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XProc? / Piperack?

Apache Cocoon?

Servlex?

… ?
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XSLWeb: overview

• XSLWeb is just a Java servlet

• Internally uses Saxon’s efficient tree model (TinyTree)

• It gives access to the full HTTP request in an XML representation

• It offers an XML representation of the HTTP response

• It supports the full HTTP specification - GET, POST, PUT, and all other 

methods

• It makes pipelining trivially easy

• It allows XSLT and XQuery programmers to program things at the moment 

they need it - i.e. in their stylesheet or XQuery script
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XSLWeb: overview

• It allows caching

• It allows access to static content (assets)

• It offers several extension functions to make web programming easy

• It allows the addition of user defined extension functions in Java, using the 

Saxon API.

• It is in extensive daily use by Dutch government organisations for web 

services and web sites (such as laws, treaties, patents and land  registry).

• But most importantly: nearly anything can be done in XSLT or Xquery 

(exceptions: the configuration file (XML) and extension functions 

(Java))



XSLWeb: XSLT- and XQuery-only pipelines for the web

XSLWeb: extension functions

• Functions for manipulating the request, the session and the response

• EXPath file functions (Christian Grün, expath.org; own implementation)

• EXPath http functions (thanks to Florent Georges)

• Spawning external processes

• Sending e-mails

• Image processing

• ZIP file processing

• SQL processing (own implementation)
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XSLWeb: the request 
dispatcher stylesheet
<xsl:stylesheet ..>

<xsl:template match="/req:request[req:path eq '/hello-world.html']">

<pipeline:pipeline>

<pipeline:transformer name="hello-world"

xsl-path="hello-world.xsl" log="true"/>

</pipeline:pipeline>

</xsl:template>

</xsl:stylesheet>
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XSLWeb: the request 
dispatcher stylesheet
<xsl:template match="/req:request[req:path eq '/hello-world.html']">

<xsl:variable name="lang"

select="req:parameters/req:parameter[@name='lang']/req:value[1]"/>

<pipeline:pipeline>

<pipeline:transformer name="hello-world"

xsl-path="{'hello-world-' || $lang || '.xsl'}"/>

</pipeline:pipeline>

</xsl:template>
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XSLWeb: the request 
dispatcher stylesheet
<xsl:variable name="reqparms" as="element(req:parameter)*"

select="/req:*/req:parameters/req:parameter"/>

<xsl:template match="/req:request[req:path eq '/result-document']">

<xsl:variable name="format" as="xs:string?"

select="$reqparms[@name eq 'format']/req:value"/>

<pipeline:transformer xsl-path="retrieve-xml.xsl"/>

<xsl:choose>

<xsl:when test="$format eq 'html'">

<pipeline:transformer xsl-path="xml2html.xsl"/>

</xsl:when>

<xsl:when test="$format eq 'pdf'">

<pipeline:transformer xsl-path="xml2fo.xsl"/>

<pipeline:fop-serializer/>

</xsl:when>

<xsl:when test="$format eq 'epub'">

<pipeline:transformer xsl-path="xml2epub.xsl"/>

<pipeline:zip-serializer/>

</xsl:when>

<xsl:otherwise> .. error ..</xsl:otherwise>

</xsl:choose>

</xsl:template>

Apache FOP 

configuration 

in webapp.xml
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XSLWeb: what makes a 
pipeline?

 One or more of the following transformation pipeline steps:

 transformer: transforms the input of the pipeline step using an XSLT 

version 1.0, 2.0 or 3.0 stylesheet;

 query: processes the input of the pipeline step using an XQuery version 

1.0, 3.0 or 3.1 query;

 transformer-stx: transform the input of the pipeline step using a STX 

(Streaming Transformations for XML) version 1.0 stylesheet.
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XSLWeb: what makes a 
pipeline?

 Zero or more of the following validation pipeline steps:

 schema-validator: validates the input of the step using an XML Schema 

version 1.0;

 schematron-validator: validates the input of the step using an ISO 

Schematron schema.
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XSLWeb: what makes a 
pipeline?

