
XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: XSLT- and XQuery-only
pipelines for the web

Maarten Kroon, Pieter Masereeuw

XSLWeb: XSLT- and XQuery-only pipelines for the web

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

GET /demojam HTTP/1.1

Host: www.xmlprague.cz

User-Agent: Lynx/2.8.9dev.16 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/3.5.17

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

GET /demojam HTTP/1.1

Host: www.xmlprague.cz

User-Agent: Lynx/2.8.9dev.16 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/3.5.17

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

GET /demojam HTTP/1.1

Host: www.xmlprague.cz

User-Agent: Lynx/2.8.9dev.16 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/3.5.17

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

XProc? / Piperack?

Apache Cocoon?

Servlex?

… ?

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

XSLWeb

What does a webserver really do?

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb
<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb
<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb
<req:request>

<req:path>/demojam</req:path>

<req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>

</req:request>

XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

Pipelines in XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: overview

• XSLWeb is just a Java servlet

• Internally uses Saxon’s efficient tree model (TinyTree)

• It gives access to the full HTTP request in an XML representation

• It offers an XML representation of the HTTP response

• It supports the full HTTP specification - GET, POST, PUT, and all other

methods

• It makes pipelining trivially easy

• It allows XSLT and XQuery programmers to program things at the moment

they need it - i.e. in their stylesheet or XQuery script

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: overview

• It allows caching

• It allows access to static content (assets)

• It offers several extension functions to make web programming easy

• It allows the addition of user defined extension functions in Java, using the

Saxon API.

• It is in extensive daily use by Dutch government organisations for web

services and web sites (such as laws, treaties, patents and land registry).

• But most importantly: nearly anything can be done in XSLT or Xquery

(exceptions: the configuration file (XML) and extension functions

(Java))

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: extension functions

• Functions for manipulating the request, the session and the response

• EXPath file functions (Christian Grün, expath.org; own implementation)

• EXPath http functions (thanks to Florent Georges)

• Spawning external processes

• Sending e-mails

• Image processing

• ZIP file processing

• SQL processing (own implementation)

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: the request
dispatcher stylesheet
<xsl:stylesheet ..>

<xsl:template match="/req:request[req:path eq '/hello-world.html']">

<pipeline:pipeline>

<pipeline:transformer name="hello-world"

xsl-path="hello-world.xsl" log="true"/>

</pipeline:pipeline>

</xsl:template>

</xsl:stylesheet>

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: the request
dispatcher stylesheet
<xsl:template match="/req:request[req:path eq '/hello-world.html']">

<xsl:variable name="lang"

select="req:parameters/req:parameter[@name='lang']/req:value[1]"/>

<pipeline:pipeline>

<pipeline:transformer name="hello-world"

xsl-path="{'hello-world-' || $lang || '.xsl'}"/>

</pipeline:pipeline>

</xsl:template>

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: the request
dispatcher stylesheet
<xsl:variable name="reqparms" as="element(req:parameter)*"

select="/req:*/req:parameters/req:parameter"/>

<xsl:template match="/req:request[req:path eq '/result-document']">

<xsl:variable name="format" as="xs:string?"

select="$reqparms[@name eq 'format']/req:value"/>

<pipeline:transformer xsl-path="retrieve-xml.xsl"/>

<xsl:choose>

<xsl:when test="$format eq 'html'">

<pipeline:transformer xsl-path="xml2html.xsl"/>

</xsl:when>

<xsl:when test="$format eq 'pdf'">

<pipeline:transformer xsl-path="xml2fo.xsl"/>

<pipeline:fop-serializer/>

</xsl:when>

<xsl:when test="$format eq 'epub'">

<pipeline:transformer xsl-path="xml2epub.xsl"/>

<pipeline:zip-serializer/>

</xsl:when>

<xsl:otherwise> .. error ..</xsl:otherwise>

</xsl:choose>

</xsl:template>

Apache FOP

configuration

in webapp.xml

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: what makes a
pipeline?

 One or more of the following transformation pipeline steps:

 transformer: transforms the input of the pipeline step using an XSLT

version 1.0, 2.0 or 3.0 stylesheet;

 query: processes the input of the pipeline step using an XQuery version

1.0, 3.0 or 3.1 query;

 transformer-stx: transform the input of the pipeline step using a STX

(Streaming Transformations for XML) version 1.0 stylesheet.

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: what makes a
pipeline?

 Zero or more of the following validation pipeline steps:

 schema-validator: validates the input of the step using an XML Schema

version 1.0;

 schematron-validator: validates the input of the step using an ISO

Schematron schema.

