
XML Prague 2022
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

June 9–11, 2022

XML Prague 2022 – Conference Proceedings
Copyright © 2022 Jiří Kosek

ISBN 978-80-907787-0-2 (pdf)
ISBN 978-80-907787-1-9 (ePub)

Table of Contents
General Information ... v

Sponsors ... vii

Preface .. ix

Committee-based semantic model development of XSD and JSON schemas –
G. Ken Holman .. 1

X-definition 4.2 XML, JSON, YAML, and XON – Václav Trojan and Tomáš Šmíd .. 21

A Pilot Implementation of ixml – Steven Pemberton ... 41

Expression Elaboration – Michael Kay .. 51

A Benchmark Collection of Deterministic Automata for XPath Queries –
Antonio al Serhali and Joachim Niehren ... 65

Use the Markup, Stupid! – Ari Nordström .. 91

XSL-FO/CSS Comparison – Tony Graham .. 103

Structure! You get more than you see – Cerstin Mahlow .. 125

iii

iv

General Information

Date

June 9th, 10th and 11th, 2022

Location

Prague University of Economics and Business
W. Churchill Sq. 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, XML Prague, z.s.
Káťa Kabrhelová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s.
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Petr Cimprich, Wunderman Thompson
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), Prague University of Economics and Business
Ari Nordström, Creative Words
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, SAP SW
John Snelson, MarkLogic
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Tovey-Walsh, Saxonica
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, VŠE (http://fis.vse.cz)

v

http://xmlprague.cz/about
http://fis.vse.cz

vi

Sponsors

oXygen (https://www.oxygenxml.com)
Antenna House (https://www.antennahouse.com/)
le-tex publishing services (https://www.le-tex.de/en/)
Saxonica (https://www.saxonica.com/)
Czech Association for Digital Humanities (https://www.czadh.cz)
gds (https://www.gds.eu/)

vii

https://www.oxygenxml.com
https://www.antennahouse.com/
https://www.le-tex.de/en/
https://www.saxonica.com/
https://www.czadh.cz
https://www.gds.eu/

viii

Preface

This publication contains papers presented during the XML Prague 2022 confer-
ence.

In its 16th year, XML Prague is a conference on XML for developers, markup
geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big
Data and recent advances in XML technologies. The conference provides an over-
view of successful technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 9–11 June 2022 at the campus of University of Eco-
nomics in Prague. XML Prague 2022 is jointly organized by the non-profit organi-
zation XML Prague, z.s. and by the Faculty of Informatics and Statistics, Prague
University of Economics and Business.

The full program of the conference is broadcasted over the Internet (see
https://xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday and Saturday run in an un-conference style which provides
space for various XML community meetings in parallel tracks. Friday is devoted
to classical single-track format and papers from these days are published in the
proceeedings.

We have to skip year 2021 because it was not possible to organize in-person
conferences due to Covid-19 pandemy. We have moved conference to a more
pandemic-friendly season of a year and coordinated this effort with Markup UK.
Starting this year, both Markup UK and XML Prague will be held in alternate
years. We are looking forward to meeting you in May/June 2023 in London and in
June 2024 in Prague.

We hope that you enjoy XML Prague 2022!

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

ix

https://xmlprague.cz

x

A case study of committee-based
semantic model development of XSD

and JSON schemas
G. Ken Holman

<gkholman@CraneSoftwrights.com>
Keywords: Semantics, Semantic components, XML, XSD, JSON,
JSON schema, Business documents, UN/CEFACT CCTS, OASIS UBL

1. Introduction
It is common for one to jump into schema design for describing the constraints on
syntax streams, leveraging the flexible and powerful schema semantics to tailor
the result to meet the needs. For projects working with XML syntax the common
schema constraint expressions are governed by DTD, RELAX-NG, or XSD stand-
ards. For those working with JSON syntax there are a number of schema con-
straint expressions including JSON Schema.

Schema semantics focus on the model of the syntax, not the model of the
information. Of course one leverages the schema semantics to model how the
information is expressed in syntax, but that is a manual task and a bespoke result
ends up being used in the project. For very large or complex semantics, bespoke
schemas can be inconsistent or prone to errors, not to mention a burden on the
human resources to interpret the needs for expressing the information being seri-
alized in syntax.

On November 12, 2021 on the XML-Dev list a discussion of semantic models
boiled down to a post by Hans-Jürgen Rennau in response to Michael Kay:

Michael: You create a semantic data model for a problem domain (for example, in
UML), and then you define XML or JSON representations of the data in that
domain. The conceptual data model comes first, the concrete realisations come sec-
ond.

Hans-Jürgen: This sounds to straightforward, intuitive, compelling - that it
puzzles me why it seems to be done only very rarely, and concerning the approach
how to do it there does not seem to be any established good practice. The OASIS
work Ken points to looks exactly like a step in that direction, but probably very few
people are aware of it?

eBusiness continues to be a growing area. For 30 years (and running) an ISO com-
mittee has been standardizing Open-edi as an approach to modeling many
aspects of static and dynamic semantics from a business perspective that regards

1

functional services as the distinct and separate implementation of those business
concepts.

This paper is a case study of the Organization for the Advancement of Struc-
tured Information Standards (OASIS) Universal Business Language (UBL) com-
mittee following the Open-edi approach separating static semantic information
design from syntactic data constraint expressions. The OASIS UBL committee is
over 20 years old now. OASIS UBL ISO/IEC 19845 XML is used around the world
in many business document interchange networks and environments. In UBL 2.3
business concepts govern 91 separate document types as onion-skins around a
common core library of over 4000 information items.

For these 91 document types UBL standardizes a published set of static busi-
ness document semantics and a published set of XSD schemas. User communities
are expected to adopt subsets of the semantics according to their particular busi-
ness needs. Never was it the intention of the committee that any one community
implement every UBL business object. Nor was it ever the intention of the com-
mittee to model dynamic business semantics as the ways that UBL is being used
are as varied as the committees that are using UBL.

Figure 1. OASIS UBL ISO/IEC 19845

The sheer magnitude of the document specifications precludes human interven-
tion, but such was not the reason to recognize the benefits in adopting how Open-
edi separates the semantics of data from the syntax of data.

Committee-based semantic model development of XSD and JSON schemas

2

UBL was not designed using XML or XSD but, rather, the Core Component
Technical Specification (CCTS) Version 2.01, a syntax-neutral modeling approach
for hierarchical information found in business documents. The focus of commit-
tee members is the CCTS, whereas the XSD is machine generated without human
intervention to produce validation artefacts that govern constraint checking of
syntactic documents. The machine generation is governed by OASIS Business
Document Naming and Design Rules (BDNDR).

The first question about having JSON schemas for the UBL document models
was addressed to the committee chairman November 2012 in private correspond-
ence. The topic first was added on a meeting agenda in August 2013. No signifi-
cant discussions were held until June 2016 when the committee decided, finally,
to produce some guidance on the topic before ad-hoc JSON approaches popped
up in the wild. The delay was caused by a reluctance to consider JSON as a viable
serialization syntax exchanged between two disparate parties, rather than con-
sign the syntax only to serializations where one party is in control of both sides of
the exchange.

Rather than directly converting the XSD to JSON, the UBL committee initiated
a project to revise the BDNDR to govern the creation of JSON schemas from
CCTS in addition to creating the XSD schemas from CCTS. With the release of
UBL 2.3, the CCTS and XSD models are part of the official standard and the JSON
Schema models are part of a published committee note.

2. Open-edi standards ISO/IEC 14662 and ISO/IEC 15944
The focus of UBL is on the static semantic data model of the data transfers (i.e.
messages or documents), not on the dynamic semantics of the interpretation of
the content (i.e. business in general or business processes). The UBL committee
expressly limited their attention to how to structure the content, and not how to
use the content, because there was no way the committee would conceive of all of
the possible uses of UBL in the real world. Dynamic business relationships con-
stantly change the way data is used and the expectations of the content of the
data, and so the UBL committee elected solely to standardize the way the content
is structured and serialized so that it could be exchanged readily and consistently.
No longer would business document projects have to conceive of their own busi-
ness object structures to convey commonly-understood eBusiness concepts.

This important distinction is seen in the way the international standardization
community views “eBusiness”. In the early 1990s the joint ISO/IEC JTC 1/SC
32/WG 1 eBusiness standards committee working group created the ISO/IEC
14662 Open-edi Reference Model. This prescribes the separation of abstract busi-
ness concepts from concrete functional implementations of those abstractions.
This allows for identification, focus, and standardization in respective areas of
effecting electronic business, while recognizing that the environment in which

Committee-based semantic model development of XSD and JSON schemas

3

business operates works independently from a functional implementation of that
environment, yet relies heavily on that functional implementation to be realized.

ISO/IEC 15944 Part 20 outlines how the Business Operational View (BOV)
establishes the business environment in which trading partners are doing busi-
ness, the specific business scenarios that are being addressed by an implementa-
tion, the various roles that are party to the information being exchanged in a
given scenario, and the semantic bundles of information needed for the roles to
perform their part in the trading partner scenario in the business environment.
The specification also outlines how the Functional Services View (FSV) estab-
lishes the transport of content between trading partners supporting the choreog-
raphy of the exchange of syntactic user data in fulfillment of the semantic bundles
of information.

It is this reification of the information bundles as user data that bridges busi-
ness semantics (the meaning of the data) from services implementing the seman-
tics (the syntax of the data). The UBL specification document itself directly
reflects the separation of the information bundles from the user data in the table
of contents and the section content.

Perspective of
business
transactions limited
to those aspects
regarding the
making of business
decisions and
commitments
among Persons,
which are needed
for the description
of a business
transaction

Perspective of
business
transactions limited
to those information
technology
interoperability
aspects of
Information
Technology
Systems needed to
support the
execution of
transactions among
Open-edi
Community parties.

ISO/IEC 14662
Open-edi
Reference

Model

ISO/IEC 15944-20
Linking BOV to FSV

User Community
Open-edi Configuration

ISO/IEC 19845
Universal Business

Language (UBL)
Specification

Section 2. UBL
Business Objects

Section 3. UBL
Schemas

Section 4. Addi-
tional Document
Constraints

Section 5. UBL
Digital Signatures

Scenarios

Roles

Information
Bundles

User
Data

Choreographies

Transport

Environment

Implemented BOV

Implemented FSV U
B

L
C

us
to

m
iz

at
io

n

O
pe

n-
ed

i I
m

pl
em

en
ta

tio
n

B
O

V
- B

us
in

es
s

O
pe

ra
tio

na
l V

ie
w

FS
V

- F
un

ct
io

na
l S

er
vi

ce
s

Vi
ew

Semantics
(meaning)

Syntax
(format)

Figure 2. Open-edi standards

Committee-based semantic model development of XSD and JSON schemas

4

Also, this underscores the committee’s focus only on what information is
described and how it is serialized, without any focus on how the information is
used: any dynamic semantics reflecting how business is performed using the
information bundles is out of scope of the UBL committee and project. The only
semantics being defined are those of the information bundles being exchanged.

This has contributed to the worldwide success of deploying UBL in different
business environments. While the UBL committee members have created a reper-
toire of business objects based on general accounting and business principles,
UBL user communities have cherry-picked their own set of information bundles
from this. For example, the suite of UBL business objects in the information bun-
dles used in the US Business Payments Coalition project differs slightly from the
suite of objects in the bundles used in the European Peppol project.

3. CCTS: semantic modeling for business documents
In 1999 the United Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) worked with the Organization for the Advancement of Structured
Information Standards (OASIS) to create ebXML “Electronic Business Using
Extensible Markup Language” to provide an “open, XML-based infrastructure
that enables the global use of electronic business information in an interoperable,
secure, and consistent manner by all trading partners”.
• ISO 15000-1: ebXML Collaborative Partner Profile Agreement (ebCPP)
• ISO 15000-2: ebXML Messaging Service Specification (ebMS)
• ISO 15000-3: ebXML Registry Information Model (ebRIM)
• ISO 15000-4: ebXML Registry Services Specification (ebRS)
• ISO 15000-5: ebXML Core Components Specification (CCS)
The precursor to 15000-5 is the UN/CEFACT Core Component Technical Specifi-
cation (CCTS) version 2.01, which was in play at the time that UBL began its
development.

CCTS defines a core set of component types with content specifications and
associated supplementary components. Whereas XSD data types are suitable for
any kind of data, CCTS core component types are specifically designed for con-
structing information bundles for business documents.

Recall the base data types of XSD, and for convenience those of JSON:

Table 1. Base simple data types of XSD and JSON

XSD JSON
string and string sub-types string
boolean boolean

Committee-based semantic model development of XSD and JSON schemas

5

XSD JSON
base64Binary
hexBinary
float
decimal, integer, and integer sub-types
double number
anyURI
QName
NOTATION
duration, date, and time types
 array
 object
 null

Using XSD one can compose many and varied complex types on a custom basis.
Any data type can be used for the element content, any attribute can be used, and
any attribute can be of any XSD type that can be selected by the XSD designer.

In contrast, using CCTS one cannot compose any custom base data types, as
one is obliged to use only the Core Component Types (elements in XML), their
Secondary Representation Terms (derived elements in XML), and their pre-
defined properties called Supplementary Components (attributes in XML):

Table 2. CCTS Core Component Types and Supplementary Components

Core Component Type (CCT) CCT Supplementary Compo-
nents

Name Base Secondary Name (all are strings)
Amount decimal Currency Identifier
 Currency Code List Version

Identifier
Binary
Object

base64 binary Graphic, Picture,
Sound, Video

Format

 MIME Code
 Encoding Code
 Character Set Code
 URI

Committee-based semantic model development of XSD and JSON schemas

6

Core Component Type (CCT) CCT Supplementary Compo-
nents

Name Base Secondary Name (all are strings)
 File Name
Code normalized

string
 List Identifier

 List Agency Identifier
 List Agency Name
 List Name
 List Version Identifier
 Name
 Language Identifier
 List URI
 List Scheme URI
Date Time string Date, Time Format
Identifier normalized

string
 Scheme Identifier

 Scheme Name
 Scheme Agency Identifier
 Scheme Agency Name
 Scheme Version Identifier
 Scheme Data URI
 Scheme URI
Indicator string Format
Measure decimal Unit Code
 Unit Code List Version Identi-

fier
Numeric decimal Value, Rate, Percent Format
Quantity decimal Unit Code
 Unit Code List Identifier
 Unit Code List Agency Identi-

fier
 Unit Code List Agency Name

Committee-based semantic model development of XSD and JSON schemas

7

Core Component Type (CCT) CCT Supplementary Compo-
nents

Name Base Secondary Name (all are strings)
Text string Name Language Identifier
 Language Locale Identifier

Outside of the XML element content and prescribed available XML attributes
implementing the Core Component Types and Supplementary Components,
users of CCTS are not permitted to add any other types of elements nor any other
attributes of any kind to the XML.

Users of CCTS derive unqualified data types from the Core Component
Types, broken down as primary and secondary representation terms. In OASIS,
the following 20 unqualified data types defined in the Business Document Nam-
ing and Design Rules (BDNDR) are available for each of the abstract business
objects:

Table 3. OASIS BDNDR Unqualified Data Type Restrictions

Unqualified Data
Type

Core Component
Type

Restriction

Amount Amount Required currency identifier
Binary Object Binary Object Required MIME Code
Code Code
Date Time Date Time xsd:dateTime
Date Date Time xsd:date
Time Date Time xsd:time
Graphic Binary Object Required MIME Code
Identifier Identifier
Indicator Indicator xsd:boolean
Measure Measure Required Unit Code
Name Text
Numeric Numeric
Percent Numeric
Picture Binary Object Required MIME Code
Quantity Quantity
Rate Numeric

Committee-based semantic model development of XSD and JSON schemas

8

Unqualified Data
Type

Core Component
Type

Restriction

Sound Binary Object Required MIME Code
Text Text
Value Numeric
Video Binary Object Required MIME Code

One builds hierarchical business document structures from the CCTS Core Com-
ponent Types by creating three kinds of Business Information Entities (BIE). As
all tree-like document hierarchies go, there are leaves with content, branches with
leaves, branches with branches, and a trunk with branches.

Starting with the leaves of the tree, Basic Business Information Entities (BBIE)
contain the actual document data sequences of octets, lexically constrained and
structured in elements with attributes according to the unqualified data types. No
octets of business content in the data stream are allowed to be anywhere other
than within BBIEs.

The branches of the tree are the Associated Business Information Entities
(ASBIE), each one’s shape defined by a particular Library Aggregate Business
Information Entity (Library ABIE). The ABIE shape contains a combination of
zero or more BBIEs followed by zero or more ASBIEs. Library ABIEs are manifest
as elements only as ASBIEs and not standalone on their own.

The trunks of the tree are the Document Aggregate Business Information Enti-
ties (Document ABIE) and these are the only ABIEs that are manifest directly as
elements. They, too, contain a combination of zero or more BBIEs followed by
zero or more ASBIEs.

UBL 2.3 has 91 document types and over 4000 constituent components.

Committee-based semantic model development of XSD and JSON schemas

9

Library ABIE (254)

ASBIE (1750)

BBIE (2597)

Qualified
Data Type

Unqualified Data Type

UBL Common Library

UBL Document ABIE

UBL 2.1: 65
UBL 2.2: 81
UBL 2.3: 91

Library ABIE (<254)

ASBIE (<1750)

BBIE (<2597)

Qualified
Data Type

Unqualified Data Type

UBL Common Library

Subset Document ABIE

Supplemental ABIE

Supplemental ASBIE

Supplemental BBIE

Supplemental Library

Additional Document ABIE

Unqualified Data Type

 "used in"Core Component Type Core Component Type

Figure 4. CCTS components in full UBL and subsets

Core
Definitions

Business
Definitions

Document ABIE

Basic
Core Component

Association
Core

Component

Aggregate
Core Component

Aggregate Business
Information Entity

(Library ABIE)

Association
Business

Information
Entity (ASBIE)

Basic Business
Information Entity

(BBIE)

defined
as

used
in

Qualified
Data Type

Unqualified Data Type

Core Component Type

Figure 3. Business Information Elements and their defining CCTS components

Committee-based semantic model development of XSD and JSON schemas

10

The committee members focus on the business semantics by modeling the CCTS
components for UBL in a shared Google spreadsheet. ABIEs in magenta, ASBIEs
in green, BBIEs in blue. This is illustrated in the following sample semantic for a
postal address:

Figure 5. Committee spreadsheet

The spreadsheet has no concepts of syntax, only core component data types for
the BBIE basic components. The ABIE shapes are ordered by the spreadsheet with
each member component’s constrained cardinality. As a convention, all BBIEs of
an ABIE are listed before the ASBIEs of the ABIE.

4. Business document naming and design rules
Rules that govern creating the user data schema constraint expressions from the
specification of the abstract information bundles containing business objects are
termed by OASIS the Naming and Design Rules (NDR). The OASIS NDR
approach to describing the schema constraint expressions are different than other
approaches, such as the NDR from UN/CEFACT. Most of the differences come
from philosophical opinions about core component types, in particular code lists,
and foreign content.

Committee-based semantic model development of XSD and JSON schemas

11

Perspective of
business
transactions limited
to those aspects
regarding the
making of business
decisions and
commitments
among Persons,
which are needed
for the description
of a business
transaction

Perspective of
business
transactions limited
to those information
technology
interoperability
aspects of
Information
Technology
Systems needed to
support the
execution of
transactions among
Open-edi
Community parties.

ISO/IEC 14662
Open-edi
Reference
Model

User
Community
Open-edi
Configuration

Universal
Business
Language
Specification

Section 2. UBL
Business Objects

Section 3. UBL
Schemas

Section 4. Addi-
tional Document
Constraints

Section 5. UBL
Digital Signatures

Scenarios

Roles

Information
Bundles

User
Data

Choreographies

Transport

Environment

Implemented BOV

Implemented FSV Vo
ca

bu
la

ry
 Im

pl
em

en
ta

tio
n

O
pe

n-
ed

i I
m

pl
em

en
ta

tio
nB

O
V

- B
us

in
es

s
O

pe
ra

tio
na

l V
ie

w
FS

V
- F

un
ct

io
na

l S
er

vi
ce

s
Vi

ew

Naming and
Design Rules

Figure 6. Role for naming and design rules

The OASIS Business Document Naming and Design Rules (BDNDR) Version 1.0
governed only the creation of XSD constraint expressions as was required at the
time UBL was published.

The general user community approached the UBL committee asking for
standardized structures in JavaScript Object Notation (JSON) syntax. BDNDR
Version 1.1 published September 8, 2021 does not change any of the XSD NDR, it
only adds JSON NDR to the specification.

Interestingly, the inherent backwards compatibility of dealing with sequences
of XML elements is available in JSON only when a sequences of JSON objects is
expressed in an array. This imposes the requirement that each and every BBIE
and ASBIE be reified as JSON arrays. But many users of JSON balked at this con-
straint, preferring, rather, to express JSON objects in singularity when their maxi-
mum cardinality is one.

This bifurcates the JSON user community into those who want their legacy
documents to remain JSON schema valid when future versos of the schema intro-

Committee-based semantic model development of XSD and JSON schemas

12

duce unlimited maximum cardinality for an item, and those who do not care for
such.

Accordingly, there are two JSON schema expressions in the BDNDR, termed
“legacy” and “model”. Legacy expressions use arrays for every item in the busi-
ness document so that legacy instances will validate with future schemas. Model
expressions use singletons for items in the business document that have a maxi-
mum cardinality of one, sacrificing future backward compatibility for JSON
instances when the a committee raises the maximum cardinality of that item.

Example XSD rules include:

FRG08 BBIE element declarations
The common BBIE schema fragment shall include an element declaration for
every BBIE in the model (that is, from every Document ABIE and every Library
ABIE) describing the content of each BBIE.

DCL10 BBIE element declaration
Every BBIE element shall be declared with the BBIE name as the element name
and the concatenation of the BBIE name and “Type” as the type.
Example
<xsd:element name="SourceCurrencyCode"
 type="SourceCurrencyCodeType"/>

Example JSON schema rules include:

FRG29 BBIE object definition declarations
The one BBIE schema fragment shall include a “definitions” object that contains
an object definition declaration for every BBIE in the model (that is, from every
Document ABIE and every Library ABIE). Each such declaration shall reference
its corresponding qualified or unqualified data type without any title or descrip-
tion information.

Committee-based semantic model development of XSD and JSON schemas

13

DCL26 BBIE property declaration in an ABIE object
Legacy-mode declaration:
Every BBIE child of an ABIE shall be declared as an array named by the CCTS
Component Name of the BBIE. It shall have as its title the CCTS Dictionary
Entry Name. It shall have as its description the CCTS Definition. It shall have a
minimum number of items as 1. If the cardinality has a maximum bound of 1,
then the declaration shall have a maximum number of items as 1, otherwise there
shall be no constraint on the maximum number of items. It shall declare that
additional properties are not permitted. The items of the array shall be declared by
referencing the BBIE declaration in the BBIE schema fragment using the CCTS
Component Name of the BBIE.
Example
"ResponseDate": {
 "title": "Application Response. Response Date. Date",
 "description": "The date on which the information in
the response was created.",
 "items": {
 "$ref":
"../common/UBL-CommonBasicComponents-2.2.json#/
definitions/ResponseDate"
 },
 "maxItems": 1,
 "minItems": 1,
 "type": "array",
 },

Model-mode declaration:
All BBIE children with an unbounded maximum cardinality of ‘n’ are declared as
arrays in the manner used for a legacy-mode declaration.
All BBIE children with a bounded maximum cardinality of “1” are declared as an
object referencing the BBIE declaration in the BBIE schema fragment using the
CCTS Component Name of the BBIE.
Example
"ResponseDate": {
 "title": "Application Response. Response Date. Date",
 "description": "The date on which the information in
the response was created.",
 "$ref":
"../common/UBL-CommonBasicComponents-2.2.json#/
definitions/ResponseDate"
 },

It is important to note that the OASIS BDNDR does not transliterate the XSD
schemas into JSON Schema schemas. Rather, the JSON Schema schemas are

Committee-based semantic model development of XSD and JSON schemas

14

derived from the CCTS Core Component Types, the OASIS Unqualified Data
Types, and the UBL Business Information Entities. The business abstractions are
well enough distinct from the XSD concepts that there were no obstacles in apply-
ing JSON concepts in the reification of the abstractions.

5. Expecting the unexpected
The makeup of the original UBL technical committee included a lot of XML expe-
rience. Before the XML issues were resolved and the committee became weighted
almost entirely in business experts rather than XML experts, two important dis-
tinctions developed between the UBL perspective of business documents and the
UN/CEFACT perspective of business documents. Both issues relate to expecting
the unexpected from our users.

The rigidity of the UN/CEFACT NDR is unpalatable to the UBL committee
members. In particular, all of the code lists with sets of values in a value domain
are expressed as schema enumerations, and there is no accommodation whatso-
ever for foreign content.

Early in the development of UBL, the committee recognized that code lists are
content, not structure. And the committee wanted hands off of all content,
because content is the purview of the users of UBL, not the UBL committee.
Accordingly, the OASIS BDNDR does not use schema enumerations for code lists.
It is expected that users will use a second pass value validation that can check
code lists and many other aspects of values. How that second pass is implemen-
ted is out of the scope of UBL, but the committee has created two specifications to
manage code lists: OASIS genericode for enumerating coded values and their
associated metadata, and OASIS Context-value Association for mapping value
checks to arbitrary hierarchical contexts.

Figure 7. Two-pass validation

Committee-based semantic model development of XSD and JSON schemas

15

Also early in the development process, it was recognized that the UBL committee
never will know ahead of time all of the requirements communities will have for
their information bundles. As complete and as big as UBL has become, the com-
mittee expected that communities would have unexpected requirements. Yet
CCTS does not accommodate foreign content, rigidly constraining users of pure
CCTS models to know everything in advance.

The UBL committee addressed this in the OASIS BDNDR in a very flexible
fashion through the availability of extension points. Prior to UBL 2.3, every docu-
ment element at the root of the tree had an optional single extension point for for-
eign content. From UBL 2.3 and going forward, each and every branch of the
document tree has an optional single extension point into which multiple exten-
sions can be placed.

Extended information record

in:Invoice

cac:LineItem

cbc:ID cbc:Quantity

cust:customInfo

Instance structure representation

ID Quantity stdInfocustomInfo

c?c:stdInfo

ext:UBLExtension

ext:UBLExtensions

ext:UBLExtensions

Figure 8. Extension content

User communities leveraging extensions are encouraged to use XML vocabularies
that already are established and standardized by some authorities, or to re-use
components from the UBL common library, but they are not prohibited from
including colloquial content. The committee puts no constraints on the content of
the extension point, other than encouragement to find already-standardized busi-
ness objects wherever possible.

At this time, supporting foreign content extensions in the JSON serialization is
not possible using the JSON schemas published by the committee. Accordingly,
user communities will have to figure that out for themselves using ad-hoc meth-
ods.

Committee-based semantic model development of XSD and JSON schemas

16

6. Schema expressions
As mentioned earlier, UBL committee members focus on the online Google
spreadsheets that express the document content using CCTS concepts of ABIEs,
BBIEs, and ASBIEs.

The GitHub project at https://github.com/oasis-tcs/ubl has the complete sour-
ces for fetching and transforming the spreadsheet content into reports in HTML,
text, ODF, and XLS formats, and into validation artefacts in OASIS Context-value
Association (CVA), XSD, and JSON Schema formats according to the OASIS
BDNDR Version 1.1 specification.

The act of a push check-in to GitHub triggers the complete fetch and transfor-
mation process, using OASIS genericode as a sparse table XML serialization of
the CCTS semantics found in the spreadsheet:

 Organization Serialization

Report Generation

Artefact
Production

Genericode
XML

HTMLXSLT

XSLT TextXSLTODF

Spreadsheet

CCTS
 XSDXSLT

 CVA

JSONODFXSLT XLS

Figure 9. Artefact generation from spreadsheets

Any committee member with GitHub permissions can create their own branch,
point to their own spreadsheet from that branch, and make the changes they
want. The act of pushing to the repository triggers the GitHub action to produce a
complete UBL deliverable package including both documentation and schema
expressions.

The resulting validation artefacts correspond to the source CCTS abstractions
as shown in this illustration:

Committee-based semantic model development of XSD and JSON schemas

17

https://github.com/oasis-tcs/ubl

Core Component
Types (CCTS)

referenced
generated

Legend

Context
Value

Association
File

related

Common
Aggregate

Components
(cac:)

Common
Basic

Components
(cbc:)

Unqualified
Datatypes

(udt:)

Qualified/
Specialized
Datatypes

(qdt:)

Common
Extension

Components
(ext:)

Extension
Content
Datatype

(ext:)

Extension
Content
Datatype

(ext:)

Extension
Datatype
Definition

(xxx: xac: xbc:)

Customization
Extension

Replacement
Schemas

CCTS CCT
Schema

(ccts-cct:)

Core
Component
Parameters

(ccts:)

Documentation
Namespace

Document Models (CCTS)
e.g. Invoice, Order, etc.

(Document ABIEs)

Common Library Model
(CCTS)

W3C Digital Signature
Schema (ds:)

import

replace

Legend

Document Schema
e.g. Invoice, Order, etc.
(document namespace)

Data Type
Qualifications

XSLT

Modeling Artefacts Validation Artefacts

include

Common
Signature

Components
(sig: sac: sbc:)

XAdES Schemas
v2.3.1 and v1.4.1

Model
Aggregates

(Library ABIEs
and ASBIEs)

Model
Basics

(Document and
Library BBIEs)

related
CCTS: Core Component Technical Specification V2.01
ABIE: Aggregate Business Information Enttiy
ASBIE: Association Business Information Entity
BBIE: Basic Business Information Entity

Genericode
Files

Figure 10. Schema fragment hierarchy

Note that the CCTS CCT Schema fragment indicated in the ccts-ccts namespace
at the base of the hierarchy is the untouched schema fragment published by UN/
CEFACT upon which UN/CEFACT business document schemas also are built.
This promotes a base level of interoperability between the two communities,
though limited to independent business objects and not to the divergent business
document schemas built upon the common Core Component Types.

The apparent complexity of the tree of schema fragments is obligated by the
need for namespaces to separate the different levels of constructs in the schema
hierarchy. ABIEs, BBIEs, unqualified data types, and core component types all are
permitted to have the same name. And user extensions may introduce names that
would not to be in conflict with future versions of UBL.

7. Conclusion and implications
By building UBL document structures on CCTS instead of on XSD, UBL commit-
tee members can focus on business concepts and business-oriented data types,
rather than on arbitrary XML structures. Nor need they know anything about
XSD schema semantics or even XML syntax. This limitation introduces simplicity
for the designers and users, and it offers consistency and predictability for pro-
grammers and downstream manipulators of the document schemas and the
document content.

Separating semantics from functional implementation promotes focus on the
information and not how it is expressed in syntax. Information is more important
than syntax. The approach insulates decisions in semantics from decisions in syn-

Committee-based semantic model development of XSD and JSON schemas

18

tax. In doing so, any supporting syntax can be used and one is not limited to
transliteration from other supported syntaxes.

The synthesis of document syntax schemas precludes the need for human
intervention and the inevitable introduction of typographical errors when
humans (at least me!) are involved.

The focus of semantic information bundles and their associated syntactic user
data is insulated from the semantics of the world in which the information bun-
dles are used and reified. Consider in this diagram how the European standards
organization CEN created EN 16931 as semantic business profiles and profiled
subsets of the UBL information bundles (perhaps inappropriately named “syntax
binding”, though the end result does happen to be the UBL syntax associated
with the UBL business objects). The CEN profiles then are used within a legal
semantic business framework defined by Peppol Business Interoperability Speci-
fications (BIS):

Perspective of
business
transactions limited
to those aspects
regarding the
making of business
decisions and
commitments
among Persons,
which are needed
for the description
of a business
transaction

Perspective of
business
transactions limited
to those information
technology
interoperability
aspects of
Information
Technology
Systems needed to
support the execution
of transactions
among Open-edi
Community parties.

