by this mecha-
nism. The tables in this example (e.g. QueueBroker, QueueSet, etc) that follow
the Instance table are Linked tables to which an instances refer. The name of a
Linked table corresponds to the name of a column in the Instance table. The
graphical connectors in the Spreadsheet are added to illustrate the linkages
between the Instances table and the Linked tables.
There are multiple reasons for the Linked tables:

¢ They allow for regrouping information that belong together. (In the example,
the four different parameters that correspond to the QueueBroker are in the
same table).

* They give a symbolic name for a bit of data. (In the example, we associated the
QueueSuffix .003 with the UAT BackEnd. This documents the reason for the
value .003).

e Allows the same data in the Linked tabled to be referenced multiple times
from the Instance data (i.e. DRY%).

¢ Allows for one-to-many relationships from the Instance to the Linked data.
(In the example, there are three Accounts for PDN.)

*https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

86

Authoring DSLs in Spreadsheets Using XML Technologies

[DslCanfig.xlsx

| # Accueil E Format Mise en page Tableaux | Graphigues SmartArt | » ﬂ-'?
: El e H

A

B | C | D

28

Instance
DEWV

SIT

UAT
OAT
PDM

QueuweBroker
TEST
PDM

BackEnd
SIT

LIAT
PDM

Accounts
TEST
OAT

OAT

PDM

PDM

PDM

location QueusBroker
AUSTIN TEST
DALLAS TEST
HOUSTON TEST
PARIS
TEJAS

Dallas
Houston

BackEnd debugPort
SIT

UAT
UAT
UAT
PDMN

17061 QAT
P

yes

29 |
I | "rarodyne} Application ,,I 'l.l'l.rren:q:n-a!rJI + A

The second and third worksheets correspond to two different properties files
that need to be generated for an instance's installation. These worksheets are
tables of types of lines to be produced in the resultant property files and the rules
for generating them. The Condition column is a boolean xpath expression which
determines whether or not this line should be produced in the results (where
blank implies true).

The TextValueTemplate entries were manually formatted to help distinguish
between constant values (in a shade of blue in the image) and the values calcula-
ted from the first page (in a shade of green in the image). The PropertyName cells
have background colors that correspond to the separate regions of the first work-
sheet in order to facilitate their relation visually. The shade of yellow background
color corresponds to information from the Instance columns as opposed to the
Linked columns.

87

Authoring DSLs in Spreadsheets Using XML Technologies

[NN] DslConfig.xlsx
| A Accueil | Mise en page | Tableaux | Graphigues | SmartArt | Formules | Données | Révision | w Pt
_ A E C D E F
ZIT\rpE PropertyName Condition TextValueTemplatel TextValueTemplate2
2 |Comment Properties for the Yoyodyne Application
3 |Property systemn.location {f:instanceValue('location’}}
4 |Property jms.QUEUE_MGR {f:linkedvValue('QueueBroker', 'Manager’)}
5 |Property jms. HOST_NAME {f:linkedvalue('QueueBroker’', 'Host')}
6 |Property jms.PORT {f:linkedvalue('QueueBroker’, 'Fort')}
7 | Property jms.CHANNEL {f:linkedvalue('QueueBroker', 'Channel’)}
8 |Property jms.connectRetries £
9 |Property jms. TRADE_QUEUE {f:linkedvalue('QueueSet', 'Trade”)} {f:linkedvalue('BackEnd’, 'QueueSuffix’)}
10 |Property jmis.POSN_QUEUE {f:linkedvalue('QueueSet', 'Position')} {f:linkedvalue("'BackEnd’, 'QueuneSuffix")}
11 |Property systemn.accounts {string-join(f:linkedvalues('Accounts’, 'Name'}), ',')}
12
a4 b Yoyodyne | Application Wrapperw] 4
[NN) DslConfig.xlsx
'] A Accueil | Mise en page | Tableaux | Graphigues | SmartArt | Formules | Données | Révision | LV - X
_ A B C D =
ZlT\fpe PropertyName Condition TextValueTemplatel TextValueTemplate2
I 2 |Comment Properties for the Yoyodyne Wrapper
{ 3 |Property java.additional f:instancevValue('localOnly') eq "yes' =Drmi.hostname=localhost
4 |Property java.additicnal f:instancevValue(' 'debugPort’') ne " =Djava.debug.port {f:instancevalue("debugPort’'}}
t 5 |Blank
{ 6 |Property java.additional ~Xms10Z4m
7 |Property java.additicnal ~Xmx102Z4m
8 |Property app.paramter classpath:yoyodyne service.xml
9
“« 4 rp ‘foyodpne" Application J wrapperw i

The functions available for xpath expressions in the properties worksheets can
come from the DSL library or can be user-supplied:

f:instanceValue(...)
f:linkedValue(...)
f:linkedValues(...)

6.2.4. Generating the Configuration Artifacts

In addition to the workbook containing the Instance and Properties worksheets, the
configuration author will provide an XSLT which acts as the main entry point
into the generation process. This stylesheet receives standard arguments for the
generation process: the URL of the workbook, the name of the Instance worksheet,
the URL of the root output directory for writing the generated files and the name
of the Instance to be generated.

For the above example generating two properties files, the following XSLT
stylesheet is sufficient. This stylesheet includes the common functions from an
external XSLT file DryGen.xslt. It calls two supplied functions, one for generat-
ing standard Properties and another for writing Wrapper Properties, this latter
property file requiring special treatment by adding number suffixes to the prop-
erty keys in order to render them unique.

