

Expression Elaboration

Michael Kay, Saxonica
XML Prague 2022

Warning

We learnt a lot from this project.

But it was not 100% successful.

Some viewers may find this distressing.

Expression Trees

Evaluation using an Interpreter

ComparisonExpr.evaluate(context) {
 Value v0 = getOperand(0).evaluate(context);
 Value v1 = getOperand(1),evaluate(context);
 return comparator.compare(v0, v1) < 0;
}

VariableReference.evaluate(context) {
 return context.getLocalVariables().getValue(slotNumber);
}

ArithmeticExpr.evaluate(context) {
 Value v0 = getOperand(0).evaluate(context);
 Value v1 = getOperand(1),evaluate(context);
 return calculator.calc(v0, v1);
}

Literal.evaluate(context) {
 return getValue();
}

ByteCode for {-$x}

 // load the first argument (the XPathContext)
 ALOAD 1
 // Get the stack frame holding local variables
 INVOKEINTERFACE net/sf/saxon/expr/XPathContext.getStackFrame ();
 INVOKEVIRTUAL n/s/s/expr/StackFrame.getStackFrameValues ();
 // Load the value of the variable at slot 0 on the stack frame
 ICONST_0
 AALOAD
 // Call head() to get its first and only item
 INVOKEINTERFACE n/s/s/om/Sequence.head ();
 // Cast this to type NumericValue
 CHECKCAST n/s/s/value/NumericValue
 // Invoke NumericValue.negate()
 INVOKEVIRTUAL n/s/s/value/NumericValue.negate();
 // Wrap the result in a SingletonIterator
 INVOKESTATIC
n/s/s/tree/iter/SingletonIterator.makeIterator(...);
 // Return the iterator as the result of the XQuery function
 ARETURN

Disadvantage of Interpretation

• Half the time is spent deciding what
to do, rather than actually doing it

• Navigating the expression tree is a
significant cost

• Very highly polymorphic code
– reduces potential for JIT optimisations
– leads to boxing/unboxing costs

• Poor "locality of reference"
– meaning poor CPU cache hit rate

Disadvantage of ByteCode
Generation

• Generating the code is expensive,
unless done very selectively

• Memory consumption / limits /
security issues etc

• Debugging is a nightmare
– maintainability

• Platform-dependent

• Performance benefits are modest

Project Background: Saxon on .NET

• Until Saxon 10, the code was
bridged from Java to .NET using
IKVMC
– bytecode just worked!

• IKVMC doesn't work with .NET Core

• So from Saxon 11, we transpile
source Java to source C#
– using XSLT, of course
– bytecode stops working

So, we thought we'd try out expression elaboration.

We'd used it on SaxonJS, very successfully.

How would it perform with Java and C#?

Expression Elaboration

• The first time an expression is
evaluated, construct a lambda
function {context → result}

• On subsequent calls, invoke the
lambda function

• Pre-compute everything possible on
the first time through, putting the
results in the closure of the lambda
function

Example: Unary Minus

@Override
public Evaluator elaborate() {
 final NegateExpression exp = (NegateExpression)getExpression();
 final Evaluator argEval = makeEvaluator(exp.getBaseExpression());
 final boolean maybeEmpty = exp.getBaseExpression().allowsEmpty();
 final boolean backwardsCompatible = exp.isBackwardsCompatible();
 if (maybeEmpty) {
 if (backwardsCompatible) {
 return context -> {
 NumericValue v1 = (NumericValue) argEval.eval(context);
 return v1 == null ? DoubleValue.NaN : v1.negate(); };
 } else {
 return context -> {
 NumericValue v1 = (NumericValue) argEval.eval(context);
 return v1 == null ? null : v1.negate(); };
 }
 } else {
 return context -> ((NumericValue) argEval.eval(context)).negate();
 }
}

Results
(Elaborator vs Interpreter)

• JavaScript
– ~5x faster

• C#
– 10%-25% improvement

• Java
– 1%-3% improvement

Results
(Elaborator vs Interpreter)

• JavaScript
– ~5x faster

• C#
– 10%-25% improvement

• Java
– 1%-3% improvement

Why the differences between
platforms?

• No obvious explanation

• Elaboration would deliver much
higher benefits if we hadn't already
tuned the interpreter so much

• Presumably: differences in low-level
JIT optimization of lambda
expressions and their closures

Measurement

• To spot a 5x difference:
– use the naked eye

• To spot a 10% difference:
– take some simple measurements

• To spot a 1% difference:
– Do some very careful benchmarking
– Need to run for hours on a machine with

carefully controlled configuration

Serendipity

• When you measure things carefully,
you discover things you weren't
looking for.

• We've achieved at least 10% speed-
up in areas unrelated to the focus of
the project.

Improve

Measure

Understand

Conclusions

• For C#, elaboration is a sufficient
improvement to be worth implementing

• It's not good enough on Java that we can
get rid of bytecode generation

• We've learnt a lot about benchmarking

• We've put some of that to good use

	You Pull, I’ll Push: on the Polarity of Pipelines
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