ISO/IEC 14662
Open-edi

Reference Model

ISO/IEC 15944-20
User Community

Open-edi Configuration

ISO/IEC 19845
OASIS UBL

Specification

Section 2. UBL
Business Objects

Section 3. UBL
Schemas
Section 4. Addi-
tional Document
Constraints
Section 5. UBL
Digital Signatures

Scenarios

Roles

Information
Bundles

User
Data

Choreographies

Transport

Environment

Implemented BOV

Implemented FSV

U
B

L
C

us
to

m
iz

at
io

n

O
pe

n-
ed

i I
m

pl
em

en
ta

tio
n

B
O

V
- B

us
in

es
s

O
pe

ra
tio

na
l V

ie
w

FS
V

- F
un

ct
io

na
l S

er
vi

ce
s

Vi
ew

CEN/BII
CEN/TC434
CEN/TC440

Legal
Framework

PEPPOL

BIS

Syntax
Binding

Profiles

CEN/BII
EN 16931

PEPPOL
Transport

Infrastructure

Work flows

Business
Rules

Business
Document

Naming and
Design Rules

Documents

EN 16931

Figure 11. Application in context

Committee-based semantic model development of XSD and JSON schemas

19

What semantics govern your information set? Find an abstraction and determine
the mechanical rules of producing schema expressions. Then model your docu-
ment using the abstraction and mechanically generate the schema files.

And don’t forget to expect the unexpected by preparing for it inevitably to
arrive.

Committee-based semantic model development of XSD and JSON schemas

20

X-definition 4.2 XML, JSON, YAML, and
XON

Václav Trojan
Syntea software group a.s.
<trojan@syntea.cz>

Tomáš Šmíd
Syntea software group a.s.

<smid@syntea.cz>

1. Introduction
X-definition is a language that was originally designed to work with XML data
and it is written as an XML document [1]. X-definition describes the structure of
the processed data elements (we talk about data "models"). X-definition provides
validation, processing, or construction of XML documents. An important feature
of the X-definition is the ability to process large data [2]. X-definition is an open-
source project available at [3].

The source form of an X-definition is an XML document that is compiled into
a Java class. From the XML document, it is possible to validate the data and to
work with its values, but it is also possible to create XML documents using the
X-definition (the so-called construction mode of X-definition). An important fea-
ture of the X-definition is the ability to link the process to methods in Java code.
The processed XML object can be obtained either as an instance of a Java
w3c.dom.Element object or as an instance of a Java X-component object in which
the values are accessed by getters and setters (see [4], Chapter 7).

Until version 4.0, X-definition could work with XML data only. Starting with
version 4.1 [5], X-definition can also work with JSON data. Since version 4.2,
X-definition also allows to describe data as YAML, properties, INI windows, or
CSV (comma-separated values).

Extending X-definition to include these data formats requires explicit conver-
sion of JSON, YAML, Properties, Windows INI, and CSV to XML format and vice
versa. It is then possible to work internally in X-definition with a format that fits
all. This format is called XON (X-definition Object Notation).

2. XML -> JSON conversion
An XML element can be thought of as a JSON map with a single named value
whose name is the element name. This value is a JSON array in which the first
item is a JSON map containing the attributes of the element, followed by a

21

sequence of children of the XML element converted to the JSON array items. If
the value type of the child node is a text node, it is converted to a JSON string, if
it is an XML element, it is converted to a JSON map. If an XML element has no
attributes, the first item with the map of attributes may be omitted.

XML format:

<product
 productId = "1234"
 productName = "A green door"
 price = "12.50">
 <tags>home</tags>
 <tags>green</tags>
</product>

Transformation to JSON format:

{ "product" :
 { "productId" : 1234,
 "productName" : "A green door",
 "price" : 12.50,
 "tags" : ["home", "green"]
 }
}

3. JSON -> XML conversion
Conversion of JSON data into XML was described by Michael Key at XML Pra-
gue [6]. The X-definition uses an algorithm that is more suitable for describing
data models of all supported data formats than the Michael Key algorithm.

If the JSON data can be converted to XML (i.e. its structure corresponds to the
structure described in the previous paragraph: a map with one named value fol-
lowed by an array), then the problem is solved. In other cases, XML elements
need to be generated that have special elements with the specific namespace
"http://www.xdef.org/xon/4.0" (For this namespace the following text uses the
nameprefix "jx").

JSON maps are converted into the XML elements "<jx:map>" and JSON arrays
into the "<jx:map>" elements. Primitive JSON type values in arrays (strings, num-
bers, Booleans, and null values} are converted into "<jx:item>" elements, and the
values are stored in the form of string to the "val" attribute. Named values of
JSON maps are transformed to XML elements with the name which corresponds
to the name in a JSON map. If a name does not match the XML NCName syntax
(see [7]) it is transformed into a form that matches the syntax of the element
name.

The characters of a JSON name which would form invalid XML name are
replaced with the sequence "_xh_" (where „h“ is a UTF-16 hexadecimal represen-

X-definition 4.2 XML, JSON, YAML, and XON

22

tation of the character). The name with an empty string is written as "_x_". So e.g.,
the name "dogs\tcats" will be converted to "dogs_x9_ cats".

Example of JSON data:
{
 "product id" : 123,
 "product name" : "A green door",
 "price" : 12.50,
 "tags" : ["home", "green"]
}

XML data:
<jx:map xmlns:jx = "http://www.xdef.org/xon/4.0">
 <product_x20_id val = "123" />
 <product_x20_name val = "A green door" />
 <price val = "12.50" />
 <tags>
 <jx:array>
 <jx:item val = "home" />
 <jx:item val = "green" />
 </jx:array>
 </tags>
</jx:map>

For the source code ergonomics and clarity, if a named value of a map can be
transformed to a string it can also be written as an attribute. And also an array of
primitive values can be written as a string as in JSON. This is especially useful for
writing JSON arrays containing primitive values. Example of writing the simpli-
fied form (see the named value "tags" from the example above):

<jx:map xmlns:jx = "http://www.xdef.org/xon/4.0"
 product_x20_id = "123"
 product_x20_name = "A green door"
 price = "12.50"
 tags = ‘["home", "green"]’ />

4. XON format
The XON format was designed for purpose of writing other types of values than
in JSON format. For example, a date in JSON format must be written as a string,
the JSON format allows you to write all types of values that can be described in
X-definition. XON format can also write value types such as date and time, dura-
tion, e.g. email address, and many other values.

Values of the string, boolean or null type are written in XON format the same
way as in JSON format. For numeric values, XON enables to write what type of
number it is by adding a character after the number (if not specified, the number

X-definition 4.2 XML, JSON, YAML, and XON

23

is interpreted as long for integer numbers, or double for numbers with a floating-
point notation):

Table 1. Number types in XON

Type of number Character and Java
type

Examples

Byte B (java.lang.Byte) 123b
Short S (java.lang.Short) 123b
Int i (java.lang.Integer) 123i
Long (java.lang.Long) 123
Integer N (java.math.BigIn-

teger)
123N

Float f (java.lang.Float) 123f
Double d (java.lang.Double) 123d or 123.0
Decimal D (java.math.BigDeci-

mal)
123D

Special values of floating-point numbers:

Table 2. Special values of floating-point numbers in XON

Value of number type of number XON format
positive infinity float (java.lang.Float) INFf
positive infinity double

(java.lang.Double)
INF

negative infinity float (java.lang.Float) -INFf
negative infinity double

(java.lang.Double)
-INF

Not a Number float (java.lang.Float) NaNf
Not a Number double

(java.lang.Double)
NaN

Other data types that are supported in X-definition must be described in JSON
as strings.However, the notation of other types of values in XON format allows to
distinguish the different types by a character at the beginning:

X-definition 4.2 XML, JSON, YAML, and XON

24

Table 3. Data types in XON

X-definition
type

Character Following
notation

XON examples

byte array b Base64 notation
in brackets

b(N/95BQ==)

char c character notation
as string length 1

c"x", c"\t",
c"\u007"

currency C 3 capital letters
currency in brack-
ets

c(USD)

date, time d ISO format od
date, time, or Date-
Time

d2022-06-09T09:
00+02:00

duration P ISO notation of
duration

P1Y1M1DT1H1
M1.12S

emailAddr e email address
as string

e"vaclav <tro-
jan@syntea.cz>"

gps g g (GPS parame-
ters in brackets)

g(51.52, -0.09,
55, London)

inetAddr / IP ver 4 or IP
ver 6 notation

/142.251.1.131
/
1080:0:0:0:8:800:200
C:417A

price p a decimal num-
ber, space, and cur-
rency name in
brackets

p(12,50 CZK)

telephone t notation of tele-
phone number as
string

t"+420 123 456
789"

URI u notation of URI
as string

u"www.xdef.xo
n/1"

Comments can also be written in XON format to increase readability. Two
types of comments are allowed: end-of-line comments starting with the "#" char-
acter or embedded comments nested between the "/*" and "*/" characters.

Example of XON notation:

X-definition 4.2 XML, JSON, YAML, and XON

25

Object with the product Door
{ product :
 { product id : 123i,
 product name : "A green door",
 price : 12.50D # price in USD
 tags : [/* list of properties */ "home", "green"]
 }
}

To simplify and shorten the notation, those item names in the maps that match
the NCName syntax (i.e. XML name without the colon) can be written without
quotation marks (anyway, the value names in maps can always be written
enclosed in quotes, just like in JSON format). Thus, the JSON format is a subset of
the XON format.

4.1. JSON (or XON) object model in X-definition

The JSON (or XON) model of the object is written as text in the <xd:xon> element,
where the model name is in the "xd:name" attribute. Similar to the XML element
models in X-definition, the values are described using an X-script, which is
always written as a string. Properties of map or array objects can be written using
a special element starting with the keyword x:script, which must be followed by
an equals sign (not a colon!), and the value of the X-script follows as a string
value. The following example describes the JSON data model from the previous
example:

<xd:xon xd:name = "product">
{ products:
 [
 {x:script="occurs *;",
 "productId": "int(100000,999999);",
 "productName" : "string();",
 "price": "decimal();"
 "tags": ["occurs 0..* string();"]
 }
]
}
</xd:xon>

The result XON data of input data will be:
{ "products":
 [
 { "productId": 123456i, "productName": "A green door", "price":
12.50D,
 "tags": ["home", "green"]
 },

X-definition 4.2 XML, JSON, YAML, and XON

26

 { "productId": 987654i, "productName": "bicycle", "price": 320.00D,
 "tags": ["ladies bicycle", "silver", "electric"]
 }
]
}

(Try to run an example of JSON validation at https:// xdef.syntea.cz/ tutorial/
examples/json.html).

4.2. YAML
Because YAML data is similar to JSON, the YAML data model is described as
XON. During processing, the X-definition processor automatically detects
whether the data is in JSON, XON, or YAML format. The following data in YAML
format will be processed using the same model described above:

product:
- product id: 123
 product name: A green door
 price: 12.50
 tags:
 - home
 - green

4.3. Properties and Windows INI format
Data in the "properties" format represents a collection of named values. Such data
can be easily converted into an XON map with named values. The model of this
data can be described as an XON map.

Compared to the properties format, Windows INI data also contains named
sections. These can be converted to XON format as named items whose value is a
map. See the following example of Windows INI data:

TRSUser = John Smith
Authority = CLIENT
MailAddr = jira@synth.cz
[Server]
SeverIP = 123.45.67.8
Signature = 12afe0c1d246895a990ab2dd13ce684f012b339c

The model of Windows INI (and also properties) data is written in X-definition as
<xd:ini> element:

<xd:ini xd:name="TRSconfig">
 # TRS configuration
 TRSUser = string()
 Authority = enum("SERVICE", "CLIENT", "UNREGISTRED");
 MailAddr = emailAddr();

X-definition 4.2 XML, JSON, YAML, and XON

27

https://xdef.syntea.cz/tutorial/examples/json.html
https://xdef.syntea.cz/tutorial/examples/json.html

 [Server]
 SeverIP = ipAddr();
 Signature = SHA1();
</xd:ini>

4.4. CSV data

CSV data is a sequence of rows. On each row (line) are written values separated
by a comma (or other agreed character). They can be converted to XON format as
a two-dimensional array. Missing values in a line are replaced by a null value. In
some cases, the first line may contain the names of items in data lines.

The CSV data model can therefore be described as an XON array.
Example of CSV data:
Name, Email, Mobile Number
John Brown,john@brown.org,+001 1234565789
Mary, ,+45 987 654 321
Paul, Paul Wiener<paul123@gmail.com>,

The model of data above:
<xd:xon xd:name = "contacts">
[
 ["occurs * string();"], /* header line */
 # one or more lines; where email and telephone are the optional items
 [$script = "occurs +;", "string();", "? emailAddr();", "?
telephone();"]
]
</xd:xon>

Since the input data may not contain the first row with the description of column
names, this circumstance must be communicated at the start of processing (by the
boolean parameter skipheader of the cparse methods).

5. Examples of using X-definition
The use of the X-definition takes many forms. The X-definition technology covers
the whole spectrum of data integration and implies a consistent approach. Fur-
thermore, The X-definition conceptually allows, for example, creation of automa-
ted processes within use cases. Example:
• An analyst creates X-definitions to describe a data structure,
• a programmer dybamically imports the X-definition into a project (for future
modifications by the analyst),

• at the beginning of each code compilation, a data model is automatically gen-
erated from the X-definition,

X-definition 4.2 XML, JSON, YAML, and XON

28

• the programmer is already working directly with the data model in a specific
language (in our case Java).

What remains is to provide the loading of the input message and its validation.
The X-definition library offers a rich interface and can take care of this issue as
well. The programmer defacto only needs to choose what type of input the data
will be read from (file, stream, string, URL link, etc.).

The following sections describe examples of sub-operations that a program-
mer or analyst may come across when using X-definition technology.

5.1. Validation mode of processing
Validation mode, as the name implies, is used to validate input data. As such,
X-definitions are used to describe the data structure, among other things. The
constraints can also be applied to the actual content of the values inside the X-def-
initions. If we have a particular X-definition (or set of X-definitions) at hand, then
we can validate arbitrary data against that X-definition or set of X-definitions.

Example of X-definition and input data that we want to validate using given
X-definition.

Validation code X-definition:
<xd:def xmlns:xd="http://www.xdef.org/xdef/4.1" name="Example"
root="root" >
 <root a="int();" >
 <b xd:script="occurs *;" >
 ? string();

 </root>
</xd:def>

XML input data:
<root a="123" >
 text

</root>

The below Java code sample is somewhat simplified so that the reader is not cha-
langed by implementation details:

String xdef = "Example.xdef";
String xmlData = "Example.xml";

// 1. Compilation of X-definition
XDPool xp = XDFactory.compileXD(xdef);

// 2. Create new instance of XDDocument
XDDocument xdoc = xp.createXDDocument();

X-definition 4.2 XML, JSON, YAML, and XON

29

For the XML data input we also add:
Element root = xdoc.xparse(xmlData);

The above example deals only with XML data. However, it can also be easily
updated by the example below, which generally works for any input data format.

For JSON (or XON) data input:
Object o = xdoc.jparse(xmlData);

For YAML similarly:
Object o = xdoc.yparse(xmlData);

Many other X-definition functionalities are built on top of the validation function-
ality, which internally uses similar code to the above. You can test the data valida-
tion functionality against an X-definition at https:// xdef.syntea.cz/ tutorial/
examples/validate.html. For more details see the Java programming guide with
examples at [4].

5.2. External methods

X-definition allows calling external methods implemented in Java. The prerequi-
site for this is that the method is implemented with static keywords and public
visibility. It is also possible to insert input arguments into external methods. The
input arguments can also contain actual values from the input data. The call to an
external method is called an X-script.

The input processing is built on a similar principle as the event-driven archi-
tecture. Data processing has a lifecycle. Within this cycle, predefined events
(events) are created that have a known order. Basic examples of events:
• finally – element processing conclusion,
• onStartElement – the start of element content processing (attributes already

processed),
• onTrue – perform a specific action if the validation of a value was without

error.
X-script can be used for multiple purposes. Typically, these are:
• event processing by action,
• advanced value validation,
• creation of a return value within the result (value transform).
In addition, the X-script itself has specific predefined methods that can be used,
for example, for additional processing of the input value (example: the trimText
method - removing white characters at the beginning and end of the string value).

Example of using X-script – without external methods:

X-definition 4.2 XML, JSON, YAML, and XON

30

https://xdef.syntea.cz/tutorial/examples/validate.html
https://xdef.syntea.cz/tutorial/examples/validate.html

<xd:def xmlns:xd="http://www.xdef.org/xdef/4.1" name="example"
root="root" >
 <root a="int();" >
 <b xd:script="occurs *;
 finally outln('Content: ' + getElementText());">
 ? string();

 </root>
</xd:def>

Input XML data:
<root a="123">
 text 1
 test 2
</root>

The output of processing:
Content: text 1
Content: text 2

Example of implementation of an external method used in an X-definition in Java:
com.xdef.example

public class ExternalMethods {
 public static void error (int code) {
 ...
 }
}

Example declaration of a Java external method in X-definition:
<xd:declaration>
external method void com.xdef.example.ExternalMethods.error(int);
</xd:declaration>

<elem value="required int(0, 10); onFalse error(123);" />
External methods allow dynamic validation - for example, calculation of a specific
value, previewing a database table, etc.

Example of implementation of an external method used in an X-definition in
Java:

com.xdef.example

public class ExternalMethods {
 public static boolean tab(String tabName, String colName, String
value) {
 String sql = "SELECT COUNT(*) FROM " + tabName " WHERE " + colName

X-definition 4.2 XML, JSON, YAML, and XON

31

" = " + value;
 ...
 }
}

Example of declaration of a Java external method in X-definition:
<xd:def xmlns:xd="http://www.xdef.org/xdef/4.1" name="example"
root="root" >
 <xd:declaration>
 external method
 void com.xdef.example.ExternalMethods.tab(String, String, String);
 </xd:declaration>
 <elem value="required tab('table','column', getText())" />
</xd:def>

5.3. Construction mode of processing
Construction mode, on the other hand, serves for creating the XML document
according to an X-definition.

While in validation mode the X-definition process the input data according to
the models declared in the X-definitions, in construction mode the data is created
according to the commands written in the X-script in the "create" section. Thus,
an output object can be created and the X-definition serves as a blueprint for its
creation. The values in the result object are taken as the result of the command in
the "create" section (values from external methods and variables are often used –
see next paragraph).

Example:
<xd:def xmlns:xd="http://www.xdef.org/xdef/4.1" name="example"
root="root" >
 <xd:declaration>
 int num = 0;
 </xd:declaration>
 <root a="date(); create now()" >
 <b xd:script="occurs *; finally outln('getElementText()); create 2;">
 ? string(); create “item: ” + (++count);

 </root>
</xd:def>

The result will be:
<root a="2022-01-01" >

 item: 1

X-definition 4.2 XML, JSON, YAML, and XON

32

 item: 2

</root>

5.4. X-components
X-components are currently a Java-only technology. This technology is similar to
JAXB. X-components are used to describe a data model in Java and at the same
time, in combination with X-definitions, it is possible to perform bidirectional
mapping of input (data binding) to/from the X-component model.

One of the main advantages of X-components is the fact that X-components
can be generated based on the X-definition rule. This implies that based on a
blueprint (which can be supplied by an analyst, for example), we can also obtain
a data model for the programmer quickly and easily.

The X-components themselves as data models can be further serialized, for
example. Thus, X-components can also form, for example, messages that are
exchanged between programs. For the description of these messages, we can
again use the X-definition rule. Data integration can be solved in this simple way.
The only requirement is that all programs involved use the same X-definition
rule.

From the above, it shows that X-components are a superstructure over X-defi-
nitions and significantly extend the X-definition ecosystem. The combination of
these two technologies creates a holistic framework that allows multiple roles
(analyst, programmer) to participate in the specification/development of a pro-
gram while ensuring consistency in the output of the two roles mentioned, which
often have different views and requirements on a given issue. These technologies
also simplify data integration between programs using X-definition.

The basis for creating an X-component is a special <xd:component> element
that extends the X-definition itself. Within this element, we can define which ele-
ments we need to generate X-components from. Typically, we generate root nodes
this way, and then we can also split internal structures to make the overall result-
ing model in X-components more granular – often we don’t want to work with
the whole model, but only parts of it.

To be able to declare what partial data models we need to generate into
X-components, we need to know the definition of a position in an X-definition,
called XDPosition. Below we give an example of XDPosition values without the
need for a deeper understanding of how we arrived at the values. XDPosition can
be imagined as an alternative to Xpath. For this reason, the example is trivial, so
that the reader has a chance to orient himself quickly. The XDPosition values are
written on the right side only for the demostration purpose.

Example of XDPosition values in X-definition:
<xd:def name = "Model">
 <A> Model#A

X-definition 4.2 XML, JSON, YAML, and XON

33

 <B Model#A/B
 b = "string();"/> Model#A/B/@b

</xd:def>

With the above knowledge, we are already able to declare the required X-compo-
nents. Example of X-definition enriched with X-component declaration:

<xd:def
 xmlns:xd="http://www.xdef.org/xdef/4.1"
 xd:name="Vehicle"
 xd:root="Vehicle">

 <Vehicle VIN = "required string();" />

 <xd:component>
 %class cz.syntea.tutorial.Vehicle
 %link Vehicle#Vehicle;
 </xd:component>

</xd:def>
The above example is trivial - for this reason, we are only interested in the root
element. We use the %class keyword to specify in which qualified path the
X-component should be created. The next keyword %link specifies the position
within the X-definition (the XDPosition value).

Example of a generated X component (from the previous example):

package cz.syntea.tutorial;

public class Vehicle implements org.xdef.component.XComponent {

 public String getVIN() { return _VIN; }
 public void setVIN(String x) {_VIN = x;}

 private String _VIN;

 // Constructors and implementation of the interface XComponent ...
}

X-components support a range of keywords, such as support for interface crea-
tion, references across the X-definition set (in practice we work with sets), enu-
meration, aliases for models and attributes, etc.

If we have an X-component created in this way, we can perform input valida-
tion and data binding in a very similar way to the validation itself. Below is a
simplified example of populating the X-component model with XML input data
so that the reader is not chalanged by implementation details.

X-definition 4.2 XML, JSON, YAML, and XON

34

String xdef = "vehicle.xdef";
String xmlData = "vehicle.xml";

XDPool xp = XDFactory.compileXD(xdef);
XDDocument xdoc = xp.createXDDocument();
XComponent xc = doc.parseXComponent(source, Vehicle.class);
Vehicle vehicle = (Vehicle) xc;

The example is very similar to the validation mode, the only difference is the last
two lines, where instead of validation itself, we require data binding.

5.5. Localization of data
X-definition have the functionality of localizing the data model prescription itself,
called X-lexicon. X-lexicon is suitable, for example, for situations where different
customers require localization of data-identical messages into their language. The
data model itself only needs to be defined once, and the reflecting data model
translations need to be created also once. To create the translations, we again use
the knowledge of XDPosition.

The X-lexicon definition itself consists of a special <xd:lexicon> element that
extends the X-definition itself. Within this element, we define the required indi-
vidual localizations.

Example of a common prescription in X-definition (names in English):
<xd:def xmlns:xd = "http://www.xdef.org/xdef/4.1" xd:name = "contract">
 <Contract
 Number = "required int();">
 <Owner
 Name = "required string();"/>
 </Contract>
 ...
</xd:def>

Example of localization for German language:
<xd:lexicon xmlns:xd="http://www.xdef.org/xdef/4.1"
language="Contract_deu">
 contract#Contract Vertrag
 contract#Contract/@Number Nummer
 contract#Contract/@Date Datum
 contract#Contract/Owner Inhaber
</xd:lexicon>

X-definition 4.2 XML, JSON, YAML, and XON

35

6. Example of processing of JSON data
In this chapter, we will show how to process JSON data using X-definition. The
input data includes data from telecommunication network points, described in
the following X-definition:

<xd:def xmlns:xd='http://www.xdef.org/xdef/4.1' name="net"
root='netdata'>

<xd:declaration>
 external method {
 boolean exc.base.Network.checkId(XXData xnode);
 void exc.base.Network.setId(XXData xnode);
 /* There are in the a real project more external methods... */
 }

 type id string(%length=35);
 /* There are in the a real project more validation types ... */
</xd:declaration>

<xd:xon name='netdata'>
{
 "container": "boolean();",
 "res-id": "checkId(); onTrue setId(getParsedResult());",
 "roles": [
 "occurs * enum('OLT','MXU','OTHER');"
],
 "mac": "optional id(); onTrue setId();",
 "ref-parent-subnet": "optional id();",
 "dev-sys-name": "optional string();",
 "communication-state": "optional int(0,1);"
 "remark": "optional string();",
 "is-gateway": "optional int(-1,1);",
 "ip-address": "optional ipAddr();",
 "admin-status": "optional enum('active', 'inactive');",
 "location": "optional string();",
 "physical-id": "optional int(1, *);",
}
</xd:xon>

</xd:def>
Input JSON data:

{ "container":false,
 "res-id":"fda88901-3b7f-33ec-80f260a95523fd7c",
 "roles":["MXU"],
 "communication-state":1,

X-definition 4.2 XML, JSON, YAML, and XON

36

 "remark":"",
 "is-gateway":-1,
 "ip-address":"172.25.39.18",
 "admin-status":"inactive",
 "location":"",
 "physical-id":1
}

The Java program (simplified) for process JSON data as described above:

package exc.base;

import java.io.File;
import java.net.InetAddress;
import java.util.Map;
import org.xdef.XDDocument;
import org.xdef.XDFactory;
import org.xdef.XDParseResult;
import org.xdef.XDPool;
import org.xdef.sys.ArrayReporter;
import org.xdef.xon.XonUtils;

public class Network {

 public static XDParseResult checkId(XDParseResult id) {
 if (id.matches()) {
 // String s = id.getParsedValue().toString();
 // you can check database integrity etc.
 // and add error report an error with id.error("error text");
 } else {
 // It was found an error in the validation method
 // You can handle this situation. However, a stardard error
 // will be reported.
 System.err.println("ID is not correct: " +
id.getParsedString());
 }
 return id;
 }

 public static void setId(XDParseResult id) {
 String s = id.getParsedString();
 // set id e.g. to a database.
 }

 public static void main(String[] args) {
 File xdef = new File("data/network.xdef"); // X-definition
 File input = new File("data/network.json"); // JSON data

X-definition 4.2 XML, JSON, YAML, and XON

37

 XDPool xpool = XDFactory.compileXD(null, xdef);
 XDDocument xdoc = xpool.createXDDocument("net");
 ArrayReporter reporter = new ArrayReporter();
 Object o = xdoc.jparse(input, reporter);
 if (reporter.errors()) {
 System.err.println(reporter.printToString());
 } else {
 // parsed Xon object is instance of java.util.Map
 Map xon = (Map) o;
 // // the item ip-address in XON is java.net.InetAddress
object
 InetAddress ipAddr = (InetAddress) xon.get("ip-address");
 System.out.println("OK, ipAddr = " + ipAddr);
 System.out.println("Parsed XON data:");
 System.out.println(XonUtils.toXonString(xon, true));
 }
 }

}

7. Conclusions
• Support for XML, XON, JSON, YAML, Properties, Windows INI, and CSV for-

mats allows you to use X-definition in projects that work with all these source
formats.

• X-definition describes in detail the data structure in all supported formats
(XML, JSON, YAML, Properties, Windows INI, CSV, and XON). They can thus
replace XML Schema, JSON Schema, etc.

• X-definition allows processing of unlimited size of data of all supported for-
mats.

• X-definition supports error handling and a detailed error log.

• As a result of processing an XON object can be obtained. This object contains
parsed values converted to Java data types.

• As a result of processing, an X-component object can be obtained. X-compo-
nent is an instance of a Java object, where processed data are accessible with
getter and setter methods.

• Xon data format is suitable for exchanging data between remote systems.

Bibliography
[1] Trojan, Václav: XDefinition . XML Prague, Prague, 2005

X-definition 4.2 XML, JSON, YAML, and XON

38

[2] Selak, C: Extracting Data From Very Large XML Files With X-definition . 31. May
2022. https://dzone.com/articles/extracting-data-from-very-large-
xml-files-with-x-d

[3] X-definition https://github.com/syntea/xdef
[4] Trojan, Václav: X-definition 4.1, programming guide . 2021. https://

xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1_Programming.pdf
[5] Trojan, Václav: X-definition 4.1, language description . 12. July 2021. https://

xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1.pdf
[6] Key, Michael: Transforming JSON using XSLT 3.0 . 2016. https://

www.saxonica.com/papers/xmlprague-2016mhk.pdf
[7] Bray, Tim - Hollander, Dave - Layman, Andrew - Tobin, Richard: Namespaces

in XML 1.1 . W3C Recommendation 16 August 2006. https://www.w3.org/
TR/xml-names11/

X-definition 4.2 XML, JSON, YAML, and XON

39

https://dzone.com/articles/extracting-data-from-very-large-xml-files-with-x-d
https://dzone.com/articles/extracting-data-from-very-large-xml-files-with-x-d
https://github.com/syntea/xdef
https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1_Programming.pdf
https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1_Programming.pdf
https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1.pdf
https://xdef.syntea.cz/tutorial/en/userdoc/xdef-4.1.pdf
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://www.saxonica.com/papers/xmlprague-2016mhk.pdf
https://www.w3.org/TR/xml-names11/
https://www.w3.org/TR/xml-names11/

40

A Pilot Implementation of ixml
Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>

Abstract

Invisible XML (ixml) is a method for treating non-XML documents as if
they were XML[7], [8], [9], [10], [11], enabling authors to write documents
and data in a format they prefer while providing XML for processes that are
more effective with XML content. By the time of the publication of this
paper, it is anticipated that the official version of ixml [12] will have been
announced by the ixml working group.

During the development of ixml, a pilot implementation was built in
order to support decisions on the development of the notation, and to pro-
vide examples of the output ixml produces.

This paper describes the implementation, decisions taken, and how cer-
tain processes work, such as serialisation, and dealing with ambiguity, and
ends by discussing future work to be done.

Keywords: ixml, markup, XML, implementation, notation design,
grammars, parsing, earley

1. Invisible XML
Numbers are abstractions: you can't point to the number three, just three apples,
or three sheep. Three is what those apples and sheep have in common.

You can represent a number in different ways, 3, III, 0011, ㆔, ३, ፫, ૩, ੩, 〣, ೩,
፫, ፫, ໓, Ⅲ, ൩, ၃, ႓, ꧳, trois, drie. You can concretise numbers as a length, a
weight, a speed, a temperature.

But in the end, they are all the same three.
The idea behind ixml is that data too is an abstraction, which we are often

obliged for different reasons to represent in some way or another. But in the end
those representations are all of the same abstraction. It is worth noting that http
recognises this too, with content negotiation around a URL: the URL represents a
single resource; content negotiation allows the selection of a particular represen-
tation of that resource [6].

Ixml takes representations of data, typically with implicit structure, recognises
that structure, and forms a representation where the structure is made explicit.

Some representations are weaker than others: they may not be able to faith-
fully represent all of the abstraction, and are therefore not reversible, but XML is

41

probably the best available general notation for approaching the representation of
any abstraction.

The intention behind ixml is to allow extracting abstractions from representa-
tions; of converting weaker representations of abstractions into more explicit rep-
resentations, with XML therefore an excellent target for that.

2. Processing
An ixml processor takes a a document in a particular (textual) format, along with
a description of that format, in the form of a grammar, and uses it to parse the
document. This produces a structured parse tree of the document, which can then
be processed in a number of ways, the primary one being serialization as XML.

Figure 1 illustrates this: the circle is the processor, a square represents a tex-
tual representation of a document, and a triangle a structured representation. The
documents to the left and right of the processor are the same document, but in
different representations.

Figure 1. Fig. 1: ixml processing step

As you can see, the format description is drawn as a structured document. How-
ever, since it is normally supplied as an ixml document in textual form, this also
has first to be processed, in exactly the same way, by the ixml processor, but using
a description of the ixml format. This results in the structured version of the

A Pilot Implementation of ixml

42

description. Figure 2 illustrates this. As you can see there is a also a presumed
bootstrap stage that produces the initial structured version of the description of
ixml itself, where the structure of ixml is initially presumed during the bootstrap.

Figure 2. Fig. 2: The complete processing cycle

3. How ixml works
An ixml description is a grammar consisting of a series of rules. A rule consists of
a name, and a number of alternatives separated by semicolons:

statement: assign; call; if; while.
Alternatives consist of a sequence of zero or more terminals and nonterminals
separated by commas:

assign: id, ":=", expr.
expr: id; number.