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="3.0">

<xsl:include href="DryGen.xslt" />

88

Authoring DSLs in Spreadsheets Using XML Technologies

<xsl:param name="workbookURL" as="xs:string" required="yes" />
<xsl:param name="worksheetName" as="xs:string" required="yes" />
<xsl:param name="instanceName" as="xs:string" required="yes" />

<xsl:param name="destinationURL" as="xs:string" required="yes" />

<xsl:template name="dslconfig" >
<xsl:sequence select="f:writeProperties ($workbookURL,

SworksheetName,
$instanceName,
'Application',
SdestinationURL,
'yoyodyne.properties")" />
<xsl:sequence select="f:writeWrapper (SworkbookURL,
SworksheetName,

SinstanceName, 'Wrapper',
SdestinationURL,
'yoyodyne.conf',
SnumberProperties)" />
</xsl:template>

<xsl:variable name="numberedProperties"
as="element (numberedProperty) *" >
<numberedProperty name="java.classpath" />
<numberedProperty name="java.additional"™ />
<numberedProperty name="app.parameter" />
</xsl:variable>

</xsl:stylesheet>

The implementation of DryGen.xslt itself is not provided here but can be descri-
bed generally as a library which can read the different worksheets from the work-
book and also implements the common functions used for generating properties
and extracting instance and linked values. DryGen.xslt needs to extract xpath
expressions from the worksheet and then evaluate the results of those expres-
sions. There are a few different ways of going about this in the implementation:

e Use the xsl:evaluate element® in XSLT3 (or the saxon:evaluate() func-
tion)®

* Generate an XSLT stylesheet containing the extracted xpath expressions and
execute that stylesheet to obtain the results.

5https:/ /www.w3.0rg/TR/xslt-30/#dynamic-xpath
6h’ctps://www.saxonica.Com/htrnl/ documentation/extensions/functions/saxon-extension-functions.html

89

Authoring DSLs in Spreadsheets Using XML Technologies

Not all versions of the XSLT implementations provide for dynamic xpath evalua-
tion, sometimes for licensing reasons, hence the second option may be required in
an implementation.

6.2.5. Generating non-Properties Configuration Artifacts

Because the main entry point to the generation process is the XSLT, it's easy to
add extra functionality within that stylesheet in order to generate additional con-
figuration artifacts, espection XML, JSON and YAML artifacts that are so in vogue
these days.

6.2.6. Added Benefits of the Configuration DSL

Because the model requires only two files (i.e. the Worksheet and the Entry Point
XSLT file) it's easier to deploy than N configuration files. Moreover, the configura-
tion generation can be implemented Just-In-Time, often as part of automated
deployment scripts.

Because this mechanism generates the configuration, we can add standardized
unit tests that confirm the generated content..

6.3. Extracting Tabular Data from XML Documents

6.3.1. High-level Objectives

e Simplify the representation and authoring of business rules that determine
how tabular data is to be extracted from structured data (XML) of diverse
vocabularies and content models

* Facilitate the authoring by subject matter experts

e Simplify the mechanism for determining which business rules apply to which
incoming document.

e Simplify the mechanism for determining the number of result lines to produce
for an incoming document.

6.3.2. The Requirements for Extracting Tabular Data from XML

One problem that I ran across was a situation where a large number of diverse,
detailed XML content models representing different financial instrument types
and originating systems needed to be processed in quasi-realtime and have a
fixed set of columns but a variable number of rows of tabular data extracted from
each document. The number of rows extracted could be different for each docu-
ment as a function of the type and nature of the instrument. Each line would have
the same number of columns of data, each column representing a particular bit of
information such as: coupon-rate, maturity-date, currency, amounts, etc.

90

Authoring DSLs in Spreadsheets Using XML Technologies

The requirements of the DSL in this case were:

Given that the Business Analysts would know the XML vocabularies for the
received content

Have a method of managing the extraction rules where Business Analysts
could keep them updated and, moreover, test them for correctness

The business rules would need to be able to determine, upon document recep-
tion, which rules to use for that particular document (ex: instrument type,
vocabulary) and how many result lines would be produced.

6.3.3. The Model for Describing the Extraction of the XML Data

The basic mechanism for this model is the following;:

From the workbook an XSLT stylesheet is generated that contains a an ordered
list of named templates.

To extract data from a document, the document will be presented to the first
named template in ordered list. If that template produces no output CSV
lines, then the document will be presented to the next template in the list, and
so on until there is a template that produces at least one line of output data.

The line or lines of output data produced by the first template that did not
produce 0 lines is the output data.

The order of the templates determined by the order of the worksheets in the work-
book (left to right order) and by the document types declared within each worksheet
in the header declaration. An example showing one worksheet with two document
types (i.e. FixmlBond and FpmlBond, from the header line) is presented below.

eC e [CsvExtractionModel.xlsx
Accueil Mise en page Tableaux Graphigues SmartArt Formules Données Réwvision LS - B
A | B C D ' E _F G
1 |namespace foml http:/ fwww.foml.org/FpML-5/recordkeeping
2 |namespace fixml http:/ fwww.fixprotocol.org/FIXML-4-4
3
4 |default-prefix fixml fomil
5
& |header number/type name FixmiBond FpmiBond HFWD-SystemA HFWD-SystemB
7 |for-each /Bond/TrdCaptRpt Jtrade[details/bond]
8 |for-each [@system = ("SystemA’, 'SystemB')]
9 |variable element({fpmi:trade) trade current()
10 |variable elementifixml:TrdCaptRpt) trade current()
1B variable ws:string ourParty Strade/header/onBehalfOf/@id
12 |variable ws:string book Strade/TrdLeg/@Bookld Strade/acct/book|[@id eq SourParty]/@ ref
13
14 |column 1 CUrrency Strade/ccy Strade/leg(1]/@Ccy
15 |column 2 amount Strade/@lastQty Strade/@notional * 100
16 |column 3 system 'SystemcC’ */@system
17 |column 4 trader_id Strade/@primaryTrader #FWD(/*/@system) Strade/@userid /*fdetails/trader
18 |column 5 end_date Strade/instr/@maturity $trade/payment{last()])/@date
19 |column & trading_book Sbook Sbook
20
7| Gsv-GLOBALS | Csv-BOND | Gsv-swar | + I 4