 Zero or one of the following serialization pipeline steps:

 json-serializer: serializes XML output to a JSON representation;

 zip-serializer: serializes an XML ZIP specification to an actual ZIP file;

 resource-serializer: serializes a text or binary file to the response;

 fop-serializer: serializes XSL-FO generated in a previous pipeline step 

to PDF using the Apache FOP XSL-FO processor.
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XSLWeb: some goodies

 The xslweb:// scheme can be used to call an internal XSLWeb pipeline 

from the XPath doc() or document() function.

 Request parameters proxyHost and proxyPort because sometimes you 

need to have them.

 Stylesheet parameters can be passed to stylesheets from the request-

dispatcher stylesheet.
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Why not XProc?
 There need not be just one solution for the same 

problem

 XSLWeb is very easy to learn

 XSLWeb lets you do things at the moment you 

want; no need to set up a second pipeline and 

merge its results

 XSLWeb has many facilities for frontend and 

webservice applications

 Creating XSLWeb was fun

 Using XSLWeb is fun

If you can use a 

bike,

you don’t need a car
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Why not XProc?

 Personally, I use Xproc:

 In the case of large and complex content migrations, dealing with many 

documents, usually in batch

 I use XSLWeb:

 In the case of relatively straighforward pipelines, especially in front-end or 

webservice applications

 Integrating XSLWeb and XProc is a serious option

It’s like XSLT and XQuery – they overlap

Consider this – only one language to serve everything –

XSLT on the server and – Saxon-JS – in the client! Life’s a 

feast!
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Questions?

Go ahead and try it.

Free and open source!

https://github.com/Armatiek/xslwe

b
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Why XSLWeb
 Our Dutch government organisation has XML everywhere:

 Government gazettes;

 Legislation;

 Search results (from Apache Solr, MarkLogic and other SRU interfaces);

 RDF/XML;

 Value lists;

 SOAP/REST based webservices.

 Static generation of information is not an option for various reasons.

 Therefore we needed a web development framework with strong support for 

XSLT in which XSLT could be used to tie “everything XML” together.

 We wanted to have a framework that required only XSLT knowledge (no other 

scripting or programming language).
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XSLWeb strength and 
weaknesses
 Strength of XSLWeb:

 Only knowledge of XSLT is required (no other programming or scripting 

languages).

 Open source, free to use

 Suitable in environments where a lot of input data for the website or 

webservice is in XML format.

 Weaknesses of XSLWeb:

 Pipelining not based on a standard (XProc).

 Not a large community or developers (will that change today? ☺).
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Why not Apache Cocoon?
 We used Apache Cocoon a lot, but:

 the development of the product halted

 we did not really like the rather static and declarative generator / transformer / 

serializer pattern.

If you want to write an application that communicates with a database or full 

text search engine, in Cocoon you need to:

 do all communication with that database in a generator step

 aggregate all data and then

 pass it on to one or more transformation steps. 

But we needed a more dynamic approach, we wanted to communicate with 

the database from within the XSLT transformation steps itself. That’s why the 

emphasis in XSLWeb is on the library of extension functions. 
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Why not … (fill in the blank)?

Other options could have been:

 eXist-db's URL Rewriting Controller

 RESTXQ (available in BaseX, eXist-db, FusionDB, and Marklogic)

 Marklogic's various controller.xq frameworks.

We use XSLWeb as a framework to build website and -service frontends for a 

variety of backends (Solr, MarkLogic, Microsoft FAST). We do not want it to 

be tied to one particular backend database like eXist/DB or BaseX (although 

we do use these databases and we very much like RestXQ, we do not use 

them in a production setting).
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Performance requiremens

Performance requirements when we considered XSLWeb at the Dutch 

government:

 Minimum of 30 request/second

 Average response time not exceeding 150ms per request on a maximum 

of two HA Windows server VMs, Xeon CPU E5-2690, No SSD, 32Gb 

RAM

 Using a rather complex XSLT stylesheet that transforms Dutch 

government gazettes and legislation (in XML) to HTML.
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