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Outline
● Converting XML to a new version of a DTD

● Or an older, or different, version

● A big DTD

● With lots of elements and attributes
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Scenario: A New Revision
● Suppose you’re working with a big DTD …

● Your organization decides to move to a later 
version of it …

● Or, a customer to whom you send XML does …

● What do you do?
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Wait? Did he just say DTD?
● Yes, people still use DTDs.

● The techniques in this paper will work for other 
grammar formats, but currently the tool presented 
is DTD-only.

● We’ll come back to this topic later.
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So, You Need to Review:
● What has changed in the DTD

● What would no longer validate with an identity 
transformation?

● What might no longer validate with an identity 
transform?
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First, Look for Changes
● Look for a change log; these are usually either  

manually edited, helpful, but incomplete, or 
automatic from commit logs and include sequences 
like Change X to Y, then, later, change Y to Z

● Look for comments in the DTD

● Then you might try …
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Text Diffs
● You can use the Unix/Linux diff command on the 

DTDs, but this is line-based, not declaration-
based.

● You can “flatten” the DTD to expand parameter 
entities but or-groups in a different order are a 
common result & give false positives.
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XML-Aware Tools
● The ancient and respectable DTD Diff

– Gives a diff-like summary of the changes

– May require a “flattened” DTD (e.g. for JATS)

– Better than Unix diff for this purpose.
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DTD Comparator
● Part of a Java-based DTD-Analyzer package that 

includes also a DTD flattener tool;

● Produces an HTML report and an initial XSLT 
stylesheet that you edit;

● I didn’t find this before writing Eddie, but …
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All these approaches suck!
● They are based on a waterfall model in which you 

analyse the differences, understand them, then 
write code to transform documents.

● But DTD, like most requirements, evolve 
continuously.

● And you don’t need to handle all changes …



  11

Meet Eddie 2
● Currently a (working) prototype;

● Uses a sax api to read dtds;

● Generates a much more extensive report;

● Generates a stylesheet that you do not edit, but instead 
import;

● Uses a simple configuration file.
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Traditional XSLT
● Common cycle:

– Write a transformation

– Run it on test documents

– See the validation errors

– Scratch your head and puzzle them out.
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Analytical XSLT
● Common cycle:

– Write a transformation

– Run it on test documents

– See errors in terms of the input
– Mark off elements you handled

– Repeat.
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How Eddie 2 Helps This
● The generated XSLT uses xsl:message to warn 

about input elements that may cause problems;

● Mark elements as handled in the conf file, or as safe 
to copy, and they no longer generate warnings;

● The report shows “unsafe” elements have not yet 
been marked as handled: a to-do list.
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Report Demo
● Show content models and hover goodness

● Show index with TODO/conf info

● Show content model with hover-dots

● Ask for suggestions
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The Generated XSLT
● Eddie 2 makes a template for each element in the 

source DTD, with comments comparable to the 
report.

● The template also produces messages:
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Messages
● Element sock contains blister not in source DTD

● Element sock has price attribute not in source DTD

● Element sock has fabric attribute with incompatible 
value list

● Element sock has xmlns:xlink attribute declared as 
CDATA in source but #FIXED in destination
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Message Methodology
● Messages from Eddie 2 don’t contain filenames or 

line numbers, so you can sort them and count how 
many there are of each (sort | uniq -c).

● Use this to address the most common ones first.

● The messages are in terms of the input DTD, not 
the input files or output XML.
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In Production
<xsl:import href="lib/eddie2.xsl" use-
when="$use-eddie2 = 'yes' " />

● To do this, declare use-eddie2 as a static parameter:

<xsl:param name="use-eddie2" static="yes" 
select=" 'n' " />
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Does it Work?
● A conversion from one dtd to another, previously 

unseen, without documentation (but with test input 
files) can be done in a few hours, with repeated runs of 
Eddie 2 and addressing the most common messages.

● The report provides a useful level of documentation.

● But it doesn’t make it trivial: …
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When it doesn’t help
● If your input is BITS and your output is HTML 

(say), the only use is the report to see content 
models and make a to-do list.

● Doesn’t know about DTD-specific items, such as 
JATS date representation.

● So...
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Future Work
● DTD-specific plugins;

● Turn from working prototype to production code;

● Some XSLT coverage reporting;

● Element renaming;

● Parameter Entities in the report?

● Support RNG and XSD? Hard!
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