Figure 2. Csv Extraction Model Spreadsheet

91

Authoring DSLs in Spreadsheets Using XML Technologies

Running the example worksheet will generate two named templates with the names
that are a composition of the worksheet name and the document type name from the
header declaration. The generated templates follow:

<xsl:template xmlns:fpml="http://www.fpml.org/FpML-5/recordkeeping”
xmlns:fixml="http://www.fixprotocol.org/FIXML-4-4"
xpath-default-namespace="http://www.fixprotocol.org/
FIXML-4-4"
name="£:BOND-FixmlBond" as="xs:string*">
<xsl:for-each select="/Bond/TrdCaptRpt">
<xsl:variable name="trade" as="element (fixml:TrdCaptRpt)"
select="current ()" />
<xsl:variable name="book" as="xs:string" select="S$trade/TrdLeg/
@BookId" />
<xsl:variable name="resultCells" as="item()*">
<xsl:sequence select="f:empty-if-absent ($trade/ccy)" />
<xsl:sequence select="f:empty-if-absent ($trade/@lastQty)" />
<xsl:sequence select="f:empty-if-absent ('SystemC')" />
<xsl:sequence select="f:empty-if-absent (Strade/
@primaryTrader)" />
<xsl:sequence select="f:empty-if-absent ($trade/instr/
@maturity)" />
<xsl:sequence select="f:empty-if-absent ($book)" />
</xsl:variable>
<xsl:value-of separator="{S$separator}" select="for $i in
SresultCells
return f:encode-
csv(i, Sseparator)" />
</xsl:for-each>
</xsl:template>

<xsl:template xmlns:fpml="http://www.fpml.org/FpML-5/recordkeeping"
xmlns: fixml="http://www.fixprotocol.org/FIXML-4-4"
xpath-default-namespace="http://www.fpml.org/FpML-5/
recordkeeping"
name="f:BOND-FpmlBond" as="xs:string*">
<xsl:for-each select="/trade[details/bond]">

<xsl:for-each select=".[@system = ('SystemA', 'SystemB')]" >
<xsl:variable name="trade" as="element (fpml:trade)"
select="current ()" />

<xsl:variable name="ourParty" as="xs:string" select="S$trade/
header/onBehalfOf/@id" />

<xsl:variable name="book" as="xs:string" select="S$trade/acct/
book[@id eq SourParty]/Qref" />

<xsl:variable name="resultCells" as="item()*">

92

Authoring DSLs in Spreadsheets Using XML Technologies

<xsl:sequence select="f:empty-if-absent ($trade/leqg[l]/
@Ccy)" />
<xsl:sequence select="f:empty-if-absent ($trade/@notional
* 100)" />
<xsl:sequence select="f:empty-if-absent (/*/@system)" />
<xsl:choose>
<xsl:when test="/*/@system eq 'SystemA'" >
<xsl:sequence select="f:empty-if-absent (Strade/
@userid)" />
</xsl:when>
<xsl:when test="/*/@system eq 'SystemB'" >
<xsl:sequence select="f:empty-if-absent (/*/
details/trader)" />
</xsl:when>
</xsl:choose>
<xsl:sequence select="f:empty-if-absent ($trade/
payment [last ()]/@date)" />
<xsl:sequence select="f:empty-if-absent ($book)" />
</xsl:variable>
<xsl:value-of separator="{$separator}" select="for $i in
SresultCells
return
f:encode-csv(i, Sseparator)" />
</xsl:for-each>
</xsl:for-each>
</xsl:template>

The association between the generated templates and the example worksheet is
illustrated in the following image:

93

Authoring DSLs in Spreadsheets Using XML Technologies

i) [] * CsvExtractionModel.xlsx
A Accunil Misa sn page Tableaux Graphigues Smartart [} 2 évigi w i
A B c [+] E | F [
1 | namespace fpam it wvew fomLorg FpML-Sfrecordkecping
2 namespace fisrml it fveve fiaprotocol org/FIOMIL-4-4
3
4 | default-prefu flarm fomi
5
6 header mumber/type il i WD -SyS Tl FPWOD-SystemB
7 |for-each JBond,TraCapiRpt frrade|deaits,nand)
8 | for-cach ([Esystem = ['SystemA’, "SystemB')|
9 wariable element{fpmil trade] trade turrentl)
10 | wariable elementifixml: TrdCaptipe) trade current|)
Eﬁ wariable x5 string ourParty Serade/hesder/onBehal f04/@id
12 |variable xs:string book Strade/Trdleg/@Bockid Strade/scct/bock|@id eq SourParty|/@ref
13
14 column 1 clrrency Strade/ccy Strade/leg]1/@Coy
15 column 2 amount Strade/ @lasiQty Strade,/@noticnal * 100
16 | column 3 system “SystemC I* [@systern
17 |column 4 trader_id Strade/@primaryTrader #BFWD(*/ @system) Strade/ Euserid /* fdetailsfrader
18 |column 5 end_date Strade/instr/@maturity Strade/paymentliast]l/@date
19 | column] wrading_book Shook Sbook
20
« = » o [l Gv-CLoBALS | csv-sowo | Civ-swar | + T 'é