Input that matches the grammar is parsed into a parse tree, which is then serial-
ised as XML. So for input "i:=0", you would get

A Pilot Implementation of ixml

43

<statement><assign><id>i</id>:=<expr><number>0</number></expr></assign></
statement>

So-called marks can be added to rules to affect the serialization. Rules can be
marked to be serialised as attributes:

assign: @id, ":=", expr.
which would give

<assign id="i">:=<expr><number>0</number></expr></assign>
terminals can be marked to be deleted:

assign: @id, -":=", expr.
which would give

<assign id="i"><expr><number>0</number></expr></assign>
as can nonterminals:

assign: @id, -":=", -expr.
which would eliminate the enclosing <expr> tags around its element content:

<assign id="i"><number>0</number></assign>
A recent addition to ixml are insertions which allow characters to appear in the
serialisation that weren't in the input:

assign: @id, -":=", -expr, +";".
which would give

<assign id="i"><number>0</number>;</assign>

4. Implementation

4.1. Parsing algorithms
There are many known parsing algorithms, and most have restrictions of one sort
or another on the classes of language that they recognise, and include restrictions
on the languages, or the grammars, or both, for them to work.

For example, LL(1) grammars require that when a grammar rule has alterna-
tives (as most do), like

sentence: a; b; c.
that the choice of whether to parse the sentence as an a, b, or c must be decidable
by looking at most one token ahead. To achieve this, languages typically must go
through an initial stage prior to parsing to split them into individual tokens,
which in turn means that a grammar has to be accompanied by a description of
how tokens are formed.

A Pilot Implementation of ixml

44

All this makes life difficult for the grammar writer, who must not only know
the rules for the parsing algorithm, and how to apply them, but must write two
descriptions, one for the grammar, and another for the tokens.

To avoid these problems, ixml requires implementations to use a general pars-
ing algorithm, without extra restrictions, and without the need to specify tokens.
Examples of such algorithms are [3], [14], [2], [5], and [4].

4.2. Parsing

The pilot implementation of ixml uses Earley as one of the earliest and best-
known of the general parsing algorithms.

As pointed out in [9], Earley can be seen as a pseudo-parallel parsing algo-
rithm, where when it has to parse a rule like

sentence: a; b; c.

it splits into three parallel sub-parsers to parse the three alternatives starting at
the same point in the input. If a sub-parse fails at any point, it terminates without
further ado; if it succeeds, it records its sub-parsetree(s), and terminates.

4.3. Serialisation

Once parsing is finished, what remains is a so called parse-forest, a collection of
linked sub-parse-trees.

The first action is to see if the parse has been successful, by looking if there is a
successful parse node for the root symbol that starts at the first character position
and ends at the last. If so then serialisation can begin.

Serialisation is a question of doing a tree walk: non-deleted nonterminals are
serialised to XML elements, deleted nonterminals just have their children serial-
ised, non-deleted terminals (and insertions) are just output. There is an additional
elaboration for nonterminals serialised as attributes, since they come before ele-
ment content, and so for any non-deleted nonterminal, you have to do one walk
for the attributes, and then one for the content.

Because of element deletions such as

assign: -target, -":=", expr.
target: @id.

since the element that the id attribute is ostensibly on is deleted, the attribute has
to move up to the nearest non-deleted element:

<assign id="i"><expr>...</expr></assign>

so the tree walk for attributes has to look not only at the level of the (undeleted)
element, but also recursively within deleted sub-elements.

A Pilot Implementation of ixml

45

4.4. Ambiguity

The parse may have been ambiguous: that is, it satisfied the rules of the grammar
in more than one way. The serialisation tree-walk is not going to care about this,
and as long as the parse has been successful it will produce a serialisation of one
of the parses.

However, it is usually important that the consumer of the serialisation know
that the serialisation is only one of the possible cases. To this end, ixml requires
an ixml:state="ambiguous" attribute to be added to the root element of the seri-
alisation to signal that fact. This involves a simple initial tree-walk to discover if
any route from the top node is ambiguous.

5. The Pilot Implementation in Use
The pilot implementation was originally written to support the development of
the language, to try out different approaches and solutions, as well as to generate
example outputs to support papers on the language.

The primary aim at that stage was therefore speed of implementation and
flexibility, and not to create an industrial-strength, top-speed implementation,
since it was too early at that stage while the language was constantly being
altered. Consequently it was written in an interpreted language with very-high-
level data types, ABC [1], in about 500 lines of code for the bootstrap parser, and
700 for the full processor.

It was later also used to support an ixml tutorial [13]. After an earlier experi-
ence with a tutorial for a different language, where the tutees had to install soft-
ware themselves to run the examples, it was decided for ixml instead to supply
an online processor, where the example ixml grammar and its input were submit-
ted to the processor, and the resulting XML would be returned. A problem was
that the pilot implementation was non-reentrant, and so the solution was to store
the grammars and input in files, and serve them one by one to the processor,
while the server busy-waited for the result file.

6. Future Work

6.1. Serialising to memory

Although the processing diagram above suggests that ixml always serialises its
input documents to XML, there are other options. In particular since the format-
description document is used as input in the next step to parse the final docu-
ment, it can be more efficient to serialise the format description straight to
memory, into the form required by the parser for representing grammars. This
also allows for some simplifications, in particular because the grammar for ixml

A Pilot Implementation of ixml

46

will never produce ambiguous parses, and so doesn't need the two-passes other-
wise necessary for serialisation. This of course also speeds up processing, since it
eliminates one whole parsing phase.

6.2. Round-tripping
An ixml grammar can be seen as a function mapping one representation on to
another. In simple cases, such as a grammar with no deletions and no attributes,
mapping the output back to the input form is trivial, since it just involves concate-
nating the element contents. This is because the default is for all input characters
to be copied to the output serialisation, and in simple cases like this all that hap-
pens is content gets enclosed by element tags to reveal the underlying structure.
Remove the tags, and you have the input again.

Deletions complicate matters. If there are only element deletions, then it
remains trivial, because all input characters are still in the output; only some ele-
ment tags have been omitted, so concatenating element content still works.

However, with terminal deletions, characters are lost that have to be restored.
To deal with this, we have to parse the serialisation using the grammar that pro-
duced it, with a similar parser to Earley, in order to discover which characters
have been deleted.

To parse a (non-deleted) nonterminal, you must expect the start tag for that
rule. For instance, for

statement: assign; call; if; while.
you expect

<statement>
and then initiate four parallel sub-parsers, one for each of the alternatives, which
to succeed must also be followed by the terminating tag </statement>.

To parse a deleted nonterminal, you just initiate the sub-parsers.
To parse a (non-deleted) terminal, you must just expect the same string in the

element content at the current point.
To parse a deleted terminal, you match zero characters, and insert the string in

the parse. Interestingly enough, this is exactly how an insertion works when pars-
ing in the other direction. And indeed to parse an insertion, you have to expect
the characters in the string in the same way as a non-deleted terminal, but insert
nothing in the parse, just like a deletion in the other direction.

The other challenge is dealing with attributes. Because of how attributes are
placed on XML elements, and additionally due to deleted nonterminals as
explained above, attribute content can appear earlier in the serialisation than the
content that preceded them in the input. Therefore attributes have to be held in
abeyance, as separate input streams, until the point in the parse where they
appear in the grammar. Then the input must come from the serialisation of the

A Pilot Implementation of ixml

47

attribute, and all sub-rules must be treated as if deleted, until the end of the rule
forming the attribute, which by then must have consumed all of the input coming
from the serialisation of the attribute.

The result of this process will be a (potentially ambiguous) parse tree.
For a serialisation like
<assign id="i"><number>0</number>;</assign>

being parsed against
assign: @id, -":=", -expr, +";".

you will get a parse tree like
<assign><id>i</id>:=<expr><number>0</number></expr></assign>

from which you can concatenate the element content to give "i:=0".
However, for a grammar that includes a rule like:
term: id; number; -"{", expr, -"}"; -"(", expr, -")".

where expressions may be bracketed with either {} style or () style brackets, both
of these latter two alternatives, because of the deletions, will produce exactly the
same serialisation, namely:

<term><expr>...</expr></term>
and so parsing the serialisation back we will get two successful parses:

<term>{<expr>...</expr>}</term>
and

<term>(<expr>...</expr>)</term>
in other words, an ambiguous parse. So, just as with serialisation, we have to
choose one. In other words, because the serialisation throws away the informa-
tion about which brackets were used, we can't guarantee to round-trip the seriali-
sation perfectly.

Similarly, if a serialisation deletes all spaces or comments in the input, there is
no way to recreate them. They are lost in the round-tripping.

6.3. Translating to other languages

The main shortcoming of the pilot implementation is that it is written in a pro-
gramming language that doesn't fully support Unicode. While it is possible to
parse Unicode documents with it, any feature of ixml that requires accessing prop-
erties of Unicode characters, such as hexadecimal representations, ranges, or char-
acter classes, can't be fully supported.

To this end, future work will include translating the implementation to one or
more other languages.

A Pilot Implementation of ixml

48

7. Conclusion
Designing a notation requires many aspects to be taken into account simultane-
ously, such as usability, functionality, and ambiguity. Having an implementation
that is easily modifiable during design of the notation is almost essential for good
progress.

The current pilot implementation has served well, and while other implemen-
tations are now emerging, it will probably be retained for future design research.

References
[1] Leo Geurts et al.. The ABC Programmer's Handbook. Prentice-Hall 1990.

0-13-000027-2. https://www.cwi.nl/~steven/abc/programmers/handbook.html .
[2] Itiroo Sakai. Syntax in universal translation. In 1961 International Conference on

Machine Translation of Languages and Applied Language Analysis 1961. 593–
608. https://aclanthology.org/www.mt-archive.info/50/NPL-1961-Sakai.pdf .

[3] J. Earley. An efficient context-free parsing algorithm. In Communications of the
ACM 13(2) February 1970. 94–102. 10.1145/362007.362035.

[4] ElizabethAdrian ScottJohnstone. GLL Parsing. In Electronic Notes in
Theoretical Computer Science Volume 253.7 17 September 2010. 177-189.
10.1016/j.entcs.2010.08.041.

[5] Masaru Tomita. Generalized LR Parsing. Springer Science & Business Media
1991. 978-1-4615-4034-2. 10.1007/978-1-4615-4034-2.

[6] R. Fielding et al.. Hypertext Transfer Protocol -- HTTP/1.1. IETF 1999. https://
www.w3.org/Protocols/rfc2616/rfc2616-sec12.html .

[7] Steven Pemberton. Invisible XML. Proceedings of Balisage: The Markup
Conference 2013 Balisage Series on Markup Technologies vol. 10 2013.
10.4242/ BalisageVol10.Pemberton01.

[8] Steven Pemberton. Data Just Wants to Be Format-Neutral. Proc. XML Prague
2016 2016. 109-120. http://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf .

[9] Steven Pemberton. Parse Earley Parse Often: How to Parse Anything to XML. In
Proc. XML London 2016 2016. 120-126. http://xmllondon.com/2016/
xmllondon-2016-proceedings.pdf#page=120 .

[10] Steven Pemberton. On the Descriptions of Data: The Usability of Notations. In
Proc. XML Prague 2018 2018. 143-159. http://archive.xmlprague.cz/2016/files/
xmlprague-2016-proceedings.pdf .

A Pilot Implementation of ixml

49

https://www.cwi.nl/~steven/abc/programmers/handbook.html
https://aclanthology.org/www.mt-archive.info/50/NPL-1961-Sakai.pdf
https://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=120
http://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=120
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf

[11] Steven Pemberton. On the Specification of Invisible XML. Proc.XML Prague
2019 pp 413-430. https://archive.xmlprague.cz/2019/files/xmlprague-2019-
proceedings.pdf#page=425 .

[12] Steven Pemberton. Invisible XML Specification. invisiblexml.org 2022. https://
invisiblexml.org/ixml-specification.html .

[13] Steven Pemberton. Hands On ixml. Declarative Amsterdam 2021. https://
declarative.amsterdam/show?page=da-tutorial-ixml-2021 .

[14] S.H. Unger. A global parser for context-free phrase structure grammars. In
Communications of the ACM 11(4) April 1968. 240–247.
10.1145/362991.363001.

8. Postscript
In this author's experience, the hardest part of getting an article into Docbook for-
mat (the format used by this conference) is getting the bibliography right. To this
end, the above bibliography was produced with the help of ixml. For instance, the
text

[spec] Steven Pemberton (ed.), Invisible XML Specification,
invisiblexml.org, 2022, https://invisiblexml.org/ixml-
specification.html

was processed by an ixml grammar whose top-level rules were

bibliography: biblioentry+.
biblioentry: abbrev, (author; editor), -", ", title, -", ", publisher,
-", ", pubdate, -", ", (artpagenums, -", ")?, (bibliomisc;
biblioid)**-", ", -#a.

yielding
<biblioentry>
 <abbrev>spec</abbrev>
 <editor>
 <personname>
 <firstname>Steven</firstname>
 <surname>Pemberton</surname>
 </personname>
 </editor>
 <title>Invisible XML Specification</title>
 <publisher>invisiblexml.org</publisher>
 <pubdate>2022</pubdate>
 <bibliomisc>
 <link xlink:href='https://invisiblexml.org/ixml-specification.html'/>
 </bibliomisc>
</biblioentry>

which can further be tweaked by hand.

A Pilot Implementation of ixml

50

https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=425
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=425
https://invisiblexml.org/ixml-specification.html
https://invisiblexml.org/ixml-specification.html
https://declarative.amsterdam/show?page=da-tutorial-ixml-2021
https://declarative.amsterdam/show?page=da-tutorial-ixml-2021

Expression Elaboration
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper describes an approach to evaluation of expression-based lan-
guages such as XSLT, XQuery, and XPath, in which nodes on the expres-
sion tree output by the language parser are converted to lambda expressions
in Java, Javascript, or C#, with the aim of doing as much work as possible
once only, in advance of the actual expression evaluation.

1. Introduction
Traditionally, when processing a language such as XSLT, XQuery, or XPath, there
is a choice of two approaches: interpretation, or code generation.

In its pure form, interpretation works by constructing a parse tree of the
source code, and then writing an interpreter that evaluates the constructs on this
parse tree, typically in bottom-up fashion: a node on the tree is evaluated by first
evaluating its operands (represented as child nodes on the expression tree), and
then combining the results according to the semantics of the relevant operator.

In practice it is possible to improve the performance of the interpreter by ana-
lyzing and modifying the expression tree before evaluation starts: examples of
these processes include resolving references (such as references to variables and
functions), inferring types, and optimizations such as loop-lifting (pulling code
out of a loop to avoid repeated execution). Declarative languages like XSLT,
XQuery and XPath benefit greatly from such optimisations.

By contrast, code generation in its pure form takes the parse tree and converts
it into a sequence of machine instructions that are then executed to evaluate the
program. Today, to achieve portability, these will normally be instructions for a
virtual machine (such as the Java VM) rather than physical hardware.

In practice the two approaches are not quite as distinct as it might appear, and
it's certainly possible to use a blend of both. In particular, even when code gener-
ation is used, much of the generated code will consist of calls into a run-time
library.

Both approaches have been used in the Saxon product. When code-generation
was first introduced, it often delivered a performance boost of the order of 25%
(though the range was anything from 0% to 50%). However, there was a penalty:
compile time costs increased. Given that in many workloads, stylesheets are com-
piled every time they are executed, this turned out to be a poor trade-off; it is

51

quite common for compilation costs to exceed run-time costs by an order of mag-
nitude.

It's also noticeable that the benefits of generating Java byte-code have declined
over time. It's hard to be certain about the causes of this, but we suspect it's pri-
marily because the Java hot-spot compiler has improved over time to the extent
that it can often speed up our interpreted code to make it just as fast (or some-
times faster) than the code that we laboriously generate ourselves. That may be
partly because the bytecode that Saxon generates is rather different from the byte-
code that the Java compiler generates, and the hot-spot JVM (naturally) is opti-
mised for the latter. It may also have something to do with locality of reference: in
a modern CPU, the main bottleneck is not the speed of executing instructions, but
the speed of moving data from main memory into the CPU cache, which in turn
benefits substantially if all the data (and code) needed to execute some function is
in nearby storage locations, so they can be transferred to the CPU en bloc, thus
improving CPU cache hit rates. Generating code that takes advantage of these
low-level effects is a specialized skill, and it's not surprising if the team working
on the hot-spot compiler are better at it than we are.

In the Javascript version of Saxon (SaxonJS) we developed an alternative
approach to expression evaluation, which has proved very successful. We call this
"elaboration" (a term borrowed from Algol68, though we don't claim to use it
with precisely the same meaning.) This approach relies heavily on the fact that
the languages we are dealing with are side-effect free, which gives us a lot more
freedom in rearranging how code is executed. We've recently been extending its
use to the Java and C# versions of the Saxon product, and this paper reports pre-
liminary results of this work. This paper describes how expression elaboration
works. But first we'll look in more detail at how the two existing strategies, the
interpreter and the bytecode generator, are implemented, and at their strengths
and weaknesses.

2. The Expression Interpreter
At static analysis time, Saxon parses the source XSLT or XQuery code and gener-
ates an expression tree: a hierarchic structure of Java objects in which each node
represents an expression (or another construct, such as an XSLT instruction, or a
clause in a FLWOR expression), with links to its subexpressions. For example, an
expression like $x > 3 * $i produces a ComparisonExpr node, with two child
nodes, a VariableReference node for $x, and an ArithmeticExp node for subex-
pression 3 * $i; this in turn has two child nodes for its operands (a
NumericLiteral and a VariableReference. Each kind of node is represented by
a subclass of the Expression class, and has additional fields for relevant proper-
ties such as the arithmetic operator, the name of the variable, and the value of the
literal.

Expression Elaboration

52

In principle, every kind of Expression overrides the method
Expression.evaluate(Context context) which takes as its argument the cur-
rent evaluation context (providing access to details such as the context item, posi-
tion, and size, the current group, current mode, and so on). Calling this method
returns the result of evaluating the expression, which in general is a Sequence
object.

(The above is a simplification. We actually provide a variety of evaluation
methods: iterate() for lazy evaluation as an iterator, process() for push mode
evaluation where the result are written to a serializer rather than being returned
to the caller, evaluateItem() where the result is known to be a singleton, and so
on).

The expression tree originates from parsing of the source XSLT, XPath, or
XQuery code, but before we get to evaluate it, it goes through a number of modi-
fications. For example:
• Nodes are added to the tree to represent implicit operations such as type

checking, type conversion, and sorting of nodes into document order. To ach-
ieve this, type analysis first annotates the tree with information about the
expected type of each construct.

• Links are added, for example from a variable reference to the corresponding
variable declaration, or from a function call to the function declaration.

• Operational information is added to the tree, for example local variables are
allocated a slot number in the stack frame for their containing function or tem-
plate, so that reading and writing of variables at run-time can use simple
numeric addressing, rather than matching of user-oriented variable names as
strings.

Expression Elaboration

53

• Expressions are optimized using local tree rewrites. Some expression kinds
are used which can only result from such optimization rewrites: an example
might be an IntegerRangeTest with three operands representing the expres-
sion V = P to Q, which tests whether the value of V is in the range P to Q
inclusive. Other rewrites generate constructs that could have been written by
the user explicitly, for example P = Q might be rewritten as P eq Q if it is
known (from type analysis) that both operands are singletons. The more pow-
erful optimizations change the structure of the tree, for example by moving a
subexpression out of a loop where it is safe to do so.

The design of the expression tree has some limitations:
• The same data structure is used during static analysis and at run time. In prin-

ciple much of the information that's needed for static analysis could be discar-
ded once evaluation starts; evaluation might benefit from a lighter-weight
structure designed explicitly for that purpose.

• The data structure is, for most purposes, read-only at run-time. That's neces-
sary for thread safety - if you process several source documents concurrently
in a web server using the same stylesheet, they will share the same copy of the
expression tree. This means it's not possible to do things like replacing a
global variable reference with the value of the variable once the value is
known. (Actually, it's not completely read-only. There are some changes that
happen when a node in the tree is evaluated for the first time, for example.
Such operations need careful attention to thread safety.)

3. Bytecode Generation
The Enterprise Edition of Saxon attempts to speed up execution by generating
JVM bytecode for evaluation of selected parts of the expression tree. Because
bytecode generation is itself an expensive process, and may consume large
amounts of memory, this is done very selectively. During static analysis, Saxon
identifies particular expressions as candidates for bytecode generation. The body
of a function or template is always such a candidate, but so are smaller units of
code such as the predicate in a filter expression, or the body of an xsl:for-each
instruction.

This isn't as sophisticated as the JVM hot-spot compiler, which actually moni-
tors how effective its optimizations are, and is capable of reversing them if they
prove not to be worthwhile. But it's the same general idea.

There are two interesting questions to ask about bytecode generation: how
effective is it, and why?

The answer to the first question is that we see bytecode generation speeding
up XSLT and XQuery execution by anything from 0 to 25%; but most cases, sadly,
are towards the lower end of that range. It's most effective with simple queries

Expression Elaboration

54

dominated by evaluation of a simple predicate — but it has to be one that can't be
optimized by other techniques such as indexing. For example, in the XMark
benchmark suite, query Q11 execution improves from 145ms to 115ms with byte-
code generation enabled (around 20%). This query is dominated by the execution
of a single predicate of the form [$vv > 5000 * data(.)]. Here $vv is a local
variable generated by the optimizer (as a result of loop-lifting an expression out
of the predicate), and data(.) involves atomizing a node and converting its
string value to an xs:double. In fact, string-to-double conversion dominates the
query execution time. This is done in a library routine, and there's no opportunity
for bytecode generation to speed it up.

By contrast, we found that execution of a large DocBook XSLT transformation
improves only from 10.17s to 10.08s as a result of bytecode generation. We've pro-
filed this, and it's very hard to identity significant hot-spots that account for a
substantial part of the total execution time.

Where exactly does bytecode generation help? It's surprisingly difficult to
answer this question.

It's easy to see where it doesn't help: most of the run-time execution is spent
doing things like string-to-number conversion, regular expression processing,
navigation of the TinyTree data structure, parsing, and serialization, where the
logic is all in library routines that are exactly the same whether invoked by the
interpreter or by generated bytecode. So where do we get gains? I think the
answer is some combination of the following:

• Reduced navigation of the expression tree. Some of the expressions on the
expression tree execute so quickly that finding your way to the expression that
needs to be evaluated is as much work as doing the actual evaluation. This is
pure overhead in the interpreter.

• Eliminating run-time checks. Even with interpreted code, we go to great
lengths to do everything we can at compile time to reduce work done at run-
time. For example, if a regular expression or a collation URI is supplied as a
string literal, we'll always try to take advantage of the fact. And we do static
type analysis to avoid unnecessary run-time type checking. But sometimes it's
just not practical. For example, there are many instructions where there's a
run-time error if the context item is absent, or if it isn't a node. We might know
at compile time that this check isn't needed on a particular path, but with the
interpreter, it's simplest to do it anyway. The bytecode generator can be a bit
more selective and avoid a few unnecessary instructions.

• Inlining. When we generate code for a predicate like [$vv > 5000 *
data(.)], the code all goes in a single generated method. There are no calls
from the method that does the comparison to the method that does the arith-
metic to the method that does the atomization. Fewer method calls means less

Expression Elaboration

55

overhead; it also means that the next instruction you want to execute is more
likely to already be in the CPU cache.

Now, you might ask, surely the JVM hot-spot compiler can do inlining
anyway, so why do we need to do it ourselves? Well, there's a very important
difference. In the Saxon interpreter, the methods are highly polymorphic
("megamorphic" is the term used by the JVM experts). That is, we have liter-
ally a couple of hundred subclasses of Expression to evaluate different kinds
of expression, and when ArithmeticExpression.evaluate() calls the
evaluate() method of its two operands, that method call could be despatched
to any one of a hundred different implementations of the evaluate() method.
In that situation, no inlining is possible, except perhaps in the case where one
kind of operand (perhaps a numeric literal) is much more common than any
other. By contrast, we're generating bytecode for a specific arithmetic expres-
sion where we know that the two operands are a literal and an atomizer, and
in that situation inlining is eminently possible.

So the key difference is: in the interpreter, one Java method is handling all
arithmetic expressions. In the generated bytecode, there's one Java method for
each individual arithmetic expression in the stylesheet (provided of course
that it's executed often enough to justify the code generation). An individual
arithmetic expression knows statically what kinds of operands are; the generic
code that handles all arithmetic expressions only finds this out when it gets
executed.

• Avoiding boxing and unboxing. One of the consequences of using highly pol-
ymorphic methods like Expression.evaluate() is that data has to be passed
from caller to callee, and back, in a form that satisfies a strongly typed inter-
face. For example, the result of every XPath function call has to be returned as
an instance of the class net.sf.saxon.om.Sequence. So with an XPath expres-
sion like count($x) + 1, the chances are that the implementation of count()
is computing an integer, which has to be wrapped as an
net.sf.saxon.om.Sequence, merely so that this can be unwrapped again in
order to add one to the value. The bytecode generator is able to avoid a lot of
this boxing and unboxing.

How much does this matter? We don't really know. We know that the costs
of allocating and garbage collecting short-lived objects are much less than
they were in Java's early days, but small costs incurred millions of times do
add up.

4. Elaboration
In this section we'll first look at requirements: what are we trying to achieve?
Then we'll explain the concept of expression elaboration; and we'll illustrate it
with an example.

Expression Elaboration

56

4.1. Why try something new?
For this project we wanted to try a new technique, called expression elaboration,
which I will go on to explain in the next section. But before doing so, I should
explain why we were motivated to experiment with new ideas.

The immediate driver was the development of a new product (SaxonCS) tar-
geted at the .NET Core platform. 1 For many years, we (Saxonica) delivered a ver-
sion of Saxon for the .NET Framework platform, which was built by using the
open source IKVM tool to convert the compiled SaxonJ JAR file into a .NET exe-
cutable, and adding an API layer to integrate it with other facilities of the plat-
form. In 2019, Microsoft announced that they planned to discontinue
development of .NET Framework, and concentrate future work on .NET Core.
Although the two platforms offer very similar capabilities at the API level, the
internal engineering is very different, sufficiently so that IKVM would need a
complete rewrite to make it work with .NET Core; which was unlikely to be
forthcoming since the main developer of IKVM, Jeroen Frijters, announced that
he had no enthusiasm to take the task on. As a result we needed to find a differ-
ent way of bridging Saxon from the Java platform to .NET, and we did this by
writing our own source code transpiler [XML London 2021]. With IKVM (per-
haps surprisingly) our Saxon bytecode generation logic worked seamlessly
on .NET — as soon as we generate bytecode, IKVM translates it on the fly to .NET
's equivalent. In the new transpiler-based product, this wasn't going to work.

For the Java platform, we're a little disillusioned with bytecode generation
anyway, because there's a lot of code to maintain and the benefits, as we've seen,
are quite modest. We wanted to see if there might be another way of getting the
benefits with lower maintenance cost. Because of our business model where we
offer a free open-source product alongside a commercial Enterprise Edition, it's
useful to offer features like bytecode generation that provide an easy-to-under-
stand turbo-charger to the base product. So we were reluctant to drop it entirely,
but at the same time we wanted to see if we could do better.

On the Javascript product, SaxonJS, which is developed using completely sep-
arate source code, we had seen outstanding performance benefits from a techni-
que we called expression elaboration. In fact, the benefits were so clearly
apparent to the naked eye that we never took the trouble to make detailed meas-
urements of the actual speed-up. We knew that we were unlikely to achieve the
same kind of benefit with the Java product because we were starting with some-
thing that was already much more highly tuned; but it looked as if it might give
us an alternative to bytecode generation for the SaxonCS version, and perhaps
even enable us to drop bytecode generation from SaxonJ.

1The terminology has evolved. SaxonCS = Saxon on the .NET platform (primarily for C#); SaxonJ =
Saxon on the Java platform; SaxonJS = Saxon on Javascript platforms (Node.js and browsers)

Expression Elaboration

57

4.2. Expression Elaboration Explained

Expression elaboration starts with exactly the same expression tree that we use
for interpretation, but it then splits the work of evaluation into two phases:

• The first time any expression node on the tree is evaluated, we construct a
lambda expression, which we then leave on the tree for subsequent use. The
name "elaboration" refers to this stage of the process.

• All subsequent evaluations of the expression then merely call this lambda
expression, passing the evaluation context as an argument.

That's a convenient way to explain it, but in practice when an expression is
elaborated, this usually involves elaborating its subexpressions, and so on
down to the bottom of the tree. So typically, the first time a user-written func-
tion or template is called, the body of the function is elaborated into a lambda
expression, which invokes further lambda expressions held in its closure, and
so on recursively; in the typical case the original expression tree then plays no
further part.

Lambda expressions have become ubiquitous in nearly all modern programming
languages, and the syntax and semantics are similar across Java, C#, and Java-
script.

4.3. A simple example

Let's look at one particular instruction, called "negate". This implements the
unary minus operator: it corresponds to an XPath expression such as -$x. 2 In
SaxonJ, the code to evaluate a negate instruction in the interpreter looks like this:

@Override
public NumericValue evaluateItem(XPathContext context) throws
XPathException {
 NumericValue v1 = (NumericValue)
getBaseExpression().evaluateItem(context);
 if (v1 == null) {
 return backwardsCompatible ? DoubleValue.NaN : null;
 }
 return v1.negate();
}

Some observations:

2According to the XPath grammar, -1 is a negate expression applied to a literal; but we sort that out
during static analysis, so this will always appear as a constant at run-time. Unary minus operators are
rarely used with operands other than numeric literals, but we've chosen them as our example because
they are so simple.

Expression Elaboration

58

• The method evaluateItem() takes the XPathContext as a parameter. There's a
lot of information in this object, but the only thing we do is pass it on when
evaluating the single operand (accessed as getBaseExpression())

• The logic essentially does four things:
• Evaluate the operand.
• Cast the result to a NumericValue (we know this cast is safe, because static

type analysis will have generated a guard expression on the expression
tree to check or convert the value in cases where it is necessary).

• if the value of the operand is null (representing an empty sequence) return
either NaN or null depending on whether XPath 1.0 backwards compatibil-
ity is in force

• call the negate() method on the NumericValue.
Now see what happens when we elaborate this instruction:

@Override
public ItemEvaluator elaborateForItem() {
 final NegateExpression exp = (NegateExpression)getExpression();
 final ItemEvaluator argEval =
makeElaborator(exp.getBaseExpression()).elaborateForItem();
 final boolean maybeEmpty =
Cardinality.allowsZero(exp.getBaseExpression().getCardinality());
 final boolean backwardsCompatible = exp.isBackwardsCompatible();
 if (maybeEmpty) {
 if (backwardsCompatible) {
 return context -> {
 NumericValue v1 = (NumericValue) argEval.eval(context);
 return v1 == null ? DoubleValue.NaN : v1.negate();
 };
 } else {
 return context -> {
 NumericValue v1 = (NumericValue) argEval.eval(context);
 return v1 == null ? null : v1.negate();
 };
 }
 } else {
 return context -> ((NumericValue)
argEval.eval(context)).negate();
 }
}

What's going on here? Remember that the method elaborateForItem() is called the
first time a particular negate instruction is evaluated. It does the following:
• Gets the operand expression in the expression tree (getBaseExpression())
• Elaborates the operand expression, returning a lambda function

Expression Elaboration

59

• Examines the expression tree to see (a) whether the result of the operand may
be an empty sequence, and (b) whether evaluation is in XPath 1.0 backwards
compatibility mode

• Returns one of three different lambda functions, depending on these input
conditions. The resulting function performs no run-time check for backwards
compatibility, and no check for the operand being null unless this is actually a
known possibility.

If you're not familiar with lambda expressions in Java, there are three in
this sample, all taking the form params -> (expression | "{" statements
"}"). This corresponds to the lambda calculus notation λ params : expr, but
neither Java nor any other of the mainstream programming languages was
prepared to take the plunge of using Greek letters in the concrete syntax. The
syntax denotes an anonymous function that takes a context object as its argu-
ment, and returns the result of evaluating the supplied expression (or state-
ments) which typically depend both on the explicit context argument
supplied by the caller, and on variables (such as argEval) that are in scope at
the point where the lambda expression appears: the values of these variables
are carried along with the function itself and are referred to as the function's
closure.

