
Sequence alignment in XSLT 3.0

David J. Birnbaum
djbpitt@gmail.com

http://www.obdurodon.org

XML Prague, 2020-02-14

Outline

• The task
• About sequence alignment
• Alignment and scoring

• The method
• Dynamic programming
• The Needleman Wunsch algorithm

• Dynamic programming and XSLT
• Recursion and iteration
• Processing the anti-diagonal
• Save yourself a trip … and some space
• Performance

• Conclusions

About sequence alignment

• Biomedical (nucleotides), philological (words)
• Global and local
• Global (collation; Gothenburg model pipeline)
• Local (text reuse)

• How many sequences
• Pairwise
• Multiple-witness alignment
• Progressive, iterative: order effects

Alignment and scoring

• Match
• Mismatch
• Gap (indel)

Dynamic programming: history

• Richard Bellman (Rand, 1950s)
• Express complex computational tasks as a combination of smaller,

more tractable, overlapping ones
• Requirements for dynamic programming
• Optimal substructure: optimal solution to a problem can be reached by

determining optimal solutions to its subproblems
• Overlapping subproblems: same subproblems recur repeatedly

Dynamic programming: example

• Fibonacci series ([0 1] 1 2 3 5 8 13 21 34 …)
• Processing order
• Tabulation: bottom up
• Memoization: top down

The Needleman Wunsch algorithm

• Grid, scores, sequences, initialize
• Traverse LR, TB
• Record

• Best score of three neighbors
• Source(s) of best score

• Similar to Levenshtein distance
• Backward traversal(s)
• Only source matters
• Align from end of strings

Dynamic programming and XSLT

• <xsl:for-each> is functional, not
iterative
• Order of output, not of execution

• Cannot update cells inside
• All cells have initial (null) value

Recursion and iteration

• XSLT 2.0: mimic loop with recursion
• Quadratic

• Eek! Stack overflow!

• Mitigate with tail call optimization
• Brittle

• XSLT 3.0: <xsl:iterate>

Processing the anti-diagonal

• Muraoka 1971 (wave front)
• Tennison 2007 (Levenshtein)
• <xsl:for-each> within anti-diagonal
• No internal dependencies

• Recur only on new anti-diagonal
• Linear

Saving time and space
• Grid

• Requires quadratic storage
• Needed for backward traversal

• (Unlike Levenshtein)

• Store full path in the cell
• <cell row="4" col="5" score="0" path="ddldd"/>
• Depends only on two preceding anti-diagonals
• No need to pass entire grid
• Three-anti-diagonal lifecycle
• Last cell holds all alignment information

Performance

• On the origin of species 1859,
1860
• 1 paragraph (193 + 194 = 387)
• 15 paragraphs (3147 + 3126 =

6273)
• Paragraphs are natural alignment

units

• Cell count is quadratic

Parallelization: @saxon:threads

• Multi-threading … works best when the body of the <xsl:for-each>
instruction performs a large amount of computation but produces a small
amount of output (Saxon documentation)
• Small output
• Small (not large) computation
• Memo function?

Conclusions

• “I guess the take-home messages are: (a) try to iterate rather than
recurse whenever you can and (b) don’t blindly adapt algorithms
designed for procedural programming languages to XSLT” (Tennison
2007)
• <xsl:iterate>
• Anti-diagonal traversal
• Store full path on each cell = reduce storage from quadratic to linear

Thank you!

• David J. Birnbaum
• djbpitt@gmail.com
• http://www.obdurodon.org
• https://github.com/djbpitt/xstuff/tree/master/nw