<xsl:template xmins:fpml="http:/fwww.fpmi.ong/FpML-5/recordkeeping”
axmins:fiwml="http:/ fwww. fixprotocol.org/FIXML-4-4"
xpath-default-namespace="hitp:/ www.fpml.org/FpML-5/recordkeeping”
name="f:BOND-FpmlBond " as="xs:sting™"=>
<usl:for-each select="{trade|details/bond]">
<xsl:for-each selects".[@system = {'SystemA, ‘SystemB']]" >
<xsh:variable name="trade" as="element{fpmi:trade)" select="current{)" />
<xsi:wariable name="ourParty" as="xs:string” select="$trade/header/onBehalfOf/@id" />
<xsl:wariable name="book" as="xs:string" select="Stradefacct/book| @id eq SourParty]/Bref
<xslvariable name="resultCealls" as="item|}*"=
«<xs|zequence select="fempty-if-absent({5trade/leg[1]/@Coy)" />
<xsl:sequence select="f.empty-if-absenti{Strade/@notional * 100)" /=
<xsl:sequence select="f.empty-if-absent{/*/@system)" />
<xsl:chooses
<xsl:when tests"/*/@system eq "SystemA™ >
<xsl:isequence select="f:empty-if-absent(Strade/@userid]" />
</xslzwhen>
<xsl:when test="/*/[@systern eq ‘SystemB™ >
«<xsi:sequence select="fempty-if-absent[/* /details/trader]” /=
</xslzwhen>
</xsl:choosex>
<xsl:zequence selact="fiempty-if-absentiStrade/payment[last()]/@date]" />
<xsl:sequence select="f.empty-if-absent{Sbook]" />
<fxslvarizble>

«<yshvalue-of separator="{%separator]” select="for %i in SresultCells
SR a 1 et

<xsl:template xmins:fpml="http:/www. foml.org/FpML-5/recordkeeping”
wmins:fixml="http:/www. fieprotocolong/FIXML-4-4"
xpath-default-namespaces"http:/ fwww fixprotocol.org/FIXML-4-4"
name="fEBOMND-Fixm|Bond” 25+ "xs:string™ "=
«<xsl:for-each select="/Band,TrdCaptRpt">
<xsl:variable names"trade" as="elemant(fixml: TrdCaptRpt)" select="current()" /=
<xs|variable name="book” as="gs:string” select="Strade/TrdLleg/@Bookld” /=
<xs|:variable names"resultCelis” as="jtem{}*">
<yshsequence select="f-empty-if-absent|Strade/coy)” f=
<xshsequence select="Fempty-if-absent{Strade/@lastQry)" /=
<xsl:sequence select="fempty-if-absent|'SystemC')" />
<xsiisequence selects"fempty-if-aosent{Strade/@primaryTrader)" />
<xslisequenca selects"fempty-if-absent|Strade/finstr/@maturity]” />
<xsl:sequence select="f:empty-if-absent({Sbook)" />
«<fwsl:variables
<xs|valus-of separator="{$separator)" select="for §i in SresultCells
raturn frencode-cswiSi, Sseparator)” /=
«</xsl:for-each=
</xsl:templates

Figure 3. Association between the generated templates and the example
worksheet

Within each worksheet with a name starting with CSV- there are a series of line
declarations of different types, with the type given by the value in Cell[1l] of
each line:

* header — gives the names of the document types, used to form the names of
the generated templates, from Cell[4] and greater (skipping columns for
which the Cell value is empty or starts with a ' #FWD-"' value).

* default-prefix — gives the prefix associated with the namespace URI that
will be set as the xpath-default-namespace

e for-each — each Cell[] in the same column as one of the document types
from the header line, if it is not empty, is the value that will be used in a
select attribute of a xs1: for-each element

* variable — declares an xsl:variable with an optional type declaration
(Cell[2]) and with a name (Cell[3])

94

Authoring DSLs in Spreadsheets Using XML Technologies

column — declares the column number (Cell[2]), the column name
(Cell[3]) and the xpath expression (Cell [position() ge 4]) that is evalu-
ated to to provide the string result for that column

#FWD (. .) — if the column rule appears to be a call to the function #FWD(. . .)
then this really a Forward operation that chooses one of the rules in the fol-
lowing columns that are titled #FWD-XXX on the header line. The substring
following the #FWD header column must match the string value of the xpath
expression in the #FWD(...) pseudo-function call.

6.3.4. Testing and Analyzing the Data Extraction

The steps involved in authoring the DSL in a workbook and checking the output
is illustrated in the following diagram. Here the Business Analyst will update the
workbook and save it. To check the results, the Business Analyst can launch a
batch process that runs two successive XSLT processes:

A first XSLT process that reads the workbook and generates the result XSLT.
This result XSLT is the artifact that will ultimately be used in production if it
passes all tests.

A second XSLT process that reads a stylesheet that is a test harness whose util-
ity is to indicate the list of test documents to be transformed into the test out-
put. The test harness will xsl:include or xsl:import the Generated XSLT from the
first step.

95

Authoring DSLs in Spreadsheets Using XML Technologies

XSLT _
(DSL generator) Artifact

prodrsses

v
Generated

Workbook L cource XSLT generates Y
A document Processor (1) XSLT

i

/9-ut ors
includes

5 l‘

XSLT
XSLT ~ _processes (test
s d (2)
\ J rocessor harness
verifies =)
Business \ -~ \?‘\\
lyst \ " .
analys! \h E/ o N
ucce
document:
N
Test \--\\
Output Test
Documents

Figure 4. Illustration of the CSV Extraction Authoring and Testing Process

What is important about this process is that the Business Analyst has all the nec-
essary tools for generating and verifying the output directly, without requiring
additional technical help. This makes a Business Analyst a first-class contributor
to the development process.