So comparing the interpreted code with the generated lambda function, what
have we achieved?
• We've eliminated the code that navigates the expression tree at run-time to

locate the operand expression. Instead, the elaborated operand expression is
present in the closure of the generated function, as variable argEval.

• We don't check at run-time for null values unless they can actually occur.
• The run-time logic doesn't need to consider whether backwards compatibility

is in force or not: this decision has been "baked in".
• This is only saving us a few instructions; but negating a number is only one

instruction, so in relative terms, we've cut out a lot of overhead.
I'm not going to show the code for bytecode generation of this expression, but I'll
show what the generated bytecode looks like (with added comments for explana-
tion). This bytecode is produced when compiling the XQuery function declare
function f:negate($x as xs:double) as xs:double {-$x};

 // load the first argument (the XPathContext)
 ALOAD 1
 // Get the stack frame holding local variables
 INVOKEINTERFACE net/sf/saxon/expr/XPathContext.getStackFrame ();
 INVOKEVIRTUAL net/sf/saxon/expr/StackFrame.getStackFrameValues ();
 // Load the value of the variable at slot 0 on the stack frame
 ICONST_0

Expression Elaboration

60

 AALOAD
 // The value is in general a Sequence; call head() to get its first
and only item
 INVOKEINTERFACE net/sf/saxon/om/Sequence.head ();
 // Cast this to type NumericValue
 CHECKCAST net/sf/saxon/value/NumericValue
 // Invoke NumericValue.negate()
 INVOKEVIRTUAL net/sf/saxon/value/NumericValue.negate ();
 // Wrap the result in a SingletonIterator
 INVOKESTATIC net/sf/saxon/tree/iter/SingletonIterator.makeIterator
(Lnet/sf/saxon/om/Item;);
 // Return the iterator as the result of the XQuery function
 ARETURN

The only really signficant difference from the elaboration case is that bytecode for
the operand expression is generated inline, rather than being invoked separately.

All three approaches (interpreter, compiler, elaborator) end up calling the
library routine NumericValue.negate() to do the real work. This is a polymor-
phic method with different implementations for integers, decimals, double, and
floats. In all three cases the JVM hotspot optimizer has the opportunity to opti-
mize the call by inlining, but it's only likely to do so in practice if one of these
types occurs much more frequently than the others.

It's possible that as a result of Saxon's static analysis the elaborator already
knows what the type of the numeric value will be. With bytecode generation, we
can easily pass this information to the Java compiler by casting to the relevant
type instead of to the generic type NumericValue (though in fact, we fail to take
advantage of this opportunity). With the interpreter, this isn't possible, because a
single method is handling all Negate expressions in the query or stylesheet, and
they will typically be handling different types of operand. For the elaborated
case, we could do it in principle, by generating different lambda functions for the
four cases, plus one for the case where the type is statically unknown. However,
the complexity multiplies exponentially -- instead of generating one of three pos-
sible lambda functions, we would be generating one of 15, and it would need
strong justification to attempt this.

4.4. Push mode, Pull mode

In the example above, the interpreter used a method evaluateItem() to evaluate
the negate expression (and its operand). We use that method where the expres-
sion result will always be a singleton item (or perhaps an empty sequence). Other
methods are used where an expression can return an arbitrary sequence. Elabora-
tion, similarly, can generate code that uses different modes of evaluation.

At the top level, we have two ways of evaluating an expression: pull mode
and push mode.

Expression Elaboration

61

• In pull mode, the iterate method returns the result of the expression (which
in the general case is a sequence) as an iterator over the items in the sequence.
This means we are doing lazy evaluation, which is an important technique in
all functional languages — it means that in many cases, evaluation of an
expression can finish before the operands are fully evaluated, because enough
information is available to establish the result.

The evaluateItem() method seen in the example above is a short-cut
method provided for convenience when an expression always returns a sin-
gleton result.

• In push mode, the results of the expression are not returned to the caller, but
are written to a result stream, which will often be the final serialized result of
a transformation. The advantage of push mode is that there is no need to hold
the entire result document in memory, it can be written out "on the fly".

Both modes are supported by elaboration: for any given expression on the tree,
we can generate either a pull function, or a push function, or both.

For pull mode, the function that we generate takes a single argument, the
object holding the dynamic context, and it returns an iterator over the expression
results. For push mode, we generate a function that takes two arguments, the
dynamic context object and the destination to be written to; the function returns
no result, but instead has a side-effect of writing to the destination.

Most instructions only support one mode of execution directly: for example
an element constructor supports push mode, while an arithmetic expression or
path expression supports pull mode. If the opposite mode is needed, it can be
easily achieved using a wrapping function that converts the results. But some
instructions - notably "flow of control" instructions such as conditional expres-
sions, iteration instructions (xsl:for-each in XSLT, for expressions in XPath/
XQuery), and function calls, support both modes natively.

5. Results
So, what benefits are we seeing from expression elaboration?

The results given here are provisional, for two reasons: firstly, implementation
is incomplete (we've only implemented elaboration in SaxonJ for a selection of
commonly used expressions), and secondly, measuring the effect is not easy.

At this point I need to acknowledge the contribution of Chris Newland, who
has been working with us to improve our ability to benchmark the Saxon soft-
ware and assess the impact of changes. Benchmarking Java applications is a very
skilled task, and it's very easy to come to incorrect conclusions if you cut corners.
Getting repeatable results (where today's figures come out the same as yester-
day's) is challenging: don't try it on your laptop, where temperature variations or
a low battery can cause the CPU speed to be throttled. Getting good reliable data
needs a controlled stable machine configuration, and benchmark runs that take

Expression Elaboration

62

hours rather than minutes. And even where the results are consistent, that's no
guarantee that you will draw the right conclusions from the data.

We've been putting a lot of work into measurement on the Java platform, but I
mentioned that part of the motivation was to see what we could achieve on .NET,
where bytecode generation isn't an option. Our benchmarking activities on .NET
have been far less thorough, but the early indications are very positive: for exam-
ple the XMark query Q11 came down from 1192ms with the interpreter to 858ms
with elaboration — a 28% improvement, better than we get with bytecode genera-
tion on the Java product. Both figures have an error margin of around ±5%. Other
queries also showed a benefit, though not usually as great as this: 10% is more
typical. With improvements of this order, we can probably declare victory and
dispense with the effort of doing more accurate measurement.

On Java, so far, we're seeing much smaller improvements. For XMark Q11, for
example, elaboration brings the timing down from 107ms to 104ms. Other queries
show similar results: the improvement, if it exists, is hardly measurable, and is
certainly a lot less than we get with bytecode generation. Needless to say, this is
disappointing.

Of course, there is a beneficial side-effect: when you put this much effort into
instrumentation, you discover all sorts of opportunities for performance improve-
ments that you weren't actually looking for, and following up on some of these
opportunities has probably distracted us from the task we set out to accomplish.
But they're out of scope for this paper.

We're still exploring why the benefit on Java is so small, and whether there's
anything we can do to improve matters. We've found that some of the switches
that Java provides to control the behaviour of the hot-spot compiler can make a
significant difference, but in the real world that's not very useful knowledge since
very few Saxon users in the field are likely to take advantage of it. And many of
the Saxon users who do care deeply about performance probably have applica-
tions in which Saxon is just one of many components. But observing how these
switches affect the results does give us clues about how the lambda functions
we're generating are treated by the hot-spot optimizer.

Perhaps the key finding (though a provisional one that we need to confirm) is
that the hot-spot optimizer is taking no notice of the values in the closure of a
lambda expression: just because a boolean variable in the closure is false, doesn't
mean that the hot-spot compiler is eliminating a run-time code branch that
depends on that value. That's because it's not optimizing for a particular expres-
sion in the query or stylesheet (say, a particular filter predicate), rather it's opti-
mising for a statistical average of all filter predicates in the stylesheet. The net
result is that with both elaboration and interpretation, the ability of the hot-spot
optimizer to work its magic is inhibited by the fact that the calls we are making to
evaluate subexpressions are so heavily polymorphic.

Expression Elaboration

63

It seems fairly clear that there's some significant difference in the way the Java
and C# optimizers handle lambda expressions that cause the technique to show
greater benefits in C# than on Java. But so far, we haven't been able to pin down
exactly what it is.

Expression Elaboration

64

A Benchmark Collection of
Deterministic Automata for XPath

Queries
Antonio al Serhali

Inria

Joachim Niehren
Inria

Abstract

We provide a benchmark collection of deterministic automata for regular
XPath queries. For this, we select the subcollection of forward navigational
XPath queries from a corpus that Lick and Schmitz extracted from real-
world XSLT and XQuery programs, compile them to stepwise hedge autom-
ata (SHAs), and determinize them. Large blowups by automata
determinization are avoided by using schema-based determinization. The
schema captures the XML data model and the fact that any answer of a path
query must return a single node. Our collection also provides deterministic
nested word automata that we obtain by compilation from deterministic
SHAs.

1. Introduction
XML is one of the most used standardized formats for representing exchanging
structured data between various tools and applications. XML documents form
unranked data trees. Processing XML documents in both in-memory and stream-
ing modes are widely studied for many years [24] [25] [28] [27] [26]. The most fre-
quent tasks are validating, querying and transforming XML documents. In the
XML technology, this is done with standardized languages based on XPath quer-
ies, such as XSLT and XQuery.

Automata-based algorithms are not only relevant for validating XML docu-
ments with respect to a schema (as with RelaxNG) but also for querying XML
streams [7] [6] [16] [11]. The problem with syntax-oriented approaches for
answering XPath queries on XML streams yield only low coverage. Automata
approaches, in contrast, can deal with all of XPath3.0 as shown by Sebastian,
Niehren, and Debarbieux [6]. When applying automata, however, it is natural to
abstract XML documents to nested words [23], which generalize on unranked
data trees and sequences thereof that are also called forests or hedges. Automata

65

for nested words are also relevant for enumerating query answers of document
spanners in in-memory mode [8] [20], and for enumerating query answers on
data trees [14] [2] [5].

Deterministic automata are relevant to keep the computational complexity of
various problems tractable. In particular it enables automata minimization in pol-
ynomial time and universality testing in linear time. In contrast, universality
becoming EXP-complete for nondeterministic automata on trees or nested words
[4] [21]. Note that universality testing can be used as a stopping condition for
automata algorithms. More concretely, determinism is required for the streaming
algorithms of [7] and [11] but also for the inmemory algorithm of [20]. Therefore,
deterministic automata on nested words need to be produced for regular path
queries [12] [15] [9] for benchmarking these algorithms.

Compiling regular path queries to automata is less problematic, but their
determinization may blowup the automata sizes exponentially. This also happens
in practice. For the XPath query //a[following- sibling::b[.//c][./d]]/e
for instance, [6] construct a nested word automaton (NWA) with 38 states of over-
all size 7338. The determinization of this automaton has more than 5000 states
and 20 million transition rules. It is so big that it cannot be computed an a stand-
ard laptop. This shows that the usual determinization algorithm for NWAs [3] [1]
[19] quickly leads to a size explosion. Niehren and Sakho [17] improved this sit-
uation by using the determinization algorithm for stepwise hedge automata
(SHAs), which in turn can be compiled to deterministic NWAs. In this way deter-
ministic SHAs and NWAs of decent size could be obtained for the 10 forward
navigational XPath queries for the XPathMark benchmark [10]. But even the
determinization of SHAs may lead to unreasonably large automata for pratically
relevant XPath queries. For the XPath query / a/ b// (* | @* | comment() |
text()), for instance, a deterministic SHA with 145 states and size 348 got repor-
ted, whose determinization has 10 005 states and overall size 1 634 123 [18].

Niehren, Sakho, and Al Serhali showed recently [18] that this determinization
problem for SHAs can be solved by using schemas, i.e., deterministic automata
that model which nested words are valid inputs of the automaton. In the case of
XPath queries, the schema captures the XML data model, and that each query
answer must return a unique node of the XML document.

The first schema-based approach is to determinize the product of the query
automaton with the schema automaton. For the above XPath query, this yields a
deterministic SHA with 92 states and size 417, which after minimization goes
down to 27 states and size 98. Nevertheless, this approach may seem surprising at
first sight, since the schema-product is usually bigger than the query automaton
itself. But indeed it works quite nicely in practice. The intuition is that the deter-
ministic schema reduces the number of subsets of states that are to be considered
during determinization since all states in such subsets must be aligned to the
same schema state.

A Benchmark Collection of Deterministic Automata for XPath Queries

66

The second schema-based approach is to clean the determinized automaton
with respect to the schema. This means removing all states and transitions that
cannot be aligned to the schema. Schema-based cleaning has the advantage of
always yielding smaller automata. Unfortunately, however, it is not always com-
putationally feasible in practice, since the automaton produced by determiniza-
tion is often too large for being schema-cleaned.

The third schema-based approach is schema-based determinization, an algo-
rithm proposed in [18]. The idea is integrate schema-based cleaning directly into
the determinization algorithm, in order to avoid large blowups from the begin-
ning, while producing the same result as with the second approach. The autom-
ata obtained by schema-based determinization are usually smaller than by
determinizing the schema-product, also after minimization, since they do not rec-
ognize the same language.

We applied the implementations of all three approaches to show that small
deterministic SHAs and NWAs can be obtained for all the regular XPath queries
in the benchmark corpus that Lick and Schmitz [30] [13] harvested from XSLT
and XQuery programs available online (docbook, teixml, htmlbook, ...). The third
solution based on schema-based determinization followed by minimization
yields the best results. The largest SHA obtained in this way for the whole bench-
mark collection has 58 states. In average there are 22 states and 71 transition rules
per automaton. All automata are published in the software heritage archive at
https:// archive.softwareheritage.org/ browse/ origin/ ?origin_url=https://
gitlab.inria.fr/aalserha/xpath-benchmark.

The fact that we can indeed determinize the automata of most if not all practi-
cal XPath queries with a mild size increase, gives new hope to improve the situa-
tion on XML streaming in the near future, building on approaches requiring
deterministic automata [7] [11] [29].

1.1. Outline

We present our selection of regular XPath benchmark queries from the corpus of
Lick and Schmitz [30] in Section 2. Nested words and their relationship to XML
documents are recalled in Section 3. A deterministic stepwise hedge automata
defining the schema of valid XML documents is given in Section 3.2. A formal
definition of stepwise hedge automata follows for the sake of self-containedness
in Section 4. In Section 5 we discuss our compiler from XPath expressions to
deterministic automata, and illustrate it by example automata from our bench-
mark collection. In Section 6 we discuss how we tested our automata for correct-
ness on a sample of annotated XML documents produced from the XPath query
based on Saxon XSLT. The sizes of automata in our benchmark collection of SHAs
are discussed in Section 7. We conclude in Section 8. Some complementary infor-
mation can be found in Appendix A.

A Benchmark Collection of Deterministic Automata for XPath Queries

67

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

2. XPath Benchmark Queries

We start with the collection of 21000 XPath queries that Lick and Schmitz [30]
extracted from real-world XQuery and XSLT programs available on the Web. The
purpose of this corpus is to reflect the form and distribution of XPath queries in
practical applications. The much smaller XPathMark benchmark [10], in contrast,
focuses on functionality testing.

We then filter the subclass of around 4500 forward navigational XPath queries
of Lick's and Schmitz's corpus. The other queries contain comparisons of data val-
ues, arithmetics, and functions, including higher-order functions to iterate over
sequences, which may be nonregular. We also removed boolean queries and kept
only node selection queries. We then selected the 180 largest queries of this sub-
corpus.

Finally, we removed duplicates of queries up to renaming of XML namespace
prefixes and local names, and syntactical details, such as .// author or
descendant-or-self::author or descendant-or-self::corpauthor. This leads
us to the collection of 79 queries. The first 10 queries are shown in Table 1.

Table 1. The first 10 of the 79 queries of the benchmark collection (see
Table A.1)

Id XPath Query
18330 /descendant-or-self::node()/child::parts-of-speech
17914 / descendant-or-self::node()/ child::tei:back/ descendant-or-

self::node()/child::tei:interpGrp
10745 *//tei:imprint/tei:date[@type='access']
02091 * | .//reftd
00744 .//@id | .//@xml:id
12060 .//attDef
02762 .//authorgroup/author | .//author
06027 .//authorinitials | .//author
02909 .//bibliomisc[@role='serie']
06415 .//email | address/otheraddr/ulink

We note that the XPath query 18339 is considered as large since it contains the
recursive axis descendant-or-self. Other queries are considered as large since
having a parse tree with more than 15 nodes, for instance 05684 and 05684.

A Benchmark Collection of Deterministic Automata for XPath Queries

68

3. Nested Words for XML Documents
We use nested words to abstract from XML documents since automata can be
defined more easily for nested words.

3.1. Nested Words
Nested words generalize on words by adding parenthesis that must be well-nes-
ted. Nested words also generalize on unranked trees and over sequences thereof
that are often called hedges. We restrict ourselves to nested words with a single
pair of opening and closing parenthesis ፫ and ፫ since named parenthesis can be
encoded easily. Let Σ be a set that we call the alphabet. Nested words in NΣ have
the following abstract syntax.

w,w′ ∈ NΣ ::= ε | a | 〈w〉 | w · w′ where a ∈ Σ.

We assume that concatentation · is associative, and that the empty word ε is a
neutral element, that is w · (w′ · w′′) = (w · w′) · w′′ and ε · w = w = w · ε . Nested words can
be identified with hedges, i.e., sequences of unranked trees and letters, that is
NΣ = (Σ ∪ 〈NΣ〉)∗ .

3.2. XML Documents
XML documents are labeled unranked trees that can be serialized into a text, such
as for instance:

<s:a name="uff"> <s:b> gaga <s:d/> <s:b/> <s:c/> <s:a>
We represent XML documents as nested words over the signature ΣXML that

contains 4 disjoint types of letters: the XML node-types {elem, attr, text, comment} , the
XML namespaces of the document {s} , the XML names of the document
{a, . . . , d, name} , and the characters of the data values, say UTF8. For the above
example, we get the nested word:

〈elem · s · a · 〈attr · name · u · f · f〉〈elem · s · b · 〈text · g · a · g · a〉〈elem · s · d〉〉〈elem · s · c〉〉

4. Automata for Nested Words
Stepwise hedge automata (SHAs) [17] extend on classical finite state automata
(NFAs) from words to nested words. They provide a graphical way to define reg-
ular languages of nested words, and thus regular languages of XML documents.
SHAs are often easier to read that the better-known nested word automata
(NWAs) and help us to avoid large size blowups coming with NWA determiniza-
tion. In this section we recall the definition of SHAs based on the definition of
NFAs and discuss their relationship NWAs.

A Benchmark Collection of Deterministic Automata for XPath Queries

69

4.1. Finite State Automata (NFAs)
We consider finite state automata with else rules and possibly infinite alphabets.
Definition. An NFA (with else rules) is a tuple A= (Σ,Q,∆, I, F) such that

alphabet Σ is a possibly infinite set, ∆ = ∆′] _∆ contains a subset of transition rules
for letters ∆′ ⊆ (Q× Σ)×Q and a subset of else rules _∆ ⊆ Q×Q . We call NFA A
deterministic or equivalently a DFA if ∆′ and _∆ are partial function.
As usual when using automata, we draw NFAs as graphs whose nodes are the
states. A state q ∈ Q is drawn with a circle q , an initial state q ∈ I with an incom-

ing arrow → q , and a final state with a double circle q . A letter transition rule
(q1, a, q2) ∈ ∆′ is drawn as a black edge q1

a−→ q2 that is labeled by a letter a ∈ Σ . An

else rule (q, q′) ∈ _∆ is drawn as q
_−→ q′ . It permits that the automaton in state q

can go to state q′ when reading any letter a ∈ Σ such that there exists no q′′ with
q

a−→ q′′ ∈ ∆ . Any else rule can be expanded to a set of letter transitions rules as fol-
lows:

q
_−→ q′ ∈ ∆ a ∈ Σ ¬∃q′′ ∈ Q. q

a−→ q′′ ∈ ∆

q
a−→ q′ ∈ ∆exp

q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆exp

4.2. Stepwise Hedge Automata (SHAs)
We extend NFAs to SHAs by adding adding apply rules that read states of sub-
trees rather than letters from the alphabet.
Definition. An SHA (with else rules) is a tuple A = (Σ,Q,P,∆, I, F) where

∆ = ∆′]∆′′ so that A′ = (Σ,Q,∆′, I, F) is a NFA. Furthermore, P is a finite set of tree
states and ∆′′ = (〈〉∆,@∆,−→∆) such that 〈〉∆ ⊆ Q is a subset of tree initial states,
@∆ ⊆ (Q×P)×Q a set of apply rules, and −→∆⊆ Q×P a set of tree final rules.
We draw SHAs as graphs extending on the graphs of NFAs. A tree state p ∈ P is

drawn in gray p . A tree initial state q ∈ 〈〉∆ is a hedge state is drawn as
〈〉−→ q with

an incoming tree arrow. An apply rule (q1, p, q2) ∈ @∆ is drawn by a blue edge q1
p−→q2

carrying a state p ∈ P rather than a letter a ∈ Σ . It states that a nested word in state
q1 ∈ Q can be extended by a tree in state p ∈ P and go into state q2 ∈ Q . A tree final
rule (q, p) ∈−→∆ is drawn as q −→ p . It states that if w is a nested word in state
q ∈ Q then 〈w〉 is a tree in state p ∈ P .

Transitions of SHAs have the form q w−→ q′ wrt ∆ where w ∈ NΣ and q, q′ ∈ Q . They
are defined by the inference rules:

q ∈ Q
q

ε−→ q wrt ∆

q
a−→ q′ ∈ ∆exp

q
a−→ q′ wrt ∆

q0
w1−−→ q1 wrt ∆ q1

w2−−→ q2 wrt ∆

q0
w1·w2−−−−→ q2 wrt ∆

A Benchmark Collection of Deterministic Automata for XPath Queries

70

q′ ∈ 〈〉∆ q′
w−→ q wrt ∆ q −→ p ∈ ∆ q1

p−→ q2 ∈ ∆

q1
〈w〉−−→ q2 wrt ∆

The last inference rule says that when reading a tree 〈w〉 the automaton can
transit from a state q1 to a state q2 if with w it can transit from some tree initial state
q′ to q , so that there is some tree final rule q −→ p ∈ ∆ and some apply rule
q1

p−→ q2 ∈ ∆ . The language L(A) of a SHA is defined as usual for NFAs except that
nested words may be recognized too:

L(A) = {w ∈ NΣ | q w−→ q′ wrt ∆, q ∈ I, q′ ∈ F}

The notion of determinism for SHAs extends on the notion of left-to-right deter-
minism of NFAs and on the notion of bottom-up determinism of tree automata.
Definition. We call an SHA A deterministic or equivalently a dSHA, if the

contained finite automaton A′ is a DFA, there is at most one tree initial state in 〈〉∆ ,
and @∆ and −→∆ are partial functions.

4.3. Adding Typed Else Rules
Suppose that the alphabet Σ is typed, in that any letter a ∈ Σ can be given some
types in some type set T . We can then add typed else rules (q, τ, q′) ∈ ∆× T ×∆ that

we draw as q
−τ−−→ q′ . In contrast to untyped else rules, a typed else rule cannot

be expanded with all letters from Σ , but only with those that can be given the
type τ .

4.4. A Schema for XML Documents
The most frequent type of XPath queries select nodes of XML documents. For
referring to selected nodes, we fix a single selection variable x. We call an XML
document or subdocument, in which a single node is annotated by x, an x-annota-
ted example. An x-annotated example is called positive for a query if the query
selects the x-annotated node in the XML document, and negative otherwise.

Figure 1 recognizes the set of all x-annotated examples. These must satisfy the
XML data model and contain exactly one occurence of x.

A Benchmark Collection of Deterministic Automata for XPath Queries

71

Figure 1. The dSHA xml&onex : a schema for x-annotated XML documents

The automaton starts in hedge state 0 where it expects to read a nested word 〈w〉 ,
that can be evaluated to tree state 28, in order to go to the final state 29, where it
accepts. The sequence of children w of the tree must be evaluated form the tree
initial state, which is equally the hedge state 0. If w starts with letter doc indicat-
ing an XML document node at the root, the automaton moves from state 0 to state
5. There it may either read the variable x and go to state 5, where it expects a sub-
tree in state 21, i.e. an XML element of which no node is annotated by x. Or it
may read the symbol ¬ x and move to state 6, where it expects a subtree in state
19, i.e. an XML element of which exactely one node is annotated by x. In both
cases it can go to the hedge state 26 and from there to the tree state 28. The
automaton also states the relationships of elements, attributes, text and comment
nodes according to the XML data model.

The alphabets of names and namespaces of XML documents are infinite. In
order to represent infinite sets of transition rule symbolically in a finite manner,
the automaton use type else rules. The typed else rule in state 3, for instance, is
labeled by -namespace, permitting to read any namespace and to go to state 9.
State 9 in turn has an else rule labeled by -name which permits to read any (local)
name and move to state 13.

A Benchmark Collection of Deterministic Automata for XPath Queries

72

4.5. Nested Word Automata (NWAs)

Nested word automata (NWAs) [[19]][[1]] are well known pushdown machines
for defining regular languages of nested words. They can process nested words in
a streaming manner: top-down, left-to-right, and bottom-up manner. SHAs in
contrast operate bottom-up and left-to right only. They avoid any top-down pro-
cessing, since it quickly leads to huge size increases during NWA determiniza-
tion.

Any SHA can be compiled in linear time to an NWA such that determinism is
preserved. There also exists an inverse translation in quadratic time (but not pre-
serving determinisim), so both automata classes have the same expressiveness,
also when restricted by determinism. We omit the details, but provide determin-
istic NWAs in our collection. See for instance: Figure 4.

5. Compiler to Automata
We extended on the compilation chain for regular XPath queries to automata
from [17]. As a running example, we consider the following query:

Q2 : h:body[@lang != '']

Query Q2 selects a node if it has a child named body in namespace h, that has the
attribute node named lang containing a nonempty text.

5.1. Parser

Our parser for XPath expressions computes a parse tree following the grammar of
XPath 3.1 from the W3C. In addition, it returns for any forward regular XPath
expression a logical formula in the language FXP [6]. For the XPath example Q2 ,
we obtain the following FXP formula:

child(labelem:type ∧ labh:namespace ∧ labbody:name ∧ labx:var∧
child(labatt:type ∧ canddefault:namespace ∧ lablang:name ∧ string 6=′′))

Our previous parser needed considerable improvement in order to be able to
cover the large variety of queries from the corpus of Lick and Schmitz [30].

5.2. Nested Regular Expressions

We next compile formulas to nested regular expressions, which extend on stand-
ard regular expressions from words to nested words. Again, considerable work
was needed to enable a sufficiently large coverage. For the query Q2 our compiler
yields the nested regular expression:

A Benchmark Collection of Deterministic Automata for XPath Queries

73

〈(elem:type._) + doc:type)._.>.
〈elem:type.h:namespace.body:name.x:var.
〈att.type.default:namespace.lang:name._.(_char.(_char)∗〉.>〉.>〉.>

Note that the test for a nonempty string got translated by the regular expres-
sion _char.(_char)∗ . It should also be noticed that this expression matches some x-
annotated nested words, that are not x-annotated examples, i.e. not belonging to
the language L(xml&onex) of the schema. This is since the nested subwords match-
ing universal expression > are completely unconstrained.

Figure 2. The nondeterministic SHA A2 = sha(Q2) .

5.3. Compiler to SHAs

The compiler then converts nested regular expressions into SHAs. This is done by
extending a usual compiler from regular expressions to NFAs. The interaction of
recursion and nesting leads to some nasty issues, that are discussed and resolved
in [17]. For developping the present benchmark, we needed to add a treatment of
typed wildcards such as -char. This is done by introducing typed else rules. For
the query Q2 we obtain Figure 2. Similarly to the nested regular expression, this
SHA may recognize some annotated nested words, that are not x-annotated
examples, i.e., that do not belong to the language of the schema L(xml&onex) .

A Benchmark Collection of Deterministic Automata for XPath Queries

74

5.4. Determinization
The usual determinization algorithms for NFAs and tree automata can be lifted to
a determinization algorithm for SHAs. When applied to query Q2 however, we
obtain a SHA with 25 states and 183 transition rules, which is much larger than
one might expect. It is given in Figure A.1 of the appendix. Even worse, in some
cases, the determinization algorithm does not finish after some hours.

5.5. Determinizing the Schema Product
Determinization applied to the product of the queries' automaton and the schema
xml&onex permits to compute deterministic automata for all queries of our bench-
mark within a timeout of 100 seconds. The result for Q2 is a dSHA with 53 states
and 110 transition rules, see automaton Figure A.2 of the appendix. The overall
size is smaller, and the automaton is much easier to understand, but the number
of states increased.

5.6. Schema-Based Determinization
Schema-based determinization as proposed in [18] improves the situation further.
For query Q2 it yields: SHA in Figure 3 which has only 22 states and 45 transi-
tions. The size is roughly devided by 2 compared to: Figure A.2.

5.7. Minimization
We then minimize the dSHA from Figure 3. This often reduces the size and the
number of states in an important manner and often makes it easy to see how the
automaton is functioning. Exceptionally in the case of Q2 , no states are fusioned
when minimizing the dSHA obtained by schema-based determinization.

Figure 3. The schema-based determinization detS(A2) where S = xml&onex

A Benchmark Collection of Deterministic Automata for XPath Queries

75

It should be noticed that minimizing the determinization of the schema prod-
uct usually yields a different result then minimizing the schema-based determini-
zation. This is since both automata may recognize different languages. Some
nested words outside the schema may be accepted after schema-based determini-
zation, but not by the schema product.

5.8. Compiler to NWAs
The compiler finally maps SHAs to in linear time, while preserving determinism.
For instance the minimal dSHA in Figure 3 is converted to: Figure 4.

6. Testing Automata on Samples
For testing the stepwise hedge automata, we created a sample with positive and
negative x-annotated examples for each of the queries. Please contact the authors
if you are interested in the test samples. They can be provided without problem.

For this we produced an XML document for each of the XSLT programs from
which the XPath queries of Lick and Schmitz were extracted. We did this in such a
way that each of the queries has at least one answer on one of the subdocuments
of the document of its collection. Subdocuments are important here, since the
XPath queries of an XSLT program will be applied to subdocumens naturally.

By using Saxon XSLT, we computed the answer set of all the queries on all the
subdocument of the produced XML documents. For this, we exported query

Figure 4. The deterministic NWA nwa(det(A2)) obtained from the dSHA det(A2)

A Benchmark Collection of Deterministic Automata for XPath Queries

76

answers in Dewey notation, similarly to the way that nodes are returned by Sche-
matron: The Dewey noation of a node is its relative address from the root, i.e., by
the list of child steps leading to the node. Such lists can be easily encoded in XML
format.

Each query query answer yields a positive x-annotated examples for the
query, that is obtained by annotating the XML document by x at the selected posi-
tion. Negative x-annotated examples are obtained from the answers of the other
queries on the same document. The annotation of the XML document is done by
yet another XSLT stylesheet that we wrote for this purpose. Here we use the fact
that query answers are also represented in XML format.

By testing the automaton on these samples, we could fix various problems
that arised on the way to our final collection. Currently, no test failures are
remaining, except for the query 13896 below that we removed from the corpus for
the current version. The problem here is raised by the blank symbol in the attrib-
ute value 'evans citation':

//HEADER//IDNO[@TYPE='evans citation']

7. Statistics of the Benchmark Automata

We compiled all of our 79 XPath queries to deterministic automata using the com-
pilation chain described in Section 5. Here we present the statistics of the bench-
mark automata that we obtained. The summary is given in Table 2. We show for
each automaton two numbers size(#states) where size is the overall size of
the automaton and #states the number of its states.

The nondetermnistic SHAs compiled from the nested regular expressions was
cleaned using the schema xml&onex : Figure 1. The result is called A = sha(Q) leading
to the statistics in the second column of Table 2.

We note that 37% of the SHAs original stepwise hedge automata for the quer-
ies A = sha(Q) have more than 100 states, so they are sometimes bigger than one
might expect. The biggest is for query 06176 with 630 states and an overall size of
1391. The reason is that this query is selecting a union of 20 subqueries, all with
descendant-or-self axis. Foe each subquery, we have 4 construsts of respective
state sizes: 2, 6, 10 and 13, making a subtotal of 31 ∗ 20 = 620 . With an additional 8
states for one subquery that select all descendants with an attribute named id and
another 2 for reading any tree, we end up with our total 630 states.