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: what makes a
pipeline?

 Zero or one of the following serialization pipeline steps:

 json-serializer: serializes XML output to a JSON representation;

 zip-serializer: serializes an XML ZIP specification to an actual ZIP file;

 resource-serializer: serializes a text or binary file to the response;

 fop-serializer: serializes XSL-FO generated in a previous pipeline step

to PDF using the Apache FOP XSL-FO processor.

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: some goodies

 The xslweb:// scheme can be used to call an internal XSLWeb pipeline

from the XPath doc() or document() function.

 Request parameters proxyHost and proxyPort because sometimes you

need to have them.

 Stylesheet parameters can be passed to stylesheets from the request-

dispatcher stylesheet.

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why not XProc?
 There need not be just one solution for the same

problem

 XSLWeb is very easy to learn

 XSLWeb lets you do things at the moment you

want; no need to set up a second pipeline and

merge its results

 XSLWeb has many facilities for frontend and

webservice applications

 Creating XSLWeb was fun

 Using XSLWeb is fun

If you can use a

bike,

you don’t need a car

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why not XProc?
 There need not be just one solution for the same

problem

 XSLWeb is very easy to learn

 XSLWeb lets you do things at the moment you

want; no need to set up a second pipeline and

merge its results

 XSLWeb has many facilities for frontend and

webservice applications

 Creating XSLWeb was fun

 Using XSLWeb is fun

If you can use a

bike,

you don’t need a car

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why not XProc?

 Personally, I use Xproc:

 In the case of large and complex content migrations, dealing with many

documents, usually in batch

 I use XSLWeb:

 In the case of relatively straighforward pipelines, especially in front-end or

webservice applications

 Integrating XSLWeb and XProc is a serious option

It’s like XSLT and XQuery – they overlap

Consider this – only one language to serve everything –

XSLT on the server and – Saxon-JS – in the client! Life’s a

feast!

XSLWeb: XSLT- and XQuery-only pipelines for the web

Questions?

Go ahead and try it.

Free and open source!

https://github.com/Armatiek/xslwe

b

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why XSLWeb
 Our Dutch government organisation has XML everywhere:

 Government gazettes;

 Legislation;

 Search results (from Apache Solr, MarkLogic and other SRU interfaces);

 RDF/XML;

 Value lists;

 SOAP/REST based webservices.

 Static generation of information is not an option for various reasons.

 Therefore we needed a web development framework with strong support for

XSLT in which XSLT could be used to tie “everything XML” together.

 We wanted to have a framework that required only XSLT knowledge (no other

scripting or programming language).

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb strength and
weaknesses
 Strength of XSLWeb:

 Only knowledge of XSLT is required (no other programming or scripting

languages).

 Open source, free to use

 Suitable in environments where a lot of input data for the website or

webservice is in XML format.

 Weaknesses of XSLWeb:

 Pipelining not based on a standard (XProc).

 Not a large community or developers (will that change today? ☺).

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why not Apache Cocoon?
 We used Apache Cocoon a lot, but:

 the development of the product halted

 we did not really like the rather static and declarative generator / transformer /

serializer pattern.

If you want to write an application that communicates with a database or full

text search engine, in Cocoon you need to:

 do all communication with that database in a generator step

 aggregate all data and then

 pass it on to one or more transformation steps.

But we needed a more dynamic approach, we wanted to communicate with

the database from within the XSLT transformation steps itself. That’s why the

emphasis in XSLWeb is on the library of extension functions.

XSLWeb: XSLT- and XQuery-only pipelines for the web

Why not … (fill in the blank)?

Other options could have been:

 eXist-db's URL Rewriting Controller

 RESTXQ (available in BaseX, eXist-db, FusionDB, and Marklogic)

 Marklogic's various controller.xq frameworks.

We use XSLWeb as a framework to build website and -service frontends for a

variety of backends (Solr, MarkLogic, Microsoft FAST). We do not want it to

be tied to one particular backend database like eXist/DB or BaseX (although

we do use these databases and we very much like RestXQ, we do not use

them in a production setting).

XSLWeb: XSLT- and XQuery-only pipelines for the web

Performance requiremens

Performance requirements when we considered XSLWeb at the Dutch

government:

 Minimum of 30 request/second

 Average response time not exceeding 150ms per request on a maximum

of two HA Windows server VMs, Xeon CPU E5-2690, No SSD, 32Gb

RAM

 Using a rather complex XSLT stylesheet that transforms Dutch

government gazettes and legislation (in XML) to HTML.

XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: XSLT- and XQuery-only pipelines for the web