Note that in the first step, the XSLT process is generating an XSLT stylesheet
as output. The generated XSLT is a separable deliverable that can be tested sepa-
rately.

6.3.5. Business Expert Usage of the CSV Extraction DSL

This Spreadsheet DSL has seen good usage by a handful of business analysts and
subject matter experts on practically a daily basis over the past 6 years as of this
writing. One very nice result of this organization is that the rules for all the differ-
ent types of instruments that we receive are presented in a Rosetta Stone fashion.
In one workbook, our biggest, we have 85 columns of extracted data with 15
worksheets and 23 different generated templates. There are a number of other
workbooks for other uses. Business Analysts can typically pick up the structure of
the spreadsheet fairly quickly. The XPATH rules seem to be fairly intuitive for

96

Authoring DSLs in Spreadsheets Using XML Technologies

Business Analysts with some analysts being aware of thornier XML issues such as
document ordering.

Not only is this tool useful for data extraction but also for interactive data dis-
covery. It's very easy to add new columns with new rules for doing things like
adding sums of values, checking hypotheses, hence the tool becomes an interac-
tive workbench.

Overall, the worksheet DSL imparts a structure to the extraction process that a
generalized language such as XSLT would probably not have given.

6.4. Schema to Schema Translations

6.4.1. Overall Objectives

* Define the process of transforming from one XML vocabulary (XML schema)
to another for a same domain.

* Provide a support for authoring and validation by subject matter experts.

6.4.2. Requirements

I was working on a system for which different types of credit facilities (i.e. loans)
were modeled by a Front Office system and also by a Risk system. Both systems
used XML Schema for describing their models, which were quite complex, man-
aging a large number of different notions such as:

* Types of loans (fixed-rate, indexed, revolving credit, etc)

* Types of counterparties

* Types of collateral (buildings, airplanes, commodities, etc)

* Types of guarantees (cash, securities, insurance, export/import banks, etc)

Not only were there two different content models, but each model had a different
set of Subject Matter Experts, hence getting the SMEs to agree was the major
requirement. What we needed was a way of describing the transformation from
the source system to the target system in business terms that could be under-
stood, authored and validated by the SMEs themselves. The result was the DSL in
a Workbook describing the transformation which then generated an XSLT.

In the biggest blocks, we were producing templates in schema-aware XSLT 2.0
that produced an element of a specific type. All parameters were strongly typed
and all templates had required types hence the content model was closely moni-
tored by the Schema Aware processor. This gave immediate feedback to the Busi-
ness Analyst whenever there was either an xpath expression that did not conform
to the input model or an xslt element that did not conform to the result model.
An example:

97

Authoring DSLs in Spreadsheets Using XML Technologies

<l-- == -—>
<!-- ContreGarantie Concours: (99) -->
<l-- == -—>

<xsl:template match="element (*,bankml:DL Reference)" as="element (*,

fsc2:GarantieType)"

mode="ContreGarantie Concours" >
<xsl:param name="elementName" as="xs:string" required="yes" />
<xsl:param name="facility" as="element (*,bankml:DL Facility)*"

tunnel="yes" />

<xsl:param name="loanInfo" as="element (*,bankml:DL LoanInfo)*"

tunnel="yes" />

<xsl:element name="{S$elementName}" type="fsc2:GarantieType" >
<xsl:variable name="contreGarantieExterne" select="'13013""

as="xs:string*" />

<xsl:variable name="contreGarantieConsolide"

select="'13018"" as="xs:string*" />

<xsl:variable name="isBranchOffice" as="xs:boolean"
select="((brkfct:getParty(current()))/

tradePartyType eqg 'BranchOffice')" />

The example shows that strong typing against the schema definition is used.

DL_TradePart

DaossierCradit DossierCraditType
#%loan DL_Loan
#efacilivy DL_Facility
#slsanlnfe CL_Leanlnfe etStructureaanfloanHesd erflaanlnfe
#gloanPreductPosition CL_LeanProductPasitian
#3product CL_LeanProduct
#S1radePart CL_TradePart
#glatestTrade DL _Trade getlatestTrade
#mnumeratar jricom.sgeib_broker collect NumOrder
5 @numera T ————— e ——— xs:string
& Blivelle - producklnfofproductiame *s:string
$emntAut BHL_| 1 XS:MUMmEric
7 @matiut wrneric(15] getRoundedAmaunt 1 XS IMUMEric
& DdevMntiut 3 1 $minthut/currency currencyScheme
201 SdeteDebut getStandardDate 1 {product/productHeader sraductinfa/ productDetes/startDat. xS date
202 2detefin getStandardDate 1 {product/productHeader raduetInfo/productDetes/maturit. - x8:date
203 @ty peDossier { Typelassier 1| Transco ‘BdessierBancaire
$posrCCNE BerkML_Meoney getloanPesitonbmupunt 1| Rule {#5loendroductPosition, FeesAcr idAmount’) surnes
If {#%periodeSqinML re 'loanDeilyNotification’)
204 EmmCCNE xs:numenrc(15) getRoundedAmount 1 | Rule {SposnCCNE/amount) xs:numeric
205 @devCCNE xs:char(3) 1 — $posnCONE/currency curreneySecheme
206 PeodeReporComptaCCNE xs:char(23) 1 | Notused HULL
EndIf
Fatest x5 5tring print Rule {concat(=+ #=s=ssssigan’ sraduct/product Header/ product:
- ConcoursCredit ConcoursCreditTy ConcoursCredit 1.\ SubMapping srkfct-facilityFilter] # StradeRart Scodese) CL_Facility
- Rermuneration RernunerationTyp Rermuneration_Dossier 2.\{ NotUsed #glcan/loanHaader)lcanFeeCendition DL_Fes
Garartie GarartieType Garartie_Persannelle_Dossier .| SubMapping #glcan/loanHeader/lcanGuarantes DL LoanGuarantes
- Garartie GarantieType Covenant_Dassier |OA o.M SubMapping #%izan/loarHeader/lsaninfofloanCamolementarylrfo/loant. BeakML_Cede
- Garartie GarartigTyge Garantie_Reelle_Dossier L.\ SubMapping #&leanoanHeader/lcanCollateral CL LeanCollateral