Table 2. Statistics on the automata for the XPath queries from Table 2

Query Q
id

A =
sha(Q)

det(A) B =
det(A× S)

C =
detS(A)

B′ =
mini(B)

C ′ =
mini(C)

nwa(C ′)

18330 99 (41) 465 (43) 145 (44) 74 (22) 128 (39) 61 (18) 73 (18)

A Benchmark Collection of Deterministic Automata for XPath Queries

77

Query Q
id

A =
sha(Q)

det(A) B =
det(A× S)

C =
detS(A)

B′ =
mini(B)

C ′ =
mini(C)

nwa(C ′)

17914 179 (75) 2740 (141) 265 (69) 150 (44) 152 (43) 82 (24) 98 (24)
10745 187 (76) 939 (68) 275 (72) 141 (38) 218 (57) 130 (34) 150 (34)
02091 100 (42) 555 (45) 182 (57) 81 (24) 146 (44) 61 (17) 75 (17)
00744 109 (46) 335 (37) 169 (54) 80 (24) 128 (41) 54 (15) 64 (15)
12060 64 (25) 162 (22) 139 (44) 56 (16) 121 (39) 44 (12) 54 (12)
02762 121 (50) 564 (53) 222 (63) 97 (28) 123 (39) 46 (12) 56 (12)
06027 115 (48) 1101 (79) 184 (57) 82 (24) 123 (39) 46 (12) 56 (12)
02909 96 (38) 311 (36) 213 (62) 100 (27) 167 (49) 91 (24) 105 (24)
06415 139 (58) 1793 (93) 300 (74) 135 (36) 229 (55) 101 (25) 123 (25)
03257 130 (53) 1310 (92) 445 (85) 224 (46) 210 (49) 87 (20) 105 (20)
05122 83 (33) 292 (33) 221 (55) 92 (23) 161 (44) 63 (16) 77 (16)
09138 269 (117) 323 (97) 164 (49) 133 (40) 56 (13) 66 (13)
05460 232 (98) 3468 (174) 509 (127) 269 (77) 156 (44) 62 (16) 76 (16)
12404 84 (33) 258 (31) 170 (52) 77 (22) 143 (44) 68 (19) 82 (19)
10337 92 (36) 291 (34) 197 (58) 92 (25) 159 (47) 83 (22) 97 (22)
06639 123 (50) 516 (49) 237 (65) 106 (30) 154 (44) 60 (16) 74 (16)
14340 79 (33) 231 (29) 126 (40) 58 (18) 110 (36) 45 (14) 55 (14)
13804 70 (29) 155 (21) 128 (41) 63 (20) 124 (40) 60 (19) 70 (19)
02194 81 (33) 253 (31) 135 (42) 66 (20) 119 (38) 53 (16) 63 (16)
06726 149 (64) 2806 (149) 176 (53) 97 (30) 121 (38) 55 (16) 65 (16)
13640 100 (41) 364 (40) 165 (50) 86 (26) 140 (43) 76 (23) 90 (23)
05735 111 (45) 412 (44) 201 (58) 106 (30) 161 (47) 96 (27) 110 (27)
15766 144 (58) 669 (60) 300 (77) 155 (41) 219 (57) 135 (35) 151 (35)
15539 217 (88) 1709 (121) 402 (98) 213 (58) 228 (57) 144 (38) 164 (38)
15809 197 (84) 3795 (188) 230 (67) 129 (39) 145 (43) 82 (24) 96 (24)
15524 125 (50) 471 (49) 245 (68) 130 (35) 185 (52) 120 (32) 134 (32)
06512 135 (56) 583 (58) 218 (60) 117 (35) 152 (43) 77 (23) 91 (23)
06176 1391 (630) 1661 (448) 1203 (386) 176 (43) 113 (23) 127 (23)
12539 179 (76) 3479 (174) 243 (69) 138 (40) 166 (48) 101 (28) 115 (28)
11780 205 (88) 3832 (190) 254 (71) 143 (41) 164 (47) 99 (27) 113 (27)

A Benchmark Collection of Deterministic Automata for XPath Queries

78

Query Q
id

A =
sha(Q)

det(A) B =
det(A× S)

C =
detS(A)

B′ =
mini(B)

C ′ =
mini(C)

nwa(C ′)

11478 101 (41) 365 (40) 166 (50) 87 (26) 141 (43) 77 (23) 91 (23)
11227 153 (62) 583 (53) 334 (81) 163 (42) 244 (59) 144 (37) 166 (37)
05684 1348 (616) 1068 (284) 719 (226) 193 (39) 124 (16) 134 (16)
06947 744 (342) 828 (232) 444 (129) 151 (41) 71 (14) 83 (14)
06794 270 (121) 354 (102) 178 (51) 144 (42) 64 (15) 76 (15)
06169 346 (155) 427 (121) 219 (62) 147 (41) 67 (14) 79 (14)
06924 598 (274) 682 (192) 362 (105) 147 (41) 67 (14) 79 (14)
11958 109 (44) 348 (35) 213 (57) 90 (24) 178 (48) 76 (20) 94 (20)
01705 772 (350) 1308 (279) 746 (172) 221 (48) 113 (19) 129 (19)
02086 809 (367) 1366 (291) 781 (180) 223 (48) 115 (19) 131 (19)
02000 642 (291) 723 (201) 387 (110) 163 (41) 83 (14) 95 (14)
02697 383 (172) 464 (131) 240 (68) 149 (41) 69 (14) 81 (14)
14183 110 (44) 362 (36) 217 (58) 94 (25) 182 (49) 80 (21) 98 (21)
07106 457 (206) 538 (151) 282 (80) 153 (41) 73 (14) 85 (14)
05824 62 (25) 150 (21) 130 (42) 50 (15) 112 (37) 38 (11) 48 (11)
11368 102 (41) 458 (44) 247 (62) 104 (28) 191 (49) 78 (20) 96 (20)
15848 124 (49) 303 (35) 221 (63) 103 (27) 179 (51) 100 (26) 114 (26)
15462 127 (50) 325 (37) 237 (67) 112 (29) 191 (54) 109 (28) 123 (28)
04267 87 (34) 146 (20) 137 (43) 54 (15) 131 (41) 51 (14) 63 (14)
07113 695 (296) 2409 (456) 1527 (302) 311 (73) 229 (48) 241 (48)
03864 272 (121) 353 (101) 177 (50) 143 (41) 63 (14) 75 (14)
15484 181 (71) 657 (62) 394 (96) 189 (47) 277 (68) 174 (42) 194 (42)
15461 146 (58) 628 (54) 651 (109) 283 (51) 241 (59) 140 (33) 160 (33)
11160 309 (138) 390 (111) 198 (56) 145 (41) 65 (14) 77 (14)
06856 306 (138) 390 (112) 198 (57) 139 (41) 59 (14) 71 (14)
06458 827 (376) 908 (251) 492 (140) 173 (41) 93 (14) 105 (14)
13710 420 (189) 501 (141) 261 (74) 151 (41) 71 (14) 83 (14)
06808 525 (240) 609 (172) 321 (93) 145 (41) 65 (14) 77 (14)
04338 470 (206) 1066 (207) 563 (135) 213 (51) 95 (22) 115 (22)
04358 1006 (444) 3580 (559) 2021 (433) 757 (99) 345 (58) 401 (58)

A Benchmark Collection of Deterministic Automata for XPath Queries

79

Query Q
id

A =
sha(Q)

det(A) B =
det(A× S)

C =
detS(A)

B′ =
mini(B)

C ′ =
mini(C)

nwa(C ′)

13632 132 (58) 339 (33) 248 (66) 113 (33) 128 (36) 47 (9) 55 (9)
01847 559 (252) 1013 (223) 543 (137) 194 (48) 92 (19) 108 (19)
05219 698 (315) 1192 (260) 651 (164) 196 (48) 94 (19) 110 (19)
05226 920 (417) 1558 (338) 867 (218) 208 (48) 106 (19) 122 (19)
03325 753 (342) 834 (231) 450 (128) 169 (41) 89 (14) 101 (14)
03410 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14) 111 (14)
03407 716 (325) 797 (221) 429 (122) 167 (41) 87 (14) 99 (14)
04245 901 (410) 982 (271) 534 (152) 177 (41) 97 (14) 109 (14)
04953 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14) 111 (14)
05463 204 (86) 1180 (70) 332 (77) 152 (38) 180 (48) 78 (20) 96 (20)
12960 167 (68) 1340 (81) 421 (88) 190 (46) 317 (64) 146 (33) 176 (33)
12961 166 (68) 1318 (80) 417 (87) 186 (45) 313 (63) 142 (32) 172 (32)
09123 164 (64) 705 (59) 358 (90) 175 (43) 265 (66) 164 (40) 186 (40)
12514 182 (77) 2734 (112) 320 (77) 146 (38) 247 (57) 114 (28) 140 (28)
12964 128 (52) 560 (48) 277 (67) 120 (31) 219 (53) 96 (24) 118 (24)
08632 128 (52) 629 (51) 277 (67) 120 (31) 219 (53) 96 (24) 118 (24)
12962 129 (52) 576 (49) 281 (68) 124 (32) 223 (54) 100 (25) 122 (25)

The column for det(A) contains the statistics for the determinization of A . No
schema is used there. We use a timeout of 100 seconds. Whenever this is not
enough, the cell in the table is left blank. Indeed, the determinization fails with
this timeout for 37% of the queries of our corpus. Roughly, the determinization
fails for all SHAs with more than 100 states. For instance, for query 11780 the
SHA A has has size 205 (88), while the dSHA det(A) has size 3832 (190).

The column for B = det(A× S) contains the determinization of the product of A
and the schema S = xml&onex . Even though A× S is always larger than A , we were
able to always determinize A× S within the timeout, in contrast to A . The largest
dSHA B obtained is for for query 04358: it has size 3580 (559). This show that B
may still be quite big, but often a big improvement in size over det(A) .

The next column reports on C = detS(A) obtained by schema-based determiniza-
tion with schema S = xml&onex . Again, the computation succeeds in all cases
within the timeout of 100 seconds. The size of C for query 04358 is 2021 (433),
which improves in size over B .

In the next two columns, we respectively minimize the determinized SHAs B
and C , using a naïve minimization algorithm. All automata can be minimized

A Benchmark Collection of Deterministic Automata for XPath Queries

80

within the timeout of 100 seconds. We note that C ′ = mini(C) is always smaller than
B′ = mini(B) , showing that schema-based determinization yields smaller minimal
automata than determinizing the schema-product. The maximal number of states
of the minimal dSHAs C ′ = mini(C) is 58 for query 04358. In average the number of
states decreases by 55%.

In the last column, we compiled the minimized dSHAs of C ′ to the determinis-
tic NWA nwa(C ′) . It has the same number of states than C ′ for all queries and a
minor increase is the number of transitions. All these results, including the
automata of the intermediate steps, generated during the whole compilation
chain are available at in the software heritage archive at the following url: https://
archive.softwareheritage.org/ browse/ origin/ ?origin_url=https:// gitlab.inria.fr/
aalserha/xpath-benchmark.

8. Conclusion

We provide a benchmark of deterministic automata for regular XPath queries
obtained with an algorithm for schema-based determinization of SHAs that we
presented. Our benchmark is compiled from forward navigational XPath queries:
the 79 largest queries modulo renaming of the 4500 forward navigational XPath
queries of the corpus of Lick and Schmitz [30]. From the SHAs of these 79 queries,
37% cannot be determinized in less then 100 seconds by schema-less determiniza-
tion. Schema-based determinization, in contrast, succeeds for 100% of them. Fur-
thermore, all dSHAs obtained by schema-based determinization are sufficiently
small so that they can be minimized with the naïve quadratic algorithm. This
leads us to a collection of minimal dSHAs with an average number of states of 22,
and 71 as the average number of transition rules.

We hope that the automata of our collection will be used for experimenting
with algorithms for XPath queries in the near future and for developing and com-
paring the performance of algorithms for answering XPath queries on XML
streams in particular.

Bibliography
[1] Alur, R.: Marrying words and trees. In: 26th ACM Symposium on Principles of

Database Systems. pp. 233--242. 2007.
[2] Bagan, G.: MSO queries on tree decomposable structures are computable with

linear delay. In: Comput. Sci. Logic. LNCS, vol. 4646, pp. 208--222. 2006.
[3] Von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log

n space. In: Theory of Computation, North-Holland Mathematics Studies, vol.
102, pp. 1 -- 19, 1985.

A Benchmark Collection of Deterministic Automata for XPath Queries

81

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

[4] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. http://
tata.gforge.inria.fr. 2007.

[5] Courcelle, B.: Linear delay enumeration and monadic second-order logic.
Discrete Applied Mathematics, 157(12), 2675--2700, 2009.

[6] Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early
nested word automata for xpath query answering on XML streams. Theor.
Comput. Sci. 578, 100--125 (2015).

[7] Muñoz, M., Riveros, C.: Streaming query evaluation with constant delay
enumeration over nested documents. International Conference on Database
Theory (ICDT). 2022.

[8] Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: A
formal approach to information extraction. J. ACM 62(2), 12:1--12:51 (2015).

[9] Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194--211 (1979).

[10] Franceschet, M.: XPathmark performance test. https://users.dimi.uniud.it/
~massimo.franceschet/xpathmark/PTbench.html, accessed: 2020-10-25.

[11] Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic
nested word automata. International Conference on Fundamental of
Computing Theory. LNCS, vol. 5699, pp. 121--132. (2009).

[12] Libkin, L., Martens, W., Vrgoçc, D.: Querying graph databases with xpath. In:
International Conference on Database Theory (ICDT) 2013. p.129–140.

[13] Lick, A.: Logique de requêtes à la XPath : systèmes de preuve et pertinence
pratique. Theses, Université Paris-Saclay. (2019).

[14] Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and
complexity of XML Schema. ACM TODS 31(3), 770--813. (2006).

[15] Martens, W., Trautner, T.: Evaluation and Enumeration Problems for Regular
Path Queries. In: International Conference on Database Theory (ICDT) 2018.
LIPIcs, vol. 98, pp. 19:1--19:21.

[16] Mozafari B., Zeng, K., and Zaniolo C.. High-performance complex event
processing over XML streams. SIGMOD Conference, ACM, 253--264, 2012.

[17] Niehren, J., Sakho, M.: Determinization and Minimization of Automata for
Nested Words Revisited. Algorithms. 14(3): 68, 2021.

[18] Niehren, J., Sakho, M., Al Serhali, A.: Schema-Based Automata
Determinization. https://hal.inria.fr/hal-03536045. Inria Lille, 2022.

A Benchmark Collection of Deterministic Automata for XPath Queries

82

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://hal.inria.fr/hal-03536045

[19] Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47--67 (2014).

[20] Schmid, M.L., Schweikardt, N.: A Purely Regular Approach to Non-Regular
Core Spanners. In: International Conference on Database Theory (ICDT).
LIPIcs, vol. 186, pp. 4:1--4:19, 2021.

[21] Seidl, H.: Deciding equivalence of finite tree automata. STACS. LNCS, vol.
349, pp. 480--492. (1989)

[22] Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Progress in Computer Science and Applied Series, Birkhäuser, 1994.

[23] Alur, R. and Madhusudan, P. Adding nesting structure to words. Journal of
the ACM, 56(3):1--43, 2009.

[24] Kay, M. The Saxon XSLT and XQuery processor. Available at https://
www.saxonica.com since 2004.

[25] Labath P. and Niehren J.. A Uniform Programming Language for
Implementing XML Standards. In SOFSEM 2015.

[26] Gauwin O. Streaming Tree Automata and XPath. PhD thesis, Université Lille
1, 2009.

[27] Genevès P. and Layaïda N. A System for the Static Analysis of XPath. ACM
Trans. Inf. Syst., October 2006.

[28] Gottlob G., Koch C. and Pichler R. The complexity of XPath query evaluation.
In 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, 2003.

[29] Sakho M. Certain Query Answering on Hyperstreams. Phd Thesis.
Université de Lille; Inria, 2020

[30] Lick, A., Schmitz S.: XPath Benchmark. Available online at https://
archive.softwareheritage.org/browse/directory/
1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5 . Last visited April 13th 2022.

A. Complementary Information

Table A.1. The 79 XPath queries selected from Lick's and Schmitz's corpus

Id XPath Query
18330 / descendant-or-self::node()/child::parts-of-speech
17914 / descendant-or-self::node()/ child::tei:back/ descendant-or-

self::node()/child::tei:interpGrp

A Benchmark Collection of Deterministic Automata for XPath Queries

83

https://www.saxonica.com
https://www.saxonica.com
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5

Id XPath Query
10745 *//tei:imprint/tei:date[@type='access']
02091 * | .//reftd
00744 .//@id | .//@xml:id
12060 .//attDef
02762 .//authorgroup/author | .//author
06027 .//authorinitials | .//author
02909 .//bibliomisc[@role='serie']
06415 .//email | address/otheraddr/ulink
03257 .//equation[title or info/title]
05122 .//procedure[title]
09138 .// rng:ref | .// tei:elementRef | .// tei:classRef | .//

tei:macroRef | .//tei:dataRef
05460 .//table//footnote | .//informaltable//footnote
12404 .//tei:dataRef[@name]
10337 .//tei:note[@place='end']
06639 .//tgroup//footnote
14340 //*
13804 //GAP/@DISP
13896 //HEADER//IDNO[@TYPE='evans citation']
02194 //annotation
06726 //doc:table | //doc:informaltable
13640 //equiv[@filter]
05735 //glossary[@role='auto']
15766 //h:body/h:section[@data-type='titlepage']
15524 //h:section[@data-type='titlepage']
06512 //reftd//text()
06176 //set | //book | //part | //reference | //preface | //chapter

| //appendix | //article | //colophon | //reftd | //section
| // sect1 | // sect2 | // sect3 | // sect4 | // sect5 | //
indexterm | //glossary | //bibliography | //*[@id]

12539 //tei:elementSpec | //tei:classSpec[@type='atts']
11780 //tei:ref[@type='cite'] | //tei:ptr[@type='cite']

A Benchmark Collection of Deterministic Automata for XPath Queries

84

Id XPath Query
11478 //xhtml:p[@class]
11227 /tei:TEI/tei:text//tei:note[@type='action']
05684 @abbr | @align | @axis | @bgcolor | @border | @cellpadding |

@cellspacing | @char | @charoff | @class | @dir | @frame |
@headers | @height | @id | @lang | @nowrap | @onclick |
@ondblclick | @onkeydown | @onkeypress | @onkeyup |
@onmousedown | @onmousemove | @onmouseout | @onmouseover |
@onmouseup | @rules | @scope | @style | @summary | @title |
@valign | @valign | @width | @xml:id | @xml:lang

06947 anchor | areaset | audiodata | audioobject | beginpage |
constraint | indexterm | itermset | keywordset | msg |
doc:anchor | doc:areaset | doc:audiodata | doc:audioobject |
doc:beginpage | doc:constraint | doc:indexterm | doc:itermset
| doc:keywordset | doc:msg

06794 articleinfo | chapterinfo | bookinfo | doc:info |
doc:articleinfo | doc:chapterinfo | doc:bookinfo

06169 article | preface | chapter | appendix | reftd | section |
sect1 | glossary | bibliography

06924 authorblurb | formalpara | legalnotice | note | caution |
warning | important | tip | doc:authorblurb | doc:formalpara |
doc:legalnotice | doc:note | doc:caution | doc:warning |
doc:important | doc:tip

11958 biblStruct//note
01705 book | article | part | reference | preface | chapter |

bibliography | appendix | glossary | section | sect1 | sect2 |
sect3 | sect4 | sect5 | reftd | colophon | bibliodiv[title] |
setindex | index

02086 book | article | topic | part | reference | preface | chapter
| bibliography | appendix | glossary | section | sect1 | sect2
| sect3 | sect4 | sect5 | reftd | colophon | bibliodiv[title]
| setindex | index

02000 chapter | appendix | epigraph | warning | preface | index |
colophon | glossary | bibliotd | bibliography | dedication |
sidebar | footnote | glossterm | glossdef | bridgehead | part

02697 chapter | appendix | preface | reference | reftd | article |
topic | index | glossary | bibliography

14183 content//rng:ref

A Benchmark Collection of Deterministic Automata for XPath Queries

85

Id XPath Query
07106 dbk:appendix | dbk:article | dbk:book | dbk:chapter | dbk:part

| dbk:preface | dbk:section | dbk:sect1 | dbk:sect2 |
dbk:sect3 | dbk:sect4 | dbk:sect5

05824 descendant-or-self::*
11368 descendant-or-self::tei:TEI/tei:text/tei:back
15848 descendant::*[@class='refname']
15462 descendant::h:span[@data-type='footnote']
04267 descendant::label
07113 following-sibling::*[self::dbk:appendix | self::dbk:article |

self::dbk:book | self::dbk:chapter | self::dbk:part |
self::dbk:preface | self::dbk:section | self::dbk:sect1 |
self::dbk:sect2 | self::dbk:sect3 | self::dbk:sect4 |
self::dbk:sect5] | following-sibling::dbk:para[@rnd:style =
'bibliography' or @rnd:style = 'bibliography-title' or
@rnd:style = 'glossary' or @rnd:style = 'glossary-title' or
@rnd:style = 'qandaset' or @rnd:style = 'qandaset-title']

03864 guibutton | guiicon | guilabel | guimenu | guimenuitem |
guisubmenu | interface

15484 h:pre[@data-type='programlisting']//text()
15461 h:table[descendant::h:span[@data-type='footnote']]
11160 html:table | html:tr | html:thead | html:tbody | html:td |

html:th | html:caption | html:li
06856 imageobject | imageobjectco | audioobject | videoobject |

doc:imageobject | doc:imageobjectco | doc:audioobject |
doc:videoobject

06458 info | reftdinfo | referenceinfo | refsynopsisdivinfo |
refsectioninfo | refsect1info | refsect2info | refsect3info |
setinfo | bookinfo | articleinfo | chapterinfo | sectioninfo |
sect1info | sect2info | sect3info | sect4info | sect5info |
partinfo | prefaceinfo | appendixinfo | docinfo

13710 persName | orgName | addName | nameLink | roleName | forename
| surname | genName | country | placeName | geogName

06808 personname | surname | firstname | honorific | lineage |
othername | contrib | doc:personname | doc:surname |
doc:firstname | doc:honorific | doc:lineage | doc:othername |
doc:contrib

A Benchmark Collection of Deterministic Automata for XPath Queries

86

Id XPath Query
04338 refsynopsisdiv/ title | refsection/ title | refsect1/ title |

refsect2/title | refsect3/title | refsynopsisdiv/info/title |
refsection/info/title | refsect1/info/title | refsect2/info/
title | refsect3/info/title

04358 section/title | simplesect/title | sect1/title | sect2/title |
sect3/title | sect4/title | sect5/title | section/info/title |
simplesect/info/title | sect1/info/title | sect2/info/title |
sect3/ info/ title | sect4/ info/ title | sect5/ info/ title |
section/ sectioninfo/ title | sect1/ sect1info/ title | sect2/
sect2info/ title | sect3/ sect3info/ title | sect4/ sect4info/
title | sect5/sect5info/title

13632 self::placeName | self::persName | self::district |
self::settlement | self::region | self::country | self::bloc

01847 set | book | part | preface | chapter | appendix | article |
reference | reftd | book/glossary | article/glossary | part/
glossary | bibliography | colophon

05219 set | book | part | preface | chapter | appendix | article |
topic | reference | reftd | book/glossary | article/glossary |
part/ glossary | book/ bibliography | article/ bibliography |
part/bibliography | colophon

05226 set | book | part | preface | chapter | appendix | article |
topic | reference | reftd | sect1 | sect2 | sect3 | sect4 |
sect5 | section | book/ glossary | article/ glossary | part/
glossary | book/ bibliography | article/ bibliography | part/
bibliography | colophon

03325 set | book | part | reference | preface | chapter | appendix |
article | topic | glossary | bibliography | index | setindex |
reftd | sect1 | sect2 | sect3 | sect4 | sect5 | section

03410 set | book | part | reference | preface | chapter | appendix |
article | topic | glossary | bibliography | index | setindex |
reftd | refsynopsisdiv | refsect1 | refsect2 | refsect3 |
refsection | sect1 | sect2 | sect3 | sect4 | sect5 | section

03407 set | book | part | reference | preface | chapter | appendix |
article | glossary | bibliography | index | setindex | reftd |
sect1 | sect2 | sect3 | sect4 | sect5 | section

A Benchmark Collection of Deterministic Automata for XPath Queries

87

Id XPath Query
04245 set | book | part | reference | preface | chapter | appendix |

article | glossary | bibliography | index | setindex | reftd |
refsynopsisdiv | refsect1 | refsect2 | refsect3 | refsection |
sect1 | sect2 | sect3 | sect4 | sect5 | section

04953 set | book | part | reference | preface | chapter | appendix |
article | glossary | bibliography | index | setindex | topic |
reftd | refsynopsisdiv | refsect1 | refsect2 | refsect3 |
refsection | sect1 | sect2 | sect3 | sect4 | sect5 | section

07095 sf:stylesheet | sf:stylesheet-ref | sf:container-hint |
sf:page-start | sf:br | sf:selection-start | sf:selection-end
| sf:insertion-point | sf:ghost-text | sf:attachments

05463 table//footnote | informaltable//footnote
12960 tei:classSpec/tei:attList//tei:attDef/tei:datatype/rng:ref
12961 tei:classSpec/tei:attList//tei:attDef/tei:datatype/tei:dataRef
09123 tei:content//rng:ref[@name = 'macro.anyXML']
12514 tei:content/ tei:classRef | tei:content// tei:sequence/

tei:classRef
12964 tei:dataSpec/tei:content//tei:dataRef
08632 tei:front//tei:titlePart/tei:title
10595 tei:label | tei:figure | tei:table | tei:item | tei:p |

tei:title | tei:bibl | tei:anchor | tei:cell | tei:lg |
tei:list | tei:sp

12962 tei:macroSpec/tei:content//rng:ref

A Benchmark Collection of Deterministic Automata for XPath Queries

88

Figure A.1. The determinization det(A2) of the SHA A2

A Benchmark Collection of Deterministic Automata for XPath Queries

89

Figure A.2. The determinization of the schema product det(A2 × xml&onex)

A Benchmark Collection of Deterministic Automata for XPath Queries

90

Use the Markup, Stupid!
Ari Nordström

Abstract

The XML technology stack has been around for more than 20 years and is,
by all accounts, mature. Why is it that some insist on non-XML solutions
for XML problems? Use the markup, stupid!

1. The Why

This paper is sort of a rant and has been a long time coming. Allow me to explain.
Those of us who've been in the markup business for some time will appreciate

the relative order and maturity of the XML technology stack. We have at our dis-
posal well-established and mature tools during the entire process, from authoring
to storing to publishing. We have XML standards that help us write content, from
DocBook to DITA to S1000D and beyond, all of which we can reasonably expect
to be supported in our chosen editor. We have XML databases that not only store
our content natively, as XML, but that allow us to easily query any content stored.
And we have XML transformation standards and processors that help us realise,
what long was a pipe dream, single-source publishing to any number of output
formats, be it PDF, responsive design HTML on a mobile phone, or Rich Text For-
mat.

Why, then, would anyone willingly bring in outdated non-markup technolo-
gies to manage XML when the XML-based solution is better in every way?

Enter a well-known and widely spread product in the Product Life Manage-
ment (PLM) space. Like other PLM products, this one is intended to manage all
aspects of product information. The engineering data, known as “CAD data”,
lives there and can then be coupled with product documentation, from parts cata-
logues to maintenance tasks, and so on.

Standards like DITA and S1000D are common in this space, as they are inten-
ded to be written in topic-size chunks, each topic focussing on a specific and nar-
row subject such as an assembly or disassembly, or perhaps a reference topic
describing a component. Both define different topic types to cover different con-
tent; DITA, for example, includes topic types such as “concept”, intended to
describe a product, and “task”, for step-by-step instructions.

The PLM product supports coupling it with different XML editors, including
a highly specialised editor that allows us to create procedures based directly on
the CAD data and then use that to generate matching DITA or S1000D, including
illustrations in 2D or 3D, also generated from the CAD data.

91

Both standards also use a separate document type to describe how the topics
are organised to form a complete deliverable manual. DITA, for example, uses
“maps”, XML documents that link to, and organise, topics in document hierar-
chies.

This is where the problems start in earnest.

2. A Quick DITA Refresher

It could well be that you don't know DITA or can't remember much of it. I fully
understand and sympathise. This section is a quick refresher, giving you only the
bare bones, the basics, of DITA, and mostly those things called maps.

So, DITA topics come in various types, but essentially they all have a title,
some metadata, and a body with the actual content:

<topic id="topic_fjt_3bt_2tb">
 <title>Topic A</title>
 <prolog>
 <author>Mark Up</author>
 </prolog>
 <body>
 <p>Topic content.</p>
 </body>
</topic>

They are intended to describe one topic, whatever it may be1, and they are meant
to be reusable. The reuse is defined in a map, and while there's more to them than
that, again the basic are straight-forward. This map, for example, organises topics
in a chapter-and-section hierarchy:

<map id="id-map-AtoE-nested">
 <title>Topicrefs A to E Nested</title>
 <topicref href="topicA.dita" navtitle="tref A, level 1">
 <topicref href="topicB.dita" navtitle="tref B, level 2">
 <topicref href="topicD.dita" navtitle="tref D, level 3"/>
 <topicref href="topicE.dita" navtitle="tref E, level 3"/>
 </topicref>
 <topicref href="topicC.dita" navtitle="tref C, level 2"/>
 </topicref>
</map>

Published with a DITA-compliant stylesheet, the resulting table of contents might
look like this:

1And the trick tends to be to define the right size and scope for the topics.

Use the Markup, Stupid!

92

Figure 1. Nested Topicrefs Table of Contents

A different DITA map might reuse the same topics in a different way. This, for
example, publishes topics A and B as sibling sections:

<map id="id-map-AB-siblings">
 <title>Topicrefs A and B As Siblings</title>
 <topicref href="topicA.dita" navtitle="tref A, level 1"/>
 <topicref href="topicB.dita" navtitle="tref B, level 1"/>
</map>

In other words, DITA topics contain the building blocks with the content while
DITA maps organise that content in documents. Obviously there is more to the
standard, but this is quite enough for our purposes.

3. The PLM Product
The PLM product, built aroud a SQL database, includes a content management
module that can be connected to an external editor, some better integrated than
others. At a minimum, you can configure a text editor to open your checked-out
documents. There is a publishing module that can produce any output, from PDF
with XSL-FO engines such as Apache FOP or Antenna House Formatter, to
HTML, as long as you can define an Ant build script for your publishing process.

The product includes version handling, impact analysis (the ability to trace
the use of a database item, be it a document or something else, and various other
features. To put it succintly, the product is huge and endlessly expandable. So
what's there not to like?

The content management module is geared towards topic-based publishing,
and here, we'll focus specifically on DITA even though the discussion here is
equally valid for S1000D or some other standard. Topics are, of course, authored
using the external editor and then checked in, versioned, and stored in the data-
base. Maps, however, are a different matter.

You can create and edit the map directly in the content management module
interface, meaning that you can copy and paste, and drag and drop, you topics to

Use the Markup, Stupid!

93

the map, reorganising them with a few clicks. As you'd expect there is a nice tree-
based view that you'll use, not only to edit the map but to check out and edit the
topics linked to it:

Figure 2. PLM Publication Structure View

You might recognise this as the previous section's DITA map.
Publishing and editing are both available via right-clicking, as are a number of

other functions. While the client GUI may not be the most up-to-date here, there
is a web-based version that offers a much nicer and modern interface. What's there
not to like?

4. Importing (and Exporting) Maps
When you import DITA to the system, you start with the leaf nodes. Images are
first, followed by topics and, finally, maps. The import is unable to pull in a map
and follow the links to import linked resources until done, and the explanation is
a rather surprising one:

Maps, internally in the system, are not XML at all. They are database objects
that are related to other database objects, and there is a mapping process that
defines how an import of a map should break down or decompose the map. Thus,
that nice tree view where you can drag, drop, copy and paste topics, is a repre-
sentation not of the XML but of the internal relational model.

