
 1

Analytical XSLT
Liam Quin

Delightful Computing
https://www.fromoldbooks.org/

XML Prague 2020

https://www.fromoldbooks.org/

 2

Outline
● Converting XML to a new version of a DTD

● Or an older, or different, version

● A big DTD

● With lots of elements and attributes

 3

Scenario: A New Revision
● Suppose you’re working with a big DTD …

● Your organization decides to move to a later
version of it …

● Or, a customer to whom you send XML does …

● What do you do?

 4

Wait? Did he just say DTD?
● Yes, people still use DTDs.

● The techniques in this paper will work for other
grammar formats, but currently the tool presented
is DTD-only.

● We’ll come back to this topic later.

 5

So, You Need to Review:
● What has changed in the DTD

● What would no longer validate with an identity
transformation?

● What might no longer validate with an identity
transform?

 6

First, Look for Changes
● Look for a change log; these are usually either

manually edited, helpful, but incomplete, or
automatic from commit logs and include sequences
like Change X to Y, then, later, change Y to Z

● Look for comments in the DTD

● Then you might try …

 7

Text Diffs
● You can use the Unix/Linux diff command on the

DTDs, but this is line-based, not declaration-
based.

● You can “flatten” the DTD to expand parameter
entities but or-groups in a different order are a
common result & give false positives.

 8

XML-Aware Tools
● The ancient and respectable DTD Diff

– Gives a diff-like summary of the changes

– May require a “flattened” DTD (e.g. for JATS)

– Better than Unix diff for this purpose.

 9

DTD Comparator
● Part of a Java-based DTD-Analyzer package that

includes also a DTD flattener tool;

● Produces an HTML report and an initial XSLT
stylesheet that you edit;

● I didn’t find this before writing Eddie, but …

 10

All these approaches suck!
● They are based on a waterfall model in which you

analyse the differences, understand them, then
write code to transform documents.

● But DTD, like most requirements, evolve
continuously.

● And you don’t need to handle all changes …

 11

Meet Eddie 2
● Currently a (working) prototype;

● Uses a sax api to read dtds;

● Generates a much more extensive report;

● Generates a stylesheet that you do not edit, but instead
import;

● Uses a simple configuration file.

 12

Traditional XSLT
● Common cycle:

– Write a transformation

– Run it on test documents

– See the validation errors

– Scratch your head and puzzle them out.

 13

Analytical XSLT
● Common cycle:

– Write a transformation

– Run it on test documents

– See errors in terms of the input
– Mark off elements you handled

– Repeat.

 14

How Eddie 2 Helps This
● The generated XSLT uses xsl:message to warn

about input elements that may cause problems;

● Mark elements as handled in the conf file, or as safe
to copy, and they no longer generate warnings;

● The report shows “unsafe” elements have not yet
been marked as handled: a to-do list.

 15

 16

 17

Report Demo
● Show content models and hover goodness

● Show index with TODO/conf info

● Show content model with hover-dots

● Ask for suggestions

 18

The Generated XSLT
● Eddie 2 makes a template for each element in the

source DTD, with comments comparable to the
report.

● The template also produces messages:

 19

Messages
● Element sock contains blister not in source DTD

● Element sock has price attribute not in source DTD

● Element sock has fabric attribute with incompatible
value list

● Element sock has xmlns:xlink attribute declared as
CDATA in source but #FIXED in destination

 20

Message Methodology
● Messages from Eddie 2 don’t contain filenames or

line numbers, so you can sort them and count how
many there are of each (sort | uniq -c).

● Use this to address the most common ones first.

● The messages are in terms of the input DTD, not
the input files or output XML.

 21

In Production
<xsl:import href="lib/eddie2.xsl" use-
when="$use-eddie2 = 'yes' " />

● To do this, declare use-eddie2 as a static parameter:

<xsl:param name="use-eddie2" static="yes"
select=" 'n' " />

 22

Does it Work?
● A conversion from one dtd to another, previously

unseen, without documentation (but with test input
files) can be done in a few hours, with repeated runs of
Eddie 2 and addressing the most common messages.

● The report provides a useful level of documentation.

● But it doesn’t make it trivial: …

 23

When it doesn’t help
● If your input is BITS and your output is HTML

(say), the only use is the report to see content
models and make a to-do list.

● Doesn’t know about DTD-specific items, such as
JATS date representation.

● So...

 24

Future Work
● DTD-specific plugins;

● Turn from working prototype to production code;

● Some XSLT coverage reporting;

● Element renaming;

● Parameter Entities in the report?

● Support RNG and XSD? Hard!

 25

Questions

Liam Quin

Delightful Computing.com

liam@fromoldbooks.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