The result is quite detailed and looks a lot like a template in an XSLT. On the left
hand side we have the attributes, elements and variables that we are producing
from the information that is presented on the right-hand side. A SubMapping is
really a call to xsl:apply-templates. A "Rule" is a call to a xsl:function. To
give more information about the definitions:

#$XXX — produce a variable that will be then be passed as a tunnel variable to
all subsequent xsl:apply-templates from that template

$XXX — produce a strongly-typed variable
@XXX — produce an attribute

SubMapping — xsl:apply-templates on a particular select value, passing
all variables decl

98

Authoring DSLs in Spreadsheets Using XML Technologies

* Rule — simply a call to a named function.
There is a separate page in the spreadsheet for declaring XPATH functions.

getFacilityMewSyndical _facility 'element(*, defiml|:DL_Facility) 1(($_tradePart/trade}[1]/specificTradeConditions/loanS pecificTradeConditions/loanT

! 1

: partyRef :ele'nent(‘.dc‘iml:DL Reference) |

1_tradePart relement(*, defiml:DL_TradePart) :

: shareType :xs:s:'mg :

1 1

! |

! i

getDistinctDLRefs 1_dIRefs lelement(*, defiml:DL_Reference)® :for shref in distinct-values($_d|Refs/@href)
. : ireturn (($_dIRefs[@href = $href])[1])
I
1 1
]
getPartRef |_tradePart lelement(*, defim|:DL_TradePart) 1for $d in $_dIRefs
| facility |element(*, defiml:DL_Facility) ireturn (brifet:rickPartGreater{$_tradePart, $_facility,4d))
! diRefs :eleﬂentt“.de‘iml:DL Reference)*® :

Also what was important was the translations from the code lists used in the
source documents to the target schema.

COMMENT TranscoName fromFieldName |frnmCude |fromCudIna§tuFleldName |tuCode
Seniority Type-To-senicriteCreance | Seniority Type HuniorSubordinated : |senioriteCreance IS0
Seniority Type-To-senicriteCreance :Smuo‘nyTypc :Ivczzaﬂnc : :senioritc(_"cancc :SSO
Seniority Type-To-senicriteCreance :Smuo‘nyTypc :Smuo‘ : :senioritc(_"cancc :SEN
Seniority Type-To-senicriteCreance 15eniority Type 1SeniorSecured 1 1senicriteCreance ISEN
Seniority Type-To-senicriteCreance :Smuo‘nyTypc :Smuo‘Unsccurcd : :senioritc(_"cancc :SEN
Seniority Type-To-senicriteCreance :Smuo‘nyTypc :Subora nated : :senioritc(_"cancc :SSO
Senlority Type-To-senicriteCreance :Smuo*ﬂﬂype :SuperPr ority : :seniorite(.‘*eance :SUP
Seniority Type-To-senioriteCreance 1SeniorityType 1Unknown i IsenioriteCreance I1SEN
COMMENT | Transco Senlority Type-To-senloriteCreance : : :

6.4.3. Benefits of Generating the XSLT from the Schema-to-Schema DSL

The major benefit in this case was the possibility of have a fairly readable version
of an XSLT within a Spreadsheet such that Subject Matter Experts could verify
and validate the rules. One additional column in each line of the DSL was
reserved for setting "Validated" on a rule-by-rule basis. This allowed the SMEs to
follow the progress of Validation in a finely-grained fashion.

A major benefit was from the use of Schema Aware processing and strongly-
typed template declarations. On the one hand, this tied the XSLT production
directly to the two vocabularies. Furthermore, the SME authors benefitted
directly and immediately from the Schema Aware checking of the XSLT Pro-
Cessor.

7. Conclusions

DSLs can be useful for application development and it's fairly straightforward to
develop them in spreadsheets with XML Technology. I've presented some exam-
ples of usages of DSLs that I've developed, including two that involved close
association and engagement of Business Experts. The result was the streamlining
of development and a better participation of SMEs in the development chain.

Whether or not a DSL is appropriate or useful for a given problem remains a
Domain-Specific determination. Furthermore, whereas the spreadsheet format may
not be the optimal format for a given DSL, I've presented a few for which spread-
sheet format was probably ideal. I suspect that the utility of spreadhsheet formats
is not rare.

99

Authoring DSLs in Spreadsheets Using XML Technologies

I have run into cases where SMEs were reluctant to get involved in a process
that appeared to them to be more one of technical development; however, this has
been, for me, the exception rather than the rule. For the most part, I've seen SMEs
enthusiastic about the possibility of symbolic manipulation and direct feedback.

8. Caveats

Spreadsheet documents require some special treatment within Version Control
Systems, including git. Typically, it's not straightforward to merge a spreadsheet
document with divergent changes, hence manual merging will be required. Fur-
thermore, visualizing the historical changes performed upon a spreadsheet docu-
ment will not be within the capabilities of a text-based differences visualizer.

Bibliography

[1] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An
Annotated Bibliography. 2000. CWIL, The Netherlands. http://
www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf.

[2] S. I. Feldman. Make --- A Program for Maintaining Computer Programs. 1979. Bell
Laboratories.