The decompose process is governed by rules that are defined in an adminis-
trative user interface where the various database objects are mapped to or from
XML nodes using functions manipulating either the object or the XML node. The
XML node is addressed using XPath-like expressions2 that declare what you are
reading from or writing to—and here is the kicker:

2If you are an XML person, this will get you at first because you try to think in terms of XPaths and
you really shouldn't, because you will be disappointed.

Use the Markup, Stupid!

94

When importing content, be it the first time or the 12th, you are decomposing
that content, based on the mapping rules. The XML is broken down and stored in
the database as items with various relations, presentable in the structure view.
Similarly, when the content is exported, when publishing and when checking out
content for editing, you are composing the items, the fragments from the decom-
pose process, from the database into some XML format. You might be round-trip-
ping your content, with only some slight changes and additions as would be the
case with DITA topics3, or you might be building a map from scratch, or rather
that non-XML representation stored in the database.

5. So What's Wrong with It?
You might reasonably ask why I'm bringing this up. OK, so here is the thing:
DITA uses maps to relate topics to each other in the context of the map. One map
might do this:

<topicref href="A.dita">
 <topicref href="B.dita"/>
</topicref>

This is a two-level hierarchy with topic A starting a section and topic B included
as a subsection. In the context of thjis particular map, B is a subsection in A.
Another map might look similar to it but include a topic C:

<topicref href="A.dita">
 <topicref href="B.dita"/>
 <topicref href="C.dita"/>
</topicref>

Here, both B and C are subsections to A in the context of this map. This is not true
outside the map, just as B being a subsection to A isn't true outside the context of
the first map. Maps define relationships between topics without the topics being
aware of the fact. It's a bit like extended XLink, really.

5.1. Maps and Inheritance
In object-oriented programming, and in quite a few (other) abstraction models,
the concept of inheritance is a fact of life; properties are passed on from an ances-
tor to a child, from a generalisation to an instance, etc. It is quite common that
programmers who dabble in XML from that perspective4 expect inheritance in
XML trees, and while XML people dabbling in programming sometimes add to
the confusion (namespaces, anyone?), the fact of the matter is that XML doesn't
work like that. Also, many standards do include inheritance concepts; DITA, for

3And I'll get into a bit more detail on this later.
4In Ken Holman's terminology, they're known as “codeheads”.

Use the Markup, Stupid!

95

example, relies on it for a variety of constructs. Topic hierarchies, however, do
not.

Let's define a map, shall we? This defines a top section (“Chapter One Title”)
with some subsections and sub-subsections:

<map id="id-singlemap1">
 <title>A to E as Single Map Title</title>
 <topichead navtitle="Chapter One Title">
 <topicref href="topicA.dita"/>
 <topicref href="topicB.dita"/>
 <topichead navtitle="Section One Navtitle">
 <topicref href="topicC.dita"/>
 </topichead>
 <topichead navtitle="Section Two Navtitle">
 <topicref href="topicD.dita"/>
 <topicref href="topicE.dita"/>
 </topichead>
 </topichead>
</map>

Note the last subsection, “Section Two Navtitle”, with its two topic references to
D and E. We import this to the PLM system and get this publication structure:

Figure 3. Map 1

Let's now define a second map based on the previous one:

<map id="id-singlemap2">
 <title>A to E as Single Map Title</title>
 <topichead navtitle="Chapter One Title">
 <topicref href="topicA.dita"/>

Use the Markup, Stupid!

96

 <topicref href="topicB.dita"/>
 <topichead navtitle="Section One Navtitle">
 <topicref href="topicC.dita"/>
 </topichead>
 <topichead navtitle="Section Two Navtitle">
 <topicref href="topicD.dita"/>
 <topicref href="topicE.dita">
 <topicref href="topicF.dita"/>
 </topicref>
 </topichead>
 </topichead>
</map>

They're almost the same; the second map has an added nested topicref to topic
F, last. We import this map and get this tree:

Figure 4. Map 2, with an Additional Nested Topicref

The added relation is easily spotted and what we expect. But when we open map
1 again, look what's happened:

Use the Markup, Stupid!

97

Figure 5. Map 1 Changed After Map 2 Import

The updated nested topicref is interpreted as an updated relation between the topics.
This means that the database representation does not differentiate between the
topicref and the topic it links to.

The problem is a fundamental one, and, as far as I can tell, there is no way
around it.

5.2. Decomposing and Composing

The decompose process is defined in the mapping rules. The easiest rules are
either “compose” or “decompose”, where the function applied on the mapping
stipulates that the same process is run in a single direction. This, for example,
maps an id attribute to the item_id database property:

Figure 6. Mapping @id to item_id Property

But we also have other rules, such as these two mapping a title element to the
DocumentTitle property, on decompose and on first compose5:

5The first compose rule is used when the map is created in the product rather than in an XML editor.

Use the Markup, Stupid!

98

Figure 7. Mapping Document Titles

Why in both directions? Simply because it is possible to edit a title directly in the
GUI, outside the XML. If you edit the title, you want it to carry through to an
export and vice versa.

A very common mapping rule is to carry over database properties to the XML
document by mapping them to processing instructions:

Figure 8. Mapping @id to a Processing Instruction

It is possible to map properties to element and attribute content, but the address-
ing language is very limited. As an XML person you might be tempted to say
something like this:

/data[@name="document_no"]/@value
Unfortunately, the language does not support predicates or indeed any kind of
condition directly. It only does simple addressing, which is why most properties
are mapped to PIs directly inside the XML root element and then transferred to
the actual XML nodes—elements or attributes, with or without predicates—using
XSLT when publishing.

6. Discussion
The unwanted topic relationships—the inheritance problem, as I call it—are the
result of a poor underlying model. Poor because it shows the ignorance of the
model's designer regarding how DITA is supposed to work, and poor because
imposes lmitations on DITA maps, limitations that the source XML format
doesn't have.

Personally I suspect that to at least some degree, the flawed design happened
because the objective was not to correctly represent a specific XML flavour but to
define a model that would be usable for any schema. In DocBook, for example,
you'd normally define your section hierarchies inline, in the document, like this:

<section>
 <title>Top Level</title>
 <para>Para content.</para>
 <section>
 <title>Section Level</title>
 <para>More content.</para>

Use the Markup, Stupid!

99

 </section>
</section>

Here, the hierarchy is defined as part of the content itself. Decompose and com-
pose rules breaking apart and assembling the document can be triggered on
section elements. The “Section Level” subsection here would be reusable in
other documents after decompose, but if something was added to it, for example,
a third-level section, every reused instance of the subsectionwold also get it,
which (arguably) makes more sense.

In a DITA implementation, however, the inheritance problem is an unquali-
fied disaster.

The mapping rules are just as flawed. As their capabilities are limited, round-
trips (decompose followed by compose) are very difficult or even impossible, not
to mention that the XPath-like syntax will likely only serve to confuse, especially
if you know the real XPath.

What we have, then, is a flawed, non-XML representation of an XML docu-
ment that cannot possibly support the XML's feature set, and to make matters
worse, the language and methods used to get us from the XML to that representa-
tion and back is not sufficient.

7. How Did This Happen?
I guess the remaining question is “what went wrong?” or maybe just “why, oh
why would they do something like this?” I can certainly see how:
• That publication structure view is built on top of a tree representation meant

for viewing non-XML content—engineering data, most likely—in the PLM
system, and someone thought that it resembles a document hierarchy, so
wouldn't it be nice if...?

• DITA maps look like that. S1000D publication modules look like that. And
DocBook articles look like that. Really, isn't all XML hierarchical data...?

• That tree view can be used to represent any XML. All we need is a way to
translate the XML to it and back.

• Show a tree to a non-XML developer and inheritance will follow.
Of course, I am guessing, but it does sound plausible, doesn't it? There's also that
relational models are terrific for keeping track of engineering data—spare parts,
kits, assemblies—but often less than perfect for representing documents6.

The XML (and SGML) world used to be full of similar approaches. Consider
Adobe FrameMaker, a product that started out as a very capable word processor
for technical documentation but that was extended to support SGML and, later,

6These days, I'd pick an XML database every time.

Use the Markup, Stupid!

100

XML. The source file format was never structured, though, it was mapped to
structures using rules not unlike the mapping rules we've discussed above.

FrameMaker's .fm files were no more related to SGML than the PLM pro-
duct's internal tree representation is related to XML.

In fact, jumping on the SGML (and XML) bandwagon was all the rage for a
time. There was a version of WordPerfect that supported SGML. I remember at
least two plugins for Microsoft Word attempting something similar, and, of
course, Word would later introduce its own XML format. Et cetera.

It's a greyscale, though; XML's early history is partly the history of tools, lan-
guages, and standards trying to incorporate XML because it was the cool new
thing. Eventually, as the technology matured, many realised XML everywhere
was a bad idea while others continued to use it where it actually works. Like in
documents.

8. Conclusions
Which brings us back to where we started. The XML technology stack is quite
mature, and the tools are all there. They easily support the document standards
mentioned in this little treatise, and more. I am writing this in oXygen XML Edi-
tor, in DocBook, but oXygen also offers full DITA support, alongside many other
documentation standards, not to mention that it's easy to add further document
types.

I've mentioned XML databases. There are several out there, from open-source
implementations to enterprise-level commercial products, and we can easily
make them support all the XML document types we need.

I don't need to mention all those other technologies available to us again, do I?
I should mention that I don't disapprove of the PLM product as such; the abil-

ity to manage your engineering data is extremely useful, especially when coupled
with your documentation. I disapprove of the way XML is integrated with the
product.

So, a few comments and complaints:

• The tree representation wasn't XML, and what's worse, its internal model
wasn't even close. Representing XML in a non-XML way is a bad idea because
it will only ever be as good as the mapping rules from and to XML.

• The designers didn't understand XML, only their domain. Inheritance may be
a core feature of whatever the tree representation is based on, but the failure
to recognise is the designer's, not the underlying feature.

• The fact that the tree representation is not XML requires that XML is mapped
to and from that representation. This led to the mapping language, likely
another misunderstanding by the designers because it clearly got its influen-

Use the Markup, Stupid!

101

ces from XPath but did not even try to include conditionals or any other use-
ful XPath features beyond some passing resemblance to XPath syntax.

• The mapping language, combined with the limits of the tree, risks giving
markup languages and DITA in particular a bad reputation and, worse, hin-
dering implementation and forcing people to look outside the XML technol-
ogy stack.

DITA, regardless of what you feel about it7, is a standard intended to ease
authoring topic-based information, but also to get away from some aspects of
other XML formats considered difficult. Doing a non-XML version of it
doesn't make it easier.

Essentially, if you are trying to copy XML features and functionality, why not use
XML. To put it simply:

Use the markup, stupid!

7The author of this paper isn't too thrilled about it, but that's another story.

Use the Markup, Stupid!

102

XSL-FO/CSS Comparison
Tony Graham

Antenna House, Inc.
<tony@antennahouse.com>

Abstract

Comparing XSL-FO and CSS formatting is not straightforward. XSL
implementations are not standing still: XSL formatters are still incremen-
tally improving even though the XSL Recommendation has not been upda-
ted since 2006. CSS is definitely not standing still, although some of the
modules most relevant to paged media are advancing slowly, if at all, and
some paged media features have been removed in more recent Working
Drafts.

This is a high-level view of the differences and similarities between XSL-
FO and CSS, based on an extensive new analysis by Antenna House that
itself is formatted identically using both XSL-FO and CSS. It also covers
some of the features of how the two versions are produced.

1. Introduction
Comparing XSL-FO and CSS formatting is not straightforward. XSL implementa-
tions are not standing still: XSL formatters are still incrementally improving even
though the XSL Recommendation has not been updated since 2006. CSS is defi-
nitely not standing still, although some of the modules most relevant to paged
media are advancing slowly, if at all, and some paged media features have been
removed in more recent Working Drafts.

The first part of this paper compares the specifications for XSL-FO and CSS. It
is based on a much longer document that both compares XSL-FO and CSS and
provides information about applicable AH Formatter extensions for one or both
of XSL-FO and CSS. That document is available in two versions—formatted using
XSL-FO and formatted using CSS—for you to compare.

The second part covers some of the features of how the two versions of the
analysis document are produced.

2. History
The following table shows some of the significant events in the development of
XSL-FO, CSS, and HTML.

103

Year XSL-FO CSS HTML
1996 DSSSL CSS 1
1998 CSS 2 XHTML 1.0
1999 First CSS 3 drafts
2001 XSL 1.0 XHTML 1.1
2004 WHAT WG formed
2006 • XSL 1.1

• XSL-FO 2.0 Workshop
HTML WG rechartered

2008
2009 XSL-FO 2.0 Design Notes
2011 CSS 2.1
2012
2018 CSS Snapshot 2018
2019 W3C cedes HTML5 to WHAT WG
2020 CSS Snapshot 2020
2021

Cascading Style Sheets, level 1, 3 became a Recommendation in 1996. CSS was co-
invented by Håkon Wium Lie and Bert Bos. CSS 1 built upon previous style sheet
proposals, including earlier separate proposals by Lie and Bos. References to the
earlier proposals are at: the W3C Historical Style Sheet proposals 7 page; the The
CSS saga 11 chapter from Lie and Bos’s CSS book: and Lie’s Ph.D thesis 10. The
goals for CSS stated in 1995 1 include: “CSS supports stream-based (or ‘incremen-
tal’ formatting) where possible”; “CSS offers both readers and authors control
over the style”; as well as “avoiding an uncontrolled growth of HTML exten-
sions”.

DSSSL 5, the stylesheet language for SGML, became an International Standard
in 1996. DSSSL defines a tree transformation process followed by a formatting
process. In practice, the tree transformation process was not widely used. How-
ever, the most widely-used DSSSL formatter had an extension for performing a
transformation as an alternative to formatting.

Styling for XML was always part of the development of XML. It was referred
to by Jon Bosak, original XML Working Group (WG) Chair, in 1997 as “xml-style
(Part 3 of the XML specification suite)” 17 and “Part 3 of the W3C XML suite of
specifications for the use of SGML, HyTime, and DSSSL subsets on the World
Wide Web” 21.

‘xml-style’ became ‘Extensible Stylesheet Language’ (XSL). The XSL WG was
formed in 1998, and its charter stated its intention “to define a style specification
language that covers at least the formatting functionality of both CSS and DSSSL.”
19 XSL encompasses both transformation and formatting, but transformation

XSL-FO/CSS Comparison

104

proved generally useful, and the transformation component was broken out as
the XSLT series of Recommendations. The bulk of the XSL 1.0 and XSL 1.1 Rec-
ommendations concern the formatting objects (FO) and their properties. The
transformation component is covered by a short chapter that refers to the then-
current XSLT 1.0 Recommendation. The XSL properties align as much as possible
with the corresponding CSS properties, in keeping with the commitment in the
XSL WG charter.

The need for consistency in properties was stated to be an architectural princi-
ple for the web in the Consistency of Formatting Property Names, Values, and Seman-
tics TAG Finding 12 published in 2002.

Antenna House first proposed greater compatibility between XSL-FO and
CSS, especially compatibility with the CSS 3 drafts, at International Workshop on
the future of the Extensible Stylesheet Language (XSL-FO) Version 2.0 18 at Heidel-
berg, Germany, in 2006. That proposal was not supported by the workshop par-
ticipants.

AH Formatter V5.0, released in 2008, was the first AH Formatter version to
support both XSL-FO and CSS. AH Formatter is still the world’s only XSL-FO and
CSS formatter, and successive releases have added features for both XSL-FO and
CSS.

3. Viewpoints
How a user compares XSL-FO and CSS can depend on their initial exposure to
markup and styling as much as or more than on the relative merits of either tech-
nology. This is an informal summary of how users of CSS can see XSL-FO, and
vice-versa.

3.1. CSSer’s view of XSL-FO
• Source XML or HTML must be transformed into the XSL-FO vocabulary

Transformation has advantages and disadvantages. CSS was designed to
support stream-based or incremental formatting 1, which is part of why CSS
selectors cannot match ‘down’ into the content of the current element or ‘for-
ward’ to the structure of following elements. A transformation stage, on the
other hand, typically (although less so after XSLT 3.0 added streaming for
XSLT) requires the whole document to be available, but it does allow style
decisions to be made based on the whole document. Transformation also
allows the content to be duplicated and reordered to, for example: generate
tables of contents and indexes; sort the rows of a table; or calculate subtotals.
Formatting paged media using CSS 3 typically requires some form of

transformation anyway. This includes generating the running elements that
are taken out of the flow and used in headers and footers, as well as generat-
ing tables of contents and indexes.

XSL-FO/CSS Comparison

105

• Separate attributes for each property is verbose
XSL-FO is designed to be the result of an XSLT transformation. XSL-FO

was not meant to be read, let alone authored, by humans. It does happen, of
course. When XSL-FO is serialized as XML, it is straightforwardly usable in
XML editors, etc., and it is as human-legible and as reasonably clear as any
other XML or HTML document.

When XSL-FO is generated using XSLT, the XSLT is less verbose than the
XSL-FO that it creates. An FO and its properties can be generated from literal
elements and attributes inside an XSLT template, but a single XSLT template
can be used many times to generate multiple copies of the FO. Attribute sets
in the XSLT are defined once and are used in multiple places in the XSLT. An
XSLT template can contain more than just literal elements and attributes to
copy to the result: the XSLT can include as much logic as is necessary to be
able to conditionally generate the correct FOs, their correct properties, and the
correct property values for any given context.

• JavaScript could be used instead of XSLT
Yes, JavaScript can be used to generate tables of contents, indexes, and so

on by manipulating the DOM of the document, but whatever JavaScript solu-
tions exist have been bespoke code. Over the last 20 years, there hasn’t been a
standard, widely used, general purpose JavaScript library that matches both
the path-matching ability of XPath and the declarative templating mechanism
of XSLT. AH Formatter will format a correct XSL-FO file no matter how it was
created.

• XSL-FO properties inherit but do not cascade
The role of the cascade is taken by the XSLT transformation.
In XSLT:

• One XSLT stylesheet can import another, similarly to how @import imports
another CSS style sheet

• The ‘match’ patterns in XSLT templates have a default priority based on
the specificity of their XPath pattern, similarly to more specific CSS selec-
tors overriding more general ones. In addition, an XSLT template may be
given an explicit numeric priority.

• When there is more than one matching template with the same prece-
dence, the one that occurs last is used, similarly to two CSS rules that have
the same weight

• An XSLT ‘attribute set’ is a named set of attribute definitions. The attribute
definitions are reevaluated in each context where the attribute set is used.
Multiple <xsl:attribute-set> with the same name are aggregated, with defi-
nitions for individual attributes in an <xsl:attribute-set> with higher prece-
dence overriding definitions in other <xsl:attribute-set> that have lower

XSL-FO/CSS Comparison

106

precedence. An <xsl:attribute-set> can also reuse attribute definitions in
other, named attribute sets. Attribute sets are not quite the same as on-the-
fly building up of the properties to apply in a particular context based on
the cascade of @import rules and specificity of CSS selectors, but they do
make it easy to apply a group of properties in particular contexts.

• FOs are like elements with fixed display property values
In CSS, all that you have is the source document (unless, as noted previ-

ously, you have augmented the original source document to create tables of
contents, etc.). The display property, like all properties, is applied as that
document is formatted. With transformation before formatting, the decisions
about how to format each part of the source document are part of the transfor-
mation, so there is no need for on-the-fly changes using a display property.

• XSL-FO does not have variables
CSS gained variables only recently, but variables are not needed in XSL-

FO. XSLT has variables (which have scope and which can be passed between
templates), so any calculations based on variables or any substitution of con-
stant values can be handled in XSLT.

• XSL-FO can’t be used for both web and print
XSL 1.1 defines how to handle a page that extends indefinitely in one or

both dimensions and it also includes some interactive FOs, but neither of
those has been widely implemented because few users have ever expressed
interest in them.

• CSS is easier to learn that XSL-FO
The basics of CSS syntax are easy to learn, but there is an expanding list of

CSS selectors and pseudo-elements to be remembered, plus many CSS proper-
ties have their own micro-syntax for expressing their value. The 2014 charter
for the CSS Working Group states “CSS is a rather large and complex lan-
guage.” 23, while later charters change the narrative to “The CSS specification
is large” even as CSS has further expanded. 24

XSLT and XSL-FO are XML vocabularies, so most of their syntax is easily
understood by anyone who can read XML or HTML. However, XSLT and
XSL-FO attempt more than CSS, so it is not surprising that there is more to
learn. XSLT is a Turing-complete declarative language for specifying transfor-
mations, whereas CSS is a declarative language for specifying styles. People
who are used to imperative programming languages where they specify every
step of the program can have trouble adapting to the XSLT model where the
structure of the source document can determine the program flow.

XSL-FO provides more control than CSS over, for example, the selection of
page masters and the content of headers and footers, so it has more FOs and
properties for those areas.

• There are more CSS users than XSL-FO users

XSL-FO/CSS Comparison

107

True. However, comparatively few CSS users are familiar with using CSS
to generate paged media. If you want to learn more about CSS for paged
media, see Introduction to CSS for Paged Media 8, available from the Antenna
House website.

3.2. XSL-FOer’s view of CSS

• CSS ‘just decorates the tree’
Decorating the tree of elements fits with the original goal of CSS to support

streaming or incremental formatting. 1 XSLT, in contrast, can use any part of
the document, or of a different document, when deciding which template to
use in the current context. By using modes, XSLT can process the document or
parts of the document multiple times in different ways.

The structure of the XSL-FO document does not need to match the struc-
ture of the source document: the XSLT stage can generate literal elements as
well as copy all or part of any node in the source document. An XSLT tem-
plate can select which nodes to process next rather that just processing the
children of the current node.

• CSS selectors won’t look ‘down’ or ‘forward’
CSS selectors can match on the current element, its class (or classes), its

attribute values, its ancestor elements, and its preceding elements. Selectors
won’t, however, match on the string value of an element or on any aspect of
the type and arrangement of an element’s descendent elements. In contrast,
the entire document (and possibly other, external documents) is available to
the XSLT processor, and style decisions can be made based on more than just
the context of the current element.

• CSS only operates on elements
CSS selectors only apply to elements. In contrast, XSLT templates can

match on text nodes, text nodes with particular values, or text nodes in partic-
ular contexts (possibly with particular values) and can generate FOs based on
those text nodes. XSLT can similarly match on comments and processing
instructions and generate FOs.

4. Feature comparison

The following table provides an overview of the differences between XSL-FO and
CSS. For ease of comparison, the sequence in both the table and the rest of this
document follows the chapter sequence in Introduction to CSS for Paged Media 8.

XSL-FO/CSS Comparison

108

Table 1. Feature comparison

Section XSL-FO CSS
Box lay-
out

XSL and CSS both generate rectangular boxes by applying styles to markup.
Their features are mostly identical.

Page lay-
out

• Page masters defined in <fo:simple-
page-master> FOs

• Page masters selected in a predefined
sequence using <fo:page-sequence-
master> FOs

• AH Formatter supports nested
<fo:page-sequence> as a child of
<fo:flow>

• AH Formatter adds <axf:spread-
page-master> for defining pages with
regions that spread across two pages

• “Flow maps” allow content to flow
into multiple separate regions on the
same page

• Pages defined in @page rules
• Elements can specify a @page rule

to use
• Adjacent or nested elements with
different @page selection causes a
page break with the change to
the new @page

Headers
& footers

• Four ‘outer’ regions may be defined
for each <fo:simple-page-master>

• Default name for each region may be
overridden

• Block-level content from <fo:static-
content> directed to named region (if
defined for current page)

• Variable content specified with
<fo:marker> and retrieved with
<fo:retrieve-marker>

• Retrieved content does not inherit
properties from its original location

• 16 page-margin boxes on every
page

• Page-margin box names are fixed
and each box has predefined
default alignment

• Content is either retrieved from a
running element using
running() or is any combination
of fixed strings, counters, and
strings retrieved using string()

• Running elements inherit proper-
ties from their original location

Multiple
columns

• Only in <fo:region-body> and, as AH
Formatter extension, in <fo:block-
container>

• column-count specifies fixed number
of columns

• AH Formatter extensions for column
balancing and appearance of column
rule

• Any block-level element
• column-count specifies fixed

number of columns
• Setting column-width generates

as many columns as will fit
• AH Formatter extensions for col-

umn balancing and appearance
of column rule

XSL-FO/CSS Comparison

109

Section XSL-FO CSS
Keeps &
breaks

• Keywords plus numeric values to
indicate weight

• AH Formatter extension for maxi-
mum height for a keep-together con-
dition

• Keywords only

• AH Formatter extension for max-
imum height for a keep-together
condition

Paragraph
setting

• Same text alignment control, includ-
ing AH Formatter extensions

• AH Formatter extensions for baseline
grid

• Overflow extensions

• Same text alignment control,
including AH Formatter exten-
sions

• AH Formatter extensions for
baseline grid

Footnotes
& side-
notes

• A ‘footnote-reference-area’ is implicit
in the area generated by an
<fo:region-body>

• Footnote number expected to be
included in XSL-FO

• Sidenotes are an AH Formatter
extension

• Sidenote number expected to be
included in XSL-FO

• @footnote rule for footnote area
included in default html.css

• Footnote numbering is automatic

• @sidenote rule for sidenote area
included in default html.css

• Sidenote numbering is automatic

Tables • XSL 1.1 tables based on CSS 2 tables
• A table with a caption requires

<fo:table-and-caption> containing
both <fo:table-caption> and
<fo:table>

• Precedence of collapsing borders can
be set in the XSL-FO

• AH Formatter extensions for table
footnotes, accessibility, and improved
control of breaks

• CSS still uses CSS 2 tables
• AH Formatter implements XSL-

FO properties for cell content
alignment and table header and
footer behavior at breaks

• AH Formatter extensions for
accessibility and improved con-
trol of breaks

• -ah-reference-orientation
applies to tables and table cells

Lists • Multiple FOs for parts of a list

• List markers expected to be included
in XSL-FO

• Numeric markers can be formatted
using counter styles or other formats

• Any element may have display:
list-item; to render as a list
item

• ::marker pseudo-element for list
item marker

• Marker in an ordered list typi-
cally generated using a counter

Character
setting

Equivalent capabilities. Many properties are common to XSL-FO and CSS.
Properties that are not defined in a technology are implemented as AH For-
matter extensions, plus there are multiple original AH Formatter extensions
implemented for both XSL-FO and CSS.

XSL-FO/CSS Comparison

110

Section XSL-FO CSS
Japanese
text com-
position

Equivalent capabilities. Many properties are common to XSL-FO and CSS.
Properties that are not defined in a technology are implemented as AH For-
matter extensions, plus there are multiple original AH Formatter extensions
implemented for both XSL-FO and CSS.

Cross-ref-
erences

• <fo:basic-link> has internal-
destination and external-
destination properties

• Only one of internal-destination
and external-destination should
be specified

• Content of cross-reference, including
section number, etc., is expected to be
included in XSL-FO

• Page number of target generated
using <fo:page-number-citation>

• <fo:page-number-citation-last> gen-
erates page number of last area gen-
erated by an FO

• AH Formatter extensions for physical
page number, page numbers in
reverse sequence, and relative page
number difference

• href used for both internal and
external links

• Text (but not styling or contained
markup) of target can be
retrieved using target-text()

• Number (e.g., section number)
and page number can be calcula-
ted using target-counter()

• AH Formatter extensions for
physical page number and page
numbers in reverse sequence

Image
position-
ing

AH Formatter provides equivalent extensions for both XSL-FO and CSS that
provide better capabilities than what is defined in either XSL-FO or CSS.

MathML
& SVG
graphics

• MathML and SVG are not part of
XSL-FO but can be included using
<fo:instream-foreign-object> or refer-
red to using <fo:external-graphic>

• AH Formatter provides custom
MathML3 and SVG renderers

• MathML and SVG are part of
HTML5

• AH Formatter provides custom
MathML3 and SVG renderers

XSL-FO/CSS Comparison

111

Section XSL-FO CSS
Counters • XSL 1.1 has a limited ability to for-

mat page numbers using format and
other properties that are based on the
Number to String Conversion Attributes
defined in XSLT 1.0 20

• All other formatted numbers are
expected to be included in the XSL-
FO

• AH Formatter implements CSS 3
counter styles, including defining
custom counter styles in the XSL-FO,
to generate numbers when format-
ting

• Counter styles can be used on all
block-level and inline-level format-
ting objects

• Numbers based on the element
structure can be generated using
counter()

• Counters can be incremented or
reset at arbitrary element starts
or at page boundaries using
counter-increment and
counter-reset properties

• CSS Counter Styles 3 4 defines
many formats for presentation of
counter values as well as a mech-
anism for custom counter styles

Color • RGB and CMYK colors
• ICC color profiles
• AH Formatter adds:

• RGBA, HSL, HSLA, and CMYKA
colors

• Extended color names from CSS
• Gradient functions from CSS3

• RGB, RGBA, HSL, HSLA, and
CMYK colors

• CMYKA as AH Formatter exten-
sion

• Extended color names

• Radial and linear gradients
Borders &
back-
ground

Equivalent capabilities. Many properties are common to XSL-FO and CSS.
XSL-FO and CSS 2 support a single background image. CSS 3 and AH Format-
ter support multiple background images.
Properties that are not defined in a technology are implemented as AH For-
matter extensions, plus there are multiple original AH Formatter extensions
implemented for both XSL-FO and CSS.

PDF out-
put

• PDF bookmarks from explicit
<fo:bookmark-tree>

• Bookmarks can link to anywhere
inside or outside the document

• PDF bookmarks from elements
with bookmark-level property

AH Formatter extensions include:
• Bookmarks can be built from document structure
• PDF forms
• Multiple PDF variants, including PDF/A, PDF/X, and PDF/UA
• XSL-FO can be output as multiple volumes

XSL-FO/CSS Comparison

112

Section XSL-FO CSS
Indexes • Multiple FOs specific to indexes

• Properties for merging repeated and
consecutive page numbers in index
entries

• Extension properties for merging
repeated and consecutive page
numbers can be used on any
block-level element

5. Formatting the XSL-FO/CSS comparison
The XSL-FO/CSS Comparison document on which this paper is based grew out of
AH Formatter customer requests for information about the differences between
XSL-FO and CSS. An initial list prepared by Antenna House Support became the
table in the previous section, and that has now expanded into a 150-page book.

The book is available in two versions—formatted using XSL-FO and formatted
using CSS—for you to compare. However, the results are so similar that for many
pages, you will need the Antenna House Regression Testing System 2 to find the
differences.

Figure 1. CSS and XSL-FO versions side-by-side

The text is marked up in XHTML5 (XML-serialized HTML5). Before being for-
matted, the XHTML5 is augmented using XSLT to add the table of contents, side
tabs, and syntax highlighting.

The CSS version applies CSS to the augmented XHTML5 using AH CSS For-
matter to generate PDF. For the XSL-FO version, the augmented XHTML5 is

XSL-FO/CSS Comparison

113

transformed into XSL-FO markup using XSLT and is then formatted using AH
XSL Formatter to generate PDF.

5.1. Development sequence
For faster development as well as consistent look-and-feel, the book is written in
XHTML and uses the same styles as the Introduction to CSS for Paged Media 8
book. That book is itself an expansion of the translation of a Japanese book writ-
ten in 2005. Some of the markup conventions and class names are unchanged
from the 2005 predecessor.

The CSS styles had previously only been used for Introduction to CSS for Paged
Media, so a necessary step was to modularise the processing so that the two docu-
ments can use the same core stylesheets with local overrides and local graphics.

The other step was to develop the XSLT stylesheets for transforming the
XHTML into XSL-FO. Instead of repeating the logic that augments the source
XHTML to generate the XHTML that is formatted using CSS, the stylesheets for
generating XSL-FO use the augmented XHTML as their source.

To further reduce development time, the custom XSL-FO stylesheets import
an XSLT 3 version of the XHTML to XSL-FO stylesheets 15 by Antenna House.

5.2. CSS version
As stated previously, the version formatted using CSS uses existing XSLT and
CSS stylesheets.

5.2.1. Alternative approaches

Inasmuch as the XHTML is written to use the pre-existing XSLT and CSS style-
sheets, it would not make sense to revise the CSS for this book.