[3] S.C. Johnson and R. Sethi. YACC: A parser generator. 1990. Unix Research
System Programmer’s Manual, Tenth Edition, Volume 2.

[4] B.W. Kernighan. A Typesetter-Independent TROFF. 1982. Bell Labs.

[5] Tim Berners-Lee. Hypertext Markup Language - 2.0. November 1995. MIT/W3C.
https://tools.ietf.org/html/rfc1866.

[6] Juha-Pekka Tolvanen and Steven Kelly. Effort Used to Create Domain-Specific
Modeling Languages. ACM/IEEE. ACM/IEEE 21th International Conference on
Model Driven Engineering Languages and Systems (MODELS "18). October
2018. MetaCase. http://www.metacase.com/papers/effort-create-domain-
cameraReady.pdf.

[7] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop DomainSpecific Languages. ACM/IEEE. ACM Computing Surveys, 37, 4.
2015. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.91.654&rep=repl&type=pdf.

[8] Martin Fowler. Domain-Specific Languages. Pearson Education. Addison-Wesley
Signaure Series. 2010.

[9] Dr. Michael Kay. XSLT 2.0 and XPath 2.0, 4th Edition. Wrox. 2008.

[10] Susan Dart. Carnegie-Mellon University. Concepts in configuration management
systems.. ACM. ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/

100

http://www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf
http://www.st.ewi.tudelft.nl/arie/papers/dslbib.pdf
https://tools.ietf.org/html/rfc1866
http://www.metacase.com/papers/effort-create-domain-cameraReady.pdf
http://www.metacase.com/papers/effort-create-domain-cameraReady.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.654&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.654&rep=rep1&type=pdf
ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/cm_concepts.pdf

Authoring DSLs in Spreadsheets Using XML Technologies

cm_concepts.pdf. Proceedings of the 3rd international workshop on Software
configuration management. 1991.

[11] John Ellson, Emden Gansner, Eleftherios Koutsofios, Stephen North, and
Gordon Woodhull. AT&T Labs. Graphviz and Dynagraph — Static and Dynamic
Graph Drawing Tools. Springer-Verlag. https://graphviz.gitlab.io/_pages/
Documentation/EGKNWO03.pdf. 2004.

101

ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/cm_concepts.pdf
https://graphviz.gitlab.io/_pages/Documentation/EGKNW03.pdf
https://graphviz.gitlab.io/_pages/Documentation/EGKNW03.pdf

102

How to configure an editor

An overview of how we built Fonto

Martin Middel
FontoXML
<martin.middel@fontoxml.com>

Abstract

In 2012 a web agency took on the challenge of building an XML editor. This
paper gives an overview of a number of concepts that proved to be useful,
and some concepts that did not.

1. Introduction

FontoXML is an editor for XML document or structured content in more general
terms. It's primary intended to be used by Subject Matter Expert who do not nec-
essarily have any knowledge of XML. FontoXML editor is much a platform then a
shrink-wrapped piece of software. It can be tailored to support any kind of XML
document format, including DITA 1.3, JATS , TEI, Office Open XML and other
proprietary format. The platform itself is highly confirurable so it can be tailored
to specific use cases.
All of these different editors have three different parts of configuration:

¢ the schema defines which elements may occur where;

* elements are assigned to ‘families” causing them to receive a visualization and
basic cursor behaviour;

* and operations, which define the effect of the toolbar buttons and hotkeys.

Especially the operation part is where FontoXML has seen some major API rede-
signs. This paper will discuss a number of key decisions we’ve made and where
the XML manipulation layer of FontoXML will move to. We hope that this paper
will give an insight in how a small team of JavaScript developers with medium
knowledge of XML technologies made the platform on which a large number of
XML editors have been and are being built.

2. Iteration 0

FontoXML started in late 2012 when a publisher of commentary on legislative
content moved to use an XML schema to encode their content in. Their authors
were happily working in MS Word and threatened the company with leaving for
their competitor if the new tooling would hinder them in any way. The publish-

103

How to configure an editor

ing company required a solution where the user experience is the number one
priority and where anything technical would just be taken care of. At that
moment, there were no existing XML editors which met their requirements. This
is the birth of the precursor of FontoXML, which started life as a specific, bespoke
solution.

Writing a user interface containing a toolbar, designing a way to render XML
as an HTML view, updating the view as efficiently as possible and many other
parts of this version of FontoXML were fun and challenging to do, but this paper
will focus on the XML manipulation side of the editor: what happens when I
press a button?

2.1. The beginning: canInsert

The first iteration of the XML manipulation was as simple as it gets. There were
commands which could be queried for their state: whether they were enabled or
disabled or whether they were “active’. Getting state was implemented separately
from actually executing the command. Schema validation was hard-coded and
exposed functions that could check whether adding an element could exist at a
given location. The command then had to implement an execute method to per-
form the intended mutation if it is allowed. At this point, every command had to
query the system by itself. There were no atomic transactions: when a command
inevitably had to try multiple things, the command had to undo all of them when
it found out that it could not run to completion.