5.3. XSL-FO version

5.3.1. Page layout

Page dimensions in CSS are defined in @page rules. Individual elements can spec-
ify which @page rule to use. If that is not the current @page rule, the formatter will
start a new page using the new @page rule. In contrast, XSL provides <fo:simple-
page-master> for defining the dimensions of a page and its constituent regions
plus <fo:page-sequence-master> for defining which page master to use in the pro-
gression of pages for an <fo:page-sequence>.

Because of these differences between CSS and XSL-FO, the XSL-FO page mas-
ters were written based on the CSS originals, but they are also parameterised
through the use of variables and attribute sets.

XSL-FO/CSS Comparison

114

<xsl:template name="make-layout-master-set">
 <fo:layout-master-set>
 <xsl:call-template name="page-master-title" />
 <xsl:call-template name="page-master-chapter" />
 <xsl:call-template name="page-master-chapter">
 <xsl:with-param name="name" select="'chapter-two-column'"
 as="xs:string" />
 <xsl:with-param name="column-count" select="2" as="xs:integer" />
 </xsl:call-template>
 <xsl:call-template name="page-master-landscape-wide" />
 <xsl:call-template name="page-master-blurb" />
 </fo:layout-master-set>
</xsl:template>

<xsl:template name="page-master-chapter">
 <xsl:param name="name" select="'chapter'"
 as="xs:string" />
 <xsl:param name="column-count" select="1" as="xs:integer" />

 <fo:simple-page-master master-name="{$name}-first"
 xsl:use-attribute-sets="page bleed-crop-right">
 <fo:region-body margin-top="{$page-margin-top}"
 margin-right="{$page-margin-outside}"
 margin-bottom="{$page-margin-bottom}"
 margin-left="{$page-margin-inside}"
 column-count="{$column-count}" />
 <fo:region-after region-name="right-footer"
 text-align="right"
 display-align="center"
 extent="{$page-margin-bottom}" />
 <fo:region-end region-name="first-tab"
 extent="{$page-margin-outside}" />
 </fo:simple-page-master>
 <fo:simple-page-master master-name="{$name}-left"
 xsl:use-attribute-sets="page bleed-crop-left">
 <fo:region-body margin-top="{$page-margin-top}"
 margin-right="{$page-margin-inside}"
 margin-bottom="{$page-margin-bottom}"
 margin-left="{$page-margin-outside}"
 column-count="{$column-count}" />
 <fo:region-after region-name="left-footer"
 text-align="left"
 display-align="center"
 extent="{$page-margin-bottom}" />
 <fo:region-start region-name="left-tab"
 extent="{$page-margin-outside}" />

XSL-FO/CSS Comparison

115

 </fo:simple-page-master>
...
 <fo:page-sequence-master master-name="{$name}">
 <fo:single-page-master-reference master-reference="{$name}-first" />
 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference
 master-reference="{$name}-blank-left"
 blank-or-not-blank="blank"
 odd-or-even="even" />
 <fo:conditional-page-master-reference
 master-reference="{$name}-blank-right"
 blank-or-not-blank="blank"
 odd-or-even="odd" />
 <fo:conditional-page-master-reference
 master-reference="{$name}-left"
 odd-or-even="even" />
 <fo:conditional-page-master-reference
 master-reference="{$name}-right"
 odd-or-even="odd" />
 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
</xsl:template>

5.3.2. Side tabs

The formatted book features chapter numbers in side tabs, or index tabs, on the
outer edges of pages. They are a navigation aid, although they were included in
the original Introduction to CSS for Paged Media largely to illustrate how they can
be done.

CSS does not allow calculations based on the position of an element, so the
XSLT that augments the XHTML source adds a <p> that contains the chapter
number to be taken out of the flow and used in the side tab. The element also has
a data-position attribute that is used when calculating the vertical offset of the
side tab.

The XSLT that augments the source XHTML calculates the position based on
the allowed number of tabs per page:

<xsl:template match="h2">
 <xsl:copy>
 <xsl:apply-templates select="@*" />
 <xsl:call-template name="data-bookmark" />
 <xsl:if test="empty(@id)">
 <xsl:attribute name="id" select="ahf:generate-id(.)" />
 </xsl:if>
 <xsl:apply-templates select="node()" />
 </xsl:copy>

XSL-FO/CSS Comparison

116

 <xsl:if test="ahf:is-numbered(.)">
 <xsl:variable name="number">
 <xsl:number count="h2[ahf:is-numbered(.)]" level="any" format="1"/>
 </xsl:variable>
 <p class="tab" data-position="{($number - 1) mod $tabs-per-page}">
 <xsl:value-of select="$number" />
 </p>
 <p class="tab first" data-position="{($number - 1) mod $tabs-per-
page}">
 <xsl:value-of select="$number" />
 </p>
 </xsl:if>
</xsl:template>

The CSS removes the tab numbers from the flow and uses them as running ele-
ments:

@media ah-formatter {
 p.tab {
 height: 53pt;
 position: running(Tab);
 margin-top: calc(attr(data-position) * 53pt);
 font-variant: proportional-nums;
 }

 p.tab.first {
 position: running(TabChapter);
 color: var(--ah-green-rgb);
 color: var(--ah-green-cmyk);
 }
}

The running elements are used in the @left-top or @right-top page-margin box
on the first or subsequent pages of each chapter:

@page Chapter:left {
 @left-top {
 content: element(Tab);
 }
}

@page Chapter:right {
 @right-top {
 content: element(Tab);
 }
}

@page Chapter:first {

XSL-FO/CSS Comparison

117

 @right-top { content: element(TabChapter) }
}

When generating the XSL-FO, the tab number and position in the XHTML are re-
used, rather than repeating the logic to generate the same numbers again. The
tabs are generated as the content of an <fo:static-content> that is directed to either
the <fo:region-start> or <fo:region-end> of a page:

<!-- Tabs only for chapters. -->
<xsl:if test="tokenize(@class, '\s+') = 'Chapter'">
 <fo:static-content flow-name="first-tab">
 <fo:block-container color="{$ah-green-cmyk}"
 xsl:use-attribute-sets="tab">
 <fo:block-container margin="0">
 <fo:block>
 <xsl:value-of select="p[@class = 'tab']" />
 </fo:block>
 </fo:block-container>
 </fo:block-container>
 </fo:static-content>
 <fo:static-content flow-name="left-tab">
 <fo:block-container xsl:use-attribute-sets="tab"
 margin-left="-{$tab-width} div 2">
 <fo:block-container margin="0">
 <fo:block>
 <xsl:value-of select="p[@class = 'tab']" />
 </fo:block>
 </fo:block-container>
 </fo:block-container>
 </fo:static-content>
 <fo:static-content flow-name="right-tab">
 <fo:block-container xsl:use-attribute-sets="tab">
 <fo:block-container margin="0">
 <fo:block>
 <xsl:value-of select="p[@class = 'tab']" />
 </fo:block>
 </fo:block-container>
 </fo:block-container>
 </fo:static-content>

Because the attributes in an attribute set are evaluated each time they are used,
the margin-top is calculated for each tab:

<xsl:attribute-set name="tab">
 <xsl:attribute name="color" select="'white'" />
 ...
 <!-- Generate an expression for the formatter to evaluate.
 Attributes in an attribute set are reevaluated every time that

XSL-FO/CSS Comparison

118

 the attribute set is used. -->
 <xsl:attribute name="margin-top"
 select="concat($page-margin-top,
 ' + ',
 $tab-height,
 ' * ',
 p[@class = 'tab']/@data-position)" />
 <xsl:attribute name="margin-left" select="'4.5mm'" />
 <xsl:attribute name="margin-right" select="'4.5mm'" />
</xsl:attribute-set>

5.3.3. Tables

The imported xhtml2fo.xsl stylesheet makes extensive use of xsl:attribute-
set, reflecting that the original version was written in XSLT 1.0. The XSLT 3.0
stylesheet also supports passing a map of property overrides when formatting,
for example, tables and lists.

Most but not all tables in the XHTML document are styled using the StdTable
styles. This is straightforward with CSS, where the class name is part of the CSS
selector and the CSS specificity rules ensure that the rules with .StdTable over-
ride the default table styles. For example:

table.StdTable {
 border-color: gray;
 border-style: solid none solid none;
 border-width: 1.5pt;
 border-collapse: collapse;
 margin-top: 1em;
 margin-bottom: 1em;
 margin-left: auto;
 margin-right: auto;
}

It is less straightforward when using XSLT to generate XSL-FO because it is
harder to override some XSL-FO properties but not others while using a generic
template to process all table elements. The map of properties approach passes
specific property values to the generic templates for the table-related properties:

<xsl:template match="table[tokenize(@class, '\s+') = 'StdTable']">
 <xsl:param name="table-properties"
 select="map { }"
 tunnel="yes"
 as="map(xs:string, map(xs:string, xs:string?))" />

 <xsl:variable
 name="local-table-properties"
 select="map {

XSL-FO/CSS Comparison

119

'table-caption' : map { 'font-weight' : 'bold',
 'margin-top' : '0',
 'margin' : '0.5em' },
'table' : map { 'border-collapse' : 'collapse-with-precedence',
 (: CSS puts the top border inside the table, but
 XSL-FO puts half the border above the table. :)
 'margin-top' : '0.75pt',
 'margin-left' : 'auto',
 'margin-right' : 'auto',
 'border-top' : '1.5pt solid gray',
 'border-bottom' : '1.5pt solid gray',
 'border-left-style' : 'hidden',
 'border-right-style' : 'hidden' },
'table-header' : map { 'border-style' : 'solid none',
 'border-color' : 'gray transparent',
 'border-width' : '1.5pt',
 'border-after-precedence' : 'force' },
'table-cell' : map { 'border-style' : 'solid',
 'border-color' : 'gray',
 'border-width' : '0.75pt',
 'padding' : '3pt',
 'text-align' : 'left' }
}"
 as="map(xs:string, map(xs:string, xs:string?))" />

 <!-- Properties from importing stylesheet or higher-priority
 template have precedence over local properties. -->
 <xsl:variable
 name="table-properties"
 select="map:put($table-properties,
 'table-and-caption',
 map:merge(($table-properties('table-and-caption'),
 $local-table-properties('table-and-
caption'))))"
 as="map(xs:string, map(xs:string, xs:string?))" />
 <xsl:variable
 name="table-properties"
 select="map:put($table-properties,
 'table-caption',
 map:merge(($table-properties('table-caption'),
 $local-table-properties('table-
caption'))))"
 as="map(xs:string, map(xs:string, xs:string?))" />
 <xsl:variable
 name="table-properties"
 select="map:put($table-properties,

XSL-FO/CSS Comparison

120

 'table',
 map:merge(($table-properties('table'),
 $local-table-properties('table'))))"
 as="map(xs:string, map(xs:string, xs:string?))" />
 <xsl:variable
 name="table-properties"
 select="map:put($table-properties,
 'table-header',
 map:merge(($table-properties('table-header'),
 $local-table-properties('table-
header'))))"
 as="map(xs:string, map(xs:string, xs:string?))" />
 <xsl:variable
 name="table-properties"
 select="map:put($table-properties,
 'table-cell',
 map:merge(($table-properties('table-cell'),
 $local-table-properties('table-
cell'))))"
 as="map(xs:string, map(xs:string, xs:string?))" />

 <xsl:next-match>
 <xsl:with-param
 name="table-properties"
 select="$table-properties"
 tunnel="yes"
 as="map(xs:string, map(xs:string, xs:string?))" />
 </xsl:next-match>
</xsl:template>
...
<xsl:template match="thead">
 <xsl:param name="table-properties"
 select="map { }"
 tunnel="yes"
 as="map(xs:string, map(xs:string, xs:string?))" />

 <fo:table-header xsl:use-attribute-sets="thead">
 <xsl:sequence
 select="ahf:add-properties($table-properties('table-header'),
 $border-properties)" />
 <xsl:call-template name="process-table-rowgroup">
 <xsl:with-param name="properties"
 select="$table-properties('table-header')"
 tunnel="yes" as="map(xs:string, xs:string?)?" />
 </xsl:call-template>

XSL-FO/CSS Comparison

121

 </fo:table-header>
 </xsl:template>

5.3.4. Alternative approaches

Because the XSLT stylesheets to generate the XSL-FO are written by hand, the
XHTML source currently avoids using any style attributes. In principle, the man-
ual stylesheet creation could be replaced by an automated system that processes
the XHTML document together with its stylesheets using the ‘css-tools’ utility 22
by Gerrit Imsieke and le-tex publishing services. ‘css-tools’ resolves the cascade of
CSS styles, including from style attributes, and generates applicable CSS proper-
ties as separate XML attributes on each element. 22 The structure of the XHTML
document, in combination with the XML attributes representing the styles, could
be used to generate FOs and properties for an XSL-FO equivalent of the XHTML
+CSS source. In practice, however, while ‘css-tools’ has recently improved its han-
dling of CSS pseudo-elements, it does not yet handle @page rules or custom
@media types.

6. Conclusion

XSL-FO and CSS have a lot of similarities because of their commitments to use
common properties when XSL 1.0 and CSS2 were developed. More differences
developed as XSL and CSS each added new features. AH Formatter smooths out
most of the differences by providing many of the properties from one technology
as extensions available to the other technology.

Bibliography
[1] Bert Bos. Report on the W3C style sheet workshop, Paris ’95. https://

www.w3.org/Style/951106_Workshop/report1.html
[2] Antenna House, Inc. Antenna House Regression Testing System. https://

www.antennahouse.com/ahrts
[3] World Wide Web Consortium. Cascading Style Sheets, level 1. W3C

Recommendation 17 December 1996.https://www.w3.org/TR/REC-CSS1/
[4] World Wide Web Consortium. CSS Counter Styles Level 3, W3C Candidate

Recommendation, 14 December 2017. https://www.w3.org/TR/2017/CR-css-
counter-styles-3-20171214/

[5] Wikipedia. Document Style Semantics and Specification Language. https://
en.wikipedia.org/wiki/
Document_Style_Semantics_and_Specification_Language

XSL-FO/CSS Comparison

122

https://www.w3.org/Style/951106_Workshop/report1.html
https://www.w3.org/Style/951106_Workshop/report1.html
https://www.antennahouse.com/ahrts
https://www.antennahouse.com/ahrts
https://www.w3.org/TR/REC-CSS1/
https://www.w3.org/TR/2017/CR-css-counter-styles-3-20171214/
https://www.w3.org/TR/2017/CR-css-counter-styles-3-20171214/
https://en.wikipedia.org/wiki/Document_Style_Semantics_and_Specification_Language
https://en.wikipedia.org/wiki/Document_Style_Semantics_and_Specification_Language
https://en.wikipedia.org/wiki/Document_Style_Semantics_and_Specification_Language

[6] World Wide Web Consortium. CSS3 module: Generated Content for Paged Media.
4 May 2007. http://www.w3.org/TR/2007/WD-css3-gcpm-20070504

[7] World Wide Web Consortium. Historical Style Sheet proposals. 6 January 2021.
https://www.w3.org/Style/History/ (archive1)

[8] Antenna House. Introduction to CSS for Paged Media, 15 February 2019.
https://www.antennahouse.com/css

[9] World Wide Web Consortium. Requirements for Japanese Text Layout 日本語組版
処理の要件（日本語版）. 11 August 2020. URL: https://www.w3.org/TR/jlreq/

[10] Håkon Wium Lie. Cascading Style Sheets. Ph.D Thesis. 2005. https://
wiumlie.no/2006/phd/ (archive2)

[11] Håkon Wium Lie and Bert Bos. The CSS saga. https://www.w3.org/Style/
LieBos2e/history/ (archive3)

[12] World Wide Web Consortium. Consistency of Formatting Property Names,
Values, and Semantics. TAG Finding. 25 July 2002. https://www.w3.org/2001/
tag/doc/formatting-properties.html

[13] World Wide Web Consortium. Caption & Summary in WAI Web Accessibility
Tutorials. 27 July 2019. https://www.w3.org/WAI/tutorials/tables/
caption-summary/

[14] WHAT-WG. The CSS user agent style sheet and presentational hints. 12 August
2021. https://html.spec.whatwg.org/multipage/rendering.html#the-
css-user-agent-style-sheet-and-presentational-hints

[15] Antenna House, Inc. XHTML to XSL-FO in Developing XSL-FO Stylesheets.
https://www.antennahouse.com/xml-to-xsl-fo-stylesheets

[16] World Wide Web Consortium. Extensible Stylesheet Language (XSL). W3C
Recommendation. https://www.w3.org/TR/2001/REC-xsl-20011015/

[17] Jon Bosak. XS discussion begins. 22 May 1997. http://xml.coverpages.org/
xs-970524.html (archive4)

[18] World Wide Web Consortium. Report from International Workshop on the future
of the Extensible Stylesheet Language (XSL-FO) Version 2.0. 18 October 2006.
https://www.w3.org/Style/XSL/2006-Workshop/Report.html

[19] World Wide Web Consortium. Charter - XSL Working Group. 22 February
2002. https://www.w3.org/Style/2000/xsl-charter.html

1 http://web.archive.org/web/20201031230541/https://www.w3.org/Style/History/
2 http://web.archive.org/web/20201130075146/https://wiumlie.no/2006/phd/
3 http://web.archive.org/web/20201018013706/https://www.w3.org/Style/LieBos2e/history/
4 http://web.archive.org/web/20200112005134/http://xml.coverpages.org/xs-970524.html

XSL-FO/CSS Comparison

123

http://www.w3.org/TR/2007/WD-css3-gcpm-20070504
https://www.w3.org/Style/History/
http://web.archive.org/web/20201031230541/https://www.w3.org/Style/History/
https://www.antennahouse.com/css
https://wiumlie.no/2006/phd/
https://wiumlie.no/2006/phd/
http://web.archive.org/web/20201130075146/https://wiumlie.no/2006/phd/
https://www.w3.org/Style/LieBos2e/history/
https://www.w3.org/Style/LieBos2e/history/
http://web.archive.org/web/20201018013706/https://www.w3.org/Style/LieBos2e/history/
https://www.w3.org/2001/tag/doc/formatting-properties.html
https://www.w3.org/2001/tag/doc/formatting-properties.html
https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://html.spec.whatwg.org/multipage/rendering.html#the-css-user-agent-style-sheet-and-presentational-hints
https://html.spec.whatwg.org/multipage/rendering.html#the-css-user-agent-style-sheet-and-presentational-hints
https://www.antennahouse.com/xml-to-xsl-fo-stylesheets
https://www.w3.org/TR/2001/REC-xsl-20011015/
http://xml.coverpages.org/xs-970524.html
http://xml.coverpages.org/xs-970524.html
http://web.archive.org/web/20200112005134/http://xml.coverpages.org/xs-970524.html
https://www.w3.org/Style/XSL/2006-Workshop/Report.html
https://www.w3.org/Style/2000/xsl-charter.html
http://web.archive.org/web/20201031230541/https://www.w3.org/Style/History/
http://web.archive.org/web/20201130075146/https://wiumlie.no/2006/phd/
http://web.archive.org/web/20201018013706/https://www.w3.org/Style/LieBos2e/history/
http://web.archive.org/web/20200112005134/http://xml.coverpages.org/xs-970524.html

[20] World Wide Web Consortium. XSL Transformations (XSLT). W3C
Recommendation. 16 November 1999. https://www.w3.org/TR/1999/REC-
xslt-19991116

[21] Jon Bosak. XML Part 3: Style [NOT YET] Version 1.0. http://
sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip
(archive5)

[22] le-tex publishing services, css:expand, https://github.com/transpect/css-
tools

[23] Gerrit Imisieke, Conveying Layout Information with CSSa, XML Prague 2013,
https://archive.xmlprague.cz/2013/presentations/
Conveying_Layout_Information_with_CSSa/
CSSa_xmlprague_gimsieke.html#/step-1

[24] World Wide Web Consortium, Cascading Style Sheets (CSS) Working Group
Charter, 2014, https://www.w3.org/Style/2014/css-charter

[25] World Wide Web Consortium, CSS Working Group Charter, 2016, https://
www.w3.org/Style/2016/css-2016.html

5 http://web.archive.org/web/20200112005134/http://sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip

XSL-FO/CSS Comparison

124

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
http://sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip
http://sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip
http://web.archive.org/web/20200112005134/http://sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip
https://github.com/transpect/css-tools
https://github.com/transpect/css-tools
https://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1
https://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1
https://archive.xmlprague.cz/2013/presentations/Conveying_Layout_Information_with_CSSa/CSSa_xmlprague_gimsieke.html#/step-1
https://www.w3.org/Style/2014/css-charter
https://www.w3.org/Style/2016/css-2016.html
https://www.w3.org/Style/2016/css-2016.html
http://web.archive.org/web/20200112005134/http://sunsite.unc.edu/pub/sun-info/standards/dsssl/xs/xs970522.rtf.zip

Structure! You get more than you see
Cerstin Mahlow

Zurich University of Applied Sciences, School of Applied Linguistics
<cerstin.mahlow@zhaw.ch>

Abstract

In the 1990s, the focus on the printed page as the final product of writing
with WYSIWYG tools clashed first with the development of the Web and a
decade later with the advent of mobile devices. Both developments enabled—
and required—new types of documents and thus demanded new tools and
processes for producing these documents. In the 2010s, the emphasis on
writing experience, personalization of tools, and the growing diversity of
input devices, methods, and displays is the main reason for the design and
development of “new writing tools.” Their functionalities are often working
implementations of methods and concepts originally described and devel-
oped in the 1960s and 1970s that seem to have failed due to the limitations
of computers at that time. Dedicated research on writing tools stopped in the
late 1980s, once universities and companies had decided what to purchase
and Microsoft Word had achieved monopoly status in the consumer market.
The shift of academic writing to include dynamic aspects of “text,” e.g.,
code (snippets), data plots, and other visualizations clearly demands other
tools for text production than traditional word processors. When the printed
page no longer is the desired final product, content and format can be
addressed explicitely and separately, thus emphasizing the structure of texts
rather than the structure of documents.

1. Introduction

In the early 1990s, Microsoft Word became the de facto market leader in word
processing software for personal use. The main reason was that MS Word was
bundled with many PCs. From a customer’s perspective, everything was ready:
one could just turn on the new computer and start writing with MS Word. Get-
ting and installing a different word processor like WordPerfect would have
involved purchasing another license and installing another program. This ubiq-
uity lead to several effects: writers became accustomed to the appearance, fea-
tures, and affordances of MS Word; the format of text files produced with MS
Word became the default file format expected and demanded for submissions of
academic texts and beyond, for interchange between writers when writing collab-
oratively, and for further processing in publishing houses.

125

However, also in the 1990s, the focus on the printed page as the final product
of writing with WYSIWYG tools clashed first with the development of the Web
and a decade later with the advent of mobile devices. Both developments enabled
—and required—new types of documents and thus demanded new tools and
processes for producing these documents.

Thirty years later we face a wave of tools for text production without any
explicit document format (understood as printable object) as final product. Writ-
ers of all kinds are invited and seem to enjoy a “new” writing experience focusing
on content and some very basic textual structures and decorations.

In this paper I will first look at the production of documents from a writer’s
perspective. Clearly, the intended use and final distribution format influences
tools and procedures involved in document creation. I argue that both a general
shift in what we consider “final” documents due to general technical progress, as
well as customers demanding tools to be tailored and configurable for specific
needs—which also, due to general technical progress, today can be satisfied
rather easily compared to 20 or 40 years ago—fosters a movement towards new
tools. I will show that the underlying ideas are not completely new, but today’s
technology finally allows for the actual implementation of ground-breaking con-
cepts from the earlier decades since the 1960s. We are witnessing a trend towards
explicitely addressing and working on format and content separately. In the last
section, I propose to apply a different view on structure with respect to natural
language documents: When we get rid of the concept of the printed page as the
main instantiation of texts, we actually work on text strucutures, not on document
structures—which has all kinds of impacts on use and development of tools for
writing.

2. Documents

2.1. Focus on the standard-format printed page
For a long time, documents mainly have been spread and consumed as physical
pages, i.e., “the document” as the final product of writing was a written or prin-
ted page as a physical object. With the advent of computers to be used for writ-
ing, this was initially achieved by using structured-editing with troff [27], for
example. Troff files would make structure explicit, but the target document could
only be seen when printed later. Almost nobody can interpret troff commands
mentally, imagine the final product, and then decide what to change where. Vari-
ous studies showed that writers missed an overview or a “global perspective”
[37] on the text as a whole for general orientation and also for revision decisions
when working with early word processors. [19] [22]

Printing for checking the current look of an intermediate draft is expensive
and complicated. There originated the demand to see on the screen as well as to

Structure! You get more than you see

126

be able to write and edit a document in a rendering pretty close to the final prod-
uct. Writers wanted to work on their text document while seeing it as it would
appear on paper when actually printed.

2.2. WYSIWYG
The slogan “What You See Is What You Get” (WYSIWYG), first used for advertis-
ing WordStar, referred to “seeing on the screen” the page as it would be printed
later. Although it was Easy Writer which was the first word processor that
allowed text to be displayed on the screen exactly as it would later be printed. [3]
The emphasis was on the printed page and on how to best support writers to lay
out their text on that page. WYSIWYG word processors allowed writers to write
text and manipulate the appearance of that text at the same time. Word process-
ors started to include features to typeset text into documents. As developers tried
to integrate all aspects of the creation of paper documents into a single tool, the
number of features and menu options of word processors like MS Word grew
without bounds.

Writers took over the roles of typesetters and layouters. Working on content
and form—i.e., layout—at the same time became possible. Apart from traditional
possibilities to emphasize text as bold, italic, or underlined, the writer could
adjust the font, its color and size. Writers could also use format templates for
documents which render the text according to its stucture and defined appearan-
ces for headings, lists, etc.

WYSIWYG applications often tempt writers to configure appearance of the
text by applying formatting directly, which might result in the desired look, but is
error prone and will cause inconsistencies. In various studies with early WYSI-
WYG word processors [33], [37], and [13] found that they hampered and suppor-
ted revising and editing at the same time: the document always looks somehow
“finished” but revising is much easier than when using pen and paper or a type-
writer and leaves no traces. Even 10 years earlier, [8] notes:

The text editor also eliminates the spatial and aesthetic barriers that are special
inhibitators of revising activity. Writers are often reluctant to mess up a carefully
written page by crossing out words or cramping inserts between lines and in the
margins.” [8]

2.3. Dynamic Documents
In the 1990s the development of the Web enabled and demanded other docu-
ments, not intended to be distributed as printed pages. It allows for dynamic
documents with respect to form and content. One major aspect of the Web is the
linking of documents as hypertext, which challenges authors during writing. The
understanding of “text” changed at the turn of the century to include “interactive,

Structure! You get more than you see

127

hypertextual documents—many of which reside on the Internet—[which] use
color, sound, images, video, words, and icons to express their messages” [17]; this
clearly required tools that would allow writers to create and edit such docu-
ments.

Today’s websites are dynamic, they are configurable to preferences of visitors,
multi-media, assemblages of other dynamic modules, they collect user data, etc.
Software originally developed to support writing of personal diary-style texts—
weblogs/blogs—now include automatic rendering of the articles (text as well as
static and dynamic images or sound) for all kinds of displays and devices. Gen-
eral markup for structuring text into headers, paragraphs, for emphasis, and link-
ing draws on what is used elsewhere, for example in Wikipedia, and respective
editors for authoring Wikipedia-style articles have been developed. As the gen-
eral idea of Wikipedia as collection of linked texts became popular, this principle
gained ground.

What we also see with wikis is the return of the explicit separation of content
and form—what one sees during writing and editing is not what one sees when
looking at the result of these activities. Whether or not users find it comfortable to
have a constantly updated preview (side by side with the editing field/window or
in a separate window/application) is up to them and can be arranged as well as
switched off and on.

2.4. Single-source publishing
Taking into account that communication takes place on various channels with
specific and complex formats emphasizes structure within text, which allows the
display of the content/text according to features of devices and tailored to the
needs of readers. Writing in these scenarios used to be challenging and required
knowledge of specific markup to be used for rendering.

Format templates to be configured and applied in the word processor itself
have been an attempt to distinguish form and content for the general writer. They
allow for formating documents consistently according to specific rules that apply
to structural elements and might depend on the desired output format in terms of
document size and file format. For example, rendering of headings or URLs will
differ for a PDF document to be printed and for a HTML document to be dis-
played and used interactively in a web browser.

The idea of “single-souce publishing” addressed varying distribution formats
and channels but allowed the writer to only produce the text once and then leave
rendering to somebody or something else. While WYSIWYG word processors
mix content and form and allow users to work on both nearly at the same time,
there is an ever growing trend to explicitly split these two aspects again.

Structure! You get more than you see

128

3. Writing Tools
Even when the “paperless office” was advertised more and more, the form in
which a text was distributed and consumed more often than not was still a prin-
ted page—or the PDF file as a simulacrum of paper and thus a print-oriented
document. Many tools were developed around this central idea: writing technol-
ogy became digitalized, but no “digital transformation” seemed to be around the
corner. As I showed above, the assumption of a print-oriented page as final docu-
ment is not that strong any longer, though.

Digitalization uses digitized objects, which still refer to their original features
and affordances [18]. They are intended to be manipulated with digital tools,
which often also still refer to corresponding real-world tools, their features, and
their affordances. After the advent of graphical user interfaces, the design of
word processors mimicked for a long time the look (and feel) and functionality of
typewriters.

3.1. Early word processing tools
The term “word processing” was first used in the 1960s. It did not refer to a single
software application as today, but to a complete solution consisting of hardware
and software, the market leader at that time was IBM. (For historical overviews
see [49]; [20]; [14]) Existing technologies for storing, indexing, searching and find-
ing texts were combined and extended by functions known from editors for
manipulating program code and data—i.e., text editors.

However, this idea only caught on and became commercially attractive in the
early 1990s. Before that—in the mid-1970s—programs such as Electric Pencil or
Easy Writer were developed but were later unable to hold their own against com-
mercial products. [3] Similarly, word processors developed in the late 1980s by
research institutions and universities did not succeed as they required main-
frames while commercial products were much cheaper and ran on PCs. [32] [44]
The first commercially successful word processing programs like WordStar or
later WordPerfect disappeared, mainly due to decisions and advertising strategies
of the management of the respective companies, not due to features or writers’
preferences. [3] [4] [14] [49]

The “old” word processing programs were forgotten, which is regrettable if
one compares functions available today in word processing programs with the
possibilities of editors from the 1960s or 1970s.

As an example, consider NLS (oN-Line System) [15], the Stanford Research
Institute editor famously introduced by Douglas C. Engelbart in 1968.1 NLS
already worked with multiple windows in 1968 and could be operated with the

1 This performance is considered the “mother of all demos.” Among other things, the screen of Engel-
bart’s computer was transmitted live to a large video screen.

Structure! You get more than you see

129

mouse—another invention of Engelbart. NLS allowed both text writing and data
exchange, use of a shared database, e-mail, and simultaneous editing of a docu-
ment (called “computer conferencing” [5] even when writers were physically sep-
arated). It included word wrap, search and replace, cut and paste between
documents, etc. [20] Only some years later, [12] developed the Hypertext Editing
System (HES).

3.2. The default word processor sets the bar and stops development
The accustomization of writers to MS Word and its perception as the default
word processor resulted in a general assumption that every other new writing
and editing facility—e.g., in the first learning management systems, which started
to appear in the early 2000s—should be designed to resemble the look and feel of
MS Word and include its main features to offer a familiar user experience.

The design and implementation of Google Docs as well as what is today
LibreOffice are further strong examples: Google Docs set off based on Writely, a
web-based collaborative word processor supporting concurrent editing devel-
oped by the company Upstartle to “become the blog-posting tool of choice and be
the fastest, easiest and most widely-adopted way to make a wiki, create a docu-
ment, collaborate, or post a web page” [7]. Google itself supported the develop-
ment of MobWrite, a web-based open-source multi-user real-time plain-text
editor [16] addressing the issue of keeping a consistent synchronized document
during concurrent editing by various users. Documents could be saved in the
standard MS Word format, thus ensuring interoperability. In contrast to Google
Docs, the current web version of MS Word is not free of charge, and only in 2021
Microsoft began offering a full version of MS Word as a web version, hoping to
keep up with their more popular competitor Google.