2.2. Schemata as regular expressions

One of the major hurdles of writing an XML editor in JavaScript is the absence of
most XML tools for the browser environment. When we started to work on the
editor in 2012, there was no usable XPath engine, no usable DOM implementation
(besides the browser implementations, which all had a number of inconsistencies,
browser-specific issues and performance issues). An XML-schema implementa-
tion was also not available. However, XML Schema is a regular tree grammar???,
meaning the content models of an element are regular languages. We used actual
JavaScript regular expressions as a basic schema validator:

// The note element may contain p, ol or ul elements, repeated
indefinitely
const noteSchema = / ((<p>) | (<0l>) | ())*/;
// To allow us to work with regular expressions,
// we need to ‘stringify’ the contents of an element.
function createElementContentString (element) ({
return element.children.map(child => '<' + child.nodeName +
'>") . Join('");

}

104

How to configure an editor

const noteElement = document.createElement ('note');
noteElement.appendChild(document.createElement ('p'));

const isValid = noteSchema.test (createElementContentString (nodeElement));
// isValid is true

noteElement.appendChild (document.createElement ('note'));
const isValid = noteSchema.test (createElementContentString (nodeElement));
// 1isValid is false, a note may not contain a note

This string-based validation allows us to compose a ‘canlnsert” function quite ele-
gantly:

function canlnsert (element, offset, nodeName, schemaRegex) {
const elementContents = element.children
.map (child => '<' + child.nodeName + '>'");
// Use the Array#splice method to add a new element at the given offset
elementContents.splice(offset, 0, '<' + nodeName + '>');
return schemaRegex.test (elementContents.join("'"));

}

We used the browser’s built-in RegEx engine to evaluate these expressions.

Even though this approach is a very pragmatic and easy way to implement a
schema validator, it is not the best way. The regular expressions were hand-writ-
ten and hard to maintain. Besides the maintainability issue, string regular expres-
sions are not very extensible. ‘Repairing” a split element by generating missing
elements turned out to be one of the most code-intensive parts of the editor and
the regular-expression approach to validation could not give us any information
that we could use as input for this problem.

Perhaps surprisingly, performance was not a bottleneck when we used regexes
for schema validation. One would expect the string allocations would cause per-
formance problems when validating elements with a large number of children.
We did not run into these issues because the documents we loaded were rela-
tively small. Nodes with relatively many children still only had dozens of child
elements, not hundreds.

3. Iteration 1

3.1. Validation

As the first iteration of the XML schema validator, we opted to still use a regular
language-based implementation, but to implement our own engine for running
them[7]. By compiling the schema to a non-deterministic finite automaton (NFA),
we can check whether our element is valid[2].

105

How to configure an editor

p
. QOQ

ol

Figure 1. Example validation state machine

term

definition

Figure 2. Example of a state machine for a repetition schema

3.2. Synthesis

The schema for which we initially developed the editor was relatively simple and
was specialized for different departments of our client. A figure could contain a
title followed by an image and a list had to contain list items. During the develop-
ment of the editor, the schema grew into different sub-schemas. Some of them
forced or disallowed titles in figures, while some added new elements which bet-
ter expressed their specific content. This required us to make the commands we
had better interpret the schema, to see which choices could be made where.

We needed to not only know whether an element is valid or not, but we also
needed to know WHY it is deemed invalid and whether we can ‘fix’ it by creating
required elements at the correct positions. A major advantage of the new NFA-
based schema validator is extensibility. By tracking the path(s) taken though the
NFA that lead to its acceptance of a given input sequence, we can see which deci-
sions led to the acceptance or rejection. This can, in turn, tell us which elements
are missing under a node.

This process essentially adds an additional state transition type: record, which
does not 'eat' an input but leaves data on the trace:

106

How to configure an editor

record the absence of a title

paragraph

title

Figure 3. Diagram of the state machine describing the content model (title
paragraph®)

When we validate an element containing a single <paragraph> with the content
model (title paragraph*), it will not be valid. If we however use synthesis, the
record branch will be taken. This will leave us with the information that we are
missing a <title> element, and the exact position at which to insert it in order to
make the document valid again.

We call this process synthesis and even though randomly creating elements
may result in an unexpected situation, this happens relatively rarely in practice,
so we still depend on it.

3.3. Flow behaviour

The second hurdle when writing more abstract XML mutations is defining an
abstract flow behaviour. Authors expect that having a cursor inside an image
should be prevented and that pressing the right arrow with the cursor before a
footnote shoulder should not cause the cursor to appear inside the footnote.
However, the way images and footnotes are represented as XML varies from
schema to schema.

We call the set of properties of elements that define such global navigation
and editing behaviour flow properties. Among other things, these directly deter-
mine the effect of pressing enter or backspace, as well as the cursor behaviour in
and around these elements. The most important flow properties of an element
are:

* Splittability: Whether the element should be cut in two then we press enter in
it, or when we insert a new element in it which can not be contained. A para-

107

How to configure an editor

graph is usually splittable, while a link or a semantic element like a TEI
<persName/> is not. This property also defines whether we can merge an ele-
ment with similar ones, to keep the merging and splitting behaviour consis-
tent.

Closed: Whether we can move in and out of this element using the cursor
keys. Footnotes are closed and do not influence the cursor behaviour around
them.

Detached: Similar to closed, but with additional concern that it is fully
detached from its parent and should act like it isn’t there. Elements containing
metadata are detached.

Removable if empty: Whether the element should be deleted if it is empty
and backspace is pressed in front of it. <note> elements in DITA can be remov-
able-if-empty: if one presses backspace when the cursor is in an empty note, it
should be removed.

Auto-mergeable / auto-removable if empty: Empty HTML elements are
useless, and two adjacent elements are equivalent to a single element
spanning their combined content. FontoXML normalizes them when it finds
them being empty or adjacent.

Default text container: If any, what element should be created when one
starts to type in it? For example, typing inside an empty <note> may need to
first create a <paragraph> to contain the new text

3.4. Blueprints

Asking for validity or trying to come up with the definitive structure before
changing anything in the dom did not allow for very manageable code, so we
came up with a new component: blueprints.

A blueprint is basically an overlay over the DOM, it intercepts all accesses to

the DOM (like retrieving the parent of a node, or which attributes it has). It also
intercepts