Writer, the word processor in LibreOffice—a fork from OpenOffice, which
itself is an open-sourced version of StarOffice—,by default saves documents in
the OpenDocument format, but it can also export to various other formats includ-
ing XHTML, RTF, and MS Word’s .doc and .docx to allow for subsequent editing
using other word processors. Features and menues resemble MS Word, as Google
Docs does. All of them are still WYSIWYG word processors with the print-orien-
ted page as the goal for “what to get.” It once set out as marketing slogan but
seems to be the standard and default requirement for word processing software
for quite some time now. However, Google Docs now also allows settings for
“pageless” documents.

3.3. Scientific research on writing tools
Scientific Research on writing tools more or less stopped in the late 1980s2, when
universities and companies increasingly settled on “standard” software (for large-
scale installations) (e.g., [8]; [42]; [21]; [35]) and MS Word had achieved monopoly

Structure! You get more than you see

130

status in the consumer market. In the early 1980s [36] and [45] had explored
“How do people really use text editors?” (title of ([45])) to draw conclusions for
future developments of editors with respect to functionality and general design.
Ten years later, [23] stated:

It seems clear however that in order to produce computer based tools to support
writers and the writing process we must increase our knowledge of how writers
conduct their craft. An increased understanding of writer’s requirements and the
task involved in writing will form the basis of the next generation of writing tools.
[23]

They made this statement after the failure of a large project on writing support.
Projects like RUSKIN ([48]; [46]), Writer’s Assistant ([41]; [40]), Intelligent

Workstation ([25]), and Editor’s Assistant ([9]; [11]) did not result in marketable
products. Aimed at supporting writers for (post-)editing and revision based on
linguistic principles and using language resources, the design and development
either did not take into account actual user needs (RUSKIN), or the required
resources from natural language processing (NLP) were not mature enough at
that time to be used in real-world applications. The computing power of PCs in
the early 1990s were insufficient for real-time analysis and generation. These fac-
tors led to applications that were too limited for practical use (Intelligent Work-
station and Editor’s Assistant). The integration of NLP technology into word
processors beyond grammar checking has been a research topic since the 1980s
(e.g., [25]; [26]; [10]; [31]), but did not result in commercial products at that time.
Today’s computing power as well as maturity of NLP resources allow for another
try in this direction. Since 2013, iAWriter as a commercial product offers informa-
tion functions using NLP techniques to highlight specific aspects of the evolving
text, what is typically called “syntax highlighting” to specifically highlight nouns,
verbs, adjectives, etc. It is advertised as “using parts of speech to improve your
writing”3 with explicit references that writers deserve the same professional sup-
port as programmers enjoy.

Although writing research does study writing in practical settings and works
on writing pedagogy, the writing research community still shows only little inter-
est in improving writing tools or the development of new ones. Only occasionally
the influence of the writing tool and medium are acknowledged ([38]; [6]; [30]).

30 years ago, [47] stated that professional writers, including academics and
journalists, seemed to be satisfied with the tools available at that time, i.e., in the
early 1990s. They had adapted to these tools and did not seem to be aware that
there might be other options. In the early 2000s, only writers who had used

2 Note that in contrast, research on text editors for programmers both with respect to general features
and more design oriented user interface issues is still ongoing and did not experience a serious drop.
3 https://ia.net/writer/support/writing-tips/parts-of-speech

Structure! You get more than you see

131

https://ia.net/writer/support/writing-tips/parts-of-speech

WordPerfect or other word processors “back in the days” sometimes complained
about missing functionality in current word processors.

A decade after the Web, in the early 2000s, mobile devices appeared. Mobile
devices and the size of their screens clearly influence the size of the final product
as well as the possibilities for inputing and editing of text. In the 2010s, the
emphasis on writing experience, personalization of tools, and the growing diver-
sity of input devices, input methods, and displays triggered the design and devel-
opment of truly “new writing tools.” However, text entry beyond typing on
physical keyboards seems to be interesting mainly from a design point of view.
Focusing on affordances, usability, and habits, [29] propose a thumb-based key-
board to support sight-free and one-handed text entry. [24] work on modeling co-
ordination of eye and finger movements to simulate human-like text entry on
touchscreens based on artificial intelligence. Their model and simulation serves as
basis for future development of touchscreen keyboarding designs.

[28] state that there seem to be a clear separation from research on tools and
their features—hypertext authoring in that case—and the authoring process itself.
Their work on these issues hopefully stimulates further research.

4. WYSIWYG is dead, long live structure!
Despite its name, the system “Paper” [37] did not adress the look and feel of the
final document, but was intended to help writers gain a general global perspec-
tive supported by switching between a view on the text and on the logical struc-
ture. The metaphor of paper was also used to offer a familiar navigation through
the growing text, explicitely making connections to the mental model the writer
has or develops with respect to the text being produced. Paper never became an
actual product used widely.

Of course the mental representation is highly influenced by the objects and
activities the writer is engaged with on a daily basis—paper—and the desired
final output—a set of printed pages. As both the everyday surrounding and the
format of the final product change, the mental representation and thus the need
and demand for support using features of this representation will change. Writers
trained to use WYSIWYG word processors and having experienced the paper-cen-
tered world on document engineering by heart are vanishing. The next genera-
tions already grow up without physical keyboards and without paper—they have
no connection to principles like “save,” “download,” or “print.”

4.1. General development

As in the first cycle of the development of writing tools in the 1960s and 1970s
([14]; [20]), we now see again the adoption of tools originally intended for pro-
grammers to be used for writing all kinds of texts beyond code. These services are

Structure! You get more than you see

132

originally designed to support sophisticated version control, documentation, and
exchange. As services like GitHub gain popularity also among non-programmers,
we see another type of websites hosted and maintained on services and tools with
appropriate affordances but not originally intended to be used this way. Only
basic markup is available in those editors, which is automatically rendered into
aesthetically attractive websites and printable documents (if needed).

The example of GitHub and applications advertised as GitHub-style editors
show that users explore tools and use them according to their needs, not only
according to the original purposes of these tools. The easier the use of new tools
gets, the more we are willing to also give them a try for established tasks. In writ-
ing this means: classic document types as journal articles, book chapters, seminar
papers, letters, etc. are defined by features of the final product. If there are new
tools available that still ensure the production of those documents at the very end
—including printing on A4 paper—it might be possible to use those new web
publishing tools as writing applications. Rendering of text (and accompanying
audio, video, and images) is taken care of by dedicated services and processing
pipelines. We witness a clear separation of content and form with an implicit
instantiation of single-source publishing as various rendering services can be con-
figured to not only typeset and layout a document but also to include or exclude
specific parts automatically.

The markup most commonly used in new editing applications is Markdown.
Markdown only permits users to annotate a limited amount of decoration—e.g.,
italic, bold, underline—and of document structure elements—e.g., headers, para-
graphs. Although publishing houses today mostly use XML technology internally
to produce journals and books, the format demanded from authors is typically
still an MS Word .docx or even .doc file. In the 1990s, this requirement for manu-
scripts effectively forced authors to actually use MS Word, as it was the sole pro-
gram to reliably produce a file in the desired format. Today, authors are free to
write and revise with their personally preferred tool, which might offer an export
of the resulting text in MS Word format. Alternatively, those tools may be able to
export the document in some XML format or Markdown, which then can be con-
verted into a file in MS Word format by a program like Pandoc4. Texts in XML
format also can be rendered into paged media by applying Cascading Style
Sheets (CSS) in applications like Antenna House Formatter [1].

4.2. Get rid of the concept of “page” in general
Preparing a traditional apparatus of publishing and libraries still relies on pagi-
nated formats for cataloguing and referencing, even with all other processing

4 Pandoc [https:// pandoc.org] is advertised as “Swiss-army knife” for converting files from one
markup format into another and back. This also includes taking care of additional files containing bib-
liographic information and handling citations and references according to the specified style.

Structure! You get more than you see

133

https://pandoc.org
https://pandoc.org

steps being entirely digital. This will probably cause a strong influence for some
time to come and require pagination of texts. However, it does not require actual
printing of physical pages. When even academic publishing by well-established
publishing houses in traditional journals moves away from physical pages—the
printed journal is no longer the default distributional channel—as well as digital
variants—PDFs mirorring paper pages in letter format or as A4—it is probably
high time to abandon the concept of “pages” in general. We already see effects as
Google Docs not only allows to configure size and appearance of the page as final
version of text production, but also settings for a “pageless” document.
Getting rid of the concept of pages leaves the issue of how to reference parts

of a text when there are no page numbers? Referencing sections and their head-
ings might be a solution, but depends on the text structure and the rendering of
the document. But also here we could make use of ideas from the 1960s such as a
the statement numbers used by NLS.

However, even in 2021, Beat Singer (the developer of the RSL hypermedia
metamodel and the interactive paper platform iPaper) stated in an interview:
“[M]ost of today’s digital document formats are ‘simulating paper’ based on the
WYSIWYG … principle and are therefore not fully embracing the new opportuni-
ties offered by digital media.” [2]

If we accept that there is no one single final form of a document, we could
abandon specific rendering for interchanging documents or drafts of documents
but distribute content with some very basic markup and a simple proposal
including working instructions on how to render this content as a document. The
question thus remains: how to produces these things, what to use to write, revise
and edit content, what to use to propose and apply exemplary rendering. To
answer these questions, inter- and transdiciplinary research is needed in fields
like software engineering, document engineering, human-computer-interaction,
writing research and writing pedagogy to address inputting, editing, and pro-
cessing of natural language texts intended to be distributed as documents and
read by humans.

5. New Writing Tools: Back to the Future
In some respects, we now see a development back to ideas and applications of the
late 1960s, before projects like NLS where “pushed aside in favor of computer
systems more oriented toward print practices” [43]. While print is certainly not
dead, for many, if not most, purposes it has been replaced by dynamic text on
screens of varying sizes. To a large extent, the idea of the final printed document
has thus become obsolete, and with it many related concepts such as pages and
static page layout.

Structure! You get more than you see

134

When the page-oriented document structure disappears, what remains? The
structure of the text, i.e., the minimal structure necessary to dynamically display
the text on a wide variety of displays and to interact with it.

For many applications, this minimal structure closely corresponds to that
offered by Markdown and similar lightweight markup languages. Offering only
Markdown for editing clearly reduces the number of functions an editor has to
include and this significantly reduces the number of buttons and options a writer
can press or choose from. This reduction visibly contributes to the reduction of
toolbars: modern editors offer more space to actually write than those from the
late 1990s.

For a long time it was believed that SGML and later XML would finally be
used directly by end users when WYSIWYG editors would eventually become
available. [34] But it turns out that the obsolescence of the printed document as
the end goal of document preparation also rendered WYSIWIG obsolete. New
tools explicitly separate writing and rendering, and the rendering is delegated to
the machine. In fact, they are even advertised as not being WYSIWYG.

Andrew Tanenbaum famously complained: “WYSIWYG is a step backwards.
Human labor is used to do that which the computer can do better.”5 In this sense,
the development back to earlier practices can be seen as a step forward: writers
are in control of their texts, but the formatting for presentation is taken over by
the machine. Thus writers no longer feel the pressure to always maintain a neat,
quasi-final document while writing.

This is in line with a development that we have observed for some years now:
new writing and editing applications are advertised with a very strong emphasis
on helping writers to “focus on the text,” to offer “a unique writing experience
that lets you concentrate and clarify your message,” with an interface that “is
crafted to cut out noise” (iAWriter6). Everything else that seemed so important
only 15 years earlier is left to later, mostly automatic stages in the production
process.

We also see experimental applications using recent technological possibilities
to finally approach writing in a way earlier experiments tried and proposed but
did not succeed: One such example is Tilio7, which tried to implement ideas pro-
posed by [39]. The project was cut short by the COVID-19 situation in 2020, but
the technical feasibility has been shown in an alpha version, so we might see
another attempt later.

Similarly, the integration of various features and services in support of writing
rather than formatting (e.g., outlining, reference management, note-taking, data
plotting, and synchronous and asynchronous collaboration and messaging) into a

5 http://www.few.vu.nl/~ast/home/faq.html
6 https://ia.net/writer
7 https://tilio.app

Structure! You get more than you see

135

https://ia.net/writer
https://tilio.app
http://www.few.vu.nl/~ast/home/faq.html
https://ia.net/writer
https://tilio.app

single application (such as Scrivener8, Author9, or Zettlr10) can be seen as a come-
back of some of the ideas of [15]. Liberated from the dictate of the printed docu-
ment as final form, in which the microstructure of the text disappears behind the
macrostructure of the document and its organization into pages, it now takes the
center stage and demonstrates the power of the computer as a writing tool that
goes beyond the mimicking of its historical predecessors.

6. Acknowledgements
This work has been supported by ZHAW DIZH Fellowship Call 2019. Parts of
this paper were written during a stay at Studio Cascina Garbald of the Fonda-
zione Garbald.

References
[1] Antenna House, Inc. 2019. Introduction to CSS for Paged Media. Antenna House.

https://www.antennahouse.com/css.
[2] Atzenbeck, Claus. 2021. “Interview with Beat Signer.” SIGWEB Newsletter, no.

Winter (February). https://doi.org/10.1145/3447879.3447881.
[3] Bergin, Thomas J. 2006a. “The Origins of Word Processing Software for

Personal Computers: 1976–1985.” IEEE Annals of the History of Computing 28
(4): 32–47. https://doi.org/10.1109/mahc.2006.76.

[4] ———. 2006b. “The Proliferation and Consolidation of Word Processing
Software: 1985–1995.” IEEE Annals of the History of Computing 28 (4): 48–63.
https://doi.org/10.1109/mahc.2006.77.

[5] Callender, E. David. 1982. “An Evaluation of the AUGMENT System.” In
SIGDOC ’82: Proceedings of the 1st Annual International Conference on Systems
Documentation, 29–35. New York, NY, USA: ACM Press. https://doi.org/
10.1145/800065.801306.

[6] Calonne, David S. 2006. “Creative Writers and Revision.” In Revision: History,
Theory, and Practice, edited by Alice Horning and Anne Becker, 142–76.
Reference Guides to Rhetoric and Composition. West Lafayette, IN, USA:
Parlor Press.

[7] Chang, Emily. 2005. “eHub Interviews Writely.” Weblog eHub. https://
web.archive.org/web/20110722190058/http://emilychang.com/ehub/app/
ehub-interviews-writely/.

8 https://www.literatureandlatte.com/scrivener/
9 https://www.augmentedtext.info/author
10 https://www.zettlr.com/

Structure! You get more than you see

136

https://www.literatureandlatte.com/scrivener/
https://www.augmentedtext.info/author
https://www.zettlr.com/
https://www.antennahouse.com/css
https://doi.org/10.1145/3447879.3447881
https://doi.org/10.1109/mahc.2006.76
https://doi.org/10.1109/mahc.2006.77
https://doi.org/10.1145/800065.801306
https://doi.org/10.1145/800065.801306
https://web.archive.org/web/20110722190058/http://emilychang.com/ehub/app/ehub-interviews-writely/
https://web.archive.org/web/20110722190058/http://emilychang.com/ehub/app/ehub-interviews-writely/
https://web.archive.org/web/20110722190058/http://emilychang.com/ehub/app/ehub-interviews-writely/
https://www.literatureandlatte.com/scrivener/
https://www.augmentedtext.info/author
https://www.zettlr.com/

[8] Daiute, Colette A. 1983. “The Computer as Stylus and Audience.” College
Composition and Communication 34 (2): 134–45. https://doi.org/10.2307/
357400.

[9] Dale, Robert. 1989. “Computer-based Editorial Aids.” In Recent Developments
and Applications of Natural Language Processing, edited by Jeremy Peckham, 8–
22. London: Kogan Page.

[10] ———. 1997. “Computer Assistance in Text Creation and Editing.” In Survey
of the State of the Art in Human Language Technology, edited by Giovanni B.
Varile, Antonio Zamponelli, Ronald Cole, Joseph Mariani, Hans Uszkoreit,
Annie Zaenen, and Victor Zue, 235–37. Studies in Natural Language
Processing. Cambridge, New York, Melbourne: Cambridge University Press.
https://doi.org/10.5555/278696.278806.

[11] Dale, Robert, and Shona Douglas. 1996. “Two Investigations into Intelligent
Text Processing.” In The New Writing Environment: Writers at Work in a World of
Technology, edited by Mike Sharples and Thea van der Geest, 123–45. Berlin,
Heidelberg, New York: Springer.

[12] Dam, Andries van, and David E. Rice. 1971. “On-line Text Editing: A Survey.”
ACM Computing Surveys 3 (3): 93–114. https://doi.org/10.1145/
356589.356591.

[13] Dowling, Carolyn. 1994. “Word processing and the ongoing difficulty of
writing.” Computers and Composition 11 (3): 227–35. https://doi.org/
10.1016/8755-4615(94)90015-9.

[14] Eisenberg, Daniel. 1992. “History of Word Processing.” Encyclopedia of Library
and Information Science, no. 49: 268–78.

[15] Engelbart, Douglas C. 1962. “Augmenting Human Intellect: A Conceptual
Framework.” Stanford Research Institute. http://sloan.stanford.edu/
mousesite/EngelbartPapers/B5_F18_ConceptFrameworkInd.html.

[16] Fraser, Neil. 2009. “Differential Synchronization.” In Proceedings of the 9th
ACM Symposium on Document Engineering, 13–20. DocEng ’09. New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.1145/
1600193.1600198.

[17] Geisler, Cheryl, Charles Bazerman, Stephen Doheny-Farina, Laura Gurak,
Christina Haas, Johndan Johnson-Eilola, David S. Kaufer, et al. 2001. “IText:
Future Directions for Research on the Relationship between Information
Technology and Writing.” Journal of Business and Technical Communication 15
(3): 269–308. http://jbt.sagepub.com/cgi/content/abstract/15/3/269.

[18] Gibson, James J. 1977. “The Theory of Affordances.” In Perceiving, Acting, and
Knowing: Toward an Ecological Psychology, edited by Robert Shaw and John

Structure! You get more than you see

137

https://doi.org/10.2307/357400
https://doi.org/10.2307/357400
https://doi.org/10.5555/278696.278806
https://doi.org/10.1145/356589.356591
https://doi.org/10.1145/356589.356591
https://doi.org/10.1016/8755-4615(94)90015-9
https://doi.org/10.1016/8755-4615(94)90015-9
http://sloan.stanford.edu/mousesite/EngelbartPapers/B5_F18_ConceptFrameworkInd.html
http://sloan.stanford.edu/mousesite/EngelbartPapers/B5_F18_ConceptFrameworkInd.html
https://doi.org/10.1145/1600193.1600198
https://doi.org/10.1145/1600193.1600198
http://jbt.sagepub.com/cgi/content/abstract/15/3/269

Bransford, 67–82. Hillsdale, NJ: Lawrence Earlbaum. http://
www.worldcat.org/isbn/9781138203860.

[19] Haas, Christina, and John R. Hayes. 1986. “What Did i Just Say? Reading
Problems in Writing with the Machine.” Research in the Teaching of English 20
(1): 22–35. http://www.jstor.org/stable/40171057.

[20] Haigh, Thomas. 2006. “Remembering the Office of the Future: The Origins of
Word Processing and Office Automation.” IEEE Annals of the History of
Computing 28 (4): 6–31. https://doi.org/10.1109/mahc.2006.70.

[21] Hawisher, Gail E. 1988. “Research update: Writing and word processing.”
Computers and Composition 5 (2): 7–27. https://doi.org/10.1016/
8755-4615(88)80002-1.

[22] Hill, Charles A., David L. Wallace, and Christina Haas. 1991. “Revising on-
line: Computer technologies and the revising process.” Computers and
Composition 9 (1): 83–109. https://doi.org/10.1016/8755-4615(91)80040-k.

[23] Holt, Patrik O’Brian, and Noel Williams, eds. 1992. Computers and Writing:
State of the Art. 1st ed. Hardcover; Springer. http://www.worldcat.org/isbn/
0792318587.

[24] Jokinen, Jussi, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti
Oulasvirta. 2021. “Touchscreen Typing as Optimal Supervisory Control.” In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
New York, NY, USA: Association for Computing Machinery. https://
doi.org/10.1145/3411764.3445483.

[25] Kempen, Gerard, Gert Anbeek, Peter Desain, Leo Konst, and Koenraad De
Smedt. 1986. “Author Environments: Fifth Generation Text Processors.” In
ESPRIT’86 Results and Achievements, edited by The Commission of the
European Communities: Directorate General XIII: Telecommunications,
Information, Industries & Innovation, 365–72. Amsterdam, New York, Oxford,
Tokio: North-Holland.

[26] Kempen, Gerard, and Theo Vosse. 1992. “A Language-Sensitive Text Editor
for Dutch.” In Computers and Writing: State of the Art, edited by Patrik O’Brian
Holt and Noel Williams, 68–77. Boston, Dordrecht, London: Kluwer.

[27] Kernighan, Brian W., and Michael E. Lesk. (1978) 1982. “UNIX Document
Preparation.” In Document Preparation Systems, edited by Jürg Nievergelt,
Giovanni Coray, Jean-Daniel Nicoud, and Alan C. Shaw, 1–20. Amsterdam:
North-Holland.

[28] Kitromili, Sofia, James Jordan, and David E. Millard. 2020. “What Authors
Think about Hypertext Authoring.” In Proceedings of the 31st ACM Conference

Structure! You get more than you see

138

http://www.worldcat.org/isbn/9781138203860
http://www.worldcat.org/isbn/9781138203860
http://www.jstor.org/stable/40171057
https://doi.org/10.1109/mahc.2006.70
https://doi.org/10.1016/8755-4615(88)80002-1
https://doi.org/10.1016/8755-4615(88)80002-1
https://doi.org/10.1016/8755-4615(91)80040-k
http://www.worldcat.org/isbn/0792318587
http://www.worldcat.org/isbn/0792318587
https://doi.org/10.1145/3411764.3445483
https://doi.org/10.1145/3411764.3445483

on Hypertext and Social Media, 9–16. HT ’20. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/3372923.3404798.

[29] Lai, Jianwei, Dongsong Zhang, Sen Wang, Isil Doga Yakut Kilic, and Lina
Zhou. 2019. “ThumbStroke: A Virtual Keyboard in Support of Sight-Free and
One-Handed Text Entry on Touchscreen Mobile Devices.” ACM Trans.
Manage. Inf. Syst. 10 (3). https://doi.org/10.1145/3343858.

[30] Mahlow, Cerstin, and Robert Dale. 2014. “Production Media: Writing as
Using Tools in Media Convergent Environments.” In Handbook of Writing and
Text Production, edited by Eva-Maria Jakobs and Daniel Perrin, 10:209–30.
Handbooks of Applied Linguistics. Berlin, Germany: De Gruyter Mouton.

[31] Mahlow, Cerstin, and Michael Piotrowski. 2009. “LingURed: Language-
Aware Editing Functions Based on NLP Resources.” In Proceedings of the
International Multiconference on Computer Science and Information Technology,
4:243–50. Mragowo, Poland: Polish Information Processing Society. http://
www.proceedings2009.imcsit.org/pliks/101.pdf.

[32] Meyrowitz, Norman, and Andries van Dam. 1982. “Interactive Editing
Systems: Part I.” ACM Computing Surveys 14 (3): 321–52. https://doi.org/
10.1145/356887.356889.

[33] Piolat, Annie. 1991. “Effects of word processing on text revision.” Language
and Education 5 (4): 255–72. http://cogprints.org/3621/.

[34] Piotrowski, Michael. 2019. “History and the Future of Markup.” In
Proceedings of XML Prague 2019, edited by Jirka Kosek, 323–33. Prague.
http://archive.xmlprague.cz/2019/files/xmlprague-2019-
proceedings.pdf#page=335.

[35] Ross, Donald. 1991. “Prospects for Writer’s Workstations in the Coming
Decade.” In Evolving Perspectives on Computers and Composition Studies, edited
by Gail E. Hawisher and Cynthia L. Selfe, 84–110. Urbana, IL, USA: National
Council of Teachers of English.

[36] Rosson, Mary B. 1983. “Patterns of experience in text editing.” In CHI ’83:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
171–75. New York, NY, USA: ACM. https://doi.org/10.1145/
800045.801604.

[37] Severinson Eklundh, Kerstin. 1992. “Problems in Achieving a Global
Perspective of the Text in Computer-based Writing.” In Computers and Writing:
Issues and Implementation, edited by Mike Sharples, 73–84. Boston, Dordrecht,
London: Kluwer. http://www.jstor.org/stable/23370612.

[38] Sharples, Mike. 1996. “An Account of Writing as Creative Design.” In The
Science of Writing. Theories, Methods, Individual Differences, and Applications,

Structure! You get more than you see

139

https://doi.org/10.1145/3372923.3404798
https://doi.org/10.1145/3343858
http://www.proceedings2009.imcsit.org/pliks/101.pdf
http://www.proceedings2009.imcsit.org/pliks/101.pdf
https://doi.org/10.1145/356887.356889
https://doi.org/10.1145/356887.356889
http://cogprints.org/3621/
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=335
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf#page=335
https://doi.org/10.1145/800045.801604
https://doi.org/10.1145/800045.801604
http://www.jstor.org/stable/23370612

edited by C. Michael Levy and Sarah Ransdell, 127–48. Hillsdale, NJ, USA:
Lawrence Erlbaum.

[39] ———. 1999. How We Write: Writing as Creative Design. New York, NY, USA:
Paperback; Routledge. http://www.worldcat.org/isbn/0415185874.

[40] Sharples, Mike, James Goodlet, and Lyn Pemberton. 1989. “Developing a
Writer’s Assistant.” In Computers and Writing: Models and Tools, edited by Noel
Williams and Patrik O’Brian Holt, 22–37. Oxford: Intellect.

[41] Sharples, Mike, and Lyn Pemberton. 1990. “Starting from the Writer:
Guidelines for the Design of User-Centred Document Processors.” Computer
Assisted Language Learning 2 (1): 37–57.

[42] Taylor, Lee R. 1987. “Software Views: A Fistful of Word-Processing
Programs.” Computers and Composition 5 (1): 79–90. http://
computersandcomposition.osu.edu/archives/v5/5_1_html/
5_1_8_Taylor.html.

[43] Van Ittersum, Derek. 2008. “Computing Attachments: Engelbart’s
Controversial Writing Technology.” Computers and Composition 25 (2): 143–64.
https://doi.org/10.1016/j.compcom.2007.12.001.

[44] Vernon, Alex. 2000. “Computerized Grammar Checkers 2000: Capabilities,
Limitations, and Pedagogical Possibilities.” Computers and Composition 17 (3):
329–49. https://doi.org/10.1016/s8755-4615(00)00038-4.

[45] Whiteside, John, Norman Archer, Dennis Wixon, and Michael Good. 1982.
“How do people really use text editors?” ACM SIGOA Newsletter 3 (1-2): 29–
40. https://doi.org/10.1145/966873.806474.

[46] Williams, Noel. 1990. “Writers’ Problems and Computer Solutions.” Computer
Assisted Language Learning 2 (1): 5–25.

[47] Williams, Noel. 1992. “New Technologies. New Writing. New Problems?” In
Computers and Writing: State of the Art, edited by Patrik O’Brian Holt and Noel
Williams, 1–19. Boston, Dordrecht, London: Kluwer.

[48] Williams, Noel, and Patrik O’Brian Holt, eds. 1989. Computers And Writing:
Models And Tools. Oxford: Hardcover; Intellect. http://www.worldcat.org/
isbn/187151603X.

[49] Wohl, Amy D. 2006. “How We Process Words: The Marketing of WP
Software.” IEEE Annals of the History of Computing 28 (4): 88–91. https://
doi.org/10.1109/mahc.2006.66.

Structure! You get more than you see

140

http://www.worldcat.org/isbn/0415185874
http://computersandcomposition.osu.edu/archives/v5/5_1_html/5_1_8_Taylor.html
http://computersandcomposition.osu.edu/archives/v5/5_1_html/5_1_8_Taylor.html
http://computersandcomposition.osu.edu/archives/v5/5_1_html/5_1_8_Taylor.html
https://doi.org/10.1016/j.compcom.2007.12.001
https://doi.org/10.1016/s8755-4615(00)00038-4
https://doi.org/10.1145/966873.806474
http://www.worldcat.org/isbn/187151603X
http://www.worldcat.org/isbn/187151603X
https://doi.org/10.1109/mahc.2006.66
https://doi.org/10.1109/mahc.2006.66

Jiří Kosek (ed.)

XML Prague 2022
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2022

ISBN 978-80-907787-0-2 (pdf)
ISBN 978-80-907787-1-9 (ePub)

	XML Prague 2022
	Table of Contents
	General Information
	Sponsors
	Preface
	A case study of committee-based semantic model development of XSD and JSON schemas
	1. Introduction
	2. Open-edi standards ISO/IEC 14662 and ISO/IEC 15944
	3. CCTS: semantic modeling for business documents
	4. Business document naming and design rules
	5. Expecting the unexpected
	6. Schema expressions
	7. Conclusion and implications

	X-definition 4.2 XML, JSON, YAML, and XON
	1. Introduction
	2. XML -> JSON conversion
	3. JSON -> XML conversion
	4. XON format
	4.1. JSON (or XON) object model in X-definition
	4.2. YAML
	4.3. Properties and Windows INI format
	4.4. CSV data

	5. Examples of using X-definition
	5.1. Validation mode of processing
	5.2. External methods
	5.3. Construction mode of processing
	5.4. X-components
	5.5. Localization of data

	6. Example of processing of JSON data
	7. Conclusions
	Bibliography

	A Pilot Implementation of ixml
	1. Invisible XML
	2. Processing
	3. How ixml works
	4. Implementation
	4.1. Parsing algorithms
	4.2. Parsing
	4.3. Serialisation
	4.4. Ambiguity

	5. The Pilot Implementation in Use
	6. Future Work
	6.1. Serialising to memory
	6.2. Round-tripping
	6.3. Translating to other languages

	7. Conclusion
	References
	8. Postscript

	Expression Elaboration
	1. Introduction
	2. The Expression Interpreter
	3. Bytecode Generation
	4. Elaboration
	4.1. Why try something new?
	4.2. Expression Elaboration Explained
	4.3. A simple example
	4.4. Push mode, Pull mode

	5. Results

	A Benchmark Collection of Deterministic Automata for XPath Queries
	1. Introduction
	1.1. Outline

	2. XPath Benchmark Queries
	3. Nested Words for XML Documents
	3.1. Nested Words
	3.2. XML Documents

	4. Automata for Nested Words
	4.1. Finite State Automata (NFAs)
	4.2. Stepwise Hedge Automata (SHAs)
	4.3. Adding Typed Else Rules
	4.4. A Schema for XML Documents
	4.5. Nested Word Automata (NWAs)

	5. Compiler to Automata
	5.1. Parser
	5.2. Nested Regular Expressions
	5.3. Compiler to SHAs
	5.4. Determinization
	5.5. Determinizing the Schema Product
	5.6. Schema-Based Determinization
	5.7. Minimization
	5.8. Compiler to NWAs

	6. Testing Automata on Samples
	7. Statistics of the Benchmark Automata
	8. Conclusion
	Bibliography
	A. Complementary Information

	Use the Markup, Stupid!
	1. The Why
	2. A Quick DITA Refresher
	3. The PLM Product
	4. Importing (and Exporting) Maps
	5. So What's Wrong with It?
	5.1. Maps and Inheritance
	5.2. Decomposing and Composing

	6. Discussion
	7. How Did This Happen?
	8. Conclusions

	XSL-FO/CSS Comparison
	1. Introduction
	2. History
	3. Viewpoints
	3.1. CSSer’s view of XSL-FO
	3.2. XSL-FOer’s view of CSS

	4. Feature comparison
	5. Formatting the XSL-FO/CSS comparison
	5.1. Development sequence
	5.2. CSS version
	5.2.1. Alternative approaches

	5.3. XSL-FO version
	5.3.1. Page layout
	5.3.2. Side tabs
	5.3.3. Tables
	5.3.4. Alternative approaches

	6. Conclusion
	Bibliography

	Structure! You get more than you see
	1. Introduction
	2. Documents
	2.1. Focus on the standard-format printed page
	2.2. WYSIWYG
	2.3. Dynamic Documents
	2.4. Single-source publishing

	3. Writing Tools
	3.1. Early word processing tools
	3.2. The default word processor sets the bar and stops development
	3.3. Scientific research on writing tools

	4. WYSIWYG is dead, long live structure!
	4.1. General development
	4.2. Get rid of the concept of “page” in general

	5. New Writing Tools: Back to the Future
	6. Acknowledgements
	